INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI






A Framework for Drawing the Architecture of Buildings

Using OpenGL and VC++

ShiQing Zhao

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada
August 2002

@ShiQing Zhao, 2002



i+l

o Canada Y % Ganada” "o
csitons and g of

au..amnphc Services ::qtvl:ees bibﬁ:graphiques

305 Wellington Street 305, rus Wellington

Ottawa ON K1A ON4 Omawa ON K1A ON4

Canada Canade Your il Vowe réddrence

Ouwur e Nowe rélverce

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neitherthe  droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-72950-8



Acknowledgements

[ would like to take this opportunity to express my sincere thanks to my supervisor. Dr.
Peter Grogono. for his conscientious supervision. his creative ideas. his constructive
advice. and his erudite knowledge in Computer Science that sustained me throughout the
development of this major report.

Many thanks to Dr. Adam Crzyzak. who kindly took time to review the report.

[ also wish to thank Dr. Clement Lam and Dr. Sudhir P Mudur. in whose classes |
acquired broad and detailed knowledge in Computer Graphics and OpenGL.

Furthermore. thanks to all the professors and staff in the department of computer science.
especially Halina Monkiewicz. for their excellent support during my studies.

Finally. I would like to thank my parents. grandparents. relatives and good friends for

their love. encouragement. and support.



Abstract

A Framework for Drawing the Architecture of Buildings

Using OpenGL and VC++

ShiQing Zhao

This report presents the design and implementation of a Framework for drawing the
Architecture of Buildings. as well as a brief introduction to computer graphics. OpenGL.
framework. and the advent of framework.

In the design phase. we discourse on how we design each class in the framework.

In the implementation phase. we demonstrate the programming process with an
emphasis on the methods that will be overridden.

We also implemented two sample applications based on the framework to illustrate
how application developers implement new applications by using the framework. and
consequentially to testify the advent of the framework.

The conclusion is that successful framework is a reuse technique for developing new
applications. and has potentiality to improve the efficiency and quality of application

software development.



Contents

1. INTRODUCTION 1
2. BACKGROUND 2
2.1 COMPUTER GRAPHICS e eeeeceeeeeeeeeeeeeeeeeeeeeseessesnmseeeaesessmsessamessnessassesasssasssnssaasssnesassasassessnaaesanes 2
2.2, OPEN G oot eeeee e ea e s eeee e e s s et eessesmmmenasasaasasasbesessasarssesessnssesanssasasssneaesnsanenessnnremeesans 2
2.3. FRAMEWORK ..eeeceeeeeeeeeeeeeaesesaeeseommeessessssstassssesesassassseasssiasessasssasssnnsenseesassssnsasesassenennsssusnmeeneaaeans 3
2.4. A SAMPLE FRAMEWORK FOR GRAPHICS RECOGNITION APPLICATIONS «evvveeceeeeeeeeeeeeeeeeneeeeeenee 4

3.  DESIGN AND IMPLEMENTATION OF A FRAMEWORK FOR DRAWING THE

ARCHITECTURE OF BUILDINGS 6
3.1 POLYGONAL MESH ...ttt ettt ese s et sss e sr e s s s et en e n e sns s 6
3.1.1 Data Structure of Polvgonal Mesh.....................c.cooiiiiiiiii 6
3.1.1 The class diagram for a Polygonal Mesh................cooovoiiiiiiiiiiiiiiiecei &
3.1.2 The implementation of Mesh::draw() .............ccoommiiiiiciee e 10
3.2, EXTRUDED SHAPES ... eeieeeireeieeteeciaeeerneerceetetseieramtaressnnmnnrmessmmsruronssesesssmsssasessnsensasnesneseissemssssssans 11
3. 2.1 Creating PrISIMS. .......cccccooiiiiiiiiie ettt 11
3.2.2 Building segmented extrusions: Tubes or Pipes based on 3D curves ... 15
3.3. SHAPES OF REVOLUTION c.conereeeeeeeeeeeeeecotrssssereestesssemsntesesesesssasssssssssnsesessssenesssonsonsantoncanenssnss S0
3.3.1 How to generate the shape of FevOlULION...............cocooo oot 23
3.3.2 The class diagram of the shape of revOlution....................oooovvvvoiiiiiiiii e 23
3.3.3 The implementation of drawing the shape of FeVOIUtiON ... 24
34. 3D SURFACE WITH FORMULAE ..c.eeceeererevecererettetisisnassesseesssissseerscasansessenssssanessnnnsesssreuosssnsncosens 26
3.4.1 How to generate 3D surface with formulde .................ooooooeeommmenenriereeniceccinccnennseneens 27
3.4.2 The class diagram of 3D surface with formul@e ... 28



3.4.3 The implementation of drawing 3D surface with formulae..................ccooooooviiiimmiininciinne.

3.5. 3D SURFACE BASED ON BEZIER CURVES......occceuvieeenen.

3.5.1 How to generate 3D surfaces based on Bezier Curves

3.3.2 The class diagram of 3D surfaces based on Bezier CUrVes ..............coooiiiiiiciniiiiee

3.5.3 The implementation of drawing 3D surfaces bused on

Bezier Curves.......oooeeeeeoeeeeeeeeeen,

3.6. AUXILIARY CLASS COPYTOOLS...oocccciiiiicrinreaeenen.

3.6.1 The importance of class CopyTools..........cc...ccocoeeee.

3.6.2 The declaration of class CopyTools ............cceeee....

3.7 C1.ASS DIAGRAM OF THE FRAMEWORK FOR DRAWING ARCHITECTURE OF BUIDLING ...

4.  APPLICATIONS

4.1. TATMAHAL cooeeeeeeeeeeeeeereevvvrmreeeseeieseecenesnssasensnns

4.1.1 How to generate 3D Model of Taj Mahal.....................

4.1.2 The class diagrum of 3D model of Taj Mahal ..............

4.1.3 The implementation of drawing 3D model of Taj Mahal....................o

4.2, TIAN TAN oot eeeeeeceeeccceteeveareeareceeseee e eenenenesesssesmanseses

4.2.1 How to generate 3D Model of Tiun Tan .......................
4.2.2 The class diagram of 3D model of Tian Tun.................

4.2.3 The implementation of drawing 3D model of Tian Tun

5. CONCLUSION

6. README FILE FOR RUNNING APPLICATIONS

REFERENCES

38

38

39

39

41



List of Figures

FIGURE= 1 A SAMPLE POLYGONAL MESH ....viiirieeieiceeneensetssesnsenmsaesensernmbassessssses st s casassasasesussssmtansnasenssusncss 6
FIGURE- 2 FACE LIST AVAILABLE THROUGH USING THE SIMPLEST DATA STRUCTURE ..o 7
FIGURE- 3 DATA STRUCTURE TO DESCRIBE A POLYGONAL MESH WITHOUT REDUNDANCY ... 8
FIGURE-4 2D POLYGON ON X-Y PLANE FIGURE- 5 2D POLYGON SWEPT ALONG Z ....evrnnniieeennene [}l
FIGURE= 6 A 3D HELIX.oomieeeeeteeeenteeteeeceeeetesssestesesessatasesmstsonsssosasassrbess sresnenn e basabe s sast st et natssnssansassastastrane 16
FIGURE- 7 A QUADRILATERAL WRAPPING AROUND A HELIX ceciriiiiiiiinreneieeetnee et 17
FIGURE- 8 HOW A POINT MOVES ALONG A CURVE ....veeeeeeerrreeceeerseevesmiessesssstn e e masimnessssasesssssssesssassasasssassses 17
FIGURE-9 MARCHE BONSECOURS WITH ITS RENAISSANCE-STYLE DOME ..oooiiiiiiiiiinimnnmsccecnnesene s 22
FIGURE- 10 BANK OF MONTREAL WITH SIX CORINTHIAN COLUMNS AND A NEOCLASSICAL DOME .............. 27
FIGURE= 11 A CIRCLE WRAPPING AROUND A HELIX c.otteovieieeteniereresstesererrmessse s e s ses s s seenssn s e maa e esiene 27
FIGURE- 12 A BEZIER CURVE ROTATING ABOUT Y=AXIS ceericeiiieietirienninsenterseesenessesssses e ