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Abstract

Symmetry in Combinatorial Optimization

Kristina Loeschner

Integer optimization is in the class of NP-hard problems, and it is very time and mem-
ory intensive to find optimal solutions. In this thesis an algorithm will be developed
to improve the efficiency in solving a linear integer program if there are svimmetries
in the problem, that is, variables can be permuted without changing the integer pro-
gram. Using the group of symmetries, the size of the feasible set can be restricted. For
the smaller optimization problem, common solution methods will be able to find the
optimal solutions faster than for the original problem. The set of all optimal solutions

can be generated from the determined ones by applying the syimetry group.
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CHAPTER 1

Introduction

In this thesis, we consider linear integer programming problems with the special
property that there exist symmetries in the variables, that is variables can be inter-
changed without changing the integer program. An algorithm will be developed using
the symmetry group to restrict the feasible set, thereby speeding up the computation
of optimal solutions with traditional techniques. The set of all optimal solutions can
then be generated from the determined ones in the restricted feasible set by applying

the symmetry group.

1. Background

The problem to find a solution to an integer optimization problem is non-trivial.
in fact it is NP-complete.

In gencral, it is not hard to find a real value solution for a linear program. The
simplex method, developed in the 1950s and much improved since. easily solves large-
scale problems with several thousands variables and inequalities (not to mention all
the other efficient algorithms that have been developed in the last decades). It uses the
fact that the feasible set, i.e. the set of n-tuples satisfying the constraints, represent a
polyhedron in R*. The optimal solution will be either one of its corners, or its facets.
Starting at one of the corners, the algorithm moves step by step from one corner to
the next in such a way that each time the next feasible solution that is produced is
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more optimal than the preceding one. Eventually it will reach the optimal solution.
at which point it terminates.

Unfortunately, the situation becomes a lot more complicated as soon as we in-
troduce the constraint that the solutions have to be integer valued for some or all
of the variables. A classical idea to approach this problem is to drop the condition
that the solutions have to be in Z (this a called a relaration of the integer program),
and solve the problem over the real numbers, for example using the simplex method.
The problem is that an optimal solution will most likely not coincide with a corner
of the real polyhedron in R, so the simplex method does not find a feasible solu-
tion for the original integer program. Also. there is no casy wayv to use the obtained
solution to determine an integer solution - for example, rounding from the real val-
ued optimal solution to the nearest integers is not necessarily feasible nor optimal.
Today’s standard solution algorithms use methods like Gormoryv's Fractional Cuts or
Branch-and-Bound Enumeration (see for example (4]). which try to cut off parts of
the polyhedron that do not contain integer solutions and hence gradually transform
the polyhedron so that the optimal integer solution is a corner. Then relaxation and
simplex algorithm will successfully lead to a result. This process is costly, though,
and the complexity increases quickly with the number of variables.

With the method proposed in this thesis, the time involved in the optimization
process can be decreased for certain integer programs with symmetries. This idea does
not seem to be researched so far. By introducing additional constraints, we reduce

the size of the feasible set. Classical methods will then be able to find the optimal
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solutions faster. As our test cases show. this can lead to a significant improvement of
the time the optimization process takes.

The following example shall give an illustration for the relevance of this method.

2. A Motivating Example: Dominating Rooks

Consider the following question: What is the minimum number of rooks it takes
to cover or threaten every square of an m x m chessboard?

This is an example of the dominating set problem, which is studied in graph
theory. It can be modelled and solved in terms of an integer optimization problem.
A rook placed on a square of the board can attack any other square that is on the
same row or column of the board. We can describe this information in the form of a
graph R, (1" E), called the rooks graph, where 1" is the set of vertices and E the set
of edges of the graph. The m? vertices in | represent the squares of the chessboard.
Two vertices are joined by an edge if a rook placed on one of the vertices can attack
the other one. For a 4 x 4 chessboard, we obtain the graph in Figure 1.1.
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We want to find a subset D of the vertices such that any vertex in the graph is
either in D or is adjacent to an element of D. Then D is called a dominating set of
the graph R,,. and the dominating set problem is to find such a set D of minimal
cardinality.

For a graph with finitely many vertices. the dominating set problem can be trans-
lated into an optimization problem.

Let v),....v, denote the vertices of R,. If D is a dominating set of R,,. for
i€ {l,...,n} we define

1 .ifv,eD

’I'.l

0 . otherwise.

In this setup we can write the dominating set problem as a linear program:

Minimize ry +---+x,
subject to the constraints

I, + Z r,>1 forallv, el
(v, }eF

r, € {0.1}.

To minimize the value of the objective function is equivalent to minimizing the
size of D, and the constraints guarantee that every vertex is either in D or dominated
by an element of D.

We have obtained a linear integer program, i.e. an optimization problem where
the objective function and all constraints are linear in the variables z|,. ... z,, and
all coefficients are integers, as well as the solution for any x; has to be in a subset of

Z. Now we can tackle the problem with optimization methods.



In the case of the 4 x 4 rooks graph the formulation in an integer program is:

Minimize r; + --- + 14

under the constraints

I\ +Ia+T3+1g + Is + 149 + I3 > 1
I +Ir+I3+1, +Is +Iyg +x)4 >1
I +I2+T3+1, + 7 + I + I35 >1
I +Iy+I3+1, +ry +I12 +ri52> 1
I + I5+I¢ + I7+Ig + Iy + I3 >1
I3 + I5+rI¢ + Iy+rIy +TI +Iy >1
Iy + Is+rg + ry+rIy + Iy + I3 >1
Iy + Ir3+rg + r7+0rg +I9 +I162> 1
I + I3 + Ly+ryg + L+ L + I3 >1
I +.r4 + Ly+ryg + Lo +I >1
I3 + x5 + L9+.rg + Ly +2p0 + Iy >1
Iy +Ig + Lg+rg + Iy +Ip2 +r6> 1
I + I + Iy t ULt rg + rpstrg> 1
Ly +r +Iyg + ryg+ry + Ls+rg> 1
I3 + 7 + I +Lig+Hry + r5t+re> 1
Iy +ry +Ip +rgtoy + 5+ 1

r, € {0.1}

We see that this problem grows very fast with the size m of the chessboard. For
m = 4 we have already 16 variables, for m = 5 it will be 25 variables. In the case of
a regular board, that is m = 8. we have to solve an optimization problem in 8% = 64
variables!

But by looking at the optimization problem, one can see it has a special property.

Just as the graph we derived it from has a large number of automorphisms of its



vertices, i.e. is very “symmetric”. there are symmetries with respect to the variables
in the integer program. We can permute the variables Ii,..., I in certain ways
without changing the objective function nor the set of constraints (only possibly
transforming one constraint into another). For example, replacing ry, ., 3, r; by
Ts5, Ig, I7. Ig, respectively. and vice versa. we will get the same linear program, only
with the constraints written in another order: constraints 1. 2. 3 and 4 will take the
place of constrains 5, 6, 7 and 8, and vice versa. We say that this permutation of
the variables is a symmetry of the lincar program. (Note that every automorphism
of the rooks graph corresponds to a symmetry of the integer program permuting the
respective variables.)

