INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

THE VALUATION EFFECTS OF THE CHANGES IN STATE-LEVEL INTERSTATE MULTI BANK HOLDING COMPANY LEGISLATION ON THE U.S. COMMERCIAL BANKS' STOCK RETURNS

Dmitriy Kolomytsyn

A Thesis
In
The John Molson School of Business

Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science in Administration at Concordia University

Montreal, Quebec, Canada

August 2002

© Dmitriy Kolomytsyn, 2002

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawe ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your No Votre référence

Our ille. Natre référence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-72894-3

ABSTRACT

The Valuation Effects of the Changes in State-Level Interstate Multi Bank Holding Company Legislation on the U.S. Commercial Banks' Stock Returns

Dmitriy Kolomytsyn

This paper examines the effect of in-state and out-of-state liberalization of interstate banking regulation on U.S. bank stock returns and risk during the period 1982-92. The empirical findings suggest that shareholders have a positive attitude towards laws with national provisions and a negative attitude to laws, allowing for only regional reciprocity. The bank portfolios produce positive abnormal returns around the dates when the interstate banking bill, allowing some form of reciprocity is first introduced by either the Bankers Association or state bankers, demonstrating a market enthusiasm about news of coming changes. The banks' exposure to market related risk is directly related to the degree of reciprocity granted by the home state. According to Gross State Product (GSP) figures and the number of failing banks in each state, the poorest states with the weakest banking sector tend to choose the most liberal form of interstate banking legislation. The results also reveal a drop in the actual number of banking institutions for the majority of states and an increase in the number of branches and publicly traded banks after the deregulation becomes effective.

Table of Contents

1. Introduction	I
2. A Brief History of Interstate Banking Regulation and Related Literature	5
3. Data Set	. 12
4. Hypotheses	. 21
5. Methodology	. 26
5.1 Empirical models for measuring the effect of in-state changes in interstate banking legislation on in-state bank portfolios return	. 26
5.2 Description of the models for measuring the effect of in-state and out-of-state changes in interstate banking legislation on portfolios of in-state banks	
5.3 Estimation of GARCH model and tests for heteroscedasticity	. 34
5.4 Measuring the effects of changes in interstate banking legislation on the number of publicly traded banks	.38
6. Analysis of the Empirical Results	39
6.1 The in-state changes in interstate banking legislation and their effect on the portfolios of in-state banks' returns	41
6.1.1 The empirical findings for the bank portfolios of states that choose national (non)reciprocity as their initial and final option	42
6.1.2 The empirical findings for the bank portfolios of states that choose regional reciprocity as their initial option	44
6.1.3 The empirical results for the bank portfolios of states that choose national (non)reciprocity as a substitute for regional (non)reciprocity	49
6.1.4 An examination of the mixed effect of enacting a law with regional and national provisions	51
6.1.5 A summary of results and the possible moving forces behind enacting a particular type of interstate banking law	54
6.1.6 The empirical results for the categories 5, 6 and 7	57
6.2 The effect of out-of-state changes on valuation of portfolios of	

in-state banks	59	
6.2.1 The effect of out-of-state changes on valuation of portfolios of in-state banks in Florida and New York	59	
6.2.2 The effect of out-of-state changes on valuation of portfolios of in-state banks in New Jersey and Illinois	63	
6.2.3 The effect of out-of-state changes on valuation of portfolios of in-state banks in California and Pennsylvania	68	
6.2.4 A brief summary on measuring the out-of-state effect	72	
6.3 The changes in the legislation and their effect on the number of banking institutions	74	
6.3.1 The changes in the number of banking institutions in states of the first category	74	
6.3.2 The changes in the number of banking institutions in states of the second category	76	
6.3.3 The changes in the number of banking institutions in states of the third category	77	
6.3.4 The changes in the number of banking institutions in states of the fourth category	78	
7. Conclusion	80	
References:	83	
Appendix A	85	
Table A1: The major announcements of changes in interstate banking legislation in each state	86	
Table A2: First category, Equation (1): Alaska		
Table A3: First category, Equation (1): Arizona		
Table A4: First category, Equation (1): New Mexico	103	
Table A5: First category, Equation (1): New York		
Table A6: First category, Equation (1): Oklahoma		
Table A7: First category, Equation (1): South Dakota		
Table A8: First category, Equation (1): Texas		
Table A9: First category, Equation (1): Washington		
Table A11: First category, Equation (1): Wyoming		
ruble refer to the category, Equation (1). Wyoning	110	

Table A12: Second category, Equation (2): Alabama	111
Table A13: Second category, Equation (2): Arkansas	
Table A14: Second category, Equation (2): Florida	113
Table A15: Second category, Equation (2): Georgia	114
Table A16: Second category, Equation (2): Iowa	
Table A17: Second category, Equation (2): Kansas	
Table A18: Second category, Equation (2): Missouri	117
Table A19: Second category, Equation (2): South Carolina	118
Table A20: Second category, Equation (2): Wisconsin	119
Table A21: Third category, Equation (3): Connecticut	120
Table A22: Third category, Equation (3): Idaho	
Table A23: Third category, Equation (3): Illinois	
Table A24: Third category, Equation (3): Massachusetts	123
Table A25: Third category, Equation (3): New Hampshire	
Table A26: Third category, Equation (3): New Jersey	
Table A27: Third category, Equation (3): North Carolina	126
Table A28: Third category, Equation (3): Rhode Island	
Table A29: Third category, Equation (3): Tennessee	
Table A30: Third category, Equation (3): Utah	129
Table A31: Third category, Equation (3): Virginia	
Table A32: Fourth category, Equation (4): California	
Table A33: Fourth category, Equation (4): Colorado	
Table A34: Fourth category, Equation (4): Delaware	
Table A35: Fourth category, Equation (4): District of Columbia	
Table A36: Fourth category, Equation (4): Kentucky	
Table A37: Fourth category, Equation (4): Louisiana	
Table A38: Fourth category, Equation (4): Michigan	
Table A39: Fourth category, Equation (4): Nebraska	
Table A40: Fourth category, Equation (4): Ohio	
Table A41: Fourth category, Equation (4): Pennsylvania	
Table A42: Fourth category, Equation (4): Vermont	
Table A43: Fifth category, Equation (5): Maryland	
Table A44: Fifth category, Equation (5): Mississippi	143
Table A45: Sixth category, Equation (6): Indiana	144
Table A46: Sixth category, Equation (6): Minnesota	
Table A47: Seventh category, Equation (7): Maine	
Table A48: The results of the Breusch-Pagan and White tests for	
the presence of heteroscedasticity in the portfolios of active banks	147
Table A49: Descriptive statistics for states included in each category	
Table A50: Number of institutions, branches, and total offices,	
FDIC-insured commercial banks	151
Table A51A: The effect of changes in interstate banking legislation on	
the number of banks in the states of the first category (Equation 16)	156
Table A51B: The effect of changes in interstate banking legislation on	
the number of banks in the states of the second category (Equation 16)	157
Table A51C: The effect of changes in interstate banking legislation on	157

the number of banks in the states of the third category (Equation 16):	. 158
Table A51D: The effect of changes in interstate banking legislation on	
the number of banks in the states of the fourth category (Equation 16):	. 160
Table A51E: The effect of changes in interstate banking legislation on	
the number of banks in the states of the fifth category (Equation 16):	. 161
Table A51F: The effect of changes in interstate banking legislation on	
the number of banks in the states of the sixth category (Equation 16):	. 162
Appendix B	. 164
Table B1: The results of partial replication of the paper by Goldberg et al. (1992)	. 164

1. Introduction

The structure of the United States banking system has changed dramatically during the last thirty years as a consequence of eliminating interstate banking restrictions. The Douglas Amendment to the Bank Holding Company Act of 1956 prohibited the banks in one state from crossing the other state's borders, unless such permission was granted by the latter state. But, in 1978, Maine was the first state that relaxed geographic restrictions and enacted a law, allowing for national reciprocity. Since then, all states and the District of Columbia (DC), except for Hawaii, have passed laws permitting some form of reciprocity. The Riegle-Neal Interstate Banking and Branching Efficiency Act of 1994 led to the relaxation of statutory constraints preventing banks from the geographic expansion and enabled multi bank holding companies (MBHC) to open branches and carry out mergers and acquisitions throughout the country (Kane [1996]; Jayaratne and Strahan [1997]; Tirtiroglu et al. [2000]). The focus of the present paper is the transition period between the Douglas Amendment and the Riegle-Neal Act.

The history of the US banking regulation is presented by various "state laws affecting intrastate branching, MBHC formation and expansion, and interstate banking and branching" [Amel (1993), p.1]. The current study examines the effect of changes only in the state-level interstate MBHC legislations. Hence, the further mentioning of the term "interstate banking law" or "interstate banking bill" in this paper refers to this particular type of legislation.

Each state has made its choice depending on the development of the banking sector in the state and in the region. The most active period of implementing the changes was between 1982 and 1988, when most of the states made their first and, sometimes,

final choice. Each state had an option of choosing between regional (non)reciprocity and national (non)reciprocity, or choosing both, with a gradual implementation of a particular type of legislation. According to Amel (1993) and the *American Banker* publications, 12 states had implemented only regional reciprocity, 12 states had implemented only national (non)reciprocity and 25 states and DC had implemented regional (non)reciprocity with subsequent switches to either national reciprocity or national nonreciprocity during the period from 1978 to 1993.

So far, little has been done on measuring the valuation effects of changes in interstate banking laws on banks stock prices. Goldberg et al. (1992) investigate the differential impact of change in a state law on in-state and out-of state banks at the time of passage and the effective dates of such laws. They find that out-of-state and out-of-region banks, excluding money center bank, have profited from changes in interstate banking. Black et al. (1990) also examine the effect of changes on shareholders' wealth and report a positive stock market reaction for the in-state banks and a negative reaction for the money-center banks to the enactment of banking laws.

The previous two papers focus on passage and effective dates of interstate banking laws changes. This paper, in contrast, examines in addition to these two announcement dates' effects, the valuation effects of announcements by 1) the State Bankers Associations, 2) the State House and 3) the Senate Committees. The banks in each state respond differently to the changes in banking laws. In some states, banks support the enactment of a law from the very beginning. Banks in other states resist vigorously to any changes in the existing legislation when such plans are first discussed, and then later change their positions towards implementing the changes. However, the

investors' and banks' reactions to the liberalization of interstate banking may not necessarily be the same. ¹

In this paper, all states and DC that allow some type of reciprocity are divided into 7 categories depending on the process by which changes in interstate banking laws are made. The first category is formed of states that introduce only full nationwide reciprocal or nonreciprocal interstate banking. The second category is composed of states that choose regional reciprocity as their first and permanent option. The states in the third and fourth categories also start with regional reciprocity, but later switch to either national reciprocity or national nonreciprocity. The difference between the third and fourth categories is the time when the regional and national interstate banking bills are signed. The states in the third category enact the regional reciprocity first and, subsequently, national (non)reciprocity. In states of the fourth category governors sign both regional and national bills on the same date.

Maryland and Mississippi are the only states included in the fifth category. These states enact a law, allowing for regional reciprocity with further expansion of the region. Indiana and Minnesota go through the most complicated process of changing their legislation and, hence, are placed to the sixth category. They enact a law, allowing for regional reciprocity with further expansion of the region and then national reciprocity. Maine is considered separately because it is the only state that makes a transition from

¹ Kane (1996) discusses the Regulatory Dialectic conflict model, which explains why "financial institutions and patterns of financial regulation and competition reshape themselves over time" [Kane (1996), p. 146]. Kane (1996) also indicates that large banks and "expansion-minded" MBHCs, which desire to establish a strong national banking presence across the country, have been the major proponents of interstate banking. The Independent Bankers Association of America (IBBA), on the other hand, have counterlobbied interstate banking in order to protect small and medium-sized "independent" or "community" banks from large, geographically diversified banks.

national reciprocity to national nonreciprocity. The paper focuses on the banks in the first four categories.

For each state two portfolios are constructed: the first includes all in-state banks for which stock returns are available any time during the study period; the second includes the banks for which data for the whole period can be obtained. The empirical results show the different impact of the five major announcements on portfolios returns. The announcement dates include: 1) the announcement by the Bankers Association or state bankers of coming changes in interstate banking, 2) the date when the bill is approved by the House Committee, 3) the date when the bill passes the Senate Committee, 4) the passage date, and 5) the effective date. The survived banks seem to be more responsive to the changes in the interstate banking. As well, the enactment of the interstate banking laws increases the banks' exposure to the market-related risk.

This study shows that the dates other than the passage and effective dates may be more important in understanding the market's reaction to the announcements of law changes. Depending on the situation and the state, the banks earn positive or negative significant abnormal returns around the dates when the interstate banking bill passes through the House or the Senate Committees. As well, the results indicate shareholders' positive attitude to laws with national provisions and slightly negative attitude to laws, allowing only for regional reciprocity.

To examine the market's response to the changes in the interstate banking legislations within and outside the state, six states are chosen and additional analyses are carried out. These six states are: California, Pennsylvania, Illinois, New Jersey, Florida, and New York. By studying the banks of these states, five major issues are examined:

- 1) The different impact of liberalization in interstate banking law on instate and out-of-state banks' stock returns.
- A comparison of investors' reaction among the states that choose only regional reciprocity, regional and subsequently national (non)reciprocity, and only national (non)reciprocity.
- The reasons that provoke further liberalization of existing reciprocity types.
- 4) The changes in the number of banking institutions during the sample period in states which enact different types of interstate banking laws.
- 5) The difference in stock price reactions for the survived and active banks.²

The remainder of the paper is organized as follows. Section 2 presents the history of interstate banking regulation along with relevant literature. Section 3 describes the data, their sources and data collection process. Section 4 discusses the hypotheses tested. Section 5 explains the empirical models utilized for measuring the impact of changes in legislation on banks' stock returns. Section 6 discusses the empirical results and findings. Section 7 concludes.

2. A Brief History of Interstate Banking Regulation and Related Literature

The history of interstate banking regulation in the United States goes back to the late 19-th century when, in order to protect the banks in home states, state lawmakers impose barriers intended to restrict the access of powerful outside competitors to local

5

² This paper examines separately the banks that have the stock price data for the whole study period (survived banks) and those that have the stock price data anytime during the study period (active banks).

markets (Kane [1996] and Tirtiroglu et al. [2000]). The McFadden Act of 1927 and its amended version of 1933 give national banks the same branching rights as those recognized for state-chartered banks in their particular states (King et al. [1989]). These federal laws, though, have a legal loophole, which allows MBHCs to cross state borders by opening subsidiary banks.³ But the Douglas Amendment to the Bank Holding Company Act of (1956) prohibits MBHCs from crossing the borders and acquiring banks in another state, unless this state explicitly allows such actions (King et al. [1989]). It takes 22 years before Maine opens a new page in the history of interstate banking. In 1978, it enacts a law to allow national reciprocity and permit MBHCs from other states to acquire banks in Maine, provided that these states grant the same privileges to banks in Maine. Since then, all states and DC, except for Hawaii, choose one of the several possible options of interstate banking: regional reciprocity, regional nonreciprocity, national reciprocity, or national nonreciprocity.

Regional interstate banking law, enacted by a particular state, allows a certain number of states to be included in the region to carry out merger and acquisition activity in this state on a reciprocal basis. When a state passes a bill, permitting reciprocal nationwide interstate banking, it allows out-of-state bank holding companies in the remaining states and DC to acquire control of this state's banking institutions, provided that their home states reciprocate. A state can also choose the last and most liberal option – national nonreciprocity – and allow out-of-state banks throughout the country to merge with, or acquire banks operating in this state.

_

³ Kane (1996, p.144) defines multibank holding company as "a collection of separately incorporated banks that have a common corporate ownership and whose operations and managements are linked closely with that of a lead bank."

According to Amel (1993) and the *American Banker* publications, the majority of the state level enactments of the laws, allowing some form of reciprocity, take place between 1982 and 1988. The restrictions imposed by the Douglas Amendment are successfully removed by the Riegle-Neal Interstate Banking and Branching Efficiency Act of 1994. After this Act becomes effective on September 29, 1995, the MBHCs are allowed to cross state borders and acquire out-of-state banks.⁴

A number of papers has examined the effects of changes in the interstate banking legislations on banks' performance, efficiency, productivity, and changing growth opportunities. Tirtiroglu et al. (2000) find, using cross-sectional, time-series analysis, that "banks productivity growth, during the 1971-1995 period, increases monotonically as a function of the changes in interstate MBHC regulations." To see if the state-wide total factor productivity growth is influenced by changes in interstate banking regulations, they assign four dummy variables, each capturing the effect of either regional (non)reciprocity or national (non)reciprocity. According to their results, as banks make a switch from regional reciprocity to national reciprocity, their performance improves accordingly. Another interesting finding reported in this paper is the "long-term relationship between the status and changes in the state-specific interstate MBHC regulations." The weakness of Tirtiroglu et al. (2000) is that they do not control for intrastate deregulations.

Jayaratne and Strahan (1998) perform a similar study and report the greatly improved bank efficiency after lifting intrastate branching restrictions. Their study does not account, though, for the differences in the changes in interstate banking regulations.

⁴ Kane (1996) discusses the transition period of the Riegle-Neal Interstate Banking and Branching Efficiency Act. Effective September 29, 1995, MBHCs may acquire banks across state lines. Effective June 1, 1997, MBHCs receive the right to merge their acquired banks across state lines. And, after July 1, 1997, MBHCs are allowed to establish branches across the country.

Little work has been done on measuring the stock market's response to the changes in interstate banking. Cornett and De (1991) study investors' reaction to the announcement of interstate acquisitions that are the result of relaxing interstate banking regulations by acquirers' and targets' states. Their results are surprising. Both acquiring banks and targets gain positive abnormal returns around the announcements of acquisitions. They attribute this to the features of interstate acquisitions. They hypothesize that the announcement by the bidding bank may serve as a favorable signal of this bank's capital position and the future benefits associated with geographic expansion.

Utilizing a standard event-study methodology, Cornett and De (1991) measure banks' abnormal returns for a sample that contains 152 interstate acquisitions for the period 1982-1986. 150 out of 152 are successful. Of these acquisition proposals, 142 are due to bank failures and 90 acquisitions take place in 1986. Southeast and Midwest are the regions with the largest number of cases – 36 and 49, accordingly.

Cornett and De (1991) study the stock market's reaction for the bidders and the targets not only around the dates of acquisition announcements, but also around "the announcements of various events leading to the passage of the interstate banking bill in the target bank's home state." As announcement dates, they use the dates when the law passes the House and the Senate, and when the governor signs interstate banking bill into law. Their partial sample of bidders and targets consists of 78 and 35 banking institutions, respectively. They find that the passage of a law does not affect bidders' stock returns. Target banks, however, generate positive and significant abnormal returns around the dates when the bill passes the Senate and when the governor sings the bill into the law.

Laderman and Pozdena (1991) find that in-state bank holding companies respond negatively to the increased merger and acquisition activity, as well as to the increased competition after the enactment of some form of reciprocity by their home states. The market's reaction to the passage of the laws is slightly less significant than to the effective date. They explain this finding by their inability to determine precisely the passage date.

Black et al. (1990) suggest that the date when a bill is signed into law, i.e. passage date, may not necessarily be interpreted by the market as the passage date. In some states, the dates when the legislature approves a bill can be a much more important event. Laderman and Pozdena (1991) indicate that the banking sector reacts negatively to the changes in the number of source states. They conclude, therefore, that "the long-run effect of liberalized interstate banking is to enhance banking competition."

Black et al. (1990) measure the impact of removal of restrictions on the wealth of banks' shareholders. Using a sample of 51 banking organizations, listed on the New York and American Stock Exchanges, of which 13 are money center banks, they study the market's reaction to the announcements of law changes around the dates when the bill is signed into the law by the governor or, when it is approved by the state legislature and is expected to be signed by the governor.

They estimate the abnormal returns utilizing the market adjusted event study methodology. As independent variable they use the difference between rates of return of one of 51 banks in their sample and the returns of the control portfolio. They define the control portfolios as those "consisted of all available banks from other states, except where other states are enacting legislation concurrently." The results are similar to the

results generated using the standard event study methodology. Black et al. (1990) divide their sample of banks into two categories - money center and superregional banks - and study them separately.⁵

According to their empirical findings, the passage of laws, allowing some form of regional reciprocity, has a negative effect on stock prices of the money center banks and a positive effect on stock prices of superregional banks. Black et al. (1990) attribute these findings to the "behavioral difference between the two types of organizations" and "an important regulatory constraint that limits the interstate expansion of money center banks." Black et al. (1990) and Harding (1988) claim that one of the purposes of interstate banking legislation is to "initially exclude those states in which the money center banks are located."

What remains unclear, though, are: 1) the time period over which the study is conducted, 2) how they choose the 17 states for their analyses, and 3) the level of reciprocity stipulated in the bills signed by the governor in each state. Some states that experience the transition from regional to national (non)reciprocity can have at least two passage dates: the first, when the bill, allowing regional reciprocity is signed into law; and the second, when the bill, allowing national (non)reciprocity is signed into law. Depending on the type of event and the state, the effect can be different.

Goldberg et al. (1992) present a more thorough analysis of the impact of interstate banking regulation's changes on the in-state and out-of-state banks during the period from February 01, 1982 through September 01, 1987. Using a Seemingly Unrelated Regression model, they estimate the coefficients for 51 dummy variables for their sample of 131 banking institutions with returns data on the Center for Research in Security Prices

⁵ See also Harding (1988) for a definition of superregional and money center banks.

(CRSP) data tapes during the whole study period. Each dummy variable represents the event window (-2; 2), surrounding the date when the bill is signed into the law or when the law becomes effective. The market's reaction on the passage dates and effective dates is studied separately.

They further divide their sample of announcement dates into two groups – those containing a regional reciprocity trigger and those that do not. On the event dates containing a regional reciprocity trigger, each of 131 banks is considered as in-region/ instate bank, or in-region/out-of-state bank, or out-of-region/non-money center bank, or out-of-region/money center bank. On the other event dates, the sample is divided into the following groups: in-state banks, out-of-state/non-money center banks, and out-of-state/money center banks. The estimated means of the coefficients for each of the groups are also tested for equivalence.

Goldberg et al. (1992) report a positive reaction for the in-state and in-region banks around the effective dates of corresponding laws. On the passage dates, though, the in-state banks lose and in-region banks gain in value. Out-of-state and out-of-region banks, excluding money center banks, increase in value around the passage and effective dates of interstate banking laws. They attribute their findings "to increased expansion opportunities and to triggering of reciprocity provisions which may increase the potential acquirers of the out-of-state banks." They also report that the money center banks have not benefited from the changes in the interstate banking legislation. This is consistent with Black et al. (1990).

By selecting the banking companies that have the return data available over the whole period, Goldberg et al. (1992) limit their analysis to the study of the impact of

changes on only the "survived" banks. This category may include strong banks, as well as banks nobody wanted to invest in. The present paper, in contrast, studies separately the group of survived and active banks. The portfolio of active banks, in addition to the survived banks, may contain acquired or failed banks. Using this approach, it is possible to perform a more accurate study by controlling for any possible "survivorship bias".

The difference in stock price reaction of the survived and active banks may arise from the additional conditions of interstate banking laws, allowing some form of reciprocity. Among them are "ceilings on out-of-state control of bank deposits, minimum age requirements for the acquiree, required commitments by the acquirer to community reinvestment, or required capital-to-asset ratios for out-of-state acquirers." (Laderman and Pozdena [1991, p.44]). For example, the fact that Delaware (DE) opens its borders to Pennsylvania (PA), does not necessarily mean that banks from Pennsylvania can start acquiring Delaware banks. Only those Delaware banks that are at least five years old can be acquired [Amel (1993)]. Therefore, the stock price reaction to those law changes may be different for different categories of banks.

3. Data Set

Four sources are used to construct the dataset: the COMPUSTAT database, the Center for Research in Security Prices (CRSP) data tapes, the Commercial Bank and Bank Holding Company Database of Federal Reserve Bank of Chicago, and the American Banker publications. Banking institutions headquartered in 49 states and DC are considered.⁶

⁶ Hawaii is excluded since it does not enact any interstate banking law.

Guenther and Rosman (1994) and Kahle and Walkling (1996) find substantial differences between SIC codes reported by COMPUSTAT and CRSP. Both papers demonstrate that COMPUSTAT-matched samples are more reliable than CRSP-matched samples and that the difference in codes between two databases can seriously affect the results of an empirical study. Hence, COMPUSTAT is chosen as an initial source of information. Using respective SIC Codes, all available Commercial, State, and National Banks are initially extracted from COMPUSTAT database. Then, using the CRSP data tapes, the unique permanent issue identification numbers, PERMNOs, for COMPUSTAT's banking companies are identified. Out of 830 banks available in COMPUSTAT, the PERMNOs are available for 774 companies. Of these 774 banks, only those that have returns data between January 1982 and August 1992 are retained. This results in 449 banks. Utilizing the SIC codes from COMPUSTAT and criteria mentioned above, additional 10 banks, which do not match COMPUSTAT's banks, are identified using CRSP data tapes (see Table 1).

Table 1: The number of banks with available returns on CRSP data tapes

Banking institutions from COMPUSTAT with available PERMNOs in CRSP	449
Banking institutions from CRSP (banks that are not in COMPUSTAT)	10
Banking institutions from the Federal Reserve Bank of Chicago with available Perms in CRSP	75
Banking institutions mentioned in the American Banker publications during the study period	15
Total (active banks)	549
	125
The number of banks with stock returns available for the whole period (survived banks)	135

A further 32 Bank Holding Companies and 43 Commercial, National and State banks that are not available in COMPUSTAT, are obtained from commercial banking

data provided by the Federal Reserve Bank of Chicago.⁷ To identify these banks, the commercial banks that are located in the US territories, foreign banks, savings banks, cooperative and private banks are eliminated from the Federal Reserve data set. The remaining banks are then matched with the CRSP data tapes.

Another 15 banks are added to the database from the *American Banker* publications. They are among the numerous banks mentioned in the *American Banker* news during the study period.

This data collection effort results in a dataset of 549 active banks. Out of that, 135 banks have the stock returns for the whole period. They are segregated and studied separately as survived banks in order to detect survivorship bias.⁸

Black et al. (1990) and Goldberg et al. (1992) examine separately money center banks and find negative and insignificant stock price reaction to the changes in the interstate banking laws. Hence, money center banks such as, Bank of America, Bank of New York, Bankers Trust, Chase Manhattan Bank, Chemical Bank, Citicorp, Continental Illinois, Manufacturers Hanover, Morgan (J.P.), and Wells Fargo are not included in the present study.

Goldberg et al. (1992) measure the banks' abnormal returns using two announcement dates: the date when the state governor signs the interstate banking bill into law and when the bill becomes effective. Cornett and De (1991) choose three announcement dates as follows: 1) the dates when the bill passes the State House; 2) the

-

⁷ http://www.chicagofed.org/

⁸ The sample of survived banks is also used to replicate partially the paper by Godberg et. al. (1992). The replication results are mostly similar to those reported by the above mentioned authors. The only substantial difference in estimates is detected in regards to the average abnormal return for the in-state-banks around the interstate banking law effective date. The table with the replication results is provided in Appendix B.

date when the bill passes the State Senate; and 3) when the bill is signed into the law by the state governor. Black et al. (1990) use the passage date as an announcement arguing that the date when the bill is signed into the law is usually an anticipated event since the bill has already been "introduced, debated, and passed." The effective date is not even news for the market and is not expected to cause any reaction.

To perform a thorough investigation of the market's reaction to the changes in interstate banking legislation, this paper measures the abnormal returns prior to the date when the bill is signed into the law, similar to Cornett and De (1991). Referring to Amel (1993) and using online Lexis-Nexis database, the data reported by the *American Banker* is collected for each state. Special attention is paid to the very first announcement, which normally occurs several years prior to the effective date. Then, the major common events that accompany the bill's development in each state are identified. After analyzing the events in all states, five major dates are selected: the date when the bill is introduced by the State Bankers Association or state bankers; the date when the bill is approved by the State House Committee; the date when the bill is approved by the State Senate Committee; the date when the law by the state governor; 10 and the date when the law becomes effective.

There are several reasons why the first three dates are chosen. The date when the Bankers Association or state bankers introduce the bill is normally the very first announcement of coming changes. The role of the House and Senate Committees is the first crucial step in the process by which a bill becomes a law. Since a large percentage of

⁹ For states, for which the date when the Senate passes the bill is not available, the date when the bill is approved by the legislature is used.

In cases when the American Banker does not report a day when the state governor signs the bill, the passage day reported by Goldberg et al. (1992) is used.

all legislations is never reported out of Committees, the fate of a bill entirely depends on Committees' actions. Moreover, the American Banker always reports one of these dates.¹¹

The problem with collecting the data from the American Banker is the substantial lack of information in the late 80's. For states, such as Colorado or Delaware, it is not possible to extract sufficient data. The same problem occurs for smaller states, such as Vermont, where the process of interstate banking law changes, supposedly, is not treated by the American Banker as a serious event. Due to these obstacles, the amount of information retrieved for each state is not the same. In certain cases, only the dates when either the Senate or the House passes the bill, or when the governor signs the bill are available.

The length of period between the first announcement by the Bankers Association and the effective date of interstate banking law varies for each state. In Michigan or Nebraska, it took up to five years to implement the changes in interstate banking legislation. New Hampshire initially announced of its intention to change the legislation on April 23, 1983. The law became effective only on September 01, 1987 (see Appendix A, Table A1). When each particular state is examined, trying to identify the significance of the event, it is better to keep in mind that some states, for example, New Mexico and New York, had been discussing the interstate banking bill for several years before finally signing it into law.

-

To avoid an undesirable noise, the dates when the bill is rejected by the Bankers Association, or the Senate or House committees, or by the Senators are not considered. The reason behind this is an attempt to measure the market's reaction only around the dates when a bill is progressing on its way to become effective and not when it is being vetoed, defeated or sent back for modification and further elaboration. Therefore, sixteen announcement dates are deleted from the sample. Usually these dates occur at the very beginning of the process when the bill is just introduced by the Bankers Associations (six cases). In four cases the Senate defeats the bill and in four other cases the House kills the bill. In DC and Michigan, the governors veto the bills.

All states that enact a law, allowing for any form of reciprocity, are divided into seven categories (see Table 2). The states in each category are studied separately with respect to the effect of in-state law changes on banks' stock prices.

The first category is formed of banks that introduce the full nationwide reciprocal or nonreciprocal interstate banking and adhere to it until the Riegle-Neal Interstate Banking and Branching Efficiency Act becomes effective on September 29, 1995. Tracking the interstate banking bill as it goes from the Bankers Associations to its final approval by the State Senates, reveals some interesting facts and specifics. For example, in 1987, North Dakota independent bankers vigorously resist the enactment of a law that allows regional reciprocity. Finally, in 1991, after a series of amendments, the state legislature passes a nationwide reciprocal interstate banking law (see Appendix A, Table A1).

The second category is composed of states that choose regional reciprocity as their initial option and subsequently do not change to national (non)reciprocity. Alabama and Georgia, after allowing for regional reciprocity to the surrounding states, expand their regions later by including one and two states, respectively (see Appendix A, Table A1). They are still included in the second category.

The states in the third and fourth categories also start by announcing regional reciprocity. But these states make a subsequent transition to either national reciprocity or nonreciprocity. The difference between the third and fourth categories arises due to the date when regional and national interstate banking bills are signed. The third category of states decides to amend their interstate banking laws after "tasting" regional reciprocity and facing the necessity of making changes. On the other hand, the governors of states,

¹² See Kane (1996) and Tirtiroglu D. et al. (2000).

such as California and Nevada, which are in the fourth category, sign one bill that has both regional and national trigger dates. One bill stipulates two effective dates.

Each state has its own reasons to modify the existing law.¹³ For instance, Connecticut's decision has been heavily driven by the deteriorating situation in the real estate market and outstanding real estate loans extended by Connecticut banks.

Another example is Illinois, which makes its first transition on July 01, 1986 by declaring regional reciprocity. Shortly after that, on September 09, 1987, in order to increase the productivity of banking industry, the governor signs a new bill, opening borders to banks in all states in December 1990 (see Appendix A, Table A1).

It is worth mentioning that New Hampshire decides to restrict itself to regional reciprocity after discussing national nonreciprocity for two years. On the other hand, Pennsylvania is initially determined to allow only regional reciprocity, but one year later it softens its position and allows a two-step transition (see Appendix A, Table A1).

Maryland and Mississippi are added to the fifth category. These are the states that enact a law, allowing for regional reciprocity with further expansion of the region. In July 1984, the Bankers Association of Maryland proposes a bill that allows regional reciprocity for sixteen states (see Appendix A, Table A1). However, it is later decided to divide these states into two groups. In 1985, Maryland opens its doors to the first five states and two years later to the remaining eleven. Mississippi does something similar by announcing in 1986 the states of the whole region and specifying which states are allowed to cross the borders in 1988 and later in 1990.

¹³ Kane (1996) suggested that banking failures was a main push forcing the changes in the interstate banking laws. The massive number of bank failures in the late 1980s and early 1990s was a major financial crisis in the US and required radical solutions, including re-regulating the banking sector and allowing some regulations not to be enforced strictly.

Table 2: The states categorized according to the types of enacted laws and the complexity of process by which a bill becomes the law*

Category	Description	States
I	States that enact a law, allowing for only national (non)reciprocity	AK, AZ, ND, NM, NY, OK, SD, TX, WA, WV, WY
2	States that enact a law, allowing only for regional reciprocity**	AL, AR, FL, GA, IA, KS, MO, MT, SC, WI
3	States that enact laws, allowing for regional (non)reciprocity first and then national (non)reciprocity (different passage dates)	CT, ID, IL, MA, NC, NH, NJ, OR***, RI, TN, UT, VA
4	States that enact a law, allowing for regional and then national (non)reciprocity (the same passage dates)	CA. CO. DC. DE. KY, LA. MI. NE, NV, OH, PA, VT
5	States that enact a law, allowing for regional reciprocity with further expansion of the region (the same passage dates)	MD, MS
6	States that enact a law, allowing for regional reciprocity with further expansion of the region and then national reciprocity (the different passage dates)	IN, MN
7	States that enact a law, allowing for national reciprocity first and then national nonreciprocity	ME

^{*} Hawaii is not included since it does not enact any interstate banking law.

Indiana and Minnesota have gone through the most complicated process of changing their interstate banking legislations. Their initial step is to allow banks in their neighboring states to acquire the in-state banks on a reciprocal basis. The passage of bills, expanding these states' regions, is the second step. The final action is the enactment a bill, allowing a full nationwide reciprocal interstate banking.

Maine is considered separately; not only this state sets the start for a new era of banking history, when in January 1978 the banks in all states are allowed to cross Maine's borders on a reciprocal basis, but also because it is the only state that switches from national reciprocity to national nonreciprocity (see Appendix A, Table A1).

In order to examine the stock market's reaction in each state to the changes in interstate banking laws, two types of equally weighted portfolios are created for each state. The first-type portfolio represents the survived banks that have the returns for the

^{**} Alabama and Georgia further expand their regions by including one and two states, respectively.

^{***}Oregon is the only state that enacts a law, allowing for regional nonreciprocity.

whole period. The second-type portfolio represents active banks that have available daily stock returns any time between January 04, 1982 and August 01, 1992. To avoid post-IPO pressure on stock prices, the returns are collected 6 months after the firm appears in CRSP. The number of banks in this portfolio may vary over time. A comparison of two types of portfolios may reveal the nature and magnitude of the "survivorship bias".

For Alaska, Maine, New Hampshire, South Carolina, and Wyoming, only the portfolio of active banks can be created. For Idaho, Kansas, New Mexico, South Dakota, and Utah, on the other hand, only the portfolio of survived banks can be created. Montana, Nevada, North Dakota, and Oregon are excluded because they either do not have the banks with usable returns or do not have banks available at CRSP. Hawaii is not in the sample, since it does not enact any law affecting the interstate banking legislation. For most of the states, there are 2676 observations, i.e., 2676 trading days for the period from January 1982 to August 1992. However, for states, such as Alaska, Maine, New Hampshire, Vermont, and Wyoming, the study period is shorter due to the lack of available returns.

January 01, 1982 is chosen as a starting date, since all major events start after this date. For the sake of saving the number of survived banks, the estimation period ends in August 1992. This way the first announcement made by Maine in January 1978 and the interstate banking laws' passage dates of Minnesota, North Carolina and Virginia are not included.

¹⁴ Due to the lockup agreement, the insiders and pre-IPO shareholders are not allowed to sell any of their stake in the company prior to the unlock date [Gaspar (2002)]. As a consequence, the unlock date may produce significant abnormal returns which may affect the empirical results.

4. Hypotheses

The first three hypotheses are related to the similarity and differences in market's reactions to the enactment of different types of reciprocity.

Hypothesis 1: The bank portfolios in states enacting a national (non)reciprocity law should increase in value to a statistically significant degree around the major announcement dates in interstate banking bill's history.

The states that open their borders nationwide with or without reciprocal arrangements are pursuing the same goal as any other state, permitting some form of reciprocity – prosperity of their home banking sectors. According to American Banker, states, such as Alaska, for example, have enacted a law, allowing for national nonreciprocity, in order to attract strong banks from all over the country so that they could acquire Alaska's failing institutions and fortify its banking market. The bank portfolios in this category of states are expected to increase in value around the announcements of banking law changes. The news that banks from all around the nation can carry out merger and acquisition activity in the subject state should produce positive abnormal returns. According to Goldberg et al. (1992) and Black et al. (1990), banks gain positive abnormal returns as a result of enactment of interstate banking laws. The market may react positively because of the increased opportunities for acquiring banks in new states.

The abnormal returns are expected to be positive and significant around the dates when the bill is introduced by the State Bankers Association, passed by either the House or the Senate Committees, or signed by the governor. The date when the bill is approved by the Senate or signed by the governor usually signals the final approval and passage of

the bills. Cornett and De (1991) report positive and significant abnormal returns for their sample of target banks around the dates when the governor signs the bill and when the law becomes effective.

Hypothesis 2: The bank portfolios in states enacting a regional reciprocity law should have a smaller increase in value than the bank portfolios in states enacting a national (non)reciprocity law around the major announcement dates.

The states that allow regional type of reciprocity specify the states whose banks are allowed to cross the subject borders and acquire banks, if the invited states grant the same permission. The primary purpose of enacting these laws is developing the region's small banks so that they can resist takeover activity by banks outside the region (King et al. [1989]). Bank portfolios are expected to increase in value around the announcements of changes in the legislation towards enacting a regional bill. Active banks can be acquired by stronger banks from the region. Survived banks, on the other hand, can spread their network in the region and become stronger. However, from investors' point of view, national reciprocity is better than regional reciprocity, since national arrangements allow more states to enter the investors' home market and acquire failing banks than regional arrangements do.

Hypothesis 3 represents a synthesis of hypotheses 1 and 2.

Hypothesis 3: For states that enact regional reciprocity and subsequently national (non)reciprocity, the bank portfolios abnormal returns should be positive and significant around announcement dates that shape both bills.

An analysis of states that consider both laws separately allows the comparison of the banks' abnormal returns around the dates when the regional and national bills are under consideration. The process of creating a regional bill should cause the positive reaction as previously hypothesized. It is hard, though, to explain the particular reasons why states decide to open their borders nationwide. The first reason may be ineffectiveness of regional reciprocity. It might have not produced the desired effect and the banks in a state have not become stronger. Hence, the state has to attract banks other than in the region to "heal' the deteriorating market. In this situation, the market should support national (non)reciprocity. The second reason is contrary to the first one. The banks in a state could have developed to the level, where regional arrangements do not allow them to grow further. The state legislature, therefore, has to reconsider the interstate banking law and enact national (non)reciprocity to let strong banks continue expanding. But for the banks in such states the process of considering national bill should not produce the same reaction as considering regional bill would. The abnormal returns may be insignificant, since the banking sector has already expected such changes to occur and has considered them as something natural and inevitable.

The next hypothesis pertains to the market's reaction to the changes in interstate banking happening outside the subject states.

Hypothesis 4: The in-state bank portfolios abnormal returns should be positive and significant as a reaction to the out-of-state changes in interstate banking legislation that allow in-state banks to merge or acquire the banks in states that make such changes.

According to Goldberg et al. (1992), the in-state banks experience significant and positive impact from the enactment and the effective date of interstate banking laws by other states. They attribute such reaction in part to the fact that banks from outside the state can acquire the in-state banks, as well as the in-state banks can purchase banks

outside their home state's borders. In this paper, six states are studied in detail in order to measure the effect of out-of-state law changes on the in-state banks' stock returns. The out-of-state announcements are sorted into four groups:

- the announcement of enacting a law, allowing for regional reciprocity, by another state, whose actions are not expected to affect the state under the study.
- the announcement of enacting a law, allowing for national reciprocity or nonreciprocity, by another state, whose actions are not expected to affect the state under the study.¹⁵
- the announcement of enacting a law, allowing for regional or national reciprocity or nonreciprocity, by another state, whose actions directly affect the state under the study.
- 4. the announcement of changes in interstate banking legislation by another state, when such changes happen simultaneously with the changes in the state under the consideration.

The announcements of the first group are not expected to have a significant effect on the banks in state under consideration and to produce any abnormal returns. Such announcements happen before the subject state enacts its first interstate banking laws. The announcements of the second group can affect banks and generate abnormal returns, since the banks in states that make such changes may become potential acquirers or potential targets in the future. The announcements of the third group should produce

24

¹⁵ Alaska enacts the national nonreciprocity law in 1982. For banks in states, such as Wyoming and New Hampshire, for example, which enact their interstate banking laws in 1987, the announcements by Alaska should not produce any effect. Hence, for such states, Alaska's announcements would be included into the second group of out-of-state announcements.

significant abnormal returns since these announcements have a direct effect on banks in state under consideration.¹⁶ And, the announcements of the fourth group may or may not have an effect on portfolios' returns.

The last two hypotheses pertain to the difference between portfolios of survived and active banks.

Hypothesis 5: The portfolio of survived banks should produce more significant and positive abnormal returns than the portfolio of active banks.

and

Hypothesis 6: As a state liberalizes its interstate banking legislation, the portfolio of survived banks should become more exposed to the market related risk than the portfolio of active banks. Therefore, the shift in beta is expected to be higher for the survived banks.

The announcements of in-state changes in the interstate banking laws, theoretically, should produce different impact on the banks included in two portfolios. Since the banks included in the portfolio of survived banks have been on the market during the whole study period, they are the potential acquirers and, hence, should generate positive abnormal returns around the announcements of changes that would allow the survived banks to hunt for new targets. The banks included in the portfolio of active banks may produce both positive and negative reactions. In addition to the survived banks, the active banks can also be new or failed banks, or banks that have merged or have been acquired. Sometimes, there may be no significant difference

25

¹⁶ California passes its regional reciprocity bill in 1986 and enacts it in 1987. The region includes such states as Alaska and Arizona, who opened their borders nationwide earlier in 80's. Hence, all California's announcements should directly affect banks in such states.

between the banks in two portfolios, because for some states there can be two survived banks and one active bank during the whole study period.

The market related risk should become higher for survived banks, as their home states open their borders. The liberalization of interstate banking in the survived banks' home states attracts stronger institutions from the region or the whole country, making the local business environment more competitive and diversified. Hence, some survived banks that have been strong before the liberalization of interstate banking, may become more volatile and vulnerable after out-of-state banking institutions start establishing new rules and offering new services.

5. Methodology

5.1 Empirical models for measuring the effect of in-state changes in interstate banking legislation on in-state bank portfolios return

The event study approach is utilized to measure the impact of the five major announcements in each of the seven categories of states. The purpose of conducting the event study is to calculate the Abnormal Returns (ARs) around the dates that may affect the companies' stock prices. The period over which the stock prices are examined plays a crucial role. The current paper employs the window size of eleven days (-5; 5), which means the ARs are measured five days before the announcement and 5 days after that. This approach allows capturing the pre- and post-announcement information, such as rumors and anticipations, and measuring the effect of the event.

To investigate the investors' reaction to the announcements of changes in interstate banking legislation the Ordinary Least Squares (OLS) estimation procedure and dummy variables technique (Thomson [1985]) are employed.

Equations (1) - (7) measure the abnormal returns of bank portfolios in each of the seven categories of states (see Table 2). Additionally, each equation measures the shift in bank portfolios beta, associated with the enactment of the interstate banking law. Each equation corresponds to the particular category of states and, therefore, the number of variables in each equation depends on the number of interstate banking laws enacted in the states included in a particular category.

First category:

$$R_{u} = \alpha_{\iota} + \beta_{\iota} R_{mu} + \theta_{\iota} \Delta R_{ft} + \sum_{n=1}^{2} \gamma_{in}^{1} DB_{nu} + \sum_{n=1}^{2} \gamma_{in}^{2} DB - IND_{nu}$$

$$+ \sum_{n=1}^{5} \gamma_{in}^{3} D_{nu} + \varepsilon_{iu}, \qquad (1)$$

Second category:

$$R_{u} = \alpha_{i} + \beta_{i} R_{mt} + \theta_{i} \Delta R_{ft} + \sum_{n=1}^{2} \gamma_{in}^{1} DB_{nt} + \sum_{n=1}^{2} \gamma_{in}^{2} DB - IND_{nt}$$

$$+ \sum_{n=1}^{5} \gamma_{in}^{3} D_{nt} + \sum_{n=1}^{5} \gamma_{in}^{4} DEXP_{nt} + \varepsilon_{it},$$
(2)

Third category:

$$R_{ii} = \alpha_{i} + \beta_{i} R_{mi} + \theta_{i} \Delta R_{fi} + \sum_{n=1}^{4} \gamma_{in}^{1} D B_{ni} + \sum_{n=1}^{4} \gamma_{in}^{1} D B_{-} I N D_{ni} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{ni} + \sum_{n=1}^{5} \gamma_{in}^{5} D N_{ni} + \varepsilon_{ii},$$
(3)

Fourth category:

$$R_{u} = \alpha_{i} + \beta_{i} R_{mi} + \theta_{i} \Delta R_{fi} + \sum_{n=1}^{3} \gamma_{in}^{1} D B_{ni} + \sum_{n=1}^{3} \gamma_{in}^{2} D B_{-} I N D_{ni} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{ni} + \gamma_{i}^{5} D N_{5i} + \varepsilon_{ii},$$

$$(4)$$

Fifth category:

$$R_{it} = \alpha_{i} + \beta_{i} R_{mt} + \theta_{i} \Delta R_{ft} + \sum_{n=1}^{3} \gamma_{in}^{1} D B_{nt} + \sum_{n=1}^{3} \gamma_{in}^{2} D B_{-} I N D_{nt} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{nt} + \gamma_{i}^{4} D E X P_{5i} + \varepsilon_{it},$$
(5)

Sixth category:

$$R_{u} = \alpha_{i} + \beta_{i} R_{mt} + \theta_{i} \Delta R_{ft} + \sum_{n=1}^{5} \gamma_{in}^{1} DB_{nt} + \sum_{n=1}^{5} \gamma_{in}^{2} DB - IND_{nt}$$

$$+ \sum_{n=1}^{5} \gamma_{in}^{3} D_{nt} + \sum_{n=1}^{5} \gamma_{in}^{4} DEXP_{nt} + \sum_{n=1}^{2} \gamma_{in}^{4} DEXP_{5nt} + \gamma_{i}^{5} DN_{5t} + \varepsilon_{it},$$
(6)

Seventh category:

$$R_{t} = \alpha + \beta R_{mt} + \theta \Delta R_{tt} + \gamma^{1} D B_{2t} + \gamma^{2} D B_{-} I N D_{2t} + \gamma^{3} D_{4t} + \varepsilon_{t}, \quad (7)$$

where

 R_{ii} - the returns for portfolio of survived or active banks (i=1, 2);

 α , - the intercept of the model;

 R_{mi} - the daily returns on CRSP equally weighted index;

 ΔR_{ff} - the first difference of the federal funds rate (Federal Reserve Release H.15), as in Goldberg et al. (1992);

 D_{ni} - a dummy variable each representing an eleven-day period, (-5; 5), surrounding one of the five major announcement dates. These dates are

associated with the first and, sometimes, the last interstate banking law in the history of each particular state (see Figure 1 as an example of using dummy variables for measuring the impact of law changes on portfolio returns in the first category of states). Each state may have up to five events and, hence, dummy variables: D_1 - the date when the bill is introduced by the State Bankers Association or state bankers; D_2 - the date when the bill is approved by the State House Committee; D_3 - the date when the bill is approved by the State Senate Committee; D_4 - the date when the bill is signed into law by the state governor; and D_5 - the date when the law becomes effective. The coefficient γ_{ni}^3 measures the ARs associated with one of five announcements;

 $DEXP_{m}$

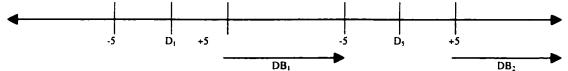
- a dummy variable similar to D_{ni} . Each of the five possible dummy variables represents an eleven-day period, (-5; 5), surrounding the announcement dates of expansion of an existing region. The expanding of the region occurs after the enactment of regional reciprocity. These dummy variables are used only for the second, fifth, and sixth categories. In the second category these dummy variables are applied for Alabama and Georgia portfolios, since only these states expand their regions;

 DN_{n}

- a dummy variable similar to D_{ni} and $DEXP_{ni}$. Each of five possible dummy variables represents an eleven-day period, (-5; 5), surrounding the announcement dates of changes in interstate banking legislation that lead to a transition from regional to national reciprocity or

nonreciprocity. For example, the states included in the third category have up to five such dummy variables, since these states consider national (non)reciprocity after enacting regional (non)reciprocity. On the other hand, the states in the fourth category have only one such dummy variable, DN_5 , representing the effective date of a law, allowing for national (non)reciprocity. The states in the fourth category have one bill with two effective dates – one for regional (non)reciprocity and the other for national (non)reciprocity;

 DB_{ni}


- a dummy variable that helps to measure the intra-event effect as in Kryzanowski and Ursel (1993). For each category the number of dummy variables may vary. The first and second categories, for example, have two such variables. The first, DB_I , takes a value of one five days after the first announcement until the event window of (-5; 5) of the effective date and zero otherwise (see Figure 1). The second, DB_2 , takes a value of 1 five days after the effective date until August 1992 and zero otherwise. The third category, on the other hand, has 4 dummy variables: DB_1 , DB_2 , DB_3 , and DB_4 . DB_1 is similar to DB_1 in the first category. DB₂ takes a value of one five days after the effective date of a law, allowing for regional reciprocity until the event window of (-5; 5) of the first announcement of changes in interstate banking legislation towards ratifying national (non)reciprocity and zero otherwise. DB_3 is then similar to DB_1 of the first category and DB_4 is similar to DB_2 of the first category. The fourth category has three such dummy variables:

 DB_1 , DB_2 , and DB_3 . DB_1 is the same as DB_1 for the first category. DB_2 takes a value of one five days after the effective date of a law, allowing for regional reciprocity until the event window of (-5; 5) of the effective date of a law, allowing for national reciprocity or nonreciprocity;

 $DB_{-}IND_{ni}$ - a dummy variable DB_{ni} multiplied by R_{mi} . The coefficient γ_{ni}^2 shows a shift in β associated with event D_{ni} ;

 ε_u - a regression error term, assumed to have the standard properties.

Figure 1: An example of using dummy variables for measuring the abnormal returns of banks in the first category of states.

 D_I – the announcement by state bankers, or the Bankers Association;

D - the interstate banking law effective date;

 DB_I – a dummy variable representing a period between the first announcement of changes and the effective date;

 DB_2 – a dummy variable representing a period after a law becomes effective.

5.2 Description of the models for measuring the effect of in-state and out-ofstate changes in interstate banking legislation on portfolios of in-state banks

Equations (1) – (7) measure the impact of relaxing the geographic restrictions on portfolio returns. However, the results reflect the market's reaction only to changes inside the state. To examine the market's reaction to the interstate banking legislation changes within and outside the state, six states are chosen and additional analyses are carried out. These six states are: Florida, New York, Illinois, New Jersey, California, and Pennsylvania. There are several reasons why these particular states are chosen. First, each of them represents a different category (see Table 2): New York chose national

reciprocity as its first and final option, while Florida enacted a law, allowing only for regional reciprocity without making any subsequent transitions. Illinois and New Jersey enacted laws, allowing first for regional reciprocity, and then for national reciprocity, but with different passage dates of the respective laws. California and Pennsylvania enacted a law, allowing first for regional and then for national reciprocity with the same passage date, but with different effective dates. By choosing states from different categories, it is possible to compare the behavior of portfolio returns and see if the degree of interstate banking liberalization matters. Second, these states have a sufficient number of banks with available returns in CRSP and also the appropriate number of announcement dates. And third, these states are located in different regions of the U.S.; geographic diversity is another reason for the comparisons.

The impact of the events is estimated using the ordinary least squares (OLS) estimation procedure and the dummy variables technique (Thomson [1985]). The previous models are modified and four new dummy variables are added. For each state, the number of these four dummy variables ranges from a minimum of one to a maximum of five, depending on the number of announcements. The following equations are estimated:

For Florida and New York:

$$R_{u} = \alpha_{i} + \beta_{i} R_{mi} + \theta_{i} \Delta R_{fi} + \sum_{n=1}^{2} \gamma_{in}^{1} D B_{ni} + \sum_{n=1}^{2} \gamma_{in}^{2} D B_{-} I N D_{ni} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{ni}$$

$$+ \sum_{n=1}^{5} \delta_{in}^{1} D \delta_{ni} + \sum_{n=1}^{5} \delta_{in}^{2} D \delta N_{ni} + \sum_{n=1}^{5} \delta_{in}^{3} D \gamma_{ni} + \sum_{n=1}^{5} \delta_{in}^{4} D \delta_{ni} + \varepsilon_{ii},$$
(8)

For Illinois and New Jersey:

$$R_{u} = \alpha_{i} + \beta_{i} R_{mt} + \theta_{i} \Delta R_{ft} + \sum_{n=1}^{2} \gamma_{in}^{1} D B_{nt} + \sum_{n=1}^{2} \gamma_{in}^{2} D B_{-} I N D_{nt} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{nt}$$

$$+ \sum_{n=1}^{5} \gamma_{in}^{5} D N_{nt} + \sum_{n=1}^{5} \delta_{in}^{1} D \delta_{nt} + \sum_{n=1}^{5} \delta_{in}^{2} D \delta N_{nt} + \sum_{n=1}^{5} \delta_{in}^{3} D \gamma_{nt} + \sum_{n=1}^{5} \delta_{in}^{4} D \delta_{nt} + \varepsilon_{it}$$

$$(9)$$

For California and Pennsylvania:

$$R_{u} = \alpha_{i} + \beta_{i} R_{mt} + \theta_{i} \Delta R_{ft} + \sum_{n=1}^{2} \gamma_{in}^{1} D B_{nt} + \sum_{n=1}^{2} \gamma_{in}^{2} D B_{-} I N D_{nt} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{nt}$$

$$+ \gamma_{i}^{5} D N_{5t} + \sum_{n=1}^{5} \delta_{in}^{1} D \delta_{nt} + \sum_{n=1}^{5} \delta_{in}^{2} D \delta N_{nt} + \sum_{n=1}^{5} \delta_{in}^{3} D \gamma_{nt} + \sum_{n=1}^{5} \delta_{in}^{4} D \delta_{nt} + \varepsilon_{it},$$

$$(10)$$

where

- a dummy variable each representing an eleven-day period, (-5; 5), surrounding the announcements of enacting a law, allowing for regional reciprocity by a state, whose actions are not expected to affect the state under consideration. 17 $D6_1$ - the date when the bill is introduced by another State Bankers Association or state bankers; $D6_2$ - the date when the bill is approved by the House Committee; $D6_3$ - the date when the bill is approved by the Senate Committee; $D6_4$ - the date when the bill is signed into law by the state governor; and $D6_5$ - the date when the law becomes effective;

 $D6N_{ni}$ - a dummy variable, each representing an eleven-day period, (-5; 5), surrounding the announcements of enacting a law, allowing for national reciprocity or nonreciprocity by a state, whose actions are not expected

¹⁷ If Alabama's governor, for example, signs a bill, which opens Alabama's borders to a particular region and California is not included into this region, then in the model, where the dependent variable is the portfolio of California banks, this event is represented by a dummy variable $D6_4$.

to affect the state under the consideration.¹⁸ This dummy variable is similar to $D6_{ni}$;

 $D7_{ni}$ - a dummy variable, each representing an eleven-day period, (-5; 5), surrounding the announcements of enacting a law, allowing for regional or national reciprocity or nonreciprocity by a state, whose actions directly affect the state under the consideration. This dummy variable is similar to $D6_{ni}$;

 $D8_{ni}$ - a dummy variable each representing an eleven-day period, (-5; 5), surrounding the announcements of changes in interstate banking legislation by another state, when such changes happen simultaneously with the changes in the state under the consideration. This dummy variable is similar to $D6_{ni}$.

5.3 Estimation of GARCH model and tests for heteroscedasticity

While using OLS estimation procedure, the error variance is assumed to be constant, or homogeneous, across observations. Many prominent papers show that the parameter estimates of empirical models, using daily stock returns as the dependent variable, are not efficient due to the heteroscedastic error disturbances. Schwert and Seguin (1990), for example, measure aggregate monthly stock volatility, using daily

¹⁸ This dummy variable is similar to $D6_{ni}$, but the level of reciprocity represented by an announcement is different. Even though the announcement of declaring a national reciprocity may not have an immediate significant effect on the other state's banks, the magnitude can still be different from the announcement of declaring a regional reciprocity.

When state A considers simultaneously regional and national reciprocity and state B has already enacted a law, allowing state A banks to cross state B's borders on no-matter-what terms, then all announcements by state A, except for the effective date of regional reciprocity, are represented by $D7_{ni}$ dummy variables. The effective date is represented by $D6_4$ dummy variable (it is assumed that state A does not include state B in its region).

returns to the S&P composite portfolio and find that failure to account for heteroscedasticity may lead to inconsistent estimates and inaccurate conclusions. Pindyck and Rubinfeld (1997) claim that while studying stock market returns one may encounter with "a particular kind of heteroscedasticity in which the variance of the regression error depends on the volatility in the recent past."

To incorporate heteroscedasticity and represent the variance of the error term in the portfolios of survived banks, the equations (1) – (10) are reestimated using a simple generalized autoregressive conditional heteroscedasticity (GARCH) (1, 1) model (Bollerslev [1986]):

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \lambda_1 \sigma_{t-1}^2 \quad , \tag{11}$$

where

 σ_i^2 - a variance of error terms;

 ε_{t-1}^2 - last period's volatility (autoregressive conditional heteroscedasticity (ARCH) term);

 σ_{t-1}^2 - last period's variance (GARCH term).

To estimate the returns for the portfolios of active banks, the banks that appear in CRSP anytime during the study period are used. In some cases, the number of banks in the beginning of the period can be ten, then seven in the middle, and then twelve in the end. Such dispersion in the number of banks can lead to the difference in estimated variances from observation to observation, and, therefore, to the heteroscedastic error disturbances.

In order to test for heteroscedasticity, the Breusch-Pagan test (1979) and White test (1980) are applied to the portfolios of active banks. A SAS program is used to estimate both tests' coefficients and t-statistics. To test for heteroscedasticity, the least-squares residuals, $\hat{\epsilon}_i$, are calculated first for each portfolio of active banks. These residuals are then used to calculate:

$$\hat{\sigma}^2 = \frac{\sum \hat{\varepsilon}_i^2}{N}$$

The Breusch-Pagan test is then performed by running the following regression (Pindyck and Rubinfeld [1997]):

$$\frac{\hat{\varepsilon}_{i}^{2}}{\hat{\sigma}^{2}} = \gamma + \delta X_{i} + v_{i} \tag{12}$$

To perform the White test the following regression is used:

$$\hat{\varepsilon}_{i}^{2} = \gamma + \delta X_{i} + v_{i} \tag{13}$$

where X_i represents an independent variable, in our case, the number of banks.

Since the Breusch-Pagan and White tests are very similar, the results obtained using Breusch-Pagan test are used in the empirical section of this study. The Breusch-Pagan test is employed because it assumes a normal error term, whereas the White test does not depend on normality (Pindyck and Rubinfeld [1997]). The results of both tests are provided for comparison.

In cases where the Breusch-Pagan test is significant for the portfolio of active banks, the equations (1) - (10) are reestimated using heteroscedastic regression model (see SAS tutorial)²⁰:

$$R_{t} = \beta R_{mt} + \varepsilon_{t}, \qquad (14)$$

$$\varepsilon_{t} \sim N(0, \sigma_{t}^{2}), \qquad (14)$$

$$\sigma_{t}^{2} = \sigma^{2} h_{t}, \qquad (14)$$

$$h_{t} = l(z_{t} \eta), \qquad (14)$$

where

h, - a conditional variance;

 z_t - a vector composed of the logarithm of the number of banks, that should be related to the heteroscedasticity of the residuals; ²¹

 η - a vector of parameters;

 ε , - errors that are assumed to be uncorrelated.

As in the case with the portfolios of survived banks, equations (1) - (10) are also reestimated for the portfolios of active banks using a simple GARCH (1, 1) model (see Equation (11)). SAS also allows one to estimate a GARCH conditional variance model by specifying variables that are related to the heteroscedasticity of the residuals. In case with portfolio of active banks, this variable is the number of banks. The estimated equation is similar to Equation (11):

²¹ The logarithm of the number of banks is used to avoid the heteroscedasticity of error variance.

37

²⁰ SAS program with HETERO statement is used to estimate the coefficients of the model. The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the way these variables are used to model the error variance of the regression (SAS Tutorial).

$$\sigma_{r}^{2} = \alpha_{0} + \alpha_{1} \varepsilon_{r-1}^{2} + \lambda_{1} \sigma_{r-1}^{2} + \eta_{1} B_{r} \tag{15}$$

where B_t is the changing number of banks.

5.4 Measuring the effects of changes in interstate banking legislation on the number of publicly traded banks

To examine if the changes in interstate banking legislation have any effect on the number of banks, the following equation is estimated for each state:

$$LOGBANKS_{u} = \alpha_{i} + \sum_{n=1}^{5} \lambda_{in} DB_{ni} + \varepsilon_{ii} , \qquad (16)$$

where $LOGBANKS_i$ is the natural logarithm of the daily number of banks with available stock returns on CRSP data tapes for state i (i = 1,...,46). These are 549 banks described in Table 1. DB_{ni} is the dummy variable presented in equations (1) – (7). It measures the intra-event effect. As it is mentioned before, the number of dummy variables DB may vary from state to state, depending on the legislation changes.

The null hypothesis that the coefficients of dummy variables, DB, are all jointly equal to zero is tested:²³

$$H_0: \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$$

Also, the hypothesis that the coefficients of dummy variables are equal among each other is tested. For the fourth category, for example, the following tests are performed:

²² Montana, Nevada, North Dakota, and Oregon were excluded, since there are no banks available in CRSP for these states. Therefore, equation (16) is estimated for 45 states and DC.

²³ The number of dummy variables, DB, may vary for each category of states.

$$H_0: \lambda_1 = \lambda_2$$

$$H_0: \lambda_1 = \lambda_3$$

$$H_0: \lambda_2 = \lambda_3$$

The appropriate test statistics is (Pindyck and Rubinfeld [1997]):

$$F_{q,N-n} = \frac{(R_{UR}^2 - R_R^2)/q}{(1 - R_{UR}^2)/(N-n)},$$

where

- the number of dummy variables dropped from the model (Equation 16);

n - the number of dummy variables in Equation 16;

N - the number of observations;

 R_{UR}^2 - R^2 of unrestricted model (when all dummy variables are included);

 R_R^2 - R^2 of restricted model (when q variables are dropped).

6. Analysis of the Empirical Results

Tables A2-A47 in Appendix A contain the detailed empirical findings for all seven categories of states. The average estimates for categories 1-4, calculated using Tables A2-A42, are presented in Tables 3-6 in a form of summary statistics.

The bank portfolios ARs are separately generated by estimating: 1) the OLS model (for each of the seven categories, estimating equations (1) – (7), respectively); 2) equations (1) – (7) using GARCH (1, 1) estimation to account for heteroscedasticity; 3) additional heteroscedastic regression model with a specified source of heteroscedasticity for the portfolios of active banks (see Equation (14)); and 4) GARCH conditional

variance model with the specified source of heteroscedasticity as the number of banks for the portfolios of active banks (Equation (15)).²⁴

If, for example, the estimation results generated by GARCH (1, 1) are significant for the portfolio of survived banks, these results are reported in Tables A2 - A47 and used in the analysis and the construction of Tables 3-6. If GARCH results are not significant, then estimates obtained by OLS procedure are reported in Tables A2-A47 and Tables 3-6.

For the portfolios of active banks, the Breusch-Pagan and White tests are performed using the number of banks as an independent variable. The results of both tests are reported in Table A48 in Appendix A. However, as mentioned earlier, only the results of the Breusch-Pagan test are used in the analysis. The estimates reported in Tables A2-A47 and Tables 3-6 are obtained as follows:

- In cases where the Breusch-Pagan test is insignificant, GARCH and OLS results are compared, as it is the case for the portfolio of survived banks. If GARCH results are significant, they are reported in Tables A2-A47 and used for the construction of Tables 3-6. Other estimates can be provided upon request. If GARCH results are not significant, OLS results are reported in Appendix A and used in Tables 3-6.
- 2) If the Breusch-Pagan test is significant, the results of heteroscedastic regression model, with the number of banks specified as the source of heteroscedasticity, are considered and reported in Tables A2-A47 (see Equation (14)).

²⁴ Since some of the states consider and enact their interstate banking laws simultaneously with other states, the clustering of events is expected. Hence, all results are reported assuming the cross-sectional dependence, as in Black et al. (1990).

If, however, the results of heteroscedastic regression model are not significant, the results of the GARCH conditional variance model with specified source of the heteroscedasticity of the residuals are considered in Tables A2-A47 and Tables 3-6 (see Equation (15)).

Table 7 contains the descriptive statistics for each category, such as the Gross State Product (GSP), state population, size of territory, and the number of bank failures and mergers.

6.1 The in-state changes in interstate banking legislation and their effect on the portfolios of in-state banks' returns

The empirical results are discussed in the following order. First, the effect of enacting a law, allowing for national (non)reciprocity, on portfolio returns is discussed. Then, the market's reaction to the enactment of the national and regional reciprocity is compared. The laws with national (non)reciprocity provisions are considered more liberal than the laws, allowing for regional (non)reciprocity. Hence, national reciprocity or national nonreciprocity laws are expected to produce more positive and significant abnormal returns than the laws, allowing for regional (non)reciprocity. The third step involves discussing the bank portfolio returns of states included in the third category. These states initially enact regional reciprocity and later switch to national interstate banking. This category represents the synthesis of the first and the second categories. It allows one to compare the process of creating a regional bill with the same process in states of the second category, as well as the process of creating a national bill with the same process in states of the first category. The final stage involves discussing the states

included in the fourth category. These states pass the bills, allowing for regional and national reciprocity on the same date. The purpose of doing this is to see if the anticipation of advantages of national (non)reciprocity improves slightly negative effect caused by enacting a regional reciprocity.

6.1.1 The empirical findings for the bank portfolios of states that choose national (non)reciprocity as their initial and final option

Table 3 and Tables A2-A11 in Appendix A report the empirical results for the first category of states. The states in this category enact a national (non)reciprocity and do not make any subsequent changes. This category is similar to the second category in a way that the states enact only one type of reciprocity and remain faithful to it. The reported results must be interpreted carefully, especially for the portfolio of survived banks, since the number of banks in eight out of nine such portfolios equals one. The hypothesis being tested is *Hypothesis 1*.

According to Table 3, the coefficient estimates for D_1 - D_4 are positive and in five cases significant for the portfolios of active banks. For the portfolio of survived banks, these coefficient estimates are positive, however, insignificant. It means that the tested hypothesis can be supported only for the portfolios of active banks. The coefficient estimate for dummy variable, D_5 , is negative for survived banks and positive for active banks.

The Tables A2-A11 show that banks in South Dakota, Texas and Washington appreciate in value around the dates when the governors of these states sign a bill permitting national reciprocity into law. The ARs are also positive and significant for the

Table 3: Summary statistics for the bank portfolios of states included in the first category (only national (non)reciprocity). Estimates are produced using equation 1:

$$R_{ii} = \alpha_i + \beta_i R_{mi} + \theta_i \Delta R_{ji} + \sum_{n=1}^2 \gamma_{in}^{1} DB_{mi} + \sum_{n=1}^2 \gamma_{in}^{2} DB_{mi} + \sum_{n=1}^5 \gamma_{in}^{3} D_{ni} + \mathcal{E}_{ii}, \text{ where } i = 1, 2 \text{ (the portfolios of survived and active banks)}$$

	Ds		γ3	.0 00474	-0.00798	2000	•	_		7,3	211000	0.000	5	3	
	D,		γ3	0.00944	0.00337	, o	o	т		بر <i>ب</i> ر	0.000	0.00185	900	- :	-
Announcements	D,		7,3	0.00361	0.00263	7	•	_		γ3	0.00693	0.00206	7	٠, ر	1
	D		γ ³	0.00216	-0.00165	4	•	-		γ3	061000	-0.00078		. –	•
	D		γ_{11}^{3}	0.00214	0.00158	٠,	•			γ3	0.00249	0.00111	4	_	•
vith market	DB_IND,	•	7,5	0.31528	0.30600	6	9	-		7 33	0.17556	0.16180	7	C	-
Interaction with market	DB_IND	•	γ_{11}^2	0.32054	0.27205	∞	m			د اد	0.41233	0.17260	7	ĸ	i
event	DB ₂	survived nanks	7,	0.00098	0.00000	6			f active banks**	γ_{22}^{1}	99000:0	0.00075	7	_	
Intra-event	DB ₁	Dependent variable: Fortiono of Survived Dank	γ_{11}^{-1}	-0.00038	0.00043	∞		7	Dependent variable: Portfolio of active	γ ₂₁	-0.00097	0.00074	7	-	
	Intercept	rejement van	αًا	-0.00061	-0.00033	6			Dependent varie	$lpha_{_{2}}$	-0.00045	-0.00072	7		
Category 1			Coefficient	Mean	Median	# Ponfolios	# sig > 0*	# sig < 0*		Coefficient	Mean	Median	# Portfolios	# sig > 0*	# sig < 0*

*The number of cases when the coefficient estimates are positive and significant or negative and significant at the 10% level and better.
**For some states only the portfolio of survived or active banks can be created. Hence, the number of portfolios of survived banks may be higher than that of portfolios of active banks and vice versa.

DB₁ - a dummy variable which takes a value of 1 between the first announcement and effective date;

DB2 - a dummy variable which takes a value of 1 after the effective date;

DB_IND, (DB_IND,) - a dummy variable DB, (DB,) multiplied by CRSP equally weighted index return;

D₁ - a dummy variable representing the date when the bill is introduced by state's the Bankers Association or state bankers. D₂ - a dummy variable representing the date when the bill is approved by the State House Committee. D₃ - a dummy variable representing the date when the bill is approved by the State Senate Committee; D₄ - a dummy variable representing the date when a state governor signs the bill into law:

Ds - a dummy variable representing the date when the law becomes effective.

Alaska, Oklahoma, and Texas portfolios around the dates when the State Senate Committees approve the bill. The positive reaction can be attributed to the fact that national (non)reciprocity opens the state borders to the whole country under reciprocal or nonreciprocal arrangements. It seems that the anticipation of multiple acquisition bids produces positive market's reaction. The banks in many states of this category have experienced serious problems associated with the energy crisis of 1986-87. The legislature, therefore, has being moving forward liberal legislation, which, hopefully, would save the failing banks and the banking system in its home state.

The national reciprocity turns out to be an effective measure. This is supported by the coefficient estimates for DB_IND_2 . The coefficient estimates for DB_IND_1 and DB_IND_2 are almost the same for the portfolio of survived banks. For the portfolio of active banks the coefficient estimate for DB_IND_2 is lower than that for DB_IND_1 .

It seems, therefore, that the enactment of a law, allowing for national (non)reciprocity, has been approved by the majority of the market. Banks, as possible targets, may anticipate a large number of bidders from different regions of the country, and this number, in case of national (non)reciprocity, should be higher than in case of regional (non)reciprocity. As acquirers, the banks should not be limited by a certain region and may purchase banks in states that have respective reciprocal provisions.

6.1.2 The empirical findings for the bank portfolios of states that choose regional reciprocity as their initial option

This subsection discusses the states whose initial, and sometimes final step, towards liberalizing interstate banking legislation, is the enactment of a regional reciprocity. The effect of a law, allowing for regional reciprocity, on portfolio returns

is compared between states in the second category, which enact regional reciprocity and do not make subsequent changes, and states in the third category, which enact separately regional and then later national (non)reciprocity. This comparison provides evidence for and against *Hypothesis 2*.

The summary of empirical results for the second category, representing the states whose initial and final choice is regional reciprocity, are reported in Table 4 and detailed results can be found in Tables A12-A20. According to Table 4, both portfolios have more negative significant abnormal returns than positive, which contradicts *Hypothesis* 2. Three portfolios of active banks and one portfolio of survived banks generate negative abnormal returns around the dates when the Senate discusses the bill. However, the abnormal returns are positive for one portfolio of active banks around the passage date and for two portfolios of active banks around the effective date.

The interesting finding for the second category is the changing investors' attitude towards liberalization of interstate banking. The average coefficient estimate for D_I , representing the introduction of a bill by the Bankers Association or state bankers, is positive for both types of portfolios. Investors, as well as bankers, treat the introduction of a bill as good news. Market considers such changes positive for further development of banking sector. However, the coefficient estimates for D_2 - D_4 are negative, showing the pessimistic attitude of investors towards the bill with regional provisions, while it is passing the House, the Senate and the state governor. It seems that the market prefers more outside bidders to less bidders and more outside targets to less targets, which might be interpreted to mean that investors are more attracted by a national interstate banking bill than a regional one. And the positive coefficients of dummy variables for portfolios of banks in states that enact national

Table 4: Summary statistics for the bank portfolios of states included in the second category (only regional reciprocity). Estimates are produced using Equation 2:

 $R_{ii} = \alpha_i + \beta_i R_{mi} + \theta_i \Delta R_{ji} + \sum_{n=1}^2 \gamma_{in}^{\ l} DB_{ni} + \sum_{n=1}^2 \gamma_{in}^{\ l} DB - IND_{ni} + \sum_{n=1}^5 \gamma_{in}^{\ l} D_{ni} + \sum_{n=1}^5 \gamma_{in}^{\ l} DEXP_{ni} + \mathcal{E}_{ii}, \text{ where } i = 1, 2 \text{ (the portfolios of survived and active banks)}$

Category 2		Intra-event	event	Interaction	with market			Announc	rements		
	Intercept	DB,	DB ₂	DB_IND	DB_IND;	ā	D,	ດ໌	ď	ď	DEXP
	Dependent va	Dependent variable: Portfolio of s	io of survived	banks**							
Coefficient	α	۲-	γ ₁₂	γ,	7,2	γ,3	$\gamma_{\rm B}^3$	χ ₃	۳. ۲	γ3	4,7
Mcan	0.00077	-0.00049	-0.00080	0.16539	0.47400	0.00043	-0.00323	990000	0.00083	0.000	0.00
Median	0.00065	-0.00051	-0.00070	0.15350	0.32050	0.00058	0.00006	910000	0.0000	0.002	5,000
# Portfolios	00	∞	80	00	•	7	7	7	0.00.0- 0.00.0-	0.00123	.0.00.5
# sig > 0*	3		_	4	۰	•	•	•	0	o –	٠,
# sig < 0*		<u>-</u>	ĸ				-	-		-	
	Dependent vi	Dependent variable: Portfolio of a	io of active ba	nks**							
Coefficient	$lpha_{2}$	7,1	7,3	7,7	Y 2,	γ3.	γ ³	γ3	٧.	7,	4 ;
Mean	0.00077	-0.00029	0.00063	0.07159	0.25719	00000	850000	20100.0	010000	0 00066	5000
Median	0.00069	-0.00029	-0.00066	0.11980	0.26315	0.00032	-0.00038	0.00167	0.00013	0.0000	0.000
# Portfolios	∞	∞	∞	∞	œ	77	4	7	¥100.0	C/200.0	0.0041
# sig > 0*	∞	_		· C1	5	•	•	•	o	o –	4
# sig < 0*		<u>-</u>	4	-	•			m	•		

*The number of cases when the coefficient estimates are positive and significant or negative and significant at the 10% level and better.

**For some states only the portfolio of survived or active banks can be created. Hence, the number of portfolios of survived banks may be higher than that of portfolios of active banks and vice versa.

[DB] - a dummy variable which takes a value of 1 between the first announcement and effective date;

DB 1- a dummy variable which takes a value of 1 after the effective date;

DB 2- a dummy variable which takes a value of 1 after the effective date;

DB 2- a dummy variable which takes a value of 1 after the effective date;

D) - a dummy variable representing the date when the bill is approved by the State House Committee;

D) - a dummy variable representing the date when the bill is approved by the State Gommittee;

D) - a dummy variable representing the date when the bill is approved the State Senate Committee;

D, - a dummy variable representing the date when a state governor signs the bill into law;

D₂ - a dummy variable representing the date when the law becomes effective.

(non)reciprocity confirm this statement.

The states included in the third category also began their changes of interstate banking legislation by enacting regional (non)reciprocity. However, unlike the states in the second category, they subsequently introduced a bill, allowing for national (non)reciprocity. In this section, the third category is studied only with regards to the enactment of regional (non)reciprocity. The summary statistics for the bank portfolio returns are reported in Table 5 and Tables A21-A31 in Appendix A.

For the third category, the portfolios of survived banks of each state seem to react differently to the same type of announcement. For example, the survived banks in Virginia and Tennessee have positive abnormal returns around the date when the Bankers Association proposes the regional reciprocity bill, whereas the banks in North Carolina react negatively to the same announcement (see Tables A21-A31). When the state bankers in Illinois and Massachusetts announce of the proposed bill with regional provisions, which would open the states' borders nationwide, banks' stock prices drop significantly. The New Jersey portfolio, however, appreciates in value around the same announcement date.

Again, differences appear when the estimates for portfolios of active and survived banks are compared for states in the third category. The New Jersey survived banks have positive abnormal returns at the 1% level around the date when the governor signs the national reciprocity bill (Table A26). However, New Jersey active banks have negative and significant abnormal returns at the 1% level around the same date. This confirms the hypothesis stated earlier that banks in each portfolio react differently to the news regarding changes in interstate banking legislation.

The comparison of coefficient estimates for D_1 - D_5 for the second and the third categories reveals the investors' different perception of regional interstate banking

Table 5: Summary statistics for the bank portfolios of states included in the third category (regional and then separately national (non)reciprocity). Estimates are produced using Equation

$$R_{u} = \alpha_{t} + \beta_{t} R_{mt} + \theta_{t} \Delta R_{ft} + \sum_{n=1}^{4} \gamma_{un}^{1} D B_{nt} + \sum_{n=1}^{4} \gamma_{un}^{1} D B_{-} I N D_{nt} + \sum_{n=1}^{5} \gamma_{un}^{3} D_{nt} + \sum_{n=1}^{5} \gamma_{un}^{5} D N_{nt} + \varepsilon_{u},$$

where i = 1,2 (the portfolios of survived and active banks)

Category	3 Dependen	t variable: l	Portfolio of	survived	bank	s**	Depende	nt variable:	Portfolio d	f active b	anks	**
	Coefficient	Mean	Median	# Portf-s	# sig > 0*	# sig < 0*	Coefficient	Mean	Median	# Portf-s		# sig < 0*
Intercept	α_{ι}	0.00043	0.00042	10	4		α_2	0.00088	0.00086	9	5	
$\mathbf{DB_{t}}$	γ_{1i}^{i}	0.00057	0.00040	8	2		γ_{21}^1	0.00008	0.00050	8	3	
DB ₂	γ_{12}^1	-0.00015	-0.00022	10		4	γ ¹ ₂₂	-0.00069	-0.00081	9		4
DB_3	γ_{13}^1	-0.00043	-0.00046	8		1	γ ₂₃	-0.00001	-0.00045	7		1
DB4	γ ¹ ₁₄	-0.00101	-0.00156	5		2	γ_{24}^1	-0.00054	-0.00077	4		t
DB_IND ₁	γ_{11}^2	0.01373	-0.05075	8	2	_	γ_{21}^2	0.01824	-0.06915	8	ı	2
DB_IND2	γ_{12}^2	0.24020	0.30095	10	6		γ_{22}^2	0.24977	0.30780	9	7	
DB_IND3	γ_{13}^2	0.44364	0.47680	8	7		γ_{23}^2	0.46850	0.33440	7	5	
DB_IND4	γ_{14}^2	0.53358	0.52900	5	4		γ_{24}^2	0.32443	0.21025	4	2	
Dı	γ ₁₁	0.00110	0.00148	4	2	I	γ_{21}^3	0.00125	0.00159	4	1	
D_2	γ_{12}^3	0.00090	0.00090	1			γ_{22}^3	0.00464	0.00464	2		
D ₃	γ_{13}^3	0.00067	0.00152	5	ı	1	γ_{23}^3	0.00028	-0.00086	5	i	
D ₄	γ_{14}^3	-0.00091	-0.00076	10	ı		γ_{24}^3	-0.00137	-0.00086	9		
D_5	γ_{15}^3	-0.00024	0.00117	9		1	γ_{25}^3	-0.00051	-0.00052	8	1	
DN ₁	γ ₁₁ ⁵	-0.00197	-0.00235	3	ı	2	γ ₂₁ ⁵	0.00023	0.00194	3	l	
DN_2	γ_{12}^5	0.00099	0.00112	3	1		γ_{22}^5	0.00021	0.00086	3		
DN_3	γ_{13}^5	-0.00292	-0.00292	2		1	γ_{23}^5	-0.00026	-0.00026	2		
DN ₄	γ_{14}^5	0.00476	0.00748	5	2		γ_{24}^5	-0.00058	-0.00094	4		1
DN ₅	γ_{15}^{5}	0.00050	-0.00040	7	1		γ_{25}^5	-0.00208	-0.00144	6		

The number of cases when the coefficient estimates are positive and significant or negative and significant at the 10% level and better.

^{**}For some states only the portfolio of survived or active banks can be created. Hence, the number of portfolios of survived banks may be higher than that of portfolios of active banks and vice versa.

DB; - a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for regional reciprocity; DB₂ = a dummy variable which takes a value of 1 between the effective date of a law, allowing for regional reciprocity and the first announcements of plans to enact a law, allowing for national reciprocity.

DB . - a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for national reciprocity;

DB₄ - a durniny variable which takes a value of 1 after the effective date of a law, allowing for national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) – a durinity variable DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return; $D_1(DN_1) - D_2(DN_2)$ – the durinity variables, representing five major dates, in the history of interstate banking bill:

D₁(DN₁) - date when the bill, allowing regional (national) (non)reciprocity is introduced by state's the Bankers Association or state bankers.

D₂(DN₂) - date when the bill, allowing regional (national) (non)reciprocity is approved by the State House Committee:

D₁(DN₃) - date when the bill, allowing regional (national) (non)reciprocity is approved by the State Senate Committee;

 $D_4(DN_4)$ - date when the bill, allowing regional (national) (non)reciprocity is signed into law by a state governor. D₃(DN₃) - date when the law, allowing for regional (national) (non)reciprocity becomes effective.

(see Tables 4, 5). The discussion of an interstate banking bill by the Bankers Association in states of the third category, represented by D_1 , produces a positive increase in both portfolios returns, as it is the case for the first and the second categories. However, unlike the second category, the process of hammering out the bill in the House and the Senate, events represented by D_2 and D_3 , is supported by investors. This positive shift in portfolios' returns may be attributed to the market anticipation and hopes that national bill would be finally enacted instead of regional bill. The coefficient estimates for D_4 and D_5 are negative, indicating possible investors' disappointment at not receiving the desired laws with national provisions.

A comparison of coefficient estimates for DB_IND_1 and DB_IND_2 for both portfolios of the second and third categories shows that survived banks are highly exposed to market related risk during the regional bill's creation period and post-effective period. This supports the Hypothesis 2.

These results indicate that national (non)reciprocity is more desired by the market than regional reciprocity. The bank portfolios gain in value around the dates when the Bankers Associations or the state bankers introduce the bill for the first time. Yet, the returns decrease when the market perceives that it would not see interstate banking law with national provisions.

6.1.3 The empirical results for the bank portfolios of states that choose national (non)reciprocity as a substitute for regional (non)reciprocity

The states included in the third category enact an interstate banking law with national provisions after experiencing regional type of reciprocity (see Table 5 and Tables A21-A31). According to *Hypothesis 1*, the market's reaction to the formation

of national bill in states of the third category should be the same as that to the formation of national bill in states of the first category.

The coefficient estimates for DN_1 - DN_5 measure the market's reaction to the five major announcements in states included in the third category. These coefficient estimates can be compared to the coefficient estimates for D_1 - D_5 for the portfolios of the first category. According to Table 5, the coefficient estimates for DN_2 , DN_4 , and DN_5 are positive and significant for one, two and one portfolios of survived banks, respectively. The shareholders of survived banks of the third category seem to support both forms of reciprocity, and after experiencing regional reciprocity, national (non)reciprocity probably looks even more attractive and promises new opportunities. The portfolios of survived banks in the third category may increase in value around the announcements of enacting national (non)reciprocity because these banks remain the targets and the market expects new buyers for these banks. ²⁵

There are relatively few cases when the abnormal returns for the portfolios of active banks in the third category are significant. Based on the signs of coefficient estimates for D_4 , D_5 , DN_4 and DN_5 , which are negative for the portfolios of active banks, it seems that the investors do not like the effect the legislation changes may have on active banks. These results show the difference in impact the legislation changes may have on survived and active banks. This supports $Hypothesis\ 1$.

The coefficient estimates for DB_IND_J and DB_IND_J measure the changes in market related risk for portfolios in the third category during the periods when the national interstate banking bill is under consideration and after it becomes effective, respectively. The coefficient estimates can be compared to those for DB_IND_I and DB_IND_J for the portfolios in the first category. The coefficient estimates for

50

²⁵ In Connecticut, on the other hand, investors did not expect any substantial number of mergers and acquisitions from going national, since the real estate market was in a depressed situation.

 DB_IND_1 and DB_IND_2 are almost the same for the portfolios of survived banks in the first category. In contrast, the coefficient estimate for DB_IND_4 is higher than that for DB_IND_3 for portfolios of survived banks of the third category, indicating that banks become riskier as states enact the most liberal form of interstate banking. The coefficient estimates are also higher for the third group than for the first group. It shows that the survived banks in the third category experience more difficulties and face tougher competitive environments than the same type of banks in states of the first category.

For active banks, the picture is reversed. The coefficient estimates for DB_IND_4 and DB_IND_2 for portfolios of active banks of the third and first categories, respectively, are lower than those for DB_IND_3 and DB_IND_1 , showing that banks become less risky as states enact the national (non)reciprocity.

The results again support the idea that investors are more attracted by the interstate banking laws with national provisions than with the regional ones. The abnormal returns for the portfolios of survived banks around the dates shaping the national bill confirm this conclusion.

6.1.4 An examination of the mixed effect of enacting a law with regional and national provisions

The fourth category consists of states that pass a law specifying two effective dates: the first - when the state opens its borders to a certain number of stipulated states, and the second – when the state opens its borders nationwide.

The summary statistics is reported in Table 6 and the detailed regression results are reported in Tables A32-A42. The coefficient estimate for D_I shows that California and Pennsylvania portfolios returns react positively to the announcements

by the major banking interests. The approval of interstate banking bill by the State House produces a negative reaction for Colorado portfolios and a positive one for Vermont portfolios. Kentucky portfolios decrease in value around the dates when the Senate considers the bill and around the effective date. On the passage and effective dates, the abnormal returns are significant and negative for banks in Delaware. As well, Ohio portfolio returns decrease around the passage date, while, in Louisiana, bank portfolios produce positive abnormal returns.

The coefficient estimates for DN_1 - DN_5 , for the portfolio of active and survived banks are different. For example, the coefficient estimates for D_1 and D_3 for California survived banks are higher, but less significant than for California active banks. The coefficient estimate for D_5 , though is significant for the portfolio of California survived banks, is not significant for the portfolio of California active banks. Michigan and Kentucky portfolios increase and decrease in value, respectively, around the effective dates of national reciprocity.

Such a disperse reaction can be explained by investors' different attitude towards liberalization of interstate banking and the various histories of interstate banking bills. For example, the portfolio of California banks exhibit an increase in the rate of return around the first five announcements, represented by D_1 - D_5 , and a decline around the effective date of national reciprocity. It may be that shareholders do not support the national trigger date from the very beginning and advocate the bill only with regional provisions. In Louisiana the banks faced serious problems related to the depressed energy industry and associated loan problems. The market, hence, supported a law, allowing for any form of reciprocity.

For the banks in this category, it is hard to test the hypothesis that that the banks in states enacting a law, allowing for regional reciprocity, increase in value

Table 6: Summary statistics for the bank portfolios of states included in the fourth category (regional and national (non)reciprocity with the same passage date). Estimates are produced using Equation 4:

 $R_{ii} = \alpha_i + \beta_i R_{mi} + \theta_i \Delta R_{fi} + \sum_{n=1}^{3} \gamma_{in}^{1} DB_{ni} + \sum_{n=1}^{3} \gamma_{in}^{2} DB_{-1} IND_{ni} + \sum_{n=1}^{5} \gamma_{in}^{3} D_{ni} + \gamma_i^{5} DN_{5i} + \varepsilon_{ii}, \text{ where } i = 1,2 \text{ (the portfolios of survived and active hanks)}$

Category 4			Intra-event		Intera	Interaction with a	narket			Announcement	cements		
	Intercept	DBi	DB ₂	DB,	DB_IND	DR_IND	DR IND	<u>a</u>	<u>0</u>	á	ď	ă	Ž
	Dependent	variable: Po	Dependent variable: Portfolio of survive	ived banks**									
Coefficient	α	-7.=	۲,	γ.	7,1	$\gamma_{\rm D}^2$	7,3	γ3	۲,	γ_3^3	۲3	۳. ۶	٧.5
Mcan	0.00042	-0.00035	-0.00017	-0.00043	0.12456	0.28644	0.54060	0.00182	-0.00207	0.00136	0000	0.000	\$0.000
Median	0.00053	-0.00018	-0.00022	-0.00043	0.26150	0.26150	0.46780	0.00167	0.00087	0.00173	00000	0.000	0.00103
# Portfolios	=	01	=	=	01	=	=	9		×	6	11	1-1
# sig > 0*	ç				9	>	=	· C	:	. –	, ,	: -	:
# sig < 0*		_	٣	S	1	ı	:	ı	. –	- –	u —	- 7	
	Dependent	variable: Por	Dependent variable: Portfolio of active b	ve banks**									
Coefficient	$\alpha_{_2}$	χ_{21}^{-1}	γ_{22}^{-1}	7,23	γ,	γ_{ij}^2	7,3	۲,	۲,	۲,	٧.	γ ₃ ,	ر د د
Mean	0.00057	-0.00041	0.00015	-0.00028	0.16170	0.14777	0.28337	0.00133	-0.00108	0.00012	** ,	0.00083	50000
Median	0.00057	-0.00017	-0.00045	-0.00036	0.14180	0.11470	0.12160	0.00143	-0.00029	-0.00059	0.00126	0.00053	-0.00034
# Portfolios	=	0	=	=	10	=	=	9	۳	• •	6	=	=
# sig > 0*	7		-	_	۳.	S	S	7		-	· C	: -	: -
# sig < 0*		_	4	٣.			_			5 .	ı —		

*The number of cases when the coefficient estimates are positive and significant or negative and significant at the 10% level and better.

**For some states only the portfolio of survived or active banks can be created. Hence, the number of portfolios of survived banks may be higher than that of portfolios of active banks and vice versa. DB₁ – a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for regional reciprocity;
DB₁ – a dummy variable which takes a value of 1 between the effective dates of regional and national reciprocity;
DB₁ – a dummy variable which takes a value of 1 after the effective date of a law, allowing for national reciprocity;
DB_IND₁ (DB_IND₂) DB_IND₃) – a dummy variable DB₁ (DB₃) multiplied by CRSP equally weighted index return;

D₁ - a dummy variable representing the date when the bill is introduced by state's the Bankers Association or state bankers, D₂ - a dummy variable representing the date when the bill is approved by the State House Committee;
D₃ - a dummy variable representing the date when the bill is approved the State Senate Committee;
D₃ - a dummy variable representing the date when the bill is signed into law by a state governor;
D₃ - a dummy variable representing the date when the bill is signed into law by a state governor;

DNs - a dummy variable representing the date when the law, allowing for national reciprocity becomes effective.

around five major announcement dates. The states in the fourth category simultaneously consider national and regional reciprocities, and, hence, it is difficult to attribute the market's reaction to the enactment of either type of the banking law.

It is still possible to compare the market's response around certain announcement dates (see Table 6). The coefficient estimate for D_I is positive for both types of portfolios, as it is the case with other categories. It seems that investors support the actions of the Bankers Associations towards liberalizing interstate banking. The coefficient estimates for D_3 and D_4 are positive as well, indicating the investors' optimistic attitude towards coming nationwide interstate banking. These results may imply that the investors are more willing to see the states open their borders nationwide rather than to the certain region of banks.

The coefficient estimates for $DB_{_}IND_{1}$ and $DB_{_}IND_{2}$ for both portfolios have increased. This is similar to the findings for the second and the third categories. The coefficient estimates for $DB_{_}IND_{3}$ in the fourth category, $DB_{_}IND_{2}$ in the first category, and $DB_{_}IND_{4}$ in the third category all measure the bank portfolios' exposure to market-related risk after the states enact a national (non)reciprocity. For the fourth category of states, the portfolios of survived banks become risky, as in the case for the other categories. However, the coefficient estimates for the portfolios of active banks in the fourth category do not decrease as they do for the portfolios of active banks in the first and third categories after states enact national (non)reciprocity.

6.1.5 A summary of results and the possible moving forces behind enacting a particular type of interstate banking law

A comparison of shareholders' reaction to interstate banking laws' changes reveals the significant difference between investors' attitude towards laws with national and regional provisions. The bank portfolios gain positive and significant abnormal returns in states that consider the enactment of national (non)reciprocity and negative abnormal returns in states that restrict themselves to a certain number of states that can carry out mergers and acquisitions on a reciprocal or nonreciprocal basis. The investors are more attracted by national provisions since they prefer to see more bidders available to acquire failing banks in their home states, as well as more targets that can be acquired by banks in their home states. The positive abnormal returns around the passage and effective dates reported by Black et al. (1990), Cornett and De (1991), and Goldberg et al. (1992) in frames of this study may be attributed, therefore, to the passage and effective dates of laws, allowing for national reciprocity.

The coefficient estimates for DB_IND_{ni} , measuring the portfolios' exposure to market-related risk, increase for the survived banks in all four categories as the interstate banking becomes more liberalized. The same happens for the portfolios of active banks but only in states of the second and fourth categories.

The reasons why the states in each category allow for a particular type of reciprocity can be partly explained by analyzing Table 7. This table presents the average Gross State Product (GSP) and the GSP percentage changes, average population and land area, and the number of bank mergers and failures for each category during the study period of 1982-1993. The numbers indicate that the average growth rate of GSP is the lowest and the number of bank failures is the highest for the first category of states. As well, the number of mergers in states of the first category is the second largest among all categories. The figures may explain why these states permit the most liberal form of interstate banking trying to attract as many acquirers

Table 7: Descriptive statistics for states included in each category.

Categories ¹	-	=	=	IV	>		I	_	M
Number of states	=	01	12	12	Э	MS	Z	Z	ME
GSP \$bin (Gross State Product) 1982	71.43	49.32	56.75	85.78	56.03	24.86	63.55	56.44	12.08
GSP \$bin (Gross State Product) 1993	129.83	106.14	124.09	171.00	126.44	47.38	131.49	115.42	25.36
Average GSP change (1982-93)	4.68%	6.59%	7.51%	6.67%	7.74%	6.06%	6.87%	6.77%	7.05%
Population 1982 (mln)	4.45	4.13	4.25	5.99	4.28	2.56	5.47	4.13	1.14
Population 1993 (mln)	4.95	4.74	4.63	69.9	4.94	2.64	5.70	4.52	1.24
Average Population Growth (1982-93)	0.86%	0.84%	0.93%	0.85%	1.31%	0.28%	0.38%	0.82%	0.78%
Land Area (thousand sq. km.)	356.92	168.69	102.77	147.53	25.32	121.51	92.90	206.21	79.94
Average Population Density (1982-93) (Population per sq. km.)	24.70 12.54¹	31.62	134.64	372.73 53.21 ²	182.07	21.29	59.46	20.81	14.93
Number of banking institutions (1982)	293.45	430.90	205.58	247.42	16	191	501	759	35
Number of banking institutions (1993)	203.18	338.60	150.08	205.08	94	118	37	573	20
Average percentage change in number of banking institutions (1982-93)	-2.15%	-1.88%	-3.25%	-0.73%	0.36%	.3.08%	-8.94%	-2.50%	-4.61%
Unassisted Mergers (1982-93)	1028	1465	942	086	33	53	891	183	21
Failures (mergers) (1982-93)	594	991	125	861	0	ю	œ	27	_
Failures (paid off) (1982-93)	158	45	28	3	61	0	6	6	0

Unassisted Mergers - voluntary mergers, consolidations or absorptions of two or more institutions.
Failures (mergers) - mergers, consolidations or absorptions entered into as a result of supervisory actions.
Failures (paid off) - represents institutions that are declared insolvent, the insured deposits of which are paid by the FIMC.
For the categories I-IV the average figures for the respective number of states in each category are provided.

²The estimates excluding DC
³The estimates excluding New York
⁴The estimates excluding Texas
⁴The estimates excluding Hinois
⁵The estimates excluding Illinois
⁵Sources: Bureau of Economic Analysis, U.S. Census Bureau, and Federal Deposit Insurance Corporation

as possible and to help the failing banking sectors to survive.

According to Table 7, the third category represents the states which perform the best. It seems that these states make their profits from gradual changes in legislation, switching from the limited regional type of reciprocity to nationwide interstate banking. The average GSP growth is the highest at the level of 7.51% and the number of bank failures is the lowest. These states have the largest population density with the average population growth at the highest level of 0.93%.

The states in the second and fourth categories are similar in terms of GSP and population growth with almost the same level of banks failures for the period of 1982-1993. However the number of unassisted mergers is the largest in states of the second category, which may, to some extent, explain the reason why these states have not liberalized their legislation any further and have remained dedicated to the regional terms.

6.1.6 The empirical results for the categories 5, 6 and 7

The market's reaction to changes in interstate banking legislation in Maryland, Mississippi, Indiana, Minnesota and Maine included in the categories 5, 6, and 7 are not studied thoroughly due to the uniqueness of the process by which these states make changes in their legislation. Maryland and Mississippi are added to the fifth category. Both states pass a regional reciprocity law. These laws specify when the first group of states is allowed to cross these two states' borders and when the second group is allowed to do the same.

Indiana and Minnesota, included in the sixth category, initially permit the banks in neighboring states to acquire the in-state banks on a reciprocal basis. The

passage of a law, expanding the regions, is the second step. The final action is the enactment of a bill, permitting full nationwide reciprocal interstate banking.

Maine, the seventh category, is the only state that switches from national reciprocity to national nonreciprocity.

The detailed empirical results for these three categories are reported in Tables A43-A47 in Appendix A.

Equation (5) is estimated for the portfolios of Maryland and Mississippi and empirical results are reported in Tables A43 and A44, respectively. The survived banks in each state react positively and significantly around the effective dates. The portfolios depreciate in value between the first effective date, when the initial group of states is allowed to cross the borders, and the second effective date, when the rest of the specified earlier states obtain the similar privileges.

The banks in Maryland have positive and significant ARs at the 1% level around the date when the Senate approves the bill. The active banks in Mississippi also exhibit an increase as a result of bill's approval by the House Committee.

Indiana and Minnesota banks are comprised an additional category and are studied separately. The estimates of equation (6) are reported in Tables A45 and A46. Minnesota's both portfolios do not benefit from the passage of the first law, allowing for regional reciprocity. The ARs are significant and negative at the 1% level. Minnesota survived banks are less exposed to market-related risk than the active banks. Indiana portfolio returns show the reverse picture with the risk being higher for the survived banks. The results for Indiana are more accurate since the number of banks in the portfolio of active banks is significantly higher than that in the Minnesota portfolios.

For Maine only one bank with the returns for the whole period is available. The estimates of equation (7) using the GARCH technique are reported in Table A47. The model's R^2 is less than 3%; therefore, it is hard to draw a consistent conclusion.

6.2 The effect of out-of-state changes on valuation of portfolios of in-state banks

Six states are chosen for additional detailed analyses in order to see if the interstate banking deregulation in other states has any significant effect on bank returns in the state under the consideration. The empirical results for New York and Florida, representing the first and second categories, respectively, are presented in Tables 8A-B; for Illinois and New Jersey, the states of the third category, in Tables 9A-B; and for California and Pennsylvania, representing the fourth category of states, in Tables 10A-B. The tables are created using the same approach as for the Tables A2-A47 in Appendix A.

6.2.1 The effect of out-of-state changes on valuation of portfolios of in-state banks in Florida and New York

The estimates of equation (8) for the banks in Florida (FL) and New York (NY) are reported in Tables 8A-B, respectively. Both states make only one choice and adhere to it until 1995.

The investors in Florida are not inspired by changes in the local banking legislation. The portfolio of survived banks has negative and significant ARs around the date when the bill passes the House and negative, but not significant ARs around the dates when the bill passes the Senate and is signed by the governor. Such market's

reaction may be attributed to the fact that the market prefers national provisions to regional provisions.

The coefficient estimates for $D7_1$ - $D7_5$, measuring the effect of changes in interstate banking legislation in other states that should have an effect on banks in Florida, are positive but insignificant.

The coefficient estimates for $D6_1$ - $D6_5$ and $D6N_1$ - $D6N_5$ do not show any particular patterns. Both portfolios returns are insignificant. The coefficient estimates for $D8_2$ and $D8_1$ / $D8_2$ are negative and positive, respectively, and both are significant, reflecting the decreased profitability and increased riskiness of Florida's portfolios as a consequence of enacting a law, allowing for regional reciprocity.

Florida is also among the states, where the number of banks drops significantly from 476 in 1982 to 333 in 1995 (see Appendix A, Table A50). It is hard to say if it is attributed to the changes in banking laws or other events, since the number of banks fell dramatically in 1992, however, Florida enacts its law in 1985.

New York announces national reciprocity in June 1982. It fails to enact such a law during the seven consecutive years when, in May 1979, the Bankers and Trade Association finally supports the bill. Since it takes such a long time to shape the interstate bill, the market displays no reaction around the in-state announcements dates. To study the pre-announcement period more carefully, the stock returns for the New York banks are collected starting from May 01, 1975. This way, it is possible to include the announcement by the Bankers and Trade Association in support of the interstate banking bill (see Appendix A, Table A1).

None of the states, passing the regional reciprocity, includes New York in its region. This can be explained by the presence of a large number of money center banks in this state (Black et. al [1990], Harding et. al [1988]). According to *American*

Table 8A: Examination of the effects of in-state and out-of-state changes in interstate banking legislation on Florida bank portfolios (Equation 8):

		nt variable: survived banks		nt variable: f active banks
			HETERO	option with
	GARCH	(1,1) Results	number of B	anks as variable
			(Equ	ation 14)
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00064	1.33	0.00047	2.03
Index	0.77770	12.57	0.57610	20.97
FedFund	0.00030	0.53	0.00036	0.79
\overline{DB}_1	0.00054	0.73	0.00067	1.34
DB_2	-0.00059	-1.11	-0.00074	-1.89
DB_IND ₁	-0.01770	-0.14	0.01400	0.15
DB_IND ₂	0.25560	3.81	0.32090	6.92
$\overline{\mathbf{D_t}}$	0.00066	0.35	0.00188	1.70
$\overline{\mathbf{D_2}}$	-0.01120	-4.49	0.00116	0.45
\mathbf{D}_3	-0.00756	-1.60	-0.00441	-1.53
$\mathbf{D_4}$	-0.00291	-0.67	-0.00216	-0.51
D ₅	0.00025	0.06	0.00004	0.01
D6 ₁	-0.00152	-0.97	-0.00095	-0.63
D6 ₂	0.00058	0.37	0.00024	0.08
D6 ₃	-0.00007	-0.07	-0.0006	-0.49
D6 ₄	-0.00119	-1.13	-0.00084	-1.39
D65	0.00015	0.21	-0.00025	-0.27
D6N ₁	0.00027	0.29	0.00008	0.13
D6N ₂	0.00056	0.55	0.00091	0.64
D6N ₃	-0.00018	-0.23	0.00074	0.97
D6N ₄	-0.00033	-0.44	0.00004	0.04
D6N ₅	-0.00113	-1.55	-0.00074	-0.76
D7 ₁	0.00088	0.57	0.00001	0.00
D7 ₂	0.00171	0.90	-0.00029	-0.08
D7 ₃	0.00200	1.48	0.00035	0.16
D7,	0.00183	1.57	0.00223	1.59
D75	0.00065	0.62	0.00088	0.60
D8 ₁	-0.00062	-0.26	-0.00069	-0.30
D8 ₂	0.00154	0.48	-0.00080	-0.49
D8 ₃	-0.00173	-0.65	-0.00053	-0.43
D8 ₄	-0.00173	-1.02	-0.00093	-0.51
D8 ₅	-0.00286	-1.02	-0.00199	-0.81
HET0	-0.00200	-1.02	0.02700	116.75
HET1			-0.82620	-665.81
ARCH0	0.00000	6.20	-0.02020	-003.01
ARCH1	0.06530	12.21		
GARCH1	0.90910	116.39		
HET1	0.70710	110.57		
System				
R ²	0.2917		0.2084	
AIC	-17048.46		-17412.54	
White*	15.46	p=0.0038	129.3	p=<0.0001
	5.72	p=0.0038 p=0.0573		
Breusch Pagan* Observations	3.72 2676	p=0.03/3	103.7	p=<0.0001
			2676	
Banks	5		11.01	

Table 8B: Examination of the effects of in-state and out-of-state changes in interstate banking legislation on New York bank portfolios (Equation 8):

		t variable: urvived banks		nt variable: active banks
	GARCH (1,1) Results		l) Results with RO option
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00040	1.52	0.00046	2.18
Index	0.57430	18.30	0.50210	26.80
FedFund	-0.00005	-0.21	0.00014	0.63
DB ₂	-0.00030	-0.98	-0.00021	-0.80
DB_IND_2	0.07060	1.96	0.15110	5.73
$\mathbf{D}_{\mathbf{i}}$	-0.00160	-0.74	-0.00036	-0.22
D_2	0.00175	0.50	0.00073	0.22
$\mathbf{D_4}$	-0.00174	-0.66	-0.00238	-0.83
D6 _t	0.00018	0.23	0.00006	0.08
D 6 ₂	-0.00038	-0.45	0.00000	0.00
D6 ₃	0.00007	0.13	-0.00011	-0.18
D6,	0.00058	1.16	0.00029	0.51
D6 ₅	0.00012	0.23	0.00095	1.94
D7 ₁	0.00031	0.54	0.00060	1.00
D7 ₂	0.00050	0.73	0.00036	0.42
D7 ₃	0.00147	2.52	0.00096	1.47
D7,	-0.00052	-0.88	-0.00044	-0.89
D7 ₅	0.00000	10.0	-0.00025	-0.48
D8 ₁	-0.00001	0.00	-0.00013	-0.04
D8 ₂	0.00306	1.87	0.00129	0.62
D83	-0.00245	-0.66	-0.00108	-0.27
ARCHO	0.00004	14.64	0.00002	6.43
ARCH1	0.17210	8.16	0.15250	10.39
GARCH1	0.00280	0.05	0.00925	0.24
HET1			0.00000	7.18
System				
R²	0.3114		0.2904	
AIC	-23694.85		-23910.38	
White*	468.60	p<0.0001	35.55	p<0.0001
Breusch Pagan*	286.60	p<0.0001	21.91	p<0.0001
Observations	3352	£	3352	
Banks	5		16.59	

^{*} Both tests were applied before using a simple GARCH (1, 1) model

FedFund - the first difference of the federal funds rate:

 DB_1 – a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for regional (national) reciprocity;

 DB_2 – a dummy variable which takes a value of 1 after the effective date of a law, allowing for regional (national) reciprocity; DB_IND_1 (DB_IND_2) – a dummy variable DB_1 (DB_2) multiplied by CRSP equally weighted index return;

 $D_1 - D_5$ - the dummy variables representing one of five major dates, when the bill, allowing regional (national) reciprocity is introduced by state's the Bankers Association or state bankers; is approved the State House Committee; is approved by the State Senate Committee; is signed into law by a state governor; and when the law becomes effective, respectively.

 $D6_1(D6N_1) - D6_2(D6N_1)$ - the dummy variables representing one of five major dates, as discussed above, when the bill, allowing regional (national) reciprocity is considered by a state, whose actions are not supposed to affect, at least in a short run, the banks in state under the study;

 $D7_1 - D7_5$ - the dummy variables representing one of five major dates as discussed above, when the bill, allowing regional (national) reciprocity is considered by a state, whose actions can directly affect the banks in state under the study; $D8_1 - D8_5$ - the dummy variables representing one of five major dates as discussed above, when the bill, allowing regional

⁽national) reciprocity is considered by another state simultaneously with state under the study. The bill may, or may not have an effect on banks in state under the study.

Banker publications Huge NY-based corporations, such as Citicorp, are always involved in the process of changing the legislation in other states, where these banks have their interests. Hence, the portfolio of survived banks benefits from the passage of the bills, allowing NY banks to enter certain states. These events are represented by $D7_3$ for the Senate Committees and $D8_2$ for the House Committees. The coefficient estimates for $D6_1$ - $D6_5$ and $D7_1$ - $D7_5$, though not significant, are mostly positive, displaying positive response from investors in regards to the legislation changes that may or may not affect the banks located in New York.

The coefficient estimate for *DB_IND*₂, measuring the post-effective marketrelated risk is positive and significant at the 5% and 1% levels for portfolios of survived and active banks, respectively. This result is consistent with previous findings.

6.2.2 The effect of out-of-state changes on valuation of portfolios of in-state banks in New Jersey and Illinois

New Jersey and Illinois are the states belonging to the third category. These states enact regional reciprocity and later start considering opening borders nationwide. The estimates of equation (9) are reported in Tables 9A-B. The results generated using GARCH model are considered for both portfolios.

The only in-state announcement that produces a significant reaction for the portfolios of New Jersey banks is the passage date of a law, allowing for national reciprocity (an event represented by DN_4). The survived banks ARs are positive and the active banks ARs are negative at the 1% level. The investors seem to expect a different effect of the deregulation on two categories of banks.

On the other hand, both portfolios of New Jersey banks tend to react similarly to the other states' announcements that are not expected to produce a significant effect. The ARs are positive and significant around the dates when the other states' House Committees approve the laws, allowing New Jersey banks to enter these states' territories as soon as New Jersey enacts a similar law (event represented by $D6N_2$). As well, the effective date of such laws produces a similar reaction. When the same kind of law is approved by the Senate Committees of the other states (event represented by $D6N_3$), the banks in New Jersey earn negative abnormal returns.

The bank portfolios in Illinois are more responsive to the changes in the state level interstate banking. The Bankers Association heavily supports the regional and national interstate banking bills, which allows them to run smoothly through all main legislative stages. The investors' reaction, however, is different. The abnormal returns are negative around the announcement dates when the Bankers Association considers making the changes to the existing law, especially around the date when national trigger is discussed. This negative response contradicts the previous findings. However, the market finally approves the implementation of a new law. This results in significant and positive ARs around the dates when the House and the Senate consider the law, as well as around the dates, when both laws become effective. What seems interesting is the different reaction of banks in each portfolio around the effective dates.

When Illinois allows for a regional reciprocity, the banks in the portfolio of active banks show a significant reaction. In contrast, when the borders are totally "demolished", the survived banks' stocks appreciate more than that of active banks. It again may be explained by the different types of banks included in each portfolio. The investors wait for the moment when stronger banks, being better protected from

Table 9A: Examination of the effects of in-state and out-of-state changes in interstate banking legislation on New Jersey bank portfolios (Equation 9):

		nt variable: urvived banks		nt variable: l'active banks
	CARCU	1 1) Besults		I) Results with
	GARCH (1,1) Results		RO option
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00125	7.41	0.00127	8.64
Index	0.31560	14.46	0.30880	15.27
FedFund	0.00055	2.70	0.00014	0.71
DB ₁	0.00096	1.41	0.00178	3.20
DB_2	-0.00181	-3.89	-0.00191	-4.57
DB ₃	-0.00138	-1.72	-0.00179	-2.09
DB_4	-0.00158	-5.50	-0.00119	-4.75
$DB_{-}IND_{1}$	0.44720	3.00	0.38790	2.89
DB_IND_2	0.61220	8.70	0.43940	6.60
$DB_{\perp}IND_{3}$	0.47850	18.95	0.33750	13.08
DB_IND ₄	0.62210	11.78	0.40210	9.59
\mathbf{D}_3	-0.00481	-1.57	-0.00153	-0.56
$\mathbf{D_4}$	-0.00110	-0.46	-0.00207	-1.05
D_5	-0.00309	-1.00	-0.00149	-0.78
DN_1	0.00288	1.54	0.00264	1.15
DN_4	0.00797	7.57	-0.00800	-7.92
DN ₅	-0.00239	-0.81	-0.00038	-0.14
$D6_1$	-0.00026	-0.66	-0.00017	-0.47
D6 ₂	-0.00128	-1.81	-0.00079	-1.32
D6 ₃	0	-0.01	0.00002	0.06
D64	-0.00029	-0.78	0.00008	0.23
D65	0.00015	0.32	0.00005	0.12
D6N ₁	0.00053	1.03	0.00028	0.65
$D6N_2$	0.00136	2.32	0.00109	2.05
$D6N_3$	-0.00144	-2.94	-0.00123	-2.78
D6N ₄	0.00001	0.02	-0.00019	-0.51
D6N ₅	0.00200	2.76	0.00194	2.75
D7 ₁	0.00104	0.75	0.00177	1.52
D7 ₂	0.00010	0.08	0.00025	0.29
D7 ₃	0.00076	0.55	0.00009	0.08
D7.	-0.00082	-0.92	-0.00050	-0.63
D7 ₅	-0.00105	-1.33	-0.00106	-1.74
D8 ₁	-0.00285	-1.69	-0.00391	-2.62
D8 ₂	0.00031	0.23	0.00021	0.21
$D8_3$	-0.00115	-0.97	-0.00110	-1.09
D84	0.00106	0.70	0.00003	0.02
D8 ₅	0.00112	0.73	-0.00020	-0.15
HET0				
HET1				
ARCH0	0.00000	2.99	0.00000	0.04
ARCH1	0.05830	10.92	0.08990	14.85
GARCH1	0.94050	183.31	0.90940	140.44
HET1			0.00000	0.45
System	0.000			
R ²	0.3399		0.2746	
AIC	-19276.52		-19942.7	
White*	53.62	1000.0>q	59.38	p<0.0001
Breusch Pagan*	28.36	p<0.0001	43.88	p<0.0001
Observations	2676		2676	
Banks	13		21.76	

Table 9B: Examination of the effects of in-state and out-of-state changes in interstate banking legislation on Illinois bank portfolios (Equation 9):

		nt variable: survived banks		nt variable: l'active banks
	CARCU	(1.1) D		1) Results with
	GARCH	(1,1) Results		RO option
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00064	2.16	0.00048	2.30
Index	0.71930	18.98	0.59550	19.66
FedFund	0.00048	1.59	0.00046	1.97
DB ₁	0.00087	1.49	0.00076	1.77
DB_2	-0.00121	-1.48	-0.00082	-1.64
DB_3	-0.00008	-0.19	-0.00009	-0.29
DB ₄	-0.00144	-2.86	-0.00040	-1.15
DB_IND_1	0.35230	3.20	0.10420	1.26
$DB_{1}ND_{2}$	0.50860	3.31	0.34910	4.08
DB_{IND_3}	0.33070	8.25	0.00729	0.22
DB_IND ₄	0.44140	5.80	0.05110	0.98
$\mathbf{D_t}$	-0.00086	-0.44	-0.00032	-0.18
$\mathbf{D_2}$	-0.00031	-0.13	0.00126	0.91
$\mathbf{D_3}$	0.00489	2.61	0.00388	3.30
$\mathbf{D_4}$	-0.00086	-0.27	0.00022	0.09
D ₅	0.00098	0.53	0.00376	2.98
DN_1	-0.00706	-3.35	-0.00414	-1.84
DN_2	0.00425	2.04	0.00146	0.74
DN_3	-0.00057	-0.26	0.0008	0.61
DN ₄	-0.00243	-0.74	-0.00265	-0.99
DN ₅	0.00532	1.92	0.00199	1.36
D6 ₁	0.00045	0.64	0.00052	0.92
D6 ₂	0.00219	1.96	0.00065	0.82
D6 ₃	0.00070	0.92	0.0005	0.79
D64	-0.00146	-2.05	-0.00123	-2.42
D65	-0.00125	-1.92	-0.00025	-0.47
D6N ₁	-0.00088	-1.15	-0.00039	-0.68
D6N ₂	-0.00078	-0.56	0.00033	0.29
D6N ₃	0.00022	0.28	-0.00046	-0.76
D6N ₄	0.00141	1.74	0.00126	2.50
D6N ₅	0.00032	0.19	0.00134	1.55
D7 ₁	-0.00210	-1.52	-0.00161	-1.86
D7 ₂	0.00032	0.23	0.00132	1.27
D7 ₃ D7 ₄	-0.00225	-2.16	-0.00032	-0.40
-	-0.00177 -0.00011	-1.93	-0.00047	-0.80
D7 ₅ D8 ₁	-0.0011	-0.18	-0.00077	-1.68
D8 ₁ D8 ₂	-0.0007	-0.66 -0.06	-0.00188	-1.48 -0.18
D8 ₂ D8 ₃	0.00087	0.74	-0.00016 0.00002	0.02
D8 ₄	-0.00273	-2.90	-0.00149	-1.73
D8 ₅	0.00142	1.12	0.00051	0.57
ARCH0	0.00000	4.46	0.00001	6.48
ARCH1	0.07600	9.07	0.00001	13.95
GARCH1	0.89630	75.24	0.23110	7.58
HET1	0.07050	73.24	0.00000	2.10
			0.00000	<u> </u>
System	<u> </u>			
R ²	0.4117		0.3586	
AIC	-18392.12		-20003.51	
White*	123.30	p<0.0001	5.37	p=0.0681

Table 9B - continued

	Depende Portfolio of	nt variable: survived banks		nt variable: Cactive banks
	GARCH	(1,1) Results		I) Results with RO option
Breusch Pagan*	95.74	p<0.0001	2.08	p=0.1493
Observations	2676	•	2676	•
Banks	5		12.26	

^{*} Both tests were applied before using a simple GARCH (1, 1) model FedFund - the first difference of the federal funds rate;

DB₁ = a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for regional reciprocity;

 DB_2 – a dummy variable which takes a value of 1 between the effective date of a law, allowing for regional reciprocity and the first announcements of plans to enact national reciprocity;

DB₃ = a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for national reciprocity:

DB₄ – a dummy variable which takes a value of 1 after the effective date of a law, allowing for national reciprocity:

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) = a dummy variable DB₂ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return.

 $D_1(DN_1) = D_2(DN_2)$ - the dummy variables representing one of five major dates, when the bill, allowing regional (national) reciprocity is introduced by state's the Bankers Association or state bankers; is approved the State House Committee; is approved by the State Senate Committee; is signed into law by a state governor, and when the law becomes effective, respectively.

 $D6_1(D6N_1) - D6_2(D6N_1)$ - the dummy variables representing one of five major dates, as discussed above, when the bill, allowing regional (national) reciprocity is considered by a state, whose actions are not supposed to affect, at least in a short run, the banks in state under the study;

D7₁ – D7₅ – the dummy variables representing one of five major dates as discussed above, when the bill, allowing regional (national) reciprocity is considered by a state, whose actions can directly affect the banks in state under the study;

 $D8_1 - D8_2$ - the dummy variables representing one of five major dates as discussed above, when the bill, allowing regional (national) reciprocity is considered by another state simultaneously with state under the study. The bill may, or may not have an effect on banks in state under the study.

failures than smaller banks, can start buying the banks throughout the country.

The events occurring outside Illinois also have their effect on banks stock prices. The portfolio returns are negative when other states pass the laws, allowing for regional reciprocity without including Illinois in its region (event represented by $D6_4$). The same happens when other states pass the laws, allowing banks in Illinois to cross these states' borders (event represented by $D8_4$ and $D7_4$). Conversely, the ARs are positive when other states pass the laws, allowing for national reciprocity, or nonreciprocity (event represented by $D6N_4$).

It seems, therefore, that the banks in Illinois though support the bills, allowing the state to open its borders to out-of-state banks, tend to react negatively to similar actions by other states.

What looks similar for the survived banks in Illinois and active banks in New Jersey is the dramatically increased market-related risk after both states declare a

regional reciprocity. The coefficient estimates for $DB_{-}IND_{4}$, measuring the banks exposure to the market-related risk after the states declare national reciprocity, is also significant at the 1% level. The coefficient estimates for DB_{4} are negative and significant, showing that the portfolios in both states lose in value after the states open their borders nationwide.

6.2.3 The effect of out-of-state changes on valuation of portfolios of in-state banks in California and Pennsylvania

Equation (10) is estimated for the banks in California and Pennsylvania using the same techniques as those employed for examination of all states in each of the seven categories. The results are displayed in Tables 10A-B. The models' R^2 s for the survived banks in California and Pennsylvania are approximately 30% and 43%, respectively. For the portfolio of survived banks, the Akaike information criterion improves as the switch from OLS to GARCH model is made.

The portfolios of both states have significant and positive abnormal returns around the date when the major banking interests set the dates for regional and national reciprocity (the event represented by D_I). This is consistent with the portfolio returns' analysis of different categories. The actions by the Bankers Associations are supported by investors especially when these actions are directed towards opening the state borders nationwide. The portfolio of California's survived banks also gains positive abnormal returns around the dates when the governor signs the bill and when the law becomes effective (coefficient estimates for D_I and D_S). The portfolio of Pennsylvania active banks increase in value as a result of the actions by the Senate. Overall the coefficient estimates for D_I - D_S are mostly positive and in several cases significant for bank portfolios of both states. Again, this shows the market's positive

Table 10A: Examination of the effects of in-state and out-of-state changes in interstate banking legislation on California bank portfolios (Equation 10):

		Portfelio of survived aks		le: Portfolio of active nels
	GARCH (1,1) Results	GARCH (1.1) Result	s with HETERO option
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00001	-0.08	-0.00014	-0.79
Index	0.46570	17.86	0.51080	21.51
FedFund	-0.00012	-0.49	-0.00015	-0.57
DB ₁	-0.00014	-0.29	0.00036	0.79
DB ₂	0.00021	0.74	0.00077	2.76
DB,	-0.00076	-1.96	0.00041	0.90
DB_IND ₁	-0.02260	-0.29	-0.16650	-2.46
DB_IND ₂	0.18950	6.49	0.03700	1.27
DB_IND,	0.35310	5.92	0.11890	1.49
D ₁	0.00628	2.55	0.00469	2.32
D,	0.00167	0.64	0.00223	1.26
$\mathbf{D_4}$	0.00512	2.01	0.00369	1.43
D ₅	0.00607	6.94	0.00069	0.62
DN ₅	-0.00440	-0.56	-0.00327	-0.92
D6 ₁	0.00073	1.56	0.00063	1.49
D6 ₂	-0.00033	-0.51	0.00036	0.52
D6,	-0.00028	-0.67	-0.00034	-0.83
D6,	-0.00005	-0.11	-0.00001	-0.03
D6s	0.00107	2.52	0.00078	1.87
D6N ₁	-0.00117	-1.7	-0.00138	-2.27
D6N ₂	0.00052	0.58	0.00088	1.23
D6N,	0.00023	0.42	-0.00053	-0.91
D6N ₄	0.00016	0.31	0.00027	0.56
D6N ₅	-0.00112	-0.84	-0.00095	-0.76
	-0.00050	-0.59	-0.00119	-1.60
D7,	0.00168	1.81	0.00069	0.86
D7 ₂	0.00108	0.83	0.00045	0.52
D7,	-0.00074	-1.10	-0.00021	-0.29
D7.	-0.00091	-1.55	-0.00021	-0.69
D7,		0.22		-0.19
D8 ₁	0.00082		-0.00058	
D8 ₂	0.00426	3.44	0.00180	1.62
D8,	-0.00172	-1.10	-0.00233	-1.55
D8 ₄	-0.00136	-0.79	-0.00073	-0.39
D8,	0.00269	1.74	0.00278	1.57
ARCHO	0.00000	3.23	0.00000	0.24
ARCHI	0.06060	11.26	0.03800	10.41
GARCHI	0.93830	179.61	0.95280	203.81
HET1	<u> </u>		0.00000	3.99
System				
R ²	0.2973		0.2777	
AIC	-19622.16		-19991.89	
White*	17.34	p=0.0017	47.11	p<0.0001
reusch Pagan*	8.53	p=0.0141	34.72	p<0.0001
Observations	2676	p-0.0141		p =0.0001
			2676	

Table 10B: Examination of the effects of in-state and out-of-state changes in interstate banking legislation on Pennsylvania bank portfolios (Equation 10):

	Dependent variable: Po	rtfolio of survived banks	Dependent variable:	Portfolio of active bea
	GARCH (1,1) Results	GARCH (1,1) Result	s with HETERO option
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00071	2.75	0.00102	6.22
Index	0.60540	16.59	0.49360	21.26
FedFund	0.00034	1.42	0.00021	1.27
DBı	-0.00023	-0.47	-0.00009	-0.27
DB ₂	-0.00096	-2.82	-0.00082	-3.49
DB,	-0.00088	-2.05	-0.00099	-3.80
DB_IND ₁	0.30600	3.95	0.18180	3.59
DB_IND:	0.40820	10.69	-0.01770	-0.73
DB_IND,	0.80270	13.55	0.13470	3.61
D ₁	0.00377	2.49	0.00270	3.42
D,	0.00151	0.69	0.00054	0.42
\mathbf{D}_{ullet}	0.00272	0.95	0 00449	2.30
D,	-0.00142	-0.39	-0.00156	-0.79
DN ₅	0.00271	1.39	-0.00113	-0.97
D6 ₁	0.00035	0.58	0.00015	0.37
D62	0.00135	1.57	0.00011	0.23
D6,	-0.0002	-0.41	-0.00041	-1.42
D64	-0.00127	-2.26	-0.00059	-1.70
D6,	-0.00073	-1.48	-0.00039	-1.22
D6N ₁	-0.00054	-0.53	-0.001	-1.48
D6N ₃	-0.00191	-1.47	-0.0013	-1.21
D6N ₄	-0.00111	-0.94	-0.00037	-0.58
D7,	-0.00014	-0.17	-0.00030	-0.67
D7,	0.00145	2.04	0.00075	1.63
D7,	-0.00165	-1.90	-0.00029	-0.58
D7.	-0.00023	-0.30	-0.00010	-0.21
D7,	-0.00062	-1.13	-0.00044	-1.36
D8;	0.00136	1.06	0.00041	0.44
D8 ₂	0.00304	3.82	0.00117	1.83
D8,	-0.00041	-0.52	0.00020	0.36
D8,	0.00088	1.06	0.00045	0.85
D8 ₅	-0.00164	-1.10	0.00002	0.03
ARCHO	0.00000	5.48	0.00000	2.55
ARCH1	0.10660	12.00	0.12740	12.27
GARCHI	0.86870	78.84	0.83290	67.48
HET1			0.00000	1.13
System				
R ²	0.4332		0.4024	
AIC	-18989.49		-21143.89	
White*	140.40	p<0.0001	7.13	p=0.0283
Breusch Pagan*	86.20	p<0.0001	6.78	p=0.0092
bservations	2676		2676	
Banks	8		25.46	

^{*} Both tests were applied before using a simple GARCH+1. 1) model
FedFund - the first difference of the federal funds rate;
DB₁ - a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for regional reciprocity;
DB₂ - a dummy variable which takes a value of 1 between the effective date of a law, allowing for regional reciprocity and the first announcements of plans to enact

DB₂ = a dummy variable which takes a value of 1 between the effective date of a law, allowing for regional reciprocity and the first announcements of plans to enact national reciprocity.
DB₂ = a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for national reciprocity;
DB₂ DD₃ (DB₂ DD₂, DB₂ DD₃) = a dummy variable DB₃ (DB₂, DB₃) multiplied by CRSP equally weighted index return;
D₃ DN₃) = DN₄ DN₃) = the dummy variables representing one of five major dates, when the bill, allowing regional (national) reciprocity is introduced by state is the Bankers Association or state bankers; is approved the State House Committee; is approved by the State Senate Committee; is signed into law by a state governor; and when the law becomes effective, respectively.
D6₃ DN₃) = D6₄ DN₃(1) = the dummy variables representing one of five major dates, as discussed above, when the bill, allowing regional (national) reciprocity is considered by a state, whose actions are not supposed to affect, at least in a short run, the banks in state under the study.
D7₃ = D6₄ the dummy variables representing one of five major dates as discussed above, when the bill, allowing regional (national) reciprocity is considered by a state, whose actions can directly affect the banks in state under the study.
D8₃ = D8₃ - the dummy variables representing one of five major dates as discussed above, when the bill, allowing regional (national) reciprocity is considered by another state simultaneously with state under the study. The bill may, or may not have an effect on banks in state under the study.

attitude to the laws with national provisions.

The actions of other states produce a different effect on bank portfolios returns in California and Pennsylvania. Such a finding can be partly explained by different situation on the market, in the state economy, and other factors unique for each state. For both portfolios of California banks, the ARs are significant and negative around the dates when the banking industry in other states declares of its intention to modify the banking legislation towards allowing national reciprocity (the event represented by $D6N_I$). The announcements of changes in interstate banking legislation by another state towards enacting a law, allowing for national reciprocity or nonreciprocity, which are not supposed to affect portfolio returns in subject states, in most cases have positive but insignificant effect on California's portfolios and negative but insignificant effect on Pennsylvania's portfolios.

The ARs are positive and significant around the dates, when other states' laws, allowing for regional reciprocity without including California in their regions, become effective (the event represented by $D6_5$). One possible explanation for the unexpected significant ARs is the fact that some of these announcements happen on July 01, 1987 – the effective date of California's law, allowing for regional reciprocity.

What seems similar for the Pennsylvania and California portfolios is that most of the coefficient estimates for $D7_1$ - $D7_5$ are negative. The portfolios of survived banks gain positive and significant ARs only around the date when the bill is in the State House. This negative, though not significant, market's reaction to other states' actions, headed towards allowing banks in Pennsylvania and California to carry out merger and acquisition activity with these states' banks, contradicts Hypothesis 4. However, the coefficients are not significant and it is hard to make a valid conclusion.

The coefficient estimates for DB_IND_1 , DB_IND_2 and DB_IND_3 show that the market-related risk increases significantly for banks in both states after the law, allowing for national reciprocity becomes effective. The coefficient estimates for DB_3 are negative and significant for both states, implying that portfolios lose in value as the state opens its borders.

Overall, the investors in both states react positively to the in-state announcements of changes in the interstate banking legislation. In some cases the bank portfolios increase in value significantly as a result of changes in legislations outside the state. However, in most of the cases the returns are insignificant, which does not allow making a proper conclusion about the effects of outside changes. Opening borders nationwide increases the banks' exposure to the market-related risk in both states.

The results of equation (16) are reported in Tables A51A-F in Appendix A. The number of institutions and branches for each state for the period from 1982 to 1995 are reported in Table A50. The estimates of equation (16) for California and Pennsylvania illustrate the same pattern: the coefficients increase as one moves from the very first announcement to the effective date of a law, allowing for national reciprocity. However, Table A50 shows that for both states there is no significant shift in the actual number of banks. For example, in 1985, prior to the announcement of regional reciprocity, there are 481 institutions in California. In 1991, when the state goes national, the number is 480; by 1995, however, it drops to 383.

6.2.4 A brief summary on measuring the out-of-state effect

It is hard to draw a consistent overall conclusion since investors in each of six states react differently to the announcements of changes in interstate banking coming

from outside the state. Table 11 presents the summary results for all six states with the number of portfolios and the number of coefficients that are significant for each portfolio.

What seems surprising is that the banks gain positive and negative significant abnormal returns around the dates that are not expected to have any effect, i.e. the dates when other states consider the laws with regional provisions without including the subject states in their regions (dummy variables $D6_1$ - $D6_5$).

Also, the ARs are significant around the dates when the states consider the laws, allowing for national reciprocity, but the subject state does not have any

Table 11 Summary results for the market's reaction to the out-of-state changes

		Survive	d banks	Active	banks
Dummy variable	# portfolios	# sig>0*	# sig<0*	# sig>0*	# sig<0*
D6 ₁	6	1			
D6 ₂	6	1	I		
D6 ₃	6				
D64	6		2		2
D65	6	1	l	2	
D6N ₁	5		1		I
$D6N_2$	4	1		1	
$D6N_3$	5		1	ļ	i
D6N ₄	5	1		1	
D6N ₅	4	1		1	
D7 ₁	6				1
D7 ₂	6	2			
D7 ₃	6	I	2		
D7₄	6		1		
D7 ₅	6				2
D8 ₁	6		I	-	1
D8 ₂	6	3		1	
$D8_3$	6				
D8 ₄	5	1			
D8 ₅	5	1			

^{*}The number of cases when the coefficient estimates are positive and significant or negative and significant at the 10% level and better.

 $D6_1(D6N_1) - D6_2(D6N_1)$ - the dummy variables representing one of five major dates, as discussed above, when the bill, allowing for regional (national) reciprocity is considered by a state, whose actions are not supposed to affect, at least in a short run, the banks in state under the study;

 $D7_1 - D7_5$ - the dummy variables representing one of five major dates as discussed above, when the bill, allowing for regional (national) reciprocity is considered by a state, whose actions can directly affect the banks in state under the study;

 $D8_1 - D8_5$ - the dummy variables representing one of five major dates as discussed above, when the bill, allowing for regional (national) reciprocity is considered by another state simultaneously with state under the study. The bill may, or may not have an effect on banks in state under the study.

interstate banking laws enacted (dummy variables $D6N_1$ - $D6N_5$). These results may be explained in two possible ways: first, when state A, for example, enacts a regional reciprocity law and does not include state B in its region, which may be one of six states mentioned above, it allows the banks in states C to merge and acquire the banks in state A. The banks in state C, theoretically, can become stronger. It may very well be that states B and C are the neighboring states. Thus, the news that banks in state C may become future targets or bidders, or can grow faster and become more productive can be negative or positive news for the investors in state B. And the second reason may be attributed to cross-sectional dependence and the clustering of events.

6.3 The changes in the legislation and their effect on the number of banking institutions

The final step is to determine whether the changes in banking legislation cause the changes in the number of publicly traded banking institutions. The equation (16) is estimated separately for each state in each category. The summary results for the first four categories are reported in Table 12 and the detailed results in Tables A51A–F in Appendix A. The results are further compared with the changes in actual number of banks and, separately, number of branches in each state during the same period, using the data provided by the Federal Deposit Insurance Corporation (Table A50). The purpose of the dichotomy is to see if the number of publicly traded companies changes in the same direction as the number of banks of the overall market.

6.3.1 The changes in the number of banking institutions in states of the first category

Table 12: The summary results on the effect of changes in interstate banking legislation on the number of publicly traded banks in states of the first four categories (Equation 16):

$$LOGBANKS_{u} = \alpha_{i} + \sum_{n=1}^{5} \lambda_{in} DB_{ni} + \varepsilon_{u}$$

		Intercept	DB ₁	DB ₂	DB ₃	DB ₄
	Coefficient	α	λ_1	λ_2	λ_3	λ,
Category 1	Mean	0.55	0.06	0.07		
	Median	0.48	10.0	-0.11		
	# sig > 0*	7	4	3		
	# sig < 0*		1	4		
Category 2	Mean	0.76	0.04	0.12		
	Median	0.76	0.03	0.03		
	# sig > 0*	8	6	4		
	# sig < 0*		2	4		
Category 3	Mean	0.81	0.06	0.09	0.16	0.18
	Median	0.89	0.01	0.05	0.19	0.18
	# sig > 0*	9	5	5	5	3
	# sig < 0*			3	2	
Category 4	Mean	0.75	0.09	0.12	0.13	
	Median	0.72	0.06	0.05	0.10	
	# sig > 0*	H	8	9	7	
	# sig < 0*			1	4	

^{*}The number of cases when the coefficient estimates are positive and significant or negative and significant at the 10% level and better.

 DB_1 – a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for national (non)reciprocity for the first category of states. For the second, third and fourth categories, this dummy variable represents a period between the first announcement and the effective date of a law, allowing for regional reciprocity.

 DB_2 – a dummy variable which takes a value of 1 after the effective date of a law, allowing for national (non)reciprocity for the first category of states. For the second category, this variable represents a period after the effective date of a law, allowing for regional reciprocity. For the third category, this dummy variable represents a period between the effective date of a law, allowing for regional reciprocity and the first announcement of changes in interstate banking legislation towards enacting a law with national provisions. For the fourth category, the same variable represents a period between the effective date of a law, allowing for regional reciprocity and the effective date of a law, allowing for national reciprocity.

DB₃ – a dummy variable which takes a value of 1 between the first announcement and the effective date of a law, allowing for national (non)reciprocity for the third category of states. For the fourth category, this variable represents a period after the effective date of a law, allowing for national (non)reciprocity.

DB4 – a dummy variable which takes a value of 1 after the effective date of a law, allowing for national (non)reciprocity for the third category of states.

The results for the first category are reported in Table A51A. It takes on average up to two years to enact a law, allowing for national reciprocity or nonreciprocity. Dummy variable, DB_2 , represents a pos-effective period, which is approximately eight years. The coefficient estimates for DB_1 indicate that the number increases in three states, decreases in one state and remains the same in three states (see Table A51A). After the effective date, the number of publicly traded companies

goes up in two states and down in four states, and does not change in one state. Overall, only three states see an increase and four states see a decline in the number of institutions. This is the only category where the number of publicly traded companies drops in the majority of states after these states open their borders nationwide. Such finding is not surprising. The states that choose national (non)reciprocity as their first and final option try to attract the banks from all over the country to purchase the weak and failing banks. The actual data shows a decline in the number of institutions and an increase in the number of branches.

6.3.2 The changes in the number of banking institutions in states of the second category

The detailed empirical results for the second category are reported in Table A51B. Dummy variable, DB_1 , represents the period between the first introduction of regional bill and the effective date. For this category, this period, on average, equals 2.6 years. Dummy variable, DB_2 , represents the post-effective period, which is approximately six years. The results demonstrate that the number of publicly traded banks increases in five states, decreases in two states, and does not change in one state during the period while the bill is under consideration. After the bill becomes effective, the number of banks increases in three states, drops in four states and remains the same in one state. The actual data (Table A50) suggests that there is a decline in the number of institutions and an increase in the number of branches during both periods for all states, except for Georgia and South Carolina, where the number of institutions increases during the post-effective period.

76

6.3.3 The changes in the number of banking institutions in states of the third category

Table A51C contains the results for the third category of states. The dummy variables $DB_1 - DB_4$ represent the periods of 1.4, 4, 3.1 and 4.5 years, respectively. The period between the effective date of a law, allowing for regional reciprocity and the first introduction of a national interstate banking bill should be interpreted carefully. For states, such as New Jersey and Illinois, it took one year to realize the necessity of implementing the amendments, while for North Carolina it took more than nine years.

F-statistics show that the number of banks in New Hampshire, during the time when the bill has been under discussion, remains the same as before the introduction of a bill. The number of banks in New Jersey also does not change between the effective dates of laws, allowing for regional and national reciprocities (the period covered by DB_2 and DB_3). As well, the coefficient estimates for DB_1 , DB_2 and DB_4 are not significantly different from each other for Rhode Island.

Since the length of the periods covered by DB_I - DB_4 varies significantly for each state in the third category, it is hard to discuss the changes and their patterns for each period. During the whole study period, however, the number of publicly traded banks climbs in six states and decreases in three states. Table 12 shows that the number of banks climbs significantly after the effective date of regional reciprocity.

The actual number of banks presents a different picture. During the first two periods, represented by DB_1 and DB_2 , the number of institutions in the majority of states decreases and the number of branches increases, as it is the case for the previous category. In contrast, after the states start discussing national reciprocity, the number of branches starts falling together with the number of institutions.

6.3.4 The changes in the number of banking institutions in states of the fourth category

Table A51D exhibits the empirical findings for the fourth category. For eleven states, the periods represented by DB_1 , DB_2 , and DB_3 equal approximately 1.7, 2.4, and 4.3 years, respectively. For this category, dummy variable DB_3 represents a period after the effective date of national (non)reciprocity. According to the test results, the null hypothesis that the coefficient estimates for DB_1 and DB_2 are equal cannot be rejected for DC, Kentucky, Nebraska and Vermont. This means that the number of banks in these states does not change between the effective dates of regional and national reciprocities in comparison with the period, represented by DB_1 . In Nebraska, the changes in legislation do not affect the number of publicly traded banking institutions during any of the periods.

According to Table A51D, the number of banks increases in eight states and remains the same in two states during the process of discussion of the banking bills. The number increases in five states, declines in one state, and does not change in five states after the regional reciprocity law becomes effective. The number grows in six states, decreases in four states and remains the same in one state after the law, allowing for national reciprocity, becomes effective.

The actual data (Table A50) reveals a different picture, however. The number of institutions goes up in two states, down in four states, and does not change in four states during the first period, represented by DB_1 . During the second period, represented by DB_2 , the number of institutions increases in five states, decreases in five states, and remains the same in one state. And after the effective date of a national reciprocity, the number slides down in ten states and increases in one state.

Overall, during the 12-year period, the number of publicly traded banks increases in seven states and decreases in four states. According to Table 12, the number of banks in states of this category increases on average, as the legislation becomes more liberalized. It shows that the enactment of both laws has a positive effect on banking infrastructure. The actual number of banks, on the other hand, has fallen in ten states and has increased only in DC. This may imply the natural selection process: the weak banks have disappeared or have been bought by stronger banks.

The results for the fifth and sixth categories are not discussed in this section due to the limited number of states in each category. The estimates of the changing number of banks in Maryland and Mississippi, included in the fifth category, and in Indiana and Minnesota, included in the sixth category, are presented in Tables 51E-F.

The results for the first four categories do not produce any particular pattern. What seems similar for most of the states is a decline in number of banking institutions, and an increase in the number of branches and publicly traded companies. By choosing a particular level of reciprocity, each state chases one goal – the prosperity of in-state banks. By determining the extent of outside expansion, the state can also control for the intensity of competition. The fact that in the majority of states the number of banking institutions declines during the 12-year period and the number of branches grows can be explained by one the following reasons: the first reason is the increased merger and acquisition activity, when stronger banks buy weaker banks and their branches. The second reason can be a consequence of the first one: as some banks become more powerful and productive, they enlarge their customer base by opening new branches. However, the study of the effects of intrastate branching laws is beyond the scope of this paper.

The summary statistics presented in Table 12 show that the states that switch from regional to national (non)reciprocity witness the significant shift in the number of publicly traded banks. The same does not happen with the states enacting only regional reciprocity or national (non)reciprocity. Moreover, the states that choose national (non)reciprocity as their first and final choice experience the decline in the number of publicly traded banks.

7. Conclusion

The comparison of market's reaction to interstate banking laws reveals the significant difference between investors' attitude towards laws with national and regional provisions. The bank portfolios gain positive and significant abnormal returns in states that consider the enactment of national (non)reciprocity and negative abnormal returns in states that restrict themselves to a certain number of states, who can carry out merger and acquisition activity on a reciprocal or nonreciprocal basis. The investors are more attracted by national provisions since they seem to prefer to see more bidders available to acquire the failing banks in their home states, as well as more targets that can be acquired by banks in their home states. The positive abnormal returns around the passage and effective dates reported by Black et al. (1990), Cornett and De (1991), and Goldberg et al. (1992) in frames of this study may be attributed, therefore, to the passage and effective dates of laws, allowing for national (non)reciprocity.

The survived banks in all four categories become more risky as the interstate banking becomes more liberalized. The active banks, on the other hand, become risky only in states that pass a law, allowing for regional reciprocity (the second category) and regional reciprocity simultaneously with national (the fourth category). The risk,

however, does not increase substantially for active banks in states that enact a law, allowing for national reciprocity (the first and third categories).

It is hard to draw a consistent conclusion about the effect of changes in interstate banking legislation occurring outside the state on in-state bank returns. The portfolio returns in each of six states, which are studied separately in this paper, react differently around the announcement dates by other states. In order to study the out-of-state effect more thoroughly, one needs to perform the tests, discussed in this paper, for a larger number of states. It may be a good idea for a future research. However, there are certain obstacles. First of all, it is hard to compose the portfolios of banks for each state. For some states, there is insufficient stock price data. The second obstacle is the clustering effect. In many instances, the announcement dates are very close to each other and it is hard to attribute the market's reaction to the particular event. And the third barrier is the enactment of other laws, affecting intrastate branching, for example. However, the analysis of the effect of these types of laws is beyond the scope of the current study.

In some states, the same types of announcements produce a different impact on the portfolios of survived and active banks. This can be explained by the nature of banks included in the portfolios of survived and active banks, as well as by the dissimilar number of banks included in each portfolio. The banks in the portfolios of survived banks represent the institutions that survived during the whole process of changes in interstate banking legislation. The portfolios of active banks, in addition to the survived banks, may contain failed banks, new banks, or banks making Initial Public Offerings, which all have different levels of defense against the changing intensity of competition.

The changes in the interstate banking legislation also influence the number of banking institutions in each state. The actual number of banking institutions decreases for the majority of states and the number of branches increases after the law, allowing any form of reciprocity becomes effective. However, there is no any particular pattern of changes for each category of states. The number of publicly traded banks, on the other hand, grows as the states open their borders.

References:

The American Banker publications (January 1978 – January 1995)

Amel, D.F., 1993, "State Laws Affecting the Geographic Expansion of Commercial Banks," Board of Governors of the Federal Reserve System, Washington, D.C.

Black H.A., Fields M.A., and Schweitzer R. L., 1990, "Changes in Interstate Banking Laws: The Impact on Shareholder Wealth," *The Journal of Finance*, 45, 1663-1671.

Board of Governors of the Federal Reserve System, Various Dates, Selected Interest Rates, Statistical Release H.15.

Bollerslev, T., 1986, "Generalized autoregressive conditional heteroscedasticity," *Journal of Econometrics*, 31, 307-327.

Breusch, T. and Pagan, A., 1979, "A Simple Test for Heteroscedasticity and Random Coefficient Variation," *Econometrica*, 47, 1287-1294.

Connolly, R. A., 1989, "An Examination of the Robustness of the Weekend Effect," *Journal of Financial and Quantitative Analysis*, 24, 133-169.

Cyree K. D. and DeGennaro R. P., 2001, "A Generalized Method for Detecting Abnormal Returns and Changes in Systematic Risk," working paper, Federal Reserve Bank of Atlanta.

Gaspar J. G., 2002, "Re-Examining the IPO Unlock Day Anomaly: Do Market Conditions and Increased Availability of Information Matter?," working paper, Concordia University.

Goldberg, L. G., Hanweck, G. A., and Sugrue, T. F., 1992, "Differential Impact on Bank Valuation of Interstate Banking Law Changes," *Journal of Banking and Finance*, 16, 1143-1158.

Guenther D.A. and Rosman A.J., 1994, "Differences between COMPUSTAT and CRSP SIC Codes and Related Effects on Research," *Journal of Accounting and Economics*, 18, 115-128.

Harding, B. W., 1988, "The Five-Year Outlook for Interstate Banking," *The Bankers Magazine*, 171, 25-30.

Jayaratne J., Strahan P.E., 1997, "The benefits of branching deregulation," *Economic Policy Review - Federal Reserve Bank of New York*, New York, 3, 13-29.

Kane, E. J., 1996, "De jure interstate banking: Why only now?," *Journal of Money, Credit, and Banking*, 28, 141-161.

Kahle, K. M., Walkling R. A., 1996, "The impact of industry classifications on financial research," *Journal of Financial and Quantitative Analysis*, 31, 309-335.

Karafiath, I., 1988, "Using Dummy Variables in The Event Methodology," *The Financial Review*, 23, 351-358.

King, B. F., Tschinkel, S. L., and Whitehead, D. D., 1989, "Interstate Banking Developments in the 1980s," *Economic Review - Federal Reserve Bank of Atlanta*, 74, 32-51.

Kryzanowski, L. and Ursel, N. D., 1993, "Market Reaction to the Formation of Export Trading Companies by American Banks," *Journal of International Business Studies*, 24, 373-381

Laderman, E. S. and Pozdena, R. J., 1991, "Interstate Banking and Competition: Evidence from the Behavior of Stock Returns," *Economic Review - Federal Reserve Bank of San Francisco*, 32-47.

MacKinlay A. C., 1997, "Event Studies in Economics and Finance," *Journal of Economic Literature*, 35, 13-39.

Pindyck R. S. and Rubinfeld D. L., 1997, "Econometric Models and Economic Forecasts," 4-th Edition, Irwin McGraw-Hill.

Salinger, M., 1992, "Standard Errors in Event Studies", Journal of Financial and Quantitative Analysis, 27, 39-53.

Schwert, G. W. and Seguin P. J., 1990, "Heteroskedasticity in Stock Returns," *The Journal of Finance*, 45, 1129-1155.

Thompson R., 1985, "Conditioning the Return-Generating Process on Firm-Specific Events: A Discussion of Event Study Methods," *The Journal of Financial and Quantitative Analysis*, 20, 151-168.

Tirtiroglu D., Daniels K., and Tirtiroglu E, 2000, "Intensity of the Out-of-State Competition and the Productivity Growth of US Commercial Banks," working paper.

White, H., 1980, "A Heteroscedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroscedasticity," *Econometrica*, 48, 817-838.

Bureau of Economic Analysis, Regional Accounts Data, Gross State Product Data, http://www.bea.doc.gov/bea/regional/gsp/>.

U.S. Census Bureau, Total Population Estimates, Historical Annual Time Series of State Population Estimates and Demographic Components of Change 1900 to 1990 Total Population Estimates, http://eire.census.gov/popest/archives/state/st_stts.php.

Federal Reserve Bank of Chicago, Commercial Bank and Bank Holding Company Database, http://www.chicagofed.org/economicresearchanddata/data/bhcdatabase/index.cfm#Bank.

Federal Deposit Insurance Corporation, Commercial Bank Reports, Institution and Structure (Balances at year-end), http://www2.fdic.gov/hsob/SelectRpt.asp?EntryTyp=10.

The brief description of the content of tables with empirical results.

