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Abstract

Approximate Reinsurance Premiums
Yohanna Mesa

Insurance is a risk transfer mechanism, which allows individuals and firms to
reduce the uncertainty about their future cash flows. It provides financial com-
pensation for the effects of misfortune through the establishment of a fund, into
which all insured pay premiums and from which benefits are paid when insured

events occur.

These uncertainty is usually modeled through two distinct components the claim
frequency and the claim severity, since in any given year, neither the number
of claims nor their severity is known in advance. The usual stochastic insurance
model is thus a random sum called the aggregate claims, where the random number
of variables summed represents the claim frequency, while each variable summed

represents the claims severities. Each play an important role in the model.

Usually it is difficult to obtain the exact aggregate claims distribution, although it
is important to researchers and practitioners in actuarial science. Several appro-
ximations have been suggested to this purpose. In particular, Chaubey et. al. [3]

proposed a new inverse gaussian-gamma mixture approximation.
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The main goal of this thesis is to study approximation methods to calculate stop-
loss reinsurance premiums, including a proposal based on the inverse gaussian-

gamma mixture approximation.

Various graphical and numerical illustrations are given in support of our conclu-

sions.
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Introduction

The main goal of this thesis is to study approximation methods to calculate stop-

loss reinsurance premiums.

The first chapter gives a brief description of basic insurance and reinsurance con-
cepts. It explains in some detail the advantages, disadvantages and other partic-

ular characteristics of different reinsurance treaties.

The second chapter is a general survey of approximations to aggregate claim dis-
tributions. It confirms the results obtained by Chaubey et. al. [3] about the inverse
gaussian-gamma mixture approximation (called IG-mixture here). Numerical ex-

amples and graphs are also presented.

Chapter 3 proposes an approximation algorithm. For a given aggregate claims dis-
tribution, this algorithm calculates approximate stop-loss premiums at different
retention levels, using the gamma, inverse gaussian and IG-mixture approxima-

tion. Various numerical illustrations are given.

The last chapter presents a simulation study to validate the different methods
to approximate premiums. It also proposes a procedure to approximate stop-loss
premiums with the IG-mixture method when the aggregate claims distribution is

unknown.



A detailed description of the proposed algorithm and various graphical and nu-
merical results are added to the appendices.

(3]



Chapter 1

Preliminaries on Insurance and
Reinsurance

This chapter gives an overview of insurance and reinsurance. It starts with a brief
description of the main concepts summarized from Hansel [4] and Booth et al. [1].
The last two sections use the notation of Daykin et al. [2] for the definitions of

frequency and severity distributions.

A comparison of the different models of reinsurance is also presented. The advan-

tages, disadvantages and the particular characteristics of each model are studied

in detail.

1.1 Insurance

Insurance may be defined as a financial compensation program for the effects of
misfortune, the payments being made from the accumulated contributions of all
parties participating in the scheme. Thus, it may be seen as a kind of fund, into
which all who are insured will pay a contribution (called premium). In return

those insured will have the right to call on the fund for any appropriate payment,
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should the insured event occur.

Insurance exists to combat the adverse effects of risk. Risk is inseparable from
life and nobody is exempt from it. Insurance is generally used in a pessimistic
sense, with the possibility of loss or misfortune in mind. Obviously some people
are exposed to greater levels of risk than others, by virtue of their occupation,
physical condition, geographical situation or countless other reasons. To a greater
or lesser extent, the risks of fire, flood, theft, negligence of others or ourselves and

many other perils are constantly with us.

Risk can be classified according to the nature and possible consequences of the

hazard involved:

e pure and speculative risks,

e fundamental and particular risks.

A pure risk offers no prospect of gain. It offers only the possibility of loss or at
best the preservation of its status (e.g. fire, flood, accident, death). These risks are
normally the subject of insurance. Generally, speculative risks are not insurable
because these offer the possibility of gain of loss. Trading risk falls within this

category.

Most insurable risks are particular risks. These are risk consequences which are
comparatively restricted. Fundamental risks tend to affect large sections of society
or even the world. Catastrophic risks are fundamental risks. From an actuarial
point of view, such events are not insurable. But people living in risky areas need
protection against events like earthquakes, hurricanes or flooding and therefore

the economy is also protected against it.
Neither all risks are insurable, nor a risk will be insurable only if it is a pure and

4



particular risk. There are another characteristics that a risk should satisfy:

e there must be an insurable interest,

e it must have financial value,

e there must be a large number of similar risk,

e it must be possible to evaluate the risk of loss,

e it must be consistent with public policy,

e it must be random and the probability of occurrence must not be either 0,

nor 1.

Insurance can be classified by the main classes of business: Life Insurance and
General Insurance. Life insurance provides a vital financial service to individuals
and firms who wish to insure themselves against financial losses which might be

incurred as a result of any of the following:
o death,
e survival to a particular period,
e sickness or disability.
Life insurance contracts are long term because the policyholder does not need to

reapply for renewal of the contract after each coverage year. Renewal is guaranteed

over the duration (term) of the contract, as agreed when the policy is issued.

General insurance products offer some protection against the risk that a future

event will unexpectedly diminish the insured’s normal quality of life. This type of



risk is apparent in all aspects of human endeavor. There are different products in
general insurance known as short term contracts because the duration is usually 1
year and it is necessary to reapply in order to renew the contract. Among others

we find:

e Marine Insurance,

e Fire Insurance,

Engineering Insurance,

Aviation Insurance.

Motor Insurance.

We will only consider general insurance models in this thesis. If you are interested

in life insurance refer to Booth et al. [1] or Tiller and Fagerberg [11].

1.2 Reinsurance

Reinsurance is one of the major risk management tools available to insurance
companies, providing in with protection against adverse experience fluctuations.
Reinsurance is also a powerful financial planning tool. In any given year, reinsu-
rance can be used to increase or decrease the statutory earnings and surplus for

either the ceding companies or the reinsurer.

There are two types of reinsurance, proportional and non-proportional. In the first
case the primary insurer passes a proportion of the liability from an individual
risk, or from a number of risks, and pays to the reinsurer a proportion of the

original net insurance premium for those risks. In return, should claims arise,



the reinsurer will reimburse the primary insurer for the same proportion of those
claims. Non-proportional reinsurance does not contribute proportionally to all

losses and does not cost a proportional share of the premium.

The three basic methods of reinsurance are:

e Optional: the primary insurance (ceding) company has the option of sub-
mitting claims and the reinsurer has the option of accepting or declining

individual risks.

e Automatic Reinsurance: agreement under which the reinsurer must accept
or assume risks which meet certain specific criteria based on the ceding

company underwriting terms.

e Indemnity Reinsurance: here the risk (but not its administration) is passed
to the reinsurer which pays the ceding company for losses covered by the
reinsurance agreement (treaty). The ceding company retains its liability and

its contractual relationship with the insured.

The principal types of proportional covers are Quota Share and Surplus reinsu-
rance, while for non-proportional covers these are Excess of Loss and Stop Loss

reinsurance .

1.3 Frequency, Severity and Aggregate Claims

In insurance it is very important to predict how many claims can occur in a given
time of period. The number of claims occured in a time period [0, t], is denoted

by N, and its distribution function given by

P = P(N, < k), k=0,1,2,3,...



and it is known as frequency distribution.

Obviously N, is a discrete random variable that can be modeled using function

such as the Poisson, Binomial or Negative Binomial distributions.
The severity distribution is given by

Fx(z) =P(X<z), >0
where X represents the individual claim size.

A natural estimate for the claim size distribution is the empirical distribution,

i.e. the distribution function is defined as

number of claim sizes < z

Fn(I) -

(1.1)

total number of claims

This method is appropriate only where there is a sufficiently large number of
claims. This is rarely the case for the tail of the distribution but it is also possible

to use continuous distribution functions, such as the gamma, Weibull or lognormal.

The individual claim amount is the quantity that the insurer has to pay on the
occurrence of a fire, an accident, death or some other insured event. The sum of
the individual claims constitutes the aggregate claim amount, which is one of the
key concerns both in the practical management of an insurance company and in

theoretical considerations.

Since the number of claims and the size of each claim are stochastic variables we

can construct a doubly stochastic (compound) aggregate claim amount model.

Let N be the number of claims for an insurance portfolio over a certain time of
period (generally 1 year) and let X; be the i-th claim size occurring during the

time period, then we can write the aggregate claim amount S during that time



period as a random sum:
N

S=ZX,

=1
Assume that the claims X; are independent and identically distributed (i.i.d.) and

that they are independent of N.

For a given F. the distribution function (d.f.) of X; and pr = P(N = k), the
df of Sis
Fs() =) pFi*z) , 20 , (12)
k=0
where F¢*(z) represents the k-th convolution of Fy evaluated at the point z (here

Fg%(z) = I[z > 0] and F§' = F).

The Limited Expected Value Function (LEV) £ of a claim size variable X is
defined by

£(M) = E[min(M, X)] = / Y zdFy(z) + M[1 — Fx(M)], M>0. (1.3)
0

The value of the function £ at a point M is equal to the expectation of the d.f. Fix
truncated at the point M. This function is useful because it represents the claim
size distribution in a monetary scale. The d.f. Fx, on the other hand, is expressed
on a probability scale. Therefore, it is usually difficult to see, by looking only at
Fx, how sensitive the risk premium is to changes in d.f. , while the LEV function
shows immediately how different parts of the claim size d.f. contribute to the risk

premium.

The function £ has the following important properties:

1. The graph of £ is concave, continuous and increasing,

2. £L(M) —>m=E(X) as M — oo,



3. Fx(M)=1- £(M).

Refer to Daykin [2] for a proof of these properties.

The pure premium (P) is that part of the premium that is sufficient to pay for
expected loss and loss adjustment expenses, but not other costs or expenses. It is
usually calculated as P = E(S) = E(/N)E(X) . This expression is obtained from
the definition of S and direct properties of the expected value.

1.4 Reinsurance Models

This section presents a brief description of different reinsurance treaties. We start

with the following definitions:

e Cede : To transfer an insurance risk from the company originally issuing the

policy to another insurance company, known as the reinsurer.

e Ceding Company : A ceding insurer or a ceding reinsurer. A ceding insurer
is an insurer that underwrites and issues an original, primary policy to
an insured and contractually transfers (cedes) a portion of the risk to a
reinsurer. A ceding reinsurer is a reinsurer that transfers (cedes) a portion

of the reinsured risk.

e Reinsurer: A reinsurer contractually accepts a portion of the ceding com-

pany’s risk.

o Retention: The dollar amount or percentage of each loss retained by the

ceding company under a reinsurer agreement.

10



1.4.1 Proportional Reinsurance

This class of reinsurance includes the Quota Share and Surplus treaties. These
are classified as treaties rather than as optional reinsurance. In proportional re-
insurance each claim is shared by the cedant and the reinsurer(s) in a proportion
specified in the treaty. An advantage of this type of reinsurance is that the reinsu-
rance premium rating is simpler than in the case of non-proportional reinsurance
treaties. Indeed, since the reinsurer pays a certain proportion of every claim, the

net reinsurance risk premium is the same proportion of the total net premium.

A drawback of proportional reinsurance is that small claims are shared between the
cedant and the reinsurer, as well as the large ones. Thus the cedant’s net business
volume is further reduced than under non-proportional reinsurance agreements.
Surplus reinsurance provides a partial solution to this problem by assigning a

different ceded proportion to different risks, according to either size.

Another weakness of proportional reinsurance is that treaties which deal with
claims individually do not provide satisfactory cover against fluctuations in the

number of claims.

Quota share model

In Quota Share reinsurance any claim, irrespective of its size, is divided between

the cedant and reinsurer in a predetermined ratio.

Let the claim size r.v. X have d.f. Fx, density function fx and mean and variance
1 and o2, respectively. Assume that the insurer cedes the proportion (1 — a), so

that the amount retained is the r.v. Y = aX. The df. of Y is Fy(y) = Fx(%)

11



and the density function fy(y) = L fx (). Thus

E(YY)=E(aX)=au ,
Var(Y) = Var(aX) = o’0?

and the coeflicient of variation of Y is

. vVvar(Y) o
CV(Y)=*Y——=-=-=CV(X

(V) = Yy~ = 2 = CV(X)
Figure 1.1 shows how a portfolio composed by 5 risks of different exposures is

shared between the insurer and the reinsurer using a quota share treaty with

75%, 50% and 25% ceding, respectively.

25/50 50/50 75/50
4000 —— 4000 T e e a—" 4000 —r —
|l Retained || BB Retained Ell Retained
| @l Ceded Wl Ceded Ell Ceded
3500 4 asoot 4 3sook .

2500 + 2500+ 2500 - 5
t
g 2000 | 2000+ 2000+
1500 - 1500 1500 -
1000 | 1000 | 1000 + .
§00 - 500} S00 -
o 0 o

1 S5 1

2 3 4 1 2 3 4 S5 2 3 4
Individual Risk Individual Risk Individual Risk

Figure 1.1: Quota Share Reinsurance Treaties.
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Surplus model

Whereas quota share reinsurance scales down each risk in the same proportion,
a surplus treaty is more flexible: the proportion of each individual risk reinsured
may vary and. within the parameters specified in the treaty, is under the control

of the ceding office.

The parameters that define the amount ceded are:

1. M, the maximum amount that the insurer may retain,

2. L, the maximum number of lines that may be ceded under the treaty. One
line is equal to the amount retained: the maximum amount that can be

ceded is L M.

It follows that the maximum exposure the insurer can underwrite to be covered
under the terms of the treaty is the retention, M, plus the amount ceded L M,
that is (1 + L) M.

To calculate the proportional allocations, let the maximum amount L M be rein-

sured, this implies a proportion (HI_‘% = HLL of the claim and of the net premium.

On the other hand, for a risk with an exposure E, say, where E is less than
(1+ L) M, the insurer has some flexibility in the amount it retains. If the insurer
wishes to cede the minimum amount then, as the maximum retention is M, it
follows that the amount ceded should be £ — M. The proportional allocations
between the insurer and the reinsurer are 4 retained and £ZY ceded with 54
number of lines used. Conversely, to maximize the amount ceded to the reinsurer
the proportion HLL as defined in the treaty (using L lines) can be applied to the

exposure with ] retained.

13



In the case that the initial exposure exceeds (1+ L) M, an insurer must first reduce

the exposure so that the residual amount is no more than (1 + L) M.

Suppose that all the risks have exposures less than or equal to (1+ L) M. Let E;
be the exposure for the i-th risk and let o; be the proportional allocation between

the insurer and the reinsurer, then a; = g—’ is retained and 1 — «; ceded.

13

Consider a randomly chosen claim X occurring in the portfolio. If X is the size

of this claim affecting the j-th risk, the retained amount is then

: MY
Y=an=mm(1, F,) X

and

e =Fe(Z)

J
while the ceded amount is

Z=(1—aj)X=ma.x(0, Ej_M) X
E;

f2(2) =Fx( z )

1-— aj
The mean, the variance and the coefficient of variation have been calculated for

the retained amount:

IE(Y)=min(1, %) E(X) |
Var(Y) = min ( . %)2 Var(X)

and

_ Var(Y)  Var(X)
V) = Y5 = oo = V)

14



Assuming that our portfolio is composed by k risks, the aggregate loss at the end
of the period will be

Xio

i
-

i=1

Ni

X

I
M»

1 5=1

t

where N; and X,; are the number of claims and the individual claims amount
of the i-th risk, respectively. Note that X;, could be zero when no claims have

occurred. Then calculating the expectation we obtain

k
E(S) =) E(Xu)
i=1

k
= nE(X)
i=1

where n; is the expected number of claims of the i-th risk.

The expected value of the aggregate net loss and the reinsurer’s loss are

M
E(Sret) Zn]EX,.)mm( E)

and

k
E(Sced) = ZniE(X,-.)max( 0, E';M ) :

i=1

respectively.

Using these estimates we obtain the following formulas for the cedant’s net risk

premium and for the reinsurer premium.
. M
Pret. = ;n,—]E(X,-.)mm ( 1 y E )

15



and

k
- M
Peea = Y nE(X:.) max ( 0, ET )
i=1 t

The same portfolio used to illustrate quota share reinsurance is used here for
surplus reinsurance treaties, with retentions of $1,250, $2,500 and $3,750, respec-
tively. Figure 1.2 shows how with this treaty the proportion of risk reinsured

varies for each individual.

Retention= $1,250 Retention= $2, 500 Retention= $3,750
5500 5500/ - 5500
8 Retained | i Ml Retainea B Retained
] '] Ceded | ! 3 Ceded |} o0l :E Ceded ||
5000 — , .
4500 <+ 4500+ <+ 4500
—_—
4000 < 4000 4 4000+
—

3500+ 3500 4 3500

3000+ 4 a3ooot

2500 2500

2000+ 4 2000t

1500+ - 1500+

1000 4 100t

500 + - 500}
o] [¢]

1 2 3 4 5
Ingrvicdual Risks

1 2 3 4 5 1 2 3 4 S5
Indivdual Risks individual Risks

Figure 1.2: Surplus Reinsurance Treaties.

1.4.2 Non-proportional Reinsurance

The available types of non-proportional reinsurance vary widely. Changes are
motivated by reinsurance companies need to improve their ability to set a correct
price for the risk and to persuade the cedant that the structure and scope of

coverage gives an optimal balance between cost and benefit.
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The traditional forms of non-proportional reinsurance are known as excess of loss
and stop loss. Both have different designs, we study per risk excess of loss re-
insurance and stop loss reinsurance based on the aggregate claims, also called
aggregate excess of loss cover. The difference is found in the calculation of the re-
tention, in the first contract the retention is based on an individual claim, whereas

in the last one the retention is according to the aggregate claims.

Excess of loss model

The excess of loss reinsurance may be written in a variety of ways, for example
per risk excess of loss reinsurance and single event excess of loss reinsurance. In
both of these, the reinsurer pays the part of each claim amount that exceeds
an agreed limit M, the cedant’s retention limit. The difference is in how the
retention is calculated. In this section we are concerned with per risk excess of
loss reinsurance, where the retention M is defined for each claim in a certain group

of risks, the reinsurer paying the excess over that amount.

Usually, the reinsurer gives cover for claims which exceed M up to an agreed limit.
The region from M to the upper limit of cover is known as a layer of cover. The
cedant might arrange for several layers of risk excess cover in succession, each

stacking on top of the other, the top layer possibly being unlimited.

It is easy to see that lower layers of cover will be exposed to a higher frequency
of loss than in case when the reinsurer is regularly involved on a high proportion

of claims.

In general, an excess of loss reinsurance might be described as D in excess of M,
it is written as D xs M. This means that the company retains M of each loss

and can cover claims that fall in the region M to M + D.
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If the gross claim is X, the net claim of an excess of loss per risk reinsurance and

the reinsurance loss are obtained as shown in Table 1.1.

[ Gross Claim Net Claim | Reinsurer Loss
0<X<M X 0
M<X<D+M M X-M
D+M<X M+X-D D

Table 1.1: Decomposition of a gross loss X between insurer and reinsurer.

A numerical example illustrating the decomposition of 20 claims under a per risk

excess of loss reinsurance of $150,000 versus $200,000 is presented in Figure 1.3.

R Net of Rensurance
{—J Rensurance Loss
! D Excess

bl

s $150. 000 xs $200. 000

Claim size

Indivdual clams

Figure 1.3: Excess of Loss Reinsurance Treaty.
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So far we have that in excess of loss reinsurance the reinsurer pays the excess
Zy=(X-M)" =X —min(M, X)
The mean value of the amount to be paid is then,

E(Zyr) = E(X) — E[ min(M, X) ] (1.4)
= £(o0) — £(M) (1.5)

where £ is the limited expected value (LEV) function of the d.f. F.

From (1.5) it follows that
E(Zu) =mce(M)

(M) = (1 - M)

m

where

and
m = £(oc) = E(X)

c is decreasing and convex function of the retention M, such that ¢(0) = 1 and
c(oc) =0.
Let n be the expected number of claims, the reinsurance premium P,,; for the
retention M can be calculated as
Py =nE(Zy)=nc(M)m
= P ¢(M) = n[£(c0) — £(M)]

When the excess of loss cover is limited, as usually, the reinsurer pays the possible
excess over the retention limit M, but at most up to an agreed amount A per

claim.
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If the treaty covers the layer A xs M. Then the reinsurer’s share of a claim of size

Xis
Zxy = min[A, (X — M)*] = min[M + A, X| — min[M, X]

When the reinsurer cover consists of several layers, the risk premium can be cal-

culated for each of them.
The risk premium for these layers is

Pyt =nE(Zy) = n {E[min(M + A, X)| - E[ min(M, X) |}
= n {£(c0) — £(M + A) - £(c0) + £(M))}
=n{£(M) - £(M + A)} ,

where n is the expected number of (all) claims.

The moment about the origin of the cedant and reinsurer’s share can also calcu-

lated. The cedant’s share is given by

) = MX"de(x)-f-Mk[l—FX(M)] , M>0 (1.6)
0

ax(M) = E(Z},

ret

since
Zree = min(M, X)

and its d.f., Fie, is defined by

Fx(z) , z< M
Fm(z)={ xl() , > M

By contrast, the moment about the origin of the reinsurer’s share takes the follo-

wing form:

r(Zr) =2:( )( —M)F 1o ~ a(M)] (1.7)
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where a* = af*(o0) = af*(X). It follows from the notation Zj; + Z,.. = X and

the expression
E(Zve:) = E[ min(M. X) | = / " XdFe(@)+ M- Fe(M)] . (19
0

When the excess of loss cover is limited, then the first moment in (1.7) is written
as
k
O (Zarxsa) = ) ( z) (=M al™(M + A) — a5(M)] . (1.9)
=1

An example is presented with United Kingdom fire claim data that appeared in
Daykin [2]. These claims have been grouped. The total number of claims observed
during the period is 16,536 and the mean claim size is 7,009 in the corresponding

monetary unit.

From the data it is possible to obtain an expression for the cumulative distribution

function of the claim size. Using (1.1) we have:

Fa(x) z < 10,240
Fx(z)={ 1-7.3208X 13938 10,240 < £ <100,000 . (1.10)
1 z > 100,000

Assuming that the expected number of claims in a year is n = 4,134 then Table

1.2 shows the results.

From left to right Table 1.2 gives the retention value, the cumulative distribution
function evaluated at the retention value, the retention value times the probability
that the claim size be greater than the retention value, the cedant’s and the
reinsurer’s premium, the second moment about the origin of the cedant’s share

and the last column is the first risk index.
The risk index is a ratio r, = %g% Usually, it is possible to characterize riskiness
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as moderate if 7 < 30. Then typically the tail of the distribution is short. On
the other hand. if ry exceeds, say 200, the distribution is risky.

It can also be seen that the reinsurance premium P,, = n (me —myy) is relatively
small compared with the total risk premium P = n m, if the retention limit M
is larger than 100,000.

M S(AM) [ Mx(1-S(M)) | mar Peed Pr. ay(M) | ra(A) |
0.10 | 0.261188 0.073881 0.085 | 349.69 |28,624.42 ] 0.008 1.09
0.14 | 0.309265 0.096703 0.113 | 46749 | 28,506.62 | 0.015 115
0.20 | 0.364296 0.127141 0.153 | 631.31 | 2834280 | 0.028 1.20
0.28 | 0.422472 0.161708 0.201 | 831.21 |28,142.90 | 0.051 1.27
0.40 | 0.488812 0.204475 0.266 | 1,100.16 | 27,873.95 |  0.095 1.34
0.57 | 0.556604 0.252736 0.347 | 1,432.79 | 27,541.32 | 0.173 144

0.80 | 0.619860 0.304112 0.441 | 1,821.17 | 27,152.94 0.301 1.55
1.13 | 0.678459 0.363341 0.556 | 2,297.86 | 26,676.26 0.522 1.69
1.60 | 0.729439 0.432898 0.694 | 2,869.92 | 26,104.20 0.897 1.86
2.26 | 0.778120 0.501448 0.855 | 3,535.68 | 25,438.44 1.513 2.07
3.20 | 0.820090 0.575714 1.043 | 4,311.14 | 24,662.97 2.528 2.32
4.53 | 0.856495 0.650078 1.256 | 5,191.97 | 23,782.14 4.159 2.64
6.40 | 0.885522 0.732656 1.495 | 6,180.15 | 22,793.97 6.746 3.02
9.05 | 0.908624 0.826956 1.764 | 7,291.96 | 21,682.15 10.862 3.49
12.80 | 0.928520 0.914949 2.066 | 8,540.74 | 20,433.38 17.393 4.07
18.10 | 0.945029 0.994975 2.395 | 9,899.41 | 19,074.71 27.435 4.78

25.60 | 0.957970 1.075955 2.754 | 11,384.97 | 17,589.15 42.958 5.66
36.20 | 0.968372 1.144932 3.140 | 12,982.05 | 15,992.07 66.542 6.75
51.20 | 0.976597 1.198258 3.545 | 14,655.66 | 14,318.46 | 101.470 8.07
72.41 | 0.983128 1.221722 3.964 | 16,386.15 | 12,587.96 | 152.490 9.71
102.40 | 0.988449 1.18277 4.381 | 18,110.99 | 10,863.12 | 224.245 11.68
250 0.996671 0.832242 5.271 | 21,790.79 | 7,183.32 511.095 18.39

500 0.998733 0.633438 5.776 | 23,877.78 | 5,096.33 869.586 26.07
750 0.999280 0.539957 6.013 | 24,859.12 | 4,115.00 | 1160.740 | 32.10
1000 | 0.999518 0.482124 6.160 | 25,466.24 | 3,507.88 | 1415.296 | 37.30
2000 | 0.999817 0.366955 6.453 | 26,675.24 | 2,298.87 | 2246.000 | 53.94
3000 | 0.999896 0.312801 6.590 | 27,243.74 | 1,730.37 | 2920.672 | 67.25
5000 | 0.999949 0.255802 6.735 | 27,842.09 | 1,132.02 | 4044.418 | 89.16
10000 | 0.999981 0.194697 6.890 | 28,483.56 | 490.55 6248.166 | 131.61
20000 | 0.999993 0.148188 7.008 | 28,971.80 2.31 9602.810 | 195.52
50000 | 0.999998 0.103301 7.122 | 29,443.01 0.00 16865.385 | 332.49
100000 | 0.999999 0.078625 7.185 | 29,702.05 0.00 25764.811 | 499.11

Table 1.2: The Cedant’s Premium and Risk index r, of the cedant’s claim size
net of reinsurance. The monetary unit is £1000.



Stop Loss model

In this section stop loss reinsurance is presented as an aggregate type of cover,
providing protection not only against large individual claim, but also against

fluctuations in the number of claims.

Under this contract, the reinsurer pays the excess Z = (S — M)™* over an agreed
limit amount M of the cedant’s aggregate claim amount S, accumulated during a

certain time period, for example 1 year:
Ny
S=>"X: . (1.11)
i=1
The cedant’s share Y = S — Z of the claim, net of reinsurance, is then
Y = min(S, M)

Note that in stop loss reinsurance the aggregate claim amount is shared between
the cedant and the reinsurer, exactly as an individual claim is shared in the case
of excess of loss reinsurance. Therefore the formulas obtained in the section above

can be applied for stop loss reinsurance.

Hence,
P = E(S)=EX)E(N) |
M
Pud = £r(M)= / zdFs(z) + M1 - Fs(M)] |,
0

and
Pu = £r(00)— £r(M) = [ [1-Fs@)]dz (112)
M

where Fs denotes the d.f. of aggregate claims amounts S and Lg, is the corre-

sponding LEV.

23



If the layer is limited, say A versus M, the reinsurance risk premium is easily

obtained by the formula
Pre(‘4XSA[) = £F5(AI + A) - ‘CFs(l"/[) = Pre,M - R\!+A - (113)

The higher moments of Z and Y could be obtained from the results of the section
above, keeping in mind to use the aggregate claim amount instead the individual

claim.

The distribution function of an individual claim is usually simpler to obtain than
the aggregate claim distribution. As in (1.2)
Fs(z) =P(5 < z)
=P(X1+Xo+ -+ Xy SI)

=) P(X;+Xo+--+ Xy <z |N=k)P(N =k)
k=1

=Y Ff@)P(N=k) . 20
k=1

where Fyg* is the k-th convolution of Fy with itself.

Serious numerical problems have been encountered in the calculation of the exact
distribution Fs. Chaubey et al. [3] proposed an inverse Gaussian-gamma mixture
approximation, which approximates the true distribution extremely accurately in
a large variety of situations. It is described in detail in the next chapter, where

we propose to use it to approximate the stop loss reinsurance premium in (1.12).
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Chapter 2

Approximations

A general survey of approximations to aggregate claim distributions is given in

this chapter (see Chaubey et al. [3]). This will be useful in the following chapters.

Section 2.2 gives expressions for the first moments of the different distributions
presented. These form the basis of calculation for the approximate distributions.
Using these expressions, algorithms are presented in Section 2.3 to obtain exact
and approximated values of the aggregate claims distribution. In turn, these will

be used to obtain approximate reinsurance premiums.

Graphical and numerical results for various examples are given at the end of the
chapter. These confirm the results obtained by Chaubey et al. {3] on the accuracy

of the approximation for probability calculations.

2.1 Introduction

Several approximations are used in actuarial problems. The normal and gamma

approximations are simple to use since they are pre-programmed in many mathe-
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matical and statistical softwares. However, other distributions are not as simple
to compute as the normal or gamma but may produce more accurate approxima-

tions.

For instance, the inverse Gaussian and gamma mixture approximation was sug-
gested in Chaubey et al. [3]. In a comparison of different approximations for a
large variety of cases, they show that the inverse Gaussian mixture approximates

the true distribution extremely accurately.

2.2 Moments and Cumulants of the Aggregate
Claims Distribution

A brief summary about the first moments and cumulants for different distribution
functions is given in this section. For more details refer to Daykin et al. [2] or

Panjer and Willmot [8].

It is known that the j-th moment about 0, u!, of a non-negative random variable
is defined as follows

E(X7) = [;° 27 dFx(z) if X is continuous

py = .
E(N?) =302k P(N =k) if N is discrete

A disadvantage of moments about zero is that they are not additive for indepen-
dent random variables. It is useful therefore to introduce other characteristics
which have this simple additivity feature. A set of characteristics with this pro-

perty is known as cumulants C;. They can be expressed in term of the moments
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#; and conversely, for example

C =y (21)
Cy = ph—ui® (2.2)
Cs = wy—3upy+2p’ (2.3)
Ci = py—4pipy—3uy” + 124 %0 — 64" . (2.4)

The conventional characteristics of a random variable X can readily be given in

terms of the cumulants as

E(X)=Cx1 , Mean (2.5)
Var(X) =Cxs = 0% Variance (2.6)
bx = C’fs = C_)am , Skewness (2.7
Lok
. Cxq4  Cx4 -
kx = ez, " ol Kurtosis (2.8)

The next few sections will use the first moments of the following distribution

functions:

e The Poisson distribution with parameter A

S, n=0,12,.., (2.9)
n.

Pn

has moments given by:

Py =A

P2 =A(A+1)

g =N (A+2)+AN+1)

Ena =N A +3) 4302 A +2) + A (A +1)
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e The binomial distribution with parameters (m, q)

Pn = (m) " (1-¢™ ™. n=012,...m, (2.10)

n

has moments given by:

#fm =mgq

2
Ko =ty + v (1= ¢q)
/3 2 2 2
Bns =H'n1 — 38 3@ + 2un10” + 31y, — 3quivy + By
!

4 3 2 3 2
Hina =t'n1 = 69 vy + 11¢%0 ) = 6¢°uiyy + 64’y — 180y ig + 12¢° 1y,

- 12
+ Tu'n1 — Tqung + B

e The negative binomial distribution with parameters (r, 3)

3 r 1 r ﬁ n B
- () () () morzee . ew

has moments given by:

#fm =r 3
Ena =t'n1 + o (1= 8)
3 2 : 2
s =t N1 + 31 1B + 26y, B + 3Ny + 38y + iy
2 12

4 3 3 2
Hing =H w1+ 680 3y + 11520, + 68° iy + 64y, + 180y, 8 + 128% )y,

+ T#IQM + 75#&'1 + li’Nl

e The inverse Gaussian distribution with parameters (m, b)

(S

Fx(z) = ®{(bz)"2(z — m)] + exp 2—b"i<b[—(bz)‘%(r +m)], >0, (2.12)

where ®(-) denotes the standard normal distribution function.



The first four raw moments are given by:

I P
Hx, =m

Hya =m® +mb
Uz =m3 +3m? + 3mb* |

g =m?* +6m3b + 15m?b® + 15mb°
while the r-th cumulant for r > 2, is given by

Cxr=mb1(1)(3)...(2r-3) . (2.13)

e The gamma distribution with parameters (a, A) has a density function given
by
Y

[(a)’

fx(z) =A%z~ >0 (2.14)

and its k-th raw moments can be obtained by:

/ ( k)
= — o 9 2
Hxk F( ) Pk k 1,-,... . (-.15)

e The Weibull distribution with density function
fx(z) =crzcle™", z>0 | (2.16)

has a k-th raw moment given by:

L(1+%)
2:

]

l‘l'.Yk = y k = 1, 2, vee . (2.17)

Now the cumulants of the aggregate claims amount § = Eﬁl X; are required.

These can be computed directly using the following general formula given in Panjer
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and Willmot [8, p.167],

Cs1 =CnCxy

Cs2 = Cn2C%y + CniCxa

Cs3z = Cn3C%, + 3Cn2Cx1Cx1 + CniCxs

Css = CnaCy, + 6Cn3C%,Cx2 + 3Cn2Crs + 4Cn2Cx1Cx3 + Cn1Clxs

where Cy. and Cy. are the corresponding cumulants of the claim number and
claim size distributions, respectively. These are obtained from equations (2.1) to

(2.4) and the expressions of the first raw moments of each random variable.

2.3 Exact and Approximate Distribution Fy
2.3.1 Computation of the Exact Distribution Fg

In Chapter 1 we have seen the general form used for the aggregate claims distri-

bution:
o0

Fs(z) =) Fi@)p. z20, (218)

k=1
where p; is a probability distribution on the integer set N and Fg* is the k-th

convolution of Fx with itself (see Section 1.3)

The computation of this expression or the corresponding probability (density)
function is generally not a simple task, even in the simplest of cases. One ap-
proach is to use an approximating distribution to avoid direct calculation, but its

disadvantages are significant (see Klugman et al. [5]).

Alternative methods to evaluate the aggregate claims distribution more quickly
are discussed in Klugman et al. [5, §4.5-4.7] and Rolski et al. [9, §4.4]. Among

them we find the inversion methods and the recursive methods.
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Here we use the Stréter’s algorithm, as presented in Panjer and Willmot [8, §D.2].

The main idea of this algorithm is to compute the solution of

o(z) = f(z) + / “K(z.y)oly)dy - (2.19)

It is based on the discretization of the integral in (2.19).

For some small interval length A > 0, the values of the function g in (2.19) are
considered at the points 0,h,2h,3h,.... Using a quadrature rule and solving for
g(kh) one obtains that,

k-1
f(kh) + )" wi; K(kh, jh) §(jh)

Array =0 — 19
g(kh) - 1 _ wk'k K(kh’ kh) ? k 11"1 b} (2'20)

where §(-) is an approximation of g(-) and w; ; are fixed weights.

Since the distribution of total claims for continuous severity distributions is the
solution of the Volterra integral equation of the second kind (Panjer and Willmot
(8, 86]) of the form in (2.19) we can use this algorithm for exact calculation of

probabilities.

In our particular problem §(z) = fs(z). Furthermore, when formula (3.2) is used
for the (a,b,0) class of claim frequency distributions (e.g. Poisson, binomial and

negative binomial, see [5, §3.5]) then

f(z) =p fx(z) , (2.21)
and
K(@y)=@+b—F)fxz-y) | (2:22)
where
pr=(a+b)p . (2.23)
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Table 2.1 summarizes the values of a, b and po for the Poisson P()), binomial

B(m, q) and negative binomial NB(r, 3) distributions.

Pk a b Po

P(X) 0 A e

B(m,q) | % (mtls (1_gm

NB(r,B) | 25 S22 (1+8)

Table 2.1: Parameters a, b and pq for the Poisson, binomial and negative binomial
distributions.

For a fixed set of weights {wi; ; K =1,2,...; j =0,1,...,k — 1}, equation
(3-2) can be used to evaluate {g(kh) ; k = 1,2,...} recursively, beginning with
the initial value g(0) = f(0*). The accuracy of this algorithm depends on the
smoothness of the functions K(z,y) and f(z), on the interval size h and on the

quadrature rule used to determine the weights wy ;.

The values of the weights are determined by applying simple approximate inte-
gration formulas repeatedly. We have followed the same idea as in Panjer and
Willmot [8, p.417]. When £ is even we use a repeated Simpson’s rule and when k
is odd, a repeated Simpson’s rule followed by a single three eights rule.

The values of the coefficients wy,; are shown in Table 2.2.
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klj= 0 1 2 3 4 5 6 7 8
1 Lh Lln

2| b 3k g

3 ih 2h 2h 2

4 lh 4h 3h fh Lh

5 ih 3k Eh 3h 2h h

6 th $h 2h 3R 3R 4h }h

7 Yh 3k 3h $h Eh Th §h S
8 ih §h h $h 3k Sh 3h Sh 3k

Table 2.2: Values of the coefficients wy ;.

To obtain the distribution function of total claims the following expression are

used

k
Fs(kh)=po+ ) we;§(Gh), k=1,2,... (2.24)
=0
and
Fs(kh) = Fs(0) =po - (2.25)

This algorithm is illustrated using [7, MATLAB version 6}, and various numerical

examples are shown in the last section of this chapter.
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2.3.2 Computation of the Approximation Fjg

Chaubey et. al. [3] compare different approximations for Fs(z), such as

e normal,

e normal power,

e Edgeworth,

e Esscher,

e gamma,

e inverse Gaussian and

e The inverse-Gaussian (IG) gamma mixture approximation.

We present the latter in detail in order to apply it to reinsurance premium calcu-

lations.
IG-Gamma Mixture Approximation

It has been shown that the IG-gamma mixture approximation produces good

results, improving the accuracy over other approximations, especially in the tail

of F, S-

Let F; be the inverse Gaussian approximation to Fg given by
FS(z)zFl(I)=[Gm,b(I—IO) ’ IZO s

where /G, 4(z) is the inverse Gaussian distribution function given in (2.12) and

the constants m, b and z; are estimated by

2Cc2 C
= p—— = —
m _ﬂCss , b= o and zg=Cg —m
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Now let F, be the gamma approximation given by

[ 3]
[\
(=]
N

Fs(z) = F5( =L e ~yye~lg >0
s(z) = Fa(z) () /, ey "ay , z20 , (2.

where I is the usual gamma function, z = x—EEf* and o = .
S

The moments ps = Cs;, 0% = Csy and 65 = €52 can be calculated from (2.5)-

(2.7). s

Matching the first three moments of the exact and approximating mixture distri-

butions
Fs(z) =wh(z)+(1—w)Fx(z) . 220 ,

where the mixture weight is given by the following ratio of kurtosis in (2.8)

. kS - kFg
=TT
ke, — kr,

defines the IG-gamma approximations. This approximation reproduces the first

four moments of F.

2.4 Examples

This section presents various examples where different aggregate claims distri-
butions are approximated and compared to exact values. Tables 2.3-2.5 give the
distribution parameters used in each example. They also show the mean, variance,

skewness and kurtosis of the aggregate claims distributions.

Graphical comparisons of the corresponding density and distributions functions
are also shown. The inverse Gaussian, gamma and IG-mixture approximations
seem accurate, but the mixture gives uniformly the best results. Appendix A

contains tables where the relative approximation error is calculated. For the
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tail of the distribution Fs, the mixture approximation is the most accurate (see
Figures 2.2 and 2.4). These figures zoom on the tail of the density functions for

the compound Poisson examples.

A general algorithm was used, valid for any compound distribution with gamma,
Pareto, Weibull or inverse Gaussian claim sizes. We have only chosen one example

for each distribution.

2.4.1 Compound Poisson

Parameters of: Characteristics
Fx(x) Poisson | us os | Skewg | Kurtg
Pareto [a=24 | A=10 A=4 | 1.74 (126 | 1.14 1.81
Weibull | §=3.0 | A=1.0 1.78 { 1.34 | 0.82 0.73
I.G. p=13|8=01 1.30 | 1.35 | 1.12 1.34
Gamma | a=20]A=15 1.33 1163 | 1.63 3.33

> > >
li
— e D

Table 2.3: Numerical examples for the Compound Poisson distribution.

Figure 2.1 shows (a) the c.d.f. and (b) the p.d.f. for the compound Poisson distri-
bution with Pareto claims. The same figure gives in (c) the p.d.f. and in (d) the
c.d.f. of the compound Poisson distribution with Weibull claims. In both cases the

exact distribution and the gamma, IG and mixture approximations are compared.

Figure 2.3 gives a comparison of the same three approximations with the exact
values for the compound Poisson with IG claims distribution in (a) and (b), while

(c) and (d) are for the compound Poisson with gamma claims distribution.
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Figure 2.1: Compound Poisson with Pareto and Weibull claims.

2.4.2 Compound Binomial

Pareto
Weibull
L.G.

Gamma

Parameters of: Basic Characteristics
Fx(z) Binomial us | os | Skews | Kurtg
a=10|A=3|m=20|¢q=06]4.00| 148 | 0.73 0.93
=4 |A=1|1m=15]¢q=02}272]147| 047 0.12
u=1 |=1|m=10]|¢g=04]|4.00|253| 1.22 2.39
a=3 [A=3|m=4 j¢q=06|2401|133} 0.56 0.29

Table 2.4: Numerical examples for the Compound binomial distribution.

Figure 2.5 (a) shows the c.d.f. and (b) the p.d.f. of the compound Poisson distri-
bution with Pareto claims. The same figure gives in (c) the c.d.f. and in (d) the
p.d.f. of the compound Poisson distribution with Weibull claims. In both cases the

exact distribution and the gamma, IG and Mixture approximations are compared.
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Figure 2.2: Zoom on the p.d.f. tail of the compound Poisson with Pareto and

pdt

pdt

Weibull claims.

Figure 2.6 (a) shows the c.d.f. and (b) the p.d.f. of the compound Binomial with

gamma claim distribution. The c.d.f. of the compound binomial with IG claims

.

og!

o

distribution is shown in (c), while (d) gives its p.d.f..

2.4.3 Compound Negative Binomial

Parameters of: Characteristics
Fx(z) N.Binomial Us os | Skews | Kurtg
Pareto [a=8|A=30|r=15|¢q=06}3.86|220] 098 1.46
Weibull [ =7 [ A=10|{r=10|¢=0.4 374|224 0.77 0.80
1.G. pu=13=07{r=10(¢q=02200(195] 1.53 3.32
Gamma |a=5|A=30|r=4 [¢=02133|1.76] 1.67 3.52

Table 2.5: Numerical examples for the Compound negative binomial distribution.
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Figure 2.3: Compound Poisson with gamma and IG claims.

Figure 2.7 (a) shows the exact c.d.f. of the compound binomial with Pareto claims
distribution and (b) its exact p.d.f. . The approximated p.d.f. and c.d.f. are also

included in the same figures.

Figure 2.8 (a) gives the exact and approximated c.d.f. of the compound binomial
with gamma claims distribution and (c) shows the exact and approximated c.d.f. of
the compound binomial with IG claims distribution. The same figure in (b) and
(d) gives the exact and approximated p.d.f. of these distributions.
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Figure 2.5: Compound Binomial with Pareto and Weibull claims.
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Chapter 3

Computation of Stop Loss
Reinsurance Premiums

From Section 1.4 we know the definition of reinsurance risk premiums and how to

calculate them for each type of reinsurance.

Assuming a stop loss reinsurance treaty, the reinsurance premium given by
(M) = B[(S — M)*] = / - Fs(z)]dz, M3>0, (3.1)
M

where Fjs is the aggregate claim distribution function.

Since the true distribution Fs is usually unknown, equation (3.1) is also difficult
to evaluate. In this chapter we propose an algorithm to obtain approximate values
for (3.1). The idea is to use the inverse gaussian-gamma mixture, in Section 2.3.2,

as an approximation to Fg.

We have seen that the IG-gamma approximation is appropriate for Fs. Hopefully,
this choice will also yield good approximate values for the corresponding stop loss

reinsurance premiums.
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3.1 Exact Methods

We need to compare the premiums obtained with our proposed algorithm to those
obtained with exact methods. One route is to use in (3.1) the exact distribution
Fs, as presented in Section 2.3.1. In this case Fg(z) values are available in tabular
form, where the number of points depends on h [see (2.24)]. Smaller h values
will produce more accurate Fg(z) values, but will slow down the algorithm. Once
values Fs(z) = 1— Fg(z) are known, we calculate the integral in (3.1) numerically,

using a classical method like Simpson'’s rule.

When FJs is given in closed form, we will be able to evaluate the accuracy of this

nurnerical “exact method”. This case is described in the next section.

3.1.1 An Analytical Expression for Fg

When claim severities are exponentially distributed with mean 6, an expression
for the aggregate claims distribution is given in Klugman et al. [5, §4.4] for the

whole (a. b,0) class of claim frequency distributions:

Fs(z)=1-¢73 f:—l-(%)J i Pn (3.2)
=0

where p, = P(N = n) is the probability that the number of claims, N, be equal

to n.
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For the different distributions in the (a,b,0) class, we have:

1. The Poisson distribution with parameter A

Fs(z)=e75 Z —1-(%)J Z e %; . (3.3)

!
=0 n=j+1

[S]

. The binomial distribution with parameters (m, q)

A=t 356E) 2 (D) ra-am e

!
=0 J: n=j+1

3. The geometric distribution with parameter 3

_ 8 -z
Fg(z)=1+ﬁexp{0(1+ﬁ)} : (3.5)
The negative binomial distribution with parameters (r, 3)
rem = S LEY () 5 () (L)
re =t 25 () 20) () - 6o

or equivalently.

- r1<r) (1+ﬂ)m(1+5)n =; Lzl e"p{"“:ﬁ’}.

n= J

e

:

@ln

When the claim severity distribution is not necessarily exponential, but closed

under convolutions, similar expressions Fs(z) are available.
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For instance, using (2.18) for gamma claim severities we have
e =}
Fs(z) =) _pal'(na,pz),
n=I1
while for inverse gaussian claim severities

Fs(z) =) _ palG(np,Bz) .
n=1

Other exact methods can also be used to calculate stop loss reinsurance premiums.

The following section describes the Laplace transform technique.

3.1.2 Laplace Transforms for Stop Loss Premiums

Consider the exact expression for the stop-loss premium 7(M) in (3.1), where

S=3%" X, is a compound sum and Fy its c.d.f. .

By definition, the Laplace transform of =, say #(z) is given by

7(z) = / “r(z)dz, z>0,
0

e
= / / e Fs(y)dydz
0 z

o Py _
= / / e ** Fs(y)dzdy
0o Jo

B /0°° (1 ‘:—:y> Fo(y)dz = B9 _ Fs(2) .

4 A4

To obtain #(z) values we need E(S) = E(N)E(X) and Fs(z).
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Under the usual conditions, the latter is simply given by
= o —
Fs(z) = / e **Fg(z)dr, z>0,

= / "‘anF'“(:r)d:c

n=0

= an/ R 4 (a:)da:—Z:p,1 "(2:

n=0 n=0
Once the transformed values #(z) are know, a (usually numerical) inversion of the

transform gives the stop-loss premiums 7 (z).

