INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Design and Implementation
of a Java Game Applet

Ye Zhu

A Major Report
in

The Department
of

Computer Science

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

July 2002
© Ye Zhu, 2002

of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ontawa ON K1A ON4 Onawa ON K1A ON4
Canada Canade Youw Sis Votre réddrence
Our e Nowe réédverce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-72953-2

Canadia

ABSTRACT

This report is an exploration of basic principles of game programming with Java as well
as some Java technologies. In this report, a basic framework for game programming is
briefly discussed and provided for programming Java games. On the base of the basic
principles for Java game programming, an online game called CrazyvRoad!.0 is designed
and implemented. As this is a project jointly with Ying Deng, in this report the principles
related to game programming are only briefly described.' Instead, the detail of the design
and implementation of the game CrazyRoadl.0 will be mainly covered in this report.
Some common suggestions on writing Java programs are also provided for making fast

and efficient Java games.

! For the detail of design and evaiuation of Java game programming environment. please refer to the
collaborated work Ying Dong’s report [15].

il

Table of Contents

Chapter 1 IPOQUCLION.vveectei ettt b b 1
Chapter 2: Introduction of Java and the reasons choose this topic retereene e tes s ne s 3
2.1 A Brief HISIOrY Of JAVA...cocm et ieee e nens s ettt sttt ssbbse st s s 3
2.2 JaVA JANGUARE. ...ttt st 8
2.3 JaVA PLAIOMIN ..ottt st e b s 12
2.4 Can Java be used to write Games? eeeteseeeeseuessresessetceeeaitat i e e r et e e e b st sas R e r s bease 15
2.5 Why choose this topic as a graduate level WOTK? ..o 16
Chapter 3: Java Game PrOGrammuing......cco.oouemurmuemusemetseneencneictssen st e 18
Chapter 4: CrazyRoad 1.0 --- OnliNe GAMEcoevememremrinesecniiiicei s 23
4.1 BrES DESCTIPLONcecericatcescaceieercacacasert s s s st b st s e 23
8.2 DIESIEN.cuvveeueueerucnsiuescrcreimei st s bR e e SRR S e R 24
4.3 IMPIEMENIALIONcoveeecrietecete et s s 27
B.3.1 MOB ClASS c.veeeveeeereemeiieieiees cveeeetenesestesesneses i be st s ner st ste b s ssassassas st s bt aress se st sassasan st natetsaesherirsens 27
4.3.2 GAMEENZINE ClaSS....oremeieeiciiiecriitn st 27
4.3.3 CrazyROAd CIaSsc.ococueumeuiiiiiincicienini st e 31
3.3.4 GAME ClASS ce.veveeiereeeerceiieeeteeesceteseseesseeresssaesisb s e et srsae e s e s s e s s s be R RO s b s st st a s sa b s snsas e aussemesesssines 48

4.4 RUNNINE thE BAMEc.erreciiiaiiciiteie ettt s 50
4.5 Improvements and EXIENSIONSo.vveiiieirieneiei e e 52
4.6 Problems when running this GamMe..........coviimiervrierernnirte e sen e sns s e sses 54
Chapter 5: A further discussion on Java and Java game Programimingooe.ueooreeecrnesuneiisisesisssssssssssees 57
5.1 Some common suggestions for Java game Programming..........cocecveomrermremseeusiereescsssssnssnrassnssmsniases 57
5.2 A further diSCUSSION ON JAVA.......c.ooocuietereiireesererccinscsitiseniese et ess s sss s tssssssesaassnssesssenssasnsansansasans 60
Chapter 6: CONCIUSIONS.cu.vurieericteiiriaeass s st e 67
REIEIICES: eeeeeeeeeieietiteeteseeeesteteessressesasae s e sestasentoserteb et ssne s st e R s e R e R st s S e s St s a st b e st se st earaserenra et er s eanan s 70
APPENGIX ..o eeoeeeeeceermecuerrecencaae i e aae s R s 72
A. HOW 10 10ad thiS BAMEceceeeeeceeceiinciceiete et srsne sttt 72
B. HOW 10 PIay thiS ZAIMEvnieiiieiciercereneses sttt s s 72

List of Figures

Figure 1. Java virtual Machine.14
Figure 2. The interface of the implemented game — CrazyRoad 1.0ccoomeemmiciciciiiicns 23
Figure 3. Class diagram for the implemented game - CrazyRoadl .0 - . .26
Figure 4. Conflict of the playing car with an obstacle car.........cccoocreircccnnees - .40

Chapter 1: Introduction

These days the word Internet is practically synonymous with the word computer. More
and more people are buying new computers just so they can surf the World Wide Web or
keep in touch with friends and family through e-mail. Increased connectivity among
users, as well as an exponential increase in the power of modern hardware and software,
has created a gray area between where the personal computer ends and the network
begins.

The cyber culture of the Internet has undoubtedly impacted our daily lives more than we
imagine. Most of the people who live with Internet browse the Web daily looking for
information and news. Some of us use the Internet for academic research. Some use it to
get some useful information such as road maps, ads or news etc. And for some, the magic
of the Web lies in the ability it affords one to play games online.

The video game industry is a multi-billion-dollar-per-year business. Most of this revenue
comes from games for home consoles or shrink-wrapped PC games [1]. It affords anyone
the perfect opportunity to develop more powerful and interesting applications in
computer gaming. Whether it is a fresh new gaming genre geared towards online play or
a new marketing scheme to help existing online games make money, opportunity
abounds. We can say, there is still plenty of room for people to make their marks on the
gaming industry. According to [1], Java games often appeal to the 85% of computer users
who are considered the real gamers, because Java games are usually simple, fun games
that require minimal hardware requirements from the user. People can use this fact to

spread their games to all types of gamers.

This report will show the basic principle to use Java language to create robust, flexible
gaming applications. It covers the fundamental ideas of creating games using Java with a
detailed description of a case study (an online game implementation — CrazyRoad!.0).

This report also describes the work carried out in collaboration with Ying Dong [15].

(%)

Chapter 2: Introduction of Java and the reasons choose this
topic

2.1 A Brief History of Java

At first glance, it may appear that Java was developed specifically for the Web. However,
interestingly enough, Java was developed independently of the Web, and went through
several stages of metamorphosis before reaching its current status for the Web. Below is

a brief history of Java from its infancy to its current state.

Oak
According the Java FAQ [12], Bill Joy, currently a vice president at Sun Microsystems, is

widely believed to have conceived the idea of a programming language that later became
Java. In late 1970's, Joy wanted to design a language that combined the best features of
MESA and C. In an attempt to rewrite the UNIX operating system in 1980's, Joy decided
that C++ was inadequate for the job. A better tool was needed to write short and effective
programs. It was this desire to invent a better programming tool that swayed Joy, in 1991,
in the direction of Sun's "Stealth Project” as named by Scott McNealy, currently Sun's
CEO [12].

In January of 1991, Bill Joy, James Gosling, Mike Sheradin, Patrick Naughton (formerly
the project leader of Sun's OpenWindows user environment), and several other
individuals met in Aspen, Colorado, for the first time to discuss the ideas for the Stealth
Project. The goal of the Stealth Project was to do research in the area of application of
computers in the consumer electronics market. The vision of the project was to develop
"smart" consumer electronic devices that could all be centrally controlled and

programmed from a handheld-remote-control-like device. According to Gosling, "the

goal was ... to build a system that would let us do a large, distributed. heterogeneous
network of consumer electronic devices all talking to each other." With this goal in mind,

the Stealth group began work [13].

Members of the Stealth Project, which later became known as the Green Project, divided
the tasks among themselves. Mike Sheradin focused on business development, Patrick
Naughton began work on the graphics system, and James Gosling identified the proper
programming language for the project. Gosling, who had joined Sun in 1984, had
previously developed the commercially unsuccessful NeWS windowing system as well as
GOSMACS - a C language implementation of GNU EMACS. He began with C++, but
soon afterward was convinced that C++ was inadequate for this particular project. His
extensions and modifications to C++ (also known as C++ ++ --) were the first steps
toward the development of an independent language that would fit the project objectives.
He named the language "Oak" while staring at an oak tree outside his office window. The
name "Oak" was later dismissed when to a patent search determined that the name was
copyrighted and used for another programming language. According to Gosling, "the
Java development team discovered that Oak was the name of a programming language

that predated Sun's language, so another name had to be chosen" [13. 12].

"It's surprisingly difficult to find a good name for a programming language, as the team
discovered after many hours of brainstorming. Finally inspiration struck one day during a
trip to the local coffee shop," Gosling recalls. Others have speculated that the name Java
came from several individuals involved in the project: James gosling, Arthur Van hoff,

Andy bechtolsheim [14].

There were several criteria that Oak had to meet in order to satisfy the project objective.
Given the wide array of manufacturers in the consumers electronics target market, Oak
would have to be completely platform independent and function seamlessly regardless of
the type of CPU in the device. For this reason, Oak was designed to be an interpreted
language. since it would be practically impossible for a complied version to run on all
available platforms. To facilitate the job of the interpreter, Oak was to be compiled to an
intermediate "byte-code" format that then would be passed around across the network and
executed/interpreted dynamically [13, 12, 14].

Additionally, reliability was of great concern. A consumer electronics device that would
have to be "rebooted" periodically was not acceptable. Another important design
objective for Oak would then have to be achieved by minimizing programmer-introduced
errors. This was the motivation for several important modifications to C++. The concepts
of multiple-inheritance and operator overloading were identified as sources of potential
errors and were eliminated in Oak. Furthermore, in contrast to C++, Oak included
implicit garbage collection, thereby providing efficient memory utilization and higher
reliability. Finally, Oak attempted to eliminate all unsafe constructs used in C and C++
by only providing data structures within objects [13, 14].

Another essential design criterion was security. By design, Oak-based devices were to
function in a network and often exchange code and information. Inherently, security is of
great concern in a networked environment, especially in an environment as network-
dependent as the conceived Oak-based systems. For this reason, pointers were excluded
from the design of Oak. This would theoretically eliminate the possibility of malicious

programs accessing arbitrary addresses in memory [13, 14].

If Oak was going to be widely accepted and used within the consumer electronics
industry, it would have to be simple and compact, so that the language could be mastered
relatively easily and development would not be excessively complex. Some would argue
that Oak/Java is C++ done right, but the jury is still out on that.

In April of 1991, Ed Frank, a SPARCstation 10 architect, joined the Green Project. He
led the project's hardware-development effort. In two months they developed the first
hardware prototype. known as star-seven (*7). The name *7 was somewhat
demonstrative of the project's objective. *7 was the key combination to press on any
telephone to answer any other ringing telephone on their network. In the meantime,
Gosling was beginning work on the Oak interpreter. By August of 1991, the team had a
working prototype of the user interface and graphical system, which was demonstrated to
Sun's co-founders Scott McNealy and Bill Joy [13].