Appendix A

Tables ##	Tables' contents
Al	The major announcements of changes in interstate banking legislation in each state
A2-A11	The empirical results for the bank portfolios of states included in the first category
A12-A20	The empirical results for the bank portfolios of states included in the second category
A21-A31	The empirical results for the bank portfolios of states included in the third category
A32-A42	The empirical results for the bank portfolios of states included in the fourth category
A43, A44	The empirical results for the bank portfolios of states included in the fifth category
A45, A46	The empirical results for the bank portfolios of states included in the sixth category
A47	The empirical results for the bank portfolios of states included in the seventh category
A48	The results of the Breusch-Pagan and White tests for the presence of heteroscedasticity in the portfolios of active banks.
A49	Descriptive statistics for the states included in each category
A50	Number of institutions, branches, and total offices in each state for the period 1982-1995
A51A-F	The effect of changes in interstate banking legislation on the number of banks in the states of 1-6 categories

Table A1: The major announcements of changes in interstate banking legislation in each state:

860221 870701 RR T 860220 RR T 820701 820701 NN 820203 R R 820210 R R 850215 R R 840404 R R 880715 890101 R 860929 870701 R 860826 T T 8609304 A R 860304 A A	*	State	Passage	Effective	Type	Commente
AL N/A 880920 RR AK 820701 820701 NN 820203 810111 820510 NN 850215 850418 861001 NN 840404 AR 880715 890101 RR CA 860929 870701 RR 860304	-	AL	860221	870701	RR	AR, DC, FL, GA, KY, LA, MD, MS, NC, SC, TN, VA, WV
AK 820701 820701 NN 820203 8202701 NN 820210 820510 NN 850215 861001 NN 840404 840404 CA 860929 870701 RR 860826 860826 860304			860220			The House of Representatives passed a regional interstate hanking law
AK 820701 820701 NN 820203	-	AL	N/A	880920	RR	The region is expanded to include TX
AZ 850418 861001 NN 850215 890101 RR 880713 860826 860826 860304	7	AK	820701	820701	Z	
AZ 850418 861001 NN 850215 890101 RR 880713 860826 CA 860826 870701 RR 860304			820203			The Alaska Bankers Association has unanimously agreed to the concept of interstate banking.
AZ 850418 861001 NN 850215 840404 RR 880713 860929 870701 RR 860304 860304			810111			Two Democrats and two Libertarians in the 42-member House crossed the floor and joined the
AZ 850418 861001 NN 850215 840404 RR 880715 890101 RR CA 860929 870701 RR 860304 860304						Republicans to form a 22-vote GOP majority to support interstate banking. Rainier Bancorp, the Seattle-based bank holding company, to take over Security National Bank of Anchorage.
AZ 850418 861001 NN 850215 840404 RR 880713 890101 RR CA 860929 870701 RR 860304 860304			820510			The Senate approved a bill permitting out-of-state bank holding companies to purchase. Alaska banks
AR 880715 890101 RR 880713 870701 RR 860929 870701 RR 860826 860304	3	ZV	850418	861001	Z	Company Campany Company
AR 880715 890101 RR 880713 CA 860929 870701 RR 860826 860826 860804	_		850215			The state Senate's commerce and labor committee unanimously approved the bill, which would allow out-of-state banks to merge with, or acquire. Arizona banks
AR 880715 890101 RR 880713 CA 860929 870701 RR 860826 CA 860826 CA 860304			840404			The Arizona Bankers Association has issued a position statement allowing a gradual phased-in program
CA 860929 870701 RR 860826 860304	4	AR	880715	890101	22	estrated increased by acquisition only.
CA 860929 870701 RR 860826 860304	•					AL, DC, FL, GA, KS, LA, MD, MS, MO, NE, NC, OK, SC, TN, TX. VA. WV
CA 860929 870701 RR 860826 860304			880713			The Arkansas legislature passed the bill
	S	CA	860929	870701	X X	AK, AZ, CO, HI, ID, NV, NM, OR, TX, UT, WA California Gov. George Deukmejian signed legislation permitting interstate banking on a regional reciprocal basis as of July 1, 1987, and interstate banking on a national reciprocal basis as of January 1, 1991.
			860826			The state Senate Banking and Commerce Committee voted to approve a bill
			860304			A compromise has been reached by major banking interests in California and New York to set January 1990 as the date for full interstate banking to begin.

Table A1 continued

*	State	Passage	Effective	Type	Comments
S	CA	860929	910101	N.	
9	00	N/N	880701	RR	AZ, KS, NE, NM, OK, UT, WY
		871118			Large Denver banks and smaller independents reached a tentative agreement that could bring interstate banking to Colorado as soon as July 1988.
		870318			The Colorado House Regional cleared interstate banking bill
		860926			Colorado Bankers Association vote on proposal to support interstate banking bill
9	00	Y/N	910101	Z	
7	CT	830608	830408	RR	ME, MA, NH, RI, VT
		830518			The state Senate approved regional interstate banking bill allowing the state's banks to merge with other New England banks in states with similar laws.
		830323			A bill is narrowly approved by a legislative committee last week
7	IJ	900319	900319	X Z	
		900314			Connecticut's Senate approved a bill allowing banks from states with reciprocal laws to buy or merge with Connecticut banks
∞	DE	870514	880101	R R	MD, NJ, OH, PA. The Region will be expanded to include DC and VA, if they pass reciprocal laws including Delaware January, 1, 88 Delaware's governor signed legislation permitting interstate banking on a regional reciprocal basis as of January 1, 1988, and interstate banking on a national reciprocal basis as of June 30, 1990.

88

Table A1 continued

*	State	Passage	Effective	Type	Comments
∞	DE	870514	900630	ž	
6	DC	821008	851123	XX	AL, FL, GA, LA, MD, MS, NC, SC, TN, VA, WV
		850911			An interstate banking bill swept through the district's City Council on a 10-to-0 vote
		850605			A District of Columbia City Council committee has approved a regional interstate banking measure
		850124			The District's Council is considering a bill to permit interstate banking among southeastern banks.
2	DC	821008	860411	Z	
9	FL	840522	850701	X	AL, AR, DC, GA, LA, MD, MS, NC, SC, TN, VA, WV
		840516			The legislature approved interstate banking bill
		840515			The Senate passed regional interstate banking bill
		840418			A regional interstate banking bill has won near-unanimous approval in the Florida House.
		840411			The Senate Commerce Committee supported the bill
		840409			The House Commerce Committee had adopted the bill
		840404			A regional interstate banking bill passed its first test in the Florida legislature

80

Table A1 continued

1	L	6			
•	State	rassage	Ellective	lype	Comments
		840207			The Florida Advisory Committee on Interstate Banking passed the bill
		840116			Florida bankers got their first look at a reciprocal regional interstate banking
		830907			The Florida Bankers Association announced that it would work with Governor Bob Graham and the
					legislature to explore the possibility of drafting a regional interstate banking bill.
11	СA	840405	850701	RR	AL, FL, KY, LA, MS, NC, SC, TN, VA
		840213			The Georgia Senate passed a bill that would allow Georgia banks to merge with banks in any of nine
		840202			The House passed the bill
		840118			The bill is introduced in the legislature,
11	CA		870313	RR	The Region is expanded to include DC and MD
12	H	N/A	N/A	V/N	
13	9	850312	850701	RR	MT, NV, OR, UT, WA, WY
13	a	N/A	870403	Z	National Nonreciprocal for acquisition of troubled banks
13	Q	N/A	880101	Z	
14	IL	851125	860701	RR	IN, IA, KY, MI, MO, WI
		851113			The Illinois Senate approved a regional interstate banking bill
		851030			The Illinois House of Representatives approved a regional interstate
		850523			The Illinois Senate passed a bill that would permit interstate banking on a reciprocal basis within a seven-state region in the Midwest.
		850501			A bill that would allow regional interstate banking in Illinois passed its second hurdle last week, winning state Senate finance committee approval
		850327			The bill supported by the Illinois Bankers Association is introduced into the state Senate
		850225			The Illinois Bankers Association and Citicorp said they will soon submit separate proposals for interstate banking
					merstar canking.

8

Table A1 continued

*	State	Passage	Effective	Type	Comments
14	11.	ـــــ	901201	Z	
		870622			The Senate has passed a bill that would allow nationwide interstate banking in the state, effective Dec. 1, 1990.
		870610			The House Financial Institutions Committee approved the bill
		870521			The bill cleared the Senate
		870429			A bill cleared a state Senate banking committee
		870421			The Illinois House of Representatives voted out of committee a nationwide interstate bill with an earlier trigger date of Jan. 1, 1988.
		870408			The Illinois Bankers Association's legislative and regulatory policy committee has voted 7-0 to support legislation that would allow nationwide interstate banking in the state starting in 1990.
15	Z	850418	860101	RR	II, KY, MI, OH
					Governor Robert D. Orr has signed a bill that permits regional interstate banking, but which also permits banks to opt out of either game for two years
		850412			The Indiana state legislature approved a bill
		850304			A bill has passed the state Senate
		850127			Indiana Senate to debate bill
		840912			Indiana Bankers Association supports the bill
15	NI	N/A	870601	XX	The region is expanded to include: IA, MO, PA, TN, VA, WV, WI
					Legislators expanded Indiana's banking region by adding seven states on June 01, and a nationwide reciprocal banking trigger on July 1, 1992
		870416			The Indiana House of Representatives passed the banking bill
		870312			General Assembly passed the bill that would expand Indiana's interstate banking region
15	Z		900701	RR	The region is expanded to include MN
15	Z		920701	Z Z	

Table A1 continued

4	Ctata	Decree	T. OF Al.	3	S
•	Samo		Edicenve	1 y Jac	Converts
91	¥	900212	910101	x	IL, MN, MO, NE, SD, WI
					Iowa Governor Terry Branstad signed a bill opening the state to interstate banking with neighboring
					states
		900205			The lowa Legislature voted to open the state's borders to banks from contiguous states on Jan. 1, 1991.
17	KS	910318	920701	RR	AR, CO, IA, MO, NE, OK
		891129			The Kansas Bankers Association voted for the first time to back an interstate banking bill
81	KY	840407	840715	RR	IL, IN, MO, OH, TN, VA, WV
		840312			The Kentucky Senate approved legislation
		840103			The Kentucky legislature permits interstate banking on a national basis
18	ΚY	840407	860715	ZZ	
61	ΓV	860702	870701	XX	AL, AR, DC, FL, GA, KY, MD, MS, NC, OK, SC, TN, TX. VA. WV
					Louisiana Governor Edwin Edwards signed into law two bills that provide for reciprocal interstate
					banking in the state, beginning with a regional pact on July 1, 1987, and full interstate banking on Jan. 1, 1989.
		860624			The Louisiana Legislature gave its final approval to interstate banking
		805098			Louisiana Bankers association supports interstate proposal
19	ΓV	860702	890101	Z.	
20	ME	780101	780101	Z.	
20	ME	840207	840207	Z	Governor Joseph E. Brennan signed legislation eliminating the reciprocity requirement in the state's interstate banking law
21	MD	850621	850701	RR	
					DE, DC, VA, WV
		850409			Maryland's legislature approved the bill
		850401			The Senate committee approved a regional interstate banking bill
		840801			A federal appeals court decided to allow states to pass regional interstate banking

Table A1 continued

4	State	Degram	T. Office deline	E.	Characteria
•		29000	FILECUAE		Compress
		840725			The bankers association proposed a reciprocal interstate banking bill that would have Maryland join a 16-state regional compact including Pennsylvania Delaware Kennicky and contact in the Compact
21	MD	850621	870701	RR	The region is expanded to include AL, AR, FL, GA, KY, LA, MS, NC, PA, SC, TN
22	VW	821230	830701	RR	
					CT, ME, NH, RI, VT
22	MA	N/A	600006	Z	
		881116			The Massachusetts House of Representatives passed a nationwide banking bill
		880627			A bill that would open Massachusetts to nationwide banking cleared the state's House
		809088			The banking committee of the Massachusetts legislature passed a bill
		861114			Massachusetts would open its doors to banks nationwide in 1988 under a bill proposed by the state banking commissioner.
23	M	851205	860101	RR	IL, IN, MN, OH, WI,
				·	Michigan Governor James J. Blanchard signed an interstate banking bill, permitting regional interstate mergers and acquisitions on a reciprocal basis beginning Jan. 1, 1986. The rule also will allow nationwide interstate banking on a reciprocal basis starting Oct. 10, 1988.
23	MI	851205	881010	N.	
24	MN	860318	860701	RR	IA, ND, SD, WI
		860317			The Minnesota Senate has passed a regional interstate banking bill
					Senator Eric Petty, D-Minneapolis, removed Nevada, Idaho, Oregon, Washington, Utah, Wyoming,
					Colorado, Kansas, Michigan, Missouri, and Nebraska from the proposed region. That leaves only the states that barder Minnesota a North
					Dakota, South Dakota, Iowa, and Wisconsin.
		850419			Regional interstate banking bill has passed a Senate committee. The Senate version varies from the House bill in that it expands by 11 strates the region
		850403			A regional interstate banking bill narrowly passed in the Minnesota Legislature. The bill would allow
					Minnesota banks to acquire banks in the four neighboring states

93

Table A1 continued

*	State	Package	Renting	Tune	Comments
		8	2	3	Comments
22	MN	880424	880801	X	The region is expanded to include: CO, ID, IL, KS, MO, MT, NE, WA, WY
-		880223			The regional bill passed the Senate Commerce Committee. The bill would add 12 states to Minnesota's interstate region, which now includes only four
24	M	880424	108006	RR	The region is expanded to include: IN
24	Z	880424	920401	RR	The region is expanded to include: MI, OH
24	MN	940309	940422	Z.	
25	MS	860414	880701	RR	AL, AR, LA, TN
			_		Banks in Tennessee, Alabama, Louisiana, and Arkansas may acquire Mississippi banks on a reciprocal
					basis after July 1, 1988. On July 1, 1990, banks from Florida, Georgia, Kentucky, Missouri, North Carolina, South Carolina, Texas. Virginia, and West Virginia will also be allowed to enter the state on a
					reciprocal basis
- 2		860311			The Mississippi House has approved a statewide banking bill
		860303			The House Banks Committee approved the bill
		860129			The Mississippi Senate has approved a bill that would allow statewide and interstate banking in 1988.
25	SW	860414	102006	RR	The region is expanded to include: FL, GA, KY, MO, NC, SC, TX, VA, WV
26	OW	860430	860813	RR	AR, IL, IA, KS, KY, NE, OK, TN
		860212			Senate Approves reciprocal regional bill allowing entry from eight contiguous states
		841004			Missouri Bankers Association endorsed a regional bill
		840402			The state Senate debated interstate bill without voting on it.
27	MT	N/A	931001	RR	CO, ID, MN, ND, SD, WI, WY
87	NE	880408	900101	XX	CO, IA, KS, MN, MO, MT, ND, SD, WI, WY
					The governor signed a bill, opening Nebraska to regional reciprocal interstate banking for a period of one year beginning January 1, 1990. Full nationwide reciprocal interstate banking becomes effective January 1, 1991.

94

Table A1 continued

*	State	Passage	Effective	Type	Comments
		880406			The state's one-house Legislature passed the interstate banking bill
		871211			Nebraska Bankers Association shifted to a neutral position on the issue of interstate banking
78	NE	880408	910101	X.	
29	N	850624	850701	RR	AK, AZ, CO, HI, ID, MT, NM, OR, UT, WA, WY
		850604			The Legislature passed the bill
		850603			The House passed interstate banking bill
		840331			The Nevada legislature unanimously passed a law allowing out-of-state bank holding companies to operate in Nevada.
29	N	850624	890101	Z	
Ж	HZ	870514	870901	RR	CT, ME, MA, RI, VT
					Governor John H. Sununu has signed New Hampshire's interstate banking bill, opening the state to other New England banks beginning Sentember 1, 1987
		870430			The state House of Representatives passed a bill
		870311			A regional interstate banking bill is approved by the New Hampshire state Senate
		850228			The New Hampshire House is scheduled to vote today in Concord on legislation to allow nationwide interstate banking
		830512			The House Commerce Committee voted to recommend passage of interstate banking bill on a nationwide basis
e R	ĦZ	880405	880420		The New Hampshire House of Representatives agreed to change the law so that a banking company can own a New Hampshire bank as long as at least 50% of the company's deposits are in New England and its headquarters is in New
30	FZ	N/A	900413	Z	culpium.
31	N	860328	860825	RR	DE, IL, IN, KY, MD, MI, MO, OH, PA, TN, VA, WV, WI, DC.
		860313			The New Jersey Assembly passed banking bill that authorizes regional interstate banking

95

Table A1 continued

*	State	Passage	Effective	Type	Comments
		860121			A regional interstate banking bill is introduced in the Senate labor, industry, and professions committee
31	Z	870730	880101	ž	
31	Z	870619	880101	X Z	New Jersey Banking Commissioner Mary Little Parell confirmed that a complicated reciprocity formula in the state's banking law has been satisfied, clearing the way for it to join the number of states
32	NM	880217	900101	Z	With provisions for nationwide banking.
		851030			New Mexico's Commission on Interstate Banking has decided that "some form" of interstate banking law is in the state's best interest.
		840117			New Mexico Governor Toney Anaya told state lawmakers that he will introduce a bill allowing out-of-state bank holding companies to acquire or charter a bank here
32	WN	860221	860326		The state passed a law allowing out-of-state organizations to buy failed New Mexico financial institutions.
33	NY	820628	820628	ZZ.	New York State Governor Hugh L. Carey signed legislation to authorize interstate banking.
		820610			A reciprocal interstate banking bill for New York State received final legislative approval from the state Senate
		870608			The New York State Assembly passed a reciprocal interstate banking bill
		820113			New York State Bankers Association to discuss interstate banking issue
		810202			The New York State Assembly voted in favor of a reciprocal interstate banking bill
		810120			The New York State Assembly banks committee approved a reciprocal interstate banking bill. The legislation would allow out-of-state banks to establish banking subsidiaries in New York provided similar privileges are permitted to New York, banks by the other states.
		790511			Bankers and trade associations representing commercial banks and clearing house banks testified in support of a proposed limited interstate banking bill at a public hearing conducted by the Assembly Banking Committee.
					This is the seventh year that interstate banking legislation has been introduced in New York State

96

Table A1 continued

*	State	Passage	Effective	Type	Comments
æ	NC	840707	850101	RR	AL, AR, DC, FL, GA, KY, LA, MD, MS, SC, TN, VA, WV
		840622			The Senate passed the bill June 22
		840328			A state subcommittee has endorsed an interstate banking bill that would allow North Carolina banks to
			-		expand in a 13-state region beginning January, 1985.
		840309			The North Carolina Bankers Association supported the regional, reciprocal interstate bill
34	NC		881001	RR	The region is expanded to include: TX
8	NC	940701	940701	Z.	
35	S	910314	910701	Z	The North Dakota legislature passed a nationwide reciprocal interstate banking law that is signed by
					Governor George Sinner on March 14, 1991. It takes effect on July 1, 1991.
		870922			The North Dakota Bankers Association are to vote on the association's position on interstate banking.
æ	НО	820718	851017	RR	DE, DC, IL, IN, KY, MD, MI, MO, NJ, PA, TN, VA, WV, WI
					Clovernor Richard E Colosta signad an intercenta hanking kill on Lub. 19, 1005, 1505, 150, 150, 150, 150, 150, 1
				-	the bill permits interstate banking on a reciprocal basis between banks and thrifts in Ohio and 13 other
					states as well as the District of Columbia. Nationwide interstate banking, on a reciprocal basis, would be triggered after three years
		850710			The House approved a bill
		850702			The banking panel of the Ohio Senate voted for a regional interstate banking bill
		850605			A House subcommittee began hammering out the details of legislation that would enable banks to cross
					state lines.
		850313			The House approved a regional interstate banking bill
		850306			The House Committee on Financial Institutions approved a bill allowing banks in neighboring states to buy Ohio banks, provided those states give Ohio institutions the same privilege
		840302			The Ohio Bankers Association approved the concept of reciprocal interstate banking

67

Table A1 continued

*	State	Passage	Effective	Type	Comments
36	ОН	820718	881017	Z.	
37	OK	N/A	870701	Z	
		860611			The House voted in favor of forming a study panel, proposed by Senate
		860610			The state Senate agreed to form a committee to study the matter of interstate banking
		860430			The Legislature considered an emergency proposal to give out-of-state banks and bank holding companies limited buying rights.
38	OR	850312	860701	R	AK, AZ, CA, HI, ID, NV, UT, WA
		850311			The interstate bill is approved by the state's Legislative Assembly
38	OR	N/A	890701	Z	
39	PA	860625	860825	RR	DE, DC, KY, MD, NJ, OH, VA, WV
					Pennsylvania Governor Richard Thornburgh signed a regional interstate bill into law. The measure
	_				offers Pennsylvania banks reciprocity with seven states and the District of Columbia, and is effective in 60 days. A national trigger would go into effect in March 1990.
		860623			The Pennsylvania Senate approved the bill after concurring with House-approved amendments
		860122			The state Senate passed a regional interstate banking bill that would permit acquisitions and mergers on
					a reciprocal basis. The region would be comprised of Pennsylvania, New Jersey, Maryland, Delaware, Virginia, West Virginia, Ohio, Kentucky, and the District of Columbia. The bill also contains a trioger
					date for nationwide banking, set at five years after the bill's passage.
		850417			The governing council of the Pennsylvania Bankers Association approved a plan to seek legislation
39	PA	860625	900304	N N	permitting reciprocal interstate banking in Pennsylvania.
40	2	830516	840701	RR	CT, ME, MA, NH, VT
		830512			Rhode Island's General Assembly is poised to approve an interstate banking law
4	RI	802098	880101	X Z	

Table A1 continued

*	State	Passage	Effective	Type	Comments
		850325			House Banking Committee Chairman met with key Democrats on the committee who are involved in
					the interstate banking debate. It is known that those attending included three members in favor of
					nationwide interstate banking
4	SC	840521	860701	RR	AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, TN, VA, WV
		840509			South Carolina's Senate passed a reciprocal interstate banking bill
		840418			The South Carolina House of Representatives passed a regional bill
		840229			The South Carolina House of Representatives is considering a regional interstate banking bill
42	SD	880217	880217	X.	
		880211			The South Dakota Senate approved a bill opening the state to nationwide interstate banking
		880209			The South Dakota's House of Representatives considered a bill authorizing full nationwide interstate
		880205			The bill advanced out of the House Commerce Committee with a "do pass" recommendation
43	NT.	850501	850701	RR	AL, AR, FL, GA, IN, KY, LA, MS, MO, NC, SC, VA, WV
		841127			Tennessee Governor Lamar Alexander and bankers have reached an accord on interstate banking. The bankers did not endorse a national "trigger" provision
		841121			Tennessee Governor Lamar Alexander has presented a broad plan for dealing with changes in the banking industry, including a recommendation to the state legislature to adopt regional interstate banking bill
43	T		880412	RR	The region is expanded to include: DC, MD
43	Ţ	N/A	910101	AR.	
4	TX	860923	870101	Z	
		860827			The Texas House gave final approval to interstate banking
		860820			Texas Senate approved bill to permit interstate banking

66

Table A1 continued

*	State	Passage	Effective	Type	Comments
		860813			A committee in the Texas state Senate passed an interstate banking bill
		860804			The Texas Bankers Association has endorsed full interstate banking
45	UT	840406	840415	RR	AK, AZ, CO, HI, ID, MT, NV, NM, OR, WA, WY
		840329			The Utah State Legislature has unanimously passed an interstate banking measure affecting all types of financial institutions.
45	UL	840406	860121	Z	National reciprocity for the purchase of failed state banks
45	UT	860121	871231	Z	Utah Governor Norman H. Bangerter signed a law encouraging out-of-state holding companies to acquire Utah financial institutions, regardless of their home-state laws.
34	VT	N/A	880101	RR	CT, ME, MA, NH, RI Under a law that took effect January. 1, 1988, out-of-state banks within the New England region may acquire or merge with Vermont banks on a reciprocal basis. It also allows for nationwide reciprocal activity starting February 1, 1990.
		870420			The Vermont House of Representatives passed a bill that would allow interstate banking on a reciprocal basis
46	VT	N/A	900201	X X	Under a law that took effect January. 1, 1988, out-of-state banks within the New England region may acquire or merge with Vermont banks on a reciprocal basis. It also allows for nationwide reciprocal activity starting February 1, 1990
		870306			The state Senate passed a nationwide interstate banking bill
47	V _A	850324	850701	XX	AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, SC, TN, WV
		840806			The board of directors of the Virginia Bankers Association has voted to recommend to a state study commission that Virginia enact a reciprocal regional interstate banking law
47	٧ ۸	N/A	940701	N N	

Table A1 continued

*	State	Passage	Effective	Type	Comments
8 4	VΜ	850516	870701	X X	
		850424			A reciprocal interstate banking bill has passed both houses of Washington's Legislature
		850301			In Washington, senators passed a reciprocal interstate-banking bill
64	AW	870317	880101	Z.	
		860214			The House approved the interstate banking bill
		860204			A bill has been introduced in the state Senate that would allow interstate banking.
		851009			West Virginia's largest banking association met to consider legislation favoring an interstate banking system
		850903			West Virginia Banking Commissioner Thomas Hansberry urged lawmakers to consider measures that would permit interstate banking by 1987.
20	WI	860331	870101	RR	IL, IN, IA, KY, MI, MN, MO, OH
		860324			The Senate passed the bill on last Monday.
		860313			The state Senate's banking committee on Interstate banking voted to approve interstate banking bill
		851022			The Wisconsin House of Representatives has approved a regional interstate banking bill
		840112			Wisconsin bankers and their lobbyists have set their sights on a legislative hearing on interstate banking where they plan to make it clear they don't like a revamped proposal any better than they did the original introduced last year.
51	WY	870316	870522	Z	Governor Michael Sullivan signed legislation that allows banking companies from any state to enter Wyoming through merger or acquisition, effective May 22, 1987

Source: American Banker.

Table A2: First category, Equation (1): Alaska.

Dependent variable:	
Portfolio of active banks	B

GARCH (1,1) Results with **HETERO** option

	Estimate	t-stat
Intercept	0.00060	0.31
Index	0.08010	0.24
FedFund	-0.00060	-0.87
DB ₁	-0.00469	-0.95
DB_2	-0.00028	-0.14
DB_IND _t	0.31890	0.47
DB_IND ₂	0.16180	0.49
$\overline{\mathbf{D_1}}$		
$\dot{\mathbf{D_2}}$		
\mathbf{D}_{3}	0.02000	4.19
$\mathbf{D}_{\mathbf{A}}^{c}$	-0.00141	-0.20
D ₅		
HET0		
HET1		
ARCH0	0.00001	4.48
ARCH1	0.26790	22.21
GARCH1	0.75700	79.28
HET1	0.00000	0.00
System		
R ²	0.0008	
AIC	-13365.84	
White*	10.32	p=0.0058
Breusch Pagan*	0.04	p=0.8495
Observations	2646	
Banks	2.69	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;
DB₂ - a dummy which takes a value of 1 after the effective date;

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_{t} - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_1 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor; D_5 – a dummy representing the date when the law becomes effective.

Table A3: First category, Equation (1): Arizona.

		nt variable: survived banks		nt variable: active banks
	GARCH (1,1) Results	number of Ba	option with unks as variable tion 11)
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00024	-0.48	0.00008	0.25
Index	0.80510	12.57	0.62300	13.91
FedFund	-0.00059	-0.85	-0.00092	-1.77
DB_1	0.00066	0.92	0.00091	1.87
DB_2	-0.00053	-0.86	-0.00121	-1.18
DB_IND_1	0.52970	4.72	0.03200	0.38
DB_IND ₂	0.01250	0.17	0.24250	2.30
Dı	0.00158	0.26	0.00143	0.32
\mathbf{D}_2				
\mathbf{D}_3	0.00333	0.80	-0.00039	-0.17
\mathbf{D}_{4}	-0.00028	-0.07	0.00364	1.31
D ₅	-0.00298	-0.49	-0.00089	-0.10
HET0			0.05680	161.02
HET1			-2.05400	-1904.70
ARCH0	0.00002	10.64		
ARCH1	0.24950	37.61		
GARCH1	0.74110	77.52		
HET1				
System				
R ²	0.0967		0.0451	
AIC	-14454.99		-13355.94	
White*	30.90	p<0.0001	74.78	p<0.0001
Breusch Pagan*	23.3	p<0.0001	29.68	p<0.0001
Observations	2676	•	2676	*·
Banks	1		2.25	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and effective date;

DB2 - a dummy which takes a value of 1 after the effective date:

DB_IND₁ (DB_IND₂) – a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers; D_2 - a dummy representing the date when the bill is introduced into or approved by state's house committee;

D₃ - a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor; D_5 – a dummy representing the date when the law becomes effective.

Table A4: First category, Equation (1): New Mexico.

Dependent variable: Portfolio of survived banks

GARCH (1,1) Results

	Estimate	t-stat
Intercept	0.00015	0.43
Index	0.40840	6.23
FedFund	0.00063	1.08
DB ₁	0.00020	0.36
DB_2	0.00078	1.10
DB_IND_I	0.05100	0.66
DB_IND ₂	0.30600	3.04
Dı	0.00023	0.03
D_2		
D_3		
$\mathbf{D_4}$	-0.00879	-1.80
D ₅	-0.00052	-0.11
HET0		
HET1		
ARCH0	0.00001	9.57
ARCH1	0.12230	13.74
GARCH1	0.85820	88.39
HET1		
System		
R ²	0.0488	
AIC	-15020.50	
White*	13.86	p=0.0077
Breusch Pagan*	10.74	p=0.0046
~ .		

^{*} Both tests were applied before correcting for heteroscedasticity

2676

1

FedFund - the first difference of the federal funds rate;

Observations

Banks

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ – a dummy which takes a value of 1 after the effective date;
DB_IND₁ (DB_IND₂) – a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers; D_2 - a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor:

 D_{s} – a dummy representing the date when the law becomes effective.

Table A5: First category, Equation (1): New York.

		nt variable: survived banks		nt variable: active banks
	GARCH (1,1) Results	GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00360	-0.16	-0.00126	-0.06
Index	0.25510	0.69	0.33530	1.05
FedFund	-0.00008	-0.27	0.00007	0.21
DB_1	0.00372	0.17	0.00108	0.05
DB_2	0.00405	0.18	0.00173	0.08
$DB_{\perp}IND_{1}$	0.12950	0.34	0.15280	0.45
DB_IND ₂	0.29540	0.80	0.29100	0.91
Dı	0.00262	0.12	0.00036	0.02
$\mathbf{D_2}$				
\mathbf{D}_3	-0.00021	-0.15	0.00062	0.23
$\mathbf{D_4}$	0.00374	0.17	0.00003	0.00
D ₅		_		
HETO				
HET1				
ARCH0	0.00000	3.32	0.00000	0.01
ARCH1	0.04550	8.20	0.14180	8.92
GARCH1	0.95000	155.29	0.54840	10.83
HET1			0.00000	4.61
System	0.0450		0.3045	
R ²	0.2459		0.3245	
AIC	-19251.03	0.0001	-19640.61	0.0001
White*	82.54	p<0.0001	42.20	p<0.0001
Breusch Pagan*	19.39	p<0.0001	31.37	p<0.0001
Observations	2676		2676	
Banks	8		19.7	

^{*} Both tests were applied before correcting for heteroscedasticity FedFund - the first difference of the federal funds rate;

DB₁ + a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ - a dummy which takes a value of 1 after the effective date;
DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_{t} - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee; D_1 – a dummy representing the date when the bill is introduced into or approved by senate committee; D_4 – a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective.

Table A6: First category, Equation (1): Oklahoma.

	•	nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00031	-0.62	-0.00128	-1.44
Index	0.40660	5.63	0.54090	3.32
FedFund	0.00063	0.66	0.00120	0.62
DB_1	-0.00399	-2.11	-0.00269	-2.07
DB_2	0.00127	1.34	0.00258	1.54
DB_IND_1	0.85740	2.15	1.85900	7.97
DB_IND ₂	0.30400	2.11	0.14480	0.70
$\mathbf{D_i}$		-		
D_2	-0.00326	-0.22	-0.00381	-0.51
\mathbf{D}_3	0.01250	0.65	0.01500	1.97
$\mathbf{D_4}$				
D ₅	-0.00737	-1.10	0.00392	0.18
НЕТО	- -		0.07840	103.97
HET1			-1.95110	-563.38
ARCH0	0.00001	9.27		
ARCH1	0.19360	15.02		
GARCH1	0.82360	86.48		
HET1				
S .				
System	0.0050		0.0127	
R ²	0.0052		0.0137	
AIC	-10926.96	0.0070	-10361.37	0.0001
White*	14.04	p=0.0072	83.14	p<0.0001
Breusch Pagan*	4.68	p=0.0962	50.24	p<0.0001
Observations	2676		2676	
Banks	l		2.39	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and effective date; DB_2 – a dummy which takes a value of 1 after the effective date; $DB_2 = 1$ $DB_1 = 1$ $DB_2 = 1$ $DB_3 = 1$ DB

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers; D_2 - a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_1 – a dummy representing the date when the bill is introduced into a approved by senate committee; D_4 – a dummy representing the date when the bill is signed into law by a state governor; D_5 – a dummy representing the date when the law becomes effective.

Table A7: First category, Equation (1): South Dakota.

Dependent variable: Portfolio of survived banks

CADCU	71 1	\ Dac	
GARCH	(1,1) LC2UI	II?

	Estimate	t-stat
Intercept	-0.00078	-1.25
Index	1.48620	24.70
FedFund	-0.00057	-0.47
DB_1		
DB_2	-0.00024	-0.25
DB_IND ₁		
DB_IND ₂	-0.54180	-4.24
\mathbf{D}_{I}		
\mathbf{D}_{2}	-0.00715	-0.66
$\overline{\mathbf{D}_3}$	-0.00730	-0.14
\mathbf{D}_{4}	0.03250	4.54
D ₅		
HETO		
HET1		
ARCH0	0.00019	8.33
ARCH1	0.12310	7.82
GARCH1	0.56100	11.26
HET1		
-		
System		
R ²	0.1325	
AIC	-12370.42	
White*	13.89	p=0.0076
Breusch Pagan*	6.95	p=0.0310
Observations	2676	
Banks	1	

^{*} Both tests were applied before correcting for heteroscedasticity FedFund - the first difference of the federal funds rate;

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

 DB_1 = a dummy which takes a value of 1 after the effective date; $DB_2 = a$ dummy which takes a value of 1 after the effective date; $DB_2 = a$ dummy $DB_1 = a$ dummy $DB_2 = a$ dummy $DB_2 = a$ multiplied by CRSP equally weighted index return; $D_1 = a$ dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee; D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

D₄ – a dummy representing the date when the bill is signed into law by a state governor;

D₅ – a dummy representing the date when the law becomes effective.

Table A8: First category, Equation (1): Texas.

		nt variable: survived banks	Dependent variable: Portfolio of active bank	
· · · · · · · · · · · · · · · · · · ·			HETERO	option with
	GARCH (1,1) Results	number of Ba	inks as variable
			(Equa	tion 11)
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00033	-0.88	-0.00072	-0.75
Index	0.42950	6.48	0.84340	5.24
FedFund	-0.00104	-1.24	-0.00052	-0.56
DB ₁	-0.00579	-1.72	-0.00293	-1.34
DB_2	0.00090	1.55	0.00075	0.73
DB_IND_1	0.03560	0.08	-0.02950	-0.07
DB_IND_2	0.52560	5.88	0.05080	0.31
\mathbf{D}_1	0.00551	1.16	0.00739	2.14
\mathbf{D}_{2}	0.01910	2.06	0.01030	1.67
\mathbf{D}_{3}	0.01430	2.16	0.01170	1.55
\mathbf{D}_{1}	0.03820	7.89	0.00414	0.64
$\mathbf{D_5}$	-0.01690	-4.99	-0.00121	-0.24
HET0			0.05990	93.05
HET1			-0.83760	-965.40
ARCH0	0.00001	11.66		
ARCH1	0.19190	18.83		
GARCH1	0.81360	102.16		
HET1	· · · · · · · · · · · · · · · · · · ·			
System				
R ²	0.0465		0.0698	
AIC	-13393.74		-13673.50	
White*	44.21	p<0.0001	200.90	p<0.0001
Breusch Pagan*	27.87	p<0.0001	200.20	p<0.0001
Observations	2676		2676	F
Banks	1		11.5	

^{*} Both tests were applied before correcting for heteroscedasticity

Polytheria of the reference of the rederan tunds rate; $DB_1 - a$ dummy which takes a value of 1 between the first announcement and effective date; $DB_2 - a$ dummy which takes a value of 1 after the effective date; $DB_1 IND_1 (DB_1 IND_2) - a$ dummy $DB_1 (DB_2)$ multiplied by CRSP equally weighted index return; $D_1 - a$ dummy representing the date when the bill is introduced into or approved by state's house committee;

D₃ - a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor; D_5 – a dummy representing the date when the law becomes effective.

Table A9: First category, Equation (1): Washington.

		nt variable: survived banks	Dependent variable: Portfolio of active banks		
	GARCH (1,1) Results			GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat	
Intercept	0.00078	1.54	0.00014	0.39	
Index	0.46100	6.77	0.65760	14.30	
FedFund	-0.00041	-0.62	0.00005	0.10	
DB_1	-0.00010	-0.13	18000.0	1.50	
DB_2	-0.00059	-0.89	-0.00013	-0.29	
DB_IND ₁	0.35440	2.97	0.17260	1.69	
DB_IND ₂	0.47210	6.53	-0.16250	-3.28	
Dı	·				
$\mathbf{D_2}$					
\mathbf{D}_3	0.00263	0.45	0.00206	0.42	
$\mathbf{D_4}$	0.00299	0.82	0.00632	2.41	
D ₅	-0.00173	-0.28	0.00037	0.10	
НЕТ0					
HET1					
ARCH0	0.00000	11.39	0.00001	5.19	
ARCH1	0.03960	13.59	0.08460	13.41	
GARCH1	0.94840	286.18	0.188.0	117.86	
HET1			0.00000	0.00	
System					
R ²	0.112		0.1030		
AIC	-14829.35		-16561.21		
White*	80.30	p<0.0001	32.09	p<0.0001	
Breusch Pagan*	70.23	p<0.0001	32.09	p<0.0001	
Observations	2676		2676		
Banks	1		2.5		

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate; $DB_1 - a$ dummy which takes a value of 1 between the first announcement and effective date;

 DB_2 = a dummy which takes a value of 1 after the effective date; DB_1ND_1 (DB_1ND_2) = a dummy $DB_1(DB_2)$ multiplied by CRSP equally weighted index return; D_1 = a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 - a dummy representing the date when the bill is introduced into or approved by state's house committee; D_4 - a dummy representing the date when the bill is introduced into or approved by senate committee; D_4 - a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective.

Table A10: First category, Equation (1): West Virginia.

		nt variable: purvived banks	Dependent variable: Portfolio of active banks OLS Results	
	OLS	Results		
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00075	-0.65	-0.00074	-1.56
Index	-0.15250	-0.80	-0.16090	-2.04
FedFund	-0.00164	-1.01	-0.00144	-2.14
DB_1	0.00066	0.34	0.00074	0.94
DB_2	0.00133	0.86	0.00117	1.82
DB_{IND_1}	0.18970	0.77	0.38050	3.74
DB_IND ₂	0.68430	2.50	0.50050	4.42
Dt	0.00078	0.07	0.00078	0.18
$\mathbf{D_2}$	-0.00004	0.00	-0.00078	-0.15
$\mathbf{D_3}$	-0.00001	0.00	-0.00048	-0.11
$\mathbf{D_4}$	-0.00003	0.00	0.00006	0.01
D ₅	0.00148	0.14	0.00365	0.83
HETO HET1 ARCHO ARCHI GARCHI HET1				
System R ² AIC White*	0.004 -10349.88 0.76	p=0.9440	0.0167 -15068.19 2.32	p=0.3142
Breusch Pagan* Observations Banks	0.48 2676 I	p=0.7879	2.24 2676 4.48	p=0.1341

^{*} Both tests were applied before correcting for heteroscedasticity FedFund - the first difference of the federal funds rate;

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

 $DB_2 - a$ dummy which takes a value of 1 after the effective date: DB_2IND_1 (DB_2IND_2) – a dummy DB_1 (DB_2) multiplied by CRSP equally weighted index return; D_1 – a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

 D_t – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor; D_5 – a dummy representing the date when the law becomes effective.

Table A11: First category, Equation (1): Wyoming.

Dependent variable: Portfolio of survived banks

OLS Results

	Estimate	t-stat
Intercept	-0.00037	-0.51
Index	0.46280	3.54
FedFund	-0.00024	-0.17
DB_1	0.00162	0.37
DB_2	0.00187	1.25
DB_{IND_1}	0.41700	0.57
DB_IND ₂	0.77940	4.40
$\mathbf{D_1}$		
$\mathbf{D_2}$		
\mathbf{D}_3		
$\mathbf{D}_{f 4}$	0.00717	0.91
D ₅	-0.00515	-0.65
HET0		
HET1		
ARCH0		
ARCH1		
GARCH1		
HET1		
System		
R ²	0.0664	
AIC	-7875.59	
White*	3.65	p=0.4550
Breusch Pagan*	2.69	p=0.2612
Observations	1770	
Banks	l	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ – a dummy which takes a value of 1 after the effective date;
DB_IND₁ (DB_IND₂) – a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers; D_2 - a dummy representing the date when the bill is introduced into or approved by state's house committee; D_1 - a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor.

D₅ – a dummy representing the date when the law becomes effective.

Table A12: Second category, Equation (2): Alabama.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00106	4.30	0.00102	4.65
Index	0.42560	10.49	0.41310	11.19
FedFund	0.00040	1.29	0.00010	0.35
DB ₁	-0.00174	-3.58	-0.00142	-3.41
DB_2	-0.00085	-2.66	-0.00130	-4.54
$DB_{\perp}IND_{1}$	0.59880	9.51	0.33620	5.43
DB_IND ₂	0.22310	5.09	0.39130	10.24
$\mathbf{D_1}$				
$\mathbf{D_2}$	0.00042	0.22	-0.00175	-1.04
\mathbf{D}_3				
D₄	-0.00319	-0.26	-0.00176	-0.44
D ₅	0.00177	0.63	0.00075	0.27
DEXP ₅	-0.00009	-0.03	-0.00046	-0.18
HETO				
HET1				
ARCH0	0.00001	9.26	0.00001	8.71
ARCH1	0.21140	10.34	0.22250	14.56
GARCH1	0.61840	20.54	0.56990	17.61
HET1				
System:				
\mathbb{R}^2	0.2868		0.3076	
AIC	-18306.34		-18841.22	
White*	1725	p<0.0001	0.56	p=0.4536
Breusch Pagan*	527.6	p<0.0001	0.56	p=0.4536
Observations	2676		2676	,
Banks	4		5.74	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date:

DB2 - a dummy which takes a value of 1 after the effective date:

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

D1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers; D2 - a dummy representing the date when the bill is introduced into or approved by state's house committee;

D3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

D4 – a dummy representing the date when the bill is signed into law by a state governor:

D5 - a dummy representing the date when the law becomes effective:

D5EXP - a dummy representing the date when the law expanding the region becomes effective.

Table A13: Second category, Equation (2): Arkansas.

	•	nt variable: survived banks	Dependent variable: Portfolio of active banks	
	OLS Results		GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00072	1.43	0.00039	1.77
Index	0.23490	3.42	0.25080	15.18
FedFund	0.00148	1.56	0.00121	2.36
DB ₁	0.00070	0.35	-0.00023	-0.20
DB_2	10000.0	0.01	0.00016	0.38
$DB_{I}ND_{I}$	-0.15070	-0.27	-0.18690	-0.54
DB_IND ₂	0.25000	1.77	0.08260	1.26
$\mathbf{D_1}$				
$\mathbf{D_2}$				
\mathbf{D}_3	0.00531	0.69	0.00331	0.80
\mathbf{D}_{4}	-0.00468	-0.51	-0.00171	-0.16
\mathbf{D}_{5}	0.00313	0.51	0.00070	0.19
DEXP ₅				
HET0				
HET1				
ARCH0			0.00003	16.45
ARCH1			0.16750	9.33
GARCH1			0.55840	19.69
HET1				
System:				
R ²	0.0112		0.0195	
AIC	-13239.47		-17031.12	
White*	1.48	p=0.8305	7.74	p=0.0209
Breusch Pagan*	0.53	p=0.7680	0.52	p=0.4726
Observations	2676	p=0.7000	2676	p=0.4720
Banks	1		3.22	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ – a dummy which takes a value of 1 after the effective date.

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers; D_1 - a dummy representing the date when the bill is introduced into or approved by state's house committee;

D₁ - a dummy representing the date when the bill is introduced into or approved by senate committee;

Da - a dummy representing the date when the bill is signed into law by a state governor;

 D_5 – a dummy representing the date when the law becomes effective;

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A14: Second category, Equation (2): Florida.

		nt variable: survived banks	Dependent variable: Portfolio of active banks		
	_		HETERO option with		
	GARCH (1,1) Results		nks as variable	
			•	tion 11)	
	Estimate	t-stat	Estimate	t-stat	
Intercept	0.00058	1.22	0.00045	2.16	
Index	0.77130	12.45	0.56950	21.28	
FedFund	0.00031	0.54	0.00036	0.80	
DB_1	0.00024	0.35	0.00045	1.04	
DB_2	-0.00054	-1.03	-0.00065	-1.79	
DB_IND_1	0.05810	0.49	0.02050	0.23	
DB_IND ₂	0.25220	3.76	0.32690	7.11	
$\mathbf{D_1}$	0.00034	0.19	0.00138	1.31	
D_2	-0.01340	-8.56	-0.00061	-0.39	
\mathbf{D}_3	-0.00831	-1.77	-0.00525	-2.05	
$\mathbf{D_4}$	-0.00371	-0.92	-0.00274	-0.70	
D ₅	-0.00206	-0.81	-0.00084	-0.27	
DEXP ₅					
HET0			0.02700	117.40	
HET1			-0.82610	-662.00	
ARCH0	0.00000	6.37			
ARCH1	0.06140	12.37			
GARCH1 HET1	0.91420	126.63			
System:					
R ²	0.2890		0.2066		
AIC	-17072.10		-17439.90		
White*	15.46	p=0.0038	129.3	p<0.0001	
Breusch Pagan*	5.72	p=0.0573	103.7	p<0.0001	
Observations	2676		2676		
Banks	5		11.01		

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ + a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ – a dummy which takes a value of 1 after the effective date;
DB_IND₁ (DB_IND₂) – a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_t – a dummy representing the date when the bill is introduced into or approved by state's house committee; D_s – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective:

DEXP₃ - a dummy representing the date when the law expanding the region becomes effective.

Table A15: Second category, Equation (2): Georgia.

		nt variable: survived banks		Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		•	GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat	
Intercept	0.00110	2.71	0.00116	3.59	
Index	0.21290	3.26	0.45900	9.77	
FedFund	-0.00002	-0.05	0.00054	1.34	
DB ₁	-0.00053	-0.82	-0.00008	-0.16	
DB_2	-0.00117	-2.06	-0.00097	-2.39	
DB_IND ₁	-0.00976	-0.08	0.13600	1.40	
DB_IND ₂	0.66850	7.74	0.19940	3.56	
$\mathbf{D_1}$					
$\mathbf{D_2}$	0.00006	0.02	0.00018	0.12	
D_3	0.00002	0.00	-0.00162	-0.32	
$\mathbf{D_4}$	0.00180	0.36	0.00098	0.32	
D_5	0.00901	1.58	0.00174	0.52	
DEXP ₅	-0.00297	-0.62	0.00128	0.53	
НЕТ0					
HET1					
ARCH0	0.00000	6.87	0.00000	0.02	
ARCH1	0.09090	14.86	0.06720	7.83	
GARCH1	0.91020	176.28	0.92770	104.68	
HET1			0.00000	1.19	
System:					
R ²	0.0477		0.1211		
AIC	-14553.03		-17184.88		
White*	37.49	p<0.0001	91.41	p<0.0001	
Breusch Pagan*	18.73	p<0.0001	44.68	p<0.0001	
Observations	2676	•	2676	•	
Banks	2		6.94		

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and effective date; DB_2 – a dummy which takes a value of 1 after the effective date;

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers: D_1 - a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee:

D₄ - a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective;

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A16: Second category, Equation (2): Iowa.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	OLS Results		HETERO option with number of Banks as variable (Equation 11)	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00045	1.10	0.00053	1.93
Index	0.36180	6.07	0.36380	8.62
FedFund	0.00227	2.66	0.00124	2.94
DB ₁	-0.00136	-1.02	-0.00108	-1.61
DB_2	0.00027	0.25	-0.00007	-0.09
DB_{IND_1}	0.01940	0.09	0.14080	1.72
DB_IND ₂	0.19950	1.13	0.13870	1.17
$\mathbf{D_1}$ $\mathbf{D_2}$				
\mathbf{D}_{3}	-0.00373	-0.67	-0.00460	-1.72
$\mathbf{D_4}$	0.00179	0.31	0.00068	0.12
D_5	0.00069	0.12	0.00205	0.78
DEXP ₅				
НЕТ0			0.02420	35.94
HET1			-1.18840	-51.20
ARCH0 ARCH1				
GARCHI HET1				
System: R ²	0.0225		0.0449	
AIC	-13794.05		-15977.03	
White*	1.53	p=0.8214	12.55	p=0.0019
Breusch Pagan*	1.2	p=0.5495	10.21	p=0.0019 p=0.0014
Observations	2676	p=0.5495	2676	p=0.0014
Banks	2070		4.22	

^{*} Both tests were applied before correcting for heteroscedasticity

 $DB_1 - a$ dummy which takes a value of 1 between the first announcement and effective date:

 $DB_2 - a$ dummy which takes a value of 1 after the effective date; DB_1ND_1 (DB_2ND_2) - a dummy $DB_1(DB_2)$ multiplied by CRSP equally weighted index return; D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

D₁ - a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor:

D₅ – a dummy representing the date when the law becomes effective:

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A17: Second category, Equation (2): Kansas.

Dependent variable: Portfolio of survived banks

OLS Results

	Estimate	t-stat_
Intercept	0.00048	1.42
Index	0.33650	6.90
FedFund	0.00030	0.44
DB ₁	-0.00060	-0.87
DB_2	-0.00280	-0.58
DB_IND_1	0.26110	2.39
DB_{IND_2}	1.28080	1.30
\mathbf{D}_{1}	0.00183	0.41
$\mathbf{D_2}$		
\mathbf{D}_{3}		
\mathbf{D}_{4}	-0.00082	-0.18
\mathbf{D}_{5}	-0.00026	-0.06
DEXP ₅		
НЕТ0	·	
HET1		
ARCH0		
ARCH1		
GARCH1		
HET1		
System:		
R ²	0.0321	
AIC	-14929.13	
White*	5.63	p=0.2285
Breusch Pagan*	2.24	p=0.3271
Observations	2676	•
Banks	I	

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate;

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ - a dummy which takes a value of 1 after the effective date;

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 $D_{t} \cdot a \ dummy \ representing \ the \ date \ when \ the \ bill \ is \ introduced \ by \ state's \ bankers \ association \ or \ state \ bankers;$

 $D_1 - a$ dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

D₄ - a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective;

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A18: Second category, Equation (2): Missouri.

		nt variable: survived banks	Dependent variable: Portfolio of active bank		
			HETERO option with		
	OLS	Results		nks as variable	
			(Equa	tion 11)	
	Estimate	t-stat	Estimate	t-stat	
Intercept	0.00044	0.73	0.00084	1.78	
Index	0.33630	3.67	0.30840	3.68	
FedFund	-0.00022	-0.33	0.00002	0.04	
$\overline{DB_1}$	-0.00012	-0.14	-0.00035	-0.59	
DB_2	-0.00027	-0.39	-0.00067	-1.30	
DB_IND ₁	0.29730	1.84	0.13600	1.23	
DB_IND ₂	0.52910	5.08	0.45410	5.22	
$\overline{\mathbf{D_1}}$	0.00082	0.19	0.00032	0.05	
$\mathbf{D_2}$					
\mathbf{D}_{3}	0.00244	0.80	0.00215	1.68	
\mathbf{D}_{4}	-0.00329	-0.76	-0.00123	-0.32	
D ₅	-0.00145	-0.34	-0.00092	-0.30	
DEXP ₅					
HET0			0.03050	128.95	
HET1			-0.87970	-581.28	
ARCH0					
ARCH1					
GARCH1					
HET1					
	-				
System:					
R ²	0.1135		0.2031		
AIC	-15177.38		-17976.76	0.0100	
White*	0.24	p=0.9933	8.7	p=0.0129	
Breusch Pagan*	0.06	p=0.9703	5.83	p=0.0157	
Observations	2676		2676		
Banks	6		11.13		

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ - a dummy which takes a value of 1 after the effective date;

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_1 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

D₃ - a dummy representing the date when the bill is introduced into or approved by senate committee;

D₄ - a dummy representing the date when the bill is signed into law by a state governor;

 D_5 – a dummy representing the date when the law becomes effective;

DEXP₃ - a dummy representing the date when the law expanding the region becomes effective.

Table A19: Second category, Equation (2): South Carolina.

Dependent variable: Portfolio of active banks

GARCH (1,1) Results

	Estimate	t-stat
Intercept	0.00053	2.38
Index	0.20900	7.02
FedFund	-0.00055	-2.26
DB ₁	0.00086	2.42
DB_2	-0.00053	-1.97
DB_IND_1	-0.11350	-2.33
DB_{IND_2}	0.01690	0.52
$\overline{\mathbf{D_l}}$		
$\mathbf{D_2}$	-0.00015	-0.04
\mathbf{D}_{3}	-0.00006	-0.05
$\mathbf{D_4}$	-0.00190	-1.25
D ₅	-0.00351	-2.15
DEXP ₅		
HET0		
HET1		
ARCH0	0.00000	6.57
ARCH1	0.12630	17.44
GARCH1	0.87710	152.77
HET1		
_		
System:		
R ²	0.0483	
AIC	-18873.25	

System:		
R ²	0.0483	
AIC	-18873.25	
White*	19.17	p<0.0001
Breusch Pagan*	0.01	p=0.9103
Observations	2676	•
Banks	5.19	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB2 - a dummy which takes a value of 1 after the effective date;

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return;

 $D_{\rm t}$ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_1 – a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_{ν} - a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor.

D₅ - a dummy representing the date when the law becomes effective;

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A20: Second category, Equation (2): Wisconsin.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00134	3.44	0.00120	3.38
Index	0.29760	5.08	0.33060	6.10
FedFund	0.00012	0.30	0.00007	0.16
DB_t	-0.00048	-0.94	-0.00044	-0.96
DB_2	-0.00104	-2.30	-0.00097	-2.31
DB_IND_i	0.24890	2.96	0.10360	1.44
DB_IND ₂	0.38880	6.02	0.44760	7.36
$\mathbf{D_i}$	-0.00129	-0.55	-0.00151	-0.70
\mathbf{D}_2				
\mathbf{D}_3	-0.00034	-0.09	-0.00142	-0.40
$\mathbf{D_4}$	0.00550	1.57	0.00616	2.32
\mathbf{D}_{5}	0.00650	2.57	0.00519	1.96
DEXP ₅				
НЕТ0				
HET1				
ARCH0	0.00000	5.07	0.00000	5.04
ARCH1	0.02450	6.76	0.01120	9.33
GARCH1	0.96660	201.88	0.98670	999.82
HET1			-	
System:				
R ²	0.1769		0.2410	
AIC	-17707.65		-18171.83	
White*	202.5	p<0.0001	0.54	p= 0.4605
Breusch Pagan*	77.52	p<0.0001	0.54	p= 0.4605
Observations	2676		2676	
Banks	4		5.63	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

 DB_2 – a dummy which takes a value of 1 after the effective date:

DB_IND₁ (DB_IND₂) - a dummy DB₁(DB₂) multiplied by CRSP equally weighted index return:

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_{t} – a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_1 – a dummy representing the date when the bill is introduced into or approved by senate committee; D_4 – a dummy representing the date when the bill is signed into law by a state governor;

D₅ – a dummy representing the date when the law becomes effective:

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A21: Third category, Equation (3): Connecticut.

	Depender	nt variable:	Denende	nt variable:
		survived banks		active banks
			HETERO	option with
	GARCH (1,1) Results		number of Banks as variable (Equation 11)	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00011	0.21	0.00074	0.53
Index	0.36100	5.26	0.47960	2.78
FedFund	0.00013	0.39	0.00043	0.53
DB ₁				
DB ₂	0.00009	0.18	-0.00026	-0.17
DB ₃	-0.00006	-0.08	0.00104	0.71
DB_4				
DB_IND ₁	0.0000			
DB_IND ₂	0.10590	1.47	0.07330	0.40
DB_IND ₃	0.63550	5.15	0.59390	3.33
DB_IND ₄				
$\mathbf{D}_{\mathbf{i}}$				
\mathbf{D}_2	0.00247	0.07	0.00501	0.00
\mathbf{D}_3	0.00247	0.97	0.00591	0.88
D ₄	0.00368	2.35	-0.00272	-0.40
$rac{ extsf{DN}_1}{ extsf{DN}_2}$				
DN ₂ DN ₃	-0.00608	-1.95	-0.00089	-0.13
DN ₄	0.00121	0.15	0.00089	-0.13 0.11
DN ₄ DN ₅	0.00121	0.13	0.00099	0.11
HETO			0.00009	0.00
HET1			25918.00	0.00
ARCH0	0.00000	12.88	23710.00	0.00
ARCH1	0.21800	25.18		
GARCHI	0.78670	93.56		
HET1	0170070	75.50		
System				
\mathbb{R}^2	0.0960		0.0840	
AIC	-16544.85		-15240.89	
White*	22.48	p=0.0002	74.72	p<0.0001
Breusch Pagan*	10.55	p=0.0051	39.02	p<0.0001
Observations	2676		2676	•
Banks	2		10.73	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity; DB2 - a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity:

DB₃ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

D₁(DN₁) - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

D₂(DN₂) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₃(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee;

D₄(DN₄) - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor.

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A22: Third category, Equation (3): Idaho.

Dependent variable: Portfolio of survived banks

GARCH (1,1) Results

	Estimate	t-stat
Intercept	-0.00009	-0.16
Index	0.50030	7.83
FedFund	-0.00072	-1.00
DB ₁	0.00030	0.13
DB_2	0.00027	0.35
DB_3	0.00004	0.05
DB ₄		
DB_IND ₁	0.16560	0.30
DB_IND ₂	0.10550	1.41
$DB_{1}ND_{3}$	0.55920	6.94
DB_IND ₄		
D_1		
$\mathbf{D_2}$		
\mathbf{D}_3		
$\mathbf{D_4}$	0.00081	0.04
D ₅	0.00325	0.37
DN_1		
DN_2		
DN_3		
DN ₄		
DN ₅	0.00307	0.75
HET0		
HET1		
ARCH0	0.00005	11.62
ARCH1	0.17020	10.03
GARCH1	0.57810	17.87
HET1		
System		
R ²	0.1005	
AIC	-15225.62	
White*	77.31	p<0.0001
Breusch Pagan*	37.60	p<0.0001
Observations	2676	
Banks	1	

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate:

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;

DB₃ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return;

 $D_1(DN_1) - D_5(DN_5)$ - the dummies, representing five major dates, in the history of interstate banking bill:

 $D_t(DN_t)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₁(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee:

D₄(DN₄) - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

 $D_5(DN_5)$ - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A23: Third category, Equation (3): Illinois.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio of active banks GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00066	2.51	0.00048	2.34
Index	0.71150	18.88	0.61490	19.63
FedFund	0.00045	1.48	0.00042	1.79
DB ₁	0.00046	0.92	0.00069	1.74
DB_2	-0.00149	-2.04	18000.0-	-1.72
DB_3	-0.00044	-1.22	-0.00028	-1.04
DB ₄	-0.00158	-3.27	-0.00048	-1.44
DB_IND ₁	0.34420	3.29	0.10370	1.26
DB_IND_2	0.51600	3.51	0.30830	4.05
DB_IND ₃	0.32950	8.25	-0.01450	-0.43
DB_IND ₄	0.44470	_5.85	0.02450	0.48
$\mathbf{D_{l}}$	-0.00025	-0.15	-0.00064	-0.40
$\mathbf{D_2}$	0.00090	0.39	0.00190	1.46
\mathbf{D}_{3}^{-}	0.00430	2.33	0.00307	2.58
\mathbf{D}_{4}	-0.00232	-0.68	-0.00022	-0.09
D ₅	0.00117	0.82	0.00441	4.64
DN ₁	-0.00624	-2.89	-0.00388	-1.79
DN_2	0.00366	1.75	0.00086	0.46
DN_3	0.00025	0.14	0.00037	0.36
DN ₄	-0.00313	-1.00	-0.00286	-1.36
DN ₅	0.00454	1.71	0.00201	1.42
HET0				
HET1				
ARCH0	0.00000	4.84	0.00001	8.50
ARCH1	0.07700	8.90	0.25340	14.38
GARCH1	0.89150	70.57	0.43900	9.65
HET1				
System				
R ²	0.4053		0.3523	
AIC	-18393.63		-20010.02	
White*	123.30	p<0.0001	5.37	p=0.0681
Breusch Pagan*	95.74	p<0.0001 p<0.0001	2.08	p=0.1493
Observations	2676	P 10.000.	2676	p = 0.1.130
Banks	5		12.26	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;

DB₃ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return:

 $D_1(DN_1) - D_5(DN_5)$ – the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

 $D_1(DN_3)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee:

D₄(DN₄) - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A24: Third category, Equation (3): Massachusetts.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		l) Results with O option
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00048	1.00	0.00063	1.54
Index	0.69260	11.94	0.68490	14.11
FedFund	-0.00008	-0.24	0.00028	0.99
DB_1	-0.00025	-0.26	-0.00059	-0.66
DB_2	0.00089	1.70	0.00073	1.64
DB_3	-0.00110	-2.06	-0.00157	-3.43
DB ₄	-0.00047	-0.67	0.00064	0.82
DB_IND ₁	-0.18700	-1.50	-0.24890	-2.20
DB_{IND_2}	0.27200	3.84	0.10540	1.74
DB_IND_3	0.46170	7.80	0.34280	6.80
DB_IND ₄	0.90420	9.06	0.85270	7.14
$\mathbf{D_t}$ $\mathbf{D_2}$				
\mathbf{D}_3				
D ₄	-0.00471	-1.10	-0.00418	-0.93
D ₅	-0.00252	-1.29	-0.00239	-1.39
DN_1	-0.00235	-1.87	0.00263	1.32
DN ₂	0.00112	0.73	0.00151	1.62
DN ₃				
DN ₄				0.50
DN ₅	0.00031	0.16	0.00154	0.50
HETO HET1				
ARCH0	0.00000	5.87	0.00000	2.02
ARCH1	0.09980	13.33	0.10060	11.72
GARCH1	0.89050	126.11	0.89600	114.77
HET1			0.00000	0.55
System				
R ²	0.4164		0.2621	
AIC	-18115.64		-18535.72	
White*	171.20	p<0.0001	59.27	p<0.0001
Breusch Pagan*	119.50	p<0.0001	59.26	p<0.0001
Observations	2676	•	2676	•
Banks	6		15.37	

^{*} Both tests were applied before correcting for heteroscedasticity

 $DB_1 - a$ dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;

DB₃ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity.

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return;

 $D_1(DN_1) - D_2(DN_2)$ - the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee:

D₃(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee;

 $D_4(DN_4)$ - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A25: Third category, Equation (3): New Hampshire.

Dependent variable: Portfolio of active banks

OLS Results

	Estimate	t-stat
Intercept	0.00167	1.47
Index	0.19610	0.96
FedFund	-0.00247	-1.32
DB ₁	-0.00318	-0.74
DB_2	-0.00252	-1.34
DB_3	0.00279	1.41
DB ₄		
DB_IND ₁	0.54640	0.62
DB_IND ₂	0.70170	2.66
DB_IND ₃	1.63020	4.89
DB_IND.		
$\overline{\mathbf{D}_{1}}$		
$\mathbf{D_2}$	0.00737	0.60
\mathbf{D}_{3}^{J}	-0.00428	-0.37
\mathbf{D}_{4}	-0.00312	-0.24
$\mathbf{D_5}$	-0.00522	-0.45
$\overline{DN_1}$		
DN_2		
DN_3		
DN_4		
DN ₅	-0.00645	-0.56
HET0		
HET1		
ARCH0		
ARCH1		
GARCH1		
HET1		
System		
R ²	0.0364	
AIC	-9338.69	
White*	12.65	p=0.0018
Breusch Pagan*	2.03	p=0.1543
Observations	2535	
Banks	3.39	

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate:

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to exact a law allowing national reciprocity;

DB₁ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity:

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return;

 $D_1(DN_1) - D_5(DN_5)$ – the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₁(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee;

D₄(DN₄) - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A26: Third category, Equation (3): New Jersey.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Portfolio of active banks GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00114	8.23	0.00120	9.93
Index	0.31680	14.45	0.31790	16.01
FedFund	0.00054	2.67	0.00015	0.84
DB ₁	0.00053	0.93	0.00071	1.31
DB_2	-0.00139	-3.23	-0.00154	-3.90
DB_3	-0.00089	-1.28	-11100.0-	-1.46
DB ₄	-0.00163	-6.19	-0.00125	-5.58
DB_IND ₁	0.46310	3.32	0.40230	3.27
DB_IND_2	0.60300	9.40	0.43960	6.75
DB_IND_3	0.49190	19.49	0.33440	13.04
DB_IND ₄	0.65670	12.62	0.39380	9.38
$\mathbf{D_1}$				
$\mathbf{D_2}$				
\mathbf{D}_3	-0.00470	-1.94	-0.00246	-1.04
$\mathbf{D_4}$	0.00069	0.35	-0.00059	-0.33
D ₅	-0.00279	-1.05	-0.00263	-1.60
DN ₁	0.00269	1.86	0.00194	0.90
DN_2				
DN_3				
DN₄	0.00748	7.70	-0.00855	-9.40
DN ₅	-0.00212	-0.87	-0.00155	-0.62
HET0				
HET1				
ARCH0	0.00000	2.96	0.00000	0.02
ARCH1	0.05230	10.76	0.08120	14.77
GARCH1	0.94640	201.21	0.91790	153.92
HET1_			0.00000	0.46
_				
System			0.055	
R ²	0.3405		0.2726	
AIC	-19283.82	0.000	-19942.17	0.0001
White*	53.62	p<0.0001	59.38	p<0.0001
Breusch Pagan*	28.36	p<0.0001	43.88	p<0.0001
Observations	2676		2676	
Banks	13		21.76	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

 $DB_2 - a$ dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity:

DB₃ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity:

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return:

 $D_t(DN_t) - D_s(DN_s)$ – the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₁(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee:

D₄(DN₄) - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A27: Third category, Equation (3): North Carolina.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio of active banks GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00070	2.38	0.00092	4.23
Index	0.34180	11.02	0.34340	12.09
FedFund	-0.00053	-1.60	-0.00051	-2.01
DB _t	0.00033	0.57	0.00030	0.79
DB_2	-0.00053	-1.58	-0.00041	-1.51
DB_3				
DB ₄				
DB_IND ₁	-0.01820	-0.25	-0.02460	-0.36
DB_IND_2	0.38600	9.89	0.21010	5.96
DB_IND ₃				
DB_IND ₄				
$\mathbf{D_1}$	-0.00189	-1.84	0.00110	0.92
$\mathbf{D_2}$				
\mathbf{D}_{3}	-0.00025	-0.07	-0.00086	-0.46
$\mathbf{D_4}$	0.00137	0.77	0.00107	0.69
D ₅	0.00070	0.27	-0.00087	-0.74
DN_1				
DN_2				
DN_3				
DN ₄				
DN ₅				
HET0				-
HET1				
ARCH0	0.00000	7.36	0.00000	0.05
ARCH1	0.08380	13.43	0.04970	9.27
GARCH1	0.90830	145.71	0.94700	184.94
HET1			0.00000	0.93
C				
System	0.2404		0.1756	
R ²	0.2404		0.1756 -19093.77	
AIC White*	-18462.36 581.10	p<0.0001	-19093.77 24.94	
		•		p<0.0001
Breusch Pagan*	203.60 2676	p<0.0001	13.57 2676	p=0.0002
Observations	2070 4		2070 10.27	
Banks	4		10.27	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB2 - a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;

DB₁ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

 DB_4 – a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity; DB_IND_1 (DB_IND_2 , DB_IND_3 , DB_IND_4) – a dummy DB_1 (DB_2 , DB_3 , DB_4) multiplied by CRSP equally weighted index

 $D_t(DN_t) - D_s(DN_s)$ - the dummies, representing five major dates, in the history of interstate banking bill:

D₁(DN₁) - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state

D2(DN2) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee:

D₃(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee:

 $D_4(DN_4)$ - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A28: Third category, Equation (3): Rhode Island.

	Dependent variable: Portfolio of survived banks OLS Results			nt variable: active banks
			OLS Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00018	0.10	0.00040	0.38
Index	0.52650	2.19	0.49500	3.60
FedFund	0.00156	1.01	-0.00047	-0. <u>5</u> 3
$\mathbf{DB_1}$	-0.00018	-0.06	-0.00018	-0.12
DB_2	0.00177	0.56	0.00074	0.41
DB_3	-0.00047	-0.21	-0.00045	-0.36
DB ₄	-0.00156	-0.75	-0.00105	-0.87
DB_IND ₁	-0.22180	-0.50	-0.21950	-0.87
DB_{IND_2}	-0.40140	-0.70	-0.21860	-0.67
DB_{IND_3}	0.18590	0.66	0.18860	1.18
DB_IND_4	0.52900	1.74	0.02670	0.15
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$				
D_3				
D_4	-0.00444	-0.44	0.00112	0.19
D ₅	0.00364	0.36	-0.00016	-0.03
DN_1				
DN_2	-0.00182	-0.18	-0.00174	-0.30
DN_3				
DN_4	0.00855	0.85	0.00812	1.41
DN ₅	-0.00068	-0.07	-0.00672	-1.15
HET0				
HET1				
ARCH0				
ARCH1				
GARCH1				
HET1				
System				
R ²	0.0234		0.0404	
AIC	-10614.86		-13610.94	
White*	0.21	p=0.9950	1.67	p=0.1966
Breusch Pagan*	0.16	p=0.9242	1.67	p=0.1966
Observations	2676		2676	
Banks	1		1.81	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;

DB₃ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return;

 $D_1(DN_1) - D_2(DN_2)$ - the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₃(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee;

 $D_4(DN_4)$ - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor.

 $D_5(DN_5)$ - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A29: Third category, Equation (3): Tennessee.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00036	1.31	0.00086	4.25
Index	0.43330	10.47	0.34850	10.46
<u>FedFund</u>	-0.00024	-0.72	-0.00037	-1.94
DB ₁	0.00242	3.39	0.00196	3.85
DB_2	-0.00062	-1.76	-0.00116	-4.30
DB_3	0.00001	0.02	-0.00048	-1.31
DB ₄				
DB_IND ₁	-0.35280	-2.40	-0.29980	-2.73
DB_IND ₂	0.41030	9.04	0.30780	8.71
DB_IND ₃	0.59370	6.74	0.20410	3.29
DB_IND.				
\mathbf{D}_{l}	0.00335	2.05	0.00248	2.45
\mathbf{D}_{2}				
\mathbf{D}_{j}^{j}				
\mathbf{D}_{4}	-0.00053	-0.24	-0.00086	-0.50
D ₅	0.00232	0.40	0.00069	0.11
DN ₁				
DN_2				
DN_3				
DN ₄				
DN_5	-0.00040	-0.09	-0.00133	-0.36
HET0				
HET1				
ARCH0	0.00000	4.41	0.00000	3.57
ARCH1	0.03330	7.75	0.02980	9.42
GARCH1	0.95770	171.73	0.96580	245.06
HET1				
System				
R ²	0.2702		0.2529	
AIC	-18043.07		-19492.16	
White*	71.78	p<0.0001	0.17	p=0.9205
Breusch Pagan*	34.30	p<0.0001	0.16	p=0.9203 p=0.6882
Observations	2676	p<0.0001	2676	p=0.0002

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity:

DB₃ = a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return:

 $D_1(DN_1) - D_5(DN_5)$ – the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₃(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee;

 $D_4(DN_4)$ - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor.

 $D_3(DN_3)$ - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A30: Third category, Equation (3): Utah.

Dependent	variable:	
Portfolio of su		

GARCH (1,1) Results

	Estimate	t-stat
Intercept	-0.00016	-0.33
Index	0.73450	11.84
FedFund	-0.00001	-0.03
DB ₁		
DB_2	0.00038	0.62
DB ₃	-0.00052	-0.71
DB₄	0.00020	0.33
DB_IND ₁		
DB_{IND_2}	0.07480	0.66
DB_IND_3	0.29170	4.30
DB_IND ₄	0.13330	1.61
$\overline{\mathbf{D_1}}$	•	-
$\mathbf{D_2}$		
\mathbf{D}_3	0.00152	0.33
$\mathbf{D_4}$	-0.00099	-0.18
D ₅	-0.00982	-5.82
DN_1		
DN_2		
DN_3		
DN_4	0.00967	1.92
DN ₅	-0.00120	-0.28
HET0		
HETI		
ARCH0	0.00000	5.35
ARCH1	0.03670	10.05
GARCHI	0.95450	203.71
HET1		
System		
R ²	0.1989	
AIC	-16295.39	
White*	17.50	p=0.0015
Breusch Pagan*	9.31	p=0.0095
Observations	2676	
Banks	2	

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate:

DB₁ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

 $DB_2 - a$ dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity:

DB₃ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) - a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return:

 $D_1(DN_1) - D_2(DN_2)$ – the dummies, representing five major dates, in the history of interstate banking bill:

D₁(DN₁) - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(\mathbb{D}N_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₃(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee:

 $D_4(DN_4)$ - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

D₅(DN₅) - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A31: Third category, Equation (3): Virginia.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio of active banks GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00087	3.92	0.00102	4.78
Index	0.48230	15.93	0.43730	15.27
FedFund	0.00001	0.02	-0.00006	-0.20
DB_1	0.00095	2.09	0.00089	2.27
DB_2	-0.00090	-3.25	-0.00099	-3.77
DB_3				
DB ₄				
DB_IND ₁	-0.08350	-0.82	-0.11370	-1.29
DB_IND_2	0.32990	8.91	0.32030	9.14
DB_IND_3				
DB_IND.				
\mathbf{D}_1	0.00320	2.11	0.00207	1.38
$\mathbf{D_2}$				
\mathbf{D}_{3}				
$\mathbf{D_4}$	-0.00267	-1.16	-0.00287	-1.38
\mathbf{D}_{5}	0.00191	1.11	0.00206	1.21
DN_1				
DN_2				
DN_3				
DN ₄				
DN ₅				
HET0				
HET1				
ARCH0	0.00000	3.51	0.00000	0.08
ARCH1	0.03510	8.23	0.04590	8.64
GARCH1	0.96110	210.16	0.95000	173.57
HET1			0.00000	0.34
S .				
System	0.2000		0.0000	
R ²	0.3098		0.2979	
AIC	-18843.66	0.0001	-19400.71	.0.0001
White*	26.68	p<0.0001	20.26	p<0.0001
Breusch Pagan*	9.45	p=0.0089	20.26	p<0.0001
Observations	2676		2676	
Banks	7		9.54	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;

DB₁ = a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity;

DB₄ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃, DB_IND₄) = a dummy DB₁ (DB₂, DB₃, DB₄) multiplied by CRSP equally weighted index return;

 $D_1(DN_1) - D_5(DN_5)$ – the dummies, representing five major dates, in the history of interstate banking bill:

 $D_1(DN_1)$ - date when the bill allowing regional (national) (non)reciprocity is introduced by state's bankers association or state bankers;

 $D_2(DN_2)$ - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by state's house committee;

D₁(DN₃) - date when the bill allowing regional (national) (non)reciprocity is introduced into or approved by senate committee;

 $D_4(DN_4)$ - date when the bill allowing regional (national) (non)reciprocity is signed into law by a state governor;

 $D_5(DN_5)$ - date when the law allowing regional (national) (non)reciprocity becomes effective;

Table A32: Fourth category, Equation (4): California.

		nt variable: survived banks		nt variable: active banks
	GARCH (1,1) Results		GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00009	0.64	-0.00005	-0.34
Index	0.45870	18.49	0.50870	20.60
<u>FedFund</u>	-0.00012	-0.49	-0.00016	-0.65
DB_1	0.00004	0.10	0.00032	0.91
DB_2	0.00010	0.40	0.00068	2.73
DB_3	-0.00097	-2.66	0.00033	0.76
DB_IND ₁	0.03840	0.51	-0.13040	-1.93
$DB_{1}ND_{2}$	0.19780	7.02	0.04150	1.38
DB_IND ₃	0.38260	6.54	0.12160	1.52
Di	0.00579	2.37	0.00480	2.40
$\mathbf{D_2}$				
$\mathbf{D_3}$	0.00552	2.42	0.00395	2.73
$\mathbf{D_4}$	0.00259	1.14	0.00126	0.63
D_5	0.00616	9.99	0.00086	0.93
DN ₅	-0.00434	-0.56	-0.00296	-0.83
HETO				
HET1 ARCH0	0.00000	2.17	0.00000	1.24
		3.17		1.34
ARCH1	0.05960	11.33	0.03680	10.62
GARCH1	0.93950	182.37	0.95690	230.86
HET1			0.00000	2.54
System				
R ²	0.2908		0.2727	
AIC	-19627.93		-19996.54	
White*	17.34	p=0.0017	47.11	p<0.0001
Breusch Pagan*	8.53	p=0.0141	34.72	p<0.0001
Observations	2676	•	2676	•
Banks	14		36	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₁ – a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

D₂ - a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective;

 $DN_5 - a$ dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A33: Fourth category, Equation (4): Colorado.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio of active banks HETERO option with number of Banks as variable	
			(Equation 11)	
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00003	-0.12	0.00017	0.05
Index	0.51520	13.60	0.52530	0.94
<u>FedFund</u>	0.00044	0.70	0.00039	0.16
DB_1	-0.00011	-0.13	-0.00030	-0.07
DB_2	-0.00022	-0.26	0.00469	1.28
DB_3	0.00119	1.17	0.00196	0.47
DB_IND_t	0.54620	9.88	0.13230	0.23
$DB_{1}ND_{2}$	0.51410	3.37	0.55010	0.94
DB_IND ₃	0.83210	4.70	0.58540	0.92
$\mathbf{D_{1}}$	-0.00078	-0.25	-0.00179	-0.18
$\mathbf{D_2}$	-0.01320	-3.29	-0.00435	-0.28
$\mathbf{D_3}$				
$\mathbf{D_4}$				
D_5	-0.00006	-0.01	0.00107	0.13
DN ₅	-0.00204	-0.07	0.00203	0.17
НЕТ0	-		0.00031	0.00
HET1			12453.00	0.00
ARCH0	0.00000	4.27		
ARCH1	0.05890	11.09		
GARCH1	0.93940	189.39		
HET1				
System				
R ²	0.1001		0.0317	
AIC	-14998.99		-11294.36	
White*	34.11	p<0.0001	35.49	p<0.0001
Breusch Pagan*	14.52	p=0.0007	25.33	p<0.0001
Observations	2676	•	2676	-
Banks	3		5.25	

^{*} Both tests were applied before correcting for heteroscedasticity

DB1 - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ - a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₃ – a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;
DB_IND₁ (DB_IND₂, DB_IND₃) – a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

D₃ - a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

D₅ - a dummy representing the date when the law becomes effective;

DN₅ - a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A34: Fourth category, Equation (4): Delaware.

. ,	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio of active banks GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00161	6.43	0.00092	4.40
Index	0.93980	21.33	0.84510	22.12
FedFund	0.00024	0.88	0.00055	2.21
DB_1	-0.00231	-2.63	-0.00103	-1.57
DB_2	-0.00186	-3.61	-0.00109	-2.45
DB_3	-0.00287	-5.83	-0.00246	-6.68
DB_IND_1	0.30980	4.45	0.18180	2.81
$DB_{-}IND_{2}$	0.31530	3.79	0.41610	5.70
DB_{IND_3}	0.33740	4.73	0.62110	11.28
\mathbf{D}_1				
$\mathbf{D_2}$				
\mathbf{D}_3				
$\mathbf{D_4}$	-0.00744	-2.55	-0.00407	-2.07
D_5	-0.01080	-4.39	-0.01370	-7.18
DN ₅	-0.00256	-0.67	-0.00274	-0.81
HET0				
HET1				
ARCH0	0.00004	9.84	0.00004	2.92
ARCHI	0.32430	12.57	0.46690	21.19
GARCH1	0.44690	12.30	0.26430	8.96
HET1	· · · · · · · · · · · · · · · · · · ·		0.00000	0.00
System				
R ²	0.3347		0.3725	
AIC	-16720.21		-17398.79	
White*	42.85	p<0.0001	4.31	p=0.0379
Breusch Pagan*	34.27	p<0.0001	4.31	p=0.0379
Observations	2676	F	2676	
Banks	3		4.73	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₃ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return:

 $D_{\rm t}$ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers.

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee:

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

 D_5 – a dummy representing the date when the law becomes effective;

DN₅ - a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A35: Fourth category, Equation (4): District of Columbia.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio of active banks OLS Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	-0.00056	-1.30	0.00056	0.47
Index	0.24610	3.94	0.45040	2.22
FedFund	0.00047	0.73	-0.00003	-0.02
DB ₁	0.00166	0.72	-0.00140	-0.19
DB_2	0.00318	1.07	0.00104	0.23
DB_3	0.00031	0.53	-0.00035	-0.23
DB_IND_1	-1.15680	-1.60	0.85250	0.46
DB_IND ₂	0.22830	0.44	-0.02710	-0.03
DB_IND ₃	0.48620	6.89	0.09330	0.39
$\mathbf{D}_{\mathbf{I}}$				
$\mathbf{D_2}$	0.00120	0.00	0.0000	0.10
D ₃	0.00138	0.28	-0.00207	-0.19
D4	0.00108	0.18	0.00424	0.33
D ₅	0.00209	0.22	-0.00070	-0.07
DN ₅	0.00173	61.0	0.00193	0.18
HETO HET1				
ARCH0	0.00001	13.12		
ARCH1	0.11840	17.45		
GARCH1	0.88240	157.37		
HET1				
System				
R ²	0.0471		0.0095	
AIC	-13692.25		-10234.77	
White*	19.00	p=0.0008	2.84	p=0.2412
Breusch Pagan*	15.76	p=0.0004	2.53	p=0.1120
Observations	2676	•	2676	•
Banks	1		2.64	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

 $DB_2 - a$ dummy which takes a value of 1 between the effective dates of regional and national reciprocity:

DB₃ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

D₂ - a dummy representing the date when the bill is introduced into or approved by state's house committee;

D₃ - a dummy representing the date when the bill is introduced into or approved by senate committee:

 D_4 – a dummy representing the date when the bill is signed into law by a state governor.

D₅ - a dummy representing the date when the law becomes effective;

DN₅ - a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A36: Fourth category, Equation (4): Kentucky.

	Dependent variable: Portfolio of survived banks GARCH (1.1) Results		Dependent variable: Portfolio of active banks GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00082	3.53	0.00050	1.98
Index	0.12200	4.33	0.31070	7.23
FedFund	0.00123	4.33	0.00023	0.70
DB_1	-0.00111	-1.41	-0.00014	-0.17
DB_2	0.00043	0.94	0.00019	0.52
DB_3	-0.00071	-2.08	-0.00036	-1.20
DB_IND ₁	-0.03040	-0.20	0.13450	0.70
$DB_{\perp}IND_{2}$	0.24270	2.75	0.12870	1.65
DB_IND ₃	0.46780	11.79	0.00181	0.04
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$				
\mathbf{D}_{3}	-0.00185	-1.67	-0.00056	-0.34
$\mathbf{D_4}$	0.00283	1.36	-0.00032	-0.14
$\mathbf{D_5}$	-0.01330	-19.07	0.00159	0.46
DN_5	-0.00278	-0.80	-0.00636	-6.68
НЕТО				
HET1	0.00000	0.50	0.0000	= 0.5
ARCH0	0.00000	8.78	0.00000	7.85
ARCH1	0.11200	16.63	0.13090	10.28
GARCH1 HET1	0.88840	153.99	0.79800	41.78
System			· · · · · · · · · · · · · · · · · · ·	
R ²	0.0559		0.1020	
AIC	-16984.01		-18951.92	
White*	251.60	p<0.0001	1.75	p=0.4178
Breusch Pagan*	88.76	1000.05q	1.75	p=0.4178 p=0.1864
Observations	2676	p<0.0001	2676	p=0.1004
Banks	2070		6.44	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ - a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₁ = a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return:

 D_i - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee:

D₄ – a dummy representing the date when the bill is signed into law by a state governor;

 D_5 – a dummy representing the date when the law becomes effective;

DN₅ – a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A37: Fourth category, Equation (4): Louisiana.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00015	0.50	-0.00007	-0.24
Index	0.42010	10.16	0.43110	8.95
<u>FedFund</u>	-0.00049	-1.07	-0.00036	-0.88
DΒ ₁	-0.00051	-0.67	0.00037	0.45
DB_2	0.00028	0.49	0.00059	0.77
DB_3	-0.00024	-0.48	-0.00016	-0.30
DB_LIND_1	0.44340	3.89	0.20040	1.45
$DB_{1}D_{2}$	0.31070	5.59	0.37600	6.43
DB_IND ₃	0.33560	4.82	0.79550	10.82
\mathbf{D}_{t}	0.00247	0.61	0.00396	1.26
$\mathbf{D_2}$				
\mathbf{D}_3	0.00481	0.98	-0.00255	-0.55
$\mathbf{D_4}$	0.00872	2.67	0.00455	1.07
\mathbf{D}_{5}	-0.00249	-0.71	-0.00584	-1.18
DN ₅	-0.00291	-1.07	0.01290	1.15
HET0	=			
HET1				
ARCH0	0.00001	10.79	0.00000	0.00
ARCHI	0.16580	21.72	0.21880	19.83
GARCH1	0.82310	122.82	0.69100	48.89
HET1			10000.0	6.39
System				
\mathbb{R}^2	0.1038		0.1287	
AIC	-15809.88		-15512.43	
White*	84.95	p<0.0001	33.67	p<0.0001
Breusch Pagan*	54.99	p<0.0001	32.49	p<0.0001
Observations	2676	•	2676	
Banks	2		3.33	

^{*} Both tests were applied before correcting for heteroscedasticity

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ - a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₃ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_1 – a durminy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor.

 D_3 – a dummy representing the date when the law becomes effective;

DN₅ – a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A38: Fourth category, Equation (4): Michigan.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results			nt variable: active banks
			GARCH (1,1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00091	4.50	0.00114	5.51
Index	0.56160	16.34	0.63680	21.21
FedFund	-0.00006	-0.19	0.00002	0.08
DB_1				
DB_2	-0.00084	-2.65	-0.00110	-3.53
DB ₃	-0.00116	-3.97	-0.00097	-3.34
DB_IND ₁				
$DB_{1}ND_{2}$	0.26150	7.18	-0.01430	-0.47
DB_IND ₃	0.24690	5.14	-0.03200	-0.74
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$				
$\overline{\mathbf{D}_3}$				
D,	0.00060	0.38	-0.00084	-0.47
D _s	-0.00220	-0.95	-0.00333	-1.31
DN ₅	0.00193	1.02	0.00366	3.13
нето				
HETI	0.0000	. an	0.00000	3.00
ARCH0	0.00000	6.38	0.00000	3.90
ARCH1	0.13620	10.60	0.01550	5.41
GARCHI HET1	0.77920	36.85	0.97840	259.61
System				
R ²	0.3396		0.2783	
AIC	-19062.35		-19481.65	
White*	60.01	p<0.0001	1.57	p=0.4551
Breusch Pagan*	29.95	p<0.0001	1.42	p=0.2328
Observations	2676	p<0.0001	2676	p=0.2520
Banks	5		11.79	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective dates of regional and national reciprocity:

 $DB_1 - a$ dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

 D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers: D_2 - a dummy representing the date when the bill is introduced into or approved by state's house committee:

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

 D_5 – a dummy representing the date when the law becomes effective;

 DN_3 – a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A39: Fourth category, Equation (4): Nebraska.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
			HETERO option with	
	GARCH (1,1) Results	number of Banks as variable	
			(Equation 11)	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00063	2.72	0.00084	2.99
Index	0.17680	7.04	0.32690	9.87
<u>FedFund</u>	0.00060	1.70	-0.00037	-0.76
DB_1	-0.00025	-0.45	-0.00020	-0.32
DB_2	-0.00106	-1.32	-0.00147	-1.87
DB_3	0.00083	1.06	0.00099	1.92
DB_IND ₁	0.21320	2.53	-0.14960	-1.45
$DB_{1}ND_{2}$	0.02270	0.32	-0.16720	-1.28
DB_IND ₃	0.23680	1.79	-0.29310	-3.83
\mathbf{D}_{t}	-0.00059	-0.11	-0.00186	-0.43
\mathbf{D}_2				
\mathbf{D}_3	-0.00418	-0.55	-0.00114	-0.15
\mathbf{D}_{4}	0.00078	0.10	0.00284	0.43
\mathbf{D}_{5}	0.00292	0.83	-0.00053	-0.18
DN ₅	-0.00242	-0.84	-0.00089	-0.43
HET0			0.01110	95.68
HET1			-0.46	-8.44
ARCH0	0.00001	14.58		
ARCHI	0.20990	16.33		
GARCHI	0.78970	74.23		
HET1		·		
System				
R ²	0.2868		0.0342	
AIC	-18306.34		-16810.81	
White*	18.30	p=0.0011	7.08	p=0.0290
Breusch Pagan*	10.53	p=0.0052	4.54	p=0.0332
Observations	2676	-	2676	-
Banks	1		2.01	

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate:

DB₁ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB2 - a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₃ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) – a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return: D_1 – a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee;

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 - a dummy representing the date when the bill is signed into law by a state governor.

 D_5 – a dummy representing the date when the law becomes effective:

 $DN_5 - a$ dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A40: Fourth category, Equation (4): Ohio.

	-	nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		OLS Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00054	1.70	0.00078	3.01
Index	0.42960	9.62	0.46180	11.92
FedFund	0.00038	1.23	0.00043	1.56
\mathbf{DB}_1	0.00063	1.26	0.00007	0.16
DB_2	-0.00063	-1.53	-0.00045	-1.32
DB_3	-0.00043	-1.12	-0.00047	-1.44
DB_IND_1	0.09540	1.04	0.01330	0.17
$DB_{1ND_{2}}$	0.49220	9.55	0.08920	1.94
DB_IND ₃	0.46870	8.06	0.25560	4.86
$\mathbf{D_{t}}$	0.00087	0.30	0.00030	0.17
$\mathbf{D_2}$	0.00087	0.56	0.00140	1.20
\mathbf{D}_3	0.00214	0.68	0.00310	1.45
\mathbf{D}_{4}	-0.00521	-2.69	-0.00218	-1.02
\mathbf{D}_{5}	0.00156	0.77	0.00217	1.20
DN ₅	-0.00191	-0.56	-0.00079	-0.43
HET0				
HET1				
ARCH0	0.00001	7.72		
ARCH1	0.13020	7.66		
GARCH1	0.76270	27.88		
HET1			· · · · · · · · · · · · · · · · · · ·	
System				
R ²	0.3301		0.2918	
AIC	-18727.11		-19814.57	
White*	38.25	p<0.0001	2.43	p=0.2966
Breusch Pagan*	6.72	p=0.0347	0.34	p=0.5617
Observations	2676	P	2676	r
Banks	4		12.91	

^{*} Both tests were applied before correcting for heteroscedasticity

FedFund - the first difference of the federal funds rate:

 DB_1 – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ – a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₃ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

 D_{t} - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

 D_1 – a dummy representing the date when the bill is introduced into or approved by senate committee:

 D_1 – a dummy representing the date when the bill is signed into a approved by senate committed D_4 – a dummy representing the date when the bill is signed into law by a state governor:

 D_4 – a dummy representing the date when the bill is signed into law by a st D_5 – a dummy representing the date when the law becomes effective;

DN₅ - a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A41: Fourth category, Equation (4): Pennsylvania.

		nt variable: survived banks		nt variable: 'active banks
	GARCH (1,1) Results		GARCH (1,1) Results with HETERO option	
<u> </u>	Estimate	t-stat	Estimate	t-stat
Intercept	0.00053	2.35	0.00086	6.68
Index	0.60950	16.93	0.51400	22.28
FedFund	0.00031	1.20	0.00030	1.75
\mathbf{DB}_1	-0.00002	-0.04	0.00005	0.17
DB_2	-0.00103	-3.35	-0.00094	-4.94
DB ₃	-0.00080	-1.98	-0.00094	-3.94
DB_IND_1	0.32490	4.34	0.14910	3.03
DB_IND ₂	0.39970	10.58	0.11780	5.00
DB_IND ₃	0.78320	13.29	0.10360	2.78
$\mathbf{D_1}$	0.00317	2.58	0.00256	3.69
$\mathbf{D_2}$				
\mathbf{D}_3	0.00208	1.12	0.00087	0.74
$\mathbf{D_4}$	0.00152	0.51	0.00426	2.08
\mathbf{D}_{S}	-0.00201	-0.58	-0.00124	-0.61
DN ₅	0.00242	1.30	-0.00114	-0.98
HET0	· · -	_		
HETI				
ARCH0	0.00000	5.80	0.00000	2.42
ARCH1	0.11010	12.01	0.09910	11.36
GARCH1	0.86280	76.36	0.86860	73.17
HET1			0.00000	1.19
System				
R ²	0.4263		0.4106	
AIC	-18978.70		-21170.88	
White*	140.40	p<0.0001	7.13	p=0.0283
Breusch Pagan*	86.20	p<0.0001	6.78	p=0.0092
Observations	2676	•	2676	-
Banks	8		25.46	

Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ - a dummy which takes a value of 1 between the effective dates of regional and national reciprocity:

DB₃ – a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity:

DB_IND₁ (DB_IND₂, DB_IND₃) - a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return:

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee; D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee;

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

 D_5 – a dummy representing the date when the law becomes effective:

 $DN_3 - a$ dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A42: Fourth category, Equation (4): Vermont.

		et variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat_
Intercept	-0.00006	-0.17	0.00057	1.96
Index	0.39860	7.42	0.20800	4.17
FedFund	-0.00157	-3.12	-0.00044	-0.82
$\mathbf{DB_{t}}$	-0.00156	-0.96	-0.00188	-2.29
DB_2	-0.00022	-0.23	-0.00050	-0.90
DB ₃	0.00015	0.12	-0.00065	-0.66
$DB_{L}IND_{t}$	0.46150	5.09	0.23310	3.67
$DB_{1}ND_{2}$	0.16580	0.73	0.11470	0.95
DB_IND ₃	1.36930	5.36	0.86420	5.24
\mathbf{D}_{1}				
$\mathbf{D_2}$	0.00611	2.07	-0.00029	-0.10
\mathbf{D}_3	0.00099	0.30	-0.00061	-0.14
D4				
\mathbf{D}_{5}	0.00145	0.07	0.01050	2.01
DN ₅	0.00131	0.08	-0.00196	-0.34
НЕТ0				
HET1				
ARCH0	0.00000	6.79	0.00000	0.02
ARCH1	0.14650	16.12	0.09330	15.12
GARCH1	0.87030	143.44	0.91030	173.44
HET1			0.00000	1.08
System				
R ²	0.0630		0.0553	
AIC	-10460.91		-12700.16	
White*	51.88	p<0.0001	152.80	p<0.0001
Breusch Pagan*	30.35	p<0.0001	100.70	p<0.0001
Observations	2198	£	2198	
Banks	1		3.76	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₂ - a dummy which takes a value of 1 between the effective dates of regional and national reciprocity;

DB₃ - a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity:

DB_IND₁ (DB_IND₂, DB_IND₃) = a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return;

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced by state's baseciation of state obtainers.

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee:

 D_4 – a dummy representing the date when the bill is signed into law by a state governor;

D₅ – a dummy representing the date when the law becomes effective:

DN₅ – a dummy representing the date when the law allowing for national reciprocity becomes effective.

Table A43: Fifth category, Equation (5): Maryland.

Intercept	stimate .00082 .41890 .00038 .00118 .00070 .00072 .00337 .74310 .45480	t-stat 2.38 8.16 0.99 1.61 -1.28 -1.60 0.03 7.39 8.37 0.51) Results with O option t-stat 2.52 7.98 0.88 2.11 -1.52 -2.65 0.42 10.35 12.99 1.03
Intercept	.00082 .41890 .00038 .00118 .00070 .00072 .00337 .74310 .45480	2.38 8.16 0.99 1.61 -1.28 -1.60 0.03 7.39 8.37	0.00063 0.31690 0.00025 0.00103 -0.00061 -0.00093 0.03300 0.69920 0.58040	2.52 7.98 0.88 2.11 -1.52 -2.65 0.42 10.35 12.99
Index 0 FedFund 0 DB1 0 DB2 -0 DB3 -0 DB_IND1 0 DB_IND2 0 DB_IND3 0 D1 0 D2 0 D3 0 D4 0 D5 0 DEXP5 -0 HET0 HET1 ARCH0 0 ARCH1 0	.41890 .00038 .00118 .00070 .00072 .00337 .74310 .45480	8.16 0.99 1.61 -1.28 -1.60 0.03 7.39 8.37	0.31690 0.00025 0.00103 -0.00061 -0.00093 0.03300 0.69920 0.58040	7.98 0.88 2.11 -1.52 -2.65 0.42 10.35 12.99
FedFund	.00038 .00118 .00070 .00072 .00337 .74310 .45480	0.99 1.61 -1.28 -1.60 0.03 7.39 8.37	0.00025 0.00103 -0.00061 -0.00093 0.03300 0.69920 0.58040	0.88 2.11 -1.52 -2.65 0.42 10.35 12.99
DB ₁ 0 DB ₂ -0 DB ₃ -0 DB ₃ -0 DB_IND ₁ 0 DB_IND ₂ 0 DB_IND ₃ 0 D ₁ 0 D ₂ 0 D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	.00118 0.00070 0.00072 .00337 .74310 .45480	1.61 -1.28 -1.60 0.03 7.39 8.37	0.00103 -0.00061 -0.00093 0.03300 0.69920 0.58040	2.11 -1.52 -2.65 0.42 10.35 12.99
DB ₂ -0 DB ₃ -0 DB ₃ -0 DB_IND ₁ 0 DB_IND ₂ 0 DB_IND ₃ 0 D ₁ 0 D ₂ 0 D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	0.00070 0.00072 .00337 .74310 .45480	-1.28 -1.60 0.03 7.39 8.37	-0.00061 -0.00093 0.03300 0.69920 0.58040	-1.52 -2.65 0.42 10.35 12.99
DB ₃ -0 DB_IND ₁ 0 DB_IND ₂ 0 DB_IND ₃ 0 D ₁ 0 D ₂ 0 D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	0.00072 .00337 .74310 .45480 .00242	-1.60 0.03 7.39 8.37	-0.00093 0.03300 0.69920 0.58040	-2.65 0.42 10.35 12.99
DB_IND ₁ 0 DB_IND ₂ 0 DB_IND ₃ 0 D ₁ 0 D ₂ 0 D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	.00337 .74310 .45480 .00242	0.03 7.39 8.37	0.03300 0.69920 0.58040	0.42 10.35 12.99
DB_IND ₂ 0 DB_IND ₃ 0 D ₁ 0 D ₂ D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	.74310 .45480 .00242	7.39 8.37	0.69920 0.58040	10.35 12.99
DB_IND3 0	.45480 .00242	8.37	0.58040	12.99
D ₁ 0 D ₂ D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	.00242			
D ₂ D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0		0.51	0.00246	1.03
D ₃ 0 D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0				1.03
D ₄ 0 D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0				
D ₅ 0 DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	.00021	0.14	0.00689	5.44
DEXP ₅ -0 HET0 HET1 ARCH0 0 ARCH1 0	.00147	0.37	0.00042	0.14
HET0 HET1 ARCH0 0 ARCH1 0	.01270	12.22	0.00412	1.19
HET1 ARCH0 0 ARCH1 0	.00197	-0.43	-0.00184	-0.45
ARCHO 0 ARCH1 0			_	
ARCH1 0				
	.00000	8.49	0.00000	0.09
	.07900	14.98	0.06000	11.72
	.91380	188.63	0.93130	177.91
HET1			0.00000	5.51
Sustam				
System R ² 0	.1354		0.2792	
	.135 → 5530.57		-18269.62	
AIC -10 White*	3.87	0 1225	-18209.62 81.85	p<0.0001
	3.60	p=0.4235	81.85 26.56	p<0.0001 p<0.0001
	3.00 2676	p=0.1656	26.36 2676	p<0.0001
Observations Banks	(11/17)		2070 5.78	

^{*} Both tests were applied before correcting for heteroscedasticity

 $[\]mathsf{DB}_1$ – a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ - a dummy which takes a value of 1 between two effective dates:

DB₃ - a dummy which takes a value of 1 after the effective date of a law expanding the region;

DB_IND₁ (DB_IND₂, DB_IND₃) = a dummy DB₁ (DB₂, DB₃) multiplied by CRSP equally weighted index return.

D₁ - a dummy representing the date when the bill is introduced by state's bankers association or state bankers:

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

 D_1 – a dummy representing the date when the bill is introduced into or approved by senate committee:

 D_4 – a dummy representing the date when the bill is signed into law by a state governor:

D₅ – a dummy representing the date when the law becomes effective:

DEXPs - a dummy representing the date when the law expanding the region becomes effective.

Table A44: Fifth category, Equation (5): Mississippi.

		nt variable: survived banks	Dependent variable: Portfolio of active banks	
	GARCH (1,1) Results		GARCH (1,1) Results with HETERO option	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00096	6.12	0.00085	4.99
Index	0.13800	5.17	0.17930	6.28
FedFund	-0.00123	-4.34	-0.00114	-5.33
$\mathbf{DB_1}$	-0.00100	-1.97	-0.00034	-0.79
DB_2	-0.00120	-2.82	-0.00116	-2.64
DB ₃	0.00102	1.59	0.00042	0.94
$DB_{\perp}IND_{1}$	0.29830	5.92	0.35350	10.58
$DB_{\perp}IND_{2}$	0.25930	2.71	0.25050	2.25
DB_IND ₃	0.40100	3.69	0.13660	1.81
$\mathbf{D_1}$				
$\mathbf{D_2}$	0.00438	1.47	0.00395	1.66
\mathbf{D}_3	-0.00023	-0.10	-0.00048	-0.24
$\mathbf{D_4}$	0.00397	0.91	0.00302	0.74
D ₅	0.00543	2.73	-0.00229	-1.15
DEXP ₅	-0.00119	-0.32	-0.00035	-0.13
НЕТ0				
HET1				
ARCH0	0.00000	7.22	0.00000	0.01
ARCH1	0.20540	16.90	0.26240	16.97
GARCH1	0.81710	101.31	0.73950	61.83
HET1			0.00000	2.86
System				
R ²	0.0460		0.0533	
AIC	-16542.16		-17090.27	
White*	20.63	p=0.0004	159.50	p<0.0001
Breusch Pagan*	8.20	p=0.0166	140.70	p<0.0001
Observations	2676	•	2676	•
Banks	2		3.19	

^{*} Both tests were applied before correcting for heteroscedasticity

DB₁ - a dummy which takes a value of 1 between the first announcement and effective date;

DB₂ - a dummy which takes a value of 1 between two effective dates;

DB₃ – a dummy which takes a value of 1 after the effective date of a law expanding the region;

 DB_1ND_1 (DB_1ND_2 , DB_2ND_3) – a dummy DB_1 (DB_2 , DB_3) multiplied by CRSP equally weighted index return; D_1 - a dummy representing the date when the bill is introduced by state's bankers association or state bankers;

 D_2 – a dummy representing the date when the bill is introduced into or approved by state's house committee:

 D_3 – a dummy representing the date when the bill is introduced into or approved by senate committee:

 D_4 – a dummy representing the date when the bill is signed into law by a state governor; D_5 – a dummy representing the date when the law becomes effective;

DEXP₅ - a dummy representing the date when the law expanding the region becomes effective.

Table A45: Sixth category, Equation (6): Indiana.

	Dependent variable: Portfolio of survived banks GARCH (1,1) Results			Dependent variable: Pertfelio of active banks	
			GARCH (1,1) Results		
	Estimate	t-stat	Estimate	t-stat	
Intercept	0.00087	2.26	0.00087	3.23	
Index	0.44610	9.36	0.55210	16.21	
FedFund	0.00001	0.01	0.00010	0.27	
DB ₁	0.00078	1.18	0.00114	2.11	
DB ₂	0.00065	1.07	-0.00098	-2.28	
DB,	0.00012	0.03	-0.00023	-0.15	
DB ₄	-0.00092	-1.86	-0.00053	-1.60	
DB,	0.00195	0.35	0.00057	0.19	
DB_IND ₁	-0.03970	-0.29	-0.07190	-0.60	
DB_IND ₂	0.30840	1.96	-0.02880	-0.36	
DB_IND,	0.25670	0.23	-0.04000	-0.11	
DB_IND4	0.30690	6.01	-0.06940	-1.93	
DB_IND,	-0.49350	-0.42	-0.38260	-0.69	
Dı	0.00281	1.05	0.00048	0.16	
D ₂					
D,	0.00194	1.03	-0.00007	-0.03	
$\mathbf{D_4}$	0.00035	0.08	0.00022	0.07	
D,	-0.00071	-0.22	-0.00003	-0.01	
DEXP12	-0.00069	-0.13	-0.00129	-0.97	
DEXP1,					
DEXP14					
DEXP1,	0.00003	10.0	-0.00225	-1.08	
DEXP2,	-0.00798	-3.01	-0.00302	-1.30	
DEXP3,					
DN ₅	0.00332	0.78	0.00012	0.06	
HET0					
HET1					
ARCH0	0.00000	12.51	0.00004	11.38	
ARCHI	0.04410	17.67	0.12290	6.11	
GARCHI	0.94890	414.20	0.00249	0.03	
HETI	<u> </u>				
System					
R²	0.1273		0.2044		
AIC	-16577.11		-19160.93		
White*	50.05	p<0.0001	2.18	p=0.3365	
Breusch Pagan*	49.49	p<0.0001	1.67	p=0.1964	
Observations	2676		2676		
Banks	2		8.79		

^{*}Both tests were applied before correcting for heteroscedasticity
FedFund - the first difference of the federal funds rate:

DB₁ = a durinny which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity.

DB₂ = a durinny which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcement of plans to expand the region;

DB₂ = a durinny which takes a value of 1 between the first announcement of plans to expand the region and the effective date of a law allowing this;

DB₃ = a durinny which takes a value of 1 between the effective date of a law allowing expansion of the region and the effective date of a law allowing national reciprocity;

DB₂ = A durinny which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB₂ = DB₂ ND₃ DB₂ ND₃ DB₂ ND₄ DB₂ ND₄ DB₃ ND₄ DB₄ ND₅ DB₅ DB₅

Table A46: Sixth category, Equation (6): Minnesota.

	Dependent variable: Portfelio of survived banks GARCH (1,1) Results		Dependent variable: Portfolio o active banks GARCH (1.1) Results	
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00013	0.34	-0.00011	-0.28
Index	0.71250	13.01	0.73220	17.48
FedFund	-0.00045	-0.82	0.00003	0.06
$\mathbf{DB_t}$	0.00039	0.43	0.00054	0.68
DB ₂	0.00019	0.33	-0.00012	-0.17
DB,	0.00058	0.35	0.00109	0.76
DB₄	0.00017	0.30	-0.00012	-0.21
DB ₅				
DB_IND,	0.04250	0.22	0.03570	0.23
DB_IND ₂	-0.01910	-0.27	0.14860	2.78
DB_IND,	-0.48350	-1.24	-0.17660	-0.59
DB_IND ₄	-0.01050	-0.10	0.40290	4.74
DB_IND,				
D _L	•	•		
D ₂				
D,	0.00115	0.34	0.00057	0.28
D ₄	-0.00977	-6.09	-0.01120	-7.30
D,	0.00040	0.13	0.00188	0.73
DEXP1:			<u> </u>	
DEXP1,	-0.00113	-0.32	-0.00121	-0.43
DEXP1.	0.00063	0.11	-0.00255	-0.69
DEXP1,	-0.00198	-0.62	-0.00219	-0.68
DEXP2,	0.00247	1.03	-0.00097	-0.29
DEXP3,	-0.00050	-0.30	0.00126	0.55
DN ₅				
НЕТ0				
HET1				
ARCH0	0.00001	7.29	0.00000	0.00
ARCH1	0.11610	12.04	0.24060	10.36
GARCHI	0.85660	74.31	0.53360	13.83
HETI			0.00002	5.64
System				
R ¹	0.1042		0.1996	
AIC	-15542.73		-16030.53	
White*	24.09	p<0.0001	32.68	p<0.0001
Breusch Pagan*	10.65	p=0.0049	32.68	p<0.0001
Observations	2676		2676	•
Banks	2		2.53	

^{*} Both tests were applied before correcting for heteroscedasticity
fedFund - the first difference of the federal funds rate;

DB₂ = a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₃ = a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcement of plans to expand the region and the effective date of a law allowing this,

DB₃ = a dummy which takes a value of 1 between the effective date of a law allowing expansion of the region and the effective date of a law allowing national reciprocity;

DB₃ = a dummy which takes a value of 1 between the effective date of a law allowing expansion of the region and the effective date of a law allowing national reciprocity;

DB₃ = Admmy which takes a value of 1 after the effective date of a law allowing national reciprocity;

DB₄ = DB₄ = DB₄ = DB₄ = DB₅ = DB₄ =

Table A47: Seventh category, Equation (7): Maine.

	Dependent variable: Portfolio of survived banks OLS Results		Dependent variable: Portfolio of active bank	
			GARCH (1,1) Results
	Estimate	t-stat	Estimate	t-stat
Intercept	0.00115	0.84	0.00058	1.68
Index	0.01520	0.07	0.02040	0.38
FedFund	-0.00796	-3.41	-0.00181	-1.87
DB ₂	-0.00195	-1.01	0.00021	0.23
DB_IND ₂	1.23040	4.14	0.56370	4.21
$\overline{\mathbf{D_4}}$	-0.00045	-0.05	10000.0-	0.00
ARCH0			0.00000	5.80
ARCH1			0.24410	14.80
GARCH1			0.79530	79.43
System				
R ²	0.0404		0.0254	
AIC	-4473.24		-5479.65	
White*	21.03	p=0.0003	21.03	p=0.0003
Breusch Pagan*	20.17	p<0.0001	20.17	p<0.0001
Observations	1091	•	1091	•
Banks	1		1	

^{*} Both tests were applied before correcting for heteroscedasticity FedFund - the first difference of the federal funds rate: $DB_2 - a \ dummy \ which \ takes \ a \ value \ of \ 1 \ after \ the \ effective \ date \ of \ law \ allowing \ national \ reciprocity; <math display="block">DB_2 IND_2 - a \ dummy \ DB_2 \ multiplied \ by \ CRSP \ equally \ weighted \ index \ return; \\ D_4 - a \ dummy \ representing \ the \ date \ when \ the \ bill \ is \ signed \ into \ law \ by \ a \ state \ governor;$

Table A48: The results of the Breusch-Pagan and White tests for the presence of heteroscedasticity in the portfolios of active banks. Both tests' statistics are calculated with regards to the changing number of banks (Equations 12 and 13):

State	Test	Statistic	Pr > ChiSq	Variables
AK	White's Test	10.32	0.0058	Cross of all vars
	Breusch-Pagan	0.04	0.8495	Banks, I
AL	White's Test	0.56	0.4536	Cross of all vars
	Breusch-Pagan	0.56	0.4536	Banks, I
· · · · · · · · · · · · · · · · · · ·				
AR	White's Test	7.74	0.0209	Cross of all vars
	Breusch-Pagan	0.52	0.4726	Banks, 1
				1
AZ	White's Test	74.78	<.0001	Cross of all vars
	Breusch-Pagan	29.68	<.0001	Banks, I
CA	White's Test	47.11	<.0001	Cross of all vars
	Breusch-Pagan	34.72	<.0001	Banks, 1
CO	White's Test	35.49	<.0001	Cross of all vars
	Breusch-Pagan	25.33	<.0001	Banks, I
CT	White's Test	74.72	<.0001	Cross of all vars
······································	Breusch-Pagan	39.02	<.0001	Banks, 1
DC	White's Test	2.84	0.2412	Cross of all vars
	Breusch-Pagan	2.53	0.112	Banks, I
DE	White's Test	4.31	0.0379	Cross of all vars
	Breusch-Pagan	4.31	0.0379	Banks, 1
FL	White's Test	129.3	<.0001	Cross of all vars
	Breusch-Pagan	103.7	<.0001	Banks, I
GA	White's Test	91.41	<.0001	Cross of all vars
-	Breusch-Pagan	44.68	<.0001	Banks, 1
IA	White's Test	12.55	0.0019	Cross of all vars
	Breusch-Pagan	10.21	0.0014	Banks, 1
IL	White's Test	5.37	0.0681	Cross of all vars
	Breusch-Pagan	2.08	0.1493	Banks, I
IN	White's Test	2.18	0.3365	Cross of all vars
	Breusch-Pagan	1.67	0.1964	Banks, 1
KY	White's Test	1.75	0.4178	Cross of all vars
	Breusch-Pagan	1.75	0.1864	Banks, I
LA	White's Test	33.67	<.0001	Cross of all vars
	Breusch-Pagan	32.49	<.0001	Banks, 1

Table A48 continued:

State	Test	Statistic	Pr > ChiSq	Variables
MA	White's Test	59.27	<.0001	Cross of all vars
	Breusch-Pagan	59.26	<.0001	Banks, I
MD	White's Test	81.85	<.0001	Cross of all vars
	Breusch-Pagan	26.56	<.0001	Banks, I
MI	White's Test	1.57	0.4551	Cross of all vars
	Breusch-Pagan	1.42	0.2328	Banks, 1
MN	White's Test	32.68	<.0001	Cross of all vars
	Breusch-Pagan	32.68	<.0001	Banks, 1
МО	White's Test	8.7	0.0129	Cross of all vars
	Breusch-Pagan	5.83	0.0157	Banks, I
MS	White's Test	159.5	<.0001	Cross of all vars
	Breusch-Pagan	140.7	<.0001	Banks, I
		2.0		
NC	White's Test	24.94	<.0001	Cross of all vars
	Breusch-Pagan	13.57	0.0002	Banks, 1
N.E.	1771 - 1775 -	7.00	0.000	C 6 11
NE	White's Test	7.08	0.029	Cross of all vars
	Breusch-Pagan	4.54	0.0332	Banks, I
NH	White's Test	12.65	0.0018	Cross of all vars
NH		2.03	0.0018	Banks, 1
	Breusch-Pagan	2.03	0.1545	Daliks, I
NJ	White's Test	59.38	<.0001	Cross of all vars
	Breusch-Pagan	43.88	<.0001	Banks, I
	Dieusch-Fagair	43.86	2.0001	Dairs, 1
NY	White's Test	42.2	<.0001	Cross of all vars
14.8	Breusch-Pagan	31.37	<.0001	Banks, I
	Dicusen-t again	31.57	<u> </u>	Duiks, 1
ОН	White's Test	2.43	0.2966	Cross of all vars
	Breusch-Pagan	0.34	0.5617	Banks, I
			0.000	
OK	White's Test	83.14	<.0001	Cross of all vars
	Breusch-Pagan	50.24	<.000.>	Banks, 1
PA	White's Test	7.13	0.0283	Cross of all vars
	Breusch-Pagan	6.78	0.0092	Banks, 1
	<u> </u>		<u> </u>	
RI	White's Test	1.67	0.1966	Cross of all vars
	Breusch-Pagan	1.67	0.1966	Banks, 1
SC	White's Test	19.17	<.0001	Cross of all vars
	Breusch-Pagan	0.01	0.9103	Banks, I
	·			

Table A48 continued:

State	Test	Statistic	Pr > ChiSq	Variables
TN	White's Test	0.17	0.9205	Cross of all vars
	Breusch-Pagan	0.16	0.6882	Banks, I
TX	White's Test	200.9	<.0001	Cross of all vars
	Breusch-Pagan	200.2	<.0001	Banks, 1
VA	White's Test	20.26	<.0001	Cross of all vars
	Breusch-Pagan	20.26	<.0001	Banks, I
VT	White's Test	152.8	<.0001	Cross of all vars
	Breusch-Pagan	100.7	<.0001	Banks, 1
WA	White's Test	32.09	<.0001	Cross of all vars
	Breusch-Pagan	32.09	<.0001	Banks, I
WI	White's Test	0.54	0.4605	Cross of all vars
	Breusch-Pagan	0.54	0.4605	Banks, l
WV	White's Test	2.32	0.3142	Cross of all vars
	Breusch-Pagan	2.24	0.1341	Banks, I

Table A49: Descriptive statistics for states included in each category.

Categories ¹		=	Ξ	?:	>				;
Number of states	=	9	12	2	NO.	MS	Z	W	ME
GSP \$bin (Gross State Product) 1982	71.43	49.32	56.75	82.78	56.03	24.86	63.55	56.44	12.08
GSP \$bin (Gross State Product) 1993	129.83	106.14	124.09	171.00	126.44	47.38	131.49	115.42	25.36
Average GSP change (1982-93)	4.68%	6.59%	7.51%	6.67%	7.74%	6.06%	6.87%	6.77%	7.05%
Population 1982 (mln)	4.45	4.13	4.25	5.99	4.28	2.56	5.47	4.13	1.14
Population 1993 (mln)	4.95	4.74	4.63	69.9	4.94	2.64	5.70	4.52	1.24
Average Population Growth (1982-93)	0.86%	0.84%	0.93%	0.85%	1.31%	0.28%	0.38%	0.82%	0.78%
Land Area (thousand sq. km.)	356.92	168.69	102.77	147.53	25.32	121.51	92.90	206.21	79.94
Average Population Density (1982-93) (Population per sq. km.)	24.70 12.54³	31.62	134.64	372.73 53.21 ²	182.07	21.29	59.46	20.81	14.93
Number of banking institutions (1982)	293.45	430.90	205.58	247.42	16	167	901	759	35
Number of banking institutions (1993)	203.18	338.60	150.08	205.08	1 6	811	37	573	20
Average percentage change in number of banking institutions (1982-93)	-2.15%	-1.88%	-3.25%	-0.73%	0.36%	-3.08%	-8.94%	-2.50%	-4.61%
Unassisted Mergers (1982-93)	1028	1465	942	086	33	53	891	183	21
Failures (mergers) (1982-93)	594	991	125	198	0	3	∞	27	-
Failures (paid off) (1982-93) Jnassisted Mergers - voluntary mergers, consolidations or abso	158 45 28 absorptions of two or more institutions.	45 o or more ins	28 stitutions.	3	2	0	5	6	0

Unassisted Mergers - voluntary mergers, consolidations or ansorptions or two or two or managers.

Failures (mergers) - mergers, consolidations or absorptions entered into as a result of supervisory actions.

Failures (paid off) - represents institutions that were declared insolvent, the insured deposits of which were paid by the FDIC.

For the categories I-IV the average figures for the respective number of states in each category are provided.

The estimates excluding D.C.

The estimates excluding Texas

The estimates excluding Texas

The estimates excluding Illinois

Sources: Bureau of Economic Analysis, U.S. Census Bureau, and Federal Deposit Insurance Corporation

Table A50: Number of institutions, branches, and total offices, FDIC-insured commercial banks

Year		•								
	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
1982	4	115	294	959	260	411	30	009	361	
1983	4	121	273	702	259	428	38	621	407	4.612
<u>28</u>	15	132	269	710	258	439	46	658	453	4.615
1985	15	141	240	757	259	451	52	694	481	4.811
1986	_	141	228	791	256	404	54	722	484	4.720
1987		133	224	820	257	466	20	731	484	4.673
1988	10	120	221	854	256	482	47	969	473	4.487
1989	7	011	221	880	257	499	43	189	479	4.532
<u>\$</u>	œ	411	220	932	256	562	38	795	482	4.888
<u>8</u>	œ	60	219	196	262	603	4	837	480	5.017
1992	œ	011	217	987	259	623	38	746	456	4.493
1993	œ	Ξ	214	1022	257	624	37	749	425	4.266
<u>z</u>	œ	117	208	1069	257	999	34	692	404	4.355
1995	œ	119	981	1107	243	720	35	729	383	4,443
	Colorado	ope	Connecticut	ticut	District of Columbia	Columbia	Delaware	rare	Florida	.5
Year	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
1982	374	ᅙ	54	618	17	162	27	150	476	1.623
1983	401	Ξ	51	919	61	<u>3</u>	29	153	460	1,799
38	447	114	20	630	61	091	32	154	430	1.985
1985	469	113	57	626	19	99	36	157	422	2,180
3 86	472	115	59	644	20	3	42	159	419	2.396
1987	462	811	49	999	21	165	45	154	114	2.549
1888	450	115	65	674	24	170	46	157	417	2,679
1989	451	911	69	929	25	175	48	163	431	2.866
<u>\$</u>	446	123	89	662	26	691	47	167	432	2,911
<u>2</u>	387	218	26	617	24	162	42	184	421	3,002
1992	350	261	48	565	20	171	39	179	407	2.816
1993	322	366	46	494	81	175	36	180	375	2,849
<u>z</u>	279	448	43	499	91	179	38	188	356	3,146
1995	231	502	39	200	13	178	40	194	333	3.172

Table A50 continued

ions Branches Institutions 514 27 533 26 531 25 531 25 541 26 541 22 541 22 541 22 611 22 611 22 611 22 613 20 655 21 705 19 736 278 736 278 736 278 749 286 753 302 767 302 767 302 781 298 793 271 821 253 840 232 840 232 840 232 840 232 840 232 840 232 888 226 910 221 928		Georgia	2	Iowa		Idaho	2	Himots	oks	Indiana	5
416 928 643 514 27 393 992 637 533 26 384 1054 632 531 26 384 1054 632 531 26 373 1135 625 541 26 369 1209 614 538 24 379 1302 585 541 22 409 1419 562 579 22 405 1418 562 579 22 405 1419 562 579 22 405 1486 553 611 22 405 1571 530 655 21 386 1564 491 736 19 407 342 736 19 623 211 336 749 286 624 214 336 749 286 625 214 336	ar	Institutions	- 1	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
393 992 637 533 26 384 1054 632 531 25 373 1135 625 541 26 369 1209 614 538 24 358 1279 597 540 23 379 1302 585 541 22 409 1419 562 579 23 403 1486 553 611 22 403 1486 553 611 22 403 1564 517 705 19 380 1564 491 736 19 383 1564 491 736 19 383 1564 491 736 19 620 208 342 749 26 623 211 336 749 26 624 214 313 767 302 625 214	82	416	928	643	514	27	261	1250	619	105	295
384 1054 632 531 25 373 1135 625 541 26 369 1209 614 538 24 358 1279 597 540 23 379 1302 585 541 22 409 1419 562 579 23 405 1419 562 579 23 409 1419 562 579 22 403 1486 553 611 22 403 1486 542 633 20 399 1571 530 655 21 386 1564 491 736 19 380 1564 491 736 19 620 208 542 643 19 621 31 336 749 286 623 211 336 749 286 624 214 <td< td=""><th>S</th><td>393</td><td>992</td><td>637</td><td>533</td><td>26</td><td>262</td><td>1247</td><td>663</td><td>97</td><td>293</td></td<>	S	393	992	637	533	26	262	1247	663	97	293
373 1135 625 541 26 369 1209 614 538 24 358 1279 597 540 23 379 1302 585 541 22 409 1419 562 579 23 409 1419 562 579 22 405 1486 542 633 20 386 1571 530 655 21 386 1571 530 655 21 386 1564 491 736 19 383 1564 491 736 19 383 1564 491 736 19 620 208 342 749 286 623 211 336 753 302 624 214 336 753 302 613 219 331 767 308 601 238 <	I	384	1054	632	531	25	273	1241	704	93	285
369 1209 614 538 24 358 1279 597 540 23 379 1302 585 541 22 392 1347 576 551 23 409 1419 562 579 22 405 1486 553 611 22 405 1486 553 611 22 380 1571 530 655 21 386 1564 517 705 19 380 1564 491 736 19 383 1564 491 736 19 580 1564 491 736 19 620 208 342 736 278 623 211 336 753 206 624 214 336 753 208 613 219 331 767 208 613 219 <	\$ 2	373	1135	625	541	36	275	1234	740	06	281
358 1279 597 540 23 379 1302 585 541 22 409 1419 562 579 22 409 1419 562 579 22 405 1486 553 611 22 405 1486 542 633 20 399 1571 530 655 21 386 1564 517 705 19 383 1564 491 736 19 383 1564 491 736 19 620 208 342 736 19 623 211 336 749 286 624 214 333 767 302 624 214 333 767 308 601 238 330 733 840 233 601 238 340 793 231 528 <t< td=""><th>9</th><td>369</td><td>1209</td><td>614</td><td>538</td><td>24</td><td>278</td><td>1221</td><td>790</td><td>8</td><td>27.5</td></t<>	9	369	1209	614	538	24	278	1221	790	8	27.5
379 1302 585 541 22 392 1347 576 551 23 409 1419 562 579 22 405 1486 553 611 22 403 1486 542 633 20 399 1571 530 655 21 386 1564 517 705 19 389 1564 491 736 19 380 1564 491 736 19 383 1564 491 736 19 583 1564 491 736 19 620 208 342 736 178 623 211 336 749 278 624 213 336 753 302 624 214 333 767 308 273 601 238 330 793 271 508 <	5	358	1279	597	540	23	277	1211	841	20	275
392 1347 576 551 23 409 1419 562 579 22 405 1468 553 611 22 403 1486 542 633 20 399 1571 530 655 21 386 1564 517 705 19 380 1564 491 736 19 383 1564 491 736 19 383 1564 491 736 19 1nstitutions Branches Institutions Branches Institutions 620 208 342 736 278 623 211 336 749 286 624 214 333 767 302 613 219 331 781 298 601 238 330 793 271 528 467 332 883 226 52	œ	379	1302	585	541	22	275	1149	952	67	271
409 1419 562 579 22 405 1468 553 611 22 403 1486 542 633 20 399 1571 530 655 21 386 1564 517 705 19 383 1564 491 736 19 383 1564 491 736 19 100 208 342 736 19 620 208 342 736 278 623 211 336 749 286 623 211 336 749 286 624 213 336 753 302 613 219 331 767 302 613 219 331 781 278 601 238 330 793 281 528 463 320 883 226 528 484 <t< td=""><th>9</th><td>392</td><td>1347</td><td>576</td><td>551</td><td>23</td><td>275</td><td>1119</td><td>1035</td><td>55</td><td>257</td></t<>	9	392	1347	576	551	23	275	1119	1035	55	257
405 1468 553 611 22 403 1486 542 633 20 399 1571 530 655 21 386 1564 517 705 19 380 1564 491 736 19 383 1564 491 736 19 100 208 342 736 19 620 208 342 736 278 623 211 336 749 286 628 213 336 749 286 628 213 336 753 302 621 214 336 753 271 628 213 336 793 271 590 269 332 840 233 573 308 335 840 231 528 463 320 883 226 508 494 <t< td=""><th>2</th><td>409</td><td>1419</td><td>562</td><td>579</td><td>22</td><td>279</td><td>1087</td><td>1163</td><td>52</td><td>249</td></t<>	2	409	1419	562	579	22	279	1087	1163	52	249
403 1486 542 633 20 399 1571 530 655 21 386 1564 517 705 19 383 1564 491 736 19 Kentucky 19 Kentucky 19 1nstitutions Branches Institutions 620 208 342 736 278 623 211 336 749 286 624 214 333 767 302 613 219 331 767 302 613 219 331 767 302 601 238 330 793 271 590 269 332 840 233 573 407 332 856 231 528 463 320 883 226 508 494 311 910 221 458 585 <th>=</th> <td>405</td> <td>1468</td> <td>553</td> <td>611</td> <td>22</td> <td>300</td> <td>1901</td> <td>1285</td> <td>46</td> <td>238</td>	=	405	1468	553	611	22	300	1901	1285	46	238
399 1571 530 655 21 386 1564 517 705 19 383 1564 491 736 19 Kentucky 15 19 Institutions Branches Institutions 620 208 342 736 278 623 211 336 749 286 628 213 336 753 302 624 214 333 767 302 613 219 331 767 302 613 219 331 767 302 601 238 330 793 271 590 269 332 840 233 555 407 332 856 231 558 463 320 883 226 508 494 311 910 221 450 525 309 928	2	403	1486	542	633	20	292	9001	1378	. 	228
386 1564 517 705 19 383 1564 491 736 19 383 1564 491 736 19 Kentucky Louisin Institutions Branches Institutions 10 19 620 208 342 736 278 623 211 336 749 286 624 214 333 767 302 613 219 331 767 302 613 219 331 767 302 601 238 330 793 271 590 269 332 840 253 555 407 332 856 231 558 463 320 883 226 508 494 311 910 221 450 525 309 928 217 458 585 287 <	₩.	399	1571	530	655	21	305	958	1530	37	202
Kansas Kentucky Louisia Institutions Branches Institutions 620 208 342 736 278 623 211 336 749 286 628 213 336 753 302 624 214 333 767 298 601 238 330 793 271 590 269 332 840 232 573 308 335 840 232 555 407 332 856 231 508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 433 540 276 1041 185	4	386	1564	517	705	61	322	906	1643	35	187
Kansas Kentucky Louista Institutions Branches Institutions 620 208 342 736 278 623 211 336 749 278 628 213 336 749 286 624 213 336 753 302 613 219 331 767 302 601 238 330 793 271 590 269 332 840 233 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 369 928 217 458 585 287 981 200 433 640 276 1041 185	Ś	383	1564	491	736	61	326	864	1842	78	183
Institutions Branches Institutions Branches Institutions 620 208 342 736 278 623 211 336 749 286 628 213 336 753 302 624 214 333 767 302 613 219 331 781 298 601 238 330 793 271 590 269 332 840 233 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 369 928 217 458 585 287 981 200 433 640 276 1041 185		Kan	98	Kentu	icky	Louis		Massachusetts	busetts	Marvland	
620 208 342 736 278 623 211 336 749 286 628 213 336 753 302 624 214 333 767 302 613 219 331 781 298 601 238 330 793 271 590 269 332 821 253 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	_	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
623 211 336 749 286 628 213 336 753 302 624 214 333 767 302 613 219 331 781 298 601 238 330 793 271 590 269 332 840 232 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 450 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	2	620	208	342	736	278	844	136	993	16	1.036
628 213 336 753 302 624 214 333 767 302 613 219 331 767 302 601 238 330 793 271 590 269 332 821 253 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 450 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	2	623	211	336	749	286	878	127	1003	68	090.1
624 214 333 767 302 613 219 331 781 298 601 238 330 793 271 590 269 332 821 253 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 433 640 276 1041 185	7	628	213	336	753	302	706	125	1045	88	1,112
613 219 331 781 298 601 238 330 793 271 590 269 332 821 253 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	S	624	214	333	797	302	926	911	1082	06	1,132
601 238 330 793 271 590 269 332 821 253 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	Ģ	613	219	331	781	298	726	108	1119	93	1,186
590 269 332 821 253 573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	_	109	238	330	793	27.1	921	108	1137	95	1,254
573 308 335 840 232 555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 433 640 276 1041 185	œ	290	269	332	821	253	923	103	1118	66	1.255
555 407 332 856 231 528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 1 458 585 287 981 200 1 433 640 276 1041 185	<u>o</u>	573	308	335	840	232	934	66	901	901	1,283
528 463 320 883 226 508 494 311 910 221 490 525 309 928 217 1 458 585 287 981 200 1 433 640 276 1041 185	9	555	407	332	856	231	972	85	101	103	1,293
508 494 311 910 221 490 525 309 928 217 458 585 287 981 200 1 433 640 276 1041 185	_	528	463	320	883	226	196	73	696	102	1.286
490 525 309 928 217 1 458 585 287 981 200 1 433 640 276 1031 185 1	2	208	464	311	910	221	986	19	933	96	1.284
458 585 287 981 200 1	₩.	490	525	309	928	217	101	19	688	94	1,257
433 640 276 1041 185	Ŧ	458	585	287	186	200	1094	53	924	93	1.284
Col 1501 0/2 0to 6:tt	Š	433	640	276	1951	185	1112	51	982	16	1.310

Table A50 continued

				•						
Year	TST.	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
1982	35	316	374	2137	759	315	732	493	167	731
1983	31	322	371	2146	751	334	733	531	191	737
1 <u>8</u>	26	326	365	2103	738	345	713	581	153	751
1985	25	327	361	2093	735	366	673	652	146	75.
986	22	333	345	2081	733	388	910	736	7	756
1987	23	338	312	2018	705	411	596	766	128	781
1988	16	336	287	2042	653	465	577	808	125	807
1989	20	333	268	2102	637	497	551	843	123	822
<u>36</u>	21	331	235	2174	626	591	544	924	123	826
<u>18</u>	21	317	230	2251	809	595	532	636	123	820
1992	21	309	219	2268	593	626	910	966	121	822
1993	20	299	208	2280	573	629	490	1021	8	865
361	20	299	200	2284	563	689	473	1102	: =	88
1995	20	276	180	2302	525	818	459	1143	011	894
	Montana		North Carolina	rolina	North Dakota	akota	Nebraska	seka	New Harmoshire	nochire
Year	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
1982	991	26	69	1783	176	122	461	130	71	184
1983	<u>8</u>	26	70	1802	171	124	474	145	65	<u>8</u>
186	167	29	63	1837	171	123	473	167	62	203
1985	169	29	63	1872	177	123	453	188	61	215
1986	169	29	65	9061	176	123	437	198	09	214
1987	169	30	89	1953	174	124	428	207	26	220
88	169	30	11	1972	159	138	412	222	52	506
1989	167	31	78	1661	158	139	392	249	48	209
<u>§</u>	156	45	78	2032	150	155	392	283	45	189
<u>86</u>	145	56	18	2078	146	158	389	290	32	152
1992	120	79	78	2061	143	3	374	311	58	135
1993	117	84	7.1	2186	141	173	361	343	26	128
<u>3</u>	112	88	89	2227	139	182	352	366	77	117
8	151	106	•	0,.0						

Table A50 continued

	New Jersey	ersey	New Mexico	exico	Nevada	da	New York	rork	940	2
Year	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
1982	148	1648	92	263	13	163	205	3265	355	2.268
1983	136	1677	93	269	7	174	200	3260	343	2,280
1984	125	1732	95	274	91	661	194	3227	320	2.274
1985	126	1785	96	279	17	861	161	3267	320	2.438
1986	124	1819	94	289	<u>8</u>	195	661	3340	309	2,471
1987	125	1865	94	288	17	161	961	3299	304	2,457
1988	129	1907	93	284	17	196	198	3314	299	2,447
1989	126	1953	93	286	17	205	192	3341	294	2,495
<u>3</u>	131	1997	16	301	61	225	193	3441	289	2.550
199	111	2040	83	345	61	235	189	3509	281	2.654
1992	901	2063	84	330	18	235	177	3500	271	2644
5	<u>8</u>	2052	18	334	21	244	175	3477	263	2.721
38	06	2098	70	355	22	246	167	3493	258	2.846
95	83	2089	89	368	25	253	<u>8</u>	3483	261	2,875
	Oktah	Oklaborna	Oregon		Pennsylvania	vania	Rhode Island	Island	South Carolina	andipu
Year	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches	Institutions	Branches
1982	209	134	88	1 09	340	2627	15	222	78	773
1983	525	139	80	615	332	2659	15	216	72	795
198	539	061	72	617	326	2704	13	184	73	787
1985	535	219	29	625	312	2764	91	181	74	793
986	520	230	59	630	300	2833	15	178	73	817
1987	487	258	54	643	295	2893	12	160	7.	918
1988	466	273	52	639	293	2950	12	3	77	831
1989	430	318	49	159	298	3046	13	167	82	844
<u>36</u>	419	336	20	648	300	3167	=	167	85	998
<u>86</u>	- 4	370	51	269	289	3311	13	191	83	871
1992	394	437	8+	655	281	3397	12	991	81	850
2	371	485	45	179	261	3396	01	149	78	880
199	350	527	44	089	245	3529	6	180	75	938
Š	342	554	43	L69	224	3538	œ	162	11	920

Institutions Branches 1,623 599,1 .760 ,574 ,825 1,872 .930 ,863 1,957 1.874 1,921 Wyoming Virginia Institutions 71 62 63 Branches Institutions Branches 383 West Virginia Utah Institutions 180 169 148 122 118 2 55 Institutions Branches Institutions Branches Wisconsin Texas Institutions Branches Institutions Branches <u>+0</u> <u>=</u> Tennessee Ishington 251 240 282 Institutions Branches Institutions Branches 175 183 190 195 197 195 186 186 185 191 171 175 South Dakota Vermont Table A50 continued Year Year <u>26</u> 1995 <u>28</u> <u>36</u> <u>26</u>

Source: Historical Statistics on Banking, Federal Deposit Insurance Corporation

Table A51A: The effect of changes in interstate banking legislation on the number of banks in the states of the first category (Equation 16):

Category 4	Abacks	Arizona	New York	Oldahoma	Texas	Washington	West Virginia
Intercept	0.15	0.48	1.15	0.48	11.1	0.46	0.01
	(5.11)	(107.83)	(53.85)	(239.26)	(633.04)	(355.32)	(2.07)
DB,	0.16	0.00	0.00	-0.14	0.01	0.02	0.39
	(2.86)	(0.00)	(0.00)	(-30.78)	(1.77)	(10.05)	(46.88)
DB	0.23	-0.29	0.14	-0.21	-0.11	-0.15	0.89
	(7.76)	(-54.57)	(6.63)	(-74.95)	(-47.02)	(-91.25)	(133.13)
System:							
ž	0.02	0.63	80.0	0.68	0.47	0.82	0.87
Observations	2646.00	2676	2676	2676	2676	2676	2676
Test s:							
F statistic	30.80	2311.97	112.71	2839.50	1170.94	0008.10	8954.35
Pr > F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001
F statistic ²	1.71	2991.50	184.81	182.12	369.51	7990.06	4074.71
Pr > F	p=0.1911	p<0.0001	p<0.0001	1000.000	0<0.0001	00000	10000

 $DB_1 = a$ duminy which takes a value of 1 between the first announcement and effective date of a law allowing regional reciprocity; $DB_2 = a$ duminy which takes a value of 1 after the effective date of a law allowing regional reciprocity.

The test of the null hypothesis that the dummy coefficients are all jointly equal to zero: $H_0:\gamma_1=\gamma_2=0$

The test of the null hypothesis that the coefficients of dunnies DB, and DB, are equal:

Table ASIB: The effect of changes in interstate banking legislation on the number of banks in the states of the second category (Equation 16):

Category 1	Alabama	Arkansas	Florida	Georgia	Iowa	Missouri	South Carolina	Wiscomsia
Intercept	0.73	0.38	1.17	0.78	0.62	90.1	0.55	0.78
	(864.12)	(85.83)	(488.08)	(244.71)	(658.25)	(962.34)	(173.68)	(509.12)
DB,	0.02	0.22	-0.05	10:0	80.0	0.00	0.04	-0.03
	(13.74)	(12.05)	(-13.85)	(7.85)	(26.02)	(2.54)	(9.60)	(-15.49)
DB;	0.73	0.22	-0.20	0.07	-0.03	-0.02	0.25	-0.04
	(39.75)	(28.92)	(-75.34)	(20.47)	(-10.89)	(-13.99)	(66.01)	(-22.01)
System:								
ž	0.37	0.25	0.74	0.14	0.25	0.12	0.68	0.15
Observations	2676	2676	2676	2676	2676	2676	2676	2676
Tests:								
F statistic ¹	790.33	449.47	3807.62	216.77	439.81	191.09	2821.25	243.46
Pr > F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	1000:0>d	p<0.0001
F statistic ²	162.56	0.00	3384.11	59.23	844.26	183843	2743.87	27.94
Pr > F	p<0.0001	0=1,0000	10000	10000	10000	10000	10000	1000

DB₁ – a dummy which takes a value of 1 between the first announcement and effective date of a law allowing regional reciprocity; DB₂ – a dummy which takes a value of 1 after the effective date of a law allowing regional reciprocity.

The test of the null hypothesis that the dummy coefficients are all jointly equal to zero: $H_0:\gamma_1=\gamma_2=0$ The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0:\gamma_1=\gamma_2$

Table ASIC: The effect of changes in interstate banking legislation on the number of banks in the states of the third category (Equation 16):

Category 3	Connections		Massachusetts	New Hampenire	New Jersey	North Carolina	Rhode Island	Tennessee	Virginia
Intercept	0.72	68:0	0.95	0.35	1.33	0.93	0.30	0.85	86.0
	(73.26)	(609.3)	(331.16)	(73.53)	(1888.77)	(380.65)	(89.42)	(732.87)	(1137.85)
DB,		0.09	0.01	0.35	10:0	0.03	0.00	000	900
		(33.52)	(1.07)	(20.95)	(69.9)	(5.49)	(0.00)	(0.00)	(2.73)
DB	0.24	0.23	0.05	0.30	10.0-	0.10	0.00	-0.05	-0.0
	(22.06)	(67.8)	(15.67)	(36.81)	(-6.23)	(36.26)	(0.00)	(-36.02)	(-5.80)
DB,	0.46	0.30	0.36	0.19	10:0-		-0.23	20.0	
	(36.71)	(146.83)	(110.23)	(22.77)	(-2.93)		(-53.88)	(10.63)	
DB,		0.33	0.35		0.05		0.00		
		(129.10)	(96.36)		(20.52)		(0.00)		
System:									
~	0.34	0.92	0.92	0.40	0.19	0.35	0.69	0.47	003
Observations	2676	2676	2676	2535	2676	2676	2676	2676	2676
Tests:									
F statistic	688.41	7235.42	7310.98	554.03	159.89	727.10	1504.11	782.35	42.69
Pr>F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001
F statistic ²	n/a	1316.43	92.65	8.12	96.29	287.69	0.00	331.21	52.87
Pr>F	n/a	p<0.0001	p<0.0001	p=0.0044	p<0.0001	p<0.0001	p=1.0000	p<0.0001	p<0.0001
F statistic	n/a	5686.44	5518.90	80.52	\$1.08	n/a	2310.20	14.43	173
P. > F.	n⁄a	p<0.0001	p<0.0001	p<0.0001	p<0.0001	n/a	p<0.0001	p<0.0001	1/a
F statistic	n/a	5697.24	4678.32	n/a	8.98	n/a	0.00	n/a	n/a
Pr > F	n/a	p<0.0001	p<0.0001	n/a	p=0.0028	n/a	p=1.0000	11/3	11/3
F statistic	590.59	348.67	17873.60	125.13	3.28	n/a	1625.10	1601.96	n/a
Pr>F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p=0.0704	11/3	p<0.0001	p<0.0001	n/a
F statistic*	n/a	634.95	11365.30	n/a	308.58	n/a	0.00	n/a	n/a
Pry F	n/a	p<0.0001	p<0.0001	n/a	p<0.0001	n/a	p=1.0000	n/a	11/3
F statistic'	n/a	149.09	15.97	n/a	149.14	n/a	5071.65	n/a	n/a
P. > F.	e/u		1000						

- DB₁ a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;
 DB₁ a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcements of plans to enact a law allowing national reciprocity;
 DB₁ a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing national reciprocity.
 DB₄ a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity.
 - - The test of the null hypothesis that the dummy coefficients are all jointly equal to zero: $H_0:\gamma_1=\gamma_2=\gamma_3=\gamma_4=0$
- The test of the null hypothesis that the coefficients of dumnies DB, and DB, are equal: H_0 : $\gamma_1=\gamma_2$
 - The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0: Y_1 = Y_3$
- *The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: H_0 : $\gamma_1=\gamma_4$
- The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: H_0 : $\gamma_2=\gamma_3$
- The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: H_0 : $\gamma_2=\gamma_4$ The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: H_0 : $\gamma_3=\gamma_4$

Table ASID: The effect of changes in interstate banking legislation on the number of banks in the states of the fourth category (Equation 16):

Category 2	California	Celorado	Delaware	District of Columbia	Kestucky	Leuisian	Michigan	Nebracks	Ş	Pennerhanda	,
Intercept	1.36	0.72	0.70	0.48	0.74	0.39	0.91	80.0	1.07	1.25	0.55
	(836.71)	(733.23)	(872.86)	(221.28)	(632.36)	(203.79)	(807.33)	(30.37)	(1051.89)	(1056.72)	(305.11)
DB ₁	0.10	90.0	0.00	0.00	10:0	0.12		0.39	0.0%	110	0.05
	(30.04)	(29.75)	(0.30)	(0.00)	(11.10)	(28.27)		(70.80)	(40.48)	(30.09)	(11.45)
DB,	0.29	00.0	-0.05	0.02	10.0	0.21	0.15	0.40	0.05	0.22	700
	(120.96)	(0.00)	(-33.19)	(3.13)	(22.12)	(54.77)	(84.78)	(53.63)	(34.96)	(131.15)	(14.38)
DB,	0.40	-0.06	-0.08	-0.11	0.10	0.22	0.30	0.40	0.05	0.24	200
	(126.45)	(-31.73)	(-49.72)	(-39.2)	(73.67)	(76.13)	(185.09)	(65.74)	(40.4)	(128.21)	(-26.09)
System:											
ž	06:0	0.49	0.53	0.39	0.70	0.72	0.93	0.77	0.45	06.0	CF ()
Observations	2676	2676	2676	2676	2676	2676	2676	2676	2676	2676	2198
Tests:											
F statistic	77.2.37	843.50	994.01	573.95	2040.32	2259.82	17136.30	2945.14	744 87	10 0777	635 00
Pr > F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	10000>0	0<0.0001	100000	00000	10000
F statistic ²	3071.89	705.29	321.16	3.43	0.00	307.83	11/a	1.18	126.16	FC 21.66	152
Pr > F	p<0.0001	p<0.0001	p<0.0001	p=0.0641	p=1.0000	p<0.0001	1/3	D=0.2781	n<0.0001	10000	0.000
F statistic	5460.64	2530.48	774.65	100.05	361.72	487.71	173	99.	71.15	2712.40	71573
Pr > F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	n/a	p=0.2066	p<0.0001	0<0.0001	100000
F statistic ⁴	1017.64	813.63	254.20	305.62	1861.55	3.91	6872.36	0.00	15.66	93.03	1317.08
Pr > F	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p<0.0001	p=0.0481	p<0.0001	p=1.0000	p<0.0001	p<0.0001	100000

DB₁ – a dummy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity; DB₁ – a dummy which takes a value of 1 between the effective dates of regional and national reciprocity; DB₃ – a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity.

The test of the null hypothesis that the dummy coefficients are all jointly equal to zero. $H_0: \gamma_1 = \gamma_2 = \gamma_3 = 0$

The test of the null hypothesis that the coefficients of dummies of DB, and DB, are equal: $H_0:\gamma_1=\gamma_2$ The test of the null hypothesis that the coefficients of dummies of DB, and DB, are equal: H_0 : $\gamma_1=\gamma_3$

The test of the null hypothesis that the coefficients of duminies of DB, and DB, are equal: H_0 : $\gamma_2=\gamma_3$

Table ASIE: The effect of changes in interstate banking legislation on the number of banks in the states of the fifth category (Equation 16):

Category 5	Maryland	Mississippi
Intercept	19:0	0.31
	(266.39)	(183.34)
DR	0.01	0.24
	(2.95)	(85.55)
DB	0.11	0.30
	(31.77)	(99.22)
08,	0.23	0.33
	(81.75)	(111.66)
System:		
ž	0.75	0.87
Observations	2676	2676
Tests:		
F statistic	2620.17	6021.14
Pr > F	p<0.0001	p<0.0001
F statistic ³	427.73	293.19
Pr > F	p<0.0001	p<0.0001
F statistic	2600.79	719.99
Pr > F	p<0.0001	p<0.0001
F statistic	1440.13	81.10
Pr > F	p<0.0001	P<0.0001

DB₁ = a duminy which takes a value of 1 between the first announcement and effective date of a law allowing regional reciprocity; DB₁ = a duminy which takes a value of 1 between the effective date of a law allowing regional reciprocity and a law expanding the region; DB₁ = a duminy which takes a value of 1 after the effective date of a law expanding the region

The test of the null hypothesis that the dummy coefficients are all jointly equal to zero: H_0 : $\gamma_1=\gamma_2=\gamma_3=0$ The test of the null hypothesis that the coefficients of duminies of DB, and DB, are equal: $H_0:\gamma_1=\gamma_2$

The test of the null hypothesis that the coefficients of dummies of DB, and DB, are equal: H_0 : $\gamma_1=\gamma_3$

*The test of the null hypothesis that the coefficients of dummies of DB, and DB, are equal: H_0 : $\gamma_2=\gamma_3$

Table ASIF: The effect of changes in interstate banking legislation on the number of banks in the states of the sixth category (Equation 16):

			ı		į		1		1		ı		1														
Minnesota	0.31	(261.68)	-0.004	(-1.9)	0.12	(59.3)	0.17	(47.14)	0.17	(107.62)				0.85	2676		1660.12	p<0.0001	2310.09	p<0.0001	1636.91	p<0.0001	5884.55	p<0.0001	r/a	ī⁄a	159.87
Indiana	0.77	(366.07)	0.19	(48.13)	0.26	(67.51)	0.18	(13.59)	0.21	(79.72)	0.27	(18.52)		0.75	2676		1566.83	p<0.0001	274.37	p<0.0001	0.10	p=0.7494	54.73	p<0.0001	31.97	p<0.0001	34.73
Category 6	Intercept		DB,		DB		198,		DB,		DB,		System:	ž	Observations	Tests:	F statistic	Pr > F	F statistic ²	Pr > F	F statistic	Pr > F	F statistic ⁴	Pr > F	F statistic ⁵	Pr > F	F statistic*

p<0.0001	575.76	p<0.0001	n⁄a	n/a	0.00	p=1.0000	11/3	n/a	n/a	11/3
p<0.0001	183.85	p<0.0001	0.26	b=0.6069	5.44	p<0.0001	20.17	p<0.0001	15.33	D<0.0001
Pr > F	F statistic?	Pr > F	F statistic*	Pr > F	F statistic'	Pr > F	F statistic"	Pr > F	F statistic"	Pr > F

DB1 - a duminy which takes a value of 1 between the first announcement and the effective date of a law allowing regional reciprocity;

DB₁ – a dummy which takes a value of 1 between the effective date of a law allowing regional reciprocity and the first announcement of plans to expand the region;

DB₁ – a dummy which takes a value of 1 between the first announcement of plans to expand the region and the effective date of a law allowing this;

DB₄ – a dummy which takes a value of 1 between the effective date of a law allowing expansion of the region and the effective date of a law allowing national reciprocity.

DB₄ – a dummy which takes a value of 1 after the effective date of a law allowing national reciprocity.

The test of the null hypothesis that the dummy coefficients are all jointly equal to zero: H_0 : $\gamma_1=\gamma_2=\gamma_3=\gamma_4=0$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0:\gamma_1=\gamma_2$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0:\gamma_1=\gamma_3$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0:\gamma_1=\gamma_4$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0:\gamma_2=\gamma_3$ The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0: \gamma_1 = \gamma_5$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0: \gamma_2 = \gamma_4$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0: \gamma_2 = \gamma_5$

The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: $H_0:\gamma_3=\gamma_4$

"The test of the null hypothesis that the coefficients of dummies DB, and DB, are equal: H_0 : $\gamma_3=\gamma_5$

"The test of the null hypothesis that the coefficients of duminies DB, and DB, are equal: H_0 : $\gamma_4 = \gamma_5$

Appendix B

Table B1: The results of partial replication of the paper by Goldberg et al. (1992)

	nk stock prices to	interstate	banking l	aw passa	ge dates	
	Mean (%)*		N*		t-stat*	
Group I: in-state banks	-0.093	-0.039	100	141	-1.04	-0.545
Group II: Out-of-state banks	0.049	0.030	4022	5799	3.59***	2.47
Group III: out-of-state banks (money-center banks)	-0.078	-0.061	322	330	-1.58*	-1.206
The reaction of ban	k stock prices to	interstate t	oanking la	w effecti	ive dates	
The reaction of ban	k stock prices to Mean (%)*	interstate l	oanking la	w effecti	t-stat*	
		0.037		iw effecti		0.856
Effective	Mean (%)*		N*	149	t-stat*	0.856 2.768

^{*} The results reported by Goldberg et. al (1992).

Goldberg et al. (1992) present an analysis of the impact of interstate banking regulation changes on in-state and out-of-state banks during the period from February 01, 1982 through September 01, 1987. Using Seemingly Unrelated Regression model, they estimate the coefficients of 51 dummy variables for the sample of 131 banking institutions with return data on CRSP data tapes during the whole study period. Each dummy variable represents the event window (-2:2), surrounding the date when the bill is signed into law or when the law becomes effective. The market's reaction on the passage dates and effective dates is studied separately.

They further divide their sample of announcement dates into two groups – those containing regional reciprocity trigger and those that do not. On the event dates, containing regional reciprocity trigger, each of 131 banks is considered as either in-region, in-state bank, or in-region, out-of-state bank, or out-of-region bank (non-money center bank), or out-of-region bank (money center bank). On other event dates, the sample is divided into the following groups: in-state banks, out-of-state banks (non-money center banks), and out-of-state banks (money center banks).