When S is compound geometric(3) with exponential(§) claims, an analytical ex-
pression is obtained for stop loss premiums. Using MAPLE 7 (see [6]) we obtained

—I

3.2 Approximation Algorithm

We now turn to the problem of approximating the integral given in (3.1). The
following algorithm was programmed in MATLAB 6 (see [7]) for its vast array of
predefined elementary functions.

Step

1. Choose the claims frequency distribution and its parameters.
2. Choose the claims severity distribution and its parameters.
3. Calculate the cumulants of Fs(z).

4. Determine step-size, h, for Simpson'’s rule.
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[$1]

~3

10.

11.

13.

Discretize the interval from 0 to max{10,5 o} in sub-intervals of length h.

Calculate the exact value of Fs(z;),fori =1,2,... , k, where k is the number

of sub-intervals obtained at step 5.

Calculate the approximate values for Fs(z) using the incomplete gamma,

inverse gaussian and IG-Gamma mixture approximations.
Define the retention values.

Evaluate (3.1) at each retention value of step 8 using the approximations in

step 7 and the exact values obtained in step 6.
Calculate the resulting approximation errors.

Check the accuracy of the exact values in step 6 against analytical formulas,

whenever possible.

. Analyze the program output.

End

Appendix B gives a detailed description of each of the above steps.

3.3 Numerical Examples

All the examples illustrated here are for compound Poisson or binomial distribu-

tions F, with gamma or inverse gaussian claims severity. We use neither Pareto

nor Weibull claims in this section, since these do not yield analytical expressions

for Fs, making it difficult to verify the accuracy of our approximations. Results

for the latter are presented in Chapter 4.
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Each compound distribution is illustrated with four examples. Tables 3.1 to 3.4
give the parameter values and the first four moments for each case, while Tables

3.5 to 3.8 report the results.

Exact premiums obtained from the analytical expressions for Fs appear in the se-
cond column, #(M). These are followed by the absolute errors of the approximate
premium obtained from the mixture, gamma and IG approximations, respectively.
Exact premiums 7(M), from analytical expressions, are also compared in the last

column to the exact premiums obtained from direct numerical integration in (3.1).

Absolute errors are used instead of the relative ones. This is due to the fact
that when reinsurance premiums get close to zero (< 0.5), relative errors become
unstable and it is difficult to assess the accuracy of the approximations. However,

the evaluation of absolute errors is reliable for all values of the retention level M.

Parameter
IG Poisson Basic Characteristics
Example | u 3 A Mean | Std.Dev. | Kurt. | Skew.

(1) 0.70 | 0.50 1.00 0.70 0.92 6.26 2.08

(ii) 1.00 | 0.50 1.00 1.00 1.22 4.28 1.77

) 1.30 | 0.10 1.00 1.30 1.35 1.34 1.12
(iv) 1.30 | 0.50 1.00 1.30 1.53 3.33 1.59

Table 3.1: Compound Poisson-IG examples

Parameter
IG Binomial Basic Characteristics
Example | u 38 m 8 | Mean | Std.Dev. | Kurt. | Skew.
i) 0.7 | 1.00 | 10.00 | 0.67 | 4.20 2.32 2.75 1.28
(ii) 0.7 | 0.70 | 10.00 | 0.67 | 4.20 2.03 1.73 1.02
(iii) 1 {1.00]10.00]| 1.50 | 1.22 5.39 4.00 | 2.53
(iv) 1 |0.70 { 10.00 | 4.00 | 2.00 1.73 2.91 1.40

Table 3.2: Compound binomial-IG examples
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Parameter
Gamma | Poisson Basic Characteristics
Example | « A A Mean | Std.Dev. | Kurt. | Skew.
(i) 2.00 | 1.50 1.00 1.33 1.63 333 | 1.63
(ii) 2001150 2.00 2.67 2.31 1.66 | 1.15
(iii) 3.20 | 1.50 1.00 213 2.44 2.40 1.42
(iv) 260 | 3.30 | 2.00 1.57 1.31 1.38 | 1.06

Table 3.3: Compound Poisson-gamma examples

Parameter
Gamma Binomial Basic Characteristics
Example | a A m 8 | Mean | Std.Dev. | Kurt. | Skew.
(i) 5.00 | 3.00 | 4.00 | 4.00 | 1.33 1.49 1.26 | 1.16
(ii) 3.00 { 3.00 | 4.00 | 0.67 | 2.40 1.33 0.29 | 0.56
(iii) 5.00 | 3.00 | 6.00 | 4.00 { 2.00 1.82 0.84 | 0.95
(iv) 3.00 {1 3.00 | 6.00 | 1.50 | 2.40 1.50 0.44 | 0.67

Table 3.4: Compound binomial-gamma examples

case of interest in

practice.
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would have also made the algorithm excessively slow.

Some simple conclusions clearly stand-out from the analysis of these examples.
First, that the gamma approximation produces the worst results of all. Then
that the inverse gaussian approximation seems to be better, in general, than the
gamma. But what is clear is that, as expected, the IG-gamma mixture approxi-

mation always produces the best results for large retention limits M, which is the

In some cases, the IG-gamma mixture absolute errors are even smaller than those
of the (numerical) exact values. This is usually the case for compound binomial
and compound negative binomial distributions. It is explained by the fact that we
used a discretization step of A = 0.025, which is not sufficiently small in all cases.
Instead an h = 0.001 would have produced better exact (numerical) results, but




(1)

(i)

Absolute Errors x100

Absolute Errors x100

M w(Al) Mix. r IG | Exact | =n(M) Mix. r IG | Exact
0.5 | 0.418990 | 0.288 | 0.271 | 0.284 [ 0.552 | 0.695447 | 0.461 | 0.033 | 0.271 | 0.673
1.0 | 0.245515 | 0.155 | 0.826 | 0.323 | 0.324 | 0.465557 | 0.391 | 1.146 | 0.726 | 0.466
1.5 | 0.143288 | 0.021 | 0.633 | 0.174 | 0.187 | 0.307438 | 0.182 | 1.263 | 0.662 | 0.313
2.0 | 0.083439 | 0.035 } 0.330 | 0.056 | 0.107 | 0.200761 | 0.030 | 0.953 | 0.440 | 0.206
2.5 | 0.048533 | 0.044 | 0.106 | 0.007 | 0.060 | 0.129894 | 0.047 | 0.564 | 0.225 | 0.132
3.0 | 0.028217 | 0.035 | 0.020 | 0.031 | 0.032 | 0.083397 | 0.073 | 0.245 | 0.069 | 0.082
3.5 | 0.016405 | 0.023 | 0.076 | 0.036 | 0.017 | 0.053196 | 0.071 | 0.030 | 0.026 | 0.049
4.0 | 0.009540 | 0.012 | 0.091 | 0.032 | 0.008 | 0.033743 | 0.057 | 0.094 { 0.073 | 0.027
4.5 | 0.005551 | 0.005 | 0.086 | 0.025 | 0.003 | 0.021301 | 0.040 | 0.151 | 0.089 | 0.013
5.0 | 0.003231 | 0.000 | 0.072 | 0.018 | 0.000 | 0.013390 | 0.025 | 0.165 | 0.088 | 0.004
5.5 | 0.001883 | 0.002 | 0.057 | 0.013 | 0.002 | 0.008386 | 0.014 | 0.157 { 0.077 | 0.001
6.0 | 0.001097 | 0.003 | 0.043 | 0.009 | 0.003 { 0.005235 | 0.005 | 0.137 | 0.064 | 0.005
6.5 | 0.000640 | 0.003 | 0.031 | 0.006 { 0.003 | 0.003259 | 0.000 | 0.113 | 0.050 | 0.007
7.0 | 0.000374 | 0.002 | 0.023 | 0.004 | 0.003 | 0.002023 | 0.003 | 0.090 | 0.038 | 0.009
7.5 | 0.000218 | 0.002 | 0.016 | 0.002 | 0.003 | 0.001253 { 0.004 | 0.070 | 0.029 | 0.010
8.0 | 0.000128 | 0.002 | 0.011 | 0.002 | 0.003 | 0.000775 | 0.005 | 0.053 | 0.021 | 0.010
8.5 | 0.000075 { 0.001 | 0.008 | 0.001 | 0.002 | 0.000478 | 0.005 | 0.040 | 0.015 | 0.010
9.0 | 0.000044 | 0.001 | 0.005 | 0.001 | 0.002 | 0.000295 | 0.004 | 0.030 { 0.011 | 0.011
9.5 | 0.000026 | 0.001 | 0.004 | 0.000 | 0.002 | 0.000181 | 0.004 | 0.022 | 0.007 | 0.011
10.0 | 0.000015 | 0.000 { 0.002 | 0.000 | 0.001 | 0.000111 | 0.003 | 0.016 | 0.005 | 0.011

(1) (i1)
Absolute Errors x100 Absolute Errors x100

M (M) Mix. r IG | Exact 7(M) Mix. r IG Exact
0.5 ] 0.983942 | 2.054 | 1.732 | 1.824 | 0.788 | 0.986911 | 0.656 | 0.201 | 0.199 | 0.693
1.0 | 0.678026 | 0.688 | 1.457 | 1.241 | 0.696 | 0.718893 | 0.675 | 1.238 | 0.976 | 0.526
1.5 | 0.452004 | 0.196 | 1.066 | 0.711 | 0.447 | 0.516259 | 0.422 | 1.720 | 1.115 | 0.377
2.0 | 0.300390 | 0.198 | 1.384 | 1.051 | 0.325 | 0.366388 | 0.191 | 1.615 | 0.952 | 0.260
2.5 | 0.189497 | 0.132 | 0.691 | 0.460 | 0.226 | 0.257256 | 0.029 | 1.234 | 0.672 | 0.172
3.0 | 0.116720 | 0.210 | 0.204 | 0.088 | 0.142 | 0.178927 | 0.063 | 0.796 | 0.396 | 0.105
3.5 | 0.070704 | 0.143 | 0.051 | 0.076 | 0.090 | 0.123404 | 0.104 | 0.414 | 0.173 | 0.056
4.0 | 0.041557 | 0.116 | 0.228 | 0.196 | 0.055 | 0.084472 | 0.111 | 0.126 | 0.016 | 0.021
4.5 | 0.023903 | 0.078 | 0.289 | 0.229 | 0.032 | 0.057432 | 0.100 | 0.065 | 0.081 | 0.004
5.0 { 0.013503 | 0.040 | 0.279 | 0.210 ! 0.018 | 0.038808 | 0.081 | 0.176 | 0.132 | 0.021
5.5 | 0.007471 | 0.015 | 0.239 { 0.175 | 0.010 | 0.026077 | 0.060 | 0.229 | 0.150 | 0.034
6.0 | 0.004057 | 0.001 j 0.189 | 0.135 | 0.005 | 0.017434 | 0.041 | 0.242 | 0.148 | 0.042
6.5 | 0.002167 | 0.009 | 0.141 | 0.098 | 0.002 | 0.011601 | 0.025 | 0.232 | 0.135 | 0.048
7.0 | 0.001139 | 0.013 | 0.101 | 0.068 | 0.000 | 0.007686 | 0.013 { 0.208 | 0.117 | 0.052
7.5 | 0.000589 | 0.012 | 0.070 | 0.046 | 0.001 | 0.005072 | 0.005 | 0.179 | 0.097 | 0.054
8.0 | 0.000300 | 0.011 | 0.047 | 0.030 | 0.001 | 0.003335 | 0.001 | 0.149 | 0.078 | 0.056
8.5 | 0.000151 | 0.008 | 0.031 | 0.019 | 0.001 | 0.002185 | 0.005 | 0.121 | 0.062 | 0.057
9.0 | 0.000075 | 0.006 | 0.020 | 0.012 | 0.002 | 0.001427 | 0.007 | 0.096 | 0.048 | 0.058
9.5 | 0.000037 | 0.004 | 0.013 | 0.007 | 0.002 | 0.000929 | 0.008 | 0.076 | 0.037 | 0.059
10.0 { 0.000018 | 0.002 | 0.008 | 0.004 | 0.002 { 0.000604 | 0.007 | 0.059 | 0.028 | 0.059

Table 3.5: Compound Poisson-IG premiums: absolute errors x100
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(1) (1)
Absolute Errors x100 Absolute Errors x100

M (M) Mix. r 1G Exact | w(M) | Mix. r IG | Exact
0.5 | 3.70057 | 0.008 | 0.005 | 0.057 | 2.653 | 3.70036 | 0.010 | 0.007 | 0.034 | 1.615
1.0 | 3.20636 | 0.018 { 0.006 | 0.480 | 2.679 | 3.20396 | 0.022 | 0.007 | 0.215 | 1.630
1.5 | 2.72869 | 0.014 | 0.031 | 0.940 | 2.743 | 2.71891 | 0.019 | 0.010 | 0.445 | 1.670
2.0 | 2.28203 | 0.002 | 0.049 | 0.994 | 2.848 | 2.25810 | 0.001 | 0.033 | 0.520 | 1.742
2.5 | 1.87868 | 0.015 | 0.047 | 0.675 | 2.983 | 1.83542 | 0.021 | 0.044 | 0.379 | 1.840
3.0 | 1.52579 | 0.020 | 0.029 | 0.195 { 3.136 | 1.46175 | 0.031 | 0.035 | 0.104 | 1.950
3.5 1 1.22518 | 0.018 | 0.005 | 0.258 | 3.291 | 1.14273 | 0.028 | 0.015 | 0.181 | 2.058
4.0 | 0.97460 | 0.012 | 0.016 | 0.584 | 3.442 | 0.87872 | 0.018 | 0.008 | 0.389 | 2.152
4.5 0.76934 | 0.006 | 0.031 | 0.758 | 3.581 | 0.66603 | 0.007 | 0.025 | 0.488 | 2.223
5.0 | 0.60350 | 0.001 | 0.038 | 0.797 | 3.706 | 0.49857 | 0.003 | 0.034 | 0.488 | 2.269
5.5 | 0.47099 | 0.003 | 0.038 | 0.741 | 3.818 | 0.36923 | 0.009 | 0.035 | 0.419 | 2.290
6.0 | 0.36604 | 0.005 | 0.035 | 0.626 | 3.917 | 0.27093 | 0.011 | 0.031 | 0.315 | 2.289
6.5 | 0.28351 | 0.006 | 0.028 | 0.486 | 4.005 | 0.19724 | 0.011 | 0.023 | 0.205 | 2.267
7.0 | 0.21897 | 0.005 | 0.022 | 0.343 | 4.083 | 0.14262 | 0.010 | 0.016 | 0.104 | 2.230
7.5 0.16874 | 0.005 | 0.015 | 0.214 | 4.152 | 0.10253 | 0.008 { 0.009 | 0.023 | 2.180
8.0 { 0.12978 | 0.004 | 0.009 { 0.105 | 4.215 | 0.07333 | 0.005 | 0.003 | 0.035 ] 2.120
8.5 | 0.09967 | 0.003 | 0.004 | 0.018 | 4.272 | 0.05223 | 0.003 | 0.001 | 0.072 | 2.052
9.0 | 0.07644 | 0.002 | 0.000 | 0.046 | 4.325 | 0.03705 | 0.002 | 0.004 | 0.093 | 1.979
9.5 | 0.05857 | 0.002 | 0.003 | 0.090 | 4.375 | 0.02620 | 0.001 | 0.006 | 0.100 } 1.901

10.0 | 0.04484 | 0.001 | 0.004 { 0.118 | 4.422 | 0.01848 | 0.000 | 0.006 | 0.099 | 1.820