A symmetry in the variables will induce a symmetry in the feasible solutions. We
are going to make use of that to restrict the feasible set by adding further constraints,
before giving it to lincar optimization software. which will then perform more effi-
ciently on the smaller feasible set. Depending on the size of the symmetry group. we
cut down on time and memory expenses. After solving this augmented problem. the
optimal solutions that we lost by excluding parts of the feasible set can be generated
from the obtained solutions using the symmetry group.

In the case of our example, Table 1.1 gives a comparison between the time and
memory the optimization software CPLEX [8] used to optimize the original integer
program (O) and the augmented system (A). CPLEX is able to handle cases up to
m =6 very fast. The table starts from m = 7, where the optimization begins to take

more time. A clear improvement is visible. It can be seen that the cost of the run



m | time (O) | memory (O) | Cuts (O) | time (A) | memory (A) | Cuts (A)
T 37.3 s 0.90 MB 19 6.7s 0.10 MB 3
8 668.4 s 7.47 MB 6 39.1s 0.83 MB b)
9 |7581.82s 70.74 MB 72 07.7s 9.21 \MB 11

TaBLE 1.1. CPLEX performance on the rooks graph R, (O ... orig-
inal problem, A ... augmented problem)

decreases by about factor 10 in time as well as in memory. The number of Gomory
Cuts necessary is greatly reduced in the restricted program.
In Chapter 5 we will look at another dominating set problem, which will be solved

in a similar way.

3. Organization of the Thesis

This thesis is structured as follows:

The introduction is followed by Chapter 2, in which the necessary mathematical
background will be covered. giving basic preliminaries from integer optimization as
well as from group theory.

Chapter 3 will comprise a formal introduction to the problem. The svmmetric
augmentation algorithm will be motivated and described.

[n Chapter 4, we will give details about our implementation of the algorithm.

In the last chapter, results will be presented. The algorithm is applied to opti-
mization problems which were constructed by Ka Leung Ma [13] in his work on the
well-known football pool problem but could not be solved by him. A number of new
solutions were found for the problems with less than 200 variables, and for the bigger

optimization problems several improved lower and upper bounds were established.

-
[



The best known upper bound of 73 for the sclution of the football pool problem in 6

matches was not improved.



CHAPTER 2

Mathematical Preliminaries
1. Integer Optimization

A linear (pure) integer programming problem (IP) in variables ry,. ... In

is an optimization problem P(zr,..... Iy) of the following type:

(%) Minimize f(r) =¢'r
subject to the constraints

Ay =

:lg.L' S [)~_;

L, € X,
where Ay € ZM ", Ay € ZMn b € Z™ by € Z™ and 1 = (ry..... )T In other
words, A, is an m; x n matrix with integer coefficients and b, is a column vector
of length m,. and so on. The sot X, € Z is the domain of r, fori e {1..... n}.
Furthermore, f(r) is a lincar function in r as ¢ € Z".

If it is clear what is meant. we will refer to P(z,.. ... Ip) simply as P.

REMARK. The given form of P does not impose any unnecessary restrictions on
the class of problems we consider. Any IP with integer solution can be translated
into P:

Every maximization problem is easily transformed into a minimization because

finding the maximum of f(r) is equivalent to finding the minimum of - f(r).

9



Also. all constraints in linear integer programming can be reduced to the given

form. Assume we have a constraint of the form

a Ly +---+a,r, ~ b?

where ~ stands for <, > or >. As all operations are conducted over the integers,
strict inequalities “<” and “>" can be rewritten as “<" and *>", respectively, by
changing the right hand side by 1. Also. when multiplying the whole inequality by
(=1). =>" changes to "<". Note that we could even restrict the set of constraints to
contain only “<"-constraints by reformulating Ar = b in the form of inequalities as

Ar<band —Ar < —b.

DEFINITION. The feasible set F of an [P P is the following subset of its domain:

a satisfies the constraints of P(r,.. ... )}

That means that o is in the feasible set if

:{[O. = bl,
:lg(l’ S b-_).
An optimal solution is a vector a = (q,..... ap) € F such that we have
fla) < f(3) forall 3 =(3,....3,) € F.

That is, o minimizes f(x) on the feasible set.

If @ is an optimal solution, then f(a) is called the optimal value.

10



We will denote the set of optimal solutions of P by

Gopt(P) = {a € F | a optimal solution of P}.

For further background on linear programming see [16].

LEMMA 1. Let P be an [P with feasible set F. Assume we create a new [P P'
from P by restricting the feusible set to a subset F' of F (for example by adding more
constraints). If a is an optimal solution of P (i.e. o € Gope) and o' is an optimal

solution of P', then f(a) < f(a').

REMARK. The lemma simply states that P’ cannot have a “better” optimal value

than P.

PROOF. Let o' be an optimal solution of P'. Then o' € F' C F. By definition

@ € Gope(P) implies f(a) < f(J) forall 3 € F.s0 f(a) < f(o). a

2. Group Theoretical Basics

Later, we will want to look at symmetries in the context of an integer optimization
problem. For that, we will need some group theory and the notion of group actions.
The basic definitions are introduced here. They can also be found in more detail in
(3].

Let © be a nonempty set. A bijection of Q onto itself is called a permutation of
0. Under composition of mappings. the set of all permutations of 2 forms a group,
the symmetry group of Q. We denote this group by Sym Q.

11



group on {1,....n} and is denoted by S,,. A permutation group is a subgroup of
a svmmetric group.

We will use the usual notation and write the elements of S, as a product of disjoint
cycles. Our convention is to consider permutations as functions acting on the right.
This means that a product o7 of permutations should be read as: first apply o and
then 7. For example, (243)(15)(1265)=(1)(24365).

Now we want to look at actions of a group on a set.

DEFINITION. Let G be a group and Q be a nonempty set. A function

OxG -0

(a.0) = a’

is called an action of G on € if it satisfies:

(1) @' = a for all a € Q. where 1 denotes the identity element of G,

(2) (@°)" =a”" foralla € Qand all 0, 7 € G.

In such a situation. we say G acts on Q. and write G O Q. The cardinality of Q
will be referred to as the degree of the group action.

The group G is said to act transitively on  if for any two elements a and b in
Q, there is a 0 € G such that a® = b, otherwise the action is intransitive. [If G acts
intransitively, then two elements a, b € Q are in the same orbit if we can find a o eG
that satisfies a” = b. It is easily observed that any two orbits are disjoint, hence the

orbits form a partition of Q.



Now assume we have a group action of G on Q. Then to every element o in
G we can associate a mapping @ — a’ of € into itself. Using properties (1) and
(2) it can easily be seen that this is a bijection. Hence we have a homomorphism
p:G = SymQ. If Q has n elements, there is an isomorphism between SymQ and
Sa. Therefore, if the kernel of p is trivial, we can identify G with a subgroup of S,,.

Assume we have a subset £ of Q and g € G. Then let

I:={d?|aeX}.

If H is a subgroup of G, henceforth denoted H < G, then we define

SHi={(a|a€S.ge H}.

We call £’ a coset! of £ under G if there is a ¢ € G such that

1
@

[t is not difficult to sce that the coset relation is symietric and transitive, i.e. if
¥} and ¥} are cosets of the same set £, then they are cosets of one another.
We call

stabg(E) = {g € G| L =%}

the (setwise) stabilizer of ¥ in G, and sav g € stabg(X) fixes X.

IThis definition of coset does not correspond to the standard notation where cosets are images aH
of a subgroup H C G under the action of a group element a € G.

13



CHAPTER 3

Symmetric Restriction Algorithm

In this chapter, a formal definition of symmetry in integer programs will be given.
The symmetric restriction algorithm, using these svinmetries to extend the set of

constraints and thereby cut down the size of the feasible set. will be developed.

1. Symmetry of an Integer Programming Problem

Throughout the following chapters, in which we will develop an algorithm con-
structing and adding new constraints. we will use the following linear integer prograim

for illustration:

ExasMpLE L. P(ry.....r,):

Maximize |+ ry + 13+ 1y

subject to the constraints
Iy + I3 S 1
Ig+rxr; <1

r, € {0,1}

The IP P has the following feasible set:

F ={(0,0.0,0),(0,0,0,1),(0,0, 1,0),
(0,1,0.0).(0,1,0,1),(0, 1, 1,0),
(1,0,0,0),(1,0,0,1),(1,0,1,0)}.

14



The notion of symmetry in an integer optimization problem seems quite natural:
If we can interchange the z; in a wav such that the IP is not affected by it (i.e.. the
objective function and the set of constraints stay the same), then this permutation
of the variables is a symmetry of the IP. We say such a permutation fixes P.

In the following example, we will write x; — z, to denote that r, is replaced by

z; in the IP.

EXAMPLE 2. (continuing Ex. 1) Consider the [P P from above. One can easily
sece that interchanging r; and r» fixes P, as does interchanging r; and ry.
Consider the map o: r; — r3, £y — Iy, 13 — Iy ry — ;. The image of

P(ry. ry, £y, ry) under o is !3(1‘3..1‘,4,1._,,11):

Maximize 3+ ry + 1, + I,

I3+ Ly <1

I +ur, <1

r, € {0.1}

which is equal to the original IP P(I[,rg,x3,z4).

REMARK. The domains X, are part of the constraints. So r, and I, are only

interchangable if their domains are the same: X, = X!

We will consider a permutation of the variables a symmetry of the IP only if
we can find a [-1 correspondance between the constraints before and after applying
the permutation and if the objective function is preserved. In other words, after

15



permuting the variables, we have to obtain exactly the same formulation of the IP.
Basically, it would be sufficient to require a permutation to fix the feasible set and the
objective function. As this is difficult to determine. we will use the weaker requirement
of preserving the constraints.

Consider the general IP P(z,..... I,) from page 9.

We want to find a natural way to write a permutation of P as an element of S,,.
Instead of writing a symmetry of P in terms of “r, — I,", we can as well express it
simply as a permutation of the indices: i — j. thereby just looking at permutations

of {1,...,n}.

LeEMMA 2. The group S, acts on the set {r.... ,In} by defining

I =r.

forallie {1,....n}.

ExXAMPLE 3. (continuing Ex. 1) S; O {r.....r}:

(z1, T2, 3, 24)1H2 = (£3.Z4.2L2,1,)

PRrOOF. We have to show that with this definition, we really have a group action.
[t is easy to see that the identity fixes each r,. Let us show that it is consistent under
composition:

Let 0,7 € S,. Then 7™ = g0y = Loy = Iy = (L7)7. O

Then we can let a permutation ¢ act on an IP P(r,,... ,Ty) in the obvious way
by permuting the variables according to how o acts on their indices:

16



DEFINITION. P(zy,....2,)° := P(zye,....Zp0)
We are now ready to make the following definition.

DEFINITION. We call 0 € S, a symmetry of the integer optimization problem

P(l’l,...,l’n). if

This means. a symmetry o of P preserves f(r) and permutes the constraints

without changing the set of constraints.

The set of all symmetries of P(r,...., I,) forms a group. the symmetry group of

P(xy,....r,). Sym P. Sym P is a subgroup of S,,.

ExAMPLE 4. (continuing Ex. 1) P has the following group of symmetries:
Sym P = {id. (12). (34), (12)(34). (13)(24). (14)(23). (1324). (1423)} C S,

2. Restriction of the Feasible Set

Now that we have defined svmmetry for an IP. we can look at how it extends to
the feasible set and the set of optimal solutions of the IP.

A symmetry on P(z,...,z,) induces a notion of symmetryon X} x --- x .\,
by interchanging the components in a vector: Let o € Sym(P), @ = (ay,....a,) €
Xy x--- x X,. Then we define

o’ = (Qye,..., ape).

17



EXAMPLE 5. (continuing Ex. 1) Look at .X; x Xo x X3 x Xy ={0.1} x {0.1} x

{0.1} x {0, 1}.

(1, 0.0, O) = (0 1,0, 0)“2) = (00 1.0)(13)('-’4) = (0 0.0. l)“.g)(z;”
(1.1,0,0) = (0.0, L. 1)IHEH
(1,0.1,0) = (0.1, 1.O)""¥ = (1.0.0. 1)) = (0,1.0. 1)(123

We get the following orbits in X'} x --- x X

(0.0.0,0)*™F = {(0.0.0.0)}
(1.0.0,0)>"F = {(1.0.0.0). (0. 1.0.0). (0.0.1,0).(0.0.0.1)}
(1.1.0.0)>™% = {(1.1.0.0). (0.0. 1. 1)}

(1.0.L.0y*™” = {(1.0.1.0).(0.1.1.0). (1.0.0. 1). (0. 1.0. 1)}

There is a unique equivalence relation on X'| x -+ - x X, whose equivalence classes
1 { 1

are the orbits of the action of Sym P.

DEFINITION. Let @ = (a,....a,). 3 = (31,...,3.) € X| x --- x X, and let

f(z1,. .., 1,) be the objective function of the IP P(z,,....z,). We call a equivalent

to 3, denoted by a = 3, if there is a ¢ € Sym P such that
a’ = 3.

LEMMA 3. Leta € Fand o = 3. Then 3€ F and f(a) = f(3).

18



PRrooF. Choose o € Sym P such that a® = 3.
We have P(zy,....r,) = P((xy....,1,)7). Substituting « into (ry,....1,) we get

P(a) = P(a?) = P(J3). From that we see immediately that if o satisfies the con-

straints so does 3, and that f(a) = f(3). O
COROLLARY. [f a is optimal solution, then a” is optimal for all o € Sym P.

We now want to use Lemma 3 to restrict the feasible set F to a subset F' such
that. even though we solve the [P for the (hopefully) much smaller feasible set F' and
find a solution (hopefully) much faster. we do not lose any solutions. That means
that after finding the optimal solutions of F’ we have to be able to recover the set of
all solutions in F.

The [P P from page 9 can also be written in the following way:

(P) Minimize f(r)

subject tor € F.

Then by restricting the feasible set we generate a new [P P

(P") Minimize f(r)

subject tor € F' C F.

Assume we could find a way to add new constraints thereby restricting F to F' C
F such that F” contains a representative for each equivalence class under Sym P.
From Lemma 3 we see that the value of the objective function is constant on any
equivalence class in F. It follows that if a € F is an optimal solution and o' € F
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is a representative of a in F’. then o' is certainly an optimal solution of P. and
hence of the restricted Problem P’. as was stated in Lemma L. Also. if o' is an
optimal solution of P’, then it has to be an optimal solution of . This is because
if there was another element 3 € F such that f(3) < f(a'). then there would exist
a representative 3' € F', where 3' = 3. and f(3') < f(a'). But this contradicts the
optimality of a'.

Summarizing, we get the following:

THEOREM 1. Let P. P'. F. and F' be defined as above, such that for all elements
a € F there is an € F' and o« = o'. Then we can recover the set Sope(P) of

optimal solutions of P from the optimal solutions of P' using the relation

Gopt(P) = (Sopt(P’))synl r

ProoF. We have a € S,,,(P) if and only if there is an o' € S, (P') such that
4 - P

a = {(a)” for some o € Sym P. a

The problem now reduces to finding a suitable F' satisfving the conditions of the
theorem. Also, we want F’ to be as small as possible, because the fewer feasible
solutions we have to consider in the optimization process, the better.

Let us discuss how to generate new constraints to add to P in order to restrict F.

The idea is to choose a set B C {xzy,...,r,} and to look at the collection B = By,
Bs, ..., B of all distinct cosets of B under Sym P.

We will call B the restrictor (set), as we want to use it to restrict the feasible
sct.
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THEOREM 2. If we construct P' by adding the new constraints

2 n< ) o

I:EBl IIEB'.’

LTS PP

€8, 1,€8B;

to P. then the restricted feasible set F' of P’ will contain a re resentative of each
P

equivalence class of F.

REMARK. Of course we expect P’ to be in the standard form of a linear integer
programming problem as defined in Chapter 1. that is with constraints of the form
Ar < b. Therefore we would have to write the new inequalities as

Z I, — Z T, <.

I,E[f[ r,chB
We will use the other notation for now. because it is more intuitive.

PRroor. We have to show that F' contains a representative for each isomorphism

class in F.

Let a = (ay,...,a,) € F. By definition F' contains a representative o’ for a if

there exists some o € Sym(P) such that o’ = a” and o' € F'. We will construct such

[

an a'.
Choose some m € {1.....k} such that
2 o
I,&E8m

is minimal. There isa o € Sym P such that B° = Bn. Leta' := % = (ay-,.... Qne ).



Then for each coset B,. where j € {1.....k}, we have:

’ _ '
«, = Qx‘,-l

I.GUI Il‘,—leﬂl

~ ’ — .
= E Qgr-1)a as a; = (y«

L.t €B,

- ¥ .

Ilo_1€B,

:En,

I.EB;’

. e N . . - I o o ) s o 10
That means that every Z:.eu, a, isequal to 3, . @, for some h. In particular.

!
E a, = E a, = E Q,

I‘cn I,EB” IIEBm

is minimal and hence o’ is the representative for & we were looking for. O

EXAMPLE 6. Let us apply the theorem to Example 1. Let B = {ri.12}. There

are two cosets of B under Sym P:

B[ = B = {.L'[.Iz}
32 — B(l.l'.’.’l) — {13—174}

According to the theorem we add one new constraint:

Maximize x| +ury+ 13+ 134

Ly + Iy <1
I3 + 1y S l
T+, < z3+x,
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r, € {0,1}

As the restricted feasible set we obtain

F' = {(0,0,0,0),(0,0,0.1),(0,0.1.0).(0.1.0, 1),(0, 1, 1,0),(1.0,0. 1), (1,0.1,0)}.

We have now found a way to generate a subset of the feasible set of an IP without
losing solutions.

There is no reason to stop after one step. If there are still symmetries in the new
[P P'. then we can use these to add more constraints. This process can be repeated
until all symmetries are “used up”.

Because of the special form of the new inequalities, in most cases adding new
constraints will only cut down the set of symmetries, but not add any. If we assume
that we add constraints such that no new symmetries are generated. Sym P’ will be
a subgroup of Sym P. In this case. a svmmetry of P’ will be an element o € Sym P

that fixes the new constraints in £'.

LEmMMA 4. Let 0 € Sym P. We have (P')" = P' if and only if B® = B. that is o

fizes B setwise.

PRroOF. Clearly, the permutation o is a bijection of {B), B,.. .., Bi}.

(=) Assume o does not fix B.

As 0 € Sym P, it induces a permutation of the constraints by mapping the set
of constraints onto itself. We have ¢ € Sym ', if there is a way to extend it to a

23



permutation of the constraints of P’ by permuting the “new” constraints with each

other.
We know that ¢ permutes the cosets By = B. B,,.... B, so there is an m #1

such that B3, = B. Then ¢ maps the constraint

m

Z£,§ Z I,

r,eB I,€EBm

of P’ to a constraint of the form

where j satisfies B, = B?. This is not in the set of “new” constraints of . hence o
cannot fix .
(<=} When acting on ', o maps a constraint of the form
E -[l S E l.l
I;E[‘ I;*:Iirn

to another constraint of that form. Also. as ¢ € Sym P. it fixes the set of “old”

constraints from P. as well as the objective function. Hence, (P')7 = P'. a

COROLLARY.

StabS_\'mP(B) - S}m P’

COROLLARY. Assume Sym P’ C Sym P. Then

Sym P’ = stabgym p(B).
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3. Choosing the Restrictor Set

Of course now the important question is, how do we choose the restrictor B as
a subset of {ry,...,r,} such that we get a good extension of the inequalities - and
what does “good™ mean in this context?

The goal is obviously to restrict the feasible set as far as possible while adding in a
minimal number of constraints in order to save memory, and avoid slowing down the
construction of the new inequalities and. more importantly, the optimization process.

One restriction to the choice of B we will make right away. As we know. the
domains of the variables z;.....r, need not be identical. Remember from Chapter 1
that only those r, can be permuted among each other by a syvimnmetry of the [P that
have the same domain. As we will construct inequalities relating these variables, it
makes sense to restrict B to contain only elements r, with the same domain.

We even further want to demand B to contain only elements of a transitive subset
of {x\.....z,} under Sym P. That will automatically take care of the problem of
different domains, and will allow us later to make use of the notion of primitivity of
a group action. which will be introduced and motivated during this chapter.

A restrictor B will be mapped by elements of Sym P to various | Bl-element subsets
of {r.....r,}. We will obtain & cosets, where & is bounded by the total number of
| B|-subsets, (IZI)’ and will generate k& — | new inequality constraints.

Note the following relation between the choice of B and the size of Sym P’

LEMMA 5. Assume there are exactly k distinct cosets B =B,B,, ..., By of B
under Sym P. Then

|Sym P'| > l&kip_l

25



PROOF. The group Sym P acts transitively on the set {B,,..., B}, which is the
orbit of B under the action of Sym P. Then from the orbit-stabilizer theorem we

obtain:

| Sym P| = |stabsyy p(B)] - [K].

We know from Corollary 2 that Sym P’ contains the stabilizer of B. Therefore

| Sy P'| > |stabgym p(B)], and the Lemma follows directly. a

COROLLARY. IfSym P’ C Sym P, then

[Sym P|

. P’ —
| Sy | :

This means that if & is small. the size of the remaining symmetry group is big,
and if & is big, then accordingly we will be left with a smaller number of symmetries.

We want to keep the number of new inequalities in each step small. This seems
to be a good decision taking into account the following considerations:

Suppose we have S, as symmetry group. If we choose B to contain ¢ clements,
we obtain ('C’) cosets and generate ('C’) — 1 new constraints in the first step.

On the other hand, let B consist of just one element, say B = {z;}. Then the

cosets of B are all the sets {z,}, where 2 < i < n, and we add the n — 2 constraints

-L'ls-rn 2Sl§n’



Our new symmetry group stabs, ({z1}) is the symmetric group of {r2,....7,}. Again

we choose a one element restrictor, say {r,}, and produce the constraints

and so on. After n — 1 steps the symmetry group will be reduced to the trivial group

{id}, and we have generated a total number of new constraints of

(n—1)+("—2)+---+2+1=M:(Z)

& E4

But (3) < (7) for all ¢ € {2....,k — 2}. That means that choosing B as a ¢-
subset with 1 < ¢ < n — 1 makes us generate at least as many inequalities in only
the first step, with possibly many more to be added in further ones, than we produce
if choosing 1-subsets during all the steps until there are no symimetries left. On the
other hand. it will not give us a better restriction on N x - x X,

Generalising this. the number of new constraints can be kept low by making sure
that B and its cosets are pairwise disjoint. This leads us to introduce the following
definitions:

Let G be a group acting transitively on a set Q. If we can find a partition of Q into
disjoint subsets ¥, ..., £ such that for all i € {1....,k} and g € G we have Y=y,
for some j € {1.... k}, then &, is called a block for G, and we say {E,...., 5} is

an invariant partition of Q under G.

EXAMPLE 7. We are still looking at Example 1. In Example 4 on page 17 we gave
the symmetry group Sym P of the IP acting on the set of variables {r,.1,, 13, 1,}.
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One can easily check that {{r,,x}.{r3,z,}} is an invariant partition under

Sym P.

For every group action on Q there is always the partition into singletons {a}
(a € Q) and the partition into one block Q. These are called trivial partitions. Any

other partition is called nontrivial.

DEFINITION. If the group G acts transitively on the set Q, then the action of G
is said to be primitive if there exists no nontrivial invariant partition of Q under G.
imprimitive otherwise.

Note that the terms “primitive” and “imprimitive” are only used with reference
to a transitive group action.

In fact, most transitive group actions are imprimitive. More details and examples
on the topic can be found in [16].

If & acts imprimitively on Q, then we can make the following observation: [f

Yi...., %} is an invariant partition of Q under G. then all the S (1 <i<k)
have the same cardinality. say ¢. This is because for all i. 1 < i < k. there is a
g € G mapping the elements of £, bijectively onto the elements of £,. Therefore we
can characterize a partition by its block size ¢. We call a nontrivial partition with
maximal block size a maximal partition.

How do we use all this to pick the restrictor? We have an action of the group
Sym P on the set {r;,...,I,}. As Sym P # {id} we can find a nontrivial orbit .V C
{z\,....1,}. Obviously, Sym P acts on X by restricting the action on {r,....,r,}
to .X. If this action is imprimitive, we choose a maximal invariant partition of X
under Sym P. Say it has k blocks {B\,.... B¢} of size c. We have |X| =k -c. If we
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choose the restrictor to be B, then its cosets under Sym P will be B,....,B;. and
we generate k — 1 inequalities, where k — 1 is strictly less than n. In fact it is strictly
less than n/c, where ¢ > 1.

Now if the action of Sym P on X is primitive, we will not be able to find a nontrivial
invariant partition. But we still want the cosets of B to be pairwise disjoint. so we
have to choose the restrictor B to be {r,} for some r, € X. Its cosets will be the
other singletons in .X' (so the partition into cosets is nothing but the trivial partition

into singletons), and we generate the |.X'| — 1 inequalities

r, <1, forall £, € X\ {z,}.

We may now summarize the algorithm.

4. The Algorithm

Given a linear integer program P(r,..... r,). Figure 3.1 shows the algorithm for
stepwise symimetric augmentation of P. [t takes the [P P as input and augments it
in several executions of a loop. until Sym P = {id}.

To illustrate the algorithm, we want to apply it to the IP from the previous

examples:

ExAMPLE 8. Remember that we were looking at the [P P(z,... Sy Tn):

Maximize z, + 1o + 3 + 14

under the constraints
I +urI < 1
I3 +r; <1
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r, <r,

for all £, € X \{z,}
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{Bi.... .Bi}of X

!

Generate IP P’ from P
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Zr.szr.

r.€8; r.€8y
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r €8, £, €8¢

pP:.=p

FIGURE 3.1. Symmetric Augmentation Algorithm
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r, € {0,1}

The symmetry group Sym P acts transitively on {z,,...,z,}. In Chapter 2.
Example 6, we had already generated a new constraint. Notice that the choice of the
restrictor B in that example satisfies the conditions in the symmetric augmentation
algorithm: The cosets of B form a invariant partition for the imprimitive action of

Sym P. So in the first step the algorithm picks the partition {zy, 12}, {£3,1;} and

adds the constraint:

Iy + Iy < ry+ry.

Denote the augmented IP by £,. The new group of symmetries is Sy 2, =
{id, (12)(34),(12). (34)}. The action is nontransitive. so the orbit Xi = {1} is

chosen. As this is a primitive case. we pick B = {ri} and extend P; by

Iy

IN
~
[

The group of symmetries of this new IP P has shrunk to Sym P, = {id, (34)}.
There is only one non-trivial orbit X, = {x3, 14} left, and as this is again primitive,

choose B = {z3} and add

I3 S Ly.

With that third step there are no symmetries left: We have Sym P; = {id}. The

algorithm terminates.
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That means we now want to optimize the following IP /":

Maximize =, + 1)+ 3+ Iy

Ly + Iy <1
ry+ry <l
T,+T; <z + x4
, <z
T3 <oy
r, € {0.1}

By adding the additional constraints we have restricted the feasible set F. given

in Example | on page 14. to the smaller set
F' = {(0,0.0.0).(0.0.0.1), (0. 1.0, 1)}.

We see that F” contains exactly one representative from each orbit in the feasible
set. [ could be reconstructed from F' by applying Sym P to the elements of F.
The solution of the optimization is now easily found to be Sop(P') = {(0.1.0. 1)}.

We obtain 60p¢(13) as the orbit of (0,1,0,1) under Sym r:
Gope(P) = {(0.1,0,1).(0, 1, 1,0), (1,0,0, 1), (1,0. 1,0)}

[t can be readily checked. that this is the optimal solution of the integer optimiza-

tion problem P in Example 1.
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CHAPTER 4

Implementation

In this chapter we want to discuss our implementations of the symmetric restric-
tion algorithm which was developed in Chapter 3. It was implemented in a program
in the programming language C. The source code is given in the Appendix.

In the first section. we will discuss how to translate the problem into the language
of matrices. The program takes as input the integer optimization problem in the form
of an integer matrix. and repeatedly determines the group of svmmetries and adds
new constraints in the form of additional rows to the input matrix. until no more
symmetries can be found for the augmented IP.

Finding the symmetry group is the most complex and difficult part of the program.
We will show that it reduces to finding a certain automorphism group of an integer
matrix. There are software packages available to determine such an automorphism
group. We use one of them, ISOM [12]. which was developped by C. Lam and L. Thiel
to provide data structures and routines for cfficient handling of permutation groups
and isomorphism testing of combinatorial objects. It implements concepts like the
permutation group algorithms specified for example in [1] or [10] and provides an
interface for C. We will devote a short section to giving the basic ideas used to find
the group of symmetries as the speed of our program greatly depends on this part.
Then we will give a brief introduction to our implementation to help understanding

the source code.
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1. Finding Sym P

Given an integer optimization problem in the form () from page 9, it is converted

into an integer matrix M of the following form:

(< 1=

A b,
AM =

40 |by
\ /

Note that the * in the right upper corner is there to complete the matrix. The

clement is insignificant and can be substituted by any integer in the range of the
other elements in /.

This is a matrix with n + 1 columns. the first n of which correspond to the co-
efficients of the variables ry, .... r,. the rightmost one to the constant right hand
side vector. and with (1 + m + m,) rows. the first one specifving the objective func-
tion. the next m; rows the equality constraints. and the last my rows the inequality
constraints.

[n Chapter 3 we gave a definition of symmetry of an [P. Let us now formulate,
what this notion of symmetry means relative to the matrix notation of the IP. The
permutation of variables in the IP corresponds to a permutation of the respective
columns in M, where the constant column on the right always stays fixed. Then the
objective function and the set of constraints are preserved by such a permutation, if
we can reorder the set of constraints, such that we get exactly the original [P - or in

matrix formulation, if we can permute the rows of the matrix in a way that lets us
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recover the matrix A/. We have to be careful, though. not to mingle objective function.
equalities and inequalities with each other in this pernutation. In 1. this partition
into rows and columns that can be permuted is indicated by lines partitioning the
matrix. That means that we can interchange rows (columns) with one another that

are not separated by one of the lines.

LEMMA 6. 4 symmetry of the IP given by matriz M is in one-to-one correspon-
dence to a permutation of the first n columns in M such that there is a permutation

of the rows to recover Al which respects the row partition.

In other words. an automorphisms of M under column and row permutations gives
rise to a symmetry of the [P by restricting it to its action on the first n columns.

In the input. the initial row partition has to be specified. Note that the distinction
between objective function. equality and inequality constraint does not matter at all
for the algorithn. To find the svinmetries and do augmentations. one only needs to
know which rows can be interchanged and which cannot. For more generality, our
program requires as input an initial partition of rows and columns (including the
original partition of the columns into the first n ones and the right constant vector),
which leaves the possibility of encoding additional information if desired.

To find the respective automorphisms of M, we use routines implemented in
ISOM. The heart of the algorithm is a combination of invariant analvsis and a branch-
and-bound search. Partial permutations are generated and extended step by step in a
depth-first fashion, while automorphism pruning and branch-and-bound pruning cut
down the size of the search. The greatest gain in speed is due to invariant analysis.
which reduces the number of possible permutations that have to be considered by
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looking at invariants of a combinatorial object not permitting certain permutations.
The theoretical aspects of the branch-and-bound algorithm applied by ISOM can be
found in detail in [12, pp.51 fI] and [2]. In the literature. the concept of invariant

analysis is described for the similar case of graph automorphisms for example in [15].

2. Implementation Details

This shall give a brief introduction to some details of the source code of our
program to help understanding it.

The program reads in the IP P in the form of the integer matrix A and an initial
partition of the rows and columas from an input file. In a loop in the main routine,
it then performs several augmentations. adding new rows to the matrix until the
symmetry group of the augmented matrix is trivial. To find the new automorphism
group after each augmentation step. we assume Sy P’ C Sym P. so we only have to
restrict the symmetry group to a subgroup instead of finding a whole new group. The
final augmented matrix corresponds to an [P P’ with no symmetries. This [P /' can
then be solved using an integer optimization software package (for example CPLEX
[8]), and if a complete set of optimal solutions Gope(P’) has been determined. then
all solutions for P can be found by applying Sym P to S, ().

As already mentioned, the [SOM package will provide us with data structures and
routines to efficiently deal with permutations. To store a permutation o of degree k.
it offers the data type ptr_to_permuect, which stores ¢ as a vector (o(1),....0(k)).

Permutation groups are represented by the type ptr_to_perm_gp.

The program has to deal with permutations of the columns and rows of a matrix.
It addressed those columns and rows by numbering them in the following way
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1 2 ... n n+1l
n+2
n+3

n+m+my+2

Let Cy, .... Ci be the initial partition of the columns and R,. .... R, the initial
partition of the rows. Then the permutation group of the input matrix A/ is initialized

to the direct product group
SymCy x -+ x SymCy x Sym Ry x -+ - x Svm R,.

The routine make_autogp uses external routines applying invariant analvsis and
isomorphism testing to return the subgroup of automorphisms of M of this direct
product group. Once this group is found. truncate_group can be used to restrict it to
its action on the first n columns to get the svmmetry group of the IP.

The program will then find and add the new constraints to the IP in form of
additional rows of the matrix.

After each augmentation of the matrix. make_autogp determines the new auto-
morphism group from the previous one by restricting it to those permutations that
are still automorphisms of the augmented matrix. Augmentations are performed,
until make_autogp find a trivial automorphism group, at which point the program
terminates.

The routine Print_.CPLEX output was added to write the final output IP into a

mps-file, which is one of the input formats for the CPLEX optimizer [8].



n | time (s)

< 100 < 1
< 200 < 2

< 500 < 40

TABLE 4.1. Time of symmetric augmentation for an IP with n variables.

The program dealt with all test examples very efficiently. Table 4.1 shows the
running times we obtained from examples. [t can be easily seen that the time needed

for symmetric augmentation is negligible, relative to the time involved in the opti-

mization (see also Table 5.2, 17).
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CHAPTER 5

Results

The algorithm that was developed in this thesis was motivated by the work of Ka
Leung Ma [13, Chapters 5, 6]. There, an attempt was made to solve the football pool
problem, which we will introduce below. for 6 and 7 matches by generating a number
of integer optimization problems. or at least to improve the known upper bound
for the solution. The solution to each of those optimization problems represents a
(not necessarily optimal) solution for the football pool. Unfortunately, as integer
optimization is very involved (compare Chapter 1). solutions could not be found in
all cases. A common feature in all those integer programs is. though. that there
are symimetries in the variables due to the large amount of symmetry in the original
problem. Our algorithm shall make use of this to solve some of the so far unsolved

cases.

1. The Football Pool Problem

The football pool problem is one of the classical problems of combinatorial coding
theory. It arises from the following question: One wants to forecast the outcome of
n football matches. Each match can end in three possible ways: either a win or a
loss for the home team, or there is a tie between the two teams playing. What is the
smallest number of bets to be made to. whatever the outcome, have at least in one
of them n — 1 results predicted correctly?
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In mathematical language that translates to the following: Consider the set Z7
of n-tuples (or words) (z,,....r,) with r, € Zy = {0,1.2}. The numbers 0. I, 2
represent the three outcomes a match can have, so Z} is the set of all possible results
of n matches. The Hamming distance d(z, y) of two words r, y € Z% is defined to
be the number of coordinates in which r and y differ. A covering code C of Z? is a
subset of words such that each element in Z§ has a Hamming distance at most 1 to
some word in C. We want to find a covering code of Z} with a minimal number of
elements.

This is a special case of the more general formulation to find a covering code C of
Zy. where Z, = {0.1....,q— L}. with the property that every element in Zy is within
Hamming distance at most r from at least one codeword in C. Then r is called the
covering radius. A common notation for the minimum size of a covering code of

2 S
Zy is

Ky(n.ry =min{ |C| |Cis a covering code with covering radius r of Z,}.

[n this notation, the football pool problem is to find A3(n. 1).

In the last decades, the football pool problem has been solved for n = 1. ....5.
Also it has been shown. that in the case n = %(3"- 1} there is a minimal covering code
of size 3"~* (cf. [14], [20]). For all other n the size of a minimal covering has not vet
been determined. During the years. increasingly better lower and upper bounds have

been established for small n. Table 5.1 gives an overview of these results. There, the

most common methods that were applied are simulated annealing and tabu search.
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n | nb. of words | best lower - upper bounds | reference
1 3 l
2 9 3
3 27 5
4 81 9
5 243 27 (9]
6 729 65- 73 (17]. [11]
7 2187 153 - 186 (5], [11]
8 6561 393 - 186 [11]
9 19683 1048 - 1356
10 59049 2814 - 3645
11 177147 7767 - 9477 [18]
12 9531441 21395-27702 (18]

TABLE 5.1. Best known bounds for A(n, 1).

In [13]. an approach via the dominating set problem like in the rooks example in

Chapter 1 is suggested.

2. Dominating Sets and Optimization

[n Chapter 1 we have already given an introduction to the dominating set problem.
We will discuss now. how the question to find Kg(n.r) can be translated into a problem
of that type.

Given a graph G(17 E), the distance of two vertices is the length of the shortest
path connecting them. A dominating set of radius r is a subset D C 1" such that
any vertex in G has distance at most r from some element in D.

Let 'y (17 E) be the graph, where 1" = Z; and two vertices r, y are adjacent if
they only differ in one coordinate, that is £ = {{z,y} | d(x, y) = 1}. This graph is
called the rook domain graph. Note that the rooks graph R, in Chapter 1 is a
special case of the rook domain graph: R, =Ty,
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It is not difficult to see that the distance between two vertices z. y in this graph
equals the Hamming distance of the words r and y. so we can unambiguously denote
both by d(z.y). A covering code of radius r of Z; corresponds to a dominating set
of radius r of the graph ', ,(V, E).

In this thesis, we want to investigate [s 3, the football pool graph for 6 matches.
Theoretically, we could now follow the rooks graph example and transform this dom-
inating set problem into an integer program, to solve it by optimization methods.
Unfortunately, though, this would give us an [P in |Z§] = 3% = 729 variables, which
is by far beyond our optimization capacities, even if we apply symmetric augmen-
tation. [13] suggests a method of using the automorphism group of [, to reduce
the problem into a number of smaller ones for graphs with less vertices using orbit
graphs. For that, let us discuss the automorphism group of Cng(VLE). Just from the
construction of the graph we can already guess that it will be very big.

Consider the following operations on |” = Zy:

(1) Let p = (py..... pn) € S). where p, € S, & Z,. act on an element r =

(ry..... In) € Z7 by componentwise permuting the entries:

o= (', ... b))

(2) Let & € S, permute the components of an element r = (z1,....70) € ZY:

I" = (Ty=,..., Ipv)

LEMMA 7 (Ka Leung Ma [13]). The operations p and = are automorphisms of the

graph Ty o(V, E).



PRrooF. We have to show that p and 7 preserve adjacency.

Assume r = (r,..... ).y = (y..--. Un) € Z, are adjacent. That means
d(z,y) = 1, in other words z, = y; for all but exactly one i € {I...., n}, say r, # y,.

(1) We have f* = y® for all i # j, and rf’ # yf’, so d(z?,y*) = 1, and r* and y*
are adjacent.

(2) Similarly, the images r™ and y™ differ only in the j7th component. so they are

adjacent. a

Together, they form a group G = {pn | p € Sg-7 € Su} of automorphisms of
[ng(VLE), which acts on the elements of 1 by first applying p. then 7. The product

of two group elements p; 7. po7, can be defined as follows:

1

() (pama) = (mpd  )(mima).

where S, acts on S} by permuting the components of the elements of Sy in a natural

difficult to show that G is of order (¢!)"n!.

Let Aut [, 4 denote the automorphism group of [aq(VE).

LEMMA 8 (Ka Leung Ma [13]).
Autl, g =G,

PrROOF. We have shown that G C Aut [, ;. Hence for equality it suffices to show
| Aut Up gl = (g!)"n!. See [13]. O
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3. Orbit Graphs and Weighted Dominating Sets

We will now explain, how to use construct orbit graphs and how to use them to
reduce the size of the dominating set problem of a graph.

We have already defined the dominating set problem for general graphs. Now we
want to define a similar notion for weighted graphs.

Let a graph G(1" E) and a weight function w : 1" — R* be given, where w assignes
a positive real weight w(r) to each vertex r € V. We define the weight of a set D

of vertices to be

e D

Then the weighted dominating set problem is to find a dominating set D for G
that has minimal weight w(D).
Assume a graph G(17 E) and its automorphism group AutG are given. Let H
be a subgroup of Aut G. If we denote the orbits of 1" under the action of H by O,.
. O then we can define the orbit graph of G with respect to H as follows:
Let Gorp(Vors. Eors) be the graph with vertex set Tore = {1...., m} and edge set
E={{ij}|{r.y} € Eforsomer € O,y € O,}. Each vertex in G, will be

assigned the weight w(i) = |0,|.

Lemma 9 (Ka Leung Ma (13]). If D' is a dominating set of Gy, then
D := U 0,‘
€D’
is a dominating set of G, and |D| = w(D'). Moreover, H fizes D setwise.
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Proor. We will show the following: If {i, j} € E,,;. then for cach y € O,, there
is an £ € O, such that {r,y} € E. From this it is clear that if vertex J € [ is
dominated by some vertex : € D'. then ecach z € O, will be dominated by some
ye O CD.

Assume {i. j} € E, and y € O;. By definition of E,,4, there is an edge {Z',y'} €
E with r' € O, and ' € O,. Now y and y' are both in O,, so there must be a
o € H such that (y')” = y. But H C AutG, so {(z'), (y')°} = {r.y}isin E and
(L)Y =re0,.

[t is clear. that D has size w(D') = Y e 1O

As D is the union of orbits under H. it has to be fixed by H. a

That means that by generating orbit graphs of a graph G. we can find dominating
sets of G by solving smaller dominating set problems for which it is more likely that
a solution can be found with available methods.

Note though, that we can only find dominating sets that are fixed by some sub-
group of Aut G. So we will not necessarily be able to find a dominating set of minimum
size for G. But still every dominating set that we find using orbit graphs will give us
an upper bound on the size of an optimal dominating set of the graph.

To reduce the number of subgroups that have to be taken into consideration for the
generation of orbit graphs, it can be shown that it is sufficient to consider subgroups
of Aut G up to conjugation.

Remember that two subgroups H, K C AutG are conjugate if there isa g €

Aut G such that K = g~'Hg.



LemMA 10 (Ka Leung Ma [13]). If the subgroups H, K C AutG are conjugate,
then the orbit graph G.w(H) of G with respect to H is isomorphic to the orbit graph

Gors(K) with respect to K.

PROOF. See [13]. 0O

COROLLARY. The dominating sets of Gors( H) and Gors(K) of a certain size t are

in bijective correspondence.

