INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master, UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
eonﬁmﬁngﬁ'omlefttorightinequalsectionswithsmalloverlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Informaton Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800:521-0600

TECHNIQUES FOR SPECIFICATION AND VALIDATION
OF COMPLEX PROTOCOLS

THEODORE J. EWANCHYNA

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 1996
© THEODORE J. EWANCHYNA, 1997

i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre rifdrence

Our file Notre rdlérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-26014-3

Abstract
Techniques for Specification and Validation of Complex Protocols

Theodore J. Ewanchyna

Simple protocols can be described with natural language and pictures. This description is no
longer adequate as protocols become more complex, or more people get involved. Formal
Description Techniques (FDTs) have been developed to convey this information clearly and
unambiguously (and as a basis for correctness verification) but FDT-based specifications
tend to be long and hard to follow.

In order to help the user understand and use complex protocols, we have integrated in-
formal graphical techniques with the current formal techniques. We have developed an ap-
proach for the generation of pictures directly from formal models.

iii

Acknowledgments

First, I would like to thank my supervisor for his intellectual and financial support.

I would especially like to thank Gustave Arroyo for his help in organizing and editing por-
tions of this thesis.

I wish to acknowledge and thank the support staff in both the Computer Science and the
Electrical and Computer Engineering departments of Concordia University and also the Com-
puter Science staff at the Université de Montréal.

My thanks also to Dr. Holzmann, the creator of the PROMELA language and the SPIN
tools, for the frequent correspondence over the years via e-mail.

Finally, I would like to acknowledge and thank my father, Wesley Ewanchyna for his help
and support during the final and crucial phase of the writing of this thesis.

iv

To the memory of Frank Thomson

Contents

List of Tables
List of Figures

1 Introduction

1.1 Background
LLI FDTs.

1.1.3 ComplexProtocols
1.2 ScopeoftheThesis

Protocol Definition

2.1 ComputerProtocols
2.1.1 Five Essential Ingredients

22 OSILayers. v

Protocol Development Techniques

3.1 IntroductionandHistory
32 InformalMethods
3.2.1 Describing a Protocol Informally
3.3 Formal Methods and Protocol Engineering
33.1 Benefitsof FormalMethods
332 Models. L
333 GuardedCommands

vi

(< N S)

\O oo @

3.3.4 Communicating Sequential Processes 29

3.3.5 Finite State Machines (FSMs) 31
3.36 ReactiveSystems, 32
337 Concumency e 34
3.4 Validation and Verification 34
3.4.1 Reachability Analysis 35
342 TemporalLogic 36
343 ClassicalLogic 37
35 Conclusion 39
PROMELA, a PROtocol MEta-LAnguage 41
41 WhyPROMELA? 41
42 TheLanguage 42
421 CExtensions 42
422 Model SpecificConstructs 45
423 GuardedCommands 45
424 Timeout 46
4.2.5 FiniteStateMachines, .. 47
4.2.6 Execution Scheduling, Channels and other Aspects of PROMELA 48
4.27 Validation and Verification 49
43 PROMELATOOIS 56
43.1 SPINUsage 56
43.2 Simulation 57
4.3.3 Validation and Verification 59
44 Conclusion 60
Graphics support 62
5.1 FDTsandgraphics 62
5.1.1 Characteristicsof Graphics 62
5.1.2 Advantagesof using graphics 63
5.2 Graphics SupportTools 64
5.2.1 Dynamic and Static Graphic Information 65
5.2.2 Types of Graphic Representation 65

vii

5.2.3 Languages and their GraphicsSupport 67
524 TeVTK . . . oL 71
53 OurTools, 71
Drawing Time Sequence Diagrams 73
6.1 Introduction 73
6.2 Background 74
6.3 AutomatingtheProcess 75
6.3.1 ImputFormats 75
63.2 OutputFormats 76
633 GenericInputFormat 77
63.4 Discussion 79
6.4 tsd,theTool 79
6.4.1 CallingSyntax 80
6.42 Layout, 81
643 MainProgram 81
6.44 TSDlibraryprogram 82
645 The“tsdh’File 85
646 Bug 85
Drawing Finite State Machines 87
7.1 Introduction 87
7.2 Background 87
73 TheFSMDrawingTools 88
73.1 SmallerTools 89
732 fsm-make 91
7.3.3 Discussion of the code for “fsm-make” 97
73.4 pre-xdag 99
735 xdag, 102
73.6 dag-libtcl 104

7.4 Discussion

viii

8 Conclusions and Future Work

8.1

Conclusion L,

................................

References

Appendices

A

B

Specification and Validation Approach

TSD Source Code

B.1
B.2
B.3
B.4

Main Program (textversion)
Main Program (X windows version)
LibraryProgram
HeaderProgram

FSM Source Code

C.1
C.2
C3
C4

Small Support Programs
Main Program (layoutcalculation)
Main Program (draw graphic (X windows))
LibraryProgram

ix

106
106
106

108

116

116

118
119
120
123
134

List of Tables

1 PROMELAKeywords 43
2 PROMELA Operators oo 44
3 Miscellaneous PROMELA Syntax 45
4 Spin CommandLine Options 58
5 C Compiler Command Line Options (for compiling the analyzer) 60
6 Verifier Command Line Options 61
7 Listof FSMTools 89

List of Figures

O 00 3 N W Hh W N r—

BN DN DN DN = e et et et et gt et e et
H W RN = O OV 0 NONWn A WM =~ O

Design Methodology Overview 3
Protocol Visualisation S
OSILayers. 10
The ProtocolModel 12
The ServiceModel, 12
The “classic” architecturemodel 13
Informal Architecture of XTP CommunicationModel 15
Isolation of Contexts of the XTP Communication Model 16
Internal Architecture of an XTPcontext 16
XTP Architecture of Contexts with datastreams 17
XTP 3.6 Contextstate machine 18
Fully Graceful IndependentClose 20
XTP in action: FIRST and DAT A packetexchanges 21
InRes Protocol Architecture 66
“Enduser” 68
ABP: Multiple State Machines within the Model’s Architecture 69
SampleInput(SPIN1.6) 74
Sample Input (SPIN2.3.3) 75
‘Generic’ Inputfor “tsd” 76
Sample Output from “tsd’ 76
Sample Output from ‘xtsd” 77
“normal” FASTNAK mode 78
FASTNAK onanon-FIFOnetwork 78
xtsdinterface L L 83

Xi

25
26
27
28
29
30
31
32
33

Sample “pan -d"Output(spin2.3.3) 88
FSM Design Methodology Overview 92
Context Machine (Holzmann drawing algorithm) 94
ContextMachine, 95
Context Machine (compacted “down” transitions) 96
“pre-xdag” InputFormat, .. 99
Context Machine (“up” transitions) 100
Context Machine (“down” transitions) 101
“xdag”InputFormat 102

Xii

Chapter 1

Introduction

1.1 Background

Computer protocols were first examined as an interesting problem in computer science with
what became known as the “alternating bit protocol” [Lyn68]. A simple English and graphic
description delineated the rules for two computers to follow in order to reliably transfer
packets of information between them. But even this simple protocol description was found
to be in error [BSW69] and, ominously, serves as a wamning to other protocol designers:
designing and describing protocols is deceptively complex—it looks easy to describe the
mechanisms that make up what we call a protocol, butitisnot! As modern protocols achieve
levels of complexity many times the level of complexity of ‘toy protocols’ like ABP, the
need for a more precise formulation becomes obvious.

1.1.1 FDTs

Formal methods or formal description techniques (FDTs) are used to unambiguously de-
scribe how protocols work. The designer can use these techniques throughout the entire
protocol design life cycle, from the initial design to the final validation and testing stages.
As well, the protocol user (or implementer) can employ the formal description as the autho-
rative definition of how the protocol works.

When employing FDTs, an unambiguous model of the protocol system is created using
a formal language. Most formal languages were created to support the first design stage for
protocols, the specification stage. Animportant aspect of using FDTs is that once a protocol

design is completed, it can be formally verified and validated. FDTs allow one to unam-
biguously describe protocols; but that is not enough, we must offer some assurance that the
protocol is correct.

Unfortunately, when the design of a new protocol is complete, we usually have
little rouble convincing ourselves that it is trivially correct. It can be unreason-
ably hard to prove those facts formally and to convince also others. [Hol93]

With formal techniques, a protocol description can be verified to be correct before it is
implemented, that is, before it is put out into the field and used. Furthermore, most protocol
descriptions are machine readable so that these descriptions can be shown automatically to
be correct.

1.1.2 Protocol Visualisation

Prior to using FDTs, protocol designers used natural language descriptions and pictures to
explain how protocols work. Several factors led to designers adopting formal methods:

e as designers examined their ‘success’ with ‘informal methods’, they noticed inaccu-
racies and errors

e modem protocols became more complex

e designers’ abilities to describe modern protocols using ‘informal methods’ could no
longer keep up.

Despite the advantages of using FDTs, however, many protocol designers still do not
use them. The few protocol designers that use FDTs do not use them throughout the entire
protocol design life cycle. In fact, we can see two camps, the ‘formalists’ and the ‘infor-
malists’.

Some disadvantages of using FDTs are that training people to use them takes some extra
time and FDT-based specifications tend to be large and hard to follow.

On the other hand, informal methods are intuitive so that they are relatively easy for
human beings to use, as we are very good at recognising patterns and gleaning a great deal
of information from illustrations.

Figure 1: Design Methodology Overview

If formal methods are so superior to informal methods, why are not more people using
them? As such, it may benefit us to re-examine what we hope to accomplish by building a
formal model. We find that FDTs are most often used to:

e find problems in an existing informal specification

e prove the merit of FDTs by showing how easy it is to use FDTs
e as a basis for a proof step

e as a basis for other phases of protocol design steps.

We believe that we would be better off asking who is the specification (or model) being
written for—humans or computers? The answer is for ‘both’. An informal model is use-
ful for humans and a formal model is potentially useful to humans but definitely must be
‘formal’ if it is to be used by computers.

We feel it would be beneficial to combine the two approaches: we propose using FDTs
to create formal models; these can be validated and verified as is done already with FDTs

3

and can also be used as a basis for generating graphics of the system.

Figure 1 represents our design methodology . We see that we first start off with a con-
cept; next, we express this concept as a model, preferably formally. Then we can validate
and then verify the model. We can also produce graphics from it, wherein the graphics rep-
resent the model ‘internally’ and ‘externally’?.

Our design methodology allows both formal and informal description techniques. If we
follow the ‘right’ path after the ‘model’ node, we represent the employment of standard
FDTs. If we follow the ‘left’ path after ‘model’, the ‘graphics’ node represents the use of
graphics from either an informal or formal model, so that this path also illustrates the ability
to include an informal design approach independent of FDTs or in unison with their use.

New [New91, NAS1, NA89a, NA89b] has done much work in the area of graphical rep-
resentation of protocols, or what he calls “protocol visualization”. He asserts that protocol
design should incorporate graphical representation because this is ‘natural’ for us.

The most relevant portions of human cognitive and visual processing are the
ability to automatically recognise proximity and connectivity between pictorial
elements, the ability to automatically recognise inclusion of some pictorial ele-
ments within others, and the ability to automatically focus attention on chang-
ing elements of the visual field; all of these traits were encouraged by human
evolution. [New91]

This author also argues that a three pronged approach that uses the respective strengths
of computers, humans, and FDTSs (or as he terms it ‘specification’) should be used. Figure 2
shows this approach graphically.

1.1.3 Complex Protocols

The Xpress Transport protocol (XTP) is one complex protocol that was created specifically
to address the demands of a new generation of networking and distributed computing needs
that older protocols could no longer meet. Previous protocols, such as those in the OSI and
TCP/IP protocol suites, were designed for environments running on Ethemnet or telephone
dialup lines, and their main applications were remote logins and file transfers.

!This idea will be elaborated on in the next chapter.

Human
pattern recognition
automatic attention focussing

Computer FDTs
ability to cope with details unambiguous
excellent long-term memory formality

Figure 2: Protocol Visualisation

With the advent of optical fiber technology and ATM networks, many new and previ-
ously unforeseen applications are now feasible and many old applications can be improved
or even extended.

It follows that new protocols such as XTP would have to be developed in order to take
advantage of new technologies. XTP was designed with these new technologies in mind. It
has been optimised for the needs of the present day.

XTP is alarge and complicated protocol and currently there is no complete, formal spec-
ification for it. The officially published description informally describes the protocol using
natural language and pictures. Some implementation notes are provided but no formal de-
scription or analysis is available.

Much of the XTP definition concerns itself with describing ‘mechanism’ rather than
‘policy’. As a protocol definition, this is expected but, without any background context it is
hard for new XTP users to know how to use the protocol or for experienced XTP users to
agree on how to use XTP’s functionality. There is no ‘service’ description.

Many aspects of the XTP protocol are not very well defined — informally or formally,
in either of the two base XTP documents: the XTP 3.6 definition document [Sil92] or the
published text on XTP [SDW92]. We feel this situation to be unacceptable. Chesson, the
inventor of XTP, in an accompanying letter to his protocol description, referring to the “im-
precision in the protocol specification” writes:

The quantity of explanatory text is barely adequate, but the inclusion of an API?
interface may be a first step toward portability of applications across XTP im-
plementations. [Sil92]

and he looks forward to future drafts of the protocol, when this situation will be rectified:

Future revisions of XTP may include formal specification methods, such as state
tables and language descriptions. ... An API fashioned in this manner may pro-
vide the long awaited service definition for XTP — a “bottom up” approach to
service specification. [Sil92]

1.2 Scope of the Thesis

In this paper we investigate methods to describe complex protocols so that any ambigui-
ties or imprecision can start to be cleared up in their descriptions. We apply the techniques
of formal analysis to describe and validate our models in order to provide assurances that
the model is both precise and correct. We also generate graphical descriptions as an aid to
describe and understand the protocol. We use PROMELA as the protocol design and vali-
dation language.

The beginning chapters provides a look at the area of protocol engineering in general and
then focusses on the use of the language PROMELA as a design tool for the specification,
verification and validation of protocols. We look at finite state machines for specification,
and at reachability analysis and temporal logic for validation and verification, respectively,
then we compare the various techniques for formal methods. Although there are many tech-
niques described in this chapter, only one, PROMELA, will be used to build protocol mod-
els.

Chapter 2 provides a description of what a protocol is. We use a definition by Holzmann
to arrive at what he refers to as a ‘complete’ protocol description. The ISO OSI model is
used to explain how a complex communications sytem is broken down into protocol de-
scription layers and the well defined interfaces that allow communication with those layers.

Chapter 3 provides a look at the techniques that have been developed to try and specify
protocols. We start off describing informal desription techniques. Within this context we

2API is an acronym for “application-protocol interface”

6

provide a classification system based on ‘internal’ and ‘external’ descriptions of protocol
systems. After this we introduce the topic of formal techniques.

As with all large software systems there exists a software life cycle. Protocol engineer-
ing is an attempt to provide a more sound protocol design technique much as software en-
gineering does for non-communicating software systems. We discuss some of the specifi-
cation, validation and verification techniques that have been used to try and come to terms
with the complex issues of defining protocol systems.

After this chapter, we discuss the language, PROMELA, which we feel incorporates the
best aspects of the techniques of formal protocol design. The language is not only used in
the first phase, the specification phase but also has allowances for validation, verification
and even simulation. Thus PROMELA can be used for all the phases of the protocol design
life cycle, except for the final, implementation phase.

Next, we discuss aspects of graphics support. Chapter 5 reiterates the advantages of
using graphics in protocol design, but this time in the context of a formal design approach.
We briefly look at some examples that have influenced us and then take a look at some tools
we have created in order to bring graphics tools into the PROMELA world.

Chapter 6 looks at the graphical tool we designed to draw out time sequence diagrams.
We provide background and motivation for wanting to come up with such a tool and then
describe how the tool works. Time sequence diagrams provide an ‘external’ description of
the modules of the protocol system.

In chapter 7 we provide a similiar discussion for the graphical tool we designed to draw
finite state machines. Finite state machines provide an ‘internal’ description of the modules
of a protocol system.

The last chapter concludes the thesis and briefly examines other areas to explore.

Chapter 2

Protocol Definition

A protocol can be described as “the set of rules that two entities use in order to communicate
with each other to accomplish a particular task™. In order to show that the definition applies
to many other things — other than computer ‘protocols’, this description is purposely as
general as possible.

For example, when people engage in a telephone conversation they also follow a proto-
col: each person starts the connection with ‘hello’, talks for a while, and then says ‘good-
bye’. This, of course, abstracts the mechanics involved of dialling the telephone, taking
the phone ‘off hook’, etc. See [BL93, BL91, SL93, FLS90a, FL.S90b, FL.S91], for sev-
eral formal models of the telephone ‘protocol’ written in the formal specification language,
LOTOS!.

2.1 Computer Protocols

In the world of data communications, computers communicate with one another by trans-
mitting messages between themselves. In order to assure reliable communications some
sort of acknowledgement for the sender from the receiver—‘error control’ and other mech-
anisms are introduced. The sum total of the different mechanisms used are what defines a
‘protocol’.

!The earlier papers discuss ‘POTS’ - plain old telephone system, while later papers build on this work
and describe new telephone features like call waiting, etc. The problem of feature interaction, where newly
introduced features interfere with already present ones, and different specification styles are mentioned when
talking about these new features.

Equally important is for the protocol to be stated as a precise and unambiguous set of
rules. Machines are not as flexible as humans. For example, where a human might ‘hang
up the phone’ if no one is at the other end of the line a computer would not—unless it can
recognize this situation and is specifically informed as to what to do. In other words comput-
ers may be fast but they are not all that smart. This then becomes the problem for protocol
designers to overcome: how can we write a complete and unambiguous description so that
computers can reliably transmit information between them.

2.1.1 Five Essential Ingredients

In an attempt to describe how to go about this, Holzmann [Hol91] enumerates five essential
ingredients for a complete protocol specification:

1. the service to be provided by the protocol

2. the assumptions about the protocol in which the protocol is to be used
3. the vocabulary of messages used to implement the protocol

4. the encoding (format) of each message in the vocabulary

5. the procedure rules guarding fhe consistency of message exchanges

The service refers to the outside interface that is presented to the protocol user, which
includes the available ports and messages that can flow through those ports. The assump-
tions can be regarded as a requirement to specify the ‘extraneous’ entities of the protocol
model. This would include the environment that the protocol is to be run in and the types
of users the protocol would expect to interact with. The vocabulary concems itself with the
correct sequence of messages that may pass through interconnecting ports. Encoding (for-
mat) refers to the exact sequence of information that is contained in a message. This can
vary, depending on the level of abstraction that the model represents. Often, only a portion
of the ‘actual’ message is defined. The designer is concerned only with the fields that are
relevant to the properties being tested in the model, so that unused fields need not be en-
tered. The procedure rules are the definition of the protocol itself. This includes how each
defined module in a system behaves—its full set of rules that explain how to act in each and
every situation for each and every module.

Application Application
level 7
Presentation Presentation
level 6
Session Session
level 5
Transport Transport
level 4
Network Network
level 3
Data Link Data Link
level 2
Physical Physical
level 1

Figure 3: OSI Layers

What this means is that a protocol consists not only of the ‘protocol rules’ but equally
important: the service that that protocol provides, the assumptions or environment that the
protocol operates in, and the specification of the formatand order (vocabulary) that is correct
for a proper transmission to take place. Finally, these messages come from ‘above’ and from
‘below’ the protocol module or layer.

2.2 OSI Layers

Network architecture design has driven the design of communications systems. The method-
ology is to divide the functionality needed for system interconnection into separate modules.
The layers are divided up in terms of a particular functionality. Each layer provides services
to the upper layer and requests services from the lower layer using interactions on well de-
fined boundaries via a small number of ‘service primitives’. Dividing a system up like this

10

allows the user to form different abstractions at each level, which helps to break up the task
of describing such a large system into manageable tasks. In this way each layer defines a
protocol that defines its interaction with its remote peer module; with this (layer and inter-
action) description being the ‘heart’ of the protocol.

To give historical and terminological perspective to the reader, we first look at the In-
ternational Organisation for Standardisation’s (ISO’s) OSI model [DZ83, Hea93]. The OSI
BRM [ISO7498] introduced the concepts of layering and abstraction into the computer com-
munications world in order to tame the complexity inherent in communications systems.
The current standard “OSI Basic Reference Model”, (see figure 3), breaks up a system into
layers {Lin83, Liu89].

Each layer has a well defined service interface, where the environment is defined via
the interface directly above and below it (except for the lowest (physical) layer which has
no ‘lower’ layer and the topmost (application) which has no ‘higher’ layer). As part of this
definition, the format and ordering of messages that pass through these interfaces is also
defined.

To illustrate this approach, refer again to figure 3. The ‘physical’ layer forms the basis
of the model. The ‘data link’ layer uses the services as expressed by the behaviour charac-
teristics of the physical layer to create a service that the next higher (network) layer can use.
How the data link layer does this is what we call its protocol description.

Starting from the data link layer, each higher layer adds a little more functionality to the
lowest layer of ‘bare metal’ wires. Each layer uses the ‘services’ of the layer immediately
below it to provide a service that the next higher layer can use which.

This idea is expressed more generally in figure 4 [Lin83, Liu89] which shows how a
layer N protocol uses the services of layer N-1 to offer a service to the layer N+1, or the
‘user’. Figure 5 [Lin83] shows this same model from the viewpoint of the user layer N+1)
where the layer N protocol is seen to be a ‘black box’. The concern of the user is ‘service’,
not how that service is provided. How the service is provided is what we are concemned with
defining, in other words, it is the protocol.

So for any given layer, the lower layer becomes part of the environment that the current
layer can use. The current layer’s protocol is designed to work with the lower layer to pro-
vide a service that the next higher layer can then use. This process repeats itself until the
highest layer is defined.

11

User User
Layer Nol Layer
D D
Layer N I.nterface
protocol entity protocol entity
L d
Layes N Layel'
&
Layer N-1 Interface
N-1 layer
Figure 4: The Protocol Model
service user service user

service access points

service provider

¢

12

Figure 5: The Service Model

s-user r-user

s-context r-context

medium

Figure 6: The “classic” architecture model

Figure 4 is ofien represented as shown in figure 6 when one wishes to describe the model’s
‘system architecture’. It should be clear how these last three figures relate to Holzmann’s
“five essential ingredients” of protocol specification as given in section 2.1.1.

2.3 Summary

It is a difficult job to define protocols clearly and correctly. Many techniques have been
proposed in order to break the problem down into simpler sub-tasks. Abstraction and mod-
ularisation are used to break down the description of protocols into manageable units. The
description techniques used to describe and design protocols are continually being refined
as new approaches are discovered.

13

Chapter 3

Protocol Development Techniques

3.1 Introduction and History

The application of FDTs to protocols was spear-headed by the International Organisation for
Standardisation (ISO) in the 1980’s in order to insure a high degree of telecommunications
software dependability and quality (see [Vis90] for an introduction to the subject). Prior
to FDT usage, only natural language descriptions, diagrams and code walk-throughs were
used to describe protocols, but this did not suffice to specify the exact requirements for large
software systems, such as protocol software systems.

3.2 Informal Methods

Protocols may quickly acquire a high degree of complexity, and informal descriptions fail
to reflect this complexity, and may lead to mistakes in their implementation. On the other
hand, formal descriptions are less likely to cause misunderstandings, and they may be au-
tomatically verified with the help of a computer.

For example, informal protocol design methods rely on the intuition and experience of
the designer. Considering the complexity of protocol design this is a great compliment on
the designer’s abilities. However, not everyone has such great talent and even very experi-
enced people can make mistakes !,

!Imagine writing complex Pascal or C code by hand without recourse to a cormpiler and expecting the code
to be right the first time through. Now imagine writing a complex system with several threads of control,
without a methodology to follow and without a compiler. This is essentially how protocol designers worked

14

Initiating Corresponding
Endpoint (Host) Endpoint (Host)
Local XTP Remote XTP
[mplementation Implementation
Context Context
Manager Manager
Association

/
/ \ /
/ \ /
Initiating Corresponding
Contexts Conrext Context
[XTP95]

Figure 7: Informal Architecture of XTP Communication Model

3.2.1 Describing a Protocol Informally

How would one go about describing a protocol informally? In the first place, the designer
should try and convey a general overview of the protocol model. The participating system
components and their inter-relationships should be described to show the modules and how
they communicate with each other. Figure 7 shows an example of this overview for the XTP
protocol architecture.

From this figure we see how a unicasting XTP ‘association’ can be built between two
contexts (an initiating and its corresponding (listening) context and their corresponding two
simplex data communications streams between them. Figure 8 is a closeup of this figure
which we use to shift the reader’s attention to this relationship. Each context exists on a
differenthost which is running its own XTP protocol stack. As part of this implementation
a ‘context manager’ is used to mediate the shunting of information to the proper context.

More detail and a better understanding is often provided by focussing on particular ar-
chitectural components (see figures 7, 8, 9, and 10) and the designers of XTP have done just

before formal methods were adopted.

15

Association

[XTP95]

Figure 8: Isolation of Contexts of the XTP Communication Model

INPUT DATA STREAM

To Host ‘_——-

»

input Queues

¢— |RECEIVER | ¢4—

R4

Control
Blocks*

4

i
|
g

Context
Records*
'S
!
T
v

S (C) -
Output Queues

SENDER | -4—b

OUTPUT DATA STREAM

* Context Record: maintained for each pair of data streams (each context))
Control Block: maintained for each host data transfer operation
Translation Map: address and routing/switching database

Figure 9: Internal Architecture of an XTP context

16

[XTP95]

one ugodmion

endpoint Host A .~ ... endpotnt Host 8

[Sil92]

Figure 10: XTP Architecture of Contexts with data streams

that in order to help describe their protocol. Figures 7 and 8 informally show an ‘associa-
tion” between two ‘contexts’ and how they are connected together (we produced figure 9).
Figure 9 shows the makeup of a single XTP context. Figure 10 is similar to figure 8, but by
focussing on the channels, it attempts to illustrate the communications between two XTP
contexts; it shows how the contexts communicate with each other and the types of packets
they exchange.

In this way a protocol model is gradually fleshed out by a series of increasingly detailed
descriptions and illustrations. However, we note that the architecture only provides a static
description. Once the various details of the architecture are provided, it is the events that
occur and their consequences to the protocol system that often give a more informative de-
scription of the protocol. This allows a dynamic view of the protocol and these cause and
effect events (or actions) can be described as occurring ‘internally”’ and ‘externally’?.

Internal Description

As we break down the protocol into modules and processes that implement specific func-
tionalities we find that at certain times a process is ready to either instigate (or ‘offer’) or
respond to certain events and therefore certain things can only happen at certain times. For

2My terminology.

17

USTEN 7 - v

7 . .
procedur -
,9 C'-ojs i CLOSE
procedure :
L.~ | cLosg Procedure
2 I procedure
{ :
i
|
open ! R
~ proc:edul'el
~
~ d
FIRST packet
~

~
~

e

[Sil92]

Figure 11: XTP 3.6 Context state machine

example, a module may send a message and then wait for a reply. There may be several pos-
sible scenarios that may occur after the message is sent, and all of them must be accounted
for. -

Internal descriptions show how the modules are affected on a per process level. Using
an example where a process has sent a message and is awaiting a response: the process pro-
gresses to a wait state and will only change its “state” upon receipt of the returned message.
A different message may force the process into a different “state” or if no message arrives,
this, too may force a change of state.

At each stage in a process’ lifetime, a list of responses that are acceptable to it and how
the module responds to them and how it changes (by going through a series of stages) is de-
scribed. Assuming only legal responses occur, for example, the sending module only enters
a new stage upon receipt of one of those responses. On the global scale, the entire proto-
col is described as the sum of all its component modules’ executions and interactions. The
protocol goes through each of its component modules and enumerates their expected events.

These *“stages™ are termed “states” in finite state machine terminlogy.

Figure 11 illustrates the general stages an XTP context goes through in its lifetime. The

18

reader should note that the actions listed on the transition arrows show the result of an out-
side process’ communications with it, so that the process chooses to go from the *“null’ state
to either the “listen” or the “active” state, as a result of information not shown in the figure.
Informal descriptions are often “incomplete”.

It must be pointed out that the transition arrows are not like flow chart arrows. For ex-
ample, the transition from the “listen” to the “active” state indicates the passive reception
of a*“FIRST” packet (not the sending of one), as would be depicted in a flow chart. State
transitions occur because of a process instigating or responding to an action.

In figure 11 every context starts off in a “null” or “quiescent” state. The context has two
choices: it can open as an initiator, in which case it proceeds directly to the “active” state, or
it can open as aresponder, in which case it goes to the “listen” state and only upon receiving
an appropriate “F I RST™ packet does the context then proceed to the “active™ state. Once
a context is in an *“‘active” state, it proceeds to the “inactive” state (generally when a data
transmission session is completed).

Every state except for “null” has a “CLOSE procedure” transition that leads back to the
“null™ state. When taken in the “inactive” state this transition represents a normal, unin-
terrupted cycle through the context’s stages. Anywhere else, it represents an interruption
in the normal data transmission session, usually due to some sort of unrecoverable error.
Thus the finite state machine shows all possible behaviour wirhout distinguishing between
desired and undesired behaviours.

External Description

An “external” informal explanation shows the interactions between different modules that
transmit messages to each other. Message sequence diagrams or time sequence diagrams
[LL92b, LL.92a, GR92c] are often used to explain the sequence of message exchanges be-
tween entities. These diagrams are used in most protocol descriptions. Directed arrows are
drawn from the sender to the receiver of a given message. The module bodies are tradition-
ally drawn along the x-axis and time is drawn along the y-axis starting from the top of the
page (see figure 12).

There is an attempt to formalise this notation and turn it into a fourth FDT called Mes-
sage Sequence Charts or MSCs. Grabowski and Rudolph [GR92c] gives a good intro-
duction to the MSC language, including its history, modifications and enhancements, and

19

Context A Context B
WCLOSE =——tfmee |

@~ RCLOSE
‘—____—__—-—' ;

f—— WCLOSE | RCLOSE

WCLOSE|RCLOSE —'—.\\

—— WCLOSE|RCLOSE| END

Figure 12: Fully Graceful Independent Close

the realisation that a clear semantics is not yet arrived at. An attempt to develop formal
semantics for MSCs is given by Ladkin and Leue [LL92b], wherein the authors describe
their work in turning MSCs into ‘global state transition graphs’ (GSTG) via “‘ne/sig graphs”.
They find that the MSC model, as defined, is under-specified because more than one GSTG
can be drawn from a MSC specification. By looking at temporal logic and Biichi automata,
however, they can give a formal semantics to MSC, by adding end states to the GSTGs that
reflect the reliability properties of the communication (which is precisely what is under-
specified by MSC notation) and correlate them with the accepted traces of the automata they
wish to define [L1.92a].

Sometimes a hybrid description approach is used. Figure 13 shows an example of the
XTP protocol using a combination of an architecture diagram and a message sequence di-
agram in order to further convey some meaning about the protocol. This figure shows that
a FIRST packet must be the first packet sent, how it creates an association, and how this
must precede all DAT A packet transmission.

Taken together the internal and external descriptions can give the user a good feel for
how a protocol works and helps one to understand what types of problems the protocol
solves and how it goes about solving them.

Often the specification is used by various people in different phases or stages of the pro-
tocol design life cycle: specification, verification, testing, implementation. Thus it must be

20

one association
endpoint Host B
anew
active context
one context
Kg
may continue pATA packet DATA packet may start
sanding data sending data
or may send or may send
any other packet any other
packet

Figure 13: XTP in action: FIRST and D AT A packet exchanges

clear, unambiguous, and sufficiently detailed. Only then can the specification give confi-
dence that the protocol will be correct [Lin85]. As many potential interactions are unex-
pected and undesirable, FDTs help to spot problems in the specification early enough in the
life cycle to ward off having to make expensive and difficult changes later on.

Without standard design techniques or standard formulations to specify and verify pro-
tocol designs, many problems arise. For example, each designer’s techniques, style, and
quirks have to be learned. Instead of making a ‘black art’ of protocol design (much as com-
piler design was in the 1960s [AU77]), we would like to develop or follow a methodology
that others may actually use to correctly design complicated communications protocols.

Eventually, the notion of a formal description of a protocol is proposed. This technique
is superior to informal methods because formal descriptions are precise to the point that now
the code can be checked by machine [Mil90, Vis90, Liu89]. It is this approach which we
feel holds the greatest promise and which we explore and build on in this thesis.

3.3 Formal Methods and Protocol Engineering

Protocol Engineering is the term used to describe the formal design methodology used through-
out the entire protocol design life cycle—from the initial specification, to validation and
testing, test case generation, and the generation of implementation code.

21

In order to accurately describe protocols, much work has been done in the field of formal
description techniques (FDT). Most research has focussed on formally specifying, verifying
and validating protocols (the first stages in protocol engineering) for logical correctness.

There is good reason for focussing on the earliest stages. Errors in the design stage have
a nasty habit of showing up in the implementation stage, and when discovered, they are
costly to fix.

3.3.1 Benefits of Formal Methods

FDTs provide a mathematical underpinning to specifications which ensures their precision
and tractability. They allow for the design of open systems that insure implementations that
can inter-work. The specifications are also less ambiguous and are free from implementa-
tion bias. FDTs attempt to provide a precise statement of the requirements.

Through their use, FDTs are found to [Tur93]:

e provide a high level of dependability and quality

e specify exactly what is required

e discover errors, ambiguities, and inconsistencies

e impose clear structure on the problem domain

e help in the early stages, to define the requirements and program structure
e highlight deficiencies in the existing informal description.

FDTs can also support the use of computer tools that can help the designer®. Now the
tedious task of looking for inconsistencies can be handled by a machine and the designer can

3“It is not necessary to have computer tools to support FDTs since they can be used as intellectual tools.”
[Tur93]. This represents the strictly formalist point of view, wherein it is argued that model building and proof
making should be done without any computer assistance. (For an extreme representation of this point of view
see [Ste], where Dijkstra proposes teaching courses with programming languages which are not implemented
on campus in order to discourage the use of computers in programming and to drive the point home that com-
puter science is essentially a branch of formal mathematics.) We would reject this claim and say that computer
tools are necessary; see Colin H. West in his foreword to [Hol91], where he says “Protocols have proved to
be extremely difficult to understand without automated analysis tools™.

22

focus on the more creative elements. Another advantage is that the ‘bugs’ can be eliminated
at the earliest possible stage—before implementation coding has started.

In a major project, where several people are usually working together, descriptions must
be formal and unambiguous. This means that the formal specification guides the design,
not the interpretation of a diagram or natural language text fragment. It is important that all
agree on one specification and the earlier they can do this the better.

3.3.2 Models

Models are often used to map from the human intuitive understanding of an application as
expressed in natural language concepts to one based on more formal concepts. The term
model is used in two senses (which should be clear from the context that it is used in). Spe-
cific specification languages are based on a conceptual model—process algebra or the finite
state machine, for example. On the other hand, we build specific protocol system models
in a particular specification language. Obviously this protocol system model will reflect, in
the larger sense, whatever fundamental constructs are inherent in the specific specification
language model. Models are chosen to represent the significant system properties that are
required.

The purpose of a model is to precisely define specific properties or character-
istics of a system under consideration to be built or analysed, and provides
the foundation for verifying those properties .. .thus ...one must select from
a class of models which represent that property [Lam85]

Models should allow all valid implementations but they often represent a tradeoff be-
tween good analytical powers and good expressive power. In the remaining section, we
look at some models which we find useful for describing protocols.

For example, all three ISO FDTs use the “labelled transition system” (LTS) concept
which is defined (rather generally) as *systems whose transitions between states are labelled
with associated actions” as a basic model [Tur93]. We use this model (finite state machines)
as well as another model which delineates the difference between concurrent and sequential
programs. The first subsections look at the beginning of the research into this area.

Note: The following two subsections make frequentreference to the language PROMELA,
which will be discussed in the next chapter. PROMELA relies heavily on the concepts

23

which follow and, as such we felt that it would be appropriate to contrast the original con-
cepts with how PROMELA interpretes them as we introduce the concepts.

3.3.3 Guarded Commands

In the mid-1970’s, Dijkstra [Dij75] applied some new structuring techniques he considered
suitable to describe a certain class of sequential algorithms. He noted that these algorithms
all shared the common trait of ‘concurrency’. In having rewritten these algorithms, he pro-
posed using ‘guarded commands’ to support the programming concept of ‘non-determinism’.
He noted that using non-determinism to express these algorithms made them easier to un-
derstand as their inherent concurrency was brought out.

Definition

The heart of the new structuring method is the guarded command. Structurally, a guarded
command consists of two parts: a guard and a list of one or more commands.

guard -> command-list (x>y) >m:=x

Syntax Example

Semantics

The guard indicates a boolean condition which controls the executability of an attached list
of commands. When the guard is passed (if the boolean condition is true), the command(s)
following the guard are executed. In the example above, if £ >= y then the command list
(in this case, there is only one element in the list), m := z is executed.

Guarded Command Sets

A single guarded command by itself does not differentiate this model from a sequential
model of course. This paradigm is only useful when several guarded commands are grouped
together to form a guarded command “set™. With a guarded command set, the order that
‘true’ guarded commands in the set occur is not related to its choice of executability. So any

4“set” as used in the mathematical sense

24

guarded command that evaluates to true may be executed; sequential order, as for mathe-
matical sets, is irrelevant. When = == y, for example, both £ >= yand z <= y are
equally possible, regardless of their order in the set. This is discussed more fully further on.

guard0 -> command-1list0 X >y ->mn:=
(0 guardi -> command-listi Ox<=y->m:=y
Syntax Example

Two Language Structuring Constructs

Using the guarded command set as a primitive language construct, two language structuring
methods are used:

e the alternative construct: i f < guardedcommandset > fi, and

e the repetitive construct: do < guardedcommandset > od.

The Alternative Construct In an alternative construct, such as
if
X>y-~->mnm:

D x < y ->m :
£i

"

at least one guard must be true or the program will abort. In the above example, program
abortion occurs if r and y have the same value. The consequence of this, of course, is that
the model can never block.

The semantics of this construct are different in PROMELA: the model will block if all
the guards evaluate to false, i.e., no guard is true. Thus an ‘exit’ condition must be explicit
(see left hand side of the following figure). In the latest version of PROMELA, this condi-

tion can be expressed more simply with the else statement (see right hand side of the fol-
lowing figure):

25

example: example:

if if

ItX>y ->m:=x ItX>y ->m:=x
1t x<y->m:=y it x<y->m:=y
1 x =y -> gkip :: else -> skip

fi £fi

PROMELA example PROMELA version 2 example

Finally, as we have just seen, if more than one guard is true, a guarded command is cho-
sen at random (or non-deterministically).

if
X>y->nm:

([
"

0x<=y->m:
£i

In the example, if equals y both guards are true therefore either guard is non-deterministically
chosen.

The alternative construct offers choices among alternatives, much like the CASE state-
ment in Pascal or the SWITCH statement in C. It differs from C or Pascal, where, the first
or most specific true choice is picked. Instead any ‘true’ or executable choice is randomly
picked from the guarded command set.

The Repetitive Construct In a repetitive construct, a structure such as:

do
x>y->x=x-y%
Oy>x->y=y-x

od

is used for looping. When all guards are false the loop exits (for PROMELA, again, an
explicit ‘exit’ condition is required or else the model blocks). After a guarded command
finishes execution, control is returned to the beginning of the loop, and the choice of the
next guarded command to be executed is repeated. This continues until an exit condition
occurs.

26

Applying the Constructs

Concurrent algorithms are non-deterministic 5, thus repeated execution of the same algo-
rithm, will result in a different sequence of execution for each subsequent run whereas ex-
ecution traces of sequential programs are always the same on subsequent runs.

Proving Correctness and Algorithm Tracing Sequential programs are routinely proven
correct the same way as mathematical functions are proven correct. For example, using a
given domain and range, any input from the domain will always give the same result in the
range. The resuit should be consistent and the steps executed to obtain a given output should
also be consistent. Sequential algorithms are in essence ‘functions’.

Any algorithm’s execution trace can be followed by noting the order of steps taken every
time the algorithm is run. For a sequential algorithm this trace must always be the same.
This is not true for a concurrent algorithm.

Non-determinism The effects of non-determinism are most clearly seen after examin-
ing the execution traces of algorithins using constructs based on guarded commands. They
show that the computation sequence and even the final state are not necessarily uniquely
determined from the inputs.

For example, given two values x and y, one can not say which statement will execute if
X and y are equal, as in:

example:
do
x> 0->x=x-1
Ox>0->x=x-2
od

Re-writing Certain Classes of Algorithms In looking at how to write or ‘derive’ pro-
grams in this new style one of the algorithms Dijkstra considered was the GCD or Euclid’s
algorithm.

The following example calculates the GCD or greatest common divisor of any two num-
bers a and b. To illustrate, we can pick any numbers, so 23 and 47 will suffice. Note that this

50ther models do not equate concurrency with non-determinism. see [MP92]

27

example is essentially the same example that was used to introduce the repetitive construct.
The result will always be the same (the greatest common divisor of @ and b), but the order of
execution or trace will not necessarily ever be the same for repeated runs. In other words,
we do not know the order that these statements will execute.

x = 23; y= 47

do
X>y->x

x -y
y>x->y=y-x
od

(using guarded commands)
The next two examples are different implementations of the same algorithm but written

without guarded commands. Notice that two implementations for the same algorithm can
be written. Also note that neither version is as clear and concise as the version above.

x = 23; y= 47 x = 23; y= 47
while x <> y do while x <> y do
if x>y while x > y do
then x :=x -y X =X -y od
else y :=y - x while y > x do

fi doy :=y -xod

od od

Version A Version B

Dijkstra noted that several sequential versions exist to implement this algorithm, but
each version has extraneous implementation details. Expressed using guarded commands,
the algorithm is reduced to its bare essentials, hence making it easier to understand.

Concurrency

Dijkstra speculated on the possibility of concurrent execution of some of his algorithms. For
example, when more than one guard is true, in a single CPU machine, only one alternative
in a “do” loop may be executed at a time. However, in a multi-CPU environment, each
alternative could potentially be executed by a separate CPU.

28

3.3.4 Communicating Sequential Processes

Hoare used Dijkstra’s basic language structuring methods of alternation and repetition con-
structs (based on guarded commands) less in terms of non-deterministic algorithm design
but, to further explore concurrency.

For example, single CPU computers are designed with the assumption that programs
will run with a single thread of control: the model based upon a deterministic execution of
a single sequential program.

With multi-CPU computer platforms, this is no longer true and so it is possible to rewrite
certain algorithms to take advantage of potential concurrency by running several threads of
control (parrallelism) in the program. This is not to say that a single CPU can’t run this new
algorithm: several processes do run in a time sharing environment ‘virtually” at the ‘same
time’ (the process scheduler uses small time slice periods to run each process so that each
user has the impression that their process is the only one running), but it is more forthright
when systems are explicitly designed to allow several threads of control to operate at once,
such as in multi-CPU systems, thereby bringing out the real issues of concurrency.

Process Concept

This brings up new issues for the programmer to consider: processes are taken as funda-
mental or primitive language concepts and building blocks. Hoare, in fact, saw the process
as an object, expressed only in terms of its behaviour as an ‘executing device’. He explored
how processes could communicate and synchronise with each other.

If several processes can run at the same time, a mechanism must be proposed to do this.
Hoare described a ‘primitive’ for parallel execution of processes (based on Dijkstra’s par-
begin), the semantics of which imply that the relative execution speeds of any component
processes are irrelevant and further that this parallel command is not finished until all its
component processes are finished, that is, the parallel command must wait for the last pro-
cess to finish.

With parallel execution, the issue of inter-process communication is raised. Processes
have to communicate for purposes of synchronisation or for information exchange (the ex-
change of data via the sending and receiving of messages between processes). Hoare ex-
plored how the input and output between processes are addressed.

29

Message Passing

In order for running processes to exchange information between themselves, Hoare pro-
posed ‘message passing’. We contrast this with how variables in sequential programs are
traditionally updated—by some sort of assignment statement. He compared this mechanism
with the needs of concurrently running processes and argued that, between processes, input
and output is sufficiently different to warrant a conceptually different mechanism. He pro-
posed two primitives: send and receive.

Definition

The syntax for receive is:
<fromProcess>?msg
and for send:
<toProcess>!msg.

Syntax

These commands are composed of three parts. First, a receiver names its sending process
and a sender names the receiving process. The symbol “?” for the action “receive” and *!”
for “send” is placed next, and finally, the actual message exchanged is placed last. The mes-
sage can be a single variable or a structured variable as long as these types match between
the sender and receiver.

Semantics

Hoare discussed using channels (port names) instead of processes as the first component in
a send or receive command. He rejected this idea because he felt using processes was more
readable. As well, the possibility of connecting more than 2 processes via a single chan-
nel added complexities that took away from the issues he wanted to deal with. PROMELA
does use channel or port names and more than two PROMELA processes can use a single
channel. In fact, the language allows any process to access both ends of the same channel.

Hoare defines his message exchanges in terms of synchronous communication. This

30

means that corresponding send and receive commands in different processes must be exe-
cuted simultaneously. If one process arrives at its message exchange statement before the
other, it must wait.

Asynchronous (buffered) communication is not a primitive notion for Hoare. To model
asynchronous communication, as many processes as the buffering capability of the asyn-
chronous channel to be simulated are used. Each buffer entry process alternates between
reception from an upstream neighbour and sending to a downstream neighbour, so that the
total number of component buffer entry processes defines the buffer size ©.

For Hoare, the alternative construct does not require at least one guard to be true: if all
guards are false the alternative command simply fails.

Issues for Communicating Protocols

Hoare allows reception statements to be used as guards. This has dangerous consequences
but largely represents exactly the types of systems we want to study when building com-
munications protocol models. For example, if no sender completes an exchange where a
reception is used as a guard, the possibility of ‘deadlock’ exists. This is an important issue
to explore in any given model. This can be seen in the following scenario.

Using a repetition construct, with all guards being receptions, the only way for this loop
to continue is to either wait for the first corresponding send to complete the exchange or
wait for all source processes to terminate thereby terminating the loop. If neither of the two
above events occur, the whole process stops, frozen in deadlock.

The issue of ‘faimess’ was also brought up: a choice can not be indefinitely not cho-
sen and implementations rather than the programming language should guarantee faimess.
Also, the programmer must show that the program terminates correctly. After consider-
ing parallelism and message exchange, Hoare concludes that input/output and concurrency
should be primitives of any programming language.

3.3.5 Finite State Machines (FSMs)

The FSM is a fundamental model of computer science.

This synchronous buffer concept is also a fundemental premise in th LOTOS language [BB87]

31

“The FSM model provides the foundation for consistency and completeness

properties linking inputs, outputs, state, and processing, and provides the link
into program proof techniques”. {Lam85]

Formally a FSM can be viewed as follows:

e set of inputs, X

set of outputs, YV

set of states, S
e an initial state, Sy
¢ 2 functions that specify the result of inputs for all states at each state:

- a transformation function that specifies the resulting output

— a state transition function that specifies the resulting next state.
Its main limitations are that:
1. it serialises away all of the underlying concurrency (“clash states” are neglected)
2. the model is “flat™: there is no inherent way of handling complexity

Figure 11 is an example of a FSM. These limitations are overcome by introducing “‘extensions”—
essentially allowing variables and modules within the context of a programming language.
FSMs that are used to describe communications systems are often extended by adding mod-

ules, variables, and send and receive primitives. Once a FSM system is designed, a trace is
often used to describe the behaviour of these models.

3.3.6 Reactive Systems

Protocol models are part of a larger class of models called reactive systems.
Reactive systems are distinguished by the fact that they are always accepting input. Un-
like sequential programs, they are highly interactive with their environment [MP92].

32

“The fact that the state of the system is changing while a process is viewing it
is the fundamental problem in synchronising any kind of concurrent systems”
[BBBC93].

As previously mentioned, sequential systems can be thought of as a function, where an
input occurs, followed by its processing and finally its return. The fundamental concern of
sequential programs is the input/output behaviour of the machine (the relation between the
starting and terminating states).

Concurrent machines, whether shared memory multiprocessors (tightly coupled) or dis-
tributed systems (loosely coupled) are more complicated. With concurrent programs, two
concurrent subprograms can interfere with one another. So one must look at the complete
behaviour of the model: what the program does throughout its execution lifetime.

Formally, we can look at sequential programs as a special case of concurrent programs.
First let us attempt to illustrate a representation of the execution of a sequential program:

=850 = 8 259 —25 53--- 2 5
where,
e s, are states
® q; are atomic actions
e X is the sequence which is finite iff the sequence terminates.

This provides us with a simple trace that describes the behaviour of the system. Each
state contains all the necessary information to determine its future behaviour. The sequence
is termed *‘deterministic” if each state contains precise information about what its next move
should be. The behaviour of the entire sequence is described as deterministic. Non-deterministic
behaviour describes a situation where a given state has more than one choice.

Often, we wish to look at the set of all possible behaviours of a system due to its compo-
nent actions. Actions are deemed atomic if an action, e.g. z = z + 1 proceeds uninterrupted
from a current state where z = z to a next state where = = z + 1.

How the program is divided into atomic actions is irrelevant for sequential programs but
is important for concurrent ones.

33

3.3.7 Concurrency

Different formalisms are used to describe this behaviour trace. We can describe this trace
as a sequence of actions (space-time view) or a sequence of states (the interleaving view).

The space-time view describes its execution model in terms of actions. Althou gh actions
within a process are totally ordered, actions across processes can not be viewed as sequen-
tially ordered. The space-time view assumes a partially ordered set of events determined by
events per process totally ordered in time and cause must preceed effect for inter-process
actions. *“This set of temporal orderings must be acyclic, so its transitive closure forms an
irreflexive partial ordering” [Lam85].

The interleaving view reasons in terms of states. One constructs a global state-transition
graph as per sequential models, in the sense that, if two actions occur at the same time, and
they do not influence each other, we may pretend that they occur in either sequence. If we
find that these actions do influence each other then we may say that the actions are NOT
atomic so we may now increase the level of atomicity in the model. This, of course, requires
that we lose precedence relations on a global level.

3.4 Validation and Verification

It is not enough to specify a system (although this can be a major task by itself). In order to
be confident that the model refiects reality it must also be validated and verified.

Validation refers to checking general properties of the model in question. What we mean
by the general properties are the characteristics that must be true regardless of the specific
characteristics of any one protocol. Thus validation consists of checking for no deadlock,
no unspecified receptions, no livelock, etc. [Lin85] defines validation as the properties that
are apropos to all protocols and suggests that the following should be checked for:

e absence of deadlock
e completeness: ability to handle any condition that may occur

e absence of livelock: continual cycling of code that does nothing useful

e freedom from overflow

34

e stability
e proper termination.

Verification refers to checking the characteristics or properties that are unique to a pro-
tocol. [Lin85] defines verification as “checking the logical correctness of the protocol”. For
example, if any specific claims are made about the protocol, the proof that these claims are
true is termed verification. In the language that we will use, specific PROMELA language
primitives are available in order to do this.

3.4.1 Reachability Analysis

Reachability analysis is used to validate protocol models. The idea is conceptually simple
and has been used for some time. Each single component module’s behaviour is described
via a2 FSM. In order to describe the behaviour of the entire system, each module and the
interactions between them (as represented by the messages in transition for each channel)
are used to yield a ‘global’ description. Reachability analysis attempts to build this complete
system—essentially delineating all possible traces, which taken cumulatively, describes the
global system behaviour.

The behaviour of the global machine can be represented by a finite graph, where every
node represents a reachable system state and every transition represents the execution of a
single statement in a single process [HGP92]. Once this graph is constructed a reachability
analysis algorithm is used to traverse the graph in order to explore all the global system
states.

The problem is that this methodology is often not practical because of the combinatorial
explosion of the global state space, known as the ‘state explosion problem’. As the com-
plexity of the protocol increases, the number of states that have to be checked grows expo-
nentially until it is too time or resource consuming to check the entire protocol model.

Graph Traversal Techniques

Different reachability algorithms have been designed through the years in order to make the
size of the problem space that can be covered by reachability analysis larger.

35

For example, one technique, the ‘random walk validation’ only analyses a small fraction
of the reachable state space but it can detect a large fraction of the errors in a complex pro-
tocol, provided the errors themselves have limited complexity. The idea is based on the fact
that in global FSMs there is much state duplication and any random walk down the many
available traces will allow one to ‘hit’ most of the errors, if any. This method is described
in [Wes89].

Different approaches to this problem are described by many other researchers. Holz-
mann [Hol85] and [Hol87] provide a good overview of these approaches. Holzmann [Hol90a]
and [Hol90b] also provide many examples of algorithms for protocol verification. Holz-
mann [Hol88] introduces the bitstate approach, which is implemented in the SPIN tool.
Holzmann et al. [HP89] discusses many of these issues for SDL. The authors also describe
a way to pose correctness assertions directly in temporal logic, which curiously, has yet to
show up in the SPIN tool.

[HGP92] describe three new reduction strategies for conventional reachability analysis.
They describe implementations of partial order semantics rules that attempt to minimise the
number of execution sequences that need to be explored for a full state space exploration.
This has recently been implemented in the latest version of the SPIN tool [Hol95b]. They
then go on to describe a method to minimise the amount of memory that is used to build
a state space. They follow up on this last idea in [GHP92] where they maximise the num-
ber of global states that are cached in memory. They describe a method to avoid exponen-
tial increase of the run-time overhead caused by interleavings of a same partial ordering of
statement executions leading to the same state.

As can be seen, the state explosion problem can not be avoided. Instead optimisations
based on certain assumptions about the model are used to help design algorithms that make
the analysis practical, yet still cover all the relevant states.

3.4.2 Temporal Logic

Logic is most often used to talk “about” a model in the protocols community. “The goal of
reasoning about a program is to show that = A is true for a desired property A.”[Lam85]
One uses linear time temporal logic [Pnu77, Hai82, MP92, Lam85], where actions are

36

ignored and only states used. Temporal logic uses several notions from classical proposi-
tional logic. Claims are expressed as assertions which are well formed formulas (wff) of
classical logic and all new formulas are derived from temporal logic. [Got92, HG] provides
a good introduction to temporal logic.

3.4.3 Classical Logic

Classical logic is defined as follows:
e P - atomic predicates
e logical operators:

-oryv,
- and A,
-~ negation -,

- D or — for material implication

Formally a state is defined as a truth-valued function on the set of atomic predicates,
which is written as s |= P, in order to describe the value of state s on predicate P.

Taking a more abstract view, we look at each state as being composed of many variables
(including a program counter) and each state is determined by the sum total of the value of
each predicate that it contains. Predicates are defined as all the variables taken singly or any
logical combination of them.

From this we can build a model M: (S, £) where S is a set of states and T is a complete
set of sequences of states (trace) satisfying property E starting at any possible state.

Property E assumes that all future behaviour depends on the present state and not how
the present state was reached.

We use the following notation for sequences: any element s of & : s = sg, 5;, 59, - -
represents a particular state. If the sequence is finite sq, - - - s,,, then 3n for some n.

We also find it convenient to define

e for a finite sequence: s,, = s,,Vm > n where s; represents the state of a program at
time 1.

37

e for a sequence length > 1 define, s* = s, s,, - - - so that

- (s7)i=sip1

- st = Sn:Sn41s-

E canbe restated if s € then s* € ¥ as the set of all possible executions starting from
all conceivable states.

The following shows how a temporal logic assertion is to be interpreted as a statement
about a model; for any model (S, X and any s € ¥, define what it means for an assertion A
to be true for the sequence s. s = A means A is true for s for all traces. To be true for S,
we write: ¥ = A=Vs € £ : s € Aorwe can write € A.

Specific temporal logic operators are added to the classical logic to make the logic more
expressive. Specific operators are created in order to express the properties we wish to prove
about a model. Specifically these express properties that hold or will hold over time as ex-
pressed over the states of the model we build.

Although different systems have been built up using different bases thay can all be ex-
pressed in terms of the other.

Unary Temporal Operators

The duality of operators show that sometimes one can be expressed in terms of the other,
i.e. they complement each other, for example, Aenceforth O is the dual of eventually: © =
-0-A4 and O = -~{-A for any assertion A.

When talking about models, we express the model as a series of states, such that, we use
the above operators as follows: s = 0A =Vn > 0:s5*" = A)

and for all states in the sequence we can say:

sEOA=VYn>0:s5, = A)

Eventually A or O A can be defined as follows: s ECA=3n > 0: st = A.

A = B is a useful derivation which is defined as: 0(A — OB which should not be
confused with material implication from classical logic 7 which means if A ever becomes

"This is easy to do because different authors use different symbols for the same concept, or, worse, the
same symbols for different concepts, and often define different useful derivations, often ignoring or dismissing
results and working out entire systems of proofs without ever referring to altemative systems. Not too mention,
the confusion that results from the many systems in use.

38

true then B must now or eventually also become true.

Binary Temporal Operators

Many binary operators are derived from the unary operators to simplify the expression of
certain properties. All the binary operators are expressible in the terms of the other and for
that matter using either O or <, any one binary operator can be expressed in terms as the
other. As defined earlier they O and < are dual to each other.

The binary operator that expresses the proposition that B remains true until A becomes
false A 9 B asserts that B holds as long as A holds but if A becomes false at any time t
then A < B can say nothing about the truth of B, in other words, from time t on (After A
becoming false), B can be either true or false, we have no way of knowing, or we have no
desire to impose this requirement on a model.

A 4 B is defined as follows:

sEAdB=Vn>0:Ym<n:st™™EA)>s"" =B

O A can be expressed (and therefore be seen as a special case of this relation) as: 04 =
true 4 A. O More commonly used is the U operator: A U B or A until B is defined as
~BJdA

A is true until B is true. (B supercedes A) after B is true we can nothing about A. This
gives a natural way to show order of cause and effect.

A < B is similar to but allows if A becomes false, B will remain true at least one step
longer than A.

As can be seen, temporal logic is a very expressive mechanism. Ithas a rich set of prim-
itive and derived operators and rules for applying those operators to make assertions. Al-
though we use it to help us verify systems, it has also been used as a specification language
[MW84, MP92, Lam82].

3.5 Conclusion

In this chapter a survey has been made cf some of the existing techniques used to describe
and to test the correctness of protocols.

39

There are two styles of description: internal which describe the behaviour of the com-
ponent modules and external which describe the observational actions of the system as a
whole.

Informal methods were used to describe protocols before the advent of formal method-
ologies which relied heavily on natural language descriptions and their accompanying graph-
ics. Formal methodologies allow one not only to describe but also to test for correctness of
the description.

Amongst other techniques, we have examined the role of FSMs to specify protocols
and the role of reachability analysis and temporal logic to test for correctness of the model.
These are not all the techniques available but we feel that they are most appropriate for per-
forming a logical analysis of a protocol specification.

There is a need for protocol development techniques in order to tame the complexity of
designing and describing protocols. Such an approach is outlined in Appendix A.

All the models and approaches that have been discussed so far have been incorporated
into PROMELA. Thus we find the language and its corresponding approach to be a very
powerful tool to build and analyze protocol systems models.

Chapter 4

PROMELA, a PROtocol
MEta-LAnguage

4.1 Why PROMELA?

In order to apply formal specification and validation techniques such as process algebra,
Petri Nets [Pet81, Rei85, Rei92], automata, temporal logic, and reachability analysis to pro-
tocol development (not all were mentioned in the last chapter), languages have been created
such as Estelle [BD87, CA90a, DAC*89, ISOb], SDL [ST87, BH89, FA94], and LOTOS
(BB87, DB92, ISOc]. The above languages are established as intemational standards. The
following references contrast them [MGK91, Tur93, Tar91, ISOa). Among the plethora of
languages available, PROMELA is the one that we feel best incorporates the most relevent
techniques and which we, correspondingly discussed in the previous chapter.

PROMELA is a language that is used to aid in the design and validation of computer
communication protocols. It is a hybrid language using C’s syntax with the addition of
Hoare’s CSP (Communicating Sequential Processes)-like constructs, and some isolated con-
structs for use by validation tools (based on reachability analysis and temporal logic), with
the added paradigm of the extended finite state machine model. PROMELA is presented in
Holzmann[Hol91]. Its name is an acronym of PROtocol MEta-LAnguage{Ho193].

The language has two major characteristics: it can be used for specification and for val-
idation. The language also has extensions to support program verification.

41

4.2 The Language

In PROMELA, extensions to the syntax are minimised in favour of using familiar constructs
from its parent language C, with slight modifications. The number of operators and key-
words is quite small. Many operators, keywords, and forms are inherited directly from C.
Tables 1 and 2 list the language’s keywords and operators.

Table 1 is a listing of PROMELA keywords sorted by keyword (the first column). with
a short explanation provided in the third column. If the keyword is a direct import from C
it is marked with a ‘C’ in the ‘Lineage’ column. The ‘version’ column signifies in which
version the keyword was first introduced.

Table 2 follows a similar structure, except that the explanation is continued into the
‘Type’ field. This field is used to give an indication of how the operator might be used.
Several operators are ‘overloaded’, in the sense that the same operator has a different mean-
ing depending on the context in which it is used. Essentially all the operators are borrowed
from C except for the ‘message passing’ types. Any other language components are either
comments, (goto) labels, or user defined variables. Table 3 gives a brief description of the
syntax for the remaining language components (comments, variables (identifiers) and the
labels used in goto transitions) using a BNF format.

4.2.1 C Extensions

PROMELA also has access to such C-isms as:
e structures, to build records
e auto-increment (var++) and auto-decrement (var--) variables
e conditional expressions in the form: (expr -> exprl : expr2)
e C pre-processor constructs such as #define and #include.

A concise look at the language and its role in protocol design and validation can be found
in [Hol93] . The paper also contains a BNF-like syntax description for the entire language.

42

PROMELA Keywords

Keyword || Version Explanation | Lineage
active 2 initialisation

assert 1 verification

atomic 1 specification

bit 1 type declaratrion C
bool 1 type declaratrion C
break 1 specification C
byte 1 type declaratrion C
chan 1 specification

do 1 specification

d_step 2 specification

else 2 specification C
empty 2 queue test

enabled 2 verification

fi 1 specification

full 2 queue test

goto 1 type C
hidden 2 specification

if 1 specification

init 1 initialisation

int 1 type declaratrion C
len 1 queue test

mtype 1 data type

nempty 2 queue test

never 1 verification

nfull 2 queue test

od 1 specification

of 1 specification

pc.value 2 verification

printf 1 output C
proctype 1 specification

run 1 specification

short 1 type declaratrion C
skip 1 specification

timeout 1 specification

typedef 2 type declaratrion C
unless 2 specification

Xr 2 queue test

XS 2 queue test

-pid 2 verification

Jast 2 verification

Table 1: PROMELA Keywords

43

PROMELA Operators

Operator | Version Explanation Type

¢’ 2 separator conditional expression

¢ 1 semicolon command separator

‘=’ 1 negation arithmetic

‘=’ followed by ’>’ 1 semicolon command separator
‘=’ followed by ’>’ | separator conditional expression
‘—’ followed by ‘—’ 2 auto-decrement arithmetic
‘+’ 1 addition arithmetic

‘+’ followed by ‘+’ 2 auto-increment arithmetic
‘<’ 1 less than relational

‘<’ followed by ‘=’ 1 less than or equal relational
‘<’ followed by ‘<’ 1 left shift bit
>’ 1 greater than relational

‘>’ followed by ‘=’ 1 greater than or equal relational
‘>’ followed by ‘>’ 1 right shift bit
‘=’ 1 assignment assignment

‘=" followed by ‘=’ 1 equals relational
- 1 not bit

‘r 1 not logical

‘ 1 send message passing

‘I’ followed by ‘!’ 2 sorted send message passing
‘I’ followed by ‘=’ 1 not equals relational
P 1 receive message passing

*?” followed by ‘7’ 2 random receive message passing
‘&’ 2 and bit

‘&’ followed by ‘&’ 1 and boolean
‘I 2 or bit

‘|” followed by ‘|’ 1 or boolean
Rt 1 multipication arithmetic

4 1 division arithmetic

“C 1 start group grouping

9’ 1 end group grouping

‘r 1 start index index

7T 1 end index index

‘r 1 start test channel message passing

‘T 1 end test channel message passing

{ 1 start process process

‘) 1 end process process

Table 2: PROMELA Operators

44

Miscellaneous PROMELA Syntax
Regular Expression Type
/ * <comment> */ comments
(letter| |lunderscore) (letter| ldigit| lunderscore)=* identifier
identifier : label

Table 3: Miscellaneous PROMELA Syntax

4.2.2 Model Specific Constructs

In PROMELA, the major influence seems to have been Hoare’s Language of Communicat-
ing Sequential processes, which in turn owed a great deal to Dijkstra. The most interesting
features of PROMELA: guarded commands, non-determinism, and multiple processes, are
features directly imported from CSP, with minute but important semantic differences. The
changes allow processes to be much less stringently synchronised (by buffering channels),
and provide simpler means of re-synchronisation by blocking on guarded commands (rather
than failing on error if no guards are runnable).

PROMELA eliminates facets of standard programming languages that are not appropri-
ate in protocol specifications. For instance, pointers are not appropriate to (loosely coupled)
communicating systems that do not share memory, so they are simply not present. In ad-
dition, since side-effects pose problems for verification systems, “temporal claims”, which
are used in verification proofs, are restricted to being demonstrably pure. Functions are not
implemented in PROMELA, as everything can be done by a proctype module.

Communication ports, concurrency, and finite state machines are concepts which are in-
valuable and integral to any protocol specification language, but are not inherent to the C
language. Communication ports and concurrent systems are necessary to protocol models
because protocols generally deal with communicating concurrent systems. Non-determinism
is a useful concept for modelling parallelism and concurrency control.

4.2.3 Guarded Commands

Guarded commands are PROMELA statements whose ability to complete successfully guards
(prevents the execution of) the succeeding statements. In the following fragment, the printf

45

statement is guarded by the channel input request. The buffer must be filled before its con-
tents can be printed.

Input?buffer -> printf("%d\\n", buffer);

When a guard fails, a process blocks unless there is some other action it can perform
while waiting for the guard to succeed. This introduces the selection statement, and with it,
non-determinism.

The i f and do clauses imported from C consist of a number of guarded commands fol-
lowed by their guarded code. If, during execution, one of the guards can be executed when
the ¢ f statement is encountered, then that series of commands is executed. On the other
hand, if multiple guards will complete successfully if executed, then any one of the exe-
cutable streams may be taken. This is how non-determinism is supported by PROMELA.

The concept of the guarded command is not found in sequential programming because
fow of control and executability are not at issue, in the sense that the program counter is
always at the “next” statement and the condition of executability of the next statement is
not dependant on anything other than this. With concurrent programming this is not true, as
several guards may be true at the same time or a guard may be forced to wait for an event
to become “true” in order to continue if no guards are presently “true”. Compare this to
sequential programming: there is no wait—a condition is either true or false. This same sit-
uation is seen with Hoare’s semantics, which insist that there must always be at least one true
guard. However, with concurrent systems—because there is communication—it is possible
to change a value from “false” to “true” at a later date. The obvious question is how long
do you wait, because the event may come true or it may not.

4.2.4 Timeout

“How long to wait” is answered by imposing a set period of time to wait and after that
time has expired, ‘timeout’. However, PROMELA does not simulate time, so one must use
“timeout” as an abstract concept, in keeping with PROMELA’s paradigm of performing a

46

logical analysis. In keeping with this idea, the rimeout keyword is introduced to allow an es-
cape froma “deadlock”. If no other transition can fire and a timeout is specified in a module,
it will fire. The timeout condition only becomes true when the entire system locks up.

We note that a timer can be simulated in ones model by declaring a boolean variable
‘timeout’. A timeout period for this timer is irrelevent in a logical analysis , thus it randomly
fires—to simulate a logical timeout (without the use of the keyword ‘timeout’). To show that
a timeout occurs, one chooses non-deterministically between ‘the timeout has occurred’ or
‘ithas not’. Instead of trying to optimise and prevent a timeout from occurring, PROMELA
allows timeout conditions to occur so that they may be dealt with. We want to explore all
conditions and recover from them so that the timeout conditions are not optimised away.
PROMELA performs alogical analysis, not an optimisation as in a pure simulation language
like SMURPH [GR92b, GR92a].

4.2.5 Finite State Machines

FSMs in PROMELA At first glance, finite state machines seem to be somewhat of an
afterthought in the design of PROMELA. For example, states and state transitions are not
primitive constructs in the language: state transitions are implemented via changing the flow
of control in 2 module via the goto statement jumping to a targetted line label (which is di-
rectly inherited from C without change). So, although FSMs may be the basis of the lan-
guage, this primitive construct is not as apparent to the user as in other FDTs, such as Estelle.

This is somewhat disconcerting (but in keeping with its minimalist design) since finite
state machines are used so heavily in the design techniques. For example, FSMs are used
as a design and verification aid for individual processes, and to build complete models of
the state of a given simulation of a protocol. Such models are used to perform reachability
analyses on protocols, to help in verifying correctness and in judging completeness criteria.

Despite PROMELA'’s minimalist support for FSMs, FSMs are used and are an important
part of designing models in this language.

47

Non-Determinism

Non-determinism is a useful technique for creating protocol models with finite state au-
tomata. For example, in a traditional finite state machine, when a given input fires, a sin-
gle transition takes place which leads to another state. Sometimes the destination state can
not be uniquely determined. When the choice among the states is not specified within the
model but determined at run time, this is known as non-determinism. Non-determinism can
be used internal to a module but is most often used when modelling the interaction amongst
different modules in a model. As we have seen, however, this often leads to an explosion
of possible states to explore.

Extending Finite State Machines

EFSMs One of the reasons that traditional deterministic finite state machines are not very
expressive is that they have no concept of memory (as implemented by variables in program-
ming languages), and it is tedious to create D-FSM’s for useful problems (as seen in Valira
[CA90b]). FSMs extended with variables are an essential ingrediant of PROMELA’s mar-
riage of FSMs to the C programming langauge. If one compares this to the traditional finite
state machine approach, values of variables can now be used to represent entire groups of
states, reducing the total number of states (and therefore the complexity) of a design.

CFSMs In order to model protocol systems with FSMs, EFSMs are further extended by
adding channels as primitive language constructs. Concurrency is thus achieved by using
multiple extended finite state machines, which communicate with each other via channels.
Each CFSM is enclosed as a module unto itself, and has its own execution thread. Thus
the overall structure of this system model is one of modules containing extended state ma-
chines that communicate with each other via channels. So the fundamental model of spec-
ifications in PROMELA is of groups of non-deterministic, sequential processes that com-
municate with each other via channels.

4.2.6 Execution Scheduling, Channels and other Aspects of PROMELA

PROMELA has no hierarchy of execution times, nor is there any subdivision for execu-
tion scheduling size. All synchronisation is done explicitly using channels and guards. The

48

PROMELA proctype processes are non-deterministic and sequential, and all compete for
execution on an equal footing.

PROMELA processes execute in parallel, thus there is aneed to delimit critical sections,
when groups of actions that must be performed as a unit. The atomic construct is provided
for that purpose.

PROMELA channels are of finite length (as compared to Estelle’s ‘infinite’ length queues).
Queue lengths can be used as a means of synchronisation (for example, forcing rendez-vous
style with a queue length of 0). Channel I/O commands block on empty or full channel reads
and writes respectively.

PROMELA has no concept of shared queues. However, any process which knows the
name of a channel can access it, and will race (in the absence of other synchronisation means)
for the channel data. For example, a process which sends a message along a channel and
then immediately listens for a reply could easily accept its own output as input!

4.2.7 Validation and Verification

PROMELA is more than just a specification language. The language provides many con-
structs for validating and verifying PROMELA specifications. In fact, Holzmann calls the
systems that can be created in PROMELA “validation models” as if to stress the property
proving aspects of the language. Conveniently, much of this checking is done automatically
by the SPIN tool.

Validation Keywords

The keyword ‘assert’ is used to make assertions about specific charactoristics in the model.
For example, to assert that the number of received messages is always less than or equal to
the number of packets sent, one could enter the line “ assert(no_rec <= no_sent); ”
somewhere in the model. This might be done in a separate monitor process which would
run concurrently with the model or placed in strategic places within the model itself.

Other checks can be performed by using special labels in the code. These labels start
with a certain keyword, are followed by the characters that are legal for identifiers and end
in a colon.

An “end” label says that it is alright to end at the current instruction (instead of at the last

49

statement in the module). This would be used, for example, to define a process that never
ends—or if it did, this would be an error. In this way an operating system or some sort of
system daemon could be modelled and then verified.

A “progress” label is used to signify a statement that must be passed in order for the
protocol to advance. This would be used to check that a system is not trivially correct, in
the sense that if a module never executes it certainly can not produce an error but a module
that **does nothing” is usually not what the designer had in mind.

The “accept” label may be put in front of a sequence of commands that can not be re-
peated “infinitely often”. This could be used to allow a sequence to execute not more than
once. However, this label is most often used in conjunction with tt= “never” keyword in
order to express temporal logic claims using Biichi automata, or as Holzmann calls them,
temporal claims.

Verification Keywords

A Biichi automaton is an FSM that “accepts” only cyclic executions that contain at least
one accepting state within the cyclic part (as apposed to a normal FSM that “accepts” only
non-cyclic executions that lead it into an accepting state).

To express correctness properties for liveness in SPIN, the procedure is as follows [Hol95a]:

e express the negation of the property in next-time-free linear time temporal logic (LTL).
This property formalises all counter-examples to the original correctness claim.

e build the Biichi automaton that formally corresponds to the LTL formula just con-
structed. The Biichi automaton is constructed such that it will accept precisely the
counter-examples formalised in the first step.

e describe the automaton in the syntax of a Promela never claim, and add it to the spec-
ification.

It is not a trivial matter to express correctness claims in terms of temporal claims, so this
is used ‘rarely’. The problem is that, in the user community, most correctness claims are
expressed in temporal logic, not in temporal claims, and as such it is not as easy to convert
this type of assertion.

50

Converting Temporal Claims to Temporal Logic

An attempt was made to write a translator to convert from temporal logic to temporal claims
but its output was deemed “buggy” [Gla94]. It is not clear what buggy means, is it not con-
sistent in producing the correct answer or are there certain conditions that the code does not
work?

The algorithm does not correctly translate a certain class of temporal formulae. These
formulae are of the form [1 <> p. We show the results of some of these translations on the
next page. The tool is helpful but clearly some more work needs to be done here and this is
on the agenda for improvements to the SPIN tool. We may see a more reliable translator or
the ability to express correctness claims directly in “temporal logic”.

Here are some example translations provided by the “tI2nc’ tool:

1> t12nc
p
0ld = p
New = p
never {
stateO:
if
: p -> goto done
fi;

done: T

7> tl2nc
O (p=><>q)
0ld = [J(p => <>q)
New = [J(Cp | <>q)
never {
state0:
if

51

p —> goto statel
11 q -> goto statel
fi;

done: T

13> t1l2nc
0 (p=>(qUr))

0ld = [(p => (q U r))
New = [J("p | (q U r))
never {
state0:
if
“p -> goto state0
it r -> goto statel
: q => goto statel
fi;
statel:
if
(q & “p) -> goto statel
(r & “p) -> goto stateO
1 r => goto statel
:: q => goto statel
(r & q) -> goto statel
(q & r) -> goto statel
fi;
done: T
¥

Fortunately, Holzmann (quoting Manna and Pnueli) claims that only three temporal logic
forms are useful in the context of protocol analysis. He gives the temporal claim translation

52

for all three.
The following is from [Hol93] and [MP90]. The explanations are from [MP90] and the
corresponding translations into PROMELA code are from [Hol93].

Specifying Temporal Claims

“There are three classes of properties we . ..believe to cover the majority of
properties one would ever wish to verify.”

1. Invariance

“An invariance property refers to an assertion p, and requires that p is an in-
variant over all the computations of a program P, i.e., all the states arising in
a computation of P satisfy p. In temporal logic notation, such properties are
expressed by []p, for a state formula p.”

Corresponding Temporal Claim in PROMELA:
never {

do

:: !'p -> break
od
¥

2. Response

“A response property refers to two assertions p and q, and requires that every
p-state (a state satisfying p) arising in a computation is eventually followed by
a g-state. In temporal logic notation this is written as p =><> q.”

Corresponding Temporal Claim in PROMELA:

never {
do
:: skip

53

:: p & 'q -> break
od;

accept:

do

i iq

od

}

Note that using ('p||q) instead of ‘skip’ would check only the first occurrence of p be-
coming true while q is false. The above formalisation checks for all occurrences, also future
ones. Strictly seen, therefore, the claim above uses a common interpretation of the formula,
requiring it to hold always, or: {Jp =><> g

3. Precedence

“A simple precedence property refers to three assertions p, q, and r. It requires
that any p-state initiates a g-interval (i.e. an interval all of whose states satisfy
q) which, either runs to the end of the computation, or is terminated by an r-
state. Such a property is useful to express the restriction that, following a certain
condition, one future event will always be preceded by another future event.
For example, it may express the property that, from the time a certain input has
arrived, there will be an output before the next input. Note that this does not
guarantee [require] that the output will actually be produced. It only guarantees
[requires] that the next input (if any) will be preceded by an output. In temporal
logic, this property is expressed by p => qUr, using the unless operator (weak
until) U™,

Corresponding Temporal Claim in PROMELA:

never {

do

:: skip /* to match any occurrence */
:: p&& q &% !'r -> break

1 p & !'q &% !'r -> goto error

od;

54

do

q && !'r
:: !q && !'r -> break
od;
error: skip
X

Strictly again, this encodes: [Jp => (qUr) To match just the first occurrence, replace
skip with (!p}|r).

Thus if any properties of a model are to be verified this property can be expressed in one
of the three ways just described (invariance, response, or precedencs).

Matching Temporal Claims

Once a property is expressed as a temporal claim, the FSM for the claim is run in parrallel
with the FSM for the model. In order to prove the property true, we want to show that the
*“claim” does not become true. A rever claim is “matched” as follows:

e if a condition is NOT explicitly stated as a GUARD you can back out of trying to
match the temporal claim for that execution sequence (claim not violated and SO FAR
correctness claim OK)

e if a match on a condition occurs, continue trying for another match UNLESS the end
state is reached or you come to rest at an accept label

e if you can cycle back to it at least once, the temporal claim is matched, therefore a path
exists that defies the correctness claim, therefore the correctness claim is FALSE

55

4.3 PROMELA Tools

Presently, there exists only one tool for PROMELA users, called SPIN. However, we have
created two tools: one tool for creating time sequence diagrams and another for drawing
finite state machines from PROMELA models. We will discuss SPIN and its X windows
version XSPIN in this chapter. The tools for creating TSDs and drawing FSMs will be dis-
cussed in later chapters.

4.3.1 SPIN Usage

The main usage of SPIN is as a simulation package and as a validation package.

Overview of Methodology

The first step in the verification process is to write a PROMELA model. One usually then
starts with a quick random simulation of the model in order to check for obvious correctness
claims violations (deadlock, unspecified receptions, assertion violations).

If no errors are reported a fixed seed simulation with the send and receive (-s -r) options
enabled to SPIN should be made. This provides for further information about the model.
Standard Unix tool like “grep -v” can be used for filtering out needed information that this
generates. Printf statements can be inserted into the code to be used for debugging or just
to gather more information about the model.

If the results look reasonable one can then create and run the analyser for the validation
of the model.

If the model passes the validation tests and, if verification of specific properties are re-
quired, a temporal claim that expresses the opposite of the property can be added to the
protocol model (but the printf’s should be removed from the code first).

To summarize, the steps to follow are:

1. build a protocol model

2. create a validation analyser: spin -a <PROMELA model file> see table 4 for the com-
plete set of options

3. compile the produced C code (to produce a valiator) using the options listed in table 5

56

4. run the produced binary using options listed in table 6

5. look at the validator’s (usually pan) output.

[Hola] is auser’s manual for SPIN and [Hol95b] is an update addendum which discusses
the new language and tool features that were introduced after January 1995. [Hol93] out-
lines how SPIN is usually used to validate models and [Holb] is a short paper that discusses
in detail the steps required to follow when validating a PROMELA model in SPIN.

4.3.2 Simulation

In the concurrent model that we employ, it may be recalled that, at any given time, several
processes may be eligible to run, and in a single process, several events may be eligible to
fire. Which process and which event will be picked is not deterministic. SPIN has a sim-
ulator that acts as a process scheduler by continually picking one event from one process
until either an error is detected or until each process runs to its final end state. For a single
system, many choices are often available at any given time so that when a system model is
simulated this often results in many possible sequences of events and state transitions. This
“trace” is not always easily reproduced.

A simulator takes a concurrent model, consisting of an arbitrary number of executing
processes and is used to produce an output trace. Each step in this trace represents the execu-
tion of a single process and its corresponding event that fired; this contributes to the evolving
global model. As each step is taken, the simulator can be instructed to output useful infor-

mation such as a process’ variables or the occurrence of a send or receive event. See table
4 for a list of these options.

Seeded Simulation

The user can choose to produce either a random or a guided simulation. Random simulations
can be “controlled” by using a ‘seed’ value. The seed insures that the same trace is followed
each time the model is simulated. Thus the same ‘random’ simulation may be repeated if
the same ‘seed’ is used in other simulation runs. This is useful when one wants to examine
the same trace at a different level of detail and one wants to guarantee that exactly the same
trace will be reproduced. SPIN is rerun with the same seed value but different options from
table 4 are used.

57

Spin Command Line Options
use: spin [-option] ... [-option] file

Option Explanation

-a produce an analyzer

-d produce symbol-table information
-D write/write dataflow

-D-D read/write dataflow

-g print all global variables

-i interactive (random simulation)
-1 print all local variables

-m lose msgs sent to full queues
-nN seed for random nr generator
-p print all statements

-r print receive events

-S print send events

-t follow a simulation trail

-v verbose, more warnings

-V print version number and exit
-X internal, signals ‘xspin’ usage

Table 4: Spin Command Line Options

58

Random Simulation

The simulation can be different every time if no seed value is chosen. Without an explicit
‘seed’ the simulator constructs a random trace.

Guided Simulation

SPIN can be forced to follow a ‘guided simulation’. A special ‘trail’ file is produced as the
result of the validator finding a sequence of events in error. The user then uses this trail to
debug the protocol design by following the trace trail and (hopefully) recognising what went
wrong. The protocol can then be changed and re-examined with SPIN.

Interactive Simulation

Recently an interactive option was added to the simultor, allowing the user to control the
scheduling of events and process that will fire. We have created a tool to record and play
back these interactive traces, called ‘exp.awk’. This tool gives us much more control and
insight into the model when working with simulation traces.

4.3.3 Validation and Verification

The second function of SPIN is to act as a validation and verification tool. Using SPIN’s
analyser option, produces C code which can then be compiled and run. This C code is a
custom-made validation tool, optimised and written specifically for the protocol model be-
ing examined.

Various customisation options are available when working with SPIN. When compiling
the SPIN produced C files, several options to the C compiler can be invoked. (see table 5)
The resulting binary file also has a standard set of flags available for use (see table 6).

The composition of all the running single processes forms the global state machine. A
global state machine may be built first and then traversed or it may be built ‘on-the-fly’,
which is what SPIN does.

Different validation strategies are supported and these can be controlled by using com-
mand line options. A partial serach using the bitstate algorithm or a full state search is sup-
ported. As well, a partial reduction algorithm can be used with either to produce better cov-
erage. For a partial search, unreached states indicate coverage. For a full search, unreached

59

C Compiler Command Line Options
note: use same C compiler eg cc or gcc
use: CC [-Doption] ... {-Doption] FILENAME

[Option Explanation
BITSTATE use bitstate algorithm
CHECK debugging
DEBUG debugging
MEMCNT explicit memory size request
NOBOUNDCHECK | no array bounds checking
PEG complexity profile
REDUCE use reduction algorithm
VERBOSE debugging
VERI debugging

Table 5: C Compiler Command Line Options (for compiling the analyzer)

states indicate dead code.

4.4 Conclusion

PROMELA allows the designer to write formal, unambiguous descriptions of protocol sys-
tems and then to validate those models in a simple and easy to use syntax. It is a sparse yet

powerful language

SPIN implements a compiler for the PROMELA language. XSPIN is its X window in-
terface. Good as they are, they are somewhat wanting in their graphics capabilities. In the
following chapters, we will elaborate on ways that this can be remedied, as we introduce

two tools that we have developed.

Verifer Command Line Options
note: assume verifier named “pan”
use: pan [-option] ... [-option]
| Option Explanation
-a find acceptance cycles
-cN stop at Nth error (default=1)
-d print state tables and stop
-d -d print un-optimized state tables
-f enforce weak fairness (with -a or -1)
-1 find non-progress cycles
-mN max depth N (default=10k)
-n no listing of unreached states
-s forward single-bit hashing (iso double-)
-z backward single-bit hashing
-wN hashtable of 2V entries (default=22)
-RN repeat Nx (1..32) with different hashfcts
-V print SPIN version number and exit
-X internal, signals ‘xspin’ usage

Table 6: Verifier Command Line Options

61

Chapter 5

Graphics support

3.1 FDTs and graphics

In the past, methods were used to describe protocols in the most intuitive way that humans
know of, that is, by using graphics and text. Formal methods were introduced to make these
descriptions more precise (less ambiguous). Unfortunately formal descriptions tend to be
difficult to understand.

We explore the generation of graphics from formal models, thereby combining a very
effective informal technique with the precision of formal methods. Using a formal model
as a base, we not only have an unambiguous description of our model, but we can represent
this information in a *“user friendly” way. The graphics are completely consistent with the
code because they are generated directly from it.

5.1.1 Characteristics of Graphics

Graphics are intuitive in that they quickly provide lots of information in a small space which
we can easily assimilate. We humans are good at pattern recognition and can see relation-
ships between objects just by looking at a picture. The evidence from evolutionary biology
demonstrates this—and the fact that informal methods rely so heavily on graphics would
tend to bear this out (see the quote in subsection 1.1.2 in the introduction).

New offers many arguments supporting the benefits of using graphics in protocol design
(see [New91] for this justification and the many psychological references that he provides

62

to support this thesis). In one example he contrasts “spatial proximity” with “formal prox-
imity” in order to show that a graphic can show overall model structure more easily than a
text based structure. Simply put, one can see the graph connectivity (and thereby the overall
architecture of the model) much more clearly when it is drawn out than when it is listed in
a table or a program listing (see the chapter on FSM’s (chapter 7) for some examples).

To emphasise this point, New provides and contrasts text and graphical based descrip-
tions of a large protocol model. The text version is long and the information can only be
sequentially unravelled as one reads through the listing. The overall structure is not eas-
ily apparent from this format. The graphical version, on the other hand, displays the overall
architectural structure (what is connected to what) very clearly in the space of a single page.

Using graphics in protocol design builds on our intuitive, human evolutionary skills to
recognize patterns, with the added benefit of producing a “formal” graphic being based on a
sound, formal model. Graphics tools guarantee consistency between the model and graphics
but should be easy to use. Using a graphical approach it is possible to focus on the specific
aspects of the protocol we wish to study. If one does not have to concentrate on how to
draw graphical linkages (but allow the user to intervene), the user can focus on the high
level design and not be concerned with extraneous details. This allows the user to focus on
the “important” things in the model.

5.1.2 Advantages of using graphics

Graphical representation of protocol models are very useful because they help the designer
literally and figuratively ‘see’ what is going on. This is an informal mechanism: it adds
nothing to the formal description; besides, we can not prove this claim for the usefulness of
graphics. We could perform psychological tests or measure programmer productivity and
maybe even “user satisfaction”— to a degree, but we can not prove this in a ‘mathematical
sense’. However, after having used these techniques we can make the following observa-
tions about them.

A graphic representation is very useful in the beginning stages of the design process, as
the model is being decided upon or later as the code is being debugged. After the specifica-
tion is completed the graphic can be used as a pedagogical tool for people unfamiliar with
the protocol (users or implementors) who wish to study it. This last point is important as

63

this reduces the learning time of a protocol for a new user.

What graphics support does for formal descriptions is to add, quickly, correctly, and at
a very little cost, a very useful aid for humans. If the graphics support can be used in con-
Junction with formal methods, the best of both worlds is realized. If the graphics support
can be automated with the help of a computer, then we have a very powerful tool at our dis-
posal. New calls this approach “protocol visualisation”—the combining of the strengths of
the human, computer, and specification techniques in order to design protocols. Figure 2 in
subsection 1.1.2 illustrates this three pronged approach to protocol design.

Our approach has been much influenced by New’s work on his Estelle based “GROPE”
tool. We have explored these ideas to see what advantages we could derive from represent-
ing certain aspects of the protocol model and design process graphically. Another goal is
to develop algorithms or, better yet, tools that could then be used to automate a graphical
representation of a protocol model. The following sections discusses some of our findings.

3.2 Graphics Support Tools

Tools are useful but they can not do everything. Graphics tools often require some level
of user interaction, because, “the primary goal of a protocol visualisation tool is to use a
computer to assist a user in understanding a formal protocol specification.” [New91]. That
is, the tool should not take over the entire design process: these tools can be used to do most
of the tedious work, but the user must remain in control.

A graphics drawing tool will typically have a data extraction phase followed by a draw-
ing phase. There is a lot of information that can be distilled from a formal model, so the
first phase of a graphics tool must deal with extraction of the relevant structural data. The
major task here is to produce an algorithm (or algorithms) that can use the information taken
from the model and calculate a way to draw or represent this information graphically.

Once that is done, the second major phase, the actual drawing phase can start. The draw-
ing tool then applies the data produced from “layout algorithm” and draws the graphic.

64

3.2.1 Dynamic and Static Graphic Information

Graphics information can be either dynamic or static; some graphic information can only be
deduced from “running” the specification whereas other information (for example, architec-
tural information) can be derived from a static model description. Dynamic information can
be stored with the instantiation of an object in the model, whereas static information can be
stored with the object’s definition; thus, the question of storing the graphic information with
either the instantiation of or the actual object is important one to answer.

5.2.2 Types of Graphic Representation

Another issue to be resolved is choosing what kind of graphics to support. Once chosen,
the next question to answer is what is the best way to layout the objects and what sort of
graphics to use for each object.

We can see three useful types of graphics for protocol models:

e the overall architecture of the model,
e the “external” view, based on time sequence diagrams and

e the “internal” view, based on finite state machines.

The overall architecture gives the user a general overview of the system. In our model
of a system we use modules that represent certain functionalities which are then connected
by channels carrying messages between the component modules. This provides us with a
global view of the model; the modules at this point are “black boxes” but the overall connec-
tions are clear. Figure 14 is an example of the architecture of a model for the ‘InRes’ pro-
tocol. One can see that this small figure provides a lot of information as to how the overall
system is *““put together”.

The other two views can be explained relative to this system architecture. In the internal
view of the architecture, (“internal” means internal to a particular module) we can now start
to define the “black boxes™. A finite state machine is used to define a specific module’s
behaviour. In contrast, the*‘external” view provides us with a representation of the messages
transmitted between the modules. We use time sequence diagrams to represent this view, so
that the system is only defined in terms of its message transmissions and not in terms of the
internal behaviour of its modules.

65

O A

specification inresp

user+body1 (systemprocess) uter+body2 (systamprocess)
isa

u

izap

statien~iniebedy (systemprocess) station®res+body (systemprocess)

-0

user
responderédody

| ——————

user

initiator+body (prof

coder+~body+

coderq

Lis-sl]

. msapi msap2 .

mediumébody (systemprocess)

Figure 14: InRes Protocol Architecture

66

5.2.3 Languages and their Graphics Support

Previous to the start of our work, no graphic support existed for PROMELA users. Graphics
support, however, exists for other formal specification languages. Some languages have a
graphics version in addition to their “textual” version, whereas other languages may have a
graphics component to one of its tools but not to the language.

Forexample, WISE and GROPE are tools for Estelle in the Smalltalk environment [New9l1]
yet Estelle has no formally defined graphics representation. Graphics are deemed so impor-
tant for other specification languages that there are graphic versions of them: G-LOTOS for
LOTOS [BNT94] and SDL-GR for SDL [FA94].

Many languages that have a graphics component have to deal with how to represent the
“extraneous” graphical information necessary for drawing the graphic but not usually part of
“the language text”. Forexample the LOTOS code has no provision for storing the graphical
information that is seen in the G-LOTOS code. It is easy to translate G-LOTOS to LOTOS,
but translating the LOTOS to the G-LOTOS representation is difficult because LOTOS has
no provision in its text based description for ““layout” information. This problem is also seen
with SDL, which has a text version called SDL-PR and a graphics version called SDL-GR.

*

GROPE

GROPE [NA89b, NA89a, NA91, New91] relies on and enhances our natural cognitive and

visual processing capabilities by offering a dynamic, graphical environment for protocol
design for the Estelle language.

Background GROPEis built ‘on top of” WISE which in itself is built ‘on top of ’ SmallTalk.
WISE, by itself, has no graphics and the WISE-GROPE system performs no validation.
New does not experiment with any validation or verification tools, but adds graphics to an
already existing simulation environment. The environment also includes a syntax directed
editor for Estelle, called WIZARD.

New talks of the “advantages of resting user interface development on a firm formal
base.” and how the tool was written with the inter-operability with other Estelle tools in
mind. Unfortunately, to date, no new tools have been produced. This may be because GROPE
was written in an old version of SmallTalk and only runs on a Sun 3/50.

67

(1] (rviremmrenen)

Lt U JIEENH @ crend Y] (e esem)

Sompmer [f ~oeee|)

Figure 15: “End user”

Plans were made to port the package to the Next workstation and rewrite the package
in Objective C. Unfortunately, we are not certain of the present status of the rewrite. But
with Next no longer producing workstations and the low usage of Objective C (as compared
to C++), if this port was completed, it would face as similar a ‘dead end’ as the Smalitalk
version does now. This is unfortunate because the environment is an excellent one and the
proposed system enhancements, such as being able to write the Estelle code visually would
have been very useful.

Usage The graphical support that GROPE provides for the Estelle language comes in two
types.

First, the overall architecture of the model showing the instantiated modules and their
interconnecting channels can be easily drawn. (see figure 14 again, for an example of the
architecture for the InRes protocol as specified in Estelle)!. Any part of the architecture may
be ‘zoomed onto’ to show the internal architecture of a given module. This is seen in figure
15 for the architecture of the ‘enduser’ module of an early version of an XTP model.

'We used GROPE 1o find several errors in the “official” Estelle model of the InRes protocol, which we
then sent back to the InRes designers for subsequent correction.

68

LS onertr) amenenay Ll wreprycoeemens;

— S—

Sermes (wesrr)

Figure 16: ABP: Multiple State Machines within the Model’s Architecture

Second, the state machine of each module or process can be drawn at the click of a mouse
button. (See figure 16 for an example of the state machines for the ‘altemating bit’ protocol
as specified in Estelle). This state machine can fill the whole screen or can be drawn in the
context of the model’s architecture as shown in the last figure.

Protocols are dynamic systems but, as already pointed out, this temporal dimension can
not be seen in a ‘static’ program listing. A major feature of this tool is that it animates a
protocol model. GROPE represents message flow between the modules as an animation of
‘black dots’ that flow along their interconnecting channels. State transitions are similiarly
depicted. By looking at the protocol ‘in action’, we can potentially see many design prob-
lems and eliminate them.

GROPE helps to bring out the ‘cause and effect’ that is seen when a protocol works,
thereby allowing the protocol to ‘come alive’ and let the user experience this temporal di-
mension. New claims to have found bugs in long standing protocols and shows several ex-
amples that he found by simply animating the protocol models.

Simulating a Protocol Model The user can actually ‘watch’ as the protocol runs. A model
is simulated and as the model runs, graphic windows illustrate what occurs. Among other

69

features, GROPE can highlight the current state per process and follow transitions between
states and the sending of messages between modules. Allowing the user to watch the firing
of a transition or the transfer of a message helps to give the user a very clear idea of how
the protocol in question works.

Macro-states and Macro-transitions New investigates and supplies some visual simpli-
fying algorithms. By grouping certain states together ‘macro-states’ can be created, as well
as corresponding ‘macro-transitions’. These simplifying capabilities reduce perceived com-
plexities in the model and would benefit from further research.

Other Issues A particularly useful capability of the GROPE package allows the user to
move the mouse to design the graphical layout which can then be saved to a file. Unfortu-
nately the user must decide on the layout as GROPE offers no help in the calculation of a
layout. The tool had some problems with printing its PostScript graphic files, but they were
eventually solved by contacting the author of the tool.

Graphics Support for PROMELA

XSPIN is an X-based window interface to the SPIN program which provides all the func-
tions of SPIN but through a more ‘user-friendly’ interface.

Version 1.6 of XSPIN was little more than a graphical ‘front end’ to the SPIN tool. It
gives the user a convenient way to set the parameters normally set from the command line
of SPIN or the analyser created from SPIN. In addition, a text-based linear list of all the
states per FSM for each module in the model can be seen in a scrolling window.

In the 2.0 version of XSPIN many enhancements were added. For example, there are
hyper-text links into the source code, TSDs are supported, and FSMs are drawn (but no re-
sizing of drawing area (or ‘canvas’) is possible). The FSM graphic features display labels
in the node and transitions; they switch from state number to line number when the mouse
enters the node and PROMELA code is displayed when the mouse enters the midpoint of
the transition arrow. The XSPIN package is much more useful as a design aid.

However, there are still some problems with the XSPIN package. For example the lay-
out for the TDSs is not always correct and there is no way to change the layout of the proc-
types or to intervene in the calculation of the layout. The user can change the layout using

70

the mouse after the graphic is drawn but can not save these changes to a file Further, if #in-
cludes are used in the source code, the proctypes defined in the included files can not be
addressed correctly.

One nice feature is that message transmissions and proctype instantiations are dynami-
cally created on the drawing canvas. Also there is a clear representation of when a proctype
begins and ends.

5.24 Tcl/Tk

XSPIN was written using the Tcl/Tk package. Tcl is the language component and Tk is its
X window graphics widget library.

The Tcl language has several attractive features. Itis an interpreted Unix shell language:
this means that programs written in it can be developed quickly, yet execution is very fast.
Tclis a very terse, yet powerful language ([Ous94, Wel95]). All its data types are essentially
strings and associative arrays are supported in the language. All these features make it easy
to write programs very quickly.

If we compare Tcl to Perl, its main competitor: Perl also has associative arrays but its
syntax is very large. As well, Perl does not have graphics capability. So what made Tcl/Tk
an attractive choice to use was its Tk component. The powerful X window programming
library, with its full graphic support, is very easy to access using Tcl/Tk. (A Perl/Tk package
called tkperl has at this time of writing just come out).

5.3 Our Tools

Our goal was to make our tools “filter-like” (in the Unix style of using component tools that
do one thing in pipelines). As well our tools were designed to be as automatic as possible
and yet allow the user to intervene and override them, if necessary. This would make them
easy to use, even for people unfamiliar with them, as well as allowing us great flexibility
when looking for what to change in order to ascertain what works the best. Another goal
was to make “cameraready” figures that can be directly inserted into documents, at the same
that we are using them “on line” when developing a model.
We decided to use Tcl/Tk because: 2

2Qur original plan was to use PostScript or the *picture’ environment of ISTEX to create our graphics. Initial

71

1. the XSPIN tool was written in this language

2. the graphics support is interactive and therefore dynamic information can potentially
be displayed

3. the graphics support is at a very high level.

Our tools will be presented in the next two chapters. In designing our tools we wished
to build on previous tools and also ‘fix’ problems we saw in others. A feature common to
our tools is that if there exists a layout that the person likes, we do not recalculate a new one
and we never over write over an old one.

experiments showed that BTEX s picture format is too primitive, in that the basic objects are only lines, boxes
and text. PostScript is a very good environment with a lot more functionality than BTEX. Unfortunately, it
too, is at too low a level for our purposes (one of which is to eventually include a dynamic component to the
graphics), so we decided not to use it either.

72

Chapter 6

Drawing Time Sequence Diagrams

6.1 Introduction

We have created a tool we call “tsd” which produces data flow or time sequence diagrams
(TSDs). TSDs document the external activities of a system model and by doing so, help
the user develop a clear picture of the model under investigation. More specifically, TSDs
show the sending and receiving of all messages transmitted between system components.
(See the discussion under informal methods on page 19.)

We have prepared an ASCII version and an X11 windows version of the TSD generation
program. (See Appendix B for the source code.) When referring to features common to
both we shall refer to the tool as “tsd™ or if this is not clear enough, “*tsd”. The X version
is called “xtsd” and the ASCII version is called “tsd™ !.

Tcl/Tk was used to write XSPIN, and for that reason Tcl/Tk was also used to write *tsd.
Our new functionalities could be integrated easily into the SPIN package or they could be
used independently of XSPIN. For example, the xtsd functionality has been integrated into
the latest release of XSPIN. This paper describes the ‘stand alone’ versions, which were
designed to be run as ‘filters’.

1 would have liked way to use one name, say “tsd” to invoke the program and let the system determine if
its running over an X windows environment or not, but this was not possible to do within Tcl.

73

proc 5 (ReadingUserB) 1line 64, Send LISTEN -> queue 10 (outC)

proc 2 (context) line 24, Recv LISTEN <- queue 10 (fromR)
proc 2 (context) line 31, Send Opencr -> queue 9 (toR)

proc 5 (ReadingUserB) 1line 67, Recv Opencr <- queue 9 (in)

proc 5 (ReadingUserB) 1line 60, Send WSync -> queue 11 (SyncChan)
proc 3 (WritingUserA) 1line 21, Recv WSync <- queune 11 (SyncChan)

Figure 17: Sample Input (SPIN 1.6)

6.2 Background

We could see a use for TSD diagrams for modelling complex systems in PROMELA, long
ago, but this functionality was not part of the original SPIN tool. However, we noticed that
SPIN does output information that could be used to produce TSD diagrams by requesting
that during a simulation run, SPIN produce information for each send and receive event that
occurs in the system model.

SPIN simulations, when run with the send (-s) and receive (-r) options set, produce to
standard output, information for every message sent and received. Figure 17 shows an ex-
cerpt from the output of a SPIN simulation run. Each line of output represents a single event
of sending or receiving a message. By matching the receive for each corresponding send a
line is drawn to represent the complete transmission of that message. It is also important to
know if a sent message has not been received (message loss), although this is not shown in
this figure.

Received messages can also be marked as “lost” when mimicking a channel that can
distort messages. A message that was received in error is usually thrown away. As well,
any messages that are received can also be randomly marked as “lost” as another way to
mimic a channel that can lose messages. We’ll see examples of this later.

TSD diagrams can be produced “by hand” from the relevant SPIN output lines. Arrows
are used to represent the transmission of a message by connecting the appropriate sending
and receiving modules together. This process can be extremely long and prone to error; as
when, the user has to remember to match a send that occurred much earlier in the simulation:
or when there are many modules, queues and messages involved in the model. This can

74

7: proc 5 (ReadingUserB) line 54 "./head.cm”" Send LISTEN -> queue 10 (outC)

8: proc 2 (context) line 24 "./context.cm" Recv LISTEN <- queue 10 (fromR)
11: proc 2 (context) line 31 "./context.cm" Send Opencr -> queue 9 (toR)

23: proc 5 (ReadingUserB) line &7 "./head.cm" Recv Opencr <- queue 9 (in)

25: proc 5 (ReadingUserB) line 60 "./head.cm”" Send WSync -> queue 11 (SyncChan)
26: proc 3 (WritingUserA) line 21 "./head.cm" Recv WSync <- queue 11 (SyncChan)

Figure 18: Sample Input (SPIN 2.3.3)

quickly become an overwhelming task.

6.3 Automating the Process

“*tsd” was created in order to automate the production of this type of diagram. “*tsd” qu-
tomatically produces data flow or time sequence diagrams (TSDs) from SPIN simulation
output and draws out the time sequence diagram accurately in a matter of seconds.

6.3.1 Input Formats

The *tsd tool can read three types of input. A command line option allows the user to choose
the desired input format thus determining the specific input function used to read the input
data.

The tool can accept input in these three formats:

e PROMELA pre-SPIN version 2.0
e PROMELA post-SPIN version 2.0.
e generic

A seperate parsing function is used to read each of the specific input formats just listed.
All the rest of the code in the tool remains common. Therefore any new “language” can be
easily accommodated by writing a parsing function for that language. As well, if the format
for the output of a tool for a particular language is known it is also very easy to add a new
input parsing function.

75

AtoBq ! data A B
AtoBq ? data A data |
AtoBq ! data | A data
AtoBq ? data B data |
AtoBq ! datal |CNTL I B data

AtoBg ? datallCNTL C datal [CNTL |
I C datal [CNTL

W > W > o >

Figure 19: ‘Generic’ Input for Figure 20: Sample Output from
‘tsd’ ‘tsd’

We believe that *tsd versions for languages other than PROMELA, like Estelle, SDL,
Valira and SMURPH would be extremely easy to write. For example, when version 2.0 of
SPIN was released, we created a new function to read this new output format in a few hours.
Figure 18 shows the corresponding format. A Valira extension would be especially useful
as it relies solely on message passing.

As further proof as to the ease of extending this program to read other “languages” we
created our own “language”, a generic format. Thc generic format suggests the minimal
information required to produce a TSD. As a side effect of creating the generic format we
have found that we can use it to to draw time sequence diagrams that were not produced by
SPIN. In this way we can illustrate potential message transmission scenarios or transmission
sequences before we create an actual PROMELA model.

Figure 19 is an example of the generic input format. It depicts six events or three com-
plete transmissions. This is the sending of two ‘““data” packets from module ‘A’ to module
‘B’ and the sending of either a ‘data’ packet or a ‘CNTL’ packet (but not both) from ‘A’ to
‘B’.

6.3.2 Output Formats

tsd and xtsd differ mainly in how they draw their message arrows. The way the arrows are
drawn depends on the graphics capability of the output device (terminal or printer).

In the ASCII output of tsd the arrows have to be drawn in a ‘virtual’ way, a kind of
“connect the dots™. Instead of an arrow, a letter followed by the optional message contents

76

[/

Figure 21: Sample Output from ‘xtsd’

is printed at the row and column that corresponds to the specific send or receive event.

tsd accomplishes this by entering these two events into a linear sequenced associative
array, keyed by time, to be drawn out line by line after the whole model has been processed.
Matching sends and receives are indicated by matching the upper case letters (see figure 20)
because diagonal lines are impossible to draw on a “character” terminal.

xtsd simply draws a directed line or arrow between the two process from the ‘time’ or
y-value of the sending event and the ‘current’ receive event (see figure 21).

6.3.3 Generic Input Format

The syntax for the generic input is most easily explained by re-examining figure 19 again.
There are four columns: the module’s name, the channel or queue used to transmit on, the
type of transmission, and the message contents. The type of transmission may be either a
send or a receive. The sending transmission is represented by the symbol “!” (or the word
“Send”). The receiving transmission is represented by the symbol “?” (or the word “Recv”).

The first column, the module’s name, refers to the sending module if it is a send, or to the
receiving module if it is areception. There is no need for an “‘opposite” side in a transmission
as the transmission events either put on or take off from the respective queue or channel

77

M -
w
datq (0)
M
1
(£ L
(f L
a 0)
a 0)
a 2)
Figure 23: FAST-
Figure 22: “normal” NAK on a non-FIFO
FASTNAK mode network

listed in the second column (this is also true for the PROMELA output).

Simulating Message Loss

There can be an additional column for reception events; in this case the user should set the
LOSS_LINE variable in the tsd.h file in the current directory. If the value in this extra col-
umn matches the LOSS_LINE value then those receptions are considered to be lost message
transmissions.

Message loss can also be more traditionally represented by an unmatched send, but this
implies that there are to be more transmissions on this queue. In this scenario, since a send
that is intended to be lost is still on the queue data structure, the next reception would match
this old send—thereby throwing all the send-receive matches out of sequence. To avoid
this, the transmission should be explicitly marked as a loss. Figure 22 shows a lost message
transmission for the first packet (data(0)) sent.

Messages can appear to overtake each other when being transmitted between two mod-
ules. This would seem to defy reason as the modules are considered to be separated by a

78

single queue. This works because a TSD diagram abstracts away the name of the queue
used by not explicitly naming the used queue. In this way a second queue can be used to
connect two modules and by changing the order of the respective receptions the TSD can
appear to show a reordering of messages. Figure 23 provides an example of this.

This non-FIFO effect is restricted to the generic format because PROMELA channels
are queues and queue contents can not be reordered. It is possible that an abstraction of a
network that can reorder messages could be formulated by manipulating the *tsd input, as
is seen for the generic format, but so far PROMELA output only models *““point to point”
data transmissions.

6.3.4 Discussion

The tsd tool is particularly useful when trying to understand or debug a PROMELA model.
A random simulation of the model gives a quick view of how messages travel. If any obvi-
ous problems are seen the model can be changed. If no obvious errors are found, the model
can then be verified. If an error trail is produced, a simulation is rerun with the trace option.
This hopefully highlights where problems lie so that they may be corrected. If the model
has been verified, another random simulation will give a clear indication of how the model
“normally” works. Each time the model is iteratively changed, we may have to follow this
cycle.

*tsd has been helpful in spotting design errors that passed the analyser’s validation and
verification tests. For example, we have created models that did pass the verifier tests but
when we ran a random simulation found that the simulation did nothing but time out on
both sides—in effect doing nothing, but by doing nothing, it did nothing wrong. A model
that is not in error by virtue of doing nothing is not a correct design. We want to avoid
“trivially correct’ models. When the tool is run as a random simulation, one can readily see
if the message interaction ‘makes sense’. These design problems are very easily spotted
with *tsd.

6.4 tsd, the Tool

“*tsd” works essentially as was explained above for the ‘by hand’ approach. It takes as
input the result of a SPIN simulation with the send and receive event flags set. Its output

79

consists of a two dimensional graph, bounded on each side by an x axis and a y axis. On
the x axis, each module that sends or receives is assigned a column. The y axis represents
an event time line with each send or receive event representing a further ‘clock tick’. Time
increases down the y axis. Each message arrow will point at a downwards angle, connecting
the sender to its receiver.

Each input line is queried for either a send or receive event. Send events are placed at
the start of the respective channel or queue. Subsequent send events are placed at the end of
that queue, if the channel is the same, or else at the beginning of a new queue. Any receive
event will correspond to the send event stored at the head of its matching queue. At this
point a match is found so a ‘line’ is drawn to show a completed send and receive and the
head of the queue is deleted in order to remove the message from the queue. Receptions
that are ‘lost’ due to ‘lossy’ channels are marked as such.

After the entire model is processed, the channels are checked for any messages that were
sent but never delivered. These remaining messages may indicate that there are bugs in the
design, but not always for example, if the synchronising handshake fails, the model will
give up possibly with un-delivered messages still remaining in its channels.

6.4.1 Calling Syntax

The input to *tsd is the output of ‘spin -s -r’, which may be piped to *tsd or written to an
intermediate file which is then read on *tsd’s standard input.

The program takes its data from the standard Unix input, stdin. Its usage can be illus-
trated as follows:

cat <filename> <filename>|xtsd <options> or

xtsd <options> < <filename>

but unless several ‘generic’ files are used, the first option is of extremely limited use because
the output is often contained in a single file or is the standard output of the SPIN tool as the
next example shows:

spin -t -s -r <Promela-model-filename> | xtsd &

We pipe the SPIN output directly to xtsd, which then extracts the appropriate information
and then draws the TSD. The SPIN options indicate that we are examining the message

80

transmission of an error trace. The lack of options on xtsd indicate that the version of SPIN
is version 2.0 or higher.

6.4.2 Layout

The assigning of the columns to the proctypes is done using an heuristic that assigns in-
creasing column indices in the order of the instantiation and sending of a message over a
channel. This may be over ridden by a saved layout file, “layout.tsd” in the current direc-
tory. In fact, once a good layout is decided upon, the layout file is exclusively used and the
heuristic calculation is no longer necessary.

The layout file may be edited using any text editor. In this way, *tsd assists the user by
using a heuristic to guess what the best proctype ordering should be but still allows the user
to easily see and change this layout.

Some models use a single upper user module to test the underlying protocol. The layout
heuristic can not guess this so the user must add this information manually to the layout file.
The proctype id and the channel id are added to the layout file. The program knows that if a
proctype id is seen more than once the next number is its channel id and not a new proctype
id.

6.4.3 Main Program
The *tsd code processes input as follows:
1. check for first command line argument after tsd
‘g’ generic
‘pl” SPIN version 1.0-1.6
‘p2’ SPIN version 2.00 and up, which is the default
2. set variable ‘X’; O for ASCII mode, 1 for X11 windows mode

3. look for file in cwd that identifies a line number in the PROMELA code that corre-
sponds to an action of receiving a message and then ‘dropping it on the floor’. (setting
LOSS_LINE).

4. include the function library

81

5. call the three main processing functions

xtsd

The X windows version has additional code to handle the interface, functions for such things
as:

¢ window manager setup,

e setting up the window user input buttons, scroll bars, and the drawing area “canvas”.
e “smart” horizontal and vertical scroll bars

e allow resizing of application

The main interaction with the program is through the four buttons: scale, quit, *“print
portrait mode in Postscript”, and *“print landscape mode in Postscript”. The scale button
allows the user to shrink the entire model graphic down to a more manageable size. See
figure 24 to see what the X windows version, xtsd’s user interface looks like.

The PostScript output option produces excellent graphics that can be included in papers
to illustrate the actions of the protocol. For example, xtsd can produce a drawing of the
expected message interaction of messages in an error free environment in order to give the
new user a sense of how the protocol should work under normal conditions.

The ‘print Postscript file’ function always gives the Postscript file a unique name based
on Unix pid, mode (landscape or portrait) and number of times a print out has been made in
a particular node. Actually the ‘print’ is a misnomer in that the file is saved to the current
directory, where the user may then view it or print it.

6.4.4 TSD library program

Most of the functionality for tsd and xtsd is contained in a single library file, “tsd-lib.tcl”.
What follows is a short synopsis of these functions, in the order they are invoked:

1. look for ‘layout.tsd’ file and if not found open one up for writing; otherwise read in
and assign proctype id’s to x value columns and columns to proctype id’s

82

Scale[rint landscape [Print Jquit

(inputgiose) (outpufciose) | UserB) (Wn'ﬁn%UserB)
| LISTEN-—7

- Opener- ...

m———
P e
S

e L |

wos?
el
o
oot
—rn
e

o st
e
———
e

e e
e
v

—
e
-
e
s
-

| .—LCloser— """ /

Figure 24: xtsd interface

83

2. decide on parser (‘g’, ‘p1’, or ‘p2’) and start reading input data line by line; or exit if
can not determine type of input data file requested

3. create associative arrays from input line indexed by input fields

4. test for Send or Recv lines, ignore all the rest

(a) if it is a Send line, add contents of same indexed associative arrays as a list to
queue indexed queue data structure.

(b) if it is a Recv line, remove top of appropriate queue that corresponds to Recv
i. if !X then create 2 array entries indexed by occurrence of appearance in in-
put data

ii. if X then draw an arrow between the appropriate modules with message
content label in middle
use ‘xwininfo’ to determine X monitor’s colour plane
A. if it is black and white , draw arrows in stippled black to approximate
gray
B. ifitis colour monitor use gray or the first field will determine the colour
drawn on the screen (from verification work this is usually red, blue, or
yellow)

5. if anything is left on the input queues after the input data file has been read in, then
signify this as follows:

(a) if X, put an error icon and the message contents in a large font at the position
where its arrow tail would have been drawn if the message was completed

(b) if !X, add to the array and append the string "dead’ in order to signal message
loss when the entire array is printed

6. print out

(a) if !X print out the entire array

(b) if X draw the vertical lines and column headers

84

At the end of the library file, there are the other parsing functions for the generic and
pre version 2 input formats and some X functions to scale the window and provide some
intelligent vertical window scrolling. The window does not scroll past the area allotted for
the TSD and the heading always stays at the top of the screen when the user is scrolling so
as to always indicate which column refers to which proctype.

The last part to mention is the “obsolete” system wide header file.

6.4.5 The “tsd.h’ File

A certain class of models are written in which the network module is subsumed into a higher
level module. Message loss is ‘simulated’ by the receiving module not passing on the mes-
sage or “dropping it on the floor”. Message loss is mapped to the line in the source code
that receives the message at the receiving module but then does nothing with it. The user
then sets the LOSS_LINE variable with the appropriate line number and any receptions that
are received at that line number will be visually flagged as a message loss.

The tsd.h file contains this single variable assignment and initially was a system wide
file but was moved to the current directory of the model under examination. As the model
changes the specific ‘loss line’ changes as well, so the user is reminded, at first, to remember
to change this line in the current directory. If this class of model is not being used, the user
can ignore this warning.

6.4.6 Bug

Proctype to column assignment may be inaccurate under the following condition: when a
proctype ends and a new one is instantiated right away, the new proctype takes the old pid.
Since our program only checks for ‘proctype name’ and ‘proctype id’ to map it into a column
it appears that the first proctype never finishes and that the second proctype is a continuation
of the first. This was unexpected, as we had thought that any new proctype instantiation
would receive a new proctype id number.

In order to correct this problem, we will have to check other criteria when trying to
uniquely map a proctype into a column—perhaps the list of channels assigned to a proc-
type can help to identify the proctype column mapping or the line and state number from
whence the proctype was instantiated (or “run”) in the PROMELA source code. Fortunately

85

this error is very rare and easily spotted.

86

Chapter 7

Drawing Finite State Machines

7.1 Introduction

We have created a suite of tools (see table 7) which we use to draw finite state machines
(FSMs). FSMs are used to describe the inner workings of a module, see chapter 3. Most
often the module we examine is a component proctype of a PROMELA system model. We
could also use these tools to draw the global FSM for the entire system model but because
of the ‘state explosion problem’, this is often unfeasible. Finally, these tools also allow us
to construct our own FSM description entirely independent of a PROMELA specification.

7.2 Background

FSMs have been a staple of protocol designers, specifically in the specification and vali-
dation phases. FSMs document the internal activities of a system model by describing the
actions at the proctype or module level.

Until the second version of SPIN was released, the only FSM representation available
to PROMELA designers was the line-oriented output from “pan -d” (see figure 25). The
figure shows state transitions for the single proctype ‘context’. Each line represents a tran-
sition from a start to an end state. Also including is the line number and the code from the
PROMELA source file, as well as other information. There is, of course, a representation
for each and every proctype in the system model. We use this output as the input to our
drawing tools.

We have already described the limitations of a non-graphical representation. In this

87

proctype context
state S0 -(tr 9)-> state 15 [id 205 tp 523] [----G] line 8 => fromW?0penw
state 50 -(tr 29)-> state 31 [id 221 tp 525) [----G] line 8 => fromR?LISTEN
state 50 -(tr 42)-> state 50 [id 237 tp 526] [----G] line 8 => chin?RCV_WCLOSE[n \\
1,RCV_RCLOSE([n] ,RCV_END([n]
state 50 -(tr 43)-> state 36 [id 239 tp 5231 [A~---G] line
state 50 -(tr 45)-> state 39 [id 242 tp 525] [A---G] line
state 50 -(tr 47)-> state 42 [id 245 tp 523] [A---G] line
state 50 -(tr 49)-> state 45 [id 248 tp 525] [A---G] line
state 50 ~(tr 51)-> state 48 [id 251 tp 2] [A---G] line

=> fromi?Closew
=> fromR?Closer
fromW?Eofile
=> fromR?Eofile
=> (((finish_il[n)==

® ® O ® ™
]
v

Transition Type: A=atomic; D=d_step; L=local; G=global

Source-State Labels: p=progress; e=end; a=accept;

Figure 25: Sample ““pan -d”Output (spin 2.3.3)

regard, New’s work on FSM graphics has been very influential. (As of SPIN, version 2,
XSPIN also supports a graphical representation for FSMs.)

Thus, the problem we examine in this chapter is how to draw out a FSM. We have found
that the problem can be relegated to two distinct phases. The first phase revolves around
choosing an appropriate two dimensional spacing for the FSM. The second phase simply
draws the FSM based on the spacing.

There are benefits of being able to draw out a FSM. Most important to us, we want to
draw out a FSM so that the designer can ‘visualize’ and possibly adjust the design, until a
satisfactory design can be finalized. As for all visual representations, a figure aids in our
comprehension of the system we are examining.

7.3 The FSM Drawing Tools

Our system consists of several programs in which are meant to be run as filters or strung
together in a pipeline where the functionality of the ‘tool’ is distributed over these relatively
small programs. Table 7 contains a list and short discription of the tools used to draw a FSM.
Appendix C lists the source code for these tools. This reflects our preference for small tools
that can be mixed together to provide larger more powerful tools—the classical ‘Unix style
tools’. This style is also refelective of their development: small tools can be experimented

88

| List of FSM Tools |
| Name | Action

fsm-Is list all proctypes in the ‘pan’ file

fsm-make read specified proctype’s FSM from output of pan -d
fsm-atomic || symbolic link to ‘fsm-make’ (for ‘compacted’ FSM)
pre-xdag process FSM with better 2 dimensional layout algorithm

line-only . strip out ‘state value’ from node
empty-node || strip out all information from node
xdag draw a graph

| global-fsm | create a global FSM of the entire model

Table 7: List of FSM Tools

with to test the feasibility of certain concepts before we commit to a specific one. Eventually,
the tools could be very easily integrated into a single window based package!.

7.3.1 Smaller Tools

In this section, we will provide a discussion of the smaller tools and on how all the tools are
used together to deliver auser’s requested FSM diagrams. The major tools will be discussed
in their own sections.

fsm-Is

The first tool ‘fsm-Is’ is used to present a list of all the possible proctypes in the model. In
this way a user can then decide on which proctype should have an FSM drawn for it. Note
that each proctype must be explicitly chosen when a FSM is drawn for it, this is not done
automatically for each existing proctype.

The script uses the ‘pan’ file with the ‘-d’ option as input. Figure 25 shows an excerpt
from the output that ‘pan -d’ produces. All lines with a ‘proctype’ in it are pulled out and
the second field, its name is then printed.

1 The tools are written in Tcl/Tk, awk and C as they were (and for similiar reasons) for *tsd. The graphical
interface is for the X windows environment. Unlike the *tsd tool, it is impossible to draw an FSM in an ASCII
format. Instead, we have opted to write out ASCII format in a compact representation to the standard output.
This file can then be used either as input to other programs or to examine the details of the FSM connectivity
on an ASCII terminal.

89

We use the ‘pan -d’ out as input because if a PROMELA source file is used as input as in
XSPIN, the ‘#included’ files are not listed. This could be changed by including the files into
the main buffer whenever an ‘#include’ is read in the text, however, the line positions from
the original source would no longer be valid. Thus we use the output of ‘pan -d’ as it lists all
the proctypes and maintains the correct line number for each file name in the source code.
The list is returned to standard output (but could just as easily be written to a list widget).

fsm-atomic

This tool is not a ‘file’ in the normal sense, but a ‘soft link” to the file ‘fsm-make’. Unix
allows us to create a ‘link’ (like a pointer) to another file. The advantage of this is that we
can ask from within the Tcl code, what name was the executable invoked by (similar to other
Unix shell scripting languages and the programming language ‘C’) and then act upon this
information. If the file was invoked as ‘fsm-atomic’ the file fsm-make attempts to compact
or minimise the FSM by eliminating ‘unnecessary’ nodes in the graph of the FSM. We will
discuss these compaction issues shortly.

“line-only” and “empty-node”

“line-only” and “empty-node” are two filters which provide similar functionality—they mod-
ify the information stored in each state node label. The former reports only the line number
as the label and the last strips out the label completely.

They are usually used in a command pipe line where they filter the input to the xdag
drawing tool.

global-fsm

This program is used when the user wishes to produce the global FSM of the entire model.
Its use is not recommended unless the global FSM is particularly small. *‘global-fsm” is a
pipeline of Unix commands consisting of the tools ‘dag.awk’ and ‘dag.tcl’.

‘dag.awk’ converts global FSM information from SPIN into ‘pic’ format, which is a
System V Unix tool which we do not have access to. ‘dag.tcl’ converts ‘dag.awk’ output
into ‘pre-xdag’ format. This output is then ready to be used with the rest of our drawing
tools.

Overview

Figure 26 should help to put this discussion into perspective. It serves as a roadmap so that
following any path from the ‘root’ to a ‘leaf” will exhaust all the ways our tool can be used.
‘fsm-1s’ is used by the user to determine which proctype to draw. Then either ‘fsm-make’ or
‘fsm-atomic’ is used to calculate the coordinates for either an uncompacted or compacted
graph. At this point the output is ready to be drawn with ‘xdag’ or is passed to ‘pre-xdag’ to
have an altemnate layout calculated. After ‘pre-xdag’ is finished the output is in the format
appropriate for the ‘xdag’ tool. The user may choose to send it directly out to this drawing
tool or pass it through either the ‘line-only”’ or ‘empty-node’ filter and then to ‘xdag’.

7.3.2 fsm-make

This program s the first tool used in the path from reading a PROMELA model to producing
a specific proctype FSM. “fsm-make” reads the output of the ‘pan -d’ file (figure 25) and
extracts all the information required to draw a FSM for a specified proctype.

Command Line Options

The program can be run with several options (the first, ‘fsm-atomic’ has already been men-
tioned). The program can output the proctype information in the input format for the draw-
ing tool, ‘xdag’ (figure 33) or it can create the format for the ‘pre-xdag’ tool (figure 30). As
well, the user can request that the actions (the actual PROMELA code) from the PROMELA
model for each state transition in the system be included in the graphic. See below for a list
of these command line options, listed by index order:

0 name of file that invoked program, either fsm-make or fsm-atomic

fsm-make reports full FSM as refiected in pan -d
fsm-atomic reports compacted FSM , with ‘extra’ states removed

1 FORMAT either x or pre, default = x

X for output in xdag compatible format (output is ready to draw)
pre for output in pre-xdag compatible format (‘ASCII’ FSM)

91

Figure 26: FSM Design Methodology Overview

92

2 TLABEL either tu or tl, default = tu

tu for transitions, unlabelled
tl for transitions labelled

The user must give the command line arguments in the order listed above. If later argu-
ments are left out they assume the default values ‘x’ and ‘tu’ (for command line options 1
and 2).

Command line options 1 and 2 are assigned to the internal variables, FORMAT and
TLABEL, respectively. We will discuss these format structures when describing the tools
that read them.

In order to clarify these options, we illustrate their effects by presenting the rendered
graphics for a sufficiently complex FSM based on an XTP Context Machine model which
we wrote in PROMELA. The Context Machine module manages the various connections
or contexts in an XTP machine. See figures 27-29, figure 31 and figure 32.

There are two FORMAT choices so that two drawing algorithms can be accommodated.
The “x’ option chooses the algorithm that Holzmann uses in XSPIN. It is fast and simple but
the drawings are ‘ugly’. Figure 27 shows the result of applying this algorithm.

The ‘pre’ option writes out the FSM in a format for another drawing algorithm (pre-xdag
format) which is more complicated but produces much more satisfying drawings. Figure 28
shows the resulting graph that the ‘pre-xdag’ program calculated.

The pre-xdag format is seen in figure 30. This is used as input to the ‘pre-xdag’ tool
which then produces the format as seen in figure 33.

Both figures 27 and 28 were drawn from the same initial ‘pan -d’ output.

Compacted FSMs

When a section of code is marked as atomic in a PROMELA model, the code is executed
as a single unit and can not be interrupted until it is finished. Conceptually, the component
actions can be abstracted away.

Likewise, the compaction option looks for all atomic sequences and tries to compact all
its linear sequences, as these are considered extraneous or redundant. The output consists
of a minimised FSM wherein the basic framework for choices is all that remains.

93

® &

@ # ¢
(%

S
O)

) Z\\':Z/

Figure 27: Context Machine (Holzmann drawing algorithm)

94

Figure 28: Context Machine

95

Figure 29: Context Machine (compacted “down” transitions)

96

In figure 29, we show the result of compacting the graph from figure 28 by using “fsm-
atomic” instead of “fsm-make”. For clarity we show only the “down arrows” (see the dis-
cussion in ‘pre-xdag’).

We have investigated the possibility of having the tool eliminate all but the start and
ending states involved in an atomic sequence but feel that the previous approach is better,
as it is important to know the structure of a model, even for atomic sequences, and so we
felt that we would not want to eliminate this kind of information.

The fsm-atomic option is used when we wish to compact certain atomic sequences but
we re-emphasise that the concepts of compact and atomic are not identical. There are some
atomic sequences where one would want to see all the component actions—even for linear
sequences. If the user wishes to eliminate sections of the FSM, for abstraction purposes, this
can be done be eliminating the nodes from an intermediate FSM input files. Once identified,
the user can eliminate any nodes, including the atomic ones.

An ASCII FSM

The output created when using the ‘pre’ option also serves as the basis for generating an
ASCII representation of the FSM. This can be accomplished by typing:

fsm-make <proctype-name> pre |sort -n

at the Unix command line prompt. The pipe to the Unix ‘sort’ command is necessary in
order to find the starting node. The ‘-n’ requests a numeric sort, node labels are based on
source code line number and SPIN assigned state number, both numeric values so this option
should not be left out. We could have added this functionality to the program but we did not
see the need. It probably will not be used too often and the functionality is already in the
system.

It is important to realize that the lowest valued node is the first or start node. Conse-
quently, we could record the lowest node value or even the first node read. The reason that
these lines are not kept in order is due to how Tcl stores the order of associative arrays (es-
sentially randomly as the index is based on a hash value).

7.3.3 Discussion of the code for “fsm-make”

The “fsm-make” algorithm is as follows:

97

- check to see if the analyser ‘pan’ exists and if it does not tells the user to compile the

model with spin -a to produce the analyser, ‘pan’

read output of ‘pan -d’, and determine if the current input line represents a proctype
or state transition

if a “proctype line” is found, check if it is the requested proctype and if it is then keep
reading “state transition” lines until the next “proctype line” is found

parse off “‘source state”, “destination state”, ““line number of source state” and “action
(or PROMELA code) of source state” from the fields of the input lines and calculate
distance the between source and destination nodes (levels), all the while tracking the
maximal level reached as you construct the graph for the FSM

if the file was invoked as ‘fsm-atomic’ then re-parse ‘pan -d’ and record the atomicity
of each transition and for each current node, calculate its parents

(a) look for atomic segments to compact (I did not include the d_step keyword).
There are four cases as the current node’s transition can either be atomic or non-
atomic and the same is true for its parent (the parent that leads directly to the
current node) If the current node is non-atomic do not change the graph. If the
incoming transition was non-atomic and the outgoing transition is atomic do not
change the graph but mark this as a transition to an atomic section by recording
the current node as the ‘ancestor node’. If both the incoming and outgoing tran-
sitions are atomic, this is a potential path to compact wherein the ancestor’s child
is replaced with current target node. However this can only occur if the ancestry
is linear.

if the *pre’ option is selected, print out the FSM in the format for pre-xdag
src:trg,trg;
or

src:trg tlabel,trg tlabel;

98

14.8:17.7;

31.26:34.25;

12.11:14.8,19.10;

29.29:31.26,36.28;

53.48:57.56;

25.31:27.19,29.29;
8.50:10.165,25.31,48.36,49.39,50.42,51.45,53.48;
10.15:12.11,22.14;

Figure 30: *“pre-xdag” Input Format

otherwise pass the FSM to Holzmann'’s two dimensional layout calculation algorithm.
This algorithm calculates the positions for the node and transitions for ‘xdag’ tool to
draw.

7.3.4 pre-xdag

The program ‘pre-xdag’ is based on a Mutif public domain program, ‘xdag’ that is used to
draw directed acyclic graphs. It was adapted to calculate the two dimensional layout of the
nodes and transitions for proctype FSMs. Its algorithm produces results superior to those
produced by the other (Holzmann) drawing algorithm.

‘pre-xdag’ can not handle looping cycles in its graph, so all cycles must be removed such
that only “down’ transitions are included, then these node positions are calculated. The ‘up’
transitions are later calculated by referring to the coordinates produced for the graph with
only the ‘down’ transitions included.

In figure 31 we illustrate the “up” transitions and in figure 32 we show the “down” tran-
sitions.

We see a need to automate the following aspects of the program as soon as possible:

e need program to eliminate ‘up’ transitions
e program to parse out ‘up’ transition x and y coordinates

Figure 30 is an example of the pre-xdag input format. By sorting these lines we get the
ASCII FSM. We can see quite easily that the row that starts with “8.50” contains the start
node for the graph.

99

@

Figure 31: Context Machine (“up” transitions)

100

@

@

Figure 32: Context Machine (“‘down” transitions)

101

8.50 400 15 7 415 45 711 115 415 45 611 115 415 45 165 115 415 45 252 115 \\
415 45 411 115 415 45 333 115 415 45 511 11§

48.36 150 115 0
49.39 237 115 0
61.45 318 115 0
50.42 396 115 0
53.48 496 115 1 511 145 215 215

25.31 596 115 2 611 145 315 215 611 145 415 215
10.15 696 115 2 711 145 711 215 711 145 515 215
57.56 200 215 0

27.19 300 215
29.29 400 215
22.14 500 215
12.11 696 215
36.28 240 315
31.26 350 315
19.10 465 315
14.8 696 315 1 711 345 711 415
34.25 350 415 0O

17.7 696 415 0O

415 245 365 315 415 245 255 315

711 245 711 315 711 245 480 315

365 345 365 415

oOrr ONONMNO

Figure 33: “xdag” Input Format

7.3.5 xdag

Although this is the program that draws the FSM, it knows nothing about graph structure.
Its job is to draw circles and a variable number of arrows that leave from the circumference
of the circle. It reads a data file where its input lines can be entered in any order, such as
figure 33. Labels can be drawn in the circles and across the arrows at the user’s discretion.

The modularity of this design allows us to reuse this program to draw anything that can
be represented as a set of circles with outgoing edges or arrows. The user imbues meaning
to the interpretation of circles and arrows in any way that they please but here we interprete
the graph as an FSM by designing the input layout and objects to be used such that circles
are used for nodes and arrows for transitions. The coordinates for the nodes and arrows are
pre-calculated, so that ‘meaning’ is already decided upon by the time ‘xdag’ reads it.

Figure 33 shows an example of the xdag input format. The line with the ‘\\’ at the end
of it should be a single line that continues with the one immediately following it. The line
was broken for readability.

The data input file comes from either fsm-make or pre-xdag and consists of a series of

102

formatted lines, structured as follows: first the node label and its positional coordinates, fol-
lowed by the number of transitions that lead from this node, next there are a variable number
of coordinates (possibly zero) for each transition. This is expressed in terms of positional
coordinates for the tail and head of the arrow. After each set of “arrow” coordinates, if a non-
numeric field is found it is interpreted as a “transition label” that is drawn over the midpoint
of the arrow otherwise the next set of arrow information is read. This is done automatically
for each arrow.
The xdag input format is as follows:

e node label

e x coordinate for top left circle

e y coordinate for top left circle

e x coordinate for bottom right circle

e y coordinate for bottom right circle

e number of transition from node,

e variable number of “arrow information” entries

The arrow information entries are contingent on the number of transitions. If there are no
transition then there will be no arrow coordinates, otherwise there is a set of coordinates per
transition in the following format. For each arrow, there may be a label.

e X coordinate for arrow tail

y coordinate for arrow tail

e x coordinate for arrow tip

y coordinate for arrow tip

possible transition label (must be non-numeric)

103

7.3.6 dag-lib.tcl

The code for *xdag’ is written in two files, ‘xdag’ and ‘dag-lib.tcl’. The file ‘xdag’ sets up
the X window parameters, see the discussion of ‘xtsd’—the files are virtually identical. The
main functions for ‘xdag’ are contained in the library file ‘dag-lib.tcl’, where the functions
to draw out the nodes and transition arrows, and where the checks if there are any labels on
the arrows occur.

7.4 Discussion

The two-dimension position calculation for graph layout is an important and necessary step.
It is easy enough to derive the connectivity of the graph components and easy enough to
draw a graph once the coordinates have been calculated, but calculating the points required
to draw out the graph is difficult. One reason is because the node placement is an aesthetic
decision and computers are not as good as people are at making this kind of decision. It can
be argued that computers can be made to be good judges of aesthetic content by applying
the techniques of artificial intelligence and expert systems, however, ultimately the set of
criteria would have come from a human and furthermore since humans will be looking at
the graph layout, a person’s aesthetic criteria should win out. As well, different people may
not agree on the same aesthetics. Therefore a computer must help the person and should use
an heuristic that gives the best possible results, but still allow the person to over rule it. The
computer should do “most” of the work, as the task can be overwhelming, but once the user
“has something to work with”, the user should be allowed to do so.

If we compare how graph layout is calculated in GROPE, the reader may be surprised
to find that no calculations are done. The graph connectivity is calculated and drawn and
then the nodes and their connecting transitions are literally dumped out onto the screen. The
program expects that the user will move the nodes around in a satisfactory way. This layout
can then be stored in a file, which is then used to calculate the layout of the graph.

The code could be improved as follows:

¢ allow mouse movements to rearrange the graph components (nodes and transition ar-
TOws)

e save the layout to a file

104

¢ (possibly) integrate all the programs into a single file.

The layout can be stored in a file, but it can not be easily manipulated since the file is
often quite large (this is not the case for the **tsd’ tool which generally has a one line layout
file). Being able to manipulate these components interactively on the drawing canvas would
make the tool much more user-friendly. (Although mouse movements can rearrange the
graphic, XSPIN does not save this layout to a file.)

Finally, and as is done for “*tsd’, if there exists a layout that the user likes already stored
in a layout file, the program should not recalculate a new one and should not write over the
old one, but it should simply read it (since all that xdag does is draw, we would have to
add functionality for this to that file as all the other files are involved in finding and then
calculating the graph layout points in the graph).

105

Chapter 8

Conclusions and Future Work

8.1 Conclusion

Describing protocols in a precise, yet understandable way is a very difficult task. Informal
techniques were initially tried but their lack of precision quickly made them insufficient for
the increasingly more complex protocols being introduced today. As the protocol develop-
ment community turned towards formal methods, imprecision was traded for understand-
ability, as many of the description techniques are very hard to understand. In this thesis
we have reintegrated the successful components of informal methods with the precision of
formal methods.

We believe that generating figures from a formal model helps in the design process since
humans are the ones that ultimately have to implement a protocol and humans benefit most
from graphic representations. By grounding the figures on a formal model we reintroduce
the very real benefits of clarity by relying on our inherent human design skills, without los-
ing the mathematical precision and clarity of formal methods.

We have developed two tools: one for drawing the internal activities of the component
modules of a protocol system, as expressed by the finite state machine model and one for
drawing the external activities for the component system modules, based on the time se-
quences diagram model.

8.2 Future Work
This thesis can be expanded in several ways.

106

We have laid the foundation for the formal descriptions of a large, under specified pro-
tocol, XTP. We can see opportunity to expand on these models, to either make them more
comprehensive in what they cover or to integrate the different models into a single, but
much larger one. Formal models should also help to tighten up the specification of the pro-
tocol. Once this is done, only then should a natural description and figure description be
produced—one that is based on the formal description.

We can see more research into the sophistication of the capabilities of the tools, specif-
ically of the user interface and of the functionality. We would also like to see more layout
algorithms added to the tools.

We could see adaption of the tools for other languages. For example, as we mentioned,
it would be extremely easy to adapt the FSM tool for Valira. The TSD tool is also easily ex-
tended to include any other communication language or technique that uses message com-
munication.

In future versions, we would allow mouse movements to rearrange and then save new
layouts like the GROPE package (XSPIN can use the mouse to rearrange layouts but can
not save them.). We also wish to write code to draw the overall model architecture for all
the modules and their inter-connecting channels.

Finally, we would like to find out if there is a “universal representation”, specifically a
graphic one which could provide some sort of commonality to the different languages and
techniques that are used to describe protocols in the protocol design community.

107

Bibliography

[AU77]

[(BB87]

(BBBC93]

[BD87]

[BH89]

[BLO1]

[(BL93]

{BNT94]

Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-
Wesley, Reading, Massachusetts, USA, 1977.

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25-60, 1987.

Gordon Blair, Lynne Blair, Howard Bowman, and Amanda Chetwynd. Formal
Support for the Specification and construction of distributed multimedia sys-
tems (the Tempo project) - final project deliverable. internal report MPG-93-23,
Lancaster University, Lancaster, England, December 1993.

S. Budkowski and P. Dembinski. An Introduction to Estelle: A Specification
Language for Distributed Systems. Computer Networks and ISDN Systems,
14(1):3-23, 1987.

F. Belina and D. Hogrefe. The CCITT Specification and Description Language
SDL. Computer Networks and ISDN Systems, 16(4):311-341, 1989.

Rezki Boumezbeur and Luigi Logrippo. Specification and Validation of Tele-
phone Systems in LOTOS. University of Ottawa, May 1991.

Rezki Boumezbeur and Luigi Logrippo. Specifying Telephone Systems in LO-
TOS. IEEE Communications Magazine, pages 38—45, August 1993.

T. Bolognesi, E. Najm, and P.A.J. Tilanus. G-LOTOS: a graphical language for
concurrent systems. Computer Networks and ISDN Systems, 26:1101-1127,
1994.

108

[BSW69]

[CA90a]

[CA90Db]

[DAC*89]

[DB92]

[Dij75]

[DZ83]

[FA94]

[FLS90a]

[FLS90b]

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A Note on Reliable Full-
Duplex Transmission over Half-Duplex Links. Comm. of the ACM, 12(5):260—
261, May 1969.

S. Chamberlain and P. D. Amer. A New User’s Experiences and Impressions
with Estelle, pages 471-474. North Holland, Amsterdam, 1990.

Y.T. Cheung and J. William Atwood. Specifying the Xpress Transfer Protocol
Using Estelle and Valira. In Jose Manas Quemada and Enrique Vazquez, edi-
tors, Formal description techniques, 111, pages 503-517, Madrid, Spain, 1990.
IFIP, Elsevier Science B.V. (North-Holland).

Diaz, Ansart, Courtiat, Azema, and Chari, editors. The Formal Description
Technique Estelle. North-Holland, Amsterdam, 1989.

Amand Drayton, Lynne Chetwynd and Gordon Blair. Introduction to LOTOS
through a worked example. Computer Communications, 15(2):129-34, March
1992.

Edsger W. Dijkstra. Guarded Commands, nondeterminancy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453-457, August 1975.

John D. Day and Hubert Zimmmermann. the OSI Reference Model. Proceed-
ings of the IEEE, 71(12):1334-1340, December 1983. (special issue on Open
Systems Interconnection (OSI) — new international standards architecture and
protocols for distributed information systems).

Ove Fargemand and Olsen Anders. Introduction to SDL-92. Computer Net-
works and ISDN Systems, 26:1143-1167, 1994.

Mohammed Faci, Luigi Logrippo, and Bernard Stepien. Formal Specifications
of Telephone Systems in LOTOS: The Constraint-Oriented Style Approach.
University of Ottawa, Department of Computer Science, TR-93-07, 1990.

Mohammed Faci, Luigi Logrippo, and Bernard Stepien. Formal Specifications
of Telephone Systems in LOTOS. [LPU90], pages 25-34.

109

[FLSO91]

[GHP92]

[Gla94]

[Got92]

[GR92a]

[GR92b]

[GR92c]

[Hai82]

[Hea93]

Mohammed Faci, Luigi Logrippo, and Bernard Stepien. Formal Specifications
of Telephone Systems in LOTOS. Computer Networks and ISDN Systems,
pages 53-67, 1991.

P. Godefroid, G.J. Holzmann, and D. Pirottin. State space caching revisited. In
G.v. Bochmann and D.K. Probst, editors, Computer Aided Verification IV, pages
178-91, Montreal, Que., Canada, 1992. Computer Aided Verification. Fourth
International Workshop, Springer-Verlag.

Bradford Glade. Temporal Logic to Never Claim Converter. Technical report,
Cornell Universtity, Department of Electrical Engineering, Ithaca, New York,
October 1994.

Reinhard Gotzhein. Temporal logic and applications - a tutorial. Computer
Networks and ISDN Systems, 24:203-218, 1992.

Pawetl Gburzyriski and Piotr Rudnicki. An Overview of SMURPH: an
Object-oriented Configurable Simulator for Low-level Communication Proto-
cols. Technical report, University of Alberta, Department of Computer Science,
Edmonton, Alberta, October 1992.

Pawetl Gburzyriski and Piotr Rudnicki. The SMURPH Protocol Modeling En-
vironment, version 1.61. Technical report, University of Alberta, Department
of Computer Science, Edmonton, Alberta, September 1992.

Jens Grabowski and Ekkart Rudolph. Message Sequence Chart (MSC) - A Sur-
vey of the new CCITT Language for the Description of Traces within Commu-
nication Systems. University of Bemne, Institute for Informatics and Applied
Mathematics, IAM 92-022, 1992.

Brent T. Hailpemn. Verifying concurrent processes using temporal logic.
Springer-Verlag(Lecture notes in computer science. 129.), Berlin ; New York,
1982.

N. W. Heap. An introduction to OSI. Osney Meade, Oxford : Blackwell Sci-
entific, Oxford, 1993.

110

[HG]

(HGP92]

[Hola]

{Holb]

[Hol85]

[Hol87]

[Hol88]

[Hol90a]}

{Hol90b]

[Hol91]

Issam Hamid and Reinhard Gotzhein. Temporal Logic and its Applications.
lecture series from November 6, 1992 to December 12, 1992.

G.J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Protocol specification, testing, and veri-
fication, XII, pages 349-363, Lake Buena Vista, FL, USA, 1992. IFIP, Elsevier
Science B.V. (North-Holland).

Gerard J. Holzmann. Basic Spin Manual. A user’s manual for SPIN users which
comes with SPIN.

Gerard J. Holzmann. Using SPIN—A Validator’s Roadmap. A validator’s man-
ual for SPIN users which comes with SPIN.

G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(10), Decem-
ber 1985. reprinted in: Current advances in distributed computation, Computer
Science Press, 1986.

Gerard J. Holzmann. On Limits and Possibilities of Automated Protocol Anal-
ysis. In Harry Rudin and Colin H. West, editors, Protocol specification, test-
ing, and verification, VII, pages 339-344. IFIP, Elsevier Science B.V. (North-
Holland), 1987.

G.J. Holzmann. An improved protocol reachability analysis technique. Soft-
ware, Practice & Experience, 18(2):137-161, February 1988.

Gerard J. Holzmann. Algorithms for Automated Protocol Verification. AT&T
Technical Journal, 69(1):32—44, January/feb 1990. (Special Issue on Protcol
Testing and Validation).

G.J. Holzmann. Algorithms for automated protocol verification. AT&T Tech-
nical Journal, 69(2), February 1990. Special Issue on Protocol Testing, Speci-
fication, and Verification.

Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, Englewood Cliffs, New Jersey, USA, 1991.

111

[Hol93]

[Hol95a]

[Hol95b]

[HP89]

[ISOa]

[ISOb]

[ISOc]

[Lam82]

[Lam85]

[Lin83]

G.J. Holzmann. Design and validation of protocols: a tutorial. Computer Net-
works and ISDN Systems, 25(9):981-1017, April 1993.

Gerard J. Holzmann. SPIN NEWS. An electronic news letter for SPIN users,
February 1995.

Gerard J. Holzmann. What'’s New in SPIN Version 2.0 (Draft). An updated
addendum to the user’s manual for SPIN users which comes with SPIN, January
1995.

Gerard J. Holzmann and J Patti. Validating SDL specifications: an experiment.
In Ed. Brinksma, Giuseppe Scollo, and Chris A. Vissers, editors, Protocol spec-
ification, testing, and verification, IX, pages 317-326, Enschede, The Nether-
lands, 1989. IFIP, Elsevier Science B.V. (North-Holland).

Information Processing Systems — Open System Interconnection. 7SO Draft
International Standard 10167: Guidelines for the Application of Estelle, LO-
TOS and SDL.

Information Processing Systems — Open System Interconnection. ISO Inter-
national Standard 9074: Estelle — A Formal Description Technique Based on
an Extended State Transition Model.

Information Processing Systems — Open System Interconnection. ISO Inter-
national Standard 8807: LOTOS— A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour.

L. Lamport. Specifying concurrent program modules. ACM Trans. on Pro-
gramming Languages and Systems, 5(2):190-222, April 1982.

Leslie Lamport. Chapter 2: Basic Concepts. In M. Paul and H.J. Siegert, edi-
tors, Lecture notes in computer science. 190., pages 6—43. the Institut fur Infor-
matik, Technische Universitat Munchen, Springer-Verlag, 1985.

Peter F. Linington. Fundementals of the Layer Service Definitions and Protocol
Specifications. Proceedings of the IEEE, 71(12):1341-1345, December 1983.

112

[Lin85]

[Liu89]

[LL92a]

[LL92b]

(LPU90]

[Lyn68]

[MGKO91]

(Mil90]

[MP90]

[MP92]

[MWEg4]

Huai-An Lin. A new methodology for designing communication protocols. PhD
thesis, University of Ohio, 1985.

Ming T. Liu. Protocol Engineering. In Advances in computers, volume 29,
pages 79-195, New York, 1989. Academic Press.

Peter B. Ladkin and Stefan Leue. An Analysis of Message Sequence Charts.
University of Berne, Institute for Informatics and Appiied Mathematics, [AM
92-013, June 1992.

Peter B. Ladkin and Stefan Leue. An Automaton Interpretation of Message
Sequence Charts. University of Beme, Institute for Informatics and Applied
Mathematics, IAM 92-012, June 1992.

Luigi Logrippo, Robert L. Probert, and Hasan Ural, editors. Protocol specifica-
tion, testing, and verification, X, Ottawa, Ontario, Canada, 1990. [FIP, Elsevier
Science B.V. (North-Holland).

W. C. Lynch. Reliable Full-Duplex Transmission over Half-Duplex Telephone
Lines. Comm. of the ACM, 11(6):406-410, June 1968.

Susan Murphy, Per Gunningberg, and John P.J. Kelly. Experiences with estelle,
lotos and sdl: A protocol implementation. Computer Networks and ISDN Sys-
tems, 22:51-59, 1991.

Raymond E. Miller. Protocol Verification: The first ten years, the next ten years;
some personal obserations. In Logrippo et al. [LPU90], pages 1-39.

Zohar Manna and Amir Pnueli. Tools and Rules for the Practicing Verifier. Re-
port STAN-CS-90-1321, Stanford University, July 1990.

Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag, New York, 1992.

Z. Manna and P. Wolper. Synthesis of communication processes from temporal

logic specifications. ACM Trans. on Programming Languages and Systems,
6(1):68-93, January 1984.

113

[NA89a]

[NA89b]

[NAOG1]

[New9l1]

[Ous94]

[Pet81]

[Pnu77]

[Rei85]

[Rei92]

[SDW92]

[Sil92]

[SL93]

D. H. New and P. D. Amer. Adding Graphics and Animation to Estelle. Tech-
nical Report 89-14, University of Delaware, January 1989,

D. H. New and P. D. Amer. Adding Graphics and Animation to Estelle. In
E. Brinksma, C. Vissers, and G. Scollo, editors, Participants proceedings of 9th
IFIP WG 6.1, International Symposium on Protocol Specification, Testing, and
Verification, Enschede, The Netherlands, June 1989.

D. H. New and P. D. Amer. Protocol Visualization of Estelle Specifications.
North Holland, Amsterdam (in press), 1991.

D. H. New. Protocol Visualization. PhD thesis, University of Delaware, 1991.

John Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company,
Inc., 1994,

James Lyle Peterson. Petri net theory and the modeling of systems. Prentice-
Hall, Englewood Cliff, N.J., 1981.

A. Pnueli. The temporal logic of programs. pages 46-57, October 1977. Proc.
18th annual Symposium on the Foundations of computer science.

Wolfgang Reisig. Petri nets : an introduction. Springer-Verlag, Berlin ; New
York, 1985.

Wolfgang Reisig. A primer in Petri net design. Springer-Verlag, Berlin ; New
York, 1992.

W.T. Strayer, B.J. Dempsey, and A.C. Weaver. XTP: The Xpress Transfer Pro-
tocol. Addison-Wesley Publishing Company, Inc., 1992.

Silicon Graphics Inc. and Protocol Engines Inc. XTP Protocol Definition, Jan-
uary 11 1992.

Bemnard Stepien and Luigi Logrippo. Status-Oriented Telephone Service Spec-
ification: An Exercise in LOTOS Style. University of Ottawa, Department of
Computer Science, TR-93-07, February 1993.

114

[ST87]

[Ste]

[Tar91]

[Tur93]

[Vis90]

[Wel95]

[Wes89]

[XTP9S5]

R. Saracco and P.A.J. Tilanus. Ccitt sdl: Overview of the language and its ap-
plications. Computer Networks and ISDN Systems, 13:65-74, 1987.

D.E. Stevenson. 1001 Reasons for not Proving Programs Correct: A Survey.
Technical report, Clemson University. Preprint for Philosophy and Computers.

Katie Tarnay. Protocol specification and testing. Plenum, New York ; London,
1991.

Kenneth J. (ed) Turner. Using Formal Description Techniques - An introduction
to Estelle, LOTOS and SDL. John Wiley and Sons Ltd., West Sussex, England,
1993.

Chris A. Vissers. FDTs for Open Distributed Systems, a retrospective and a
prospective view. In Logrippo et al. [LPU90], pages 1-22.

Brent Welch. Practical Programming in Tcl and Tk. Prentice-Hall, 1995.

C.H. West. Protocol validation in complex systems. Computer Communication
Review, 19(4):303-12, September 1989.

XTP Forum, 1900 State Street, Santa Barbara CA 93101. XTP Protocol Defi-
nition, Version 4.0, March 1995.

115

Appendix A

Specification and Validation Approach

[Hol91] gives ten basic rules of protocol design, which we find useful. They are:

1. Make sure that the problem is well-defined. All design criteria, requirements and con-
straints, should be enumerated before a design is started.

2. Define the service to be performed at every level of abstraction before deciding which
structures should be used to realize these services (what comes before Aow).

3. Design external functionality before internal functionality. First consider the solution
as a black box and decide how it should interact with its environment. Then dacide
how the black-box can be internally organised. Likely it consists of smaller black-
boxes that can be refined in a similar fashion.

4. Keep it simple. Fancy protocols are buggier than simple ones; they are harder to im-
plement, harder to verify, and often less efficient. There are truly complex problems
in protocol design. Problems that appear complex are often just simple problems hud-
dled together. Our job as designers is to identify the simpler problem, separate them,
and then solve them individually.

5. Do not connect what is independent. Separate orthogonal concems.

6. Donotintroduce what is immaterial. Do not restrict what is irrelevant. A good design
is “‘open-ended,” i.e., easily extendible. A good design solves a class of problems
rather than a single instance.

7. Before implementing a design, build a high-level prototype ... and verify that the
design criteriaare met

8. Implement the design, measure its performance, and if necessary, optimise it.

116

9. Check that the final optimised implementation is equivalent to the high-level design
that was verified.

10. Don’t skip Rules 1 to 7.

and then he adds: The most frequently violated rule, clearly, is Rule 10.

117

Appendix B
TSD Source Code

The following Tcl/'Tk programs constitute the TSD and XTSD programs used to produce
TSD diagrams.

118

B.1 Main Program (text version)

file name: /home/ted/bin/tsd

#!/usr/bin/tclsh
#!/local/paths/tclsh
if {$argc > 0} {
set LANGUAGE [lindex $argv 0]
} else {
set LANGUAGE p2
}
set X O
if [file exists "./tsd.h"] { source "./tsd.h"
} else {puts stdout “warning: LOSS_LINE not set";set LOSS_LINE -1}
source "~/bin/tsd-1lib.tcl"
#
setup
incomplete_sends
print_out
#

© 0 ~N OGO b WwN -

T
- O

o
N W

[
[+)]

119

B.2 Main Program (X windows version)

file name: /home/ted/bin/xtsd

#!/usr/bin/wish -f
#!/local/paths/wish -f
Tk 4.1
if {$arge == 1} {
set LANGUAGE [lindex $argv 0]
} else {
set LANGUAGE p2
}
global env; # declaration necessary?
set LOSS_LINE 160
if [file exists "./tsd.h"] { source "./tsd.h"
} else { puts stdout "warning: LOSS_LINE not set";
set LOSS_LINE -1}
source "~/bin/tsd-1lib.tcl"
bogus test, wish is executing this script ...
if [info exists env(DISPLAY)] { set X 1 } else { set X 0 }
if $x {
set auto_path "/home/ted/bin $auto_path"
set text_y0 O

O ©W O ~NO O WwN K=

N D e A b
= O WO ~NO®O b WwN -

wm title . "tsd 2 ps"

wm iconname . "“tsd 2 ps"

wm minsize . 4 2

wm grid $c ?baseWidth baseHeight widthInc heightInc?

NN NNDNDN
~NoO bk WwN

set n O

NN
0 0

set £ (frame .f -borderw 2 -relief raised]
set ¢ [canvas $f.c \

-height "20 c" \

-width "18 c¢"

]

W W wwww
O WN = O

proc pb-incr {} {
global c
global n
$c postscript ~file ./tsd-p-[pid]l-$n.ps
incr n

» W Wwww
o W o ~NO»

}
proc plb~incr {} {
global c
global n
$c postscript -rotate true -file ./tsd-1-[pid]-$n.ps
incr n

NN
Ao W e

120

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

set m [frame .m ~relief raised]

set gb [button $m.q -text "Quit" -command "destroy ."]

set sb [button $m.s -text "Scale" -command "scale_win"]

set pb [button $m.p -text "Print" -command "pb-incr"]

set plb [button $m.pl -text "Print landscape" -command "plb-incr"]

Create vertical scroll bar
scrollbar .vs —-command "vScrollProc"

Create horizontal scroll bar

The .h and .h.corner frames are only so that it meshes
nicely with the vertical scrollbar.
frame .h

scrollbar .h.s -ori hori -command "$c¢ xview"
frame .h.cormer -width [lindex [.h.s config -width] 4]

pack .h.s -side right -£ill x -expand 1
pack .h.corner -side left

Fack scrollbars
pack .h -side bottom -fill x
pack .vs -side left -fill y

Pack text/canvas

pack $qb $pb $plb $sb -fill x -side right
pack $m -£ill both

pack $f $c -fill both -expand 1

}

#
setup
incomplete_sends
print_out

#

if $X {

Set the viewable area. Must change this with the configuration of the

canvas changes (i.e., it is resized)
$c config -width [winfo reqw $c] -height [winfo reqh $c]

Sets the size of the horizontal scrolling region to include the width
of the text widget. Must reissue this when you change the width or

height of the text widget.

121

94 $c config -scrollregion [$c bbox alll
95 }

122

B.3

Library Program

file name: /home/ted/bin/tsd-lib.tcl

O W W N U W N -

W AR NN NND NN NDNDNE & 1 e
O WO ~NOUN B WNHROOOODN®DOHWN L

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

proc setup {} {

global numbLines numbSends numbRecs
global proc_col col_proc
global procs

global queues

global time

global X

global LANGUAGE

global is_test_module
global QUEUE_CHOOSE
global X_COL_SPACING

set numblLines 0

set numbSends O

set numbRecs O

set numbCompletes 0

set is_test_module O

set QUEUE_CHOOSE -1

set layout [pwdl/layout.tsd
set X_COL_SPACING 4

set X_COL_SPACING 3

if [catch {open $layout r} layoutid] {

puts stderr "file [file tail $layout] does not exit:

creating [file tail $layout]"
set layoutid [open $layout w]
} else {
it {[file size $layout] > 0} {
while {[gets $layoutid line] >= 0} {
set loop O
set numbElements [llength $linel
puts $numbElements
while {$loop < $numbElements} {
set col_proc($loop) [lindex $line $loop]
if ![info exists proc_col($col_proc($loop))] {
set proc_col($col_proc($loop)) $loop
} else {
incr loop
set QUEUE_CHOOSE [lindex $line $loop]
set is_test_module 1
}
incr loop
}; #while
}; #while
} else {

123

\

46
47
48
49
50
51
62
63
54
S5
66
57
68
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

close $layoutid

set layoutid [open $layout w]
}; #if
}; #if

while {[gets stdin in_line] >= 0} {
if {[string compare $LANGUAGE g] ==0} {
set_arr_gen $in_line
} elseif { [string compare $LANGUAGE p1] ==0} {
set_arr_pre_2 $in_line
} elseif { [string compare $LANGUAGE p2] ==0} {
set_arr $in_line
} else { puts "What language am I reading?"; exit }
#

if {[string compare $arr(action) Send] == 0} {
lappend queues($arr(queue)) \
[list $arr(action) \
$arr(message) \
$arr(proc) \
$arr(queue) \
$arr(line) \
$numbLines]
incr numbLines
incr numbSends

if {[string compare $arr(action) Recv] == 0} {
set from_arr(action) [lindex [split \

[lindex $queues($arr(queue)) 01] 0]
set from_arr(message) [lindex [split \

[lindex $queues($arr(queue)) 0]] 1]
set from_arr(proc) [lindex [split \

[lindex $queues($arr(queue)) 0]] 2]
set from_arr(queue) [lindex [split \

[lindex $queues($arr(queue)) 0]] 3]
set from_arr(line) [lindex [split \

[lindex $queues($arr(queue)) 0]] 4]
set from_numbLines [lindex [split \

[lindex $queues($arr(queue)) 0]] 6]
set queues($arr(queue)) [lreplace $queunes($arr(queue)) 0 0]

it {$x} { x_draw_arrows } else {
set time($from_numbLines) \
[list \
$from_arr(proc) \
$from_arr(message) \

124

94

95

96

97

98

29
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
1285
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

$from_arr(queue) \
LN
$numbCompletes
]

set time($numbLines) \
[1ist \
$arr(proc) \
$arr(message) \
$arr(queue) \
?\
$numbCompletes
]

}; #if

incr numbLines
incr numbRecs
incr numbCompletes
}
}; #uwhile
if {[file size $layout] == 0} {
set index C
set numbCol_proc [array size col_proc]
while {$index < $numbCol_proc} {
puts -nonewline $layoutid $col_proc($index)
puts -nonewline $layoutid " "
incr index
}; #while
puts $layoutid " "
}
close $layoutid
}
#
proc set_arr {in_line} {
upvar arr arr layout layout proc_col proc_col col_proc col_proc
global procs
set arr(state) [lindex $in_line 0]
set arr([lindex $in_line 1]1) [lindex $in_line 2]; #proc
set arr([lindex $in_line 4]) [lindex $in_line §]; #line
set arr([lindex $in_line 10]) [lindex $in_line 11]; #queue
set arr(queue_name) [lindex $in_line 12]
set arr(file) [lindex $in_line 6]
set arr(action) [lindex $in_line 7]
set arr(message) [lindex $in_line 8]

set loop O
if {[string compare $arr(action) Send] == 0 || \
[string compare $arr(action) Recv] == 0} {

if ![info exists procs($arr(proc))] {

125

142
143
144
145
146
147
148
149
150
151
152
153
154
185
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

set procs($arr(proc)) [lindex $in_line 3]
set index [expr [array size procs] - 1]
if {[file size $layout] == 0} {
set col_proc($index) [lindex $in_line 2]
if ![info exists proc_col($col_proc($index))] {
set proc_col($col_proc($index)) $index

}

}
#
proc¢ x_draw_arrows {} {
global QUEUE_CHOOSE LOSS_LINE c X_COL_SPACING
upvar proc_col proc_col arr arr from_arr from_arr
upvar from_numbLines from_numbLines numbLines numbLines
set numbProcs [array size proc_col]
set Y_OFFSET 1

set x0 $proc_col($from_arr(proc))

set x0 [expr $x0 * $X_COL_SPACING]

set yO $from_numbLines

incr y0 $Y_OFFSET

if { ([string compare $arr(queue) $QUEUE_CHOOSE] == 0)} {
set x1 [expr $proc_col($arr(proc))+$numbProcs]
} else {
set x1 $proc_col($arr(proc))
}
set x1 [expr $x1 * $X_COL_SPACING]
set y1 $numbLines
incr y1 $Y_OFFSET
if {$x0<$x1} {
set xt [expr $x0 + ($x1 - $x0)/2.0]
} else {
set xt [expr $x1 + ($x0 - $x1)/2.0]
}
set yt [expr ($y0 + ($y1 - $y0)/2.0)]
puts $xt
puts $yt
set xt $x0
set yt $y0
set color for lines
#set depth [exec xwininfo -root | grep Depth | awk ’'{print $NF}’]
set depth [lindex [exec xwininfo ~root | grep Depth] 1]
#puts $depth
#puts [lindex [split $from_arr(message) ","] 0]
if {$depth > 1} {
if {[llength [split $from_arr(message) ","] 1 <= 1} {

126

190 set colour grey
191 } else {

192 set colour [lindex [split $from_arr(message) ","] 0]
193 if {[string compare $colour white] == 0} {

194 set colour yellow

195 } elseif { [string compare $colour red] != 0 &&\
196 [string compare $colour blue] !=0 } {
197 set colour grey

198 }

199 X

200 $c create line "$x0 c" "$y0 c" "$xi c" "$yi c" -arrow last \
201 -£ill $colour

202 #puts $colour

203 $c create text "$xt c" "$yt c" \

204 ~font —*-*-Bold-R-Normal--#-120-* \

205 -text $from_arr(message)

206 } else {

207 set colour black

208 $c create line "$x0 c" "$y0 c”" "$x1 c" "$y1 c" -arrow last \
209 -stipple grayS50 \

210 -£ill $colour

211 #puts $colour

212 $c create text "$xt c" "$yt c" \

213 -font -—*-%-Bold-R-Normal--#*-120-% \
214 -text $from_arr(message)
215 }

216 ### puts $arr(line)

217 if {[string trimright $arr(line) ,] == $LOSS_LINE} {
218 $c create bitmap "$x1 c" "$yi c" -bitmap error

219 }

220 # update

221 }
222
223
224
225 #
226 proc incomplete_sends {} {

227

228 global numbRecs numbSends time queues
229 global X

230

231 # puts $numbRecs

232 # puts $numbSends

233 if {$numbSends > $numbRecs} {

234 puts [expr $numbSends - $numbRecs]
235 puts [array names queues]

236 foreach arr_queue [array names queues] {

237 while {[llength $queues($arr_queue)] > 0} {

127

238
239
240
241
242
243
244
245
246
247
248
249
280
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

set from_arr(action) [lindex [split \
[lindex $queues($arr_queune) 0]] 0]
set from_arr(message) [lindex [split \
[lindex $queues($arr_queue) 0]] 1]
set from_arr(proc) [lindex [split \
[lindex $queues($arr_queune) 01] 2]
set from_arr(queue) [lindex [split \
[lindex $queues($arr_queue) 0]] 3]
set from_arr(line) [lindex [split \
[lindex $queues($arr_queue) 0]1] 4]
set from_numbLines [lindex [split \
[lindex $queunes($arr_queue) 0]] 5]
set queues($arr_queue) [lreplace $queues($arr_queue) 0 0]

if {$X} { x_incomplete_sends } else {
set time($from_numbLines) [list $from_arr(proc) \

$from_arr(message) $from_arr(queue) ! \
$from_numbLines dead]

}; #irf
}; #while
}; #foreach
}; #if
}
#

proc x_incomplete_sends {} {
global ¢ proc_col col_proc X_COL_SPACING
upvar from_arr from_arr from_numbLines from_numbLines
set x0 $proc_col($from_arr(proc))
set x0 [expr $x0 * $X_COL_SPACING]
set yO $from_numbLines
$c create bitmap "$x0 c" "$y0 c" -bitmap error
$c create text "$x0 c" “$y0 c" \
-font -*-Helvetica-Bold-R-Normal--*-140~#% \
-text $from_arr(message)
}
#

proc print_out {} {
global procs numbLines time proc_col col_proc QUEUE_CHOOSE is_test_module
global X
set numbProcs [array size procs]
set loop O
set numbCols [expr $numbProcs + $is_test_module]
while {$loop < $numbCols} {

128

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

i

#

#

#*

}
}

if {$x} {x_print_out $loop} else {
if [info exists procs($col_proc($loop))] {
puts -nonewline stdout “$procs($col_proc($loop))\t\t"
}
}
incr loop
}; #while

£ {18x} {
puts stdout " '"; #newline
set loop O
while {$loop < $numbLines} {
puts stdout "y:8loop = $time($loop)"
set yloop O
set ytime($loop) ""
while {$yloop < $numbCols} {
append ytime($loop) "I *
incr yloop
}
append ytime($loop) [list | [| | |]
puts stdout $ytime($loop)

set col $proc_col([lindex $time($loop) 0])
set msg [lindex $time($loop) 1]
set que [lindex $time($loop) 2]
set act [lindex $time($loop) 3]
set last_v [expr [llength $time($loop)] - 1]
set val [lindex $time($loop) $last_v]
if {[string compare $val "dead"] == 0} { set asc_val $val
} else {
set asc_val [format "Yc" [expr ([expr $val ¥ 26])+65]]
};#lexpr ([expr $val + 65])%([expr 65+261)]1]

set msg ""
set msg "“$msg"
if {([string compare $act "?"] == 0) &&

([string compare $que $QUEUE_CHOOSE] == 0)} {
set col [expr $col + $numbProcs]

}
set ytime($loop) [lreplace $ytime($loop) $col $col "$asc_val $msg"]

puts stdout [lrange $ytime($loop) 0 [llength $ytime($loop)]]
puts stdout [join $ytime($loop) \t\t]

puts stdout "y:$loop = $time($loop)"

incr loop

}; #while

; #if

129

334
335
336 #
337 proc x_print_out {loop} {

338 global procs col_proc ¢ numbLines X_COL_SPACING
339 ## draw the vertical lines and the column headers

340 set x0 [expr $loop * $X_COL_SPACING]

341 set y0 0.75; # 0.75

342 set x1 $x0

343 set y1 $numbLines

344 $c create text "$x0 c" "$y0 c" \

345 -text "$procs($col_proc($loop))™ \

346 —anchor n \

347 -font -*-Helvetica-Bold-R-Normal--%-120-#* \
348 -tags text_line

349 set y0 1

350

351 $c create line "$x0 c" "$y0 c" "$x1 c" "$yi c¢" -width 2
352 }

353

364 #

3556 proc set_arr_pre_2 {in_line} {
356 upvar arr arr layout layout proc_col proc_col col_proc col_proc
357 global procs

358

369 set arr(state) nil

360 set arr([lindex $in_line 0]) [lindex $in_line 1]; #proc
361 set arr([lindex $in_line 3]) [lindex $in_line 4]; #line
362 set arr([lindex $in_line 8]) [lindex $in_line 9]; #queue
363 set arr(queue_name) [lindex $in_line 10]

364 set arr(file) nil

365 set arr(action) [lindex $in_line 5]

366 set arr(message) [lindex $in_line 6]

367

368 # puts stdout "$arr(action) $arr(message) $arr(proc) \
369 # $arr(queune) $arr(line)"

370

371 set loop O

372 if {[string compare $arr(action) Send] == 0 || \

373 [string compare $arr(action) Recv] == 0} {

374 if ![info exists procs($arr(proc))] {

375 set procs($arr(proc)) ([lindex $in_line 2]

376 set index [expr [array size procs] - 1]

377 if {[file size $layout] == 0} {

378 set col_proc($index) [lindex $in_line 1]
379 if ![info exists proc_col($col_proc($index))] {
380 set proc_col($col_proc($index)) $index
381 }

130

382 }
383 }
384 }

385
386 }
387
388 #
389 proc set_arr_gen {in_line} {

390 upvar arr arr layout layout proc_col proc_col col_proc col_proc
391 global procs

392

393 set arr(state) nil

394 set arr(proc) [lindex $in_line 0]

395 set arr(line) [lindex $in_line 4]

396 set arr(queune) [lindex $in_line 1]

397 set arr(queue_name) [lindex $in_line 1]

398 . set arr(file) nil

399 set arr(action) [lindex $in_line 2]

400 if {[string compare $arr(action) "!"] == 0 } {

401 set arr(action) Send

402 }

403 if {[string compare $arr(action) “?"] == 0 } {

404 set arr(action) Recv

405 }

406 set arr(message) [lindex $in_line 3]

407

408 # puts stdout "$arr(action) $arr(message) $arr(proc) \
409 # $arr(queue) $arr(line)"

410

411 set loop O

412 if {[string compare $arr(action) Send] == 0 || \

413 (string compare $arr(action) Recv] == 0} {

414 if ![info exists procs($arr(proc))] {

415 set procs($arr(proc)) [lindex $in_line 0]
416 set index [expr [array size procs] - 1]
417 if {[file size $layout] == 0} {

418 set col_proc($index) [lindex $in_line 0]
419 if ![info exists proc_col($col_proc($index))] {
420 set proc_col($col_proc($index)) $index
421 }

422 >

423 }

424 }

425

426 }

427 #

428 proc scale_win {} {

429 global c

131

430
431
432
433
434
43S
436
437
438
439
440
441
442

set scale_x .9
set scale_y .8
$c scale all 0 O $scale_x $scale_y

$c config -width [expr [winfo reqw $cl*$scale_x] \

#*

}

#

-height [expr [winfo reqh $c]*$scale_y]
$c config -scrollregion [$c bbox all]

proc vScrollProc index {

puts
puts
puts

puts
puts
puts

puts

puts

puts

puts

global ¢

global text_yO

global numbLines

$c yview $index

set win_height [expr ([winfo reqh $c]/[winfo fpixels $c "1c"])]
set win_height [expr round($win_height)]

$numblLines
$win_height
set last_window [expr ($numbLines - $win_height)]
$last_window
“*index $index"
“text_yO0 $text_yO"
if {$index < 0 && $text_y0 <= 0} {
set text_y0 0
} elseif {$index < O && $text_y0 > 0} {
set text_y0 -$text_y0
} elseif { ($index > $last_window+l && $index > $text_y0)} {
set text_y0 [expr $last_window - $text_y0]
} elseit { ($index > $last_window && $index > $text_y0)} {
set text_y0 O
} elseif { ($index > $last_window && $index <= $text_y0)} {
set text_y0 O
} else { set text_y0 [expr $index - ($text_y0)] }
"move text_yo0 $text_yO"
$c move text_line 0 ${text_yOl}c
if {$index >= 0 && ($index <= $last_window)} {
index
set text_y0 $index
} elseif { $index < 0} {
set text_y0 O
} else {
last_window
set text_y0 [expr $last_window + 0]
}
"new text_y0 $text_yo"

132

478 # need proc to force tag text_line to top of screen

133

B.4 Header Program

file name: /home/ted/bin/tsd.h

1 # not used - use tsd.h in current directory!
2 set LOSS_LINE 160

134

Appendix C
FSM Source Code

The following Tcl/Tk programs constitute the FSM and XFSM programs used to produce
FSM diagrams.

135

C.1 Small Support Programs

file name: /home/ted/bin/fsm-1s
1 pan -d | grep proctype | awk ’'{print $2}’
file name: /home/ted/bin/global-fsm
1 pan -c0 |dag.awkldag.tcl
file name: /home/ted/bin/pre-xdag
1 #!/home/grad/tede/bin/dodrawsh
2 dodrawing [lindex $argv 0]
file name: /home/ted/bin/line-only
1 sed ’1,8s/\.[0-9]*\ /\ /g’
file name: /home/ted/bin/empty-node
1 awk ’$1 t= "du" {$1 = "{}"; print} $1 == "du" {print}’
2 #awk ’{ printf ("{} "); for (i=2;i<=NF;i++) printf ("%s ",$i);
3 #printf ("\n");}’

136

file name: /home/ted/bin/dag.tcl

1 #!/local/paths/tclsh

2 proc set_arr {in_line} {

3 global arr

4 set arr(type) [lindex $in_line 0]

5 set arr({lindex $in_line 1]) [lindex $in_line 2]; #from

6 set arr([lindex $in_line 3]) \

7 [string trimright [lindex $in_line 4] \; 1; #to & remove R
8
9

}
#
10 # print elements of an array
11 proc show_array arrayName {
12 upvar $arrayName myArray
13
14 foreach element [array names myArray] {
15 set myArray($element) [join $myArray($element) \,]
16 puts stdout $element:$myArray($element)\;
17 }
18 }
19
20 #
21 # set arval(0) zero
22 # set arval(1l) one
23 # show_array arval
2¢ #
25 while {[gets stdin in_line] >= 0} {
26 if {[string match edge* $in_line]l > 0} {
27 set_arr $in_line
28
29 if {[string compare $arr(type) edge] == 0} {
30 if ![info exists tr($arr(from))] {
31 set tr($arr(from)) $arr(to)
32 } else {
33 lappend tr($arr(from)) $arr(to)
34 }
35 }
36 }
37 }
38 show_array tr
39 #

137

file name: /home/ted/bin/exp.awk

1 #!/bin/sh

2 sed ’1,$s/
//g’ ¢+ |

3 awk '’

4 BEGIN { print "#!/local/paths/expect -£";

5 print "spawn spin -i test-fc.pr" }

6 /Select\ \[.*\]1:*/ {

7 printf ("expect {");

8 for (i=1;i<NF;i++) printf ("%s ",$i);

9 printf ("}\n");

10 printf ("exp_send \"")

11 printf ("%s\\n\"\n",$i)

12 }

13 END {print "interact"}

14 °* > $+.inter

15 chmod +x $*.inter

138

C.2 Main Program (layout calculation)

file name: /home/ted/bin/fsm-make

1 #!/local/paths/tclsh

2 # invoke program as ‘fsm-make’ for full state graph coordinates and as
3 # ‘fsm-atomic’ for compressed state machine

4 # (redraw graph so that all atomic transitions are telescoped
5 # into one transition)

6 set dist(0) 0

7 set line_no{(0) O

8 set actions(0) O

9 set children(0) {3

10 set MaxDist 0

11

12 proc findfsm {pfind} {

13 global children line_no actions MaxDist dist

14 global TLABEL FORMAT argvO

15

16 if {[string compare [file tail $argv0] fsm-atomic] == 0} {
17 set AT O

18 set lastAT 0

19 set lastI O
20 set atoms(0) {}
21 set achildren(0) {}
22 set aacnt(0) 0
23 set oldsrc O
2¢ }
25
26 set src 0; set trn O; set trg O
27 set Want 0
28
29 catch { foreach el [array names state] { unset state($el) } }
30 catch { foreach el [array names children] { unset children($el) } }
31 catch { foreach el [array names dist] { unset dist($el) } }
32
33 if {[file exists panl]} {
34 set £fd [open "|./pan -d" w+]
36 } else {
36 puts "$argv0 aborted --- compile analyser with SPIN first!"
37 return
38 }

39 set MaxDist 0
40 while {[gets $f£d line] > -1} {

41 set key [lindex $line 0]
42 if {[string compare $key proctypel == 0} {

43 if { $¥Want = 1 } {
44 break
45 }

139

46
47
48
49
50
51
52
83
54
55
56
87
68
89
60
61
62
63
64
65
66
67
€8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93

HHHEREERESR

#

#

it {[string compare [lindex $line 1] $pfind] == 0} {

set Want 1

set dist($src) O

set line_no($src) "o"

set achildren($src) {3

set aactions($src) "-nada-"

puts -nonewline $key

puts [lindex $line 1]

puts "dist($src): $dist($src)"”

puts "line_no($src): $line_no($src)”

puts “achildren($src): $achildren($src)"
puts "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
puts $Want

puts [lindex $line 1]

}

} elseif { $Want == 1 \

&2 [string compare $key state] == 0} {
scan $line " state Y%d —-(tr /d)-> state %d" \
src trn trg
puts "$src $trg"
set k [string first "“line" $line]
it {$k>013} {

set m [string first "=>" $line]
incr k S
incr m -2
set 1bl [string range $line $k $m]
puts $1bl
incr m 4
set action [string range $line $m end]
}
set line_no($src) $1bl
puts "line_no($src): $line_no($src)"
iz { [info exists dist($srec)] == 0 } {
set dist($src) O
set achildren($src) {}
}
it { [info exists dist($trg)] == 0 } {
set dist($trg) [expr $dist($src) + 1]
set achildren($trg) {3
if {$dist($trg) > $MaxDist } {
set MaxDist $dist($trg)
}
} else {
if { [expr $dist($src) + 1] < $dist($trg) } {
— set dist($trg) [expr $dist($src) + 1]
if {$dist($trg) > $MaxDist } {
set MaxDist $dist($trg)

140

94

95

96

7

98

29
100
101
102
103
104
108
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

}
}
}
lappend achildren($src) $trg
lappend aactions($src) $action
lappend aparents($trg) $src
puts "XXXX XXX XXX XXX XXX XX XXX XXX XXX XXX XX XXX XX XXX XX XXX XXX XXX XXX XXX XXXXX"
puts "src: $src"
puts 'children: $achildren($src)"
puts "actions: $aactions($src)™
puts "trg’s parents: $aparents($trg)"
};# "state" (elseif)
}:;# while

HHERSR

#puts " XXXXXXKXX XXX XXX XXX XXX XXX XX XXX X XK XXX XXX XX XXX XX XX XXX XXX XK XX XXXXX""
if {[string compare [file tail $argv0] fsm-atomic] == 0} {
set Want O
set £d [open "[./pan -d" w+]
while {[gets $fd line] > -1} {
set key [lindex $line 0]
if {[string compare $key proctype] == 0} {
if { $Want == 1 } {
break
}
if {[string compare [lindex $line 1] $pfind] == 0} {
set Want 1
set bumpy 1

} elseif { $Want == 1 \

&& [string compare $key state] == 0} {

scan $line " state %d -(tr %d)-> state %d" \
src trn trg

set j [string first "\]" $line]
set jO [expr $j+3]
set j1 [expr $j+3]
if \
{[string compare "A" \

[string range $line $jO $j1]

] =01} {set AT 1 } else { set AT O
}
lappend atoms($src) $AT
puts [string range $line $j0 $j1]
puts ($src)

puts $atoms($src)
puts ATOMIC

BB

141

142 # find atomicity of parent

143 if {[info exists achildren] !'= 0} {

144 foreach srcpar [array names achildren] {
145 # puts $srcpar

146 set ind [lsearch -exact $achildren($srcpar) $src]
147 # puts $ind

148 # if {$ind > -1} { puts "pchildren: $achildren($srcpar)"}
149 if {$ind > -1 &2& [info exists atoms($srcpar)] != 0} {
150 set lastI [lindex $atoms($srcpar) $ind];
151 # puts $srcpar;

182 set par $srcpar;

163 # puts found;

164 break

155 }

156 }; #foreach

157 }

158 if 1$AT {

169 if {$lastI == 0 || $ind < 0} {

160 ### puts NN

161 # puts '"src>dist($src): $dist($src)"

162 # puts ''MaxDist: $MaxDist"

163 set children($src) $achildren($src)
164 # puts "children($src): $children($src)”
165 set actions($src) $aactions($src)

166 # puts "actions($src): $actions($src)”
167 # puts "trg>dist($trg): $dist($trg)"

168 # puts " "

169 } else {

170 ### puts AN

171 set atrg $trg

172 set children($src) $achildren($src)
173 # puts “children($src): $children($src)"
174 set actions($src) $aactions($src)

175 }

176 #1$ATOMIC

177 set bumpy 1

178 } else {

179 if {$lastI == 0 || $ind < 0} {

180 ##» puts NA

181 set children($src) $achildren($src)
182 set actions($src) S$aactions($src)

183 set asrc $src

184 set atrg $trg

185 set line_no($asrc) $line_no($src)

186 set children($asrc) $achildren($src)
187 set actions($asrc) $aactions($src)

188 set aacnt($trg) 0

189 set bumpy 1

142

190 } else {

191 ### puts AA

192 if {[1length $achildren($src)] > 1 || \

193 [1length $aparents($trg)] > 1} {

194 set children($src) S$achildren($src)

195 set actions($src) $aactions($src)

196 set bumpy 1

197 } else {

198 if $bumpy {

199 #u# puts bumpy

200 if {[llength $aparents($src)] == 1} {

201 if {[llength $achildren($aparents($src))] > 1} {
202 set indind [lsearch -exact $achildren($aparents($src)) $src]
203 set asrc $aparents($src)

204 } else {

205 set indind [1lsearch -exact $src $src]
206 set asrc $src

207 }

208 } else {

208 set indind [lsearch -exact $src $srcl

210 set asrc $src

211 }

212 # bumpy

213 }

214 if {[info exists children($asrc)] == 0} {
215 set children($asrc) $trg

216 set actions($asrc) $aactions($trg)

217 } else {

218 #ted if [info exists indind] puts $indind

219 set children($asrc) \

220 [lreplace $children($asrc) $indind $indind $trg]
221 set actions($asrc) \

222 [lreplace $actions($asrc) $indind $indind $aactions($src)]
223 }

224 set bumpy O

225 ### puts -nonewline "children of ancestor: "
226 ### puts ($asrc)

227 ### puts $children($asrc)

228 #u# puts $actions($asrc)

229 #u# puts " "

230 }

231 #$ATOMIC

232 set oldsrc $src

233 }

234 };# NN AN NA AA

235 #lappend parents($trg) $src)

236 ### puts "$src -> $trg"
237 #uan if {finfo exists children($src)] !'= 0} {puts $children($src)}

143

238 ### if {[info exists line_no($sxrc)] !'= 0} {puts $line_no($src)}
239 ### if {[info exists actions($src)] != 0} {puts $actions($src)}
240 #an puts " *

241 }

242 } ; #while

243 } else {

244 foreach i [array names achildren] {

245 set children($i) $achildren($i)

246 set actions($i) $aactions($i)

247 }

248 set Want 1

249 }

250

251

252

253 if {[string compare $FORMAT prel] == 0} {

254 foreach el [array names children] {

255 if {[1length $children($el)] != 0} {

256 if [info exists line_no($el)] { puts -nonewline $line_no($el)}
257 puts -nonewline "."

258 puts -nonewline $el

259

260 puts -nonewline ":"

261 for {set i 0} {$i < [llength $children($el)]} {incr i} {
262 puts -nonewline "$line_no([lindex $children($el) $i])"
263 puts -nonewline "."

264 puts -nonewline "[lindex $children($el) $il"

265 if {[string compare $TLABEL tl1l] == 0} {

266 puts -nonewline " {[lindex $actions($el) $il}"

267 }

268 if {$i < [expr [llength $children($el)] -11} {

269 puts -nonewline ","

270 }

271 }

272 puts ";"

273 };# foreach

274 }

275 } elseif { [string compare $FORMAT x] == 0} {
276 if { $Want == 1 } {

277 dograph $pfind

278 } else {

279 puts "sorry, $pfind not found..."
280 }

281 }

282 catch "close $fd"

283 }

284 #

285 proc dograph {n} {

144

286 global dist children line_no actions MaxDist

287 global TLABEL FORMAT

288 set count -1

289

290

291 foreach el [array names dist] <{ # for every state
292 for {set i 0} { [lindex $children($el) $i] != "" } {incr i} {
293 set trg [lindex $children($el) $i]

294 if { $dist($trg) < $dist($el) } {

295 set NotMiddle($el) 1

296 #puts "NotMiddle($el)"

297 12 }

298

299 set y -85

300 set x_start 400
301 set x_offset 100
302 set y_offset 100

303 while {$count < $MaxDist} {

304 incr count

305 incr y $y_offset

306 set x $x_start

307 foreach el [array names dist] {

308 if {$dist($el) == $count} {

309 it { [info exists NotMiddle($el)] !'= 0 } {
310 if { $x == $x_start } {

311 incr x $x_offset

312 }

313 }

314 set state($el) [list $line_no($el) $el $x $y]
315 #puts $state($el)

316 if { $x > $x_start } {

317 set x [expr $x - $x_start]
318 set x [expr $x_start -~ $x]
319 } else {

320 set x [expr $x_start - $x]
321 incr x $x_offset

322 set x [expr $x_start + $x]
323 }

324 }

325 }

326 }

327 foreach el [array names dist] {

328 puts -nonewline "[lindex $state($el) 0]."

329 puts -nonewline "[lindex $state($el) 1] "

330 puts -nonewline "[lrange $state($el) 2 end]"

331 set tmp {}

332 for {set i 0} { [lindex $children($el) $i] !'= "" }
333 {incr i} {

145

334 set trg [lindex $children($el) $i]

335 set 1bl [lindex $actions($el) $il
336 set fromx [lindex $state($el) 2]

337 set fromy [lindex $state($el) 3]

338 set tox [lindex $state($trg) 2]

339 set toy [lindex $state($trg) 3]

340 #puts -nonewline "< [lindex $actions($el) $i] >"

341 if {[string compare $TLABEL tl1] == 0} {
342 set tlbl [lindex $actions($el) $i]
343 }

344 incr fromx 15

345 incr tox 15

348 if {$fromy < $toy} {

347 incr fromy 30

348 } else {

349 incr toy 30

350 }

351 lappend tmp "“$fromx $fromy $tox $toy"
352 if {[string compare $TLABEL tl] == 0} {
363 lappend tmp "{$tlbl}"

354 }

355 }

356 puts " $i [join $tmpl"

357 #puts " "

358 }

359 }

360 #

361

362 if {$argc==3} {

363 set TLABEL [lindex $argv 2]
364 set FORMAT [lindex $argv 1]
365 } elseif {$arge==2} {

366 set TLABEL tu

367 set FORMAT [lindex $argv 1]
368 } else {

369 set TLABEL tu

370 set FORMAT x

371 }

372 #puts $TLABEL
373 #puts $FORMAT
374 findfsm [lindex $argv 0]

146

C.3 Main Program (draw graphic (X windows))

file name: /home/ted/bin/xdag

#!/usr/bin/wish -f

###!/local/paths/wish -f

Tk 4.1

source "~/bin/dag-lib.tcl"

bogus test, wish is executing this script ..

if {info exists env(DISPLAY)] { set X 1 } else { set X 0 }
if $x {

set auto_path "/home/grad/tede/bin $auto_path"

O WO ~NOOMPWN M

-

wm title . "dag 2 ps"

wm iconname . "dag 2 ps"

wm minsize . 4 2

wm grid $c ?baseWidth baseHeight widthInc heightInc?

el e el
DT> WN -

set n 0

-
0 ~

set £ [frame .f -borderw 2 -relief raised]
set ¢ [canvas $f.c \

-height "20 c" \

-width "18 ¢"

]

NN NNN -
W= OO0

proc pb-incr {} {
global c
global n
$c postscript -file ./dag-p-[pid]l-$n.ps
incr n

NN NN
© 0~NOO

}
proc plb-incr {} {
global c
global n
$c postscript -rotate true -file ./dag-l1-[pid]-$n.ps
incr n

W W wwww
nd W ero

}

w W
~N O

set m [frame .m -relief raised]

set gb [button $m.q -text "Quit" -command “destroy ."]

set sb [button $m.s -text "Scale" -command “scale_win"]

set pb [button $m.p -text "Print" -command "pb-incr"]

set plb [button $m.pl -text "Print landscape" -command "plb-incr"]

BB S e 0w
WHkOOO®

Create vertical scroll bar
scrollbar .vs -command "$c yview"

o>
n

147

46
47
48
49
50
51
52
53
54
65
56
57
68
59
60
61
62
63
64
65
66
67
€8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Create horizontal scroll bar

The .h and .h.corner frames are only so that it meshes
nicely with the vertical scrollbar.

frame .h

scrollbar .h.s -ori hori -command "$c xview"

frame .h.corner -width [lindex [.h.s config -width] 4]

pack .h.s -side right -f£ill x -expand 1
pack .h.corner -side left

Pack scrollbars
pack .h -side bottom -fill x
pack .vs -side left -fill y

Pack text/canvas

pack $qb $pb $plb $sb -£ill x -side right
pack $m -£ill both

pack $f $c -£ill both -expand 1

}

#

setup
#incomplete_sends
#print_out

#

if $X {

Set the viewable area. Must change this with the configuration of the
canvas changes (i.e., it is resized)

$c config -width [winfo reqw $c] -height [winfo reqh $cl

Sets the size of the horizontal scrolling region to include the width
of the text widget. Must reissue this when you change the width or

height of the text widget.

$c config -scrollregion [$c bbox all]

}

148

C4

Library Program

file name: /home/ted/bin/dag-lib.tcl

W ~N®O O WN =

W W W WWWwWWwWWwWWH NNNDNNDNDRDNIDNDKFE P B e
gzasﬁgmmﬁmm»wMuommﬂmmpww»ommﬂmmﬁwwwom

proc setup {} {
while {[gets stdin in_line] >= 0} {

set_arr $in_line
}; #uhile
}
#
proc set_arr {in_line} {
global c
upvar arr arr
set arr(node) [lindex $in_line 0]
set arr(nodex) [expr [lindex $in_line 1]]
set arr(nodey) [expr [lindex $in_line 2]]
set arr(num_edges) [lindex $in_line 3]
if {[string compare $arr(node) du] !=0} {
$c create oval "$arr(modex)” "$arr(nodey)" \
“[expr $arr(nodex)+30]" "[expr $arr(nodey)+30]1" \
-£il11 -
$c create text "[expr $arr(nodex)+15]" "[expr $arr(nodey)+15]" \
~text $arr(node)

}

set loop O

set base 4

while {$loop< $arr(num_edges)} {

set x0 \
[expr [lindex $in_line [expr 4+($loop*$base) + 0]]]
set yo \
[expr [lindex $in_line [expr 4+($loop*$base) + 1]]]
set x1 \
[expr [lindex $in_line [expr 4+($loop*$base) + 2]]]
set y1 \
[expr [lindex $in_line [expr 4+($loop*$base) + 3]]]
$c create line "$x0" "$y0" "$xi1" "$y1" -arrow last \
-£ill black

if {[lindex $in_line [expr 4+($loop*$base) + 4]] != ""} {
if {[regexp {["0-9+]+} [lindex $in_line [expr 4+($loop*$base) + 4] 1]} {
set 1t [lindex $in_line [expr 4+($loop*$base) + 4]]
if {$x0<$x1} {
set xt [expr $x0 + ($x1 - $x0)/2.0]
} else {
set xt [expr $x1 + ($x0 - $x1)/2.0]
}
set yt [expr ($y0 + ($y1 - $y0)/2.0)]
$c create text "$xt" "$yt" \

149

46 -font -*-Helvetica-Bold-R-Normal--*-100-% \

47 -text $1t

48 set base &

49 #puts $1t

50 } else {

51 set base 4

52 }

83 }

54 incr loop

55 # update

56 X

57 }

58 #

59 proc scale_win {} {

60 global c

61 set scale_x .9

62 set scale_y .9

63 $c scale all 0 0 $scale_x $scale_y

64 # $c config -width [expr [winfo reqw $cl*$scale_x] \
65 # -height [expr [winfo regh $c]*$scale_y]
€6 $c config -scrollregion [$c bbox all)
67 }

€8

69 #

150

e v -

1.6

Reserved

in Street
- er, NY 14609 USA
ne: 716/482-0300

‘EEE

716/288-5989

1.4

150mm

I

125

© 1993, Applied Image, Inc.. All Rights

1y