6 @
Absolute Errors x100 Absolute Errors x100

M w(M) Mix. r IG Exact | «(M) [ Mix. r IG | Exact
0.5 | 3.50605 | 0.116 | 0.279 | 0.264 | 4.169 | 1.56652 | 0.001 | 0.884 | 0.059 | 0.774
1.0 | 3.02841 | 0.070 | 0.336 | 0.549 | 4.225 | 1.19749 | 0.221 | 0.142 | 0.197 | 0.594
1.5 | 2.57909 | 0.008 | 0.270 | 0.653 | 4.309 | 0.89933 | 0.249 | 0.453 | 0.262 | 0.422
20| 2.16782 | 0.076 | 0.127 | 0.547 | 4.413 | 0.66577 | 0.174 | 0.737 | 0.212 { 0.272
2.5 | 1.80078 | 0.113 | 0.029 | 0.307 | 4.527 | 0.48713 | 0.079 | 0.764 | 0.124 | 0.147
3.0 | 1.48040 | 0.117 | 0.156 | 0.027 | 4.644 | 0.35303 | 0.002 | 0.641 | 0.044 | 0.048
3.5 | 1.20601 | 0.098 | 0.236 | 0.222 | 4.756 | 0.25383 | 0.045 | 0.460 | 0.012 | 0.029
4.0 | 0.97479 | 0.066 | 0.268 | 0.401 | 4.858 | 0.18131 | 0.066 { 0.280 | 0.043 | 0.087
4.5 | 0.78256 | 0.033 | 0.262 | 0.500 | 4.949 | 0.12881 | 0.068 | 0.131 | 0.055 | 0.130
5.0 | 0.62457 | 0.003 | 0.232 | 0.527 | 5.028 | 0.09109 | 0.059 | 0.021 | 0.054 | 0.162
5.5 1 0.49596 | 0.019 | 0.188 | 0.500 | 5.096 | 0.06417 | 0.046 | 0.053 | 0.047 | 0.186
6.0 | 0.39213 | 0.033 | 0.141 | 0.437 | 5.152 | 0.04506 | 0.033 | 0.095 | 0.037 { 0.203
6.5 | 0.30887 | 0.040 | 0.095 | 0.354 | 5.198 | 0.03155 | 0.021 | 0.115 | 0.027 | 0.215
7.0 | 0.24250 | 0.041 | 0.055 | 0.266 | 5.235 | 0.02204 | 0.011 | 0.119 | 0.018 | 0.223
7.5 1 0.18986 | 0.039 | 0.023 | 0.181 | 5.266 | 0.01537 | 0.004 | 0.114 | 0.011 | 0.230
8.0 | 0.14828 | 0.034 | 0.002 | 0.106 | 5.290 | 0.01070 | 0.001 { 0.103 | 0.006 | 0.234
8.5 | 0.11556 | 0.028 | 0.021 | 0.044 | 5.309 | 0.00743 | 0.004 | 0.090 | 0.003 | 0.238
9.0 | 0.08989 | 0.021 | 0.033 | 0.006 | 5.324 | 0.00516 | 0.005 | 0.076 | 0.000 | 0.240
9.5 | 0.06982 | 0.016 | 0.040 | 0.042 | 5.336 | 0.G0358 { 0.006 | 0.063 | 0.001 | 0.242

10.0 | 0.05415 | 0.010 | 0.044 | 0.068 | 5.346 | 0.00248 | 0.006 | 0.051 | 0.002 | 0.243

Table 3.6: Compound binomial-IG premiums:
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()

(ii)

Absolute Errors x100

Absolute Errors x100

M a(M) | Mix. r IG | Exact | wm(M) | Mix. r IG [ Exact
0.5 | 1.02944 | 0.116 | 0.987 | 0.545 | 0.612 | 2.24340 | 0.330 | 2.068 | 1.372 | 0.308
1.0 | 0.77313 | 0.843 | 1.485 | 1.229 | 0.475 | 1.85720 | 0.251 | 0.774 | 0.363 | 0.419
1.5 | 0.57111 | 0.693 | 2.292 | 1.654 | 0.345 | 1.51808 | 0.461 | 0.362 | 0.402 | 0.540
2.0 | 0.41669 | 0.407 | 2.243 | 1.509 | 0.237 | 1.22676 | 0.475 | 1.210 | 0.916 | 0.657
2.5 | 0.30084 | 0.170 | 1.806 | 1.152 | 0.151 | 0.98081 | 0.387 | 1.699 | 1.175 | 0.766
3.0 | 0.21516 | 0.012 | 1.259 { 0.761 | 0.085  0.77635 | 0.263 | 1.854 | 1.218 | 0.864
3.5 ] 0.15256 | 0.079 | 0.749 | 0.419 | 0.035 | 0.60875 | 0.140 | 1.754 | 1.109 | 0.950
4.0 | 0.10732 | 0.122 | 0.340 | 0.156 | 0.002 | 0.47312 | 0.039 | 1.494 | 0.912 | 1.024
4.5 | 0.07493 | 0.132 | 0.044 | 0.026 | 0.030 | 0.36465 | 0.035 | 1.157 | 0.681 | 1.087
5.0 | 0.05196 | 0.124 | 0.148 | 0.138 | 0.050 | 0.27884 | 0.082 | 0.806 | 0.451 | 1.138
5.5 | 0.03580 | 0.106 { 0.258 | G.196 | 0.064 | 0.21165 | 0.107 | 0.483 | 0.248 | 1.180
6.0 | 0.02452 | 0.084 | 0.308 | 0.218 | 0.075 | 0.15952 | 0.115 | 0.212 | 0.081 | 1.214
6.5 | 0.01670 | 0.063 | 0.317 | 0.214 | 0.082 | 0.11943 | 0.111 | 0.001 | 0.045 | 1.241
7.0 { 0.01131 | 0.043 | 0.301 | 0.197 | 0.087 | 0.08885 | 0.101 | 0.154 { 0.132 | 1.262
7.5 | 0.00762 | 0.027 | 0.271 | 0.173 | 0.090 | 0.06570 | 0.086 { 0.255 | 0.187 | 1.278
8.0 | 0.00511 | 0.015 | 0.235 } 0.146 | 0.093 | 0.04830 | 0.069 | 0.313 | 0.215 | 1.291
8.5 | 0.00341 § 0.006 | 0.198 | 0.120 | 0.095 | 0.03532 { 0.053 | 0.338 | 0.224 | 1.301
9.0 | 0.00227 | 0.000 | 0.163 | 0.097 | 0.096 | 0.02569 | 0.039 | 0.338 | 0.218 | 1.308
9.5 | 0.00150 | 0.005 | 0.133 | 0.077 | 0.097 | 0.01860 | 0.026 | 0.322 | 0.203 | 1.313
10.6 | 0.00099 | 0.007 { 0.106 | 0.060 | 0.097 | 0.01340 | 0.015 | 0.295 | 0.183 | 1.318
(i) (i)
Absolute Errors x100 Absolute Errors x100
M a(M) | Mix. r IG | Exact | w(M) | Mix. r IG | Exact
0.5 | 1.81871 | 0.498 | 2.688 | 1.917 | 1.001 | 1.15953 { 0.136 | 0.513 | 0.272 | 0.941
1.0 | 1.51844 | 1.542 | 1.013 | 1.200 | 1.060 | 0.81439 | 0.270 | 0.429 | 0.371 | 0.734
1.5 | 1.24879 | 1.712 | 2.647 | 2.320 | 1.149 | 0.55094 | 0.196 | 0.940 | 0.664 | 0.539
2.0 | 1.01666 | 1.314 | 3.268 | 2.583 | 1.244 | 0.36013 | 0.070 | 0.943 | 0.620 | 0.374
2.5 | 0.82152 | 0.863 | 3.357 | 2.482 | 1.333 | 0.22817 | 0.021 | 0.665 | 0.411 | 0.246
3.0 | 0.65965 | 0.496 | 3.126 | 2.203 | 1.410 | 0.14051 } 0.063 | 0.329 | 0.184 | 0.154
3.5 | 0.52654 | 0.223 | 2.702 | 1.833 | 1.477 | 0.08430 | 0.070 | 0.060 | 0.012 | 0.090
4.0 | 0.41787 | 0.030 | 2.181 | 1.427 | 1.533 | 0.04939 | 0.058 | 0.105 | 0.087 | 0.048
4.5 | 0.32977 | 0.102 | 1.637 | 1.028 | 1.580 | 0.02831 | 0.040 | 0.180 | 0.128 | 0.022
5.0 | 0.25884 | 0.185 | 1.124 | 0.665 | 1.619 | 0.01591 | 0.023 | 0.193 | 0.130 | 0.007
5.5 | 0.20212 | 0.231 | 0.674 | 0.358 | 1.651 | 0.00877 | 0.010 | 0.173 | 0.112 | 0.002
6.0 | 0.15705 | 0.248 | 0.303 | 0.111 | 1.678 | 0.00475 | 0.001 | 0.140 | 0.088 | 0.006
6.5 | 0.12146 | 0.245 | 0.012 | 0.076 | 1.699 | 0.00253 | 0.004 | 0.105 | 0.065 | 0.008
7.0 | 0.09352 | 0.228 | 0.202 | 0.210 | 1.716 | 0.00133 | 0.006 | 0.076 | 0.045 | 0.009
7.5 ] 0.07169 | 0.203 | 0.350 | 0.297 | 1.730 | 0.00069 | 0.006 | 0.052 | 0.030 { 0.008
8.0 | 0.05474 | 0.174 | 0.442 | 0.347 | 1.740 | 0.00035 | 0.006 | 0.035 | 0.020 | 0.007
8.5 | 0.04163 | 0.144 | 0.491 | 0.368 | 1.749 | 0.00018 | 0.005 | 0.023 | 0.012 | 0.006
9.0 | 0.03154 | 0.115 | 0.507 | 0.368 | 1.756 | 0.00009 | 0.003 | 0.014 | 0.008 | 0.005
9.5 | 0.02380 | 0.089 | 0.499 | 0.353 | 1.761 | 0.00004 | 0.002 { 0.009 | 0.005 | 0.004
10.0 | 0.01791 | 0.065 | 0.474 | 0.329 | 1.765 | 0.00002 | 0.002 j 0.006 | 0.003 | 0.002

Table 3.7: Compound binomial-gamma premiums: absolute errors x100
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(i)

(ii)

Absolute Errors x100

Absolute Errors x100

M (M) | Mix. r IG | Exact | w(M) | Mix. r IG Exact
0.5 ] 1.03890 | 1.254 | 0.869 | 0.959 | 0.725 ([ 1.91292 | 0.045 | 0.383 | 0.305 { 1.181
1.0 | 0.76133 | 1.874 | 2.957 | 2.714 | 0.640 | 1.46180 | 0.056 | 0.194 | 0.137 | 1.071
1.5 | 0.53293 | 0.757 | 2.567 | 2.159 | 0.492 | 1.06457 | 0.142 | 0.180 | 0.171 | 0.915
2.0 0.36376 | 0.060 | 1.875 | 1.465 | 0.353 | 0.73631 | 0.123 | 0.459 | 0.383 | 0.731
2.5 1 0.24365 | 0.160 | 1.241 | 0.926 | 0.247 | 0.48292 | 0.044 | 0.513 | 0.406 | 0.545
3.0 | 0.15966 | 0.217 | 0.645 | 0.452 | 0.170 } 0.30027 | 0.032 | 0.375 | 0.282 | 0.379
3.5 | 0.10204 | 0.234 | 0.144 | 0.061 | 0.114 | 0.17714 | 0.069 | 0.164 | 0.111 | 0.248
4.0 | 0.06360 | 0.222 | 0.199 | 0.202 | 0.073 | 0.09930 { 0.069 | 0.015 { 0.027 | 0.152
4.5 ] 0.03871 | 0.186 | 0.382 | 0.335 | 0.045 | 0.05300 | 0.048 | 0.117 | 0.101 | 0.088
5.0 | 0.02305 | 0.137 | 0.440 | 0.369 | 0.027 [ 0.02701 | 0.023 | 0.147 | 0.119 | 0.048
5.5 | 0.01343 | 0.089 | 0.423 | 0.345 | 0.015 | 0.01317 | 0.004 | 0.133 | 0.104 | 0.025
6.0 | 0.00766 | 0.050 | 0.366 | 0.292 | 0.007 | 0.00616 | 0.007 | 0.101 | 0.077 | 0.013
6.5 | 0.00428 | 0.022 | 0.297 | 0.232 | 0.002 | 0.00278 | 0.011 | 0.069 | 0.050 | 0.006
7.0 | 0.00234 | 0.003 | 0.229 | 0.175 | 0.000 ( 0.00121 | 0.010 | 0.042 | 0.030 | 0.003
7.5 0.00125 | 0.007 | 0.170 | 0.127 | 0.002 | 0.00051 | 0.008 | 0.025 | 0.017 | 0.001
8.0 | 0.00066 | 0.012 | 0.123 | 0.090 | 0.003 | 0.00021 | 0.005 | 0.013 | 0.009 | 0.001
8.5 | 0.00034 | 0.012 | 0.086 | 0.061 | 0.003 | 0.00008 | 0.003 | 0.007 { 0.005 | 0.000
9.0 | 0.00017 | 0.010 | 0.059 | 0.041 | 0.004 | 0.00003 | 0.002 | 0.004 | 0.002 | 0.000
9.5 | 0.00008 | 0.007 | 0.040 | 0.027 | 0.004 | 0.00001 | 0.001 | 0.002 | 0.001 | 0.000
10.0 | 0.00004 | 0.004 | 0.027 | 0.017 { 0.004 | 0.00000 | 0.000 | 6.001 | 0.000 | 0.000
() (ii)
Absolute Errors x100 Absolute Errors x100
M (M) | Mix. r IG | Exact | =(M) | Mix. r IG Exact
0.5 | 1.63180 | 0.841 | 0.155 | 0.072 | 0.855 | 1.92903 | 0.035 | 0.596 | 0.460 | 1.142
1.0 | 1.27982 | 1.333 | 1.372 | 1.364 | 0.774 | 1.49386 | 0.086 | 0.261 | 0.177 | 1.021
1.5 ] 0.97534 | 0.661 | 1.644 | 1.423 | 0.630 | 1.11466 | 0.174 | 0.266 | 0.244 | 0.867
2.0 | 0.72962 | 0.284 | 1.827 | 1.478 | 0.487 | 0.80049 | 0.152 | 0.655 | 0.533 | 0.699
2.5 1 0.53618 | 0.128 | 1.796 | 1.419 | 0.368 | 0.55327 | 0.073 | 0.771 | 0.602 | 0.535
3.0 | 0.38621 | 0.004 | 1.459 | 1.129 | 0.269 | 0.36823 | 0.005 | 0.646 | 0.488 | 0.389
3.5 0.27252 | 0.120 | 0.964 | 0.719 | 0.186 | 0.23620 | 0.054 | 0.398 | 0.289 { 0.270
4.0 | 0.18856 | 0.186 | 0.477 | 0.328 | 0.120 | 0.14618 | 0.071 | 0.143 | 0.091 | 0.179
4.5 | 0.12807 | 0.199 | 0.088 | 0.024 | 0.068 | 0.08740 | 0.065 | 0.050 | 0.054 | 0.113
5.0 | 0.08545 | 0.181 | 0.181 | 0.180 | 0.030 | 0.05054 | 0.048 { 0.161 | 0.133 | 0.068
5.5 | 0.05601 | 0.147 | 0.340 { 0.295 | 0.002 | 0.02831 | 0.029 | 0.199 | 0.158 | 0.038
6.0 | 0.03608 | 0.110 | 0.410 | 0.340 | 0.018 | 0.01537 | 0.012 | 0.191 | 0.148 | 0.020
6.5 | 0.02285 | 0.075 | 0.417 | 0.338 | 0.032 | 0.00811 { 0.001 | 0.159 | 0.121 | 0.009
7.0 | 0.01423 | 0.045 | 0.384 | 0.306 | 0.041 | 0.00416 | 0.006 | 0.121 | 0.090 | 0.003
7.5 | 0.00872 | 0.021 | 0.332 | 0.260 | 0.048 | 0.00207 | 0.008 | 0.086 | 0.063 | 0.000
8.0 | 0.00526 | 0.004 | 0.273 | 0.211 | 0.052 | 0.00101 | 0.009 | 0.057 | 0.041 | 0.002
8.5 | 0.00312 | 0.006 | 0.216 | 0.164 | 0.055 | 0.00048 | 0.007 | 0.037 | 0.026 | 0.003
9.0 | 0.00183 | 0.012 | 0.166 | 0.124 | 0.056 | 0.00022 | 0.006 | 0.023 | 0.016 | 0.004
9.5 | 0.00105 | 0.015 | 0.124 | 0.091 | 0.057 | 0.00010 | 0.004 | 0.013 | 0.009 | 0.004
10.0 { 0.00060 | 0.014 | 0.091 | 0.066 | 0.058 | 0.00004 | 0.003 | 0.008 | 0.005 | 0.004

Table 3.8: Compound Poisson-gamma premiums: absolute errors x100
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Chapter 4

Simulation

This chapter presents a model validation using simulations. Once the approxi-
mate stop loss reinsurance premiums are known, using the proposed algorithm,
new losses are generated following the same distribution. Presumably, simulated
losses are shared between the insurer and reinsurer, according to the same re-
tention levels. The reinsurer’s losses are analyzed. The difference between the
approximate premiums and the reinsurer’s losses are studied; if this difference is

close to zero this validates our proposed approximate premiums as acceptable.

4.1 Simulation Process

Here aggregate losses were generated using MATLAB version 6.0 (see [7]). The
following steps summarize the algorithm that was used:

1. Choose the claim frequency and severity distributions.

2. Given a retention level, say M, approximate the corresponding stop-loss

premium (M) using the algorithm described in Section 3.2.
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3. Accordingly. generate the number of claims, say N, following a Poisson,

binomial or negative binomial distribution.
4. For i =1 to N, generate the claim amounts X;.
5. Calculate the aggregate loss S = Zf’:l X;.
6. Determine the reinsurer’s loss Z = (S — M)™*.

. Evaluate the difference between the stop-loss premium and the reinsurer’s

loss, U = w(M) - Z.

=1

This algorithm is repeated 10,000 times. An empirical confidence interval for U,
obtained in step 7, is estimated using the mean and standard deviation of U over

the 10,000 generated observations. This interval is given by

Standard deviation Standard deviation

mean + 2
vNo. iterations vNo. iterations

mean — 2

The predefined M-function of MATLAB was used to generate the random variables
N and X, except in the inverse gaussian distribution. In that case there is no
predefined MAT LAB function and a rejection sampling method was used instead
(see Ross [10, §5.2] for details).
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4.2 Examples

Various simulations are presented here. The relative errors of the approximate
premiums, compared to the exact ones, are calculated for the mixture approxima-
tion. The exact method used in these examples is based on Simpson’s rule, since

in the Pareto and Weibull cases Fis does not have an analytical expression.

4.2.1 Compound Poisson with Pareto Claims Distribution

Table 4.1 illustrates two examples of compound Poisson distributions with Pareto

claims, reporting the relative errors for different retention values.

Poisson Pareto Poisson Pareto
A=4 a=24,A=10 A=2 a=10,A=6
M | Mixture | Exact | % Error | Mixture | Exact | % Error
0.0 | 1.7407 | 1.7589 1.03 | 1.3477 | 1.3436 0.31
0.5 | 1.2783 | 1.2957 1.34 | 0.9559 | 0.9629 0.73
1.0 | 0.8938 | 0.9106 1.84 | 0.6693 | 0.6798 1.54
1.5 0.6003 | 0.6148 236 | 0.4656 | 0.4747 1.92
20| 0.3898 | 0.4017 2.96 | 0.3229 | 0.3289 1.82
2.5 | 0.2459 | 0.2555 3.76 | 0.2235 | 0.2266 1.37
3.0] 0.1514 | 0.1592 490 { 0.1545 | 0.1555 0.64
3.5 | 0.0912 | 0.0978 6.75 | 0.1068 | 0.1064 0.38
4.0 | 0.0539 | 0.0597 9.72 | 0.0738 | 0.0727 1.51
4.5 | 0.0313 | 0.0365 14.25 | 0.0510 | 0.0496 2.82
5.0 | 0.0179 | 0.0226 20.80 | 0.0353 | 0.0338 4.44
5.5 | 0.0101 | 0.0143 29.37 | 0.0244 | 0.0230 6.09
6.0 | 0.0056 | 0.0093 39.78 | 0.0169 | 0.0156 8.33
6.5 | 0.0031 | 0.0063 50.79 | 0.0117 | 0.0105 11.43
7.0 | 0.0017 | 0.0045 62.22 | 0.0081 | 0.0070 15.71
7.5 0.0009 | 0.0032 71.88 | 0.0056 | 0.0046 21.74
8.0 | 0.0005 | 0.0023 78.26 | 0.0039 | 0.0030 30.00
8.5 | 0.0003 | 0.0016 81.25 | 0.0027 | 0.0018 50.00
9.0 | 0.0001 | 0.0010 90.00 | 0.0019 | 0.0010 90.00
9.5 | 0.0001 | 0.0005 80.00 | 0.0013 | 0.0004 225.00
10.0 | 0.0000 | 0.0000 - | 0.0009 | 0.0000 -

Table 4.1: Premiums for the compound Poisson with Pareto claims
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See how the relative error increase with the retention level. However, in simulated
cases the approximate premiums are closer to exact values, even at high retention
levels. Table 4.2 shows the confidence intervals estimated for the difference of the
stop-loss premiums minus the reinsurer’s losses. This difference decreases to zero
as the retention level increases. A graphical representation of these results is also
given in Figure C.1 (see Table 4.3 for the summary statistics of the distributions

used).

Poisson (A = 4) and Pareto (a =24, A = 10)

Premium - Reinsurer’s Loss
Retention | Premium Mean Std.Dev. | Lower Limit | Upper Limit
4.25 0.0410 -0.001526 0.2656 -0.0038 0.0068
7.00 0.0017 -0.0001709 | 0.04627 | -0.00075446 0.0011
9.28 0.0001 [ -0.00006152 | 0.003848 | -0.00001544 | 0.00013848

Poisson (A = 2) and Pareto (o =10, A = 6)

Premium - Reinsurer’s Loss
Retention | Premium Mean Std.Dev. | Lower Limit | Upper Limit
4.16 0.0653 -0.003352 0.4144 -0.0116 0.0049
6.99 0.0081 | -0.00011816 0.1502 -0.0031 0.0029
9.82 0.0010 | -0.00040196 0.0421 | -0.00044053 0.0012

Table 4.2: Simulation results: compound Poisson with Pareto claims

In both cases the aggregate claims distribution is skewed to the right with a
heavy tail. Reinsured claims are usually those losses that we find in the tail of
the distribution. Therefore retention limits should be large, for instance M could

be equal to the mean aggregate claims plus five standard deviations.

In the first case (I) we used retention values of 4.25, 7 and 9.28, which correspond

to two, four and six standard deviations around the mean, respectively.
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Poisson Pareto Mean | Std.Dev. | Skewness | Kurtosis
I} A=4 |a=24(A=10]| 1.74 1.26 1.14 1.81
II| A =2 (a=10} A=6 | 1.33 1.41 1.82 8.14

Table 4.3: Summary statistics: compound Poisson with Pareto claims

Appendix C presents graphical representations of these results in Figures C.1 to

C.3.

In case (II), Fs shows greater skewness, so its tail is heavier. See from Table 4.1
how when M > 9.0, the relative error takes much larger values than in the first
example. However. in Table 4.2 the difference between approximate premiums

and reinsurer’s losses remains close to zero. Figures C.4, C.5 and C.6 illustrate

graphically these results for the simulated examples.

4.2.2 Compound Poisson with Weibull claim distribution

The examples in this section correspond to compound Poisson distributions with

Weibull claim severities. The chosen parameter values and the resulting first four

moments are reported in Table 4.4.

Poisson Weibull Mean | Std.Dev. | Skewness | Kurtosis
I| A=3 |8=11A=1}| 3.00 2.45 1.22 2.00
II| A=2 |6=1|Xx=21{ 1.00 1.00 1.50 3.00

Table 4.4: Summary statistics: compound Poisson with Weibull claims

Here we used absolute instead of relative errors, as in the previous section, since

the latter was unstable in this example. Table 4.5 reports the results.
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Poisson Weibull Poisson Weibull
A=3 6=1.A=1 A=2 6=1,2=2
M | Exact | Mixture | Error | Exact | Mixture | Error
0.0 | 3.01130 | 3.00770 0.36 | 1.0116 1.0080 0.36
0.5 | 2.55520 | 2.54960 0.56 | 0.6421 0.6329 0.92
1.0 | 2.14310 | 2.13500 0.81 | 0.3914 | 0.3841 0.73
1.5 | 1.77830 | 1.76890 0.94 | 0.231 0.2265 0.45
2.0 | 1.46120 | 1.45190 0.93 | 0.1328 | 0.1303 0.25
2.5 ] 1.18980 | 1.18140 0.84 | 0.0747 | 0.0733 0.14
3.0 | 0.96070 | 0.95380 0.69 { 0.0413 | 0.0405 0.08
3.5] 0.76970 | 0.76440 0.53 | 0.0226 | 0.0220 0.06
4.0 | 0.61220 | 0.60840 0.38 | 0.0122 0.0117 0.05
4.5 1 0.48370 | 0.48110 0.26 | 0.0066 | 0.0062 0.04
5.0 | 0.37970 | 0.37810 0.16 | 0.0036 | 0.0032 0.04
5.5 ] 0.29630 | 0.29550 0.08 | 0.002 0.0016 0.04
6.0 | 0.22990 | 0.22970 0.02 | 0.0012 0.0008 0.04
6.5 | 0.17740 | 0.1777 0.03 | 0.0007 | 0.0004 0.03
7.0 | 0.13620 | 0.13670 0.05 | 0.0005 0.0002 0.03
7.5 | 0.10400 | 0.10480 0.08 | 0.0003 | 0.0001 0.02
8.0 | 0.07910 | 0.07990 0.08 | 0.0002 0 0.02
8.5 | 0.05980 | 0.06070 0.09 | 0.0002 0 0.02
9.0 | 0.04500 | 0.04590 0.09 | 0.0001 0 0.01
9.5 | 0.03370 | 0.03460 0.09 0 0 0
10.0 | 0.02500 | 0.02600 0.10 0 0 0

Table 4.5: Premiums for the compound Poisson with Weibull claims

Absolute errors decrease as the retention level increases. As observed with the
Pareto claims of the previous section, we can see here in Table 4.6 that appro-
ximate premiums are close to simulated reinsurer’s losses, even at high retention
levels. Table 4.6 also reports the estimated confidence intervals for the difference

between stop-loss premiums and reinsurer’s losses. Again, this difference decreases

to zero as the retention level increases.

A graphical representation of these results is given in Appendix C. Figure C.7
to C.9 correspond to case I, while Figures C.10 and C.11 correspond to case II.
In both cases, the aggregate claims distribution is skewed to the right with a

heavy tail. The chosen retention limits were two, four and six standard deviations

around the mean, respectively.
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Poisson (A = 3) and Pareto (§ =1, A =1)

Premium - Reinsurer’s Loss
Retention | Premium Mean Std.Dev. | Lower Limit | Upper Limit
7.90 0.08443 -0.001956 | 0.559170 | -0.0131399 0.0092268
12.80 0.00485 -0.001175 | 0.151093 | -0.0041972 0.0018465
17.70 0.00018 0.000017 | 0.000949 0.0001515 0.0001895

Poisson (A = 2) and Pareto (§ =1, A =2)

Premium - Reinsurer’s Loss
Retention | Premium Mean Std.Dev. | Lower Limit | Upper Limit
3 0.04050 [ -0.00049607 | 0.2662102 | -0.0058203 0.0048281
5 0.00318 | -0.00063668 | 0.0546720 | -0.0004567 0.0017301
7 0.00018 | -0.00002638 | 0.0242193 | -0.0007482 0.0007482

Table 4.6: Simulation results: compound Poisson with Weibull claims

So far, our model seems validated by these simulation results. For the illustrated
aggregate claims distributions, the IG-mixture approximation provides accurate
stop-loss reinsurance premium approximations. To complete the study we also
consider a case more common in practice, when the aggregate claims distributions
is not known but its moments can be estimated from claims data. The following

section illustrates various examples in this setting.

4.3 Unknown Aggregate Claims Distribution

Every year, natural catastrophies produce large materials losses. In actuarial
work, it is common that the frequency and severity distributions be unknown,
while proper reinsurance coverages are still needed. Given a retention level for

these reinsurance treaties, the corresponding stop-loss premium is then required.
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The algorithm described in Section 3.2 cannot be used when the distribution
of aggregate claims is unknown. However, it is possible to use the IG-mixture
approximation directly, since this function only needs the first four cumulants

that can be estimated from claims data.

As an illustration of the method, this section features four examples. Claims data
for each example is simulated using Weibull, gamma, Pareto and inverse gaussian
severity distributions. Then, assuming that these distributions are not known,
we estimate their first four moments. An histogram for each example is given in

Figure 4.1.

Figure 4.1: Histogram of simulated losses

With these moments the first four cumulants are calculated, the approximate stop-
loss reinsurance premiums were calculated using the IG-mixture approximation.

Table 4.7 reports the results for each example.
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The 7(M) column gives the approximate premiums for the different retention
levels M = E(X) +1,/Var(X), wherei=1,2,...,10 are the corresponding rows

and X the simulated claim severity random variable.

To validate these approximate premiums we simulate additional claim severities

with the same distributions. Then using the algorithm in Section 3.2, steps 6 and

7 are performed with the generated claim amounts. This procedure is repeated

10,000 times and the results are reported in Table 4.7.

Weibull Pareto
M | =(A) U Lower | Upper M w(M) U Lower | Upper
2.50 | 0.2141 | 0.0391 | 0.0218 | 0.0563 0.84 | 0.0594 | -0.0080 | -0.0130 | -0.0030
3.99 | 0.1157 | 0.0242 | 0.0107 | 0.0378 1.27 | 0.0207 | -0.0069 | -0.0102 | -0.0036
5.48 | 0.0644 | 0.0203 | 0.0111 | 0.0294 1.69 | 0.0068 | -0.0046 | -0.0065 | -0.0026
6.96 | 0.0365 | 0.0152 | 0.0093 | 0.0210 2.11 | 0.0021 | -0.0045 | -0.0062 | -0.0027
8.45 | 0.0209 | 0.0083 | 0.0027 | 0.0138 2.54 | 0.0006 | -0.0023 | -0.0037 | -0.0010
9.94 | 0.0120 { 0.0019 | -0.0035 | 0.0072 2.96 | 0.0001 | -0.0011 | -0.0020 | -0.0003
11.43 | 0.0070 | 0.0009 | -0.0034 | 0.0051 3.38 | 0.0000 | -0.0005 | -0.0010 | 0.0001
12.92 | 0.0040 | -0.0009 | -0.0042 } 0.0025 3.81 | 0.0000 | -0.0004 | -0.0007 | 0.0000
14.41 | 0.0024 | -0.0007 | -0.0029 | 0.0014 4.23 | 0.0000 | -0.0004 | -0.0010 | 0.0002
15.90 | 0.0014 } -0.0014 | -0.0053 | 0.0025 4.66 | 0.0000 { 0.0000 | 0.0000 | 0.0000

Gamma IG

M [ # (M) U Lower | Upper M w(M) U Lower | Upper
51.42 [ 2.2708 | 0.4239 | 0.2826 | 0.5651 3.36 | 0.1875 | -0.0117 | -0.0265 | 0.0031
70.34 | 0.5972 | 0.2451 | 0.1921 | 0.2981 4.73 | 0.0640 | -0.0150 | -0.0256 | -0.0045
89.25 | 0.1393 | 0.0223 | -0.0022 | 0.0468 6.10 | 0.0207 | -0.0118 | -0.0181 | -0.0056
108.17 | 0.0293 | 0.0003 | -0.0180 | 0.0187 7.47 | 0.0064 | -0.0072 | -0.0115 | -0.0029
127.09 | 0.0055 | 0.0055 | 0.0055 | 0.0055 8.83 | 0.0018 | -0.0037 | -0.0062 | -0.0012
146.01 | 0.0009 { 0.0009 | 0.0009 | 0.0009 10.20 | 0.0005 | -0.0014 | -0.0029 | 0.0000
164.93 | 0.0001 | 0.0001 | 0.0001 | 0.0001 11.57 | 0.0001 | -0.0002 | -0.0005 { 0.0001
183.85 } 0.0000 | 0.0000 | 0.0000 | 0.0000 12.94 | 0.0000 | -0.0003 | -0.0007 | 0.0002
202.77 | 0.0000 | 0.0000 | 0.0000 | 0.0000 14.31 | 0.0000 | -0.0002 | -0.0006 | 0.0002
221.69 | 0.0000 | 0.0000 | 0.0000 | 0.0000 15.68 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table 4.7: Premium comparison and simulation results

As we can see, the difference U between approximate premiums and the reinsurer’s

losses goes to zero as the retention limit increases. Empirical confidence intervals

for U are also given in the last two columns of Table 4.7.

63




Again we see that the approximation is more accurate for large retention values
M, which is the case of interest in practice. In this semi-parametric case the upper
and lower bounds on the difference U are not around 0 when M is small. This
shows systematic under or over estimation of the premium for small M. But the
problem disappears as M takes values greater than the mean plus two or three

standard deviations.

This analysis provides further evidence that the IG-mixture approximation is valid
for stop-loss premiums, even in semi-parametric cases, when only a few claims

sample moments are known.
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Conclusion

Chaubey et al. [3] showed that the IG-mixture approximation provides a good fit
to aggregate claims distributions. We can now conclude from our analysis that it

also provides a good approximation to stop-loss reinsurance premiums.

We compared the IG-mixture approximation to other approximations commonly
used in the actuarial literature, like the gamma and inverse gaussian approxi-
mations. For the computation of stop-loss reinsurance premiums, we found that
the best results were obtained using an IG-mixture approximation. The popular
gamma approximation produced the worst stop-loss premiums, with relative errors
uniformly larger than those produced by the inverse gaussian and [G-mixture ap-

proximations.

An important feature of the IG-mixture approximation is its non-parametric cha-
racter. Like the gamma approximation, it can be used to calculate reinsurance
premiums without specifying the aggregate claims distribution Fs. It is sufficient

to estimate the first four cumulants of Fg from the claims data.

The algorithm presented in Section 3.2 for stop-loss premiums can be adapted
to approximate premiums for more general reinsurance treaties, like reinsurance
layers. The approximate premium formula would then depend on the retention

level at each layer. This could be a subject for further research.
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Appendix A

Approximation of Aggregate
Claim Distributions

This appendix summarizes the numerical results of Section 2.4, page 35.
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Gamma claim size distribution

IG claim size distribution

Relative Errors

Relative Errors

T Fs(x) IG r Mixture | Fs(z) IG r Mixture
0.5 | 0.43300 | 0.17280 | 0.13600 | 0.08070 | 0.36800 | 0.16340 | 0.14440 | 0.09600
1.0 | 0.54290 | 0.05390 | 0.03350 | 0.00300 | 0.44360 ; 0.07800 | 0.08860 | 0.11550
1.5 | 0.64650 | 0.00870 | 0.00180 | 0.00850 | 0.64240 | 0.02150 | 0.02000 | 0.01620
2.0 | 0.73270 | 0.00830 | 0.00790 | 0.00750 | 0.73930 | 0.00990 | 0.00790 | 0.00270
2.5 | 0.80110 | 0.01310 | 0.00980 | 0.00490 | 0.81840 | 0.01730 | 0.01450 | 0.00710
3.0 | 0.85390 | 0.01280 | 0.00880 | 0.00290 | 0.88570 | 0.00700 | 0.00460 | 0.00150
3.5 | 0.89380 | 0.01040 | 0.00680 | 0.00140 | 0.92700 { 0.00480 | 0.00320 | 0.00090
4.0 | 0.92370 | 0.00760 | 0.00480 | 0.00050 | 0.95480 | 0.00250 | 0.00160 | 0.00060
4.5 | 0.94560 | 0.00510 | 0.00310 | 0.00000 | 0.97320 | 0.00030 | 0.00000 { 0.00090
5.0 | 0.96160 | 0.00310 | 0.00170 | 0.00030 | 0.98430 | 0.00060 | 0.00060 | 0.00060
5.5 | 0.97310 | 0.00160 | 0.00080 | 0.00040 | 0.99100 { 0.00100 | 0.00080 | 0.00040
6.0 | 0.98130 | 0.00050 | 0.00010 | 0.00040 | 0.99500 | 0.00100 | 0.00080 { 0.00020
6.5 | 0.98710 | 0.00010 | 0.00020 | 0.00040 | 0.99720 | 0.00090 | 0.00070 | 0.00010
7.0 | 0.99110 | 0.00050 | 0.00040 | 0.00040 { 0.99850 | 0.00070 | 0.00050 | 0.00000
7.5 | 0.99390 | 0.00070 | 0.00050 { 0.00030 | 0.99920 | 0.00050 ; 0.00040 | 0.00000
8.0 | 0.99590 | 0.00070 | 0.00050 | 0.00020 | 0.99960 | 0.00040 | 0.00030 | 0.00000
8.5 | 0.99720 | 0.00070 | 0.00050 | 0.00020 | 0.99980 | 0.00030 | 0.00020 | 0.00010
9.0 | 0.99810 | 0.00070 | 0.00040 | 0.00010 | 0.99990 | 0.00020 | 0.00010 | 0.00000
9.5 | 0.99880 | 0.00060 | 0.00040 { 0.00010 | 0.99990 | 0.00010 | 0.00010 | 0.00000
10.0 | 0.99920 { 0.00050 | 0.00030 | 0.00000 | 1.00000 | 0.00010 | 0.00000 | 0.00000

Pareto claim size distribution Weibull claim size distribution
Relative Errors Relative Errors

I Fs(x) 1IG r Mixture | Fs(z) IG r Mixture
0.5 | 0.14710 | 0.05220 | 0.03320 | 0.02180 | 0.16735 | 0.03752 | 0.02318 | 0.01338
1.0 | 0.32210 | 0.03590 | 0.01340 | 0.00010 | 0.31727 | 0.03765 | 0.02648 | 0.00200
1.5 0.49740 | 0.00800 | 0.00110 | 0.00660 | 0.47371 | 0.01685 | 0.01219 | 0.00029
2.0 | 0.64690 | 0.00600 | 0.00670 | 0.00720 | 0.61150 { 0.00592 | 0.00619 | 0.00688
2.5 {0.76210 | 0.01040 | 0.00800 | 0.00650 | 0.73272 | 0.00677 { 0.00513 | 0.00094
3.0 | 0.84470 | 0.01040 | 0.00750 | 0.00580 | 0.82286 | 0.00776 | 0.00583 | 0.00090
3.5 | 0.90090 | 0.00890 | 0.00670 | 0.00540 | 0.88857 | 0.00496 | 0.00348 | 0.00031
4.0 | 0.93750 | 0.00730 | 0.00600 | 0.00520 | 0.93258 | 0.00259 | 0.00171 | 0.00051
4.5 | 0.96050 | 0.00620 | 0.00560 | 0.00520 | 0.96076 | 0.00079 | 0.00043 | 0.00050
5.0 | 0.97460 | 0.00540 | 0.00530 | 0.00520 | 0.97797 | 0.00026 | 0.00030 | 0.00039
5.5 | 0.98310 | 0.00510 | 0.00520 { 0.00530 | 0.98802 | 0.00071 | 0.00058 | 0.00024
6.0 | 0.98810 | 0.00500 | 0.00520 | 0.00530 | 0.99369 { 0.00080 | 0.00061 | 0.00012
6.5 | 0.99090 | 0.00500 | 0.00520 | 0.00540 | 0.99677 | 0.00070 | 0.00051 | 0.00004
7.0 | 0.99260 | 0.00510 | 0.00530 | 0.00540 | 0.99839 | 0.00054 | 0.00038 | 0.00001
7.5 | 0.99350 | 0.00510 | 0.00530 { 0.00540 | 0.99922 | 0.00038 | 0.00026 | 0.00003
8.0 | 0.99400 | 0.00520 | 0.00530 | 0.00540 | 0.99963 { 0.00025 | 0.00017 | 0.00004
8.5 | 0.99430 | 0.00530 | 0.00540 | 0.00540 | 0.99983 | 0.00016 | 0.00011 | 0.00004
9.0 | 0.99450 | 0.00530 | 0.00540 | 0.00540 | 0.99992 | 0.00010 | 0.00006 | 0.00003
9.5 | 0.99450 | 0.00530 | 0.00540 | 0.00540 | 0.99996 | 0.00006 | 0.00004 | 0.00002
10.0 | 0.99460 | 0.00540 | 0.00540 | 0.00540 | 0.99998 | 0.00003 | 0.00002 | 0.00002

Table A.1: Relative errors for the compound Poisson distribution
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Gamma claim size distribution

IG claim size distribution

Relative Errors

Relative Errors

I Fs(x) IG r Mixture | Fg(zx) IG r Mixture
0.5 | 0.0565 | 0.0043 | 0.0072 | 0.0168 0.0242 | 0.0983 ;| 0.2637 | 0.0106
1.0 | 0.1445 | 0.0459 | 0.0394 | 0.0175 0.0693 | 0.0025 | 0.0616 | 0.0203
1.5 | 0.2694 | 0.0268 | 0.0213 | 0.0024 0.1367 | 0.0169 | 0.0012 | 0.0114
2.0 | 0.4167 | 0.0084 | 0.0058 | 0.0029 0.2203 | 0.0144 | 0.0172 { 0.0049
2.5 | 0.5653 | 0.0020 | 0.0022 | 0.0030 0.3123 | 0.0094 | 0.0176 | 0.0013
3.0 | 0.6975 | 0.0056 | 0.0047 | 0.0017 0.4059 | 0.0051 | 0.0135 | 0.0005
3.5 | 0.8030 | 0.0052 | 0.0041 | 0.0004 0.4956 | 0.0022 { 0.0088 | 0.0011
4.0 | 0.8795 | 0.0032 { 0.0024 | 0.0003 0.5781 | 0.0004 | 0.0048 | 0.0012
4.5 | 0.9305 | 0.0013 | 0.0009 | 0.0005 0.6514 | 0.0006 | 0.0019 { 0.0010
5.0 | 0.9621 | 0.0001 | 0.0001 | 0.0005 0.7150 | 0.0011 | 0.0001 | 0.0007
5.5 | 0.9804 | 0.0005 | 0.0005 | 0.0003 0.7690 | 0.0012 | 0.0013 | 0.0005
6.0 | 0.9903 | 0.0007 | 0.0006 | 0.0001 0.8142 | 0.0012 | 0.0019 | 0.0003
6.5 | 0.9954 | 0.0006 | 0.0005 | 0.0000 0.8515 | 0.0010 | 0.0020 | 0.0001
7.0 | 0.9979 | 0.0004 | 0.0003 | 0.0000 0.8820 | 0.0008 | 0.0020 | 0.0000
7.5 | 0.9991 | 0.0003 | 0.0002 | 0.0001 0.9066 | 0.0006 | 0.0018 | 0.0001
8.0 | 0.9996 | 0.0002 | 0.0001 | 0.0000 0.9264 | 0.0005 | 0.0015 | 0.0001
8.5 | 0.9998 | 0.0001 | 0.0001 | 0.0000 0.9422 | 0.0003 | 0.0012 | 0.0001
9.0 | 0.9999 | 0.0000 | 0.0000 | 0.0000 0.9547 | 0.0002 | 0.0009 | 0.0001
9.5 | 1.0000 | 0.0000 | 0.0000 | 0.0000 0.9646 | 0.0001 | 0.0006 | 0.0001
10.0 | 1.0000 | 0.0000 | 0.0000 | 0.0000 0.9724 | 0.0000 | 0.0004 | 0.0001

Pareto claim size distribution Weibull claim size distribution
Relative Errors Relative Errors

z Fs(x) IG r Mixture | Fs(z) IG r Mixture
0.5 | 0.0001 | 0.6531 | 0.6944 | 1.4264 0.0432 | 0.1408 ] 0.1377 | C.1191
1.0 | 0.0029 | 0.0829 | 0.2839 | 0.2934 0.1215 | 0.0814 | 0.0774 | 0.0541
1.5 | 0.0180 | 0.0156 | 0.0742 | 0.0671 0.2119 | 0.0180 | 0.0135 | 0.0131
2.0 | 0.0612 | 0.0158 | 0.0093 | 0.0195 0.3405 | 0.0229 | 0.0202 | 0.0040
2.5 | 0.1427 | 0.0243 | 0.0360 | 0.0176 0.4720 | 0.0029 | 0.0020 | 0.0038
3.0 | 0.2590 | 0.0300 | 0.0404 | 0.0240 0.6029 | 0.0034 | 0.0032 | 0.0018
3.5 | 0.3947 | 0.0321 | 0.0375 | 0.0290 0.7179 | 0.0057 | 0.0050 | 0.0006
4.0 | 0.5307 | 0.0321 | 0.0334 | 0.0313 0.8103 | 0.0059 | 0.0051 | 0.0004
4.5 | 0.6520 | 0.0312 | 0.0304 | 0.0317 0.8800 | 0.0036 | 0.0030 | 0.0004
5.0 | 0.7504 | 0.0303 | 0.0287 | 0.0312 0.9278 | 0.0019 | 0.0016 | 0.0003
5.5 | 0.8246 | 0.0296 | 0.0281 | 0.0305 0.9591 | 0.0003 | 0.0002 | 0.0004
6.0 | 0.8772 | 0.0293 | 0.0282 | 0.0300 0.9779 | 0.0005 | 0.0004 | 0.0002
6.5 | 0.9126 | 0.0293 | 0.0286 | 0.0296 0.9887 | 0.0008 | 0.0007 | 0.0001
7.0 | 0.9356 | 0.0294 | 0.0291 | 0.0295 0.9945 | 0.0008 | 0.0007 | 0.0001
7.5 10.9499 | 0.0295 | 0.0295 | 0.0295 0.9975 | 0.0006 | 0.0005 | 0.0000
8.0 | 0.9587 | 0.0297 | 0.0298 | 0.0296 0.9989 | 0.0004 | 0.0004 | 0.0000
8.5 [ 0.9639 | 0.0298 | 0.0299 | 0.0297 0.9995 | 0.0003 | 0.0002 | 0.0000
9.0 | 0.9669 | 0.0298 | 0.0300 | 0.0297 0.9998 | 0.0002 | 0.0001 | 0.0000
9.5 | 0.9687 | 0.0299 | 0.0300 | 0.0298 0.9999 | 0.0001 | 0.0001 | 0.0000
10.0 | 0.9697 | 0.0299 | 0.0300 | 0.0298 1.0000 | 0.0000 | 0.0000 | 0.0000

Table A.2: Relative errors for the compound binomial distribution
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Gamma claim size distribution IG claim size distribution
Relative Errors Relative Errors

z | Fs(z) G T | Mixture | Fs(z) G T | Mixture

0.5 | 0.48823 | 0.22263 | 0.18864 | 0.13898 | 0.03534 | 0.20886 | 0.17317 | 0.13896
1.0 | 0.54179 | 0.03516 | 0.01423 | 0.01634 | 0.09705 | 0.11721 | 0.11447 | 0.11184
1.5 | 0.63498 | 0.00846 | 0.01618 | 0.02746 | 0.14215 { 0.03828 | 0.05150 | 0.06418
2.0 | 0.72341 | 0.01207 | 0.01241 | 0.01290 | 0.24347 | 0.07104 | 0.05915 | 0.04775
25 | 0.79171 | 0.01282 | 0.00987 | 0.00556 | 0.31212 | 0.01364 | 0.02334 | 0.03265
3.0 | 0.84322 | 0.01275 | 0.00877 | 0.00297 | 0.42453 | 0.02981 | 0.02413 | 0.01869
3.5 | 0.88282 | 0.01105 | 0.00720 | 0.00157 | 0.50145 | 0.01022 | 0.01297 | 0.01560
4.0 | 0.91326 | 0.00850 { 0.00526 | 0.00052 | 0.60045 | 0.00822 | 0.00773 | 0.00727
4.5 | 0.93634 | 0.00598 | 0.00348 | 0.00016 | 0.66968 | 0.00853 | 0.00763 | 0.00677
5.0 | 0.95361 | 0.00387 | 0.00208 | 0.00053 | 0.74440 | 0.00007 { 0.00151 | 0.00302
5.5 | 0.96639 | 0.00225 | 0.00107 | 0.00066 | 0.79746 | 0.00604 | 0.00426 | 0.00255
6.0 | 0.97578 | 0.00108 { 0.00037 | 0.00067 | 0.84782 | 0.00184 | 0.00018 | 0.00142
6.5 | 0.98263 | 0.00028 | 0.00008 [ 0.00061 | 0.88380 | 0.00346 | 0.00207 | 0.00074
7.0 | 0.98761 | 0.00023 | 0.00035 | 0.00052 | 0.91488 { 0.00131 | 0.00026 | 0.00074
7.5 | 0.99120 | 0.00053 | 0.00049 | 0.00042 | 0.93705 | 0.00150 | 0.00078 { 0.00010
8.0 | 0.99377 | 0.00068 | 0.00053 | 0.00032 | 0.95490 | 0.00043 { 0.00001 | 0.00040
8.5 | 0.99561 | 0.00073 | 0.00053 | 0.00024 | 0.96755 | 0.00032 | 0.00012 | 0.00006
9.0 | 0.99691 | 0.00071 | 0.00049 | 0.00017 | 0.97721 | 0.00014 | 0.00017 | 0.00020
9.5 | 0.99784 | 0.00066 | 0.00044 | 0.00011 | 0.98398 | 0.00022 | 0.00014 | 0.00006
10.0 | 0.99849 | 0.00059 | 0.00038 | 0.00006 | 0.98895 | 0.00037 | 0.00022 | 0.00008

Pareto claim size distribution Weibull claim size distribution
Relative Errors Relative Errors
z Fs(x) IG r Mixture | Fs(z) IG r Mixture

0.5 | 0.01691 | 0.29047 | 0.04735 | 0.09661 | 0.03534 | 0.20886 | 0.17317 | 0.13896
1.0 | 0.05625 | 0.03336 | 0.00279 | 0.00454 | 0.09705 | 0.11721 | 0.11447 | 0.11184
1.5 | 0.11948 | 0.01141 | 0.00102 | 0.00150 | 0.14215 | 0.03828 | 0.05150 | 0.06418
2.0 | 0.20186 | 0.01236 | 0.00862 | 0.00437 | 0.24347 | 0.07104 | 0.05915 | 0.04775
2.5 | 0.29604 | 0.00365 | 0.01389 | 0.01033 | 0.31212 | 0.01364 | 0.02334 | 0.03265
3.0 | 0.39438 | 0.00527 | 0.01673 | 0.01441 | 0.42453 | 0.02981 | 0.02413 | 0.01869
3.5 | 0.49041 | 0.01194 | 0.01792 | 0.01671 | 0.50145 | 0.01022 | 0.01297 | 0.01560
4.0 | 0.57943 | 0.01617 | 0.01813 | 0.01774 | 0.60045 | 0.00822 { 0.00773 | 0.00727
4.5 | 0.65860 | 0.01842 { 0.01786 | 0.01797 | 0.66968 | 0.00853 | 0.00763 | 0.00677
5.0 | 0.72665 | 0.01931 | 0.01740 | 0.01779 | 0.74440 | 0.00007 | 0.00151 | 0.00302
5.5 | 0.78351 | 0.01935 | 0.01692 | 0.01742 | 0.79746 | 0.00604 | 0.00426 | 0.00255
6.0 | 0.82989 | 0.01893 | 0.01652 | 0.01701 | 0.84782 | 0.00184 | 0.00018 | 0.00142
6.5 | 0.86696 | 0.01832 | 0.01622 | 0.01664 | 0.88380 | 0.00346 | 0.00207 | 0.00074
7.0 | 0.89607 | 0.01770 | 0.01602 | 0.01636 | 0.91488 | 0.00131 | 0.00026 | 0.00074
7.5 | 0.91857 | 0.01714 | 0.01591 { 0.01616 | 0.93705 | 0.00150 | 0.00078 | 0.00010
8.0 | 0.93573 | 0.01669 | 0.01587 | 0.01604 | 0.95490 | 0.00043 | 0.00001 | 0.00040
8.5 | 0.94867 | 0.01636 | 0.01588 | 0.01597 | 0.96755 | 0.00032 | 0.00012 | 0.00006
9.0 | 0.95832 | 0.01613 | 0.01591 | 0.01596 | 0.97721 | 0.00014 | 0.00017 | 0.00020
9.5 | 0.96545 | 0.01599 | 0.01596 | 0.01597 | 0.98398 { 0.00022 | 0.00014 | 0.00006
10.0 | 0.97067 | 0.01592 | 0.01602 | 0.01600 | 0.98895 | 0.00037 | 0.00022 | 0.00008

Table A.3: Relative errors for the compound negative binomial distribution
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Appendix B

Algorithms

This appendix gives a detailed description of each step in the algorithm defined
in Section 3.2.

B.1 Detailed Description of the Algorithm

First, the claim frequency and severity distributions are selected in step 1. Figure
B.1 shows the claim frequency distribution menu.

MENU

Figure B.1: Claim frequency distribution menu

Then the corresponding parameters are entered. For example assume that the
number of claims is Poisson distributed. Figure B.2 illustrates the dialog-box
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of our MATLAB program, where Lambda would be the corresponding Poisson
parameter.

S} MATLAB
D@4 8@ | g9 o "Weharrallhesis pogan
>> nev =
Lanbda<-1

q
Ready

Figure B.2: Defining the parameter value for a Poisson distribution
Given these parameter values, the first four cumulants of the frequency distribu-
tion p, are calculated. After step 2 the claim severity distribution is chosen and

the corresponding parameter are entered. The selection menu appears in Figure
B.3.

Figure B.3: Claim severity distribution menu

This example assumes a I'(a = 1, 8 = 2) severity distribution, where the parame-
ters are entered as shown in Figure B.4.
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S oS N T S

Ready

Figure B.4: Defining the parameter values for a I'(a, 8) distribution

Then the first four moments, and therefore the first four cumulants of the severity
distribution Fx are obtained.

Once the cumulants of p, have been obtained in step 1 and the cumulants of Fy
in step 2, the program calculates the cumulants of Fs, as defined in Section 2.2.
Figure B.5 summarizes the results for this example.

0. 5000 0.5000

0.7500 1.5000
>> [muS SigmaS KurtS SkewS]
ans =

0. 5000 0.7071 6.0000

Ready -

2.1213

Figure B.5: Cumulants (Cs) and moments of Fs

In step 4, h is entered for Simpson’s rule, from a menu similar to that in Figure
B.6. Three possibilities are offered: 0.025 0.016 and 0.01.
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Figure B.6: Simpson’s rule ~ menu

The next step discretizes the interval [0, m] into k sub-intervals of length k, where
m = max{10, 5 os}. For h = 3 the first and the last 26 sub-intervals of this

example are shown in Figure B.7.

2 SMATLANR RI=-1F3
- Zret e Ty A T g

Cle. Edt.. Yiew : Weh =~ Window A TERR I
" ﬂ*&ﬂm rD\Voh-'\n.\‘l’h.ds Program

Dl % @|sre

>> Matriz(l:27,1)°
ans e
Columns 1 through 9
2] 0.0250 0.0s00 0.0750 0.l1l000 0.1250 0.1500 0.1750 0.2000
Columns 10 through 18
0.2250 0.2500 0.2750 G.3000 0.3250 a.3500 0.3750 0.4000
Columns 19 chrough 27

0. 4s00 0.4750 0.5000 0.5250 8.5500 0.5750 0.6000 0.6250 0.6500

>> Matriz(375:401,1)"
ans «
Columans 1 chrough 9
9.3500 9.37S50 9.4000 9.4250 9.4500 9.4750 9.5000 9.5250 9.S500

Caolumns 10 through 18
9.8750 9.6000 9.6250 9.6500 9.6750 9.7000 9.7250 9.7500 9.7750 :'-' N

Columns 19 chrough 27

9.6000 9.8250 9.06500 9.8750 9.9000 9.9250 9.9500 9.9750

(1
Ready.

Figure B.7: Discretization of [0, m]

Now another MATLAB function calculates a matrix with the p.d.f. and c.d.f. exact
values for the aggregate claims distribution with the chosen parameters. The
evaluation is at each end point of the partition. The exact values at the required
points z; are extracted from this matrix. The corresponding approximate values
are also calculated at each x; with the different approximations.
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Let the retention M take values from 0 to five standard deviations, or from 0 to
ten, whichever is greater. As explained in step 6, each approximation method is
used to evaluate (3.1) in MATLAB.

The function syntax is
q=quad (fun,a.b),

which approximates the integral of function fun from a to b, to an error of within
10%, using recursive adaptive Simpson’s quadrature. fun accepts a vector z and
returns a vector y. The function fun being evaluated at each element of z. A
simple change of variable is needed in (3.1) in order to produce a definite integral:
let y = —— be the new variable, with dy = —(—H}—z);. Then (3.1) becomes

14z

1

1+Af

(M) = Z[l — Fs(z)]dz = 0/ [1 ~ Fs G - 1)] yidy, (B.1)

where Fj is replaced by one of the approximations to the aggregate claims distri-
bution, as well as its exact values.

Then, the exact value for the reinsurance premium is obtained numerically. Using
a tabular form of Fs at the points z¢.z;,... , Tk, where zx — zx_; = h, as in step
6. we evaluate (B.1) as follows:

oC

/ - Fs(@)ldz~ 3 hll - Fs(z;)], (B2)

j=n1

A

where n;,n, are such that z,, is the closest value to M and z,,, = m is the upper
limit of our interval.

The relative errors, used to assess the accuracy of the approximations, is defined

as
Exact value — Approximated value

Exact value
This exact method is not always as precise as needed, since it was obtained from
a numerical method, itself containing sources of error. To verify the precision of
the method, we compare it with the values obtained from an analytical expression
for Fs, whenever possible (see Section 3.1.1).

The illustrated choices of frequency and severity distributions for which an ana-
lytical expression is available are summarized in the menu of Figure B.8.
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Figure B.8: Cases with Analytical Expression for Fs

In each case, the results are obtained using the analytical expression of Fg in
(B.1). Here the Poisson-gamma case is illustrated with the values obtained for
each retention level. The relative errors in the values obtained in step 6 and step
11 are compared in Figure B.9.

The first column gives the different retention levels used. The three following
columns report approximated stop loss reinsurance premiums obtained through
the mixture, IG and gamma approximations, respectively. The last column gives
the premiums obtained in step 6, while the before-last column reports the premi-
ums calculated using the analytical expression in step 11.

As we can see, the last two columns are very similar in this specific example. The
accuracy of Fs in step 6 depends on h. When Fjs is heavy tailed, the numeri-
cal errors increase and the relative errors, comparing the exact and approximate
values, also get larger.

Various numerical illustrations of this algorithm are presented in Section 3.3 and
Appendix A.

76



4 MATLAH

D&+ 2@oo
Premium =
[s] 0.5140 0.5312 0.5226 0.5000 0.5081
0.5000 0.259% 0.2554 0.2577 0.2619 0.2663
1.0000 0.1326 0.1247 0.1287 0.1338 0.1362
1.5000 0.0668 0.0625 0.0646 0.0670 0.0683
2.0000 0.0333 0.0320 0.0326 0.0330 0.0337
2.5000 0.0163 0.0166 0.0165 0.0160 0.0164
3.0000 0.0079 0.0068 0.0084 0.0077 0.0079
3.5000 0.0038 0.0047 0.0042 0.0036 0.0038
4.0000 0.0018 0.0025 0.0022 0.0017 0.0018
4.5000 0.0008 0.0014 0.0011 0.0008 0.0009
5.0000 C.0004 0.0008 0.0006 0.0004 0.0004
5.5000 0.0002 0.0004 0.0003 0.0002 0.0002
6.0000 0.0001 0.0002 g.0001 0.0001 0.0001
6.5000 0.0000 0.0001 0.0001 0.0000 0.0002
7.0000 0.0000 0.0001 0.0000 0.0000 0.0001
7.5000 0.0000 0.0000 0.0000 0.0000 0.0000
8.0000 0 0.0000 0.0000 0.0000 0.0000
8.5000 0 0.0000 0.0000 0.0000 0.0000
9.0000 0 0.0000 0.0000 0.0000 0.0000
9.5000 0 0.0000 0.0000 0.0000 0.0000
10.0000 1] 0.0000 0.0000 0.0000 0.0000
<
Ready

Figure B.9: Program Output
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Appendix C

Graphs for the Compound
Poisson Examples

This appendix contains the graphs used with the examples of Section 4.2. They
correspond to compound Poisson distributions with Pareto and Weibull claim
severities.

Premium - Reinsurance Claim

o 2000 4000 6000 8000 10000
Claims

2000 4000 6000 8000 10000 o} 2000 4000 6000 8000 10000
Reinsurance Claims

Figure C.1: Compound Poisson-Pareto (I): retention level = mean + 2 st.dev.
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Premium - Reinsurance Claim

L "P’q

O:l]”l I

Claims

3 15+ e
25

2 4 2 4
15 o 4
os) l | ,

o ll,ll 111 N 3 . . \ s

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000

Reinsurance Claims

Figure C.2: Compound Poisson-Pareto (I): retention level = mean + 4 st.dev.

Premium - Reinsurance Claim
T T T

10 0.05 T

8

o
6
0.05 | N

4

2 0.1 -
o

Q 2000 4000 5000 8000 10000 0I5 E

Claims

o4 o2r )
o3t i 025 -
02 Q3 4
o1}--- 035} 1
o 04 . : - "

[«] 2000 4000 5000 8000 10000 4] 2000 4000 6000 800C 10000

Reinsurance Clams

Figure C.3: Compound Poisson-Pareto (I): retention level = mean + 6 st.dev.
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Premium - Reinsurance Claim

2000 4000 6000 6000 10000
Claims

2000 4000 6000 8000 10000 “o 2000 4000 6000 8000 10000
Reinsurance Cia:ms

Figure C.4: Compound Poisson-Pareto (II): retention level = mean + 2 st.dev.

Premium - Reinurance Claim

1
Q [ ” N
A .
2t <

2000 4000 6000 8000 3k ~

Claims
-4 F .
5t g
3 s .
7 .
o 8 N s N "
Q 2000 4000 6000 6000 10000 s] 2000 4000 6000 68000 10000

Remnsurance Claims

Figure C.5: Compound Poisson-Pareto (II): retention level = mean + 4 st.dev.
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Premium - Reinsurance Claim

15 0.5 v T v +~
o} T | I
05 4
K 4
A5 B
Claims P1s |
s -25F B
4
3 B
3 -
35 -
2
14 -4 -4
o L1 a5 \ . . .
[n} 2000 4000 6000 6000 10000 a 2000 4000 6000 8000 10000

Reinsurance Claams

Figure C.6: Compound Poisson-Pareto (II): retention level = mean + 6 st.dev.

Premium - Reinsurance Claim

2000 4000 6000 8000 10000
Claims

o N & >

14 L . " L
2] 2000 4000 8000 8000 10000 o 2000 4000 6000 8ooo 10000

Reinsurance Claims

Figure C.7: Compound Poisson-Weibull (I): retention level = mean + 2 st.dev.
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Pramium - Reinsurance Claim

25 2
20
15 Q

i

I

2000 4000 6000 8000 10000
Clams ab i
10

8 . 4 8| -
6 4
4 8} _
Ll bl
o I 1 L l il l l 10 \ . \ X

2000 4000 6000 8000 10000 o 2000 4000 €000 @000 10000

Reinsurance Claims

Figure C.8: Compound Poisson-Weibull (I): retention level = mean + 4 st.dev.

Premium - Reinsurance Claim
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-002} P
2000 4000 6000 8000 t0000
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Figure C.9: Compound Poisson-Weibull (I): retention level = mean + 6 st.dev.
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0 Premium - Rensurance Claim
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Figure C.10: Compound Poisson-Weibull (II): retention level = mean + 4 st.dev.
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Figure C.11: Compound Poisson-Weibull (II): retention level = mean + 6 st.dev.
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