Note that the bigger the subgroup H. the more elements are contained in the
orbit of each vertex. i.e. the smaller the orbit graph with respect to A will be. For
smaller orbit graphs. it will be easier to find a dominating set. On the other hand.
we stated in Lemma 9. that the corresponding dominating set in the original graph
G will be fixed by H. so with a big H the chance to find an optimal dominating set

decreases.

4. Orbit Graphs and Weighted Dominating Sets of I's 5

[n [13], 220 orbit graphs are constructed for [, ranging from 24 vertices to 486
vertices.

As was just discussed, the bigger a subgroup of I's3 we choose to generate an
orbit graph, the less probable it is to find a good dominating set for the original
graph through it. For this reason, all orbit graphs for the smallest possible subgroups
were generated, the cyclic subgroups. In other words. a representative h of each of the
220 conjugacy classes in Aut I3 was determined, and the orbit graph for H = {(h)
constructed.
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TaBLE 5.2. CPLEX performance on the orbit graphs of [ 3 with and
without symmetric augmentation.

CPLEX CPLEX
number | size | new w/o symm. aug. with symm. aug.
graph | variables | Aut G | rows time space time space
80 2 72 7 23 s 15s
91 2 288 13 4l's 10 s
102 72 T2 7 17 s 10 s
19 81 108 8 17 s 37s
90 81| 1296 33 62 s 10 s
174 123 2 8| 7 min dmin 45 s
29 126 | 31104 17| 115 min | 30 MB 17 min 3.5 \MB
27 1351 31104 17| >140 min | 33 MB 13 min 2 MB
35 135 3456 17] >50 min | >14 MB 12 min JNB
28 162} 31104 23| >I8h |>350 MB| 126 min 17.5 MB
44 198 861 15 9h 35 min| 45 MB
53 198 432 0 >34 h >150 MB
no solution found

Table 5.3 on page 48 gives a list of those orbit graphs for which no optimal solution

could be found in {13], together with the results obtained by applyving svmmetric

augmentation. For the generators h of the orbit graphs refer to [13]. For all the

smaller graphs solutions were determined. In the case of the graphs with a large

number of vertices, CPLEX is not necessarily able to find the domination number

even if symmetric augmentation is applied. It can be used, though, to establish lower

and upper bounds.

So far, we could not improve the upper bound on the size of a minimal dominating

set for I'g 3 to less than 73.

[n Table 5.2 the performance of CPLEX on some of the orbit graphs is shown,

comparing time and space expenses of optimization without and with applying svm-

metric augmentation.



TABLE 5.3. New domination numbers for orbit graphs of [s3 using
CPLEX and symmetric augmentation.

weight wetghted dom. set size w

graph | distribution | [13] | w/ symm. augm.
1 5'M1%T <99 77
10 <81 w < 78
11 3P <95 *T1<w<80
12 330197 <99 71 <w<8l
18 3T <96 < w<8l
19 el <90 81
20 3BT <81 ™ < w < 8l
21 <81 7 < w < 8l
22 3BT <102 2<w<78
23 FB T <81 2 <uw <8l
24 FHT <96 2 <w<8l
25 P8 <99 < w<75
26 3BT <108 69 < w < 81
27 69837 <81 81
28 6°1381 ] < 81 81
29 617301 <81 81
30 6933 <81 78
34 6°138 T <81 81
35 69337 | <81 81
36 1251637 | <81 81
37 6137 <81 78
38 6°1381 1 <81 81
39 6'937" | <81 78
10 61983277 <81 78 < w < 81
11 61739 <81 78
12 65632»123619 S 81 80
13| 6'82T T <R 80
446732717 <81 80
45 610823619 T <81 80
16 698239131 7<85 78
47| 63829 I T <87 79
48 610820111756 T
53 [ 623722717 | <102 9 < w<80
54 619%236 191 <81 78
55 [ 67342317 <79 78
56 6'%829 3] <87 78
57 620N T <77 7
58 | 61103823131 <80 82
60 6[[6382313 < 84 30

-
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weight weighted dom. set size w
graph | distribution | [13] | w/ symm. augm.
77 61983271 <87 81
78 65131 <90 81
79 673 <81 81
80 12216737 | < 81 81
83 6'°03%] <81 81
84 619837 <87 87
87 673 <90 90
90 12735 [ <111 111
91 12216737 | < 105 105
102 1216737 < 99 99
107 6'983%7 ] <87 87
110 6'73°] <90 90
112 1273 [ < 111 111
114 12°'693% | < 105 105
120 12246939 [ < 105 105
125 69837 <87 87
128 12°16937 | < 99 99
131 6'737 <90 90
137 G837 < 8] 81
138 6331 <81 78
139 6°13 ] <81 78
140 6137 < 81 78
142 12°13%] <99 96
148 6'9837 [ <84 81
149 12716737 | < 84 84
150 63T <81 78
151 651331 < 84 81
152 6'173% [ <81 78
153 6''737] <84 81
154 61983% [ <81 78
135 6198327 <87 81
156 6198327 < 81 78
157 6°138T] < 84 81
158 6''°3] <81 T
160 1246937 | < 81 84
161 6°13%] < 81 75 < w < 81
162 61983771 < 96 81
163 6937 <81 78
164 6°13%31 ] <81 78 < w < 81
165 61737 1 < 84 81
166 6'983°7 < 81 7
167 63 <7 T




wetght weighted dom. set size w
graph | distribution | [13] | w/ symm. augm.
168 63T <81 78
169 6°138T [ < 81 81
170 6933 | < 81 81
173 6°13%T] < 81 78
174 60337 <78 78
175 633 < 81 81
176 6°138T] < 81 81
177 6131 < 81 81
178 61737 < 84 84
179 6'%83%7 1 < 87 81
180 6°13%T | < 84 8<w<8de
181 6033 < 81 81
182 260191 <100 *w < 81
183 PHPTT gy ‘66 < w < 87
184 28T <93
185 2B <93
186 203 < 105 ‘w <85
187 29T <935
188 4B T <8T T8 < uw < 83
189 BT <9y T4 < w <8l
190 LN Y] 80 < uw < 81
191 120 T T2 99 T3 < w < 8l
192 10T gy T9<w <8l
193 41992¥ 17 <81 T8 <u <8l
194 129 <06 T3<w<8d
195 4033 <91 6<uw<83
196 BT 8] W< uw <7
200 SWLIT] <81 81
201 110223913 17789 3<w <8
202 4RI <8y H<w<8?
203 4162236171 <104 <w<84
204 41197 < 110 3 <w<83
205 8902313 <81 81
206 4189931312786 TH1<w <83
207 2B 2B <105 w < 86
208 2933 <101 *w < 88
209 HPBIT <96 ‘w < 84
210 41922937 "<gp 2<w<80
201 4102227 <89 M<w<7
212 OB 7 7
213 | 4% 7T < g5 2<w<80




weight weighted dom. set size w

graph | distribution | [13] | w/ symm. augm.
214 2380191 < 109 ‘w < 89
215 418033 < 94 H<w<77
216 251771 <102 67 < w < 86
217 251801 <101 ‘w< 89
718 BT <138 w< 79
319 P9 < 89 “w < 88
220 27T <94 67 < w < 88

The entries marked with * were computed using the
optimization software OSL.
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Appendix

In this appendix, the source code of the symmetric augmentation algorithm is

given in form of the C program “tsysaug.c”.
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