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Abstract

Electronic Correlations in Quantum Wires Subjected to Strong Magnetic Fields:

Dependence on the Filling Factor

Zhongxi Zhang. Ph. D.

Concordia University. 2002

Electron-electron interactions and their effects on Landau levels in quantum
wires (QWSs). subjected to strong perpendicular and parallel magnetic fields. are
discussed. For QW' in strong perpendicular magnetic fields. with integral filling
factor (¥ = 1.2. and 3). the screened Coulomb interactions are assessed by solving
the integral equations for the screened potential. both analvtically and numerically.
Correlation energy strongly smoothens the energy dispersion in the vicinity of the
Fermi level. The exchange-correlation contribution vg°(kF) to the Fermi-edge group
velocity v4(kF) is proved to be nonsingular. The energy dispersion. obtained in the
local density approximation (LDA). is in line with the observed strong suppression
of the spin splitting (v = 1.3) and helps in explaining the observed destruction or
absence of some quantum Hall states. For QWS in strong parallel magnetic fields.
with only the lowest LL occupied, the many-body corrections have a stronger effect

on the spin-splitting than in the case of perpendicular magnetic fields.
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Chapter 1

Introduction

1.1 Electronic correlations and correlation ener-
gies

In recent decades considerable efforts have been devored to electronic correla-
tions and gorrelation energies in quantum wires (QW’s) in strong magnetic fields.
This is mainly because they are more pronounced than those in two-dimentional or
three-dimentional electron gas svstems and have potential applications in modern
technologies.

Electron correlation means certain kinds of spatial correlations between elec-
trons. These correlations can be expressed through wave functions. electron inter-
actions. or both of them. According to Landau’s description !, there are two kinds

of electron correlations: “exchange correlations” and “dynamical correlations”.



Exchange correlations. also called Pauli correlations. arise from the antisymmetry
of the wave function under permutation of identical fermions. This requirement
on the wave functions means their coordinates must be correlated and it results
in correlations in the spatial distribution of two electrons whose spins are parallel.
even if there were no interaction between them. On the other hand. dvnamical cor-
relations come from electron-electron interactions bevond the bare Coulomb force.
Such interactions cause the spatial distributions of electrons to be correlated. even
if there were no svmmetrization requirement on electrons.

Exchange energvis caused by exchange correlations. It can be obtained within
the Hartree-Fock approximation (HFA). The correlation energy is the further en-
ergy correction bevond that calculated within HFA. Now it is clear that the ex-
change and correlation corrections in an electronic systemn are closelyv related to
the screening field in such a system. In fact. the electron energy can be obtained
either by calculating exchange and correlation energies respectively or by taking
into account the overall screened electron-electron interactions. as discussed in the
next section. Hence. the screening theory becomes the central topic when we con-
sider the mutual Coulomb interaction among electrons. (Note that. in this work.
although the total screened field in the SHFA is discussed. we still decompose it
into bare Coulomb potential and that caused by the induced charges and calculate
the exchange energy and the correlation energy separately through. This can help

us understand more clearly the effects of each energy correction.)



1.2 Coulomb interaction in 3DEG systems

The Coulomb interaction is one of the essential topics when one considers free
electron gas svstems. For a 3-dimensional electron gas (3DEG) syvstem. we first
consider Hartree equation. This model shows us in a “direct”™ way how the electrons
in the svstem interact with each other. However. this model is a simplified one
because it does not take into account the antisvmmetric property of electron wave
function. This is done by the Hartree-Fock (HF) model. The exchange energy
refers to the energy difference between these two models because it is the energy
contributed from the identity of electrons. The HF approximation (HFA) still has
a problem: the exchange energy is logarithmicallyv divergent at the Fermi level of
the system. To remove this unphysical divergence. we need to take into account
the screening effects of other electrons in the svstem. In reference 11 it was shown
that the difference between HF potential and the screened Coulomb potential is the
main part of the dyvnamic correlation. Actually. an efficient approach to consider
the electron correlations in QWs is to study the screened interactions between
electrons.

With the help of the screening concepts used in classical electrodynamics.
screening theories for a 3DEG were developed. They are the Thomas-Fermi model.
Lindhard model, Hubbard model, and Singwi-Sjolander approximation. Two of

these methodes, the Thomas-Fermi and Lindhard models, are commonly used.



The Thomas-Fermi method is basically a semiclassical approximation requiring
a slowly varving screened potential. The Lindhard method is basically an exact
Hartree calculation of the charge density in the presence of the self-consistent field
of the external charges plus electron gas. except that the Hartree calculation is
simplified by the fact that the induced charge density is required to linear order in
the screened field. The Thomas-Fermi method has the advantage that it is applica-
ble even when a linear relation between the induced charge and the screened field
does not hold. Its disadvantage is that it is reliable only for very slowly varving
external potentials.

For the inhomogenous fermion system. the density functional theory (DFT)
.10} can be used. Based on this theory. significant efforts have been devoted to
the local density approximation (LDA). which is now very useful in studving low-

dimensional syvstems.



1.3 Coulomb interaction in QWs and its effects

on the subband structure

Real electruns are three-dimensional but can be made to behave as though
they are only free to move in fewer dimensions. This can be achieved by trapping
them in a narrow potential well that restricts their motion in one dimension with
discrete energy levels. If the separation between these energy levels is large enough.
the electrons will appear to be frozen in the ground state and no motion will be
possible in this dimension. The result is a two-dimensional electron gas (2DEG).
[ts practical importance lies in its use as a field effect transistor which goes under
a variety of names such as NIODFET (MOdulation Doped Field Effect Transistor
or HEMT (High Electron Mobility Transistor). The electron-electron interaction
in an exact two-dimensional electron gas at T = 0 was discussed in Refs. [12-115".
The classic. reference on the two-dimensional electron gas is by Ando. Fowler. and
Stern (1982) [64]. Its emphasis is on the silicon MOSFET rather than the [II-
\" heterojunctions. Although so much of the material is rather dated. the basic
theory remains applicable. As an example. the idea of the screened Hartree-Fock
approximation (SHFA). discussed in this reference. is still useful when we consider
the many-body effects in QW's.

Since the discovery of the quantum Hall effect by Klitzing et al at the be-



gining of the 1980's [4] — [3]. both experimentalists and theorists have paid much
attention to understanding the behavior of quasi-2D electron systems in strong
magnetic fields. People want to study the role of many-body effects in mesoscopic
svstems (where the behavior of the electrons is determined as much by the struc-
ture through which they move as by bulk properties) and see how thev alter some
of the predictions of single-particle theories.

Quantum wires are usually fabricated by a lateral confinement of a two-dimensional
electron gas. e.g.. a GaAs/AlGaAs heterostructure. A lateral confinement is real-
ized. for example. by a split-gate technique or shallow or deep mesa etching tech-
nique. Various models for the confining potential have been proposed. including an
abrupt square well. a parabolic potential. and their combinations. Theoretically.
the parabolic one has attracted much attention. This is because. within the har-
monic oscillator model. we can calculate the eigenstates and the eigenvalues of an
empty system (or when the electron-electron interaction is neglected) and further
study the r.uany-bod_\' effects in QWs.

it has been shown that the intriguing screening properties in a quasi-2DEG
play significant roles for the understanding of many results. such as the capacitance
(25,1261

¢

(19] — [22]. the specific heat [27]. the gate voltage and current 19:.[22
the activation energy [19].{22] — [24].{36]. and the spin-splitting Lande ¢* factor

[29] - [33].

Edge states refer to the electron states localized at the edge of the quasi-2D



clectron systems. see the discussion in subsection 3.2.4. Magnetotransport along
edge states formed in high-mobility quasi-2DEG has attracted significant attention
since the 1980's. The concept of such transport allews us to interpret a number of
experiments performed in the integeral 0:=#2 and fractional *3-#¥ quantum
Hall effect (QHE) regime. In addition. it is also important for us to understand a
broad range of the mesoscopic and macroscopic systems.

While most previous theoretical works have developed a noninteracting picture
of the edge states in quantum Hall effect regime. the effects of electron-electron
interactions on the edge-state properties in a channel [42].[44]-[46]. [31] and on the
subband structure of quantum wires [46]. 48] ~[50; have been the subject of intense
study in recent years. For example. in Refs. {18! [46]. [47]. [49]. the self-consistent
Hartree approach was used to calculate the subband structure of quantum wires
in strong magnetic fields. To take into account the exchange interaction. a H-F
treatment was used in Ref.[48]. Later. in Refs. [44] and [51] the self-consistent
Hartree-Fo.ck approximations were used to study the behavior of flattened edge
States.

One consensus of these approaches is that. to study the properties of electron-
electron interactions as a function of the width of the interface region. a quantum
analysis including electrostatic effects is needed. Usually this is done by combining
the Poisson equation with quantum Schroedinger equation and solving them self-

consistently. In general. the source part of the Poisson equation comes from the



solution of the Schrodinger equation. while the solution of the Poisson equation
contributes to the interaction term in the Schroedinger equation. within either
the Hartree or Hartree-Fock Approximation. To solve these coupled equations
self-consistently. different approaches have been proposed for various purposes.
Actually. most of them considered the cases of very smooth confining potentials.
except for Ref.[46] where this problem was solved numerically.

To study the effects of electronic exchange and correlation in narrow {submi-
crometer) quantum wires in strong magnetic fields. the SHFA suitable for QW5
cases was proposed in Ref. [35]. With the help of the random phase approximation
(RPA). which agrees very well with experimental measurements for high-density
svstems?7-=%.the authors of Ref. 133; first obtained an analytical solution of the
Schroedinger equation in the momentum representation. As the Hamiltonian in
this equation contains the screened Coulomb interaction. its solution is a function
of the screened potential. Then. substituting this solution into the source part of
the classical Poisson equation gave a semi-classical integral equation. Therefore.
within the RPA. the behavior of electron-electron interactions in quantum wires is
basically represented by this semi-classical integral equation. We will refer to this
scheme as the Poisson-RPA integral equation.

The remaining problem is how to solve this equation in a proper way. [t should
be noted that the Schroedinger equation solution. based on the RPA. is just a

formal solution. which does not give the explicit expression of the single-particle



energyv. To calculate the eigenvalue of the Schrodinger equation self-consistent]v.
&) g g | A

the local field correction (LFC) is required.



1.4 The motivation behind this work

As mentioned in the last section. the semi-classical Poisson-RPA integral equa-
tion {35] effectively describes the electronic screened potential in QWs. However.
some unsolved issues still exist. They are raised below.

1) One important conclusion of Ref. '35 is that correlations caused by screening
at the (Fermi) edges strongly suppress the exchange splitting and smoothen the
energy dispersion at the (Fermi) edges. This is similar to the case of a 3DEG.
As is well known. the unphysical singularity of the Hartree-Fock energy can be
traced back to the divergence of the Fourier transform 4z¢€/¢* at q=0 of the bare
Coulomb potential and it can be removed by taking into account the screening
effects of other electrons in the system. However. in a quantum wire subject to a
strong perpendicular magnetic field. it is not clear how the singularizy ao the Fornl
level cause'd by exchange is canceled by the screening and what the properties of
the screening field are.

2) In Ref. {35 the solution of the Poisson-RPA integral equation was obtained
by an incomplete iteration procedure. Actually. it is a first-order iteration solution
calculated by replacing the unknown screened Coulomb potential in the integral
kernel with the bare Coulomb potential. In principle. one can use a similar ap-
proach to get the nth-order (or higher-order) iteration solution by replacing the

unknown screened potential in the integral kernel with the (n-1)th-order solution.

10



[f the integral kernel is small enough. a stable solution can be obrained by repeat-
ing such a process a sufficient number of times. Otherwise. the result diverges. For
QWs. the fact is that in the small q ( the long wavelength) region. the screened
potential is very large and this leads to divergent result. Therefore. it is impossible
to use such an approach to get the solution of the Poisson-RPA integral equation.
Similarly. the first-order solution in Ref. {35 is not a reliable one because the bare
Coulomb potential (477°/¢) becomes divergent when ¢ is verv small. Though the

conclusions of Ref. [35] are reasonable and the final results are in agreement with

some experimental results 126 . it is still desirable to find out a reasonable iteration
procedure so that we can solve the Poisson-RPA self-consistently.

3) Because of the incomplete iteration procedure mentioned in 2). Eq. (33 of
Ref. '35} was proposed to reach the conclusion in 1). However. Eq. (33) is based
on a nonstandard approximation. Furthermore. mathematically. this formula does
NOT show the singularity in the exchange energy is exactly cancelled by the sin-
gularity in.the correlation energy. The question arises whether we can obtain an
expression for the group velocity as explicitly as possible. This is also worth con-
sidering because it is not only closely related to the energy dispersion curves but
also connected to experimental results@0..

1) In Ref. [33]. the strong magnetic field approximation ry = €?/(elphw,) << 1

plays an important role in simplifying the calculation of many-body effects in QW's.

For the typical experimental value ro ~ 1 (B =1 ~ 107T). some nonstandard as-

11



sumptions have to be used to get formulas in agreement with the experimental
results. [t is natural to ask if there is any way. without relving on such approxi-
mations. to investigate the screening properties in QWs.

5) The filling factor v of a LL (Landau Level). discussed in subsection 3.2.4.
denotes the fraction of the LL that is occupied for a given magnetic field and
electron density. Ref. [33. only dealt with the v = 1 case. i.e.. when the lowest
spin-polarized Landau level (LL) is completely occupied. For more complicated
cases. sayv for v = 2.3. when more LLs are populated. what would the screened
fields be? So far. we haven’t seen any progress in this direction.

6) Since we are aware of the importance in understanding the electronic cor-
relations and screening properties in narrow QW' in magnetic fields that are per-
pendicular to the (x. v) plane. it is natural to ask how the screening properties are
modified. for QW's parallel to magnetic fields. Do the electronic correlations still

play a significant role in such Q\Ws?



1.5 Methodology

The goal of this work is to find a self-consistent approach to investigate. as
clearly as possible. the screening properties of QWs in strong magnetic fields and
their impact on the occupied magnetic subbands or LLs. Among the spreifle
objectives described in the previous section. the kev one is to find the solution of
the Poisson-RPA integral equation in a self-consistent way. To avoid the problems
due to the incomplete iteration procedure used in Ref. 35. A different approach
is proposed to solve this equation. It consists of the following steps.

1) Simplification of the Poisson — RPA integral equation

Actually. the Poisson-RPA integral equation can be simplified by taking into
account only the intra-level screening and the adjacent-level screening. Screening
from other levels is neglected. This is because for the strong magnetic fields.
B=1~ lp T. screening from these LLs involves mainly higher order g. while in
the small q region the total screened potential is very strong.

2 Approximate analytical form of the screened potential

Based on the mathematical structure of the simplified Poisson-RPA integral
equation. the screened field is expressed as a superposition of intra-level and inter-
level modes. Furthermore. the intra-level mode consists of two parts: the even
parity mode and the odd parity mode. The coefficients of these modes can be

obtained by using the generalized "mode-matching technique” 60" as well as some
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basic mathematical approximations proposed in this work.
3) Numerical solution

To verify the approximate analytical solution obtained in step 2). it is necessarv
to obtain the numerical solution of the simplified Poisson-RPA integral equation.
[n principle. an integral equation can be solved numericallv by iteration. However.
for this integral equation. the traditional iterative method would lead to divergent
result. because the integral kernel becomes very large when q is small. To avoid
this divergence. a new method. called “weighted” iterative method. was proposed.
Combined with the proper initial values. which are the approximate analvtical
solution obtained in step 2). our new iterative method can be used to obtain
the numerical solution with any accuracy. provided the iteration times are large
enough.
1) Verification of the proposed approaches

In general. the above methods are verified in two respects. First. the screened
Coulomb ;;otential obtained by our new approach is compared with the numer-
ical solution. Second. the analytic approximation of the screened potential thus
obtained is used to calculate the exchange-correlation energies as well as their cor-
rections to single-particle energies. The results are then compared with those of

the experiments. In both cases. we obtain satisfactory agreement.
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1.6 The organization of this work

This work is organized as follows.

Chapter 1: Introduction

The concepts of electronic correlations and their relations to screening in the
3DEG systems are brieflv introduced. Then an overview of recent studies of the
many-body effects on the properties of edge states and the subband structure
of occupied LLs is presented. Compared with other approaches. the SHFA is a
very effective one. It was successfully proposed to studyv the screened Coulomb
interactions in narrow QWs [35]. Of course. as a primary exploration. it has to be
improved in several places. The motivations and objectives of this work have been
discussed in the later part of this chapter. Then the methodology to reach these

objectives have been brieflyv presented.

Chapter 2: An overview of many-body techniques for correlation ener-
gies

Some basic many-body techniques for the 3DEG systems are brieflv presented.
Although they cannot be applied directly to QWs. their basic ideas and concepts.
such as the HA. HFA. RPA. and LDA (Local Density Approximation). are still

very useful in finding a suitable approach to study electron-electron interactions
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in QWs.

Chapter 3: Screening theories for narrow QWs in strong magnetic fields

Basic theories recently used to study screening in narrow QWs subjected to
strong magnetic fields are given. As the SHFA is an effective screening theory for
the real QW samples and is the basis of this work. we will extensively discuss the
general principle of the SHFA. its formalism and features. assuming that the QWs
are perpendicular to the magnetic fields. For QWs parallel to magnetic Helds.
this SHFA approach needs suitable modifications. The details will be discussed in

chapter 5.

Chapter 4: Screened fields in QWs (B _ x-y plane) and their effects on
the QHE states (v = 1.2.3)

The SHFA theory is applied to Q\'s with integral filling factors (v = 1.2.3).
New apprdaches to find the approximate analvtical and the numerical solutions
for the screened Coulomb interactions in the Qs are presented. The obtained
screened potentials are used to calculate the exchange and correlation corrections.
As an important parameter related to the screening properties in QWs. the Fermi
edge slopes of the exchange and correlations are proved to be nonsingular. To
compare the theoretical results with the experimental ones, we further introduce

the LDA approach to calculate the dispersion of the total single-particle energies.
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based on which the overall single-particle Fermi edge group velocities as well as

the effective g factor are evaluated

Chapter 5: Screened fields in QWs (B // QW) and their effects on the
highest occupied LLs (n = 0.6 = +1.-1)

Screening properties in QW parallel to the external magnetic field are consid-
ered within the SHFA. The discussion includes the screened field. the spin-splitting.
and the slope of the exchange-correlation correction near the Fermi level. As a pri-
mary exploration. we consider the case of n = 0 LL with only one (¢ = 1) or both

{c = =1) spin sublevels occupied.

Chapter VI Summary and Suggestion

A summary of this work is presented. Suggestions for further work are also

given.
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Chapter 2

An overview of many-body

techniques for correlation energies

2.1 Self-consistent Hartree approximation

When we consider many-body problems. generally the idea is how to approxi-
mately replace such problems by single-particle problems. The motivation behind
this approximation is that. because there are bound states in nature in which elec-
trons are in energy eigenstates. we should be able to describe a single electron : in
state o using a single-particle, bound-state wave function Oa(r:) = 04(r). Corre-
spondingly. there must be an effective, single-particle potential La(r). When used

in the 1-body Schrodinger equation,

(Y 4 0 (r)]6a(r) = sa0a(r) (o

2m

I
—
-
~—
—
(R
—
—
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Ualr) exactly produces o,(r). Obviously {,(r) must contain the effect of the other

electrons. Hartree hypothesized that the single-particle potential is approximately

9 AY B
. . ' = - v 12 Z'
Catr) = [ar == 3~ lostr)" - 3 === 2.2,

=a! g - R ' o
where R is the position of the ion. The second term on the right hand side of (2.2)
is the electron-ion interaction and the first term is the single-particle potential for
an ith electron in state a. This potential is the average over the coordinates of all
paticles j. with the probability of finding an electron j in state 3 at r, given by

| 2

goj(r')‘?'. In this approximation the wave function ® for the complete N-electron

svstem is assumed to be a product of these single-particle states
QL2 N) = 0,(1)05(2) - 04 (V). 2.3

where the subscripts on o denote the N different states needed for N electrons. The
wave function @ can be obtained by solving Eqs. 12.1) and 12.2). Analvtic solutions
are usually, impossible for realistic cases but they can be cbtained numerically via
a self-consistent iteration: a form is guessed for L,(r) on the basis of which Eq.
(2.1) is solved. The improved wave functions o, are then used to determine an
improved L4(r) by Eq. (2.2). which in turn. determines improved wave functions
and so forth. When the wave functions and potentials become self-consistent. i.e..
within some level of precision. when the two stop changing. the approximation
scheme is considered convergent and successful.