Development of Oak, the Green OS, the user interface, and the hardware continued
through the summer of 1992. In September of that year, the *7 prototype was complete
and demonstrated to McNealy and Joy. The prototype was a PDA-like (personal digital
assistant) device that Gosling described as a "handheld remote control.” Patrick Naughton
proclaimed that "in 18 months, we did the equivalent of what 75-people organizations at
Sun took three years to do an operating system, a language, a toolkit, an interface, a new
hardware platform" [13].

While impressive, this type of technology lacked market appeal, as later demonstrated by
Apple's Newton PDA. The Green Project's business planner, Mike Sheradin, and
hardware designer, Ed Frank, had envisioned a technology similar to that of Dolby Labs,

which would become the standard for consumer electronics products [13].

FirstPerson
In November of 1992, the Green Project was incorporated under the name FirstPerson.
Given Java's lack of success in the consumer electronics industry, the company's
direction was somewhat uncertain. Under Sun's influence, the company began
reevaluating its mission.
in early 1993, Time-Warner issued an RFP (request for proposal) for a set-top box
operating system and interactive, video-on-demand technology. FirstPerson identified
this area as a new target market and began working in that direction. However, despite
FirstPerson's great efforts, SGI was granted the contract by Time-Warner. By mid 1993
Sun began negotiating with 3DO to provide a Java-based OS for their set-top box. The
negotiations were, however, unsuccessful and a deal was never made. FirstPerson was
left on its own without any viable business prospects. Another attempt by the company to
market its interactive TV technology failed when in February of 1994 a public launching
of their products was canceled [13].
A higher-level review of FirstPerson determined the interactive TV market to be
immature in 1994. FirstPerson then shifted its focus yet again. Business plans were
submitted to Sun's executives for developing Oak-based on-line and CD-ROM
applications. Sun's response was not favorable, and FirstPerson was dissolved. Most of
FirstPerson's employees moved to Sun Interactive to work on digital video data servers.
However, a few individuals from FirstPerson still pursued the objective of finding a home
for Java in a networked desktop market [13].

Java and the Web

In June of 1994, Bill Joy started the "Liveoak” project with the stated objective of
building a "big small operating" system. In July of 1994, the project "clicked" into place.
Naughton got the idea of putting "Liveoak” to work on the Internet while he was playing
with writing a Web browser over a long weekend. Just the kind of thing we'd want to do
with our weekend! This was the turning point for Java [13].

The Web, by nature, had requirements such as reliability, security, and platform
independence which were fully compatible with Java's design parameters. A perfect
match had been found. By September of 1994, Naughton and Jonathan Payne (a Sun
engineer) start writing "WebRunner," a Java-based Web browser which was later
renamed "HotJava." By October 1994, HotJava was stable and was demonstrated to Sun
executives. This time, Java's potential, in the context of the Web. was recognized and the
project was supported. Although designed with a different objective in mind, Java found
a perfect match in the Web. Introduction of Java marked a new era in the history of the
Web. Information providers were now given the capability to deliver not only raw data,
but also the applications that would operate on the data.

Sun formally announced Java and HotJava at SunWorld '95. Soon afterward. Netscape
Inc. announced that it would incorporate Java support in their browser. This was a great
triumph for Java since it is now supported by the most popular browsers in the world.
Later, Microsoft also announced that they would support Java in their Internet Explorer
Web browser, further solidifying Java's role in the Web.

2.2 Java language

According to the white paper of Java from Sun, Java language has the following

properties:

Simple, Object Oriented, and Familiar

The Java programming language is designed to be object oriented from the ground up.
Object technology has finally found its way into the programming mainstream after a
gestation period of thirty years. The needs of distributed, client-server based systems
coincide with the encapsulated, message-passing paradigms of object-based software. To
function within increasingly complex, network-based environments, programming
systems must adopt object-oriented concepts. Java technology provides an object-based
development platform.

Programmers using the Java programming language can access existing libraries of tested
objects that provide functionality ranging from basic data types through I/0 and network
interfaces to graphical user interface toolkits. These libraries can be extended to provide
new behavior.

Keeping the Java programming language looking like C++ results in it being a familiar
language, while removing some unnecessary complexities of C++. Having the Java
programming language retain many of the object-oriented features and the "look and

feel" of C++ means that programmers can migrate easily to the Java platform.

Robust and Secure

Java provides extensive compile-time checking, followed by a second level of run-time
checking. Language features guide programmers towards reliable programming habits.
The memory management model works in this way: objects are created with a new

operator. There are no explicit programmer-defined pointer data types, no pointer

arithmetic, and automatic garbage collection. This simple memory management model
eliminates entire classes of programming errors.

Java technology is designed to operate in distributed environments, which means that
security is of paramount importance. With security features designed into the language
and run-time system, Java technology lets user construct applications that can't be
invaded from outside. In the network environment, applications written in the Java
programming language are secure from intrusion by unauthorized code attempting to get

behind the scenes and create viruses or invade file systems.

Architecture Neutral and Portable

Java technology is designed to support applications that will be deployed into
heterogeneous network environments. In such environments, applications must be
capable of executing on a variety of hardware architectures. Within this variety of
hardware platforms, applications must execute atop a variety of operating systems and
interoperate with multiple programming language interfaces. To accommodate the

diversity of operating environments, the Java CompilerTM

product generates bytecodes--
an architecture neutral intermediate format designed to transport code to multiple
hardware and software platforms. The interpreted nature of Java technology makes the
same Java programming language byte codes possibly run on any platform.

The architecture-neutral and portable language platform of Java technology is known as
the Java virtual machine. It's the specification of an abstract machine for which Java
programming language compilers can generate code. Specific implementations of the
Java virtual machine for specific hardware and software platforms then provide the

concrete realization of the virtual machine. The Java virtual machine is based primarily

10

on the POSIX interface specification--an industry-standard definition of a portable

system interface.

High Performance

Performance is always a consideration. The Java platform achieves superior performance
by adopting a scheme by which the interpreter can run at full speed without needing to
check the run-time environment. The automatic garbage collector runs as a low-priority
background thread, ensuring a high probability that memory is available when required,
leading to better performance. Applications requiring large amounts of compute power
can be designed such that compute-intensive sections can be rewritten in native machine
code as required and interfaced with the Java platform. In general, users perceive that

interactive applications respond quickly even though they're interpreted.

Interpreted, Threaded, and Dynamic

The Java interpreter can execute Java bytecodes directly on any machine to which the
interpreter and run-time system have been ported.

The Java platform supports multithreading at the language level with the addition of
synchronization primitives: the language library provides the Thread class, and the run-
time system provides monitor and condition lock primitives. At the library level, Java
technology's high-level system libraries have been written to be thread safe: the
functionality provided by the libraries is available without conflict to multiple concurrent
threads of execution.

While the Java Compiler is in its compile-time static checking, the language and run-time

system are dynamic in their linking stages. Classes are linked as needed. New code

1

modules can be linked in on demand from a variety of sources. In the case of the HotJava
Browser and similar applications, interactive executable code can be loaded from
anywhere, which enables transparent updating of applications. The result is on-line
services that constantly evolve; they can remain innovative and fresh, draw more
customers, and spur the growth of electronic commerce on the Internet.
2.3 Java platform
A platform is the hardware and software environment in which a program runs. There are
many popular platforms in the world like Windows 2000, Linux, Solaris, and MacOS.
Most platforms can be described as a combination of the operating system and hardware.
The Java platform differs from most other platforms in that it's a software-only platform
that runs on top of other hardware-based platforms.
The Java platform has two components:

e The Java Virtual Machine (Java VM)

e The Java Application Programming Interface (Java API)
Machine language consists of very simple instructions that can be executed directly by
the CPU of a computer. Almost all programs, though, are written in high-level
programming languages such as Java, Pascal, or C++. A program written in a high-level
language cannot be run directly on any computer. First, it has to be translated into
machine language. This translation can be done by a program called compiler. A
compiler takes a high-level-language program and translates it into an executable
machine-language program. Once the translation is done, the machine-language program
can be run any number of times, but of course it can only be run on one type of computer

(since each type of computer has its own individual machine language). If the program is

to run on another type of computer it has to be re-translated, using a different compiler,
into the appropriate machine language.

There is an alternative to compiling a high-level language program. Instead of using a
compiler, which translates the program all at once, we can use an interpreter, which
translates it instruction-by-instruction, as necessary. An interpreter is a program that acts
much like a CPU, with a kind of fetch-and-execute cycle. In order to execute a program,
the interpreter runs in a loop in which it repeatedly reads one instruction from the
program, decides what is necessary to carry out that instruction, and then performs the
appropriate machine-language commands to do so.

One use of interpreters is to execute high-level language programs. For example, the
programming language Lisp is usually executed by an interpreter rather than a compiler.
However, interpreters have another purpose: they can let us use a machine-language
program meant for one type of computer on a completely different type of computer. For
example, there is a program called "Virtual PC" that runs on Macintosh computers.
Virtual PC is an interpreter that executes machine-language programs written for IBM-
PC-clone computers. If we run Virtual PC on our Macintosh, we can run any PC
program, including programs written for Windows. (Unfortunately, a PC program will
run much more slowly than it would on an actual IBM clone. The problem is that Virtual
PC executes several Macintosh machine-language instructions for each PC machine-
language instruction in the program it is interpreting. Compiled programs are inherently

faster than interpreted programs.)

The designers of Java chose to use a combination of compilation and interpretation.

Programs written in Java are compiled into machine language, but it is a machine

13

language for a computer that doesn't really exist. This so-called "virtual" computer is
known as the Java virtual machine. The machine language for the Java virtual machine is
called Java bytecode. There is no reason why Java bytecode could not be used as the
machine language of a real computer, rather than a virtual computer. In fact, Sun
Microsystems -- the originators of Java -- have developed CPU's that run Java bytecode

as their machine language.

However, one of the main selling points of Java is that it can be used on any computer.
All that the computer needs is an interpreter for Java bytecode. Such an interpreter
simulates the Java virtual machine in the same way that Virtual PC simulates a PC
computer.

Of course, a different Jave bytecode interpreter is needed for each type of computer, but
once a computer has a Java bytecode interpreter, it can run any Java bytecode program.
And the same Java bytecode program can be run on any computer that has such an
interpreter. This is one of the essential features of Java: the same compiled program can

be run on many different types of computers.

Java interpretor

for Macintosh

Java - Java —
p — Compiler -"Bybecode Java interpretor
rogram Program for Windows 95

Java interpretor
for UNIX

Figure 1. Java virtual machine

Why use the intermediate Java bytecode at all? Why not just distribute the original Java

program and let each person compile it into the machine language of whatever computer

he/she wants to run it on? There are many reasons. First of all, a compiler has to
understand Java, a complex high-level language. The compiler is itself a complex
program. A Java bytecode interpreter, on the other hand, is a fairly small, simple program.
This makes it easy to write a bytecode interpreter for a new type of computer; once that is
done, that computer can run any compiled Java program. It vould be much harder to

write a Java compiler for the same computer.

Furthermore, many Java programs can be downloaded over a network. This leads to
obvious security concerns: we don't want to download and run a program that will
damage our computer or our files. The bytecode interpreter acts as a buffer between us
and the program we download. We are really running the interpreter, which runs the
downloaded program indirectly. The interpreter can protect us from potentially dangerous
actions on the part of that program.

There is no necessary connection between Java and Java bytecode. A program written in
Java could certainly be compiled into the machine language of a real computer. And
programs written in other languages could be compiled into Java bytecode. However, it is
the combination of Java and Java bytecode that is platform-independent, secure, and
network-compatible while allowing us to program in a modern high-level object-oriented

language.

2.4 Can Java be used to write Games?

Game programming usually requires knowledge of mathematics, physics, graphics
programming, artificial intelligence, and so on. This can be quite difficult for many
people who like to write their own games. So if a language has many built-in constructs

(these constructs can deal with the calculations, image processing or other computing

15

which are some of the critical required functionalities for game programming), then such
kind of language can allow newcomers to the field of game programming to feel
comfortable more quickly, allowing them to break down projects into small, manageable
steps. Some languages that are popular for games like C/C++ all have rich feature set and
powerful libraries to deal with those required tasks for game programming. Java, like
C/C++, also has a large set of packages (libraries) that can deal with various kinds of
calculation, computing and image processing. Its 2D and 3D libraries improves its ability
to deal with graphics. And also Java is completely object-oriented. So we can say that

Java has the necessary features for game programming.

2.5 Why choose this topic as a graduate level work?

Java first caught my eyes due to its simple and easy to use API. Because of my C/C++
background and the similarity of look and feel of Java with C++, it took me little time to
learn to use Java in the beginning. Later I also found that Java is easy to use for building
GUI for applications and writing small applications (applets) for the web. This began to
catch my attention more and made me change my interest from C/C++ to Java. These
years Java has improved and spread very fast that nowadays more and more software
developer and programmers are using Java technology to design and develop software
programs. More and more companies are using Java to bind or implement their products,
especially in e-commerce business field. With every new version or new product of Java,
it often brings us new concepts, new thinking and new technologies. Some Java
technology that are presently popular like J2EE, JMS and CORBA with Java even make
me feel quite necessary to do some research on Java. And, from the above description we

can know that Java is a high-level programming language that has a large set of packages,

16

powerful functionalities in many fields and a lot of good features, and game
programming requires so much knowledge of mathematics, physics, graphics
programming, artificial intelligence, especially good understanding of object-oriented
concept and so on. So I think this is quite a good choice for a graduate level work.

In this project a java game applet is designed and implemented using the Java game

programming environment designed by Ying Dong [15] in a collaborated work.

Chapter 3: Java Game Programming

This chapter present a summary of the Java game programming environment designed by
Ying Dong [15]. The design and implementation of the game applet using this

environment, which is the main focus of this report, will be presented in the next chapter.

Creating games with Java is a lot like creating games with other languages. There are
usually some basic components that consist of a game, such as movable objects, some
backgrounds, friendly graphical user interface etc. In general, dealing with graphics is the
most important task in game programming. Usually, almost in any kind of languages, the
basic idea for game programming is that we need to deal with the design of movable
objects, we need to deal with the design of a graphics engine to keep track of movable
objects, and we also need to deal with double buffering to make the movement look
smooth.

Java has the ability to take care of a lot of the low level or tedious work we would have to
do if we were writing a game in another language. For example, Java provides built-in
support for transparent pixels, making it easier to write a graphics engine that can draw
nonrectangular objects. Java also has built-in support for allowing several different
processes or tasks to run at once. And, the easy implementation of multiple threads makes
Java a better way for game application.

From the above brief description we can know that for a game programming using
object-oriented language such as Java, we need a class to represent the movable objects,
since almost all games consist of a lot of movable objects: and we also need a class to
represent the graphics engine since those movable objects need to be controlled by some

mechanisms. We should not put these two classes into a single class since they play

18

different roles in a game. Additionally we also need a place (or component) to install the
graphics engine, just like installing an engine into a car. This place (or component) is
usually where those movable objects will be drawn on. In general, at least three classes
are required to program a game in Java. One is used to represent a movable object; one is
used as graphics engine to control all the movable objects; and the last one is used to
install the graphics engine and usually is the entry point of the program to make the game
run. These three classes form the minimum framework for Java game programming, or
we can even say for the game programming with any other language. There might be
some alternatives, but eventually we will find that their basic ideas are quite similar.
The details referring to the principles of Java game programming are covered in the
collaborated work of Ying Dong [15]. From [15] we know that the framework required
for building a Java game consists of the following classes:
(1) MOB

Listing 1. The code creating a movable object block (MOB).

import java.awt.*;
public class MOB
{

public intx=0;

public inty=0;

public Image picture;
public MOB (Image pic)

{
picture = pic;
;
;
The instance of this class represents a movable object. We have a movable object that we

can move around the screen just by changing its x and y values. The graphics engine will

take care of redrawing the movable object in the new position.

19

(2) GraphicsEngine

Listing 2. A bare-bones of graphics engine that tracks movable objects.

import java.awt.*;
import java.awt.image.*;
public class GraphicsEngine

{

H

Chain mobs = null;
public GraphicsEngine()

{}

public void AddMOB (MOB new_mob)
{

mobs = new Chain (new_mob, mobs);

}

public void paint (Graphics g, ImageObserver imob)
{
Chain temp_mobs = mobs;
MOB mob;
while (temp_mobs != null)
{
mob = temp_mobs.mob;
g.drawImage(mob.picture, mob.x, mob.y, imob);
temp_mobs = temp_mobs.rest;

}

class Chain

{

public MOB mob;
public Chain rest;
public Chain (MOB mob, Chain rest)

{

this.mob = mob;
this.rest = rest;

}

20

This class keeps track of the movable objects and draws them in the proper places when

necessary. Class Chain is a linked list used to keep a list of moveable objects that are to

be drawn. We draw the movable objects by traversing the whole list.

(3) Game

Listing 3. A sample applet installing GraphicsEngine

import java.awt.¥*;

import java.applet.Applet;
import java.net.URL;

public class Game extends Applet

{

GraphicsEngine engine;
MOB picturel;
public void init()
{
try
{
engine = new GraphicsEngine();
Image imagel = getimage(new URL(getDocumentBase(),
"one.gif"));
picturel = new MOB(imagel):
engine. AddMOB(picturel);
f

catch (java.net.MalformedURLException ¢)

{

System.out.printIn("Error while loading pictures..."):
e.printStackTrace();

i
)

public void update(Graphics g)
{

paint(g);
;

public void paint (Graphics g)
{

engine.paint(g, this);

}

public boolean mouseMove (Event evt, int mx, int my)

{

picturel.x = mx;

21

picturel.y = my;
repaint();
return true;

)

This class is the place to install the graphics engine. When drawing movable objects, the
drawing task is transferred from here to its installed graphics engine and it is finally the
graphics engine that draws these objects.

In the remaining part of this report, we will describe the detailed design and
implementation of an on-line game called CrazyRoadl.0, which is implemented on the

basis of the above mentioned framework.

[£5]
(2]

Chapter 4: CrazyRoad 1.0 --- Online Game

4.1 Brief Description

CrazyRoad1.0 (hereafter called CrazyRoad) is an online game which is designed and
implemented in Java as a Java applet, and which users may download from the web site
and run it on their local computer using a web browser. It is designed and implemented
using all the technologies mentioned above and described in the collaborated work [15]
by making some changes and adding some new features to the framework. When the

game runs, it is shown in Figure 2:

-- Crazy Road 1.0 --

NewGame| Ext| swmrGame| i | -on | oo | Hep| @wuscon CMusicon

Figure 2. The interface of the implemented game — CrazyRoad1.0

The game is quite simple. From the above figure we can see that there are three lines on

the screen. These are the driving lanes on the road. The road is separated into two lanes

by the middle driving line. A car with red color and its head facing left is the playing car
(driven by the user) whose moving direction is to the left side in this game. The cars with
yellow color and their heads facing right are the obstacle cars whose moving directions
are to the right side. The user uses the space bar on the keyboard to control the position of
the playing car to avoid hitting by the obstacle cars whose moving directions are opposite
to that of the playing car. In this game, we only allow two possible positions for the
playing car to go, which are up per lane or lower lane since this game just has two lanes.
At the beginning of the game, the user is provided one playing car on the road plus three
backup playing cars in the garage shown on the right top of the screen. Once the playing
car has collided with an obstacle car, the number of the backup playing cars will be
reduced by one until no backup cars are stored in the garage. If the playing car on the
road collides with an obstacle car and at this time there are no more backup playing cars
stored in the garage, the game is over and stops running. On the top of the screen, the
user can check the message related to the level of the game the user has reached and the
score the user has gained. At the bottom of the screen. there are some buttons from which

the user can control the game or do some selection or get help.

4.2 Design

This game uses all the basic Java game programming technologies (or framework)
mentioned in section 6. Here we need a MOB (movable object) class to represent
movable objects, a graphics engine to control all movable objects and a place to install
the graphics engine. We also need to make some changes to the framework since now the
game we are dealing with is comparatively graphics intensive and with a graphical user

interface. There will be four classes in this game instead of three classes as in the basic

24

framework mentioned in section 6. These classes are GameEngine class, MOB
(movable object) class, CrazyRoad class and Game class. MOB class represents a
movable object. It uses the basic MOB class in the framework with adding priority and
visible features. GameEngine class controls all movable objects. It still uses the basic
structure of a graphics engine in the framework but has some changes in it. CrazyRoad
class is a subclass of Panel. Panel is a component of AWT and a container that can
contain other components. In this program we make CrazyRoad as a subclass of Panel in
order to draw those movable objects on it. CrazyRoad also implements Runnable.
Runnable is an interface in java.lang package. It should be implemented by any classes
whose instances are intended to be executed by a thread. As each instance of CracyRoad
will be executed as a thread, we make CrazyRoad implement Runnable here. The main
functionality of class CrazyRoad is to install the graphics engine and initialize the
movable objects and actually control the view of all the movable objects in the movable
objects list. Game class extends Applet class. It is the entry point of the game. It loads all
the required images, initializes a CrazyRoad class instance and builds up the graphic user

interface. The relationship between the classes can be represented as in Figure 3:

Game

CrazyRoad czy_road;
Image car_pio:

public void init()
public void paint()

CrazyRoad
Game game;
Thread kicker:

public void run()
public void paint()

GameEngine
Chain mobs;
Component ct:

public void AddMOB()
public void paint()

i

Chain MOB
MOB mob; int x=0;
Chain rest; int y=0;
‘
public Chain() public MOB()

Figure 3. Class diagram for the implemented game — CrazyRoad1.0

26

The reason why we add a new class CrazyRoad here instead of using the Game class to
install the graphics engine is that this program has a graphical user interface, if we use
applet Game to control both the GUI for the game and the drawing of movable objects, to
draw these movable objects, we have to re-write Game’s paint() method and we need to
give the position for the movable objects in this method to indicate where to draw them:;
in this way we also have to draw those GUI components for the game in paint() instead
of adding these components to some containers and letting the layout manager of the
applet to control them, this makes it very hard to give the exact position for these
components and also, if during the game we change the size of the window in which the
game is running, it will be very difficult to control the extending of these components so
that they can fit the change of the windows size well. So instead, we use applet Game to

control the user interface and CrazyRoad to control the drawing of the movable objects.

4.3 Implementation

All the source code can be found in Appendix C.

4.3.1 MOB class

MOB class is the same as the extended MOB class in [15]. Its instance represents a
movable object. It incorporates the priority scheme to make every movable object have a
priority number. The priority of every movable object is initialized with the value of 0 for

ease of use.

4.3.2 GameEngine class
Listing 4. The code for class GameEngine

import java.awt.*;
import java.awt.image.*;

public class GameEngine

{
Chain mobs = null;
public Image background;
public Image buffer;

Graphics pad:
Component ct;
boolean first_time = true;

String title = "-- Crazy Road 1.0 --";
String level = "Level: ";

String score = "Score: ";

String car = "Car: ";

int level_num = 0;

int score_num = 0;

public GameEngine(Component ¢)

{

ct=c;
1
f

public void AddMOB (MOB new_mob)
{

mobs = new Chain(new_mob, mobs);

}

public void paint(Graphics g, ImageObserver imob)
{
if (first_time)
{
buffer = ct.createImage(ct.getSize().width, ct.getSize().height);
pad = buffer.getGraphics();
first_time = false;
}
if (background != null)
{
pad.drawlmage(background, 0, 0, ct.getSize().width, ct.getSize().height,
imob);
pad.setFont(new Font("TimesRoman", Font. BOLD+FontITALIC, 36));
pad.drawString(title, 35, 45);
pad.setFont(new Font("dialog", 1, 14));
pad.drawString(level + level_num, ct.getSize().width/2, 80);
pad.drawString(score + score_num, ct.getSize().width/2 + 70, 80),

28

pad.drawString(car, ct.getSize().width/2 + 200, 80);

}

Chain temp_mobs = new Chain(mobs.mob, nuli);
Chain ordered = temp_mobs;
Chain unordered = mobs.rest;
MOB mob;
while (unordered != null)
{
mob = unordered.mob;
unordered = unordered.rest;
ordered = temp_mobs;
while(ordered '= null)
{
if (mob.priority < ordered.mob.priority)
{
ordered.rest = new Chain(ordered.mob. ordered.rest);
ordered.mob = mob;
ordered = null;

}

else if (ordered.rest = null)
{
ordered.rest = new Chain{mob, null);
ordered = null;

|

else ordered = ordered.rest;

i

}
while (temp_mobs != null)
{
mob = temp_mobs.mob;
if (mob.vistble)
{

pad.drawlmage(mob.picture, mob.x, mob.y, imob);

1
i

temp_mobs = temp_mobs.rest;
!

J
g.drawlmage(buffer, 0, 0, imob);

t
)

class Chain

{
public MOB mob;

public Chain rest;
public Chain(MOB mob, Chain rest)
{

this.mob = mob;
this.rest = rest;

}
H

GameEngine class uses the basic structure of class GraphicsEngine in the framework
with some changes. Some information about the game such as the name of the game. the
level of the game and the scoring of the game etc. are controlled and shown by this class.
We can see that now the constructor has become:

public GameEngine (Component c)

{

ct=c;
}
It takes a parameter of the type of Component and passes the parameter to its variable ct.
Here we add a new flag first_time. The variables buffer and pad, which are used for
double buffering and are initialized in the paint() method instead of in the constructor.
This is because in this program, we add a new class CrazyRoad, which installs the
GameEngine inside it and is the actual controller of all the movable objects. It is the
subclass of Panel, which is also a subclass of Component. GameEngine takes a
CrazyRoad instance as its parameter in this program. When the applet is loaded, the
actual size of the component CrazyRoad is still unknown. So if buffer and pad are
initialized in the constructor of GameEngine, when the applet is loaded, buffer and pad
will have undefined values. Thus we can see nothing on the screen. So we add a flag
called first_time here to check if it is the first time the applet is being loaded. If the applet

is just loaded for the first time, then buffer and pad will be initialized.

30

Within the paint() method we can see that we first check if it is the first time the applet
being loaded. If it is, then buffer and pad are initialized and the value of the flag
first_time is set to false. The variable ct here will be an instance of the class CrazyRoad,
which is a subclass of the class Component.

In class GameEngine we can see that there are no changes in the Chain class. We should
notice that before we draw the movable objects in the movable objects list. we first sort
the objects in the list according to their priorities. This makes sense because that as those
objects are movable objects, when they are moving, their priorities will change that
makes the order of the priorities of the movable objects in the list change as well. Since
the order of the drawing for these movable objects is dependent on the order of priorities,
so every time before they are drawn, we need to sort their priorities in the movable

objects list.

4.3.3 CrazyRoad class

CrazyRoad is the class where the graphics engine (here is GameEngine) is installed. The
reason why we add a new class CrazyRoad here has been mentioned in section 7.2. The

constructor of this class is snown in Listing 5:

Listing 5. The constructor of class CrazyRoad

public CrazyRoad (Game gm, Image bk, Image car_pic, Image carl _pic,
Image car2_pic, Image sidebar_pic, Image bck_car)

{

game = gm;
try {
sound = game.getAudioClip (new URL(game.getDocumentBase(),
"spacemusic.au"));
hurt = game.getAudioClip(new URL(game.getDocumentBase(),

31

"hurts.au™));

H

catch (Exceptione)

{1

//install engine and register MOBs

engine = new GameEngine(this);

engine.background = bk;

engine.level_num= [;

engine.score_num = 0;

side_bar = sidebar_pic;

car = new MOB(car_pic);

//get the size of all objects

car_height = car_pic.getHeight(this);

car_width = car_pic.getWidth(this);

engine. AddMOB(car);
}
In the constructor, we pass the applet Game as a parameter, and all the images loaded in
the applet as other parameters to the CrazvRoad constructor. Also here the GameEngine
is initialized and all the movable objects are inserted into the movable objects list of the
GameEngine. In the constructor, at the beginning, two AudioClip instances that will be
used to generate sound effects are initialized. The reason why we initialize them here
instead of giving all these jobs to the applet Game is because since these instances are
only used in a CrazyvRoad object, we want to access them directly instead of having to
referencing them through a Game object.
Having the AudioClip instances, we begin to install the GameEngine. We can see that we
pass a CrazvRoad object (keyword this) to the GameEngine constructor to get a

GameEngine. Since the variable engine is an attribute of the CrazyRoad class, so here we

actually make the GameEngine installed because from the GameEngine s constructor we

can see that engine takes the component CrazyRoad as the container for the movable
objects. The next step is to register the movable objects (MOBs). We firstly initialize the
level and the score for the game, then use those loaded images to generate movable
objects. After that, we get the actual sizes of all the movable objects. Finally, we call the
AddMOB() method of the class GameEngine to add all the generated movable objects
into the movable objects list of engine.

Here we use the x coordinates as the priorities for the playing cars and obstacle cars, y
coordinates as the priorities of the driving lines (side_bar). Every time before the screen
is updated, we use a sort algorithm (usually any kind of sort algorithm can be used) to
sort the priorities of the movable objects in the movable objects list of engine. In the
game, only the obstacle cars can move (change their x coordinates). The playing car can
only change its v coordinate. We make it remain its x coordinate (at the center of the
screen) all the time during the running of the game. To make the users feel that the
playing car is moving during the game, we make the sidebars move to the opposite
direction of the playing car continually such that it looks like the playing car is moving as

well.

Images

In this program, we load the pictures that will be used to make up all the images (playing
cars, obstacle cars, backup cars, driving lines, background,) in the game from some image
resources. Then we use Photoshop to edit these pictures (for example, enlarge the sizes,
reduce the sizes, rotate, change color, make them transparent etc.) to make them meet our
requirements for the game. At last we make them all as transparent G/F files. One

important thing we should notice here is that we had better make the sizes of these files

33

as small as possible so that the download time of these files can be reduced more and the
performance can be much more satisfactory. To load these files, we use MediaTracker
[1], which is an easy and convenient way to load images with tracking the loading

process in Java.

Priorities of the movable objects

For the playing car and the obstacle cars, we make their x coordinates as the values of
their priorities in this game. Because the playing car will never change its x coordinate,
its priority is fixed. As the obstacle cars move during the game, their priorities will
change. For the side_bars that consist of the driving lines, their priorities are fixed as
well. They use their v coordinates as the values of their priorities. The values of the
priorities for the side_bars are all the same. It has no problem to make them in this way
since there is no such a condition we make in this program that one sidebar shown above
another thus which one to be drawn first really doesn’t matter. The priorities of the
movable objects do not need to be different. The priority of the background is initialized
to have the value of 0 and it remains this value through the running of the game. The
priorities of other movable objects (other than background) are all initialized above 0.

Because of this, all other movable objects are drawn before the background.
Playing car

As there are two lanes in the game, the y coordinate of the playing car can be either at the

center of the up lane or at the center of the lower lane. Its x coordinate always remains the

34

same - at the center of the screen. The changing of its position is controlled by the space

bar.

Obstacle cars

The y coordinates of the obstacle cars can also be at either the center of the up per lane or
the center of the lower lane. But their x coordinates will change during the game as they
move from one place to another. There are in fact only three obstacle cars in the game.
When they move, because they have moving speed and also when they reach the end of
the lane on the screen, they will reenter the lanes randomly (which means they might not
appear in the same lane as the previous one), in this way they make the user feel that
there are more than just three obstacle cars driving on the two lanes.

The driving speed depends on two facts. The first one is the value we provide for each
obstacle car about where it should be drawn the next time. This is done using the
following method:

public void increment (MOB m)

{

m.x += step_amount;
if (m.x >= panel_width)

{
m.x = 0 - bkcar_width;
m.y = randomY();

}
m.priority = m.x;

}

At the beginning of the game, we initialize the variable step_amount with a value. At the
end of every running cycle, we add the value of the x coordinate of each obstacle car with
the value of step_amount. Thus the x coordinate of each obstacle car will be changed and

the next time it will be drawn at a new place. This makes the user feel that the obstacle

35

cars are moving along the road. We should notice that in the if block, when the x
coordinate of an obstacle car is out of the range of the screen, we force it to be the value
of zero minus the width of the obstacle car. What does this mean? This means the next
time this obstacle car will be drawn from the left side of the screen so that to prevent it
from being lost during the game. Another fact to affect the driving speed of the obstacle
car is the running time interval of a thread. This can be seen in the run(’) method.

public void run()

{
try
{
Thread.sleep(100);

3
}

catch (InterruptedException e)

f
L

System.out.println(e);
|

} .

By changing the sleep time of the thread, we can decide when to draw the next picture of
the game. If the step amount for the obstacle cars is fixed, then reducing the sleep time
will increase the moving speed of the obstacle cars. But changing sleep time is not used
for changing the moving speed of the obstacle cars in this game. It is used to control the
thread that is used to draw the picture of the game to make sure the updating of the
picture for the game look smoothly. So we would better fix the sleep time and by
changing the step amount we change the moving speed of the obstacle cars. Usually we

have to do some tests to find an appropriate value for the sleep time in order to get the

best effect.

36

Here we meet another problem. How do we control that in which lane the obstacle cars
will be shown? Or how to control the number of the obstacle cars appearing on one lane
at a time? In this program we use a random number base algorithm to solve this problem.
It is shown as follows:

public int randomY()

{
int n = (int)(Math.random()*100);

if (n>50)
return down_y;
else return up_y:

}

We can see the method is quite simple. The variables up_v and down_y represent the
center v coordinates of the up lane and lower lane respectively. We use the random()
method in Math class to first generate a random number and then to use this to decide

where to put the obstacle cars. This makes sense since the obstacle cars should come out

in an unpredictable way.

side_bars (driving lines)

The driving lines separate the lanes. When the driving lines are moving, the user will feel
that the playing car is moving. But to achieve this is a little tricky. Driving lines are
composed of the side_bars. The side_bars should have some distance intervals and can
move from one place to another to make the user feel that the playing car is moving. In
this program we use three vectors to store these side_bars for the three driving lines
respectively. The three vectors are initialized in this way:

Vector topside_bars = new Vector();

Vector midside_bars = new Vectox(),

Vector botmside_bars = new Vector();

37

How many side_bars we should put into these vectors? Because users may use different
kinds of monitors with different screen sizes, here we first calculate the length of each
side_bar and then according to the length of the screen (or the length of the playing area
of the game) of the computer used by the user, we can further calculate the number of the

side_bars we need to make up of the driving lines. This is done in the paint() method as

follows:

public void paint()
{

sidebar_num = panel_width/sidebar_width;
for (int i=0; i<sidebar _num; ++i)

{
topside_bars.addElement(new MOB(side_bar));

((MOB)topside_bars.elementAt(i)).x = i*(sidebar_width + 20);
((MOB)topside_bars.elementAt(i)).y = topline_y;
((MOB)topside_bars.elementAt(i)).priority = topline_y:

midside_bars.addElement(new MOB(side_bar));
botmside_bars.addElement(new MOB(side_bar)),

engine. AddMOB((MOB)topside_bars.elementAt(i));

}

From the above code we can see that firstly we divide the panel width (the width of the
playing area) by the width of a side_bar to get the number of side_bars we need for the
driving lines and then within the for loop we put those side_bars into the three vectors
with making each side_bar as a movable object. Then we assign values to x, y

coordinates and the priority for each side_bar and finally we add all the side_bars to the

38

movable objects list in the graphics engine. Now we can control the moving and drawing
of the driving lines. The way to control the moving speed of the driving lines (or we can
say the speed of the playing car) is similar to the way to control the speed of the obstacle
cars. It uses another method:
public void incr_step (MOB m)

! m.x += car_speed:;

if (m.x > panel_width)
{
if (panel_width >= SCREEN_WIDTH)
m.x = m.x - panel_width + sidebar_width ;

else m.x -= panel_width;

}
i

It is a little different from the way to control the obstacle cars in that usually we found
that on different screens with different sizes, the moving side_bars will generate different
effect if we control them without considering the size of the play area. So in the nested if
block we can see that we use a constant SCREEN_WIDTH (we set its value as 850 in
this game) as the key value (because we make the applet size as 800x600) so that we can
maintain the best effect on screens with different sizes. Another difference is that the
value for the variable car_speed is fixed. So in this game we will feel that the speed of
the playing car remains unchanged. In order to make the game more fun or more difficult
to play, we are free to choose to change the car_speed to make the playing car have
different moving speed. For example, we can change the value of car_speed in different
level so that the side_bars can move with different speeds. As we have mentioned before,
if we regard side_bars as objects standing there without moving, this actually means we

are changing the speed of the playing car.

39

Confilict of the playing car and the obstacle cars
The goal of this game is to avoid the playing car from being hit by the obstacle cars
moving towards it so that to play the game as long as possible and to increase the score
and level as much as possible. The conflict (hit) of the playing car and the obstacle cars is
defined using the following way:
public boolean hit (MOB m)

! return ((m.x < car.priority+bkcar_width/2) &&

(m.x > car.priority - bkcar_width) && (m.y == car.y)).

}
This hit() method takes a movable object (in the game, an obstacle car) as the parameter
passed to it. It checks the x and y coordinates of the movable object to see if their values

have some conflicts with the values of the playing car.

To better understand the code, consider Figure 4:

Playing car

Obstacle car

Figure 4. Conflict of the playing car with an obstacle car

From Figure 4 we can see that if the right side of the obstacle car is within the area
between the two dashed lines, it means that the playing car is hit by the obstacle car. Of

course the first condition that should be met is that they must be on the same lane.

40

Every time when the playing car is hit by an obstacle car the number of the backup cars
will be reduced by one and the obstacle car that just hit the playing car will be drawn on
the other lane to make the user be able to continue the game. One important trick here is
that though the hitting obstacle car will be drawn on the other lane, those obstacle cars
following it before the collision will remain on their previous way and move towards the
playing car at a speed. If they are moving at a high speed, when the hitting obstacle car
hits the playing car, they may be at the positions that are very close to the playing car and
ready to hit the playing car soon. So after the playing car is hit by the hitting car and the
hitting car changes to the other driving way. the user may have no time to change the
position of the playing car while the playing car is hit again by another obstacle car which
is moving towards it at a high speed. Under such a condition, the game will be very hard
to play and the user will find that when he is just ready to have the fun of the game, the
game is already over. To solve this problem, every time the playing car is hit by an
obstacle car, we not only change the lane of the hitting car, but also reduce the moving
speed of all the obstacle cars moving on the road so that to make the user have enough
time to get through the surprise caused by what just happened. Let’s look at the following
method:

public void run()

{

i £ (hit(carl) | hit(car2) || hit(car3))
{

if (car_amount >)

{

--car_amount;
switch (car_amount)

{

41

}

step_amount = -10;

}

From the above code we can notice that every time the playing car collides with an
obstacle car, the moving speed of all obstacle cars is reduced byl0. But here we meet
another problem, which is that because the algorithm used to calculate the game level
affects the value of the moving speed of the obstacle cars, if the hitting occurs at the time
not long after the game just changing the level, then the level will remain to be the new
one but the speed is lower than the requirement for this level. This does not make sense
because now the speed is actually below the requirement of this level. This produces
some unfairness for the users. To solve this problem, we first make the level unchanged
when the hitting occurs, and at the same time after the obstacle cars’ speed has already
been reduced by 10. each time we add the speed with a small value to make it come to the
desired speed for this level gradually. In this way the speed will reach the required value
for this level soon. (The time the speed returning to reach the level is controlled by the
small value mentioned above. Making the value bigger can short the time but may be still
not enough for the user to overcome the problem. This value is usually chosen by doing
some tests.)

Thread

A thread is a thread of execution in a program. The Java Virtual Machine allows an

application to have multiple threads of execution running concurrently.

When a Java Virtual Machine starts up, there is usually a single non-daemon thread
(which typically calls the method main of some designated class. The daemon thread
needs some other threads that are not daemon threads to be running. It doesn't need any
child threads of its own. And if we have a program running we always have at least one
thread running. So when we create a daemon thread and start it, it will start running right
away and keeps doing it until we stop it or all non-daemon threads have exited.). The
Java Virtual Machine continues to execute threads until either of the following occurs:

e The exit method of class Runtime has been called and the security manager has
permitted the exit operation to take place.

o All threads that are not daemon threads have died, either by returning from the
call to the run method or by throwing an exception that propagate beyond the run
method.

Programs run from start to finish, executing a single thread of control. Tasks are
performed in linear sessions, where one task must wait for another task to be completed
before it can have its turn. This is the schematic of a single-threaded program.
Multithreading is the execution of several threads at the same time where each task is
performed concurrently with other tasks. Each thread receives a priority value and is
allocated a certain amount of system time or attention based on this.

Threads apply well to Java because each applet can run in its own thread without
interfering with system resources. On web pages, this enables users to download files in
the background while listening to sounds and viewing animations. More than one applet
can run on the same page and each will receive an amount of time to advance in its

current task.

43

There are two ways to create a new thread of execution. One is to declare a class to be
subclass of Thread. This subclass should override the run method of class Thread. An
instance of the subclass can then be allocated and started. The other way to create a
thread is to declare a class that implements the Runnable interface. That class then
implements the run method. An instance of the class can then be allocated, passed as an
argument when creating Thread, and started. In this game, we make the game run as a
thread by making the class whose instance will be executed as a thread implement
Runnable interface. As we already mentioned, we make the CrazyvRoad class implement
Runnable interface. In the start() method of CrazyRoad class, we pass an instance of
CrazyRoad to Thread() to generate a new thread as follows:

public void start()
{

kicker = new Thread(this):
kicker.start();

}

Here we can see that a CrazvRoad instance (key word “this™) passes itself as the
argument to the Thread constructor to generate a new thread. When we call the start()
method of a thread, it will invoke the run() method of the thread object. In our
implemented game the run() method in the CrazyRoad class is called. Here we should
pay some attention on those methods related to a thread such as run(), stop(') etc. since

some of them are dead lock prone and have been deprecated in the latest Java version [4].

Scoring

The scoring algorithm used in this program is quite simple. We can see it in the following

code:

44

public void run()

{
Thread me = Thread.currentThread ();

while (kicker = me)

{

++engine.score_num;

}

We can see that as long as the current thread is alive and running. the score is simply
increased by one during every cycle of the while loop. Actually there are a lot of
alternative algorithms to select for scoring; for example, we can calculate the time the
game has been played and use the accumulated value as the score the user get, but here

we choose to use a very simple way.

Level of the game

There are a lot of alternatives we can choose to use as the algorithms to decide the level
of the game. In this program, we use the score the user gets when playing the game to

decide the level of the game. This is achieved in the run() method as follows:

public void run()

{

Thread me = Thread.currentThread();
while (kicker == me)

{

++engine.score_num;

if ((engine.score_num >=400) && (engine.score_num < 800) &&
(engine.level_num !=2))

{
-

45

}

This game is designed to have five levels. Level one for scores under 400; level two for
scores from 400 to 800; level three for scores from 800 to 1800; level four for scores
from 1800 to 2000; and level five for scores above 2000. And also we should notice that
the moving speed of the obstacle cars is different at different game level. Higher levels

have higher speed so that higher levels will be harder to play with than the lower levels.

Sound effects
In this game we use the methods of java.applet.AudioClip interface to generate the sound
effects. There are two places where we use sound effects here. One is the background
music when the playing car is moving without being hit by any obstacle cars. Another
place is when the playing car collides with an obstacle car. Obviously we should use the
loop() method in the AudioClip interface to play the background music and use the play(
) method to give the hitting sound effects. To get the 4udioClip instances, we can use the
following:
.t“ry {

sound = game.getAudioClip (new URL(game.getDocumentBase().

"spacemusic.au"));

v
J

catch (Exceptione)

{...}

The above code loads the sound file from the specified places and initializes the

AudioClip instances. There is some trick in managing these sounds such as when they

46

should be played, when they should be stopped or when they should be restarted etc.
Here we will introduce our approach briefly.

In this game, we have two kinds of sound, one is the background sound and the other one
is the sound when a collision occurs between the playing car and an obstacle car. Here we
use two flags to control these sounds. The flag has_music controls the background sound
and the flag activate_music is used by the GUI (radio button and shortcut key) to control
if we need sound effects. When the game starts, has_music is initialized with the value of
true and activate_music is initialized with the value of false. At this time we call start()
method of CrazvRoad once. Thus only the background sound plays and the hitting sound
keeps quiet. And now though the value of activate_music is false, as the background
sound is playing and is not stopped by any command, so activate_music at this time does
not affect the playing of sounds. Suppose we click the radio button on the screen to turn
off the sound, the sound will be stopped immediately. When we click the radio button to
turn the sound on, as now the thread that is running is kicker, and the value of
activate_music turned to be true, now activate_music works and the background sound
can be played again.

When the playing car collides with an obstacle car, the background sound will stop and
the hitting sound will play. After this, the hitting sound should stop and the background
sound should replay to continue the game. As we know that the playing of the hitting
sound needs some time, so if we do not control these two sounds properly, they might be
overlapped each other. So here we add another variable called music_trigger. When a
hitting happens, we give music_trigger value of 1 and then continue the game with

adding 1 to music_trigger during each loop until its value reaches a number we

47

predefined (usually this number should be gotten from test according to different sound
file). Then we check the value of music_trigger and the value of has_music to decide if

the sound effects should start.

The other features

There is one feature that we want to mention here. To make the game a little more
interesting for users, we make the game change its background when the user reaches a
certain level. This can bring some changes to the game so that the users feel more fun. To
achieve this is quite simple. We just load two or more images for the background and tell
the engine which one should be drawn when the need of changing background occurs. As
for the backup cars, we also add them to the movable objects list though they cannot
move. Every time the playing car collides with an obstacle car, we make one of the
backup cars that are stored in the garage invisible. So when the screen is refreshed, the
user will see that the number of the backup cars in the garage is reduced by one.

4.3.4 Game class

As we have mentioned, the Game class is the entry point of this program. It extends the
Applet class and implements the KeyListener interface in order to add some key
controlling function for this program. It loads all the images used in the program and
builds up the graphic user interface for the game. It uses cardLayout (A CardLayout
object is a layout manager for a container. It treats each component in the container as a
card. Only one card is visible at a time, and the container acts as a stack of cards.) as its
layout because we want to switch to the help page within the applet instead of linking to
another page to avoid another connection to the server. It uses a CrazvRoad instance as a
component to be added into it. It also defines all the events and behaviors related to the

48

components making up of the user interface. Since the entry point of the game is an
Applet, after compiling (the Game.class is generated), we should integrate the class file
into a HTML file so that user can load the game referred in the HTML file which is
provided to the user by a web server. One thing we like to discuss here is the loading of
the images. In this program we use java.awt.MediaTracker class to do the task of loading
images [1].
The MediaTracker class monitors the status of media types. such as images. sounds, etc.
A common concern with applets is that images are sometimes referred to before they are
fully loaded, which has unpredictable resuits. MediaTracker can load data
asynchronously (in the background) or synchronously (waits for data to load first). Image
loading is sped up by threads that dedicate themselves to a group of images identified by
a selected ID.
When using MediaTracker, there are three steps to achieve the goal:

o Create an instance of MediaTracker.

e Call MediaTracker.addImage() to indicate the image we want to track.

e Generate the try/catch blocks. In the 1rv block, the instance of MediaTracker waits

for the loading of the image that has a specific ID to be complete.

If we want the image loaded completely before being shown, we can use MediaTracker.

We can see the code as follows:

try

{
//get the pictures of the objects

MediaTracker tracker = new MediaTracker(this);

bk = getimage(new URL(getDocumentBase(), "background.gif")),

49

tracker.addImage(bk, 0);

tracker.waitForlD(0);
}
catch (Exceptione)

{
-

The three steps in the above code are very clear. We can either put all the three steps into
the trv block or just the last step. Here we put everything into the ¢rv block.

We can also notice the building of the user interface in this class. One thing we should
pay more attention is the implementation for the function of the short-cut keys. The trick

things here are the changing of focus and the different facts on different platform.

4.4 Running the game

To run the game, we should put all the compiled files into the database or some directory
residing on the server side and integrate them into the HTML file which the server
provides to the user. We should tell where to find the Applet (the path to the Applet). The
usual way to do this is:

<HTML>

<APPLET code="Game.class" width = 800 height = 600>
</APPLET>

</HTML>
We can also pack all the required files into a JAR (JAR stands for Java Archive. It’s a file

format based on the popular ZIP file format and is used for aggregating many files into

50

one.) file and load the JAR file into the local computer with which the user is using. So
we can rewrite the HTML file as:

<HTML>

<APPLET code="Game.class" archive="awtGame.jar" width = 800 height = 600>
</APPLET>

</HTML>

If we want to run the Swing version of the game, we have to make sure that our browser

supports Java Swing. As on result of our research, we found that Internet Explore 4.0

above and Netscaped.0 above all support Java AWT. But only the latest Netscape6.0

above support Java Swing. So for the browsers that do not support Java Swing, we have

some alternatives to make the Swing version run on these browsers. One is to pack the

Swing package into a jar file and load it into the local computer of the user. This can be

done as follows:

<HTML>

;.APPLE T code="Game.class" archive="swingGame.jar, swingall.jar" width = 800
height = 600>

</APPLET>

</HTML>

But this way is tedious because this jar file is about 1 MByte. It will cost users

(particularly those users who access the internet through common telephone lines) quite a

lot of time to downioad this file.

Another way we can use is to download Java plug-in patch program from java.sun.com

and load it into the user’s browser. The Java plug-in patch program also has a large size

but user only needs to load it once and thereafter user does not need to download it any

more to make his browser support Java Swing. But using the first way, the user has to

load the jar file every time when he wants to run this game. The plug-in way can be

shown as follow:
<HTML>

<EMBED type="application/x-java-applet;version=1.1"
pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html"
code="Game.class"
archive="swingGame.jar"

width = 800

height = 600>
</EMBED> ...
</HTML>

4.5 Improvements and Extensions

There are a lot of ways to improve this game. That’s why we call it CrazyRoadl.0. We
leave it for the future extending.
Some suggestions we can put forward for the extension as:
e Increase number of the levels involved in the game.
e Change the algorithm for the scoring.
For example, we can make the scoring depend on the time used by the user who is
playing the game, or depend on the number of obstacle cars the playing car has avoided.
We even can give some bonus to the user who has reached higher level. The bonus can be
either adding some score to the user or increase the number of backup cars in the garage.
e Change background between every different level.
In this program, we only change the background once. We can also think about changing
the background every time the user reaches a different level.

e Add more visual effects.

We can add some gas trail on the back of the playing car and the obstacle cars to make
the moving of these cars looks more real. When the playing car collides with an obstacle
car, at the hitting part of the cars we can add some broken pieces to stress the hitting
effects.

e Change the story.
The most interesting thing we can think of is to change the story of the game. For
example. in a certain level. the playing car can be equipped with guns to shoot the
obstacle cars moving towards it. Or there are not only the obstacle cars which can hit the
playing car, but also we can add some other obstacle objects like bombs, unmovable
stones etc. to collide with the playing car. We can even add some planes on the air to
throw some bombs. In this way, the playing car will have to be more active which means
it can change both its coordinates. All in all. there are too many things that can be
improved, can be done, can be expected, can be imagined on this aspect.

e Add more sound effects.
Sound effect usually can make the game more interesting and catch more of the user’s
attention. With the sound effects, users can be more excited and stimulated.

e Set up top score player file.
We can set up a top score player file, for example top 100 players file, on the server side
such that every time the user finishes one game, if his score is within the range of the
scores in the top player file, then he is allowed to add his name into this file to make
himself as one of the top score players. This makes the game to have more competition

features and so makes the game more interesting. One important feature that can make

53

the game much more fun is to make it playable by two or more users on the web to
compete with each other. This means we can play the game with real people on line.

e Make it as a Java Application
Making this game as a Java application instead of an Applet can make the user play the
game off line. On the other hand, without the security constraint of Java 4pplet [4], the
application can be extended easily. And the most important thing is that it can be saved in
the local computer or other storage media instead of downloading from the slow web,

thus it can be run much faster than running on the web.

4.6 Problems when running this game

After we finished the implementation of this game, we did some tests and found some
problems. One major problem is related to the browser that the game was running in.
This is the biggest issue.

As we have mentioned before, we made two versions for this game: AWT version and
Swing version. The reason why we made two versions for this game is mainly because
the user interface for the game can either be done by using Java AWT or by using Java
Swing. The biggest difference between the AWT components and Swing components is
that the Swing components are implemented with absolutely no native code. Since Swing
components aren't restricted to the least common denominator -- the features that are
present on every platform -- they can have more functionality than AWT components.
Swing lets us specify the look and feel our program's GUI uses. By contrast, AWT
components always have the look and feel of the native platform. So when designing

some Java application programs that have GUI, we are recommended to convert AWT to

54

Swing. The strongest reason to convert to Swing is because it offers many benefits to
programmers and end users. Among them:

The rich set of ready-made components means that we can easily add some snazzy
features to our programs -- image buttons, tool bars, tabbed panes, HTML display,
images in menu items, color choosers etc.

We might be able to replace or re-implement some custom components with more
reliable, extensible Swing components.

Having separate data and state models makes the Swing components highly customizable,
and enables sharing data between components.

Swing's Pluggable Look & Feel architecture gives us a wide choice of look-and-feel
options. Besides the usual platform-specific look and feel, we can also use the Java Look
& Feel, add an accessory look and feel (such as an audio "look and feel"), or use a third-
party look and feel.

Swing components have built-in support for accessibility, which makes our programs
automatically usable with assisted technologies.

But it is reasonable to put off converting if we don't think our users will be able to run
Swing programs conveniently. For example, if our program is an applet and if we want
anyone on the Internet to be able to use it, then we have to consider how many Web
surfers have browsers that can run Swing programs. For browsers that don't have Swing
support built in, the user must add it by downloading and installing Java Plug-in.

Before testing the game using any web browsers, we tested it in Java JDK's appletviewer.
Both versions work correctly as we expect. Then we tried it on some major browsers. We

first test this game using Internet Explore 5.0. Both the AWT version and the Swing

55

version worked very well. Then we tested it using Netscape (we used 4.6 and 4.7), it does
not work at all. Later we tried it on Netscape6.2, the AWT version works very well but
the Swing version works with some problems (the function keys do not work properly).
We found that this is because of the browsers. Netscape 4.x browsers do support Java but
they have some problems to deal with images. Internet Explorer has very good ability to
process images so both versions of the game work properly using [E. But the good news
is that Netscape6.x browsers have been greatly improved so now both the AWT version
and Swing version can run in them. While there are still some problems when running the
Swing version in Netscape6.x browsers and these problems are all related to keyboard.
Problems caused by using keyboard as the input device is a small issue since we know
that the key functions really have different effects under different environment because of
different interpretation of the keystrokes under different platforms. But we can think that
this is a constraint for Java's platform independent conception.

One way to run this program without using any browsers is to run it using appletviewer,
which is attached with JDK and any other Java development IDE. But one drawback to
run the program in this way is that it does look not so smoothly as it does in the browsers
because of the thread structure in its virtual machine. This problem also arises when we
run it on our PC at home and run it on a computer connected to Windows NT.

During this project, I and Ying Dong [15] made a few observations on programming in
general and Java game programming in particular. These observations are presented in

this chapter.

Chapter S: A further discussion on Java and Java game
programming

5.1 Some common suggestions for Java game programming

In our programming endeavors using Java, we will come across instances where the code
we write can either optimize or hinder the output of our programs. The following are a
few brief points we should consider when writing Java code. Some of them detail
practices we should definitely incorporate into our code; others are things we should
definitely avoid.

¢ Do code abstractly, but not too abstractly
The principle of abstraction is one of the comerstones of object-oriented programming.
Since Java is object-oriented, knowing when to abstract becomes even more important
because each object usually should have distinct functionality in a program. For example,
in our game we separated the classes according to their different functionalities so that we
can generate objects with different features freely and also can extend these objects
freely. Thus we can notice that the structure of our game is very clear. But we should
remember to use abstraction only when it will benefit or clarify our code.
e Do not use Java reflection classes

The java.lang.reflect package contains classes that allow Java classes to obtain
information about themselves. Use of this package includes determining the run-time
name of an object, along with any methods it contains. These classes are commonly used
in the Java Virtual Machine itself, as well as external debuggers and profilers. If we come
from a C++ background, we have probably used function pointers in our code. Since Java
does not contain support for function (or method) pointers, it might seem temping to send

a Method object as a parameter to a function to simulate this functionality. We avoid

57

using these classes whenever possible, especially for game programming. Firstly, these
classes can really affect the throughput of our applications since some of these classes
such as Method, when programming using these classes, it is quite inconvenient, error
prone and slow, and as we know speed is a critical component to any game. Reflection
classes also make our code unclear with adding bunch of code that have no help for our
code to implement its functionality.[1] So as a general rule. do not use reflection and use
preferred Java techniques such as anonymous inner classes. subclasses. or, if we need to.
a switch block. to discriminate among different routes of flow control.

e Do try to incorporate code that optimizes both speed and size of the

programs

This includes incorporating things such as image strips (for details please refer to [1])
into the projects, as well as eliminating the use of synchronization and exception handling
when possible. Do not however, blindly eliminate ali of the exception-handling code; if
catching an exception can save the program from crashing completely, by all means use
it.
Excessive use of threading can bring some problem to the programs as well. Using a few
threads in the games is usually necessary, but having 500 movable objects each using its
own thread may cause the machine to spend all of its time switching between threads, this
will slow things down too much.
Also, because of the improvement of machine memory in these years, we would

generally take speed over size if it comes down to choosing between the two.

¢ Don’t use Swing classes for games

58

Though as we discussed before, Swing has more advantages than AWT, and
programmatically Java Swing is a very clean and robust way to create applications,
during the practice we found that Swing is too bloated for game development.
Components such as JApplet, JFrame, JButton, etc., are based upon their lightweight
AWT counterparts and contain the ability to take on a pluggable look and feel of any
operating system. If we use Swing just for the GUI in common applications instead of
game development, Swing is really the preferable choice than AWT. But for game
programming, we feel that the benefits that Swing provides do not outweigh the speed
that it makes on applications.
¢ Do think about minor code optimizations, but not too much
Techniques such as loop unrolling and using register variables (not in Java) used to be
very common among game programmers. However, with advances in processor speed,
such as seen with a lot of today's popular games, minor optimizations have become less
important.
e Don’t use sun.* packages

Java packages such as those contained under java.*, javax.* and org.* are standard and
are supported across all platforms, but classes under the sun.* package are not. Classes
under sun.* packages are generally platform-specific and are known to change from
version to version. For instance, say we have used the /mage class to load and draw
images from file. This is an abstract class, and it is programmed abstractly. On Win32
platforms, the Image class is implemented as the Wimage class found under the
sun.awt.window package. Obviously, this package is not part of the standard Java APIL.

Furthermore, this class or its methods are not guaranteed to exist in further Java

59

implementations. So even if we program our games exclusively for Windows, directly
using the Wimage class, or any other sun.* package class, is risky business.

e Don’t calculate values more than once if possible
It goes without saying that all program calculation take a finite processor time to execute.
Therefore, the fewer calculations the game code makes, the faster it will run.

e Don’t attempt to optimize standard Java
Although we can sometimes find ways to rewrite standard C functions to perform faster
or better, we would not try to improve upon any standard Java class or method. Even if it
looks like making an optimization to native Java code would be appropriate, it might not
be due to considerations such as Java Virtual Machine issues or platform compatibility.
But optimizing Java doesn’t mean that we should not extend upon available Java classes.
We have made hundreds of extensions to what is available in the standard Java library.
What we mean is that if some people feel as though they have developed a better class,

the fact usually is that they probably haven’t.

5.2 A further discussion on Java

To be successful, a system must have a user base. The users must get enough of their
tasks achieved within reasonable limits of performance, and given reasonable limits of
training. From its first public release in 1994, Java has rapidly become a very popular
programming language. Java is associated with the World Wide Web -- and the Web's
global scale -- and it has applications near and far, from smart cards to the 2001 Mars
Lander. There are hundreds of books on Java, specialist magazines, and web sites. Java is

now taught in hundreds of universities. Java is clearly a mainstream phenomenon.[16]

60

In many ways, Java is a classic computer application, with its design and introduction
requiring trade-offs. Its design had to balance being different and being "better." It had to
successfully draw on enough users to make it a viable product. Java closely resembles C
and C++, so existing programmers find it familiar. However these languages have many
problems and ambiguities, so Java made changes in order to have advantages over them.
Compared to C/C++, Java removes some features from them. These are:

Java has no more Typedefs, Defines, or Preprocessor

In Java there is no preprocessor, no #define and related capabilities, no typedef, and
absent those features, no longer any need for header files. Instead of header files, Java

language source files provide the declarations of other classes and their methods.

Java has no more Structures or Unions
Java has no structures or unions as complex data types. We can achieve the same effect

by declaring a class with the appropriate instance variables.

Java has no Enums
Java has no enum types. We can obtain something similar to enum by declaring a class
that holds its attributes as constants. We could use this feature something like this:

class Direction extends Object

{

public static final int North = [;
public static final int South = 2;
public static final int East = 3;
public static final int West = 4;

}

Java has no Functions

61

Java has no functions. Anything we can do with a function we can do just as well by

defining a class and creating methods for that class.

Java has no Multiple Inheritance

Multiple inheritance was discarded from Java. The desirable features of multiple
inheritance are provided by interfaces.

An interface is not a definition of a class. Rather, it's a definition of a set of methods that
one or more classes will implement. An important issue of interfaces is that they declare

only methods and constants. Variables may not be defined in interfaces.

Java has no Goto Statements

Java has no goto statement. goto statement may mislead users, especially when it is used
in some loops. Most of C/C++ developers and programmers were ever warned that they
should pay attention when they use goto statement, or they were recommended not to use

it at all. In Java, eliminating goto led to a simplification of the language.

Java has no Operator Overloading

There are no means provided by which programmers can overload the standard arithmetic
operators. Once again, the effects of operator overloading can be achieved by declaring a
class, appropriate instance variables, and appropriate methods to manipulate those
variables. To some degree eliminating operator overloading leads to simplification of

code.

62

Java has no Automatic Coercions
Java prohibits C and C++ style automatic coercions. If we wish to coerce a data element
of one type to a data type that would result in loss of precision, we must do so explicitly
by using a cast. Consider this code fragment:

int mylnt;

double myFloat = 3.14159;

mylnt = myFloat;
The assignment of myFloat to mylnt would result in a compiler error indicating a
possible loss of precision and that we must use an explicit cast. Thus, we should re-write
the code fragments as:

int mylnt;

double myFloat=3.14159;

mylnt = (int)myFloat;

Java has no Pointers

Most studies agree that pointers are one of the primary features that enable programmers
to inject bugs into their code. Given that structures are gone, and arrays and strings are
objects, the need for pointers to these constructs goes away. Thus, Java has no pointer
data types. Any task that would require arrays, structures, and pointers in C can be
performed by declaring objects and arrays of objects. Instead of complex pointer
manipulation on array pointers, we access arrays by their arithmetic indices. The Java
run-time system checks all array indexing to ensure indices are within the bounds of the
array.

We no longer have dangling pointers and trashing of memory because of incorrect

pointers since there are no pointers in Java.

63

Most of these above changes to some degree make Java simple, easy to use and prevents
it from error prone.

But on the other hand, Java has unfortunate and avoidable weaknesses. For example, here
are some illustrative notational issues:

1. In Java the 32 bit numeral 71 can be made into a 64 bit numeral by appending a letter |,
as in 711. Arguably, the notation should make this sort of difference clearer. Or it would
have been easier if Java had been designed so numerals took just as many bits (char, int,
long) as they required, and the compiler complained when there was numeric overflow.

2. Java uses Unicode, so a Java letter (for use in an identifier name) can be from almost
any language, so A (Latin alphabet) and A (Greek alphabet) are different.

3. Casts in Java are prefix (as in C). If they were postfix, fewer brackets would be needed
and the code would be more readable. For example, Java's ((AClass)
a.eclementAt(n)).action() could be more conveniently written, without having to balance
nested brackets across arbitrarily long pieces of code, as a.elementAt(n) (AClass).action().
4. Java's statement syntax "taken over” from C allows compound statements wherever
simple statements are permitted. Thus, the conditional statement in an if can either be a
simple statement, or a compound statement grouped by curly brackets. Java introduced a
new control structure (throw, catch, finally) but the statements guarded by these
structures must be "compound." For example, it is not permitted to write try a = b/c;
instead one has to write try { a = b/c; }

Besides the notational issues, the programmer faces two quite different sorts of more
serious problem: barriers, which are explicit limitations to desired expressiveness, and

traps, which are unknown and unexpected problems. Typically, a barrier reveals itself as

a compile time error, or in the programmer being unable to find any way to conveniently
express themselves. A trap, however, is much more dangerous: typically, a program fails
for an unknown reason, and the reason is not visible in the program itself.

Java has become very popular largely because of its improved type checking, its run time
array bound checks, and its removal of explicit pointers: all these improvements can be
understood as converting traps in C and C++ into barriers in Java: thus helping
programmers write more robust programs.

In contrast, Java's rules for variable initialization form a trap. There are several different
sorts of initialization (that apply differently to local variables, class variables, parameters,
etc., and to different types -- primitive, class, and array), and Java provides protection
against only one sort of initialization error. But with the apparent guarantee. a
programmer might accidentally rely on a class variable or an array element being
correctly initialized. Unfortunately, they are not. And since Java has no 'undefined' value
any such incorrect assumption is unlikely to be easily discovered.[16]

There are also some other issues, anomalous features and unnecessary confusion etc. in
Java. Like importing packages design issue, some of the obfuscation of Java's inheritance
and polymorphism mechanisms, anomalous strings and arrays (Java’'s parameterized
classes), Java being strongly typed and being unnecessarily confusing etc. For the detail
of these issues please refer to [16].

Java is successful, and improving it in an "objective” sense would be to forget the vast
investment programmers have had in learning Java as it is. The conclusion, then, is not

that Java should be changed, but that when designing a system, certainly one intended for

65

a world wide market, one should take -- should have taken -- great care to explore the
design issues.

Although Java is now more robust than when it was first released, why wasn't it released
with a test suite? After its early version (1.0), Java was quickly replaced by Java 1.1 --
even though the designers had said they believed Java to be a "mature language, ready
for widespread use.” All the revisions 1.1 (and 1.2, and so on) represent lost time to a
huge number of programmers who must now learn and re-learn the extensions and
variations, as well as the time they will waste recoding existing applications so that they

still compile.

66

Chapter 6: Conclusions

As we have seen, game programming in Java is quite a similar task as in any other
languages like C/C++. They have the same basic ideas. They usually should have the
same problems during the design and the implementation. But we should notice that Java
itself has some better features over other programming language and it is mostly these
features that make Java to be successful and wildly used. Some tasks referring to the
game programming could be easier in Java, such as graphics processing, double
buffering, some data structure, integration with multimedia and thread programming etc.
Some of this kind of simple and easy to use aspects can often be seen in GUI
construction for applications programs. One very important feature of Java is that it is a
cross-platform language. The programs implemented with it can run on any platforms
without making any changing.

In [15], a basic graphics engine is developed with Java that can be used for game
creation. This graphics engine incorporated movable objects with prioritization and
visibility settings, double buffering and a background image.

Game programming is different from other application programming. Once we get the
tools, the remaining jobs are more focused on composing stories, art work imagination,
art work editing, dealing with multimedia etc.

Some issues in developing games with Java are touched in [15]. It is important for us to
keep these issues in mind in order to write reliable, robust game applications for the
users. When we develop our games, we should also be aware that people would want to

run them on machines that may not have the same capabilities as our machines.

67

We got some very useful experiences during Java programming. With the fast improving
and extending features of Java, we should not forget to put ourselves at a middle ground
so that to have a fair point of view on it. Good programming requires using a good
language. The way to understand a language is a good indication of how well it is
designed; ideally, one should be able to learn incrementally, building constructively on
past leamning. Simple things should be easy, complex things should not conflict with
simple things. But with Java, one always has to revise one's "knowledge" of it as more is
learnt.

The problem with a complex language like Java is that so much is unsaid. Sometimes this
results in clearer and more compact programs. They don't need to mention garbage
collection, and they can't get it wrong. But sometimes it leads to incredible but hidden
complexity -- such as the obscure rules for inheritance.

If we regret some aspects of Java's design, then we must ensure that future designers take
better account of good design practice. Many Java programmers (including myself)
believe Java is a great success. Yet their programs are usually written in a Java-like
subset of C. They surely gain by not having the risks of pointers and unchecked array
subscripting. Thus, we cannot conclude it is just the design of Java to blame: much of the
poor quality of programming (including the rough-and-ready implementations of Java
and its packages) is due to lack of programming skill. "Proper” computing science,
including human computer interaction and software engineering, has been taught long
enough to be well known; it is now time well-trained designers and programmers start to

raise standards. They need to be taught not just what is, but what could be.

68

But finally we should say that Java is widely used, and this in itself is sufficient reason to
teach and leamn it. It also has useful features that in themselves are useful to learn, such as
concurrency and object orientation; the convenience of these being available in a single
language also makes it a good choice as a teaching language. Developers and
programmers (including me) have lot of expectation on Java. They hope Java becomes
more powerful, robust and easy to learn and use. They hope Java can bring revolution to
modern computer science. Can Java really do that?

While we are waiting to see what Java can bring further to the world, I think we also

should think about what kind of roles we — ourselves will play in this revolution.

69

References:

[1]. Premier Press, Thomas Petchel, Java 2 game Programming

[2]. Java Unleashed, Second Edition, http://www.informit.com

[3]. Java 2001, The year of games. Jeff kesselman, Staff Engineer, Sun
Microsystems, VGEE specialist, co-Author Java piatform performance

[4]. Java 1.2 Unleashed, http://www.Sams.net

[5]. SAMS, Steve Potts, The Waite Group’s Java 1.2 How - To

[6]. SUN Microsystems Press, Peter van der Linden, Just Java 2 Fourth Edition

[7]. SUN Microsystems Press, Gay S. Horstmann, Gary Comell, Core Java 2
Volume I

[8]. SUN Microsystems Press, Gay S. Horstmann, Gary Comell, Core Java 2

Volume II

[9]. SUN Microsystems Press, David M. Geary, Graphic Java 1.2 Mastering the
JEC Volume I: AWT (3" edition)

[10]. SUN Microsystems Press, David M. Geary, Graphic Java 2 Mastering the
JFC Volume II: Swing (3" edition)

[11]. Elliotte Harold, “*Café «u Lait Java FAQs, News, and Resources™
http://www.ibiblio.org/javafaqg/javafaghtml

[12]. Harold, Elliotte R. "comp.lang.java FAQ."
http://sunsite.unc.eduw/javafaq/javafaq.html

[13]. O'Connell, Michael. "Java: The inside story."
http://www.sun.com:80/sunworldonline/swol-07-1995/swol-07-java.html

[14]. McCarthy, Vance. "Gosling On Java."

http://www.datamation.com/Plugln/java/03ajava2.html

70

[15] Java Game Programming - with a case study, major report, Concordia University

2002, Ying Dong

[16] Harold Thimbleby, “A critique of Java™
http://www.cs.mdx.ac.uk/harold/srf/javaspae.html

[17] David J.Eck, “The Java Virtual Machine”

http://math.hws.edu/javanotes/c1/s3.html

71

Appendix

A. How to load this game

We can put this game in the database at the server side and provide link to the game in
the web page that is shown to the user. We can either require the user render a user name
and a password to access the game page or do not need any authentication to play the
game at all. After the user load the game, the game will be run on the local computer of

the user.

B. How to play this game

From the Figure 2 we can see what the game looks like when it is loaded.

A car with red color and its head facing left is the playing car (driven by the user) whose
moving direction is to the left side in this game. The cars with yellow color and their
heads facing right are the obstacle cars whose moving directions are to the right side. The
user uses the space bar on the keyboard to control the position of the playing car to avoid
hitting by the obstacle cars whose moving directions are opposite to that of the playing
car. At the beginning of the game, the user is provided one playing car on the road plus
three backup playing cars in the garage shown on the right top of the screen. Once the
playing car has collided with an obstacle car, the number of the backup playing cars will
be reduced by one. If the playing car on the road collides with an obstacle car and at this
time there are no more backup playing cars in the garage, the game is over and stops
running. On the top of the screen, the user can check the message related to the level of
the game the user has reached and the score the user has gained. At the bottom of the

screen, there are some buttons from which the user can control the game or do some

72

selection or get help. The name of the buttons and their functionalities are described as
follows:

Buttons:

[New Game] - pushing this button, the user can clear the screen and begin a new game
{Exit] - to exit the game and change to another page

[Start Game] - Starts the game

[Pause] - pushing this button, the user can pause the game while the game being
executed

[Restart] - restarts the game which was just being paused

[Stop Game] - stops the game

[Help] - shows the help page

Music On - turns on the music

Music Off - turns off the music

To make it easy to play and control the game for the user, this game also provides some

short-cut keys. These short-cut keys are:

N -ee- New Game

Q -—---- Exits

A —-—e- Start Game, Restart Game
S —eeee- Pauses the Game

C e Stops Game

O --eem- Turns Music On

| Turns Music Off

Fl ----- Shows the Help Page

73