The Hartree approximation is rather a crude aproximation because it does
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not take the identity of electrons into consideration and it neglects the details
of electron-electron interactions. Therefore. it does not contain any information
about electron correlations. However. this can be partly improved by introducing
an effective exchange-correlation potential ", and replacing {,(r) in Eqs. (2.1)

and (2.2) with U, ff(r):

B - )
= Im - eff(r) OalT) = 7404(r) (2.4
[-.ej'f(r' =C}.(r)*(.}cir). (2.3

This kind of modified Hartree approximation. which is often called H-RPA or HF-
RPA [63. 64. 66]. is based on the Density Functional Theory. This theory will be

discussed in detail in sections 2.4 and 3.1.



2.2 Hartree-Fock approximation (HFA)

2.2.1 Hartree-Fock equations

Since all electrons in a many-body svstem are identical. the wave function must
be antisymmetric under the interchange of the coordinates of anyv two of them. This

is accomplished by using a Slater determinant for the many-electron wave function

| 0a(l)  04l:

I NAYE

. L1 oos(l) ou2) 05N}
VAY
Oay (1l 0agl2l 0 (N

= \/_Z( 1"1‘[0,:0 \/VZ—IPHO(M (Pi). (2.6

1=1
Here. the subscripts on the o's (the rows) indicate orbitals (which can contain spin
wave functions). the arguments (the columns) indicate the particles. and the sum
is over all possible permutations P of orbitals (particles) with the sign depending
on P.
Replacing Eq. (2.3) with Eq. (2.6) and with the help of the Rayleigh-Ritz
variational principle, which states that the correct ground-state wave function

minimizes the ground-state energy E. we can obtain. with orthogonal single elec-
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tron wave functions o;.....oy. the total expectation energy of the manv-electron

svstem

. - o) Ze-
(H) = Z/dro,(r)(——v -3 gl
-5 ' ! 2 Yk
t 5 ,:;/drdr F— o,(r)i" o, (r ),
drds ——3, , 07 (r)or(r )0 (£ Jo -

and the nonlinear integro-differential equation for the single-particle wave function

known as the Hartree-Fock equation

h? 5 . ] o . .
(—I—Y" + "+ UYo,(r) - /drl ir.T )olr ) = z,0,(r). (-
2m

(%)
S

. 3
. - _ 2 | el _ ' 2 . T s b
where (™" = — Y p Ze?/ir-R| and [ = ¥, [dre /!r —-r l |0,(r ) are the
ion-potential and electron-electron potential. respectively. The exchange potential

U(r.T)
U(r.r)=- Z L,d,.vs‘_oj'(r')oj(r) (2.9)

connects only states of parallel spin. The negative sign on the right of above
equation is required by the antisymmetry of the Fermion wave function. Equation

(2.8) can also be expressed in Dirac notation:

[

[ 3+ U ) + L) i) §<ki<jih__i—r,|m; ME =20, (210

[AV]
[EV]



2.2.2 HFA for 3D free electron gas

Eq. (2.8) differs from the Hartree equation (2.1) by an additional term known
as exchange term. The complexity introduced by the exchange term is consider-
able. Unlike the direct term. which has the form U '(r)o,(r). it has the structure
[dr'U(r.t')o(r).ie.. it is an integral operator. As a result. the Hartee-Fock equa-
tions are in general quite intractable. The one exception is the free electron gas

(jellium model). for which the ion potential is constant

U (r) = /dr' erlr) (2.11]
it —r|
with p(r') = —e.N/1" (e < 0) and 1" the volume. Then Hartree-Fock equations can
be solved by choosing o to be a set of orthogonal plane waves
exkl»r
o (r) = ( ) X (spin function). (2.12)

u
which satisfy the periodic boundary condition. This can be shown by taking into

account the fact that the electronic charge in this case will be uniform
U+ U = 0. (2.13)

and the exchange term will be reduced to

2
- I [ droitd) e mar)
J
e’ :

= I3 [ dr df Si65 (6 ) o o
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9

N A e
tg\l[(J[ Ty [ (i)
1 ire? 2ke Kk,

= -= ———— o,(r) = - F(—) o,(r). (2.14)
! fk,!z<:kp k. — k,|° " ke

where F(r) = 1/2+[(1-r1%)/4r}log|(1+x)/(1-1)! and the relations (oi}o;) =4,,.
e/r =3, (137 /V)erT /g% T = [ dkV/(27)3 are used.

The energy factors in Eq. (2.14) are known as exchange self-energies. for they
arise merely from the symmetry requirement of the state functions under permura-
tion. Since the energy factors in the direct term in the Hartree (or HF) equations
do not take the svmmetry of the wave function into consideration. the energy fac-
tors in the above expressions are actually a kind of Coulomb energy corrections.
These energy corrections are merely caused by the Pauli correlation. That is why
we call these energy corrections as exchange energies and classifyv this kind of cor-
relation as “exchange correlation”. In addition to this exchange correction. there
is another self-energy correction associated with the screened potential. The cor-
responding electron correlation belongs to dvnamical correlations-tl.. In section
2.3 it will be discussed in the second quantization formalism.

With the help of Eq. (2.14), the eigenvalues of the HF equations (2.8) are

ﬁgkf Qezka( k‘

2m I kp

)- (2.

o
—
(S]]
~—

Then the average ground-state energy for electon gas can be calculated as




2}

U 2 R eke KR o, 1 —-r? +
- —(/ dk—> TRk —F/ dr(l+ —— g LTI
“lkicks 0 2 :

273 2m & 22 2r l—r

- " -t

2.21 0.916
= | - - Ry. (2.16)
l‘("5/00)- rs/ao] Y

where ng = N/V = k}/322 = [(ar)’|7 ap = A7 /me? and 1Ry = €/, =
h*/2ma3. The second term in Eq. {2.16) is called exchange energy (E,,). The

correlation energy is defined as the difference between the actual energy and the

sum of kinetic energy and exchange energy (3/5EF + E,.).

2.2.3 HFA modified with an equivalent local petential

For the homogeneous electron gas model. the exchange term in the HF equa-
tions can be written in the form E.,o,(r). since the bare Coulomb potential can
be expanded as the superposition of a series of momentum functions. However.
in general. this is not necessarily true that the exchange term in Eq.(2.8) can be
factorized into such a form. mainly because of the nonlocality of the exchange

potential




which arises from the correlation nature of the electron’s wave function. Deter-
mining o,(r) from the HF equations thus requires knowledge of the wave functions
in all other orbitals as well as other positions r'. This is reasonable. because in an
interacting system the electrons respond if the state of an electron at one point is
modified. Thus the effective potential is nonlocal. One approximation technique
to process this is to assume that the range of the nonlocality is small. so that
0,(r') = o,(r) inside the integral in the HF equations. This leaves an approximate

. )
equivalent local potential =

/dr'['(r.r')o,(r') ~ /dr'('(r.r')oz(r)

= [Y(r)o,r) (2,13
and the HF equations are modified as
r h2 2 10T ., cel ) "t .
[——V2+0"(r) = U(r) = U (r)jo,(r) = z,0,(1) . (2.19)

2m

We thus obtain a one-electron wave equation. There are other forms of approximate
. . ) .. . .

equivalent local potentials :*:, but the basic ideas is the same. that is. to find an

equivalent local potential to replace the nonlocal potential. In fact the equivalent

local potential in (2.19) is similar to the exchange-correlation potential { .(r) in

Eq. (2.3).



2.3 Linear screening theory

2.3.1 Linear screening

Screening is one of the most important concepts in many-body problems.
Charges will move in response to an electric field. This charge movement will
stabilize into a new distribution of charge around the electric field. Otherwise
more charge will still be attracted until it is sufficient for cancellation. If the
electric field is caused by an impurity charge distribution g,(r). with net charge
Q. = [ dro,(r). the amount of mobile charge attracted to the surroundings is ex-
actly -Q,. The name screening charge o, is applied to the mobile charge attracted
by the impurity field or an external field. According to the classical macroscopic
theory. the screened potential from the impurity charge g,(r) and the screening

charge o,(r) is given by

/dr' alr) + oulr) (2.20]

lf-rl

where o,(r) and o,(r) satisfv Gauss's Law:

¥V -D(r) = i70,(r) (2.21)
or V-E(r) =47 a.(r) + o,(r)]. (2.22)

Their Fourier components are
iq-D(q) = d7al(q) (2.23)

[8V]
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iq-E(q) = 4x{a(q) + o(q)] (2.24]

or

Di(q) = 59.(q) (2.23)
i

E(q) = E[Q:(q)+os(q)} (2.26)
4=

olq) = ;I.—_,[gz(q)*s):(q)} (2.27)

In the limit o, — 0. €(q) becomes a property of the material and is independent of
the charge distribution. The linear screening model assumes this definition is true

for finite o,.

2:(q) N
= 2.29
() 2(q) + 2,(q) ==
and the total potential becomes
T a(q)
olq) = —= 2.30
(q) () (2.30)
or
, dq 47 0.(q) ..
o(r =/ 22 gar 2.31)
) (27)° ¢* €(q) (

2.3.2 Coulomb interaction expressed in occupation num-

ber representation



Since electrons in a many-body system cannot be distinguished from each other
by any experimental means. it should be much more convenient to discuss many-
body problems in the second quantization representation. which takes into account
the indistinguishability of identical particles. Another advantage of this formalism
is that the observables are defined referring only to the single-particle state. S Thus
we can describe the many-body system (except for the internal degrees of freedom )
in three-dimensional space. in contrast to the case of the Schrodinger formalism. in
which the multi-particle space of dimension 3N (N being the number of particles)
must be considered.

The Hamiltonian for a many-electron system can be written as

P, - - 5 4

H:Z[ﬂ*i(rz)]*52‘(n—r,)- (2.32)
! 1=

where ('(r) is {**(r) in Eq. (2.8) and V(r, - ;) = €*/|r, — r,i. This can be

written in terms of creation and destruction operators as:6'E

. 1 .
f , ttr- N 99,
H=> H,cc,+ 5 Y cjehVimae, (2.33)
Ly

= ylm

where H,, = (4[% + U(r)]lj) and Vim = (JI{m|V(r = ©')|))]i). For the study

of homogenous electrons in 3D solids. a popular basis set is plane waves. The

Hamiltonian then has the form

Nt 1 bt _ .
H = X:ckc'k'gck'(7 + T Z Ck+qoCk~qo LaCk'a’ Cka (2.34)
k.o =" kk'go’'q#0

where vq = [dri’(r)e™9" = €°/¢* and z¢ = h’k*/2m. The ground state energy.
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in the first order approximation. can be written as

Rk 1

Z L Z mil- ¥ B, (2.35)

2m

which is actually the same as Eq. (2.16).

2.3.3 Linear screening theory of the ground state energy

Numerical results from Eq. (2.35) or Eq. (2.16) differ from the experimental
data by about 10% or more. The reason is that the actual Coulomb interaction is
not as strong as the one leading to Eq. (2.35) or Eq. (2.16). Better results can be
obtained by taking the screening effect of electrons into consideration.

According to the linear screening theory. two impurity charges Z;e and Z,e at

r; and r;, respectively. will cause a screened Coulomb interaction of the form

| (1'1 I')) Z[Z/ dq Lqezq\r _rl) (236)
€q

if the solution of Poisson’s equation o(r) = f(, 7(47/4%)[0.(Q) /eqle'dT. with

0.(q) = Zee™* 9" (i = 1,2) and vq = 47e?/g>. On the other hand. based on

the Green's function theory, one has (6!

dq
(27)3

< (1-7% [“dn [“an(Tplamol-a. )] (237
‘-IB 0 ‘1 o T4 -P\Q, TP q. M . <.

1q-(r1—r2)

Viri-r) = 2122/

Uq€
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where T is the 7 ordering operator. Comparing (2.36) with (2.37) leads to

1 = 1_L:_q/ /me- q.71)p(—q. 72))

€q
= 1-3 / dr(T:p(q. 7)p(-q.0)). (2.38)

Generalizing Eq. (2.38) to finite frequencies. we have

=1-2 [ dre™"(T.p(q.7)p(-q.0)). (2.39;

y do . 1 '
—%(p(q)p(—q)) =/?1ml€(q_ o (2.40)

if the mathematical formula lim,_q r—_l—l—y = P(f) —wd(r) is used.
Formula (2.40) can be used to derive the correlation energies of the homogenous
electron gas. To see this. we rewrite the Coulomb interaction term in Eq. (2.34)

in the form

o

1 - ; 1
T | N — -1 K
T8 E Ci+qoCk ~q.o’ LaCk'o’ Cko = TR d v —-q) = .Vl (241
=" kk'oco'q=0 = q

The strict ground state |0) average of p(q)p(—q) in the electron gas is

o
o

v I rde 1
s Olbl@(-al0) = =3 [ ZIml | (2.42)

Thus the interaction energy E;,, of the electron gas. per electron. can be written

in the form

Eni(e) = OH10)=Y[~3 [ ZIn(
a o f dq 1 e2
2e /(, )3q2[5(q)—1}=:/0 dq[S(q) - 1],
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where

1 x d..'.' 1
=— =1
S(q) noL_q/O - m(f(qw,)) (2.44)

is the state structure factor or static form factor.
The quantity E,,(e”) is not the Coulomb contribution to the ground-state
energy. To obtain the ground-state energy per particle E;. one must do a coupling

constant integration based on the Fevman Principle

oF, ,Oh(\) \
= .l\i . A). 243
gy = AT (2-45]
The result is
3 e d\
= - -+ —— L gl A\ 2.
E, = :Er /U = Enel A (2.46)

which is different from E,‘JJ given by Eq. (2.16). It is conventional to introduce a

dimensionless function

-1

-~
'

= Qkp/quS(q) _ 1 (2.47)

Then. the interaction energy per electron may be written as

2, 4 97 ..
En = —;e'km = ——(—)3~(Ry). (2.48)

wry 4
If we change e to Ae? and Uq in €(q.«) 10 Arq. where 0 < \ < 1. we have

L ) ), (2.49)

ars 4

Eing= -2



and-Gi

3 4 97
Eg = EF - (——

b) ars 4

(N

1
) / dA~(Ary). (2.50)
0

The first term in above expression is equal to 2.21/(r;/ag)*. The correlation energy
E consists of all contributions to the (strict) ground-state energy E, except kinetic
and exchange. Thus. with the help of Eq. (2.16). E, is given by

0916 4

rs

3

E.

977 1 1
(T“/ A\~ (Ary). (251)
0

oA,
which is formula (5.6.3) in Ref. [6]. This is a rigorous formula connecting the
correlation energy and ~(\r) { or €(q.~) | and it can be used for different linear
screening models. Some of them. which are often used. will be discussed in the
following subsections.

One can verify that E. given by Eq.(2.51) vanishes when ~(r,) is calculated in
the Hartree-Fock approximation 6. This is in agreement with the fact that one

cannot find any correlation information from the HF equations (2.8) .

2.3.4 Lindhard or RPA dielectric function

The idea used to deal with the many-body interaction in the Lindhard model
or random phase approximation (RPA) is actually the same as the one used in
the modified HFA, where the electron-electron interaction is equivalent to an ef-
fective local potential L*/(r) of Eq. (2.19). Now, when we consider the screening
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effect. this local potential becomes the time-dependent total potential 17(r.¢). or
self-consistent field. to which the electrons respond. In other words. in RPA. the
electron gas responds as if it were non-interacting and only perrurbed by an effec-

tive mean field. Based on this. we can view the Eq. (2.34) as the form below

Y]
[

H=Y z¢c ch0+ = Z 1 (2.
k.o =0

where

p(a) =Y Cpoqotps = Zp,,q (2.53)

p.o

is the particle density operator and 17(q. t) is the qth Fourier component of 1 (r. #1.
Obviously. 17(q. t) should be approximately proportional to the density p(q.t). To
find the relationship between them. let’s consider the operator in (2.53). Phvsi-
cally. this operator represents a type of electron-hole pair excitation having total
momentum q: an electron at state !p) (e.g.. within the Fermi sphere) is excited {or
scatted) by the mean field 1°. to the state [p + q) (e.g.. outside the Fermi sphere).

[n the Heisenberg picture. this operator has the equation
4 i . S
ih ZiCpracles = H.cp_qsCpal- (2.54)
With the help of the Eq. (2.52) and the commutator relations

Z sk[c;sck_s . c{,,q_acp,,] = (¢p-q — sp)c;,f,q.(,cp_‘7 . (2.53)
k.s

Z ‘ q t)[ckw-q’ kaS CL*QO'CPO'] - Z‘ q t ( pfq-bq aCPU C;)fq.acp-q'.a)r
k.q'.s q
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we obtain

- - A Af _ - i Rl
(:p — Sp-q + he)ep-qotpo = T Z 1'(q. t)(cp,q_q,.acp_a — Cp~q.oCp-q.o)-
ql

(2.57)
This gives

p(Q~t) = ZC:)+q.an.a
po

T

— ZZ q t)(c p- q.dCP-f"_C;)°q.a(‘p—q’.a) .

2.58)
po fp—fp-q'i’fl_&'
q’
To simplify the right side <f Eq. (2.58). we take only terms having q = -q

in the summation. The terms with other values of q’ are neglected. Physically.
this means that we only take into account the electron-hole pair excitations with
total momentum zero. (Note that they are connected with the effective mean
field of momentum q.) Those pairs with non-zero momenta are neglected. This
is because the phase between them are randomly distributed and the expected
values of t,hese excitations cancel each other. This is what is meant bv the RPA

(Random Phase Approximation). Its classical correspondence is the approxi-

mation
p = Ze""’i 2~ 0. (2.39)
1

because for p # 0. pp is the sum of exponential terms with randomly varving phase

91, Therefore, the RPA reduce Eq.(2.58) to

o . f U'—CT—‘- aCp<q.0
(q.t) ~ (q t) «— Cp.cCp. pra.0%p-qo (2.60)

| PO ip — Ep-q + he

35



To linearize the nonlinear parts in the above expression. we need to take the

approximation:

&
'

(c;,_dcp_,) — (Cp-qoCp-qo) = NF(sp) — Ne(zp_q) (2.61)

Also. if the impurity is assumed to oscillate at a single frequency. then (p(q. t)}
and (17(q. t)) are replaced by (p(q.t)) = p(q.~)e ™" and (1(q.f)) = 1" (q.~)e "
respectively.

Thus. one obtains

=1(q.~)P'"(q.). (2.62)

p(q.«) = "(?ﬁ") ”F_(:'P) ~ 1F(<p-q)

p.c p T ipeq T~
The Lindhard dielectric function €¢gp4(q..) can be obtained from Eq. (2.62) and

the relations

Vi(q.v)

2 = = (2.63)
a--) V(q.v) -
Viag.w) = Viq.v) +1(q.«) (2.64)
.. imre? -
ligq.w) = q—zps(q.--:). (2.63)
(ps(@.t)) = (p(q. 1)) = (3 chqotpo) = pla.«)e ™=, (2.66)

P

where the subscript "s” denotes the screening and "i" the impurity. The result is

36



2.4 Density functional theory (DFT)

The density functional theory (DFT) is a kind of generalized Thomas-Fermi
method. As in the Thomas-Fermi theory. the basic dvnamical quantity is a single-
particle density. vet whereas Thomas-Fermi theory is for a lucally homogenous gas
of electrons (fermions). the DFT is for an inhomogenous gas.

[n Ref. [10: it has been demonstrated that all aspects of the electronic structure
of a system in a nondegenerate ground state are completelv determined by its
density p(r) . In the simplest form of DFT. the energy of a svstem is viewed as a

functional of the density p(r) with the constraint

/drp(r) =\ (2.6%
The energyv is separated as
. e 1 LeZpiripir’) .. X
Ew = K p f/drfb(r)p(r) -3 /drdr ’: ‘p‘, - E..p. (2.69:
2 ir—-r’,

L.e.. a kinetic energy for the electrons K. an interaction & of the electrons with the
nucleus. an electron-electron potential interaction. and the exchange correlation
energy E... If we demand that the energy E be an extremum for variations of the

density.



the DFT dynamical equations result. These equations are single-particle equations:

R S | .
rL—)—"—lT + Uesflr)ioy(r) = s 0,(r). (2.71)

which can be solved self-consistently together with

[E]
=1
o

Ueplr) = U(r) = U.(r) 0
and
N
p(r) :.Zfoa(x‘)'3 i (2.73
a=1

Here the sum is over the N lowest occupied eigenstates. {” is the total classical

potential energv

U(r)=¢(r) ~ /d er;_)_:_) (2.7

and [, (r) is the exchange correlation potential. which can be calculated bv a

functional derivative of the exchange correlation energy

dE . [p(r)]

- 2.75)
dp(r) (

Ure(r) =
The functional E. is expressed in terms of another (unknown) functional g

E.lp] = /dr{g{p(r)] — Kip(r)j}. (2.76)

where g contains the kinetic. exchangs. and earrelation enargy narrs,
Sometimes the unknown functional glp! or E;.[p] can be approximated in the
following wayvs 10,
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(a) Approximations for the functional g'p’. If the density is slightly inhomogenecous

p(r) = py = Ap(r). (2.77)

then g is given by a power series in the inhomogeneity

[ )
=1
(V4]

gip} = gipo] = [ de's(r = £/ 3p(r) Ap(r') (2

The kernel  is expanded as a Fourier series in the momentum transfer dependence
of the dielectric constant € of a homogeneous electron gas

1 IzeTiair-r
(r—-r) = — _ 12.79
K( r) "¥q3'_6(q)—1_: ]

(b) Approximation for the Exchange-Correlation Energy E,.p.
{(a) The local density approximation {LDA): For a svstem with slowly varving

density. we make the LDA

[ BV
V.2

E.lp = /drp(r):‘:c(p(r))- (2.30;

where . is the exchange and correlation energy per particle of an electron gas of

density p(r). In the LDA.
L'rc(r) = —[p(r)fzcj = #rc(p(r))- (2.81)

where p,.(p(r)) is the exchange and correlation contribution to the chemical po-

tential of a uniform syvstem.
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() Gradient Correction to E;.[p:: Including the lowest-order gradient correction.

E..[p! has the form
E.lp = /drp(r):‘,c(p(r)) - /drB,c(p(!'))'Vﬁ(l')i2 :

The function B..(p) has been calculated in the RpAGL.62
(=) Approach to E,. via the Exchange-Correlation Hole: [t can be shown 03 that

the exchange-correlation energy is given exactly by the expression

1 I | «
Ezeip: = ‘/drldf'z‘—~p(rv.)H(r;-r:)pir.») : (2,82
T2 Ty — Iy
or
1 _ ﬂ
Ecep: = _—/drldr_» 8 SYRYHE 395 SEI (2.83)
Rl 2 T - r,

where N, (r;.r2) = H(r,.12)p(T>) is the average exchange-correlation hole densitv

satisfving the perfect screening sum rule
/drg.\'zc(rl.rg) = -1
and
1
H(l‘l.rg) E/ d,\h,\(rl.rg). h,\(r;.rg) =galri.ra) —1.
0

The pair correlation function g(r;.r,) is the probability of finding a pair of electrons

at points r; and r; and ga(r,.r») is defined as

2.84)

—

p(ri)ga(ri.ra)p(ra) = {{A(r1)p(r2))x — d(r, — ra)p(r;)}.

with p(r) being the density operator.

10



Chapter 3

Screening theories for narrow

QWs in strong magnetic fields

The above many-body techniques. except for local densirv approximation. can-
not be used directly to QW's because the electrons there are not homogeneous in the
transverse direction. However the basic ideas. such as single-electron approxima-
tion. linear screening theory. RPA. ect.. still can be used. The following approaches

are examples and are very useful in recent studies of electronic correlations.

3.1 Self-consistent screening theories (SCST)

SCST obtain the U,.(r) by replacing Ls(r) in Eqs. (2.71) and (2.72) with the
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screened potential 1" = 1, + 1 ( b: background ):”1‘-:":18:. while V" is the solution

of Poisson’s equation

Te?
Al =- — (P +py) (3.1)
Then Eq. (2.71) becomes
[)R— = 1(r)iog(r). = z,04(r). (3.2)
2m

with p,(r) obtained from the eigenfunction and the occupation function f(z, — u)

by 18:

ps(r) =g flza — p)oalr)? . (3.3)

a
where p is the chemical potential and ¢ the degeneracy factor. For the given p,.
Egs. (3.1)-(3.3) should be solved self-consistently.

Consider a 2DEG in the (r.y) plane with a perpendicular magnetic field B =
Be.. In the Landau gauge A = (0. Br.0). p in Eq. (3.2) is simply changed to

(e < 0 for electron )
P=(p - -A) = —ifV - ZBre,

With periodic boundary conditions in the y direction the normalized eigenfunction

can be written as 0,(r.y. z) = 0,(r. z)e**s¥. leading to the reduced Hamiltonian

H=-£2& __r2

2mor? T T 2m, 3:° + %m“"f(‘r - IO)Q + ‘(l‘) (mz = my = m). (3-4)

with g = —[?k, and w, = |e|B/(mc).



SCST is also known as Screened Hartree Approximation-RPA (SHA-RPA)
6566 hecause the screened potential in Eq. (3.2} is just the equivalent locaj
potential in the modified Hartree equation (2.4) and that the electron-electron
interaction is averaged with a screened potential is the main idea used in the RPA.

Note that in the Eq. (3.2). the equivalent local potential should effectivelv
represent the many-body effects. Therefore. before we use this equation we need to
know if the electron-electron interactions in the system can be properly factorized
into the form of 1°(r)o(r). As mentioned in 2.2.3. this is not always guaranteed.
There are many attempts at finding an equivalent local potential for the lower
dimensional electronic systems. The recently developed SHFA for QW's is one of

them. [t will be discussed extensively in the following sections.
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3.2 SHFA for QWs in strong magnetic fields

3.2.1 General idea

The general idea of the SHFA is to replace the Coulomb interaction €2/ r — r’

in the exchange potential L' (r.r’) of Eq. (2.10) with the screened potential 1 (r.r")

1)+ SRV ) k) = 5,0, (3.5)

2m Iy
[t should be noted that now the state ja)(a = i.j.k) does not have the pure
plane wave form. To factorize the exchange term. we can neglect the end effects
of the QW and assume that the screening in QW does not change the electron
homogeneity in the longitudinal (r) direction. Therefore. all electron states in
this direction still have the plane wave form. This property guarantees that the
exchange term in Eq. (3.5) can be written in the form of 17/) and Eq. (3.5) can

be reduced to

i)+ SGHUIV ()0 hi0) = =00, 3.6

- J
The screened potential can be obtained with the help of the Poisson equation.

ire? _

At(r.r') = - p(r.r'). (3.7)

If we neglect the screening of the Coulomb interaction between two electrons. at r
and r’ respectively. then from Eq.(3.7) we have p(r.r') = é(r — r’) and V(r.r') =

e?/ir —r'|.
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In the SHFA-RPA. p(r.r') is obtained within the random phase approximation.
For example. the Fourier component of p(r) for a 3D homogeneous electron gas is

given bv Eq. (2.62).

I < ne{zp) — np(sg—
p(q..;)= (? )Z F: p_): F(Ip q) (3.8)
po P p-q T =~
where 17(q. ) satisfies
U(r.t) =) V(g ojetear (3.9
q

and 1°(r.¢t) is the total screened field. For QW' that are perpendicular to magnetic

fields. detailed discussions are given below.



3.2.2 Eigenvalues and eigenstates without many-body ef-
fects

To better understand the screened Coulomb interaction in QWs. we first con-
sider the basic QW characteristics without manyv-body effects. or within Hartree
approximation. Suppose a 2DEG is confined in a narrow channel. in the (r.y)
plane of width L, = 11" and of length L, = L. For simplicity we will neglect its
thickness d (d — 0). Within Hartree approximation. the bare confining potential
for y < W can be written in the form of 1, = mQ3y?/2. 67-69 where m* is
the effective mass. In the y > 1" region. the confining potential increases sharply.
For narrow QWs. we can approximately take 1}, = 15 > m"0%113/3 367 Here 9%

depends on the bias voltage of the split gate technique:w:':‘of‘f‘ U or the surface

7285 gy .
3 \When a strong magnetic

charge distribution of the mesa etching technique-*
field is applied along the = direction in the Landau gauge for the vector potential

A= (—By'. 0.0) the one-electron Hamiltonian A° is given by

By,

h® ={(p; + -

)? —p ;/( m")+ 1, +~ gopups:B;2 13.10)

where p is the momentum operator. e(< 0) the electron. gy the bare Lande g-
factor and up the Bohr magneton. s. is the z-component of spin operator with
eigenvalues ¢ = 1 and 0 = —1 for spin up and down. respectively.

For the system that is homogenous in r direction. we can take the eigenfunction

A A -

of Eq. (3.10) in the form (z,yla) = €**\,(y)io). Setting «. = [e|B/(em*). = =
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Figure 3.1: A quantum wire is a qusi-1DEG svstem where electrons are constrained
to move in one direction. It can be realized in a semi-conductor device by using

the split gate technique.



(22 + 0)i m o= m 22/ yo(k:) = Ak, /(m*Z?). one can rewrite Eq. (3.10]

as
(hk, — m .y 2 2 1 P
h(‘j — { r CJ) ~ py _ _m-Q-yl - 90#35:3/2
2m- Im= 2
M SR o Rk ,
= 91,)7;. - Sm.*'-iy — Yolk:) ™ = .)ﬁ: - g')/‘BS:B,':2 . (3.11+

This form of the Hamiltonian gives basic channel properties of Q. i.e.. the elec-
tron moves freely in the longitudinal direction and behaves like a harmonic oscil-
lator centered at the position y = y,. with frequency 2. Note that the oscillation
center y, is proportional to the wavenumber in the r direction (k;). Therefore.
electrons centered near the middle of the channel always have small k. and those

near the edge of the QW always have larger k. . The eigenvalues are

[
]
o

nkeo = DI(n+1/2) = Fz':kj/’('Zrh,) — gouga B ;2. i3.12

with n the index of the magnetic subband tor Landau level). The normalized

eigenstates in the position representation are

(r.yla} = (r.ylnk)lo) = e*==¢ 1y — yolk:)) o /L. (3.13)

Here &,(y) is a harmonic oscillator function and (¢} is the spin state vector
satisfving (o\l02) = d4,5,. For the calculation that follows we need the matrix
elenents{48]. [35]. [52]
(n'k |7 |nk;) = / dre™ 70 (y. k) ®nly. ko)e*2e' ¥/ L

= Gpumtemtzo [ AUB(y KD Baly. ko)™ (L = x)

48



Oy. -k 0Nk €'Y ink,)

_ (_—.)L,._,(a(k; — kr)"’y' 1qy )n—n'ezzﬂL:\l’—n’(u)emq":"- (n> nll)

n! V2/I

Lo
aygy e L=

! T -l ’ -4 '
— (1-_)1/2((1(,\: l‘z):" 1qy )n —ne—:—LZ —n(u)e—_,-——_ (nl > n)
n'! V2/1
{3.14)
with u = [a®(k, - k;)* + ¢2}I?/2 and k. = k; + k;. The magnetic length [is

independent of the specific material. cf. Eqs.(3.17). For the Laguerre polynomials
L™(r). which can be calculated by L7}{z) = (1/n!)e*r™™(d"/dr") e *r" ™. we
have relation LJ*(r) = 1. Physically. the above matrix element refers to the tran-
sition in which the electron in state |n.k;) are scattered into state ;n'. &) by the

potential €'97. Due to the plane wave form of the eigenfunction in the r direction.

k. and k7 should have relation
g: +hk_=0 (3.15

which means the electron with initial momentum A% in the x direction absorbs g;
from the Coulomb field and change its moment to ki = (k, + ¢.)h. In the other
words. the transition in the r direction should satisfv the momentum conservation
given by Eq.(3.13). In the y direction, the factor e™*/? means that the transition
mainly happens within the region of u < 1. Bevond this region. the probability
of transition is very small. This makes it possible for us to simplify the study of
screened field 17°(qz. . ¢,) by paying more attention to its behavior in the region
within § < 1 and ¢’ < 1 [§? = (¢? + qg)l.2, ¢’ = (¢2 + q_:f)l_?]. The phase shift
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factor in Eq. (3.14) is caused by the overlap between a displaced Fock state and
an excited coherent state>S.. It leads to the oscillation of the screened fields in

their momentum space.

3.2.3 Bare magnetic length and group velocity in Hartree

Approximation

To have a pictorial description of the bare magnetic length {;. the eigenvalue
and eigenfunctions given in the previous section. let us follow the semiclasscal
approach. At first. we consider the case of a free electron in a magnetic field.
Classically. it goes round in a circular orbit due to the Lorentz force. The electron
can have any speed |v| and moves in a circular path of anv radius ry. Quantum
mechanically. however. the circumference must be an integer number (n) of de

Broglie wavelengths (A = h/p):

’

2are =nh/(m"vj. (3.16)

with different n corresponding to different electron energy levels given by Eq.(3.12).
Eq. (3.16) can also be written as

h h ,
- v

which means that /y represent the minimum radius of the electron orbit. (For
B = 10T. ly = 80nm.) In other words. the area occupied by an electron in ground
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state is around /3. Next. we consider a Q. with a parabolic confining potential.
in the same magnetic field. Within the Landau gauge. the electron will behave as
if there is only an equivalent magnetic field. with B,, > B. except that the center
of the electron should be located at certain place (y;). Assuming that this electron
has momentum p = k. in the r direction. we can imagine that the electron moves

2+ 02 Such harmonic

back and forth in the y direction with frequency = =/«
movement center is related to A, by yg = [5k,. At the same time. this electron has

a group velocity in the r direction.

Je
HA L _ g -1YCnk. o
lg (AI) - h akr
flkr ‘1- -Q 9 D2
= — ~ M. (=) =0k we (we>>Q) (3.18)
m '

Here. L',J’“ refers to the group velocity in the Hartree approximation because €rke
used in (3.18) is the Landau level energy given by (3.12). which neglects the many-
body effects. Note that the group velocity. ik, /m. is much smaller than that of
the free electron having the same k,. This is because of the transverse effects due

to the magnetic field and the confining potential.

3.2.4 [Edge states, the integral filling factor, and the Fermi
wavenumber

Edge states are the electronic states centered near the edges of the qusi-2D elec-

tronic system. Note that, such edges are not necessarily located at the boundary

a1



of the QW' Strictly speaking. the distance between them depends on the magnetic
field B. the gate voltage (of the split gate technique) or the surface charge distribu-
tions (of the mesa etching technique). the overall electron distribution in the QW
and so on. For a QW with fixed gate voltage (or the surface charge distribution).
we only concern ourselves with the cases where the external magnetic fields B are
adjusted so that some Landau levels. e.g.. n = 0.1. are fullv occupied. Therefore
the outermost edge of each occupied subband is almost located at the boundary
of the QW. Here we neglect the effect of the overall electron distribution on the
location of edges. for it has been shown that[49]. [35] such electron distribution is
primarily determined by the large electrostatic energy. Also. for the submicron
width QWs having rather steep confining potentials. the dispersion of edge srates
corresponding to lower subbands does not#9. exhibit the flattening suggeted by
ref. [42]. To simplify the following calculation. we neglect such flattening of the
edge state due to the dipolar distribution in the vicinity of the Fermi level[42]. 51 .
(We will cé)nﬁrm this in sections discussing the Fermi edge group velocities v
Therefore. in our models. the filling factor v is approximated as a constant integral
in the whole |y| < TV7/2 region and the center of each harmonic state is equidistant
in the y direction.

To see the meaning of the filling factor. we consider a QW with fixed width

. As discussed in the previous section. the center of the harmonic oscillator

(@]}
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yo = hk./(mZ?) = Pk, ([ = \/h/(m = 2). <. >> Q) satisfies

0<y < (3.19)
which is equivalent to
1
0<k, < i (3.20)
Using periodic boundary condition along r gives k; = 2zp/L. where p is the

integral. We can rewrite Eq.(3.20) as

1%
OS[)S——{'=—§_—

_ (3.21)
27l

>

I=]2

where S is the area of the channel. The above equation means that the maximum
number of k; states (or occupied electrons) is .\ = $/27/% with spin up or down.
Therefore. for a given magnetic subband. or LL. the the maximum electron density
is .N/S = 1/(2%[*). or the area occupied by each electron is the order of 2=/*. The
integral quantum Hall effect states refers to the case where the total electron state

density in the channel is the integral v times 1/(27[?):

where v is named as the filling factor. For example. in the v = 1 QHE regime.
there is only one electron in each area of 272 and all states at the lowest LL (n=1.
spin up) are occupied. Similarly, v = 2 means that there are two electrons in each

area of 271 and then = 1 LL is fully occupied by the spin up and down electrons.
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For a given QW. the total electron number or the total electron density should

be fixed. Thus Eq.(3.22) leads to

vB = constant. (3.23)

which means that. the stronger the magnetic field B. the lower v the QHE state.

When a LL is fully occupied. its Fermi wavelength can be obtained from

Eq.(3.20)
I
kF = 2—~2.
or
. { 1 /lelB
hp = — = i!— (3.24)
21 2Vhe

which depends on the width of the QW and the intensity of the B field. Therefore.
if we have v = 1 with field B = B, and kg, = kg = 15. then we have B, =

B,/2. By = By/3. cf. Eq.(3.22) and Ap)—lo V2 .Am—l) 'V/3 for v = 2.3.

3.2.5 Two-dimentional Poisson equation

In previous sections. the electron properties are discussed within the Hartree
approximation. To investigate the screened Coulomb interactions in QW's, we need
to use the SHFA which consists of the 2D-Poisson equation. Actually. it can be

obtained from the 3D cases. In real QW samples. the 3D solution

(X, y')o(2") .
—e/d e[r—r’[ (3

54
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of the Poisson equation in a medium with the background dielectric constant ¢
(around 12.5 in GaAs) determines the potential energy 17(r.y) = eo(r.y.0) of the

2D electrons

_ , P(X.y') .
=e /dR dR-R| {3.26)

Taking 2D Fourier transformations. we have

1'(q) = Pq- (3.27)

qe
where p, is the Fourier component of p(R). Its classical form is given in subsection
2.3.3. To get the above equation we need to notice that the 3D Fourier spectrum

of the Coulomb potential is 47 /¢>. but the 2D one is 2z /4 or

R-R/] R/| /dq eRR, (3.28)

where the following relations are used - KR

/: sin (zcosr)dr = 0, / cos (zcosr)dr = =Jy(z).
0

0

ras + Iy

/x e **cosh 3rJy(yr)dx = ((;13)”2L (3.29)
0

ryra r-z—"l‘

9

withr? =+ +(3-a)?and r} =42 + (3 + ).
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3.2.6 Exchange and correlation in QWs: formulation for

v=1

Now we consider the exchange contribution in the HF equation (3.6). Using
the first order perturbation theory. when the (n = 0.0 = —1) LL is empty. one

can approximately obtain the exchange term (Note: R = (r.y): r = (r.y.27 )

erchange term x Z(O. k([{0. &,V (R.R'){0.£,){0. k,) (R]0. k)

!
(3.30)
and the exchange-correlation contribution €%, | to the single-particle energy
2041 = — ) _(0k {OKIT(R.R')'0k,)I0K.) . (3.31)
K

Formula (3.31) is similar to the exchange energy expressed in Eq. (2.14). which
is an exact expression for a 3D homogeneous electron gas. Note that screened
Coulomb i{lteraction 1*(R.R’) in Eq. (3.31) cannot be simply written in the form
(IR — R’|) because of the edges of the wire. But. as it has the translational

invariance in the r direction, we still have
V- 2iyy) = o / " dqedqdg) et g 1 s (3:32)
‘Y. 27) ) q:44y4q, 4:-qy-q, s
Substituting Eq. (3.32) into Eq. (3.31) leads to

1 x PR ' 1 1qr+iqr !
Soket R _('7~)3/ dqzdqydg,V*(qz, 9y. @) D_(Oka|(Ok; €'YV [0k, ) 0K} ) g = .
i - kl:

1
(27)3

| dkidayd) ke = K, q,. )0kl 0kL) (0K, %5 0k,)  (3.33)
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In the above expression. 17(k; — k%-qy.q,) is the screened Coulomb interaction
between the charge distribution having Fourier index (g,. q,) and (q. q,)- The mo-
mentum conservation in the r direction requires that ¢; = —¢, = k, — k’. where
k. and k7, are the state index of the related electrons. The expression of 17 (k, —
Ky qy.q,)(0. kele'?¥]0. k')(0. k" |es¥10. k,) represents the exchange-correlation en-
ergy due to screened Coulomb interaction. The integration over g, and q, ([ dq,dq,...
means the exchange-correlation energy between electrons with (k,.y) and (k.. y').
If we neglect the screening of the Coulomb interaction between two electrons. lo-
cated at (r.y) and (z'.y’) by all other electrons in the QW. then Eq. (3.31) will
give the exchange energy of the ground state =% .

The screened Coulomb interaction 17(g;.q,. q,) = eolq:.qy,.q,) can be replaced

by the Fourier transform of the solution of Poisson’s equation

1

IR—_R.'Ip(RI)- (3.34)

o(R)=§/dR'

To do this, let us consider the statistical screened potential o(r.y:z’.4') of an
electron charge at (r'.y') with » = 0. ed(R - R') = e L e'¥R"R"  The 2D-
Fourier transform ¢(q;. q,: 2'.y') of o(r, y: '. ) obeys Poisson’s equation(18]

27
0(gz: Gy To, Yo) = q—:i[(pi)q + (ps)ql- (3.35)

where e(p,), = ee 'R’ is the Fourier transform of the external charge density. The

qth Fourier component of the screening charge density, e(ps)q. can be related to

-1
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. »
ep, with formula [<i:

(Ps)q = T’"{pseﬂq'a}
= Z (ng. ko le B ny ke ) (ny.keylpsna. ke, ).

Na.Nnj Kkza -k:J

(3.36)

The matrix elements (nj. k;,|ps[ne. k:,) can be related to 17 = eo(q;.q,: 1", y')

within the RPA as follows: in the static limit («» = 0). the density matrix. p =

po + ps. which obeys
ihpo = [W°.po]. ihp=[H.p) (H=h +17). (3.37)
satisfies
(R, pelina. k) + [V pollna. key) = 0 (3.38)

where py|n.k;) = fO(n.kz)|n k) (fO(n.ky) = fak, = /(1 + elenre =BV T]) and
the approximation (17, p;] = 0 is used. Then. from Eq. (3.38). one can find the

matrix elements between two states |n,. k;,) and |nj. k;,):

(sn_j,k: A1 fnq,kgn,l)(nd',k13|p5|n0-kra) = (fn_g.k; - fna,k:a)<n3-,k1:_,»l"slnav k.n,)
3 3

(3.39)

or

fn .kx, _fna,k;-a .
(ng,kz,lpslna, kz,) = ——2 (ng, kzy VN0, k)

E"Svk:_;yl - Sna-k:a 1
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ffo

(113 ke, Vong ke,)

=
d
= Fj, / Qle‘ (ks = Kea-quy- L' Y ) (nskoes €998 ok, oy
(3.40)
where F;, = (f; — fa)/(z3 — z,) and the Fourier transform of 1"*(R.R/)
] , dq,,d Tetqre
1*(R.R) :/ ‘i‘; }q“t (quz- quy. Iy )e =100 (3.41)

has been used. Substituting Eqs. (3.40) and (3.36) into Eq. (3.35). we get the

integral equation:

P _.e ~qR € x ‘
o(qr-qy- ' y) = ——{e - —— " ZFQ.J/ dqry o(gz.qu,. I'.y')
qf “ Na.njk,, -x

X (s ke e Y ing ko Wna ke, €7 Y ing ko ) il 2k -0

(342

which is the same as the integral equation (11) in Ref. 35, if we make re-
placement (nq.k,) < (nj.k.,). Due to the spatial homogeneity of the svstem
along the r axis, we look for solutions of Eq.(3.42) in the form o(q,.q,.1'.y') =

0(g:.qy.y')e"=* . Then o(q;.q,.y') obeys Eq.(3.42) if we change 0(qz.qy. L' y') 10
0(gz-qy-y') and e™'¥R o e=0¥' . Taking the Fourier transform with respect to y'

of this equation for o(g;.gy.y’). we finally get the Poisson-RPA integral equation

o(gz.qy-q,) = —{-~0 (gy +4)) + .— ) Zﬂa/xdquo(.qx-qu-q;)

- “ n‘o N3 kza

X (nor kza Ieiquyln.?’ kl‘j)(n-‘j? k:t_; Ie_lqyylna' kra ) } ik,g:km —qz-

(3.43)



[Note. the replacement (n,.k.,) <> (nj.k,,) has been used.] Equivalently. we may

write

rg 0 -q
V(q:-9y.9,) = ° (q;TQy)+

X Z /dkmFaJ(nQ kzal€ Y ing. kia — qe) (N3 Kza = qrle " ing ko).

Na .3

x< -5 ,
/ dg,iV*(q:- 951 4,)

(3.44)

where vg = 47%%/e. Fo 3 = (fru koo — faskes)/(Zna kea = nyk.,)-and g = \(/qg + q;J-'.

Substituting the solution of Eq. (3.44) into Eq. (3.33). one can. in princi-
ple. calculate the exchange-correlation energies =55, (in the ground state). Fur-
thermore. the effective exchange-correlation potential 17, can be related to the

exchange-correlation energies by formula
VeelW) = 05z . (3.45)

S0yl 3oad

with [y = (h/m"..) being the bare magnetic length.
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3.2.7 Exchange and correlation in QWs: formulation for
v2>1

In the last subsection. we considered the simplest case v = 1, when only
the lowest spin-polarized LL (n=0. ¢ = 1) is occupied and all other LLs are
empty. For more complicated cases. e.g.. forv =2 (n=0.¢ = +1 and -1). v =3
(n=1. ¢ = 1). obtaining the form of the Poisson-RPA integral equation and the
general expressions of exchange and correlation energies are more involved in this
subsection. We proceed as follows.

Following the idea of Eq. (2.10) it is not difficult to see that the general

expression of exchange and correlation energy can be written as

.cc
“n.k..0,

04

Z (n.ke.oj(n' k.o, V> (R.R')inkpo)in' k..o

1 1.
n'ki.o.

(3.46)

Within the first-order perturbation theory. we can neglect the difference between

real eigenstate |0. k. o) and the free electron eigenstate [0.4"}|o). and reduce the

above formula to

e = 3 (kR KVRR) kI K)oy, (3.47)

“nk:.o,
n' kL, a,;

Eq. (3.47) can also be rewritten as

S
“nkro ™ Q3
8“ n’

/ dk,dg,dg! V¥ (ks — K. gy 0 (n kele ¥ |n', KL) (', K, |e n, k). (3.48)
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where 17(k_.g,.q;) obeys an equation similar to Eq. (3.44). except that the

number F, ; need to be changed to F; and the sum over o is necessary:

vo d(qy + q;)

-5 l; Lo x s !/
V3 (q:.qy.9,) = * 373 /_x dgy V(g q,1.q,,)

q
x z Z /dkm ad(Na keol€® ¥ n; koo — g ) (N ke = qele Y ing. ko).
ngnjo==1
(3.49)
with
fﬂ -k: - —fv:z-k.'a'
Fo = Tletne? (3.50)

Note that. in the general case. the total screened charge in Eq. (3.36) consists of

two parts:

(ps)? = Z (nﬂ.kru.aie"q'ning.krj.o)(nj.kzv,.oﬁp,.lna.kxu.o)
q

(0 =1.2) (3.51)

The screened charge contributions from “cross™ term due to different spin states is
zero. We can see this either from Eq.(3.36) or Eq.(3.40). because in both formulas.
no matrix element contains the spin operator.

When v = 1. Eq.(3.49) reduced to Eq.(3.44). because the linear response co-
efficients F7 ; are all zero. except Fg ., and F} o (n=0,1,2,3...). For v = 2. all
Fg ; are zero. except F,, and F ;') (n=0,1.2.3...). Similarly. for » = 3. we have

FZ ;3 =0. except F(jln), F(,il‘lo), F} ny,and Fy ) (n=0,1,23..).

a



It F, 4F5 ;5 #0. e.g.. in the case of v > 2. we can neglect the energyv difference

due to Zeeman effect and simplify Eq.(3.49) using

a

Foy;x=F;;=F,, (3.:

T
(RV]
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3.3 Screening theories for a 3DEG and for QWs

Generally. there are two kinds of approaches to calculate the exchange-correlation
energies. One is based on approach using formula (2.51). which requires the
knowledge of the dielectric functions of the systems. The other one is to solve
the Hartree-Fock equations or similar approach such as the DFT. where the ef-
fective exchange and correlation potential need to be obtained from other meth-
ods. e.g.. Poisson-RPA equations. The advantage of the first one is that formula
(2.51) is a rigorous one and we can get more accurate results by improving the
expressions of dielectric functions €(q. ). from the Lindhard model to the Hub-
bard model and to the Singwi-Sjolander model. However. such approaches can be
applied only to homogeneous electron gases. \When we deal with bounded inho-
mogeneous systems. because the relationships between 17¥(q..) and Pq are much
more complicated. we usually resort to the second kind of approaches. To study
the many-body interactions in bounded inhomogeneous systems. such as quantum
wires. considerable efforts have been devoted[36] — [38]. Compared with other
theories dealing with inhomogeneous electron systems. the screened Hartree-Fock
approximation-RPA (SHF-RPA) is very efficient one. However. this approach is
exact only in the high-density limit. For QWs with r;, = 1/2Na" > 3. other
approaches should be used®?l. The QW's discussed in this work have the effec-
tive Bohr radii a* ~ 10“6cm[581, with linear charge densities NV ~ 5 x 10% cm™!.

Therefore, for these Q\Vs, we have r; ~ 0.1.
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Chapter 4

Screened fields & correlation

energies in QWs : B1 (x,y) plane

4.1 v=1

4.1.1 Approximate analytical solution of the integral equa-

tion

The exchange and correlation contribution to the single-particle energy. when
only the lowest spin + of the n = 0 LL is occupied. can be calculated according to

formula (3.31)

l Iy-s ! 1 Ll / ’ e v~
Token = oy /dk;dqydqy‘ Uk = hogy. g ) Ok €Y OKL) (0K, €'%¥ Ok,
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(4.1)

and formula (3.44)

Lo d(qy +qu)
q
X Z /dkzoFa.J(nmk:of: qu!ygnsza - Qz:)(nj-kza - QI;C-lqnyno-k:a)-

Na.n;

s ' = LU R '
1(9:qy-q,) = T 3aig ) Y (g qyi-q,)

(4.2

The first term on the right-hand side of Eq. (4.2) is the bare Coulomb potential: the
other terms are caused by screening in the QW. The F,; term involves transitions
and screening within the lowest occupied LL. whereas the Fy,, and Fno in =
1.2.3...) terms involve inter-level transitions and screening. In strong magnetic
fields. the total screening contribution is determined mainly by the F; 5 term and
itis =ufficient to replace the sum ¥F | in Eq. (4.2) by only three terms 287, 35",
Foo. For- and F . This means that we take into account onlv the intra-level and
adjacent-level screening. Therefore. Eq. (4.2) can be simplified as follows.

We first split V¥ as 1 (g, q,.q) = o0lgy —q,)/q=V 3 0g- gy qp). q = \/'/_—05 )

This leads to the integral equation:

1 (g:. Qy- QL)

Rl

I.‘- 7
— 0 §' . LTl y . . gyl .
N /dl‘IOFa.j(na-kro.e lq’y‘nj-lt:a - Q:."{”J-A:o —4q:- € lq”!na-'l\:a'

=3 !
749 Na.N;

Uo
873¢

> -s [
/ dqylxcl\(II‘ le° Qy)
-
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X Z /d,\zaFa J(no l\zmelq'!y[nj ‘ra _QI)(nJ l‘zo —Qxle 'q”lna l‘ro)

Na.Mj

(4.3}

withq' = /¢2 + qf. Then using the relations q,i =g (i:r.y. .. )%= h/(m°Z)y. = =

~ S s e ~ .. .2 22, =2 o ~ ~te

Ve + 4 = ag+idy. §; = adr—i4y. §; = @G +4;- G, = adz+1q,. 4 = ag:—1q),.

q7 = a°qG; + 47 ...

(n.kra —qr €Y 0. ko) = (0.hq €% in kg —q.)
(Ea_)nexq,,.mé_.a -4: 2} .-G +
(n. kxagelq;y;O. kxa - Q:) = (0 kra - ngelqyy!n. ‘l‘.:o)

>

L 29 npidya beamie 2 -
— g )"e“{y“ Rra=q: = =43 4- (4.4)

vl V2

., —in. X n, —nyhl. (4.5)
and
nn.n_,-zl
Z Fa.J - Z Fa.J~ (1.6)
Na.nj3 Ng.n;=0

we can. when T = 0°R’. reduce Eq.(4.3) to

2

2 x ..t sy =1 s
La 1 1k —agy =g, ksa—qg: 2i=d; 4-1q7 4
8—_3 qq, AN o€

x {FOO_ fOI\-o JO0kza—qz: Ga qa fO.k_-a 9. 4, }

R VAR ORI VAR

‘-IC (\(l:-qy-q;) =

LOl ra, 1 ra ~4 )y_
- / dgyi 1V (g:. gy QJ/ dk o€t 9% ithra =4 21-G2,4-G7, 1

Jokza=g: Ga Qa1 fokea Ga Gar
F _ a =z a a a
{Foo Ths V3v3 ho \/_}

X

(4.7)
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where the second and third terms in the first braces come from the Foi1 and Fig
ones of Eq.(4.3).

Integrating over kzq. the Fog = (fok,, -q; — fokea)/(Z0ken g — Z0k., ) term leads

to
x - -
/ deOFO Oe'la(Qy’Qvﬂ'{k:a‘ 02}
_x ’
—kp—qs | kr—q: dkroe‘la(éy‘d;,/k:a—(i: 2i o .A.: .
= (- + R 5 ST = =U1CosAFalg, +q,).
kg kr QTh—:IL(kza -q:) — k}a‘l
(4.8}
where ¢; = —rh/(fzgkp) — _1//&.9!1-\(;@)}‘1} = —(é).')/(fl:.'i!;[-‘) and the approxima-
tion
_kF’Q-' s ” h P _1
/ (11\':(1(_‘1‘ T Kromie r- - ) [
~kg ﬁ_;;“_(kzn —4r)m - /':'o.
o _'.!___ - —ia 'i»,"i; ‘:':n
— (m‘(i',’d:; qr 2/ * ? (1:1{;0 flf
~kf ._,,_h.-z(kro - )qI
= LB, = ) e+ 6/2)] = EGiG, = &) e — do/2)
= Ll(i—{ 1(qy ‘-“ly)( F+q:/2)) = 2(4y T4y )(RF — Qz/-);}
I
~ L,leza-é;‘(i;}‘»‘F (4.9)

has been used. E, is the exponential integrali‘-{. In Eq. (4.9) we can neglect
the change in amplitude because it has a very small effect on the screened field
described by Eq. (4.7) and on the exchange and correlation energy given bv Eq.
(4.6). However. as will be seen later. the variation in phase caused by different g,
plays a much more important role in Eq.(4.6). To simplifv the results. we make
the approximation (4.9).
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Note that in Ref. [35] the intra-level Coulomb interaction was treated by only
considering the Fermi edge case: Fyo ~ —2md(k?, — k%)/h*. Using this approxi-

mation to calculate the Fyq term will lead to
x —1a(Gy G, ke =Gz, 2) T - =1\ 1alGy ~G. ide .2
deOFO,Oe 9y ~qy i\ Kza—qz; - :2L'[COSkFa(qy+Qy)€ Wy Ty 9z = {_110)
-

which is different from Eq.(4.8) by an important phase factor @@ =4,/4:. 2 This
is because the intra-level transition mainly happens NEAR the Fermi edge. rather
than AT the Fermi edge. Such difference will cause verv small change on the
amplitude of the screened field. But it brings considerable chanée in the phase of
the screened field.
With the help of Eq.(4.8) and the note
Sifl(l:'FJ')

sine(r) = — — 411
I

we can rewrite above equation as

WA 21 e
-5 ' — =ttt P —gi4-gtd
Valg:gy.q,) = 87 ¢
- T -~ ) 1 2 <2 -~ - - -~
x icoskra(q, +q,) - TV (a°q; — G,q,)sinclg, + q,,).
- 1
2('01'11 - e 2 4=
- ooz [ e g g e R
=3 g
SR 1 B 2t
x coskra(gy — Gu) - T (a°q; + qyqy1)sine(qy — Gy1);
- 1

(4.12)
The solution of the Eq. (4.12) can be sought in the form

VA(g:. gy Q;) = to®(¢r. ¢y) P(3:. é;)
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where

x  [kei cos kragy cos krag, + kyy sin krag, sin krag,

+Eoa (@3 — G, )sincld, + 4))). (4.13)

ko = ki(d:.G,-4)) (i =cl.sl.scl). (4.14)

and k.. ky. and k., are to be determined. In Eq. (4.13). the first and the

second terms correspond to the intra-level Coulomb interactions. One has even

parity and the other has odd parity. The third term comes from the inter-level

transition. Substituting the trial solution (4.13) into Eq.(4.12) and setting « = 1.

we have

keicos kgg, cos kp(}; — k¢ sinkpg, sin A'F(}; ~ ki (q; = ¢4 ) senet gy - (];)

.. - - s s - Q- L . .
= -0y COSKNpg, COS kpq’y — sin kpq, sin kpq’y - (jt)-lm'p‘(([;) = 4, )sinclg, ~ q',i.

—Qg /d(.iyl

X keycos kpgyr coskpq', + kg sinkpqysinkeq', = k(g7 — ¢ Gy )smetq, + '),

-¢:.2

-)

x [cos l:'p(jy cos l;'[-‘(iyl —sin l:'F(jy sin l;'ptiyl + (%)Qf:,.-(cj:: ~ qyQy)Sine(g, — gy -

Here. relations

-

(4.12)

YRR T Rkl keI -
2 —Tg < 2 _ . _
g.l?l()il:;ﬁ(a) = —0g: (4.17)



have been used. Further. with the help of sinc(r) ~ d(zr) and the neglect of small

oscillatory terms. we can make the following approximations

2

Coedr. . o e
/dqy1 kse1(gr. qy1-4',) coskpgy (q; — @', Gy1)sinclq’, + ¢,1)

Q

~
~

o) o

Fl}3(q:e _(ily' q-,y) cos K.Fq.,!le_d’-/zq,'

au

1

1 - - - 225

= —_"'-kS(q-I', —q,y' q,y) sin l}Fq.lye-q )

1

q.

JeTd2 L
/ le a kscl((h"qyl- qu)SIH kFle(Q; - qule)'SlnC(q’y - le)

(4.18)

(4.19)

- 6_’11 T - - - ‘, 2] ~ - . - - I - - . -~ -
/del dl Kset(@z- Gy1-4'y)qz — ¢ Gy1)sinelq’y = qu)(q; = G,4y1)sinc(gy — Gy,

3’20

~ 7((13- - ‘ily(jy)mnc(q.'y - (iyi)kscl((i:-q.y- (i/y)e—q

a5 - N T L R
x Tl — g g sinelq’y = Gk iqe. gy g’ le™ 7

4200

in {1.15). Similar ro the "mode-matching”™ technique 60", we equate the coeffi-

cients of cus kpg, cos kpq,. sinkpg, sin keq,. and sinc(q, = g, terms on both side

of equation (4.13) respectively. and obtain three equations:

. f~ o~ o~ Q~"' Q 27 g 2y - -~
Reetl@e-@y-q,) = —aol =1 kr = ag(=)krme™ *qkoa(q:. 4, G,)
I~ =~ =~ e 1 i~ =t 1 —§? 2.7 ~ WY
ki(gz. @y-q,) = —ag-— 001\-1\'1(Qx~qy) — 5Q07€ qkse1(qr —¢'yq y)
1 0 R

—sao( =) kere™ 2gk(d:- 4y 4))

i1

(4.21)



or

So we first get

- ro Tow. _g2% . - - —ro/7
ksct(@z-Gy-Gy) = — - —54e ™" kser(Gz- Gy- 4,) = P
(4.22)
The expression of A« in Eq. (4.

21) will be given at the end of this subsection. Eq.
(4.22) can be rewritten as

. = -~ _-\-r0/7 .
kscl(q;.qy.qy) = W (423)

with X' = 1. This value of .\ leads to a potential expression that agrees with the

numerical solution of Eq. (4.12). depending on the value of .. to within S0 ~ 90

A much better agreement can be obtained if we modify X as

{4.247

As for k(i = cl.sl). we assume that thev can be factorized as & (4z-4y-q,)

,ql(q‘)l\,w(qr qj)/x,,,” (q:-q,). With equation (4.23). we obtain

AT S 4 o_gra —3\ro/7
kcl(Qr-Qy'Qy) = —Qq — QOAvkclqzquzy' — Qong € 9 -W

O T AT -
—570de” " ke (s Gy- G,) (4.25)

b T 1 e 320
kclq:kclqrykclqry'(l - 37'0(16 T

]
N

rO)-\qe @ ]
—Qq 1-
1—7‘0(] J

-QOkclqzl‘chrJ 1\

"l
1§



The final solutions for &,(i = cl. s1) are

L & A zay 1 roi XN ge "2
ki(Gz.qy-q,) = - - —— -
o l1+aeh-1+ rO%qe‘q‘/'-’ 1+ rog'e=9?/2|
i'O() - oL -
= —————C(q;.q,)Ca2( X ¢ ¢ ).
1 - 001\': 114y q!f ( qr-q y.
(-:1=cl: —:1=sl) (4.27)

with

(4.23)

. dg,e™T (1 = cos 2kfq,) /2
[\:( :) =/ . - 1=~ _432 o
q(l - l”o.:;qe q ')

In Eq. (4.27) C) and C, have different forms because of inhomogeneous screening
in the transverse direction of the QW. However. this does not mean that the manv-
body energy correction will be unsymmetric with respect to k.. see the discussion
in subsection 4.1.3.

Functions A~ and A~ introduced before can be considered as special cases of
the general form defined as

* dg,e”T *(1 £ cos 2krg,) /2

1;-:#( 7z) =/ T T =5 (4.29)
7 -x (I(I-&-FQE(]E_"- ')
When v = 1. we have 1{':.;(@) = [;':(q'r). Setting v = 0 leads to
~. - - - -1 ., D . A - - S
K:0(q:-0) = K=(d:) = [5R0(37/41€% * = Ko(2kpg,)le ™% 2 (4.30)

which is the main part of A-(¢,). For small gr. we have the approximation

7

- i x e’é:'z(li'COSi’/:' (iy)/z
[\:.U(QI) = /;xdqy =

§ 1+ Zige?

x e~¥2] = cos '7l:'F(j vr i2 .
~ — bt y 0~ —g°2\n
= / dq, Py Z(_ ge ? ")
- - n=0

q 2
< dg,e” 7 (1 % cos 2%kgg,) /2
- 1\':(@)—@/ dye " | — 8 fqy)/ . (4.31)
2 -x 1+ T,Q([C—(" =~

i3



which will be used later.



4.1.2 Numerical solutions

In principle. Eq. (4.12) can be solved by iterations. However. as the integral
kernel on the right-hand side (RHS) of the equation becomes very large when
gr (g = kr — k%) is very small. any small deviation in the trial values would
cause a very large deviation on the RHS and lead to either divergent results or an
extremely long procedure. We avoided these problems by taking the approximate
analytic solution Eq. (4.13) as the initial value and applving a "weighted” iterative
method. The details are as follows. .

Suppose 1" is the LHS value obtained by substituting the trial value of the
thiteration 17 into the RHS of the Eq. (4.12). Then the trial value of rthe
(¢ = Lith iteration is taken as 1"~% = 17 — r(1* = 1", where 0 < r < 1 is the
“weighting” factor. If we take r = 0 we have 17"! = 1", which means there is
no change between successive iterations. On the other hand. if we take r = 1 we
have 17~! = 1}, as in the traditional iterative method. which can be used only
when the integral kernel is smaller than one. Otherwise. the "DIRECT" correction
(r =1) to the trial value (1 = 1"} is too large. and finally results in a divergence
problem. This can be solved by using the "WEIGHTED" correction approach. at
the expense of increasing the iteration times. For example. in Eq. (4.12) we take
small r. say 0.5% for ¢, = 1/150. to avoid divergent results between iterations. In
this way one can obtain the numerical solution with any accuracy. provided the

iteration times are large enough.
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(v=1, Iq =0.1/(k_)=1/150, wQ=45 )

Figure 4.1: Solved correlarion interactions in QW (Sample 2 of Ref. '50]) with
v = 1.kg = 15. The dashed curve is the approximate analvtic solution and the
solid one shows the numerical solution. The two curves are very close and it is
hard to notice any difference between them. The confining potential is defined by
Q0 = »/45. In the ¢ — 0 (long wavelength limit ) region. correlation interactions

tend to diverge.



(v=1,1q_=1/(Ik_)=1/15, 0/Q=45 )

Figure 4.2: Solved correlations interactions in QW (Sample 2 of Ref. [50!) withv =
L.kp =15 and Q = »/45. The dashed curve is the approximate analvtic solution
and the solid one shows the numerical calculation. For ¢, 1/13. there are certain

differences between the numerical solution and the analytical approximation.



(v=1,1q =2, /=45 )

Figure 4.3: Solved correlation interactions in QW (Sample 2 of Ref. 1501)with
v=1lkr=15and Q = ~/45. The dashed curve is the approximate analvtic
solution and the solid one shows the numerical calculation. For large §.. e.g..

¢r = 2. there are nearly no differences between the two curves.



(v=1,Iq =1/(k_)=1/15, /Q=25 )

Figure 4.4: Solved correlations interactions in QW (Sample 1 of Ref. [50])with v =
Lkp =150 = </25 and ¢, = 1//:',.-. Dashed curve represents the approximate

analytic solution and the solid one is the numerical calculation.



The results of the numerical solution of Eq. (4.12) are plotted in Figs. 4.1
to 4.4 for some special values of ¢; and «./Q. For comparison the results of the
approximate analytical solution. expressed by Eqs. (4.13). (4.23). and (4.27) are
shown by the dotted curves. As can be seen. the two results agree very well and
this holds for large ranges of the parameters. For example. the value of ../Q can
be changed. at least from 25 to 43. and that of §, = lg,; from the very small value
0.1/kr to the very large one e.g.. kr.

Figs. 4.1 to 4.3 show that for small or large q, (../Q=43). the numerical and
analytic results are almost the same. There are some small differences between
them when when §; near 1/kg = 1/15. Fig. 4.2 shows the worst case (§, = | "kp.
For (w./Q=25). we have similar results. Fig. 4.4 shows the field distributions for

g = 1/kg. which is the worst case for w./Q=23.
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4.1.3 Exchange and correlation energies, group velocities
near the Fermi edge

With the help of Egs.(4.1). (4.13). (4.23). and (4.27). we get the correlation

energy
~Co ~ 1 ke g x (REXER k, ] k PR kl kl xq’y! .
S0kl T —W kp dl‘x _tdedqy‘cl(AI— ery~‘1y)(0 i€ 10 1:)(0 z,e v Okr)
1 kp+k; 0 d[:_ x ~')e“ii/4 e-q-'z./*‘
= - + —_— dg,d ,L' - —
(277)3 (/(; /i:';—‘:‘p) l /;x Yy qy 0 (Z- ql_
x[ke; cos kg, cos /:‘pti'y + kg sin kg, sin i{}:’(i;
ko (K2 - (iy(}’y).smc((}y -~ q,)} x glisk- 20 4 ke 2=gT 4 (4.32)

with (Zi = 1:2_ + (ig . (i’z_ = 1:.;1 + q~lj and /:‘: — l:': + :I:- The exchange correction is
cx o, /"F"’z /i-r—i-z N -
ok = - - -+ _ ,— 1.33)
0.k:.1 (-2.:)3 0 o ) 1 . QJ \/ki = (22

The last term in the square brackets of Eq. (4.32) is the correlation contributed
from the neighboring level. The other two terms can be separated in two parts. One
is the contribution from one side of the channel (foé"""':" dk_...) and the other is that
from the other side of the channel (fi(-),—i-p dk_...). [Note that the displaced center
of the free electron is determined uniquely by the plane wave vector of this electron.
cf. subsection 3.2.2.] The exchange-correlation correction z£5_, is the sum of the

contributions from Eqs. (4.32) and (4.33). Fig. 4.5 shows the dependence of the

exchange-correlation correction on ;. It is symmetric with respect to k, = 0 (or
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Figure 4.5: The exchange-correlation correction 28%. 1/ \hZ) vs. k. curve for sample

1 of Ref.[50] with v = 1. When k; — kr = 15. 126%,.11 1s very small.



y = 0) axis. because A (k_) and C,(k-) (i = 1.2) introduced in Eq. (4.28) and

Eq. (4.27) have properties A-(-k_) = 1{':({‘_) and C,(=k_) = C,(l:'_). which

give us k,(—k_) = k,(k_) and $0k.1 = Z0--k,.1- This is a reasonable conclusion.

considering that the Q\V geometry is symmetric with respect to the y = 0 axis.
For electrons in edge states. the exchange-correlation correction reaches to the

maximum value. with non zero slope. To study the behavior of exchange and

correlation near the Fermi edge we consider the derivative

ec i 9 =c¢ :
vy (K - Eéz::‘)-k:.l"‘:—'*‘?
[L’ro . ~6‘ Gof\’-(i’o)[;'»(;z'o) QO[\‘-(LO)[{-—(LO)
= 5= | Kol ) - TR L agh (k) | R0
- 1 l - agh _(kyg) L=aoh_(ko)
(-4.34)

where k, = kp — k.. In deriving Eq. {4.34). we neglect the contributions from
the other side of the channel (f(ff’é‘ dl:‘_...). When kg — 0. the first term in
(4.34) . which is caused by the exchange interaction. is positive and logarithmically
divergent. On the other hand. the second term in Eq. (4.34). corresponding to
an even-parity mode of the screened potential. also has a logarithmic singularity.
But it is a negative one. Each singularity is caused by the Coulomb interactions
between edge states. To show that the total effect is nonsingular. we need to prove
that these two singularities cancel each other exactly. This is shown below.

Making the approximations agA./(1 + agh=) ~ 1 - 1/aoK-. for agh= > 1
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and Ao(r)|;—o. and using Eq. (4.31). we can simplifv Eq.(4.34) further and obtain

1.;'7‘0 . t(‘.)’. 1 . 1 .
e = o | Ko(R) (1= —— )R~ (1 = ————K_| | _
glko 0 9 [ 0(4) ( 1+00[\,+) ; ( 1+00[\_ kg —0

/200 (435)

Q. |K. K. K.

[I\L TR. agh?
From Eq. (4.35) we can see clearly that the first logarithmic divergence resulting
from exchange is exactly canceled by the sigularities in correlations contributed
from the intra-level screening. This conclusion is also true even when the condition
agl'_ > 1 is not satisfied. [Note that Ay(r)|;—¢ = In(2/x) and [\'O(Iz'o)k_o_.o =
K_(0.5k3/4)e 8" — Ry(2kokp)e=82; o ~ 05In(Sk2)] Also. in Eq. (4.34).
there is no adjacent-level contribution because near the Fermi edge the integral
kernel (k3) in Eq. (4.32) tends to zero very quickly. Therefore. the nonsingular part

of the total derivative only comes from intra-level screening. For strong magnetic

fields. v;“(kr) given by Eq. (4.35) tends to be a constant.

L rg [* dge™%(1 - cos 2kgq,)

2

H .
= = v (kp). 1.36)
K_4/J-x 2+ ryge 9" g (Rr) (

where v} (kp) = [Q(Qkp/Z). This conclusion is reached because the second term

in the square brackets is less than 1% of the first term. e.g.. for ry = 1. and is

consistent with the value proposed in Ref. [35].
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4.1.4 Single-particle energies

In previous sections. we obtained. within the SHFA. the exchange-correlation
energy g% ; and its contribution to the Fermi-edge group velocity. Our derivation
is based on the approximate solution of the integral equation for the screened
potential. As shown above. this approximate solution. which served as a verv
good first step for the iteration procedure. agrees verv well with the numerical
one. Another important point is that. in contrast with standard perturbative
calculations. the value of ry did not have to be too small.

As for the single-particle energy E,, . similar to Ref. 35 we can describe
it in the framework of the local-density approximation (LDAJ19 This is because
it is not sufficient to consider only the exchange and correlation correction to the
free electron energy. To be self consistent. the single-particle energy should be the

eigenvalue of the the single-particle Schrodinger equation (T = 0)

[ho + lxc(y)”r:) = En.k;.aiv:>- (4.37)
where Vyc(y) is the effective potential. Now as in Ref. [35] we take
Vxely) = 255,20 = S0k, |yl < yolkr). (4.38)

As for the region |y| > yo(kfr). we take Vv¢(y) = 0. Considering that the effective
o y y o
potential is much smaller than the free electron energy [ From (3.11). we can
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estimate that. for the electron centered at yo = kroiz. the harmonic potential in v
direction AZ(k; —kz0)?/2 > ha (within the channel of width 11") . while || yoi < h

. the eigenvalue can be obtained using first-order perturbation theory as:
Eok.t = zok.0 + (0. k2. 1 Vxc(y)]0. k. 1). (4.39)

We now apply our theory to the experiment of Ref. [50] in GaAlAs/GaAs
QWs. The parameters for sample 1 are hQ =~ 0.65mel”. B =~ 10T.11" =~ 0.30um:
this gives kg = 15.2./Q % 25. For sample 2. the estimated parameters are hQ) =
(0.46 £0.2)mel". B = 7.3T. 1" = 0.33um. which lead to kr = 15 and :./Q =~ 32.
!Note. this number is very close to the average value (=./Q = 33.8) obtained from
the measured data: hQ) = (0.46 = 0.2)mel". while in Ref.{35] this ratio was taken
as ./ = 45.] We plot our results for sample 1 and sample 2 in Figs. 3 and 1.
respectively. Figure 3 shows that electronic correlations suppress the spin-splitting
and therefore there is no v = | quantum Hall effect (QHE) state in sample 1. In
Fig. 4. at the Fermi edge. there is an activation gap AE = 0.013/... Or the
gap between the bottom of the empty (n = 0.0 = ~1) LL (curve 1 represented
bv £ = l:-i(Q/;;c)z/‘l) and the top of the occupied (n = 0.6 = 1} LL (curve 2)
is around 1.5K". This is very closed to the experimental results [50] AE.r =~ 1A
(Note that. in Figs. 4.6 and 4.7. the energy E does not include the zero point
energy fio/2 and the Zeeman energy. i.e., E = Egx, , — iZ/2 - gouugoB/2.)

The single-particle group velocity at the Fermi level v,(k;) = (1/h)(8/dk;)Eox. 1
can be calculated as
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Energy Dispersion of Sample 1 (v=1)
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Figure 1.6: Single particle energies E/(hZ) for sample 1 of Ref. 5300, with v = 1.
The parameters are AQ =~ 0.65mel”. B = 10T. 11" =~ 0.30um. k¢ ~ 15. and e/ =
25. Curve 1 shows E/(hZ) = zo,.-1/(hZ) — 1/2 = k2(Q/2.)%/2 for the empty
spin down LL. Curve 2 gives total particle energy Eqx,.1/(hZ) obtained from Egs.
(3.12). (4.32). (4.33). and (4.39). Curve 3 is the quasi-Fermi level. There is no

finite gap for a QHE state.



Energy Dispersion of Sample 2 (v=1)
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Figure 4.7: Same as in previous figure with the parameters of sample 2 of Ref.
50). ie. hQ = (0.46=0.2)mel " B =~ 7.3T. 1 = 0.33um. kr =~ 15. and ./Q = 32.
In contrast with Sample 1. when exchange and correlations are taken into account

a gap appears between the curves for the 0 = =1 and o = 1 LLs and leads to the

v =1 QHE state.



[ d .
vg(kp) = v (ke) + EaTm' ke Lg%, 110 ke Dl e, (4.40)

z
A numerical calculation gives v (kr) = 6.9v/ and vy(kfr) = 11} for sample 1 and
2. respectively. These two are very close to those given in Ref. [35]. where the
results are vy(kp) = .SL'g” and vy(kp) = IOL‘gH for sample 1 and 2. (In Ref. '35, the
results for sample 1 and 2 have been interchanged by mistake. Later it was found

by our suggestion. cf. the private communication with the related author:‘?..)



4.2 v

|
b

4.2.1 Basic formulas

The exchange and correlation contribution to the single-particle energy. when

A~

the spin 1 and | states of the n = 0 LLs are fully occupied. can be calculated

according to Eq.(3.46):
ok = Z(O ket 10K (VS (RORD0 k.. 1)10.K0. %), (4.41)

where V7R, R') is the screened potential for v = 2 and is assumed to be indepen-

dent of the spin operator s.. Similarly. we have
0% X Z KO L (VS (RORD)0. K, )0k ) (1.42)

Neglecting the difference between the eigenstate [0.4,.a) and the free electron

eigenstate |0.k)|0). we have

2 = 255~ (0 kMO KLVE (R R0 K,)10. KD

k’

~ oy [ a3 (ke = Ky gy 0)) Okl 0K, 0. K540, ).

(4.43)

Equation (4.43) means that the exchange and correlation on the spin T level is
the same as that on the spin | level. Note that this does not mean the calculated
result would be the same as that in v = 1 case. for the screened potential has heen
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changed. The screened potential obeys

o 9(qy + 17,)
q
x Z /dkzoFg.J(no-k:a!elq"win.i-km - Qz)(n.i-kro - QIge-‘qyy!nmk:o)-

Ng.nj.c

. f _ U x .
‘cf.’(QI-Qy'Qy) = - 8"2(] /—ac del‘cf_z(Qz-le-QL)

(4.44)

For v = 2. the nonzero F? ; are FZ) and F=) (n = 0.1.2.3...). In the following

discussion. we will neglect the influence caused by the Zeeman Energy and take

fnchk:o - fnj.k:_g

FoyxFo3~Fay=1" — (1.45)
Sng.kza T Cnk.;
with
1 ~
f.._A"_- = | — ¢ v, —Ega kT ‘44())
and
€nk. = RZ(n + 1:2) + A2k /2m. (4.47)
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4.2.2 Solution of the integral equation for v = 2

Similar to the approach for the v = 1 case, we split 15 as 13(qg,.q,. q,) =

tod(qy +q,)/q + Va(qr- qy-q;) (g = /2 + q2). with V3 satisfving

Vo (gr-gy-q5)

)

= 3=3 o ‘ral aj(na A:m lq;yln.i kza =g )(nj. kro — q:\ i Ji” Kza)
Yl, n;
+ S:3q 2(qr-qy1-qy)
X Z / ra- aJ(na Azozelqywinfk:a —q:)(”J~kro —QIge-lqnynn-kzo).
Na.Nj; .

(443

with ¢' = \/q';' — ¢ As Eq. (4.48) can be obtained from Eq. (4.3) by changing
Foto 2F, ;. we can predict that the form of the solution of Eq.(4.48) should be
similar to that of the 1 = 1 case. Indeed. following the approach used for v = 1.

we obrain

‘cs.’((h ay. (1;) = L'O(I)((iz- ‘iy)(b((ir ‘i;)

X [ke cos l:'p_»(}y cos l:‘pg(j; + ke sin kpag, sin :Z.'F-g(i; ~ k,ea(G: — (}yq.',/ Jsinc(q, - g,

{4.49)
where ®(q;.q,) is given in Eq. (4.14) and (v = 2)
.. *va 1 u’f;l_\'c]’e“4': 2
bu(de Gy 4,) = > - 2T
l—f-uaol\-ul'rl/ ge=4 1 +vroge=9 2
*oov v TSI
= - V(4 ,)CY (N Gz @)
1+ l/aof\-. v
(ti=c:+: i=5:-:) (4.50)



and

-Xvrg/m

f.iscu(éz-(jy-q;) = W (4:)1)

where X. A, are given by Eq. (4.24) and Eq. (4.29). respectively. For v = 1.
this expression leads to the screened fields given earlier.
Note that although the form of the above solution is very similar to that for

v = 1. the parameters in this solution need to be modified according to

- k

LFU:—F;:—f_- (4 )2)
AR VE 4

= 1 = -

(E)U:l—/(ﬁ)r (4.53)
ro r,

rouzl%:—/i-_. (4.5
vy vl

Compared with the numerical solution. screened fields given by (4.49) are con-
firmed to be very good approximations when ¢, > kg and G, & k. (This 1s
similar to the case of v = 1.) When ¢; is around kf. there are certain differences
between the numerical solution and the analytic one. As shown in Figs. 1.8 to 4.9.
the analvtic approximations for v = 2 are not as accurate as that for v = 1 shown
in Fig. 4.2. because the larger the value of k. the better is the approximations in
Eqgs. (4.20). For the case of v = 3. i.e.. (I:‘F = 8.6). we can predict that the analvtic
approximations will be less accurate than those for v = 2. but not by much. This
is because from v = 2 (K‘Fg = 10.6) to v = 3(kg3 = 8.6). the change of k¢ is not

large.
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(v=2, Iqx=1/(IkF)=1/10.6. w/Q=25/2)

Figure 4.8: Solved correlation interactions in QW (Sample 1 of Ref. 30°) with v =
2, l:'p-_» = 10.6. and Q = +/12.5. Dashed curve is the approximate analvtic solution
and the solid one shows the numerical calculation. For §, ~ 1/kps = 1/10.6. there

are certain differences between the numerical solution and the analvtical one.
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Figure 4.9: Solved correlation interactions in QW {Sample 1 of Ref. [50i) with
v =2 kg = 106. Ge = 1/kp» and Q = ~/12.5. Dashed curve is the approximate
analytic solution and the solid one shows the numerical calculation. In this figure

gy < 0. while in the previous figure. gy > 0.



4.2.3 Exchange and correlation energies, group velocities

near the Fermi edge

Based on the discussion in subsection 4.2.1 and with the help of Eqs. (3.48).

(4.43). (4.43). (4.50). and (4.51). we have (kp» = kg/V/?2)

~co ~ =CO
S0k: 1l 77 ~0k--1

1 kra ' x ry- , |y N o
= —(‘-)-)3 /,c dkr/xdqydqylé(kr - k;-qy.qy)(Okne q”ylurfr,(()k;[e‘qyygokx)
-t -_— F: -—
1 EF:’E: E:‘é[.‘: dA?— x \)e-éi_;_q-l;‘_ 4
= T - — dg.dg vol" —
(‘2:)3(/0 /0 ) i /_x qyaq,to ia.
x (k¢ cOS ‘:'F'_’(iy cos Z’F')(i; + k.2 sin I:-p_»(},] sin I:-F-—_.Q;'l
~ksealq; — dy(;,y)-SinC(Qy -~ q;) x ek -0 g ko 2-g T 135)
and

er _e Ug kg—kz ' kp—ks d/:-_ _ 6‘Qi.2 )
S0kt = 0kt = ‘W(/O ~.—/0 )T/dqy - (1.56)

We can see from Eqs. (4.53). (4.56) that the group velocity g (kga) near Fermi
edge does not diverge and its value is about half of the Fermi edge group velocity

L';“(kpg) in the HA. This is shown below.

1 a ec 1
tg(hFa) = £ T SOk olhe e
(Zro [ .. K(,’ Yook - (ko) A - (ko) 209K _ (ko) K- (ko)] |
= 5= [ A7) - PN | =0
27 4 1 +2aqh _(kp) 1 +2a9A _ (k)
(-1.{)1)
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or

ec _ [;‘To _ .'S 1 - 1 . .
v (kp2) = 5 [f\o(j) -(1- 1_:_2001{.‘);\- -(1- Toou b 2001{'_)1\— kg0

KA. A_ 200k

Q. [K. K. K. |
[ ; : /200 (4.58)

which is smaller than the value given by Eq.(4.35). Similar to the calculation in

Eq.4.36. we have. in strong magnetic field.

voflkra) = v kpa) /2. . (4:59)

Note that ¢/ Yikgy) # ¢4 (kp2). The factor 1,2 in Eq.(4.39) is due to the fact
that the total screened interaction comes from the two lowest occupied LLs. It is
also necessary to point out that Eq. {4.36) and Eq. (4.39) do not mean that the
Fermi-edge slopes of the energy correction are not affected by the parameters of
QW samples. Actually. they are not so sensitive to the QW parameters. In the

later sections. we will see that. for v = 3. the results are much more complicated

and they are effected by the parameter qg.



4.2.4 Single particle energies for v = 2 QHE states

The single-particle energy for the case of v = 2 can be calculated in the manner

described in subsection 1.1.4. \Ve have
Eok.olv=2 = 20k.0 + (Vxely)) (o= =1) (4.60)

with
— kL =kt

e .
(Veelyll =/ ditsee, & " 1.61
Vxelyll) i, ok = (4.61)

and 3% _, is the sum of Eq. (4.33) and Eq. (1.56).

Figs. 4.10 and 4.11 show the energy dispersion curves for sample 1 and 2 for
v = 2. As can be seen. both samples have obvious gaps between the bottom of the
empty (n = 1.0 = 1) LL and the top of the occupied (n = 0.6 = =1)LL’s. This
15 consistent with the experimentally observed results 2% The main reason is that
the energy difference (h..) between n = 0 and n = 1 LLs is much larger than the
total exchange and correlation corrections. Therefore. for v = 2. it is verv hard
to let the correlations be strong enough to destroy the QHE state. Also. near the
Fermi edge. the slope of the total single-particle energy is smaller than for v = 1.
For sample 1 (2). we have L'g(i'p_)) x 3(-1)L';“(l:‘pg). In spite of this. we still can
conclude that the overall exchange-correlation corrections in these samples have

no effect on the flattening of edge states discussed in Ref. 51}



Figure 4.10: Single particle energies as functions of ;. for sample 1 of Ref. 501,
with v = 2. The parameters are hQ) ~ 0.65mel . B ~ 5T. 1" ~ 0.30um. ks = 10.6.
and «/Q = 12.5. Curve 1 shows E/(hs.) = (14,.1/(hee) = 1/2 = l.cﬁ(Q/,;,):/Q
of the empty (n = 1.0 = 1) LL. Curve 2. obtained from Eq.(4.60). is the single-
particle energy Eyx, =1/{hwc) — 1/2 of the occupied (n = 0.0 = +1) LL. The
Zeeman energy splitting has been neglected. Curve 3 is the Fermi level. There is

an obvious energy gap for the v = 2 QHE state.
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Figure 4.11: Same as in previous figure with the parameters of sample 2 of Ref.
50. ie.. hQ = (046 = 0.2)mel. B =~ 3.657. 11" =~ 0.33um. ;:’Fg ~ 10.6. and
~¢/ = 16. The Zeeman splitting between the two lowest LLs is verv small
(AEzeeman = 0.013A) and has been neglected. Curve 3 is the Fermi level. The
finite gap between the empty (n = 1.0 = 1) LL and the occupied (n = 0.0 = =1)
LLs means that the v = 2 QHE state is a thermodynamically allowed equilibrium

state.
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4.3 v=3

The discussion for v = 3 is similar to that for v = 1.2. But the relevant calcu-
lations are much more complicated. This is mainly because. taking into account
up to adjacent-level screening. there are many nonzero coupling coefficients F?7,
in the simplified Poisson-PRA equation for v = 3. To show the related calculation

clearly. lets start from the matrix elements related to the nonzero coefficients F7 .

a.J°

4.3.1 Integral equation for v =3

According to the discussion given in subsection 3.2.7. the nonzero F7 | that

need to be considered. within the adajecent-level approximation. are Fﬁg F:'J .
F3..Fy, . Fh, . and F,.
With the help of Eq. (3.14) and the approximation (3.32). the relevant terms

in the integral equation (3.49) can be calculated. For example:

Poo = [ deaFool0 k€757 0. kra = qo)0. ko = qule 710, k)

)
.

= e 9 7ed

*2cos(q, + ', ke
(4.62)
x
Pl.l = / dkraFI.I(l-krze—zqy’yu'kro - q:)(l~krn - QIie—lqyyH. /\’:)
-

= e e 2 cog(g, + g ke(1 = @/2)(1 = ¢ )2) (4.63)

Py = / dhzo Fo (0. ke 79 1 ke ~— @) (1. ko — g-le T '%%]0. k)
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1 n -2,
P AV E T A T -
x e T e g

= Gz — i(dy + ¢,)dz — §,q ,sinc(q, + ¢,) (1.64)

Py= /3o dkraFLO(l-kz[e-!q”Ile- Fra —q:)(0. Kz — qxle—quy““ kr)

~ —e

l -2 _'2‘, - . - _ - ' ) _ ]
~ Bl Fiem? '4[43 + gy + ¢4 — qu’y}sznc(qy ~q,) (4.63)

Pl.2 = /x dk:oFl.’.’(l-krie‘qy:yiQ-kza - QI)(2~kra - QI;E_lqyy:]--k:)
-x

-9 - a5, g, — i) (g ——l'.') L -2
s psine(d, + ¢, )e " e RLE qy)iq"' olia _ @902 = ¢ /)
|99

(4.66)

x
p‘l.l = / deOF.’.l(‘z- A':,Elq":y‘]nkxa = q: ) 1. 'I"ra - (11“—lqsy:2~k:)
-x

VR F RN T RS RIT AR N -2
x f_[.wn(‘(qy—q'y)f_" tem7 1 2 14 = 2 = 22— g
)

(4.67)

From Eq. (4.63) to Eq. (4.67). €¥% =942 % | has been used because of the
factor sine(g, + (}’y).

Substituting Eqgs. (4.62)-(4.67). into the integral equation (3.49) and splitting
1 3. in an exchange and a correlation. ie.. 13 = v,d(q, + 0,)/q9+V5(q:.qy.q;). the

correlation integral equation for v = 3 takes the form

13(grqy-qy) = Py s

X [2cos kry(dy + ) — —=—(47 — §yq,)=inc(d, + q))



+(1 = ¢ /2)(1 = ¢"°/2) coskra(d, + )

— (L= @)1 - ¢/ ~ qyq,)stnc(dy + ;)]
w'flll'l
71_ Uy e q/
+ ?_31 /dqyl‘(ﬂ q.t le qy)e ql !
- - - ) - - - . - -
x L'Zcoskm(qy = qy1) — “hi ——(4; + qyqy1)s5inc(qy — qy)
Uy

(l—ql/ I‘Q/ COSkFB(qu—dy}
2

-fllll

(1 —q;/4) l-¢ /4)(q + Gy, )sinc(qy: —qy)

(4.68)

Note that in Eq. (4.68) the terms associated with 2cos l:'m(r},j -~ q,) come from
the induced charge of the occupied in = 0.0 = 1) LL. while those with (I -
/21 - (}’2/"2)005 l:'m((jy = q,) come from those at the occupied (n = 1.7 =
1) LL. They all belong to intra-level screening. The rest terms are related :o
the inter-level screening. For example. the (§; — qyq,)sinclq, — g,) one comes
from the transition between (n = 0.0 = 1) and (n = 1.6 = 1) LLs and the
(1—g2/4)( l—q /4)(q = §yq,)sinc(g, +q,) one is that between (n = 2.0 = 1) and

(n=1.0=1) LLs.

4.3.2 Screened fields in QWs (v = 3)

The solution of the Eq. (4.68) can be sought in the form

V3(9z- 0y q5) = v0®(dr. G,)D(4:. )
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X [Ke(de-Gy- ') cos kesdy cos kpsd), + K(dr. Gy ¢,) Sin kgady sin krsd,

+Rse(Gr- Gy- é'y)(‘ﬁ - ‘iyq"y)Sinc(‘iy + Q;)] (1.69)

where ®(g;.q,) = le~4/4 /q. as before. K.. K. and A’,. can be assumed to have

the following forms

K. =2k + kel - L

-2 ) ~2
, ¢ q" . q q
[\sZstTl‘syll—?)"'ftsy'(l—?)*kgw(l 7)‘(1_7)
- r -2. ([7-]‘1 -
[\csszsll'f'(l—%-)(l—T)J. (4.70)

where kc((}z.(jy.q-’,/)./.'C,J(Qr.r]y.q'y).kcy'(tj,.(jy.(i’,j). and A’Cl,y»((],.(}y.(i’y) are the co-
efficients of the constant term as well as those of the (1 — 1_—) (1 - 1_,—) and
(1- %)(1 — g ) terms in (4.70). respectively. They can be determined by applying
Ie]

the quasi mode-matching technique. Substituting (4.69). 1/(v,hZ() = —Lm( LS

and 2vor/(873) = —~(g) /kr3 = —qq into Eq.(4.68). we obtain a long inte-

gral equation. To treat it in a clearer way. we use K (q:. gy q Jec' to denote

K(qr. qy. ci'y) cos /:'pg(jy cos I:'m(;'y. etc. and have

Kel@r Gy q'y)ec + Kolde- Gy 0'y)38' + Koelds. Gy- 0 )GE = 4,4, )sinc(d, + 7',)

e . 2 s s e
: {1 (Gz-Gy-¢',)(cc’ = ss') + g”(qz-qy-q’y)(q; —qyq'y)sinc(qy +¢q')
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dq e=4i/2 ,
+ / L x [Ke(de- G @ )erc
+A—s(4x-dyl~q. )310 +1\sc(Qr le q )(q leq )Sinc(q.yl +¢i’y”

2 P . . _
X [[(qrqy-‘jyi)(ccl +8s1) + EII(QI-Qy-le)((I; + GyQy1)sinc(qy — le)]} (4.71)

with
G40, =2+ (1 - Sy - L)
11(g:.qy.¢,) =1+ (1 - %)(1 - qT) (4.72)

As for v = 1 and v = 2. we equate the coefficients of the cdskm(jy CoS I:'m(j'y.

sin f:'m(fy sin l:'m(};. and (g3 — (},Jq-’y).sinc((}y +¢,) terms on both sides of Eq. (4.71)

-2

and obtain following three equations (§* = ¢ +¢;. ¢~ = ¢; *(}’; and ¢i = ¢;+¢;,)

. roQ .. dj e~ Y s = < o
[\c =—-— { 1(q,.qy.qy) - ﬂ—.—[\r(q.t'qul'q y)[(([;-(IyJ{yl)CI
Ui
+5Relde =0, @ )G Gy —¢' g€ ?
J = ce s e L L _s1.4 -
+ oy Kel@r 4y, 111Gz Gy 4)3™" ). (4.73)
) roc s s [ dGaet
[\5 = - { —[(qr.qy.q’y) T/—yé——l\s((hv le-qu)l(QI-Qy-le)"'.l-
i 1

S Reldr =0y @, e Gy )

-

+ SR Gy 0 (32 4y 33T ) (4.74)

and

K = kca”(‘ir‘iyfq.,y)
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“ra 2o .2 N R
=— {EII(Qbe-Qy) + 7R es(Ge- @y ) 1102 Gy 4y)qe™" %)
(4.73)
From Eq.(4.73). we immediately obtain
S My
koo = r°/_ . (1.76)
L+ 2rg(1 + (1 — £)2]ge~#2
As for v = 1 and 2. we modifyv k. as
-\ ;=
kes = - - (4.77)
1+ 2l +(1 - 1% )-’}qe'q'r :
where
Ny=1-¢%, (1.78)

This definition simply gives more accurate analytic approximations. ¢f. Eq.(4.24).
Substituting Eq. (4.70) into Eq. (4.73). we find that Ko key. key . and ke, are

related by following equation.

e + key(1 — ‘i;)*xlcyu-q— + Kyl = %-)(1-%—»
=~ TR+0- %2)(1—%2)}
- 2 g, q‘ ra-Du-4
ke + ke ( E1:_712)"‘Ac;,(1—q;) Feyry (1 %f)(l‘(i;)i
- k@, L)[H(l—‘i—z)g]{zﬂl ?:;)(1—:))1qe“' ’



Further. equating the coeficients of the constant term as well as those of the (1— 9_7 ).

-2

1-%). and (1 - 9:)(1 - %—) terms. we get the following four equations:
2 2 2

2k, = _2‘__ - [‘“‘c(qz q y)h+ + chy(qz qu)("*- - Acl)]
—roa—-= 1+ fg) la —ro2k 1 + (1 - —)lge 9=
1+ 2rol + (1 ~ Z-)Yq'e~7 2
(4.80)
: (F Nse—9 2
llcy— —rokcy[lﬁ-(l—j) qe
rgQx A -7 ' ' roy
——(i__[zkc(Qr-q’y)(K— - —\cl) + kcy(qpq,y)(’{- - 2-3(1 + Ac’_))i
(4.81)
k LT (i-) Ne,-g7 2
cy — —rol\cy’[l‘*(l— I) .qe
oG - - " - f _mur "o
—OT[:ZI\'cy’(q‘r-qu)""- + ey (- y)(h- = A4
(-1.82)
kcw’
roQ ToQx

-5 L~ rokay L+ (1= £)2ge

=1+ )7'0[1 +~{1 - QT)l]qle-q' 2 1

(4.83)
The solutions are
b= -rpa/w
L+ RO, +n (ke — Ay

1 L Nanfi+(1- T PRlged
X G2\~ 529 - . 52 ~ N
1+ ro[l + (1 = §)2]ge~¢r2 1+ 2ro[l + (1 — G )?]gle~7" 2

107



_aoDl(qr-‘jy)D?.(.-\’J- qr. (;’y)
1+ 00[2K+ + "_'c('{+ - Acl)]

(4.84)

—2ag(k: — Ag) -
ke = k. =~ k.. 4.8:
v 1+ aolke — 23, + M) (4.83)

~a0D1 (- §y) D2(X3.4:. ¢',)

Kewy = -, (4.86
w 1 + QO{I\C(K,. - AC[) + K. — QACI + AC‘;’J ( )
and
—2ag(k- — Ay) _
kﬂ"y' = 10_‘_ .20(”\.- 2 kcyy’ = /\ckcyu’- (181)
Here we have
x g e T L = cos2Kkpad,) 2 L
R :/ (g, ¢ ( ~(us Faqy)/ Dl(([:-(ly)
-x ([
{-£.88)

and

All(qr):/_ déygc"iz'le(dI.(iy)(licos'.?l:'p_;(jy)/‘l (il=c:+i=5:-:)

x 73 5320 - - T - .
An(g:) = /_xd(iyq:e“’ D (GrGy)(l Zcos2kp3qy)/2 (i=c:+:i1=5:—1)

(4.90)

K in (4.69) can also be solved by substituting (4.70) into Eq.(4.74) and then
getting the expressions of k. k. k. and k,,, by equating the coefficients of
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same type terms. The results are

OODI(‘iIeq.y)D2(X3~‘iz-q-,y)
1+ Qo[?f{_ + “vs(l'{_ - —lsl)].

ks = (4.91)

—2a(k- = Ayy)
sy = ks = ‘-sks. 1.92
kJ 1+Q0(h'_ -2 + A)) ( )

aoD(¢;. §,) D2(X3.¢:. ¢')

Koy = . 1.9;
vy T+ aglh(m. — A1) 7 mo — 28, 7 8] (4.93)
(14.94)
and
-2 = A, _
ky = QoA 1) Koy = Nkyyr- (1.95)

1 +2a4n_
Figures 4.12-4.14 show that the approximate analvtic solutions obtained in this
subsection agree well with the numerical solutions. from small §, (e.g.. 0.1/kp =
1/86). to large . (e.g.. §; = 2). Similar to the cases of v = 1 and v = 2. the
analytic approximations are not very accurate when §, is close to 1//:',:. Also. the
accuracy of the analytic approximation is nearly not affected by the ratio of < /.

at least within the range 25/3 < 5§ < 45/3.
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500

(v=3, qu=0.1/(lkF)=1/86.6. w/Q=25/3)

Figure 1.12: Solved correlation interactions in QW (Sample 1 of Ref. [30!) with
v = 3.kry = 8.66. Dashed curve is the approximate analvtic solution and the
solid one shows the numerical calculation. The confinement potential is defined by
Q = »/(25/3). In the long wavelength limit. screened fields tend to diverge and

the two curves almost coincide with each other.
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{v=3, Iqx=1/(lkF)=1/8.66, w/Q=25/3)

Figure 4.13: Solved correlation interactions in QW (Sample 1 of Ref. [50])with v =
3. kpy = 8.66. Q = ~/(25/3). Dashed curve is the approximate analvtic solution
and the solid one shows the numerical calculation. For §, ~ 1/11-; = 1/8.66. there

are certain differences between the two curves.
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(v=3, Iq =2, w/Q=45/3 )

Figure 4.14: Same as Fig.4.12. except for ¢, = 2. and Q = .-/(45/3). (Sample 2 of

Ref. [50])
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4.3.3 Exchange and correlation corrections

To consider the many-body effects on the v = 3 QHE state. we calculate the
exchange-correlation correction to the subband structure of the occupied (n =

l.o = 1) LL. According to Eq. (3.48). it can be calculated as

“lk..l

~ —(Qi)s /dkidqydq{,‘;’(kz = k2 0y @) (L kDY 1AL) (1. KLje %Y1 k)
—(Qi)3 /dkidqydq;‘&‘(h — ko gy q) (1. ke€ %V 0k, )(0. ke 1 ky)

=0+ (4.96)

where {9 | refers to the exchange and correlations contributed from the same
(n = 1) LL and the 4%, 1 from the lower adjacent (n = 0) LL. No corrections
are contributed from other LLs. because the LLs above the (n = 1.0 = 1) one
are empty and there is no electron to exchange with those at the (n = 1.0 = 1)
LL. Also electrons at the (n =0.0 = —1) LL cannot be exchanged with those
at the (n = 1.0 = 1) LL. for they belong to different spin states. Substituting
13 = 1edlq, + q,)/q + 13 and the screened potential given by Eq. (4.69) into Eq.

~ec

(4.96). we express 1k, as the summation of 4 parts:

! vo  [kr-ke 0 dk_ rx . ezii."‘leci'z_,f’.’
ha = [ % g
(27)3 /o ke—kp' | Jox - q'_
X [K.cc+ N,ss+ Kesine(q, + é'y)(q;’ - (J’yéy)]
L. Yy =2 q-/2
% €I(Qy‘Qy)(k:°k:),‘-( — f)(l - T_)‘ (4.97)
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o vo  [Reke  rkeks dk cii 2

(4.98)
, o kp~k; 0 di_ = o e—dz_,"ﬁe—é'z.,ﬁz
:C" = — (/ +/ } ?/ dq,d - =
Lkl 273 Jo :_kp) - q,4qy P 7
x [N.cc+ Rgss + Kesine(qy + )(qI qu)
(};' 'I-‘ ) + le (}: - l:r) + iq/y (Gy~q', k=K' 23,2
X ety ay ) ke =K e (4.99)
V2 V2
and
e v fReck ook di e
Siked T '(27‘_)3(/J */0 )l— . dq,, - 5 (4.100)

The calculated exchange-correlation correction vs. k. for sample 1 of Ref. 30! is
shown in Fig. 1.15.
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Exchane-correlation Correction (Sample 1, v=3)

o T L T T T T T T

E/(hw/2r)

-0.5

-1.5+

k 1

Figure 1.15: The exchange-correlation correction =55 _,/(hZ) vs. k, curve for
sample 1 of Ref. [50] with v = 3. For k; — kr = 8.66. this curve has negative

slope.



4.3.4 v, at Fermi edge: v =3

For v = 1 and 2. we have shown that the derivatives. with respect to the wave
vector. of the exchange-correlation energy at Fermi level are nonsingular. It is
natural to ask. what happens to this derivative when v = 3 ? Below. it will be
shown that there exist logarithm singularities in %1 and =550 but they cancel
each other EXACTLY'. as in the v = 1 and v = 2 cases. Here are the details.

With the help of relations (4.70). (4.84)-(4.87). (4.91)-(4.95). and following

approximations (1 =c¢: +; i=s:—:)

-~ A11 - A1'.’ T an

- (L_ — 0) = ._.2"1 —_—
K- —230 1 -An~1,a9
A+ 1/(2a)

MAEZ —=0) = =1 , 4.101)

- <o+ 1/(20) (

. +1/2 .
ko(ko = 0) = Ky (k aO)ﬂt—A — (4.102)
I I

;= =230 - Ag) +Ap - A= — - —— (4.103)

4 g (g z

1 1
(\z"'l)“\‘ "—Xl') _Azl ~:‘--312 = ,)_"'Az.’ —(T—“’Ad)(\z"' 1)
2Oy <O
(4.104)
we have. to order &Y,
col(l\ —)/\ )_£ _col
F3 R Ok, Slke ik, —kpy
—rol.., key- k: - < - e“di;’"—’ e—q';,.’

2= k:—'krz /;x dqydqu 1

=2
mm@4a~wm»ﬂ~u—qwu___
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(1 £ cos 24,k - , =1 |
/ d‘b ;EOS 20ykes)/2 k,(k-) ['2 +o = ol +5) + ‘;,qf} Dii;__
- -¢2/2 1+ %'k ',2-
/ d € ( Cos q F3)/ (1 _ QT_)
q_ 2
l_g 0S 2¢, ;t -~ -i 'i
/ dqy ;-s 2qykr3)/2 gy (k) [,\‘ +1- q_?(,\l +2) + QT} Di; _,
L e TR e k)2 ¢°
/ i, e (3,05 ¢ ,kr3); (1- L9
q_ 2
(civis:m)
(4.103)

where

=
1
i

1> -_«’il:('os'_’l:'p(}, _
—5/_xdqy;qy:e 3 ff =~ —0.5.

_ L= _11:C057Ap0
r:'.’: -—1/—3ququyl - _7_ = 0.

[W]]

(4.107)

and ¢, =\, -\, + —1— +ag(), + —5) Due to the fact that X3 becomes zero

when k. — 0. we neglect the inter-level coupling term in L';‘”(k — kr3) and
take D;(.\'3.k_.ci'y) = 1 in the above derivation. The Fermi edge group velocit

vs®(k; — kr3) can be calculated. from Eq. (4.99). as

~col

[ 9 4
v (ke = krp3) = Eﬁzu, Uk —kips

—rol> O 0 sg [ e 2 ey
e o7 e /k di_e dg,dq

- )
-—Lp; - 'q |




x gHlin =7, )k qzq L{Kcce + Ryss]

Iz
ro / dqydq e~%/2% "'v/2 [ K.+ R]sin 7kp3qysm 7kF3q

= 0. (4.108)
where the integrationsﬁ“l-j

x 2 T2 2. )
/ e % cosbrdr = ;/——e” tda (4.109)
0 2a

have been used. Eqs. (4.98) and (4.98) give exchange contribution to the group

velocity

[0
el‘(}m — kp3) = f&k (2 irklz -irx- Dk e,
~ b =3 -
ro[ - _ﬁ q1 \ Qv B} rul
:——2I 1\0-—-)/0 dqye !(—?J—:I')“: 5 1\0 (4.110)

Therefore the total group velocity vg¥(ky — kp3) gives

A
; —_— =l
Q= ) iz +3/(2aq) wo | Fo0

1=c.s

v (kr = kp3) = 3

}“(l\m) [
(4.111)

Above results show that the group velocity vy (Am) associated with the charge ex-
change within the (n = 0.0 = 1) LL have no contribution to the Fermi edge slope
of the many-body correction for the (n = 1.¢ = 1) LL. while that due to the ex-
change within the (n = 1.¢1) LL. C;O[(I;'F;;). is negative and nearlyv logarithmically
divergent. [ts sigularity part is exactly cancelled by the velocity tg *(kg3) caused
by the exchange between elecctrons in the (n = 0.0 = 1) and (n = 1.6 = 1) LLs.

118



For sample 1 in Ref. [30]. with Ry = 1.47 and ag = 3.76. the velocity L';C(l:'F) thus
obtained is about 3.21'9’“(11’;3). which is very closed to the value of 3.6L';"4(I:‘p3)

obtained from the numerical result given in Fig 4.15.
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4.3.5 Ground state energies (v = 3)

As discussed before. the ground state energy can be calculated by
Eikeal = siken + (Lo UV xe(y) L ko 1) (4.112)
with
(Lke 1V ye(y)hil ke 1) = /_Z dkl=, (2K, — ke Rk 20 )

Here. =% , in Eq.(4.113) is given by Eq. (4.96) and =, 4, in Eq.(4.96) by Eq.
(3.12). which is
k(=07 (4.114)

The dispersion curve for sample 1 is plotted in Figs. 1.16. In this figure we
can see that the top of the modified (n = 1.0 = 1) LL is larger than the bottom
of the empty (n = 1.0 = —1) LL. which means the correlation correction strongly
suppress the spin-splitting pertinent to the v = 3 QHE state and destruct this state.
This is consistent with the experimentally observed result 90 Also the Fermi edge

single-particle group velocity. calculated from this figure. is v, ~ 2.20 [ (kgy).

4.4 Exchange-correlation enhanced g* factor
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Single-particle Energy (Sample 1, v=3)

1 ; ; T -

T T

E/(hav2r)

'
i
w

Figure 4.16: Single-particle energies as functions of &, for sample 1 of Ref. 50,

with v = 3. The parameters are hQ = 0.65mel"B =~ 3.3T.11" =~ 0.30um.

-
o

8.66. and ~./Q x~ 25/3. Curve 1 shows E/(hI) = k. —1/(RZ) =
3/2 = k}(Q/=)?/2 for the empty (n = l.o = —1) LL. Curve 2. calculated
from Eq.(4.112). is the total energy E; ., /(hZ) of single electron occupving the
(n = 1.0 = 1) LL. Curve 3 is the quasi-Fermi level. Notice that there is no gap

that would lead to the v = 3 QHE state.



As is well known from studies of the effective ¢g* factor of the two-dimensional
electron gas (2DEG) [76]-[80;. the screening properties change substantially when
a Landau level (LL) is partially or fully occupied. Thus. it is of interest to assess
the influence of the screening on the filling factor in quantum wires. because the
later is more close to the experimental measurements.

In this section we deal with the effective exchange-correlation enhanced g

factor. It is part of the total enhanced effective g* factor. We calculate it as
9;;, = (En.k:.—l - En.k:.l)//JBB- ’ (4113}

which was used in many papers: it is different from that deduced from the activated
behavior of the conductance [50'. It is called optical ¢* factor because it is related
to the spin splitting between states having the same center coordinate y(k,). Note
that in Eq. 4.115 the effect of the Zeeman energy on the E. i. - should not be
neglected. for the exchange-correlation spin splitting may be small near the channel
edges. Generally. g; is inhomogeneous in y(k,). because the screening in QW's is
inhomogenecus in the transverse direction. However. based on our discussion in
previous sections. Eq. [4.115] will give g;, = ‘go} with filling factor v = 2.4...
where gq is the bare g factor. For AlGaAs/GaAs. the experimental measurement

gave gy = —0.44. cf. Ref. 83} For v =1.3.... Eq. 1.115] can be expressed as

9op = (Enk.1) /BB + 1gol . (4.116)

In Fig. {4.17" we plot g;,(n = 0). given by Eq. "4.116]. as a function of k.. in sample

1 -) -)
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Figure 4.17: The effective g factor g;, = 5% | /upB + go as a function of k.. in

sample 1 and 2 of {50] for filling factor v = 1.

I and 2 of Ref. {50] with v = 1. The calculated 9o 1s in the range 5 ~ 30. with
resonable approximation 1/ — 0. Figure {4.18] gives the calculated gop(n = 1) in
sample | for v = 3. It should be mentioned that the spin splitting for v = 3 is larger
than that for v = 1. because when v = 3 the inverse number N, = N — Nois
only 1/3 of the total electron _number. the N, of v = 1. Acturally, a similar result
was obtained in a 2DEG system: the exchange-correlation induced spin splitting

increases with the decrease of the inverse number \,,,. cf. Ref. {76].
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Figure 4.18: Same as in Fig. 4.17] in sample | for v = 3.
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Chapter 5

Screen fields & correlation

energies in QWs: B | QW

5.1 Channel characteristics without many-body

effects

In chapter 4. we considered the screening properties when the magnetic field
is perpendicular to the (1. y) plane. One important feature of the electron motion
in the QW is that its component in the transverse direction is “displaced” by its
motion in the longitudinal direction of the QW. Classically. this is caused by the
Lorentz interaction in the (r.y) plane. For QWs in paralle! magnetic fields. as

there is no such action in the (z.y) plane. we can expect that there is no coupling
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between the motions in these two directions. This is shown below.

We still consider the same QW discussed in chapter 3 and 4. i.c.. a 2DEG
confined in a narrow channel in the (z.y) plane of width 1§~ and length L. The
confining potential along the y direction is taken as |}, = m"Q%y2/2. We choose the
gauge for the vector potential A = (0.0. By). which gives a magnetic field in the r
direction. In the absence of the exchange and correlation effects. the one-electron

Hamiltonian h® is given by

i+ (p - By

h° +m VY2 + gopgs:B/?

+
2= 2m-*
B} p‘l
p- a -2 2,5 R -
=+ L 2 m Y2 = gypgs- B2 (3.1)
dm* 2m-*
where p.ia) = 0'a) and 27 = 22+ Q2 L2 = «iB/(m"¢)] have been used. Its

eigenvalues =, . , and eigenstates a) are given by

fnkro = hI(n+1/2) + BPkI/(2m*) + gougo B/2. (5.

a1
[
—

(r.yla) = (2 yink.) o) = €%5d, (y))io) /VL. (5.3)

Compared to the states in QW' in perpendicular magnetic fields. the above eigen-
state is simpler than that given by Eq. (3.13). i.e.. the electron motion in the y
direction is no longer displaced by the wavenumber k,. As a result. the one-electron

group velocity in Hartree Approximation



is (we/Q)? times larger than the group velocity vl 4(kz) given by Eq. (3.18). (To
distinguish from v, in previous chapters. we use u, to represent the group velocity
when the magnetic field is parallel to the magnetic field.) Besides. the matrix
elements. which are used to calculating the screened fields and relevant energies.

can also be simplified as

(n'kL e ink.) = /dre“k;rfI’;,(y)@n(y)e’k“'e'q"/[.([. — x)

= Og,—k_o(n'le®Vin)
Y n,!\l 2y l(ly n-n'_—-u 2rn-n' : '
= q——k-.o('r?) o 37 SLYTM () (n>n')
- \/

[}

where u = (};’/‘2. g, = qy\,'h/(nl'.}). Equation (3.5) can be obtained from Eq.
(3.14) by setting k_ =k, — k. = 0. In this case. the transition matrix elements
can be further factorized as the pure r space part and the pure y space part. It
would appear that the screening properties in the current case are a special case
of those discussed previously. Unfortunately. this is not true. This can be seen
by considering the electrons centered in the middle of the channel (y =0). In the
case of a perpendicular magnetic field. such electrons have &, — 0. cf. Fig. 5.1.
However. when magnetic field is parallel to the QW. electrons having the same
index of Landau level. say n = 0. are all "located™ near the middle of the channel.

where they can have various values of A, that has no upper limit. cf. Fig 5.2. For
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a QW with fixed linear charge density. its Fermi level is a constant. \When the
magnetic field B is increased so that A2l > (hkg)?/(2m"). or kpl < (1/2). then
all electrons are occupied at the (n = 0.0 = 1) LL and are centered in the middle
of the channel.(In the next section we will show that the spin splitting due to the
strong exchange and correlation correction can result in the obvious separation
between the occupied (n = 0.0 = 1) LL and the empty (n = 0.0 = —1) LL). On
the other hand. if we fix the intensity of the magnetic field and keep increase the
linear electron density. then the n > 1 LLs will be populated gradually. In this
chapter. we will consider two cases: 1) the lowest (n = l.a = 1) LL is occupted:

and 2) the (n = 1.0 = =1) LLs are fully occupied.
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Electronic Distribution in a QW

Magnetic field perpendicular to the (x-y ) plane
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Figure 5.1: Electron ditribution in a QW when the magnetic field is perpendicular

to the r — y plane. The electrons are displaced by yo(k,) = bk e/ (m"22).
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Electronic Distribution in a QW
Magnetic field B // QW
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Figure 5.2: Electron ditribution in a QW when the magnetic field is parallel to the

QW. All electrons are located around y = 0 and thev have different values of e
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5.2 [Exchange and correlation: formulation

In chapter 3. we presented the formalism of SFHA for electrons in narrow Q\Vs
subject to perpendicular magnetic fields. This formalism can also be applied to
QWs that are parallel to the magnetic field. provided that we make the corre-
sponding modifications. Actually. similar to Eq. (3.33). with the n = 0 LL being

occupied. the exchange and correlation energy can be calculated as

~€C

=0kl

/_ dq:dq,dq; U qy.q)) {0k, (0K, €9 9 ¥ 0k YIOKL Yl -,

/.)_\j;
{(27) m

= on /dl\ dqj(lqyl he —k.q,. q )01t YI0N 0 €478 10). (5.6)

where (™ is the screened potential in the QW when the magnetic field B is in x

direction. It is described by the modified Poisson-RPA integral equation

Uy d(qy -+ ([;) ‘ Uo
q - 8ag

X Z /dAmFQJ(nQ in ) {nsle T Y ing ),

na.ny

{(g:qy.q,) = / dq, U (qr-qy1-q,))

“'here Fo.j = (fnv.:vk:a —f"j~k:u "q:)/(fnu.k:a—fﬂj.k:o_‘q:) and fn.k: = 1//(1_%6(:—“';‘:—51; .T)~
Also. we split the screened potential in the exchange and the correlation parts.

0? = vod(gy +q,)/q + U°{gz-qy-q;)- Then Eq. (5.7) can be written as

L'

8—3qq Na.n;

L'lC(QIqu;) = /dlxIQFo 3(”0[6 q yl'h)(n_”e ‘q,Jln )
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U x e ’
+ 873q /_x deIL"l((II-le-q'J)

x ¥ /dkmFa_J(na|e'q“y|n_,)(n_,!e'”’””!na). (5.8)

Na.nj

which leads to same formalism given by Eq.(3.44). But it will give a different

integral equation. because of the new channel properties.
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5.3 Spin-splitting between filled (n = 0,0 = 1) LL
and empty (n =0,0 = —1) LL

5.3.1 Simplification of the integral equation and its ana-

lytic solution

Similar to the discussion in the previous chapters. we first consider the case
when only the lowest LL (n = 0.0 = 1) is occupied. which rxlea;ls there are only
Fon and Fp terms in the Eq. (3.8). Further. we reduce this integral equation
by neglecting the screening from the n > 2 LLs. Therefore. at T = 0A". the
Poisson-RPA equation is simplified as

)

-c ' t —1qyy1 —-1q,,}
CH0e:00-6) = g [ dhealFaal0le™0) (01 ¥10)

+Fo 1 (00e 7% 1) (1e ' %210) + Fy o(1]e ™% {0)(0le 57 1))

Ug

5237 /. 00U a1 Faa0ie 9]0) 0} %0
n -x

+Fo 1 (0le™ Y| 1)(1]e™ Y 10) + £y o(1]e ™" %410 (0]e 47" 1)]

(5.9)

Note that. due to different channel characteristics. integration of the coupling

coefficient F, ; gives results different from those in subsection 4.1.1. e.g..

. x . f0~k:n -q: fo.k;o
/FO.O(“\:Q = /_x dk o 2_,::_.[(km ~q.)? = k2]
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7-0(63:) -
~ —— (5.10
RulA(kr) )

where 70(d:) = (2kr/z) In [[1 + 4./ (2k)]/[1 = G/ (2kr)]). Also

2%
[ Fosdhea = [~ dhza = f"*‘z oo 20
[)m (kza = q:)* + RZ] hat
(5.11)
and
x i e
/Fl,()dk.to _:/ dk_[a - hf-l kg:. ' fok.‘o =z — ~ — -F:.
- 1 ; + 1\' J T(l{ro - (1;)- . hw[
{5.12)

With these relations and

(01€9Y.0) = 7% 4,
(nle'®¥ 0) = (01'%Y{n) = (HI—% \/—: a4 (5.13)
Eq. (5.8) can be rewritten as as

otg €~ 9T,

Ciiedyd)) = = = {nld:) = 24,4 )

roag e 9

- [ dane U . @) [olde) + 2240,

(3.14)

with ag = 2vo/(87*hul*(kr)) and ull*(kr) given by Eq. (5.4). The analytic

solution of Eq. (5.14) is attempted in the form

ol ~ = - Uo _(52-a°)2 ~ -~ - = - g -
U1(4z.4y-q,) = i GO 1n1(d2) + 12(3:)d, 3 (5.15)
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where 1)(q;) [ #2(d:)] can be obtained by substituting Eq. (5.15) into Eq. (5.14)
and equating the coefficients of the intra-level [adjacent-level] terms on both sides

of Eq. (5.14). respectively. The results are

PHCA p—
I\4r - =
1+ 292 jy( = )edz
1 1
x> —- = {1 - — 7 4] (5.16)
Ro(B)et | waRy(E)edl
aok? o
pa(qy) = T OnF B o (5.17)
1 + aok? [D(qx) — GG Ro(%)ed ]
Here D is defined by
x 320
=/ dg,e ™% ~q (3.18)
and
[\0 fe ) oii 4 / qu —. (5.19)

One important difference between the screened potential obtained in chapter 4
and the one given by Eq. (5.13) is that the former always oscillates in the (Gy- (i’y)
space. while the later does not. This is because. in chapter 4. such oscillations
are cause by the phase factor in Eq. (3.14) or the transition between different
displaced Fock states: but now the electron motion in the r and y directions are
independent of each other and there is no phase shift in the transition between the
non-displaced Fock states. This screened field feature will lead to very strong spin
splitting between the occupied (n = 0.0 = 1) LL and the empty (n = 0.0 = —1)
LL. We will discuss this in the next subsection.
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5.3.2 Exchange-correlation correction to the lowest LL

The exchange and correlation energies of electrons occupying the (
LL can be calculated by substituting Eqs

=0.0=1)
(5.13) and (3.3) into Eq. (5.6). We
have
e Lo /kF ' e %"
Y = dk d
OLZ (2u)3 kF t - qy (1
= /h‘épdll K, e 5.20
= Tt s, B ==
and
e g / dk, [~ didd, (1 = pai,)
27) [ (lu(ly
o heekp 2
- ”’,_/ AR Ry ()T
(2733 k. -kp 4

1
T |1 =

OVl
3 Ky

k24
i Je

. (3.21)
[n the above calculation. the correlation contributed from the adjacent LL is zero

because the second term in the square brackets in Eq. {
-

S (3.21) i
gy and ¢',. The total exchange and correlation correction is

1) is an odd function of
S0ka T0ket T T0kot
. krvkp . 1
=_‘°_/_de- L o(—t
(27)31 kr—kFp (1070(.1{_)/2
_ hu;“(kp) k

)
Ao k_—“)ek'-' !
Feke pheoke] gk
+ =
l [/0 /0 ] To(/{

(1]
o
(8
~—

(5.2
Figure 5.3 gives the distribution of the exchange-correlation energy £ | /(hk%)
over the normalized wavenumber k,/kg

From this figure we can see that the
spin-splitting due to the exchange-correlation correction is much stronger than the
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kinetic energy in the r direction. Therefore, if the electron density in the QW
is increased gradually. the (n = 0.0 = 1) LL will be populated first. followed by
the n =0.0 = -1 LL and so on. Figure 5.3 shows that the spin-splitting due to
exchange-correlation correction is stronger than that when the magnetic field is
perpendicular to the (x.v) plane. cf. Fig. 4.5. This is reasonable for now there is
no oscillation of the screened field.

Based on Eq. (5.22). we can show the non-singularity of the Fermi-level group

velocity ug(kr) as follows.

€c i a [
ug (kp) = TR
0 k9 ek i
= _u;{-‘ [——:—./ ———:——-—-—.—-—/ } "__'lk,—okp
kg —kg) Jo a('IfF' — k) Jo ‘0
= ullMkg)/2. (5.23)

which is a constant. Note that. because all electrons are centered near the y=20
axis. both integration foi'"’i"' dk_... and foi'"l:" dk_... have non-negligible contri-
butions to the Fermi level group velocity. This is different from the case when
BL@W. where the Fermi edge group velocity is basically contributed from the

corresponding edge and that from the opposite edge is very small.
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Figure 5.3: Energy dependence on the wavenumber when the QW is paral-
lel to the magnetic field and the (n = 0.6 = 1) LL is populated. Curve
1 shows the normalized kinetic energy without many-body interactions. i.e..
(fok,n — AZ/2 - gougs:B/2)/(h;'ﬁ’;’.~). Curve 3 is the normalized exchange-

[-2

correlation energy 8% _,/(AZk%). The r axis is the normalized wavenumber ke/kg.
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5.4 Many-body effects on the (n =0,0 = —1) LL

In this section. we assume the two LLs (n = 0.0 = +1) are fully occupied
and the other LLs are empty. Based on the discussion given in chapter 4 for
v = 2 and the approach used in the previous section. we have (5(qz-qy-q,) =

c00(qy +q,)/q + U5(q:.qy.q,) and

CSlaegg) = =2 ;[ dkcalFos(0le 410} 0~ %710y

+Fo1 (0¥ 1) (1]e ™' ¥|0) + Fy o(1]e™9+¥]0)(0je " B¥:1),]

2['0
S=3g

| dapUtiae aur-4;) [ Foo(0le™ 710} (0le ™50y
-x

~Fo1 (071 (e ™9%Y10) + £ o(1le "9 ¥i0) (0le T 1

(5.24)
Obviously. the solution of the above equation is
Uo _g2agt 2 - - - e i~ - -
L_f((]z QJ (Iy) = EI—,E Wy =gyt A [,UI(QI) +“'.’((lr)qu1,] . (3-)3)
with {1 = 2)
fulge) = ——2nl) L :
r ., T - G2 4.
1 -°-a()/(]"l\o(qT)tq;’4 1\0(%‘)6‘12 i (10‘7'()%[\'0(g\f)eqi'4
{2.26)
o agk%y
fi2(§:) s (5.27)

L+ aoh}v [D(dr) — GERo(%)edd 1]
and D being given by Eq. (5.18). When v = 1. Egs. (5.26) and (5.27) reduce to
Egs. (3.16) and (5.17). respectively.
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Similarly, when we neglect the Zeeman energy difference. the exchange and

correlation are (0 = £1.v = 2)

er Lo kz+kpa dl: P —.'-2_ _i -,
0.kz.0 (27-')3[ /:_En - \0(—4—)6 3 (0._8)
and
: ketkpr [::'2 i 1
oo = o [ AR Ko(=F)e” T | 1- . (529

The total exchange-correlation energy for electrons occupying the (n = 0.0 = 1)

or (n=0.0=-1) LL is

RulfAkpa) [ phe=ker  phe-ke] - k2, ,
ke o = e BT ( i [/ +/ F] die Lzl hF2 (5.30)
) 0 0 In

9] 1—k_ 2kpai]

!1-/:_' %Fa) |

Note that. for a given QW with fixed linear charge density. when the magnetic field
B is decreased so that the (n = 0.0 = =1) LLs are occupied. the dimensionless
Fermi wavelength will decrease from kr = kr to ks = kr1/2. Also. we have the

Fermi-level group velocity for

ug(kra) = 0.5(ug " (kr2)/2). (5.31)

which is a constant. The factor 0.5 in Eq. (5.31) is due to the screened field is the
contribution from both (n = 1.0 = =1) LLs, while the exchange-correlation only

related with those charges having same spin.
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5.5 Eigenvalue and eigenstate in a tilted mag-

netic field

The previous discussion dealt with two special cases: 1) magnetic field in the
: direction or BL the (r — y) plane: 2) magnetic field in the r direction or B//
the r axis. For a tilted field B having components both in the r and = directions.

the one-electron Hamiltonian A°. in the gauge A = (= B_y.0. B.y). is given by

(p: +eB.y/c)? PS (p: —eBuy/c)?

=2 2 g ;
= + + - +m "y~ /2 + goups.B/2
e 2m* 2m-*
p;  m p> 2 p?
! -2 2 e ' : (5.3
=5 = 2y - w) s - =+ qonps B2 (5.32)
2m* 2 2m- 2melt
where p.ia) = 0'a) has been used and 27 = 7+ Q% 2 = 2~ 22 =
elB_[/(m'c). »7 = 'elB /(m*c). and yo = prwe_/(m"Z*). The eigenvalue and

eigenstate of Eq. (5.32) are

fnkeo = h2(n + 1/2) + B2k2/(2m) + gopgo B/2. (5.33)

(r.yla) = (z.ylnk,)io) = e*7d,(y — yo))|o)/ VL. (5.34)

with m = 2*/(.2 + Q?). Therefore. the may-body problem in this case is very
similar to that when the magnetic field B is perpendicular to the r — y plane. if
we make some changes for the related constants, such as 2. yg and m.

In principle. when a magnetic deld B lies in a plane formed by anv two axes.
the corresponding many-body problems can be considered by making use of our
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previous work. provide that we choose a suitable gauge. However. if the tilted mag-
netic field B has components along the r.y. and = directions. the eigenvalue and
eigenstate of the one-electron Hamiltonian h® becomes be much more complicated.

We do not consider such case in this work.



Chapter 6

Summary

In this work. the screcned fields. the exchange-correlation corrections. and the
single-particle energies in narrow QWs subjected to strong magnetic fields have
been explored within the SHFA. As a basis of this work. the general principle
of the SHFA. its formalism. and its characteristics have been discussed. after an
overview of related classical many-body techniques used in 3DEG svstems.

In the SHFA the kev point is how to correctly find the screened Coulomb in-
teractions described by the semi-classical Poisson-RPA scheme. [n this work a
new approach has been proposed to solve this integral equation. The first step
of this approach is to simplify the integral equation by taking into account only
the intra-level and adjacent-level screening. Furthermore. the total screened field is
decomposed into different independent modes (not necessarily orthogonal) and the

integral equation can be solved by using the generalized mode-matching technique.
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One important feature of this approach is that it does not need the limitation
ro < 1. which is often required in the perturbative studies of electron-electron in-
teractions in QW's. With some extra work it can be applied to situations described
by v > 1 provided the magnetic field is strong enough and the dimensionless Fermi
wavenumber kg, large enough.

For QW' in perpendicular magnetic fields we used this approach to get the an-
alvtical approximations of the screened potentials for the v = 1.2.3 QHE states.
while. the approximation used in Ref. {35] only dealt with the v =1 QHE state.
The main characteristic of the solved screened potentials is that theyv diverge in the
long wavelength limit and are distributed in the form of damped sinusoidal oscilla-
tions. due to the fact that electron states in the parallel direction are “entangled”
with those in the perpendicular direction and there is a phase shift related with
the centers of the displaced Fock states.

To confirm the results obtained with the new approach. we also solved the
Poisson-RPA integral equation numerically. Note that we cannot use the tradi-
tional iterative method directly. because the integral kernel in the equation be-
comes very large in the long-range Coulomb limit. To avoid the divergent result
In repeat iterations. a new method. named “weighted iterative method”. has been
proposed. The cost of this method is that the convergence to the real solution is

slow. The larger the integral kernel. the slower the convergence and the higher

the accuracy requirement on the initial value. For the Poisson-RPA integral equa-
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tion, the analytic approximations can also be used as initial values and we can
get the numerical solution with any accuracy. provided the number of iterations
is large enough. The numerical solutions obtained agree very well with the an-
alyvtic solution of the integral equation. This also confirms that the generalized
mode-matching technique used in this work is reliable.

Based on the analvtic approximations of the screened potentials. we calcu-
lated the exchange and correlation energy dispersion and the group velocities near
the Fermi edges. The obtained exchange-correlations are symmetrical to k. i.e..
Sk.=1 = In_k.=1- This property is determined by the fact that the solved
screened fields are even functions of the wavenumber in the r direction. Actu-
ally. this is a reasonable conclusion. considering the geometric symmetry of the
QWs. We have also shown that. near the Fermi edge. the logarithmic divergence
in the exchange energy is cancelled exactly by that in the correlation energy. The
overall Fermi-edge group velocity. L';‘(/:'p,,). is caused by the nonsinglar part of the
correlation contribution that corresponds to the intra-level screened potential. For
QWS in strong enough magnetic fields. e.g.. B ~ 10T. with filling factor v = 1.2.
the group velocities vg(kg,){z = 1.2) are not so sensitive to the sample parameters
and are basically determined by the group velocities in the Hartree approximation
L'g’“(kp,)(i = 1.2). However. for v = 3. the group velocity g(kp3) is more sen-
sitive to the QW parameters. This is because the solved screened fields are more

sensitive to the sample parameters such as ro and Q/Z. Actually. for v = 3. the
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correlation due to the intra-level screened field, i.e., £1%..1- can be further decom-
posed into two parts: the one corresponding to the charge exchange within the
same LL (n = 1.0 = 1) and the one due to the exchange within the adjacent LL
(n = 0.0 = 1). The latter is relatively small and it has zero slope at the Fermi
edge. The many-body effects on the n = 1.0 = 1 LL of sample 2 of Ref. {30]
is not investigated in this work. This is because in this QW sample th~ offective
confining potential m*Z3{y — yo(p,)]?/2 around 1.5AZ is complicated and it goes
bevond the assumptions used in this work.

The dispersion of the sigle-particle energies for filling factor v = 1.2.3 have
been caleulated within the LDA. The results thus obtained agree well with those of
experiment and can help explain the experimentally observed '50.. /39 destruction
of the v = 1 and v = 3 QHE states in sample 1 of Ref. [50] and the existence of
the v = 1 QHE states in sample 2 as well as v = 2 states in both samples. The
Fermi-edge group velocity is an important parameter related to the edge properties
of QWs. We have obtained it from numerically calculated single-particle energy.

The effective g factor is related to the single electron energy by 9op = (Enkoo1—
Erni..)/pupB. For v =2 4.... this formula give 9op = 190l = 0.44. For v = 1.3. we
obtained a spatially inhomogeneous g factor in the transverse direction.

For QWs in strong parallel magnetic fields. one important feature is that the

electron states in the transverse and longitudinal directions are independent of each

other. which is fundamentally different from those states discussed previously. As
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a primary exploration. we considered two cases: 1)the iowest LL (n = 0.0 = 1)
is half occupied and 2) the lowest LL (n = 0.0 = +/ — 1) is fully occupied.
The simplified Poisson-RPA integral equation can be solved analvtically. The
screened fields obtained still diverge in the long wavelength limit. but have no
oscillations in the wavenumber space. Based on the analvtical solution of the
simplified Poisson-RPA. the spin-splitting caused by exchange and correlations
and the group velocities near the Fermi level have been calculated. Because all
electrons are centered in the middle of the channel and the screened fields have no
oscillation in the wavenumber space. the energy corrections due to exchange and
correlation are stronger than those in the v = 1.2 QHE states. Also rthe sroup
velocities uy(kg) are proportional to the group velocity u;”‘('kp). which has no
relation to the channel parameters.

With the exception of the v = 1 case for perpendicular magnetic fields. where
our results are similar for those of Refs. "35] and '36!. the results for v = 2.3 and
those for parallel fields are. to our knowledge. new. We hope thev will be useful
as a reference and in experimental studies.

One limitation of this work is that we onlyv considered the screened interaction
between electrons confined in a potential having hard boundaries at the edges of
the QW In real samples. the actual confining potential increases quickly near the
channel edge. For very steep confining potentials. we can neglect the flattening of

the edge states and consider the screening effects as in previous chapters. However.
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for a QW with V" > lum. usually the confining potential is rather flat near
the channel edge. e.g. when the gate voltage is less than ~ 117 in the split gate
technique. In this case we need to take into account the effects of edge flattening.
Accordingly. the SHFA-RPA we used should be modified to properly investigate
the screening problems in such QW's.

Another limitation is the rather specific orientations of the magnetic fields.
They were so chosen to simplify the numerical and analytical work. For a general
orientation of the field. it appears that one has to resort to a numerical work.
We expect to remove this limitation as well as the most important one mentioned

above in further studies.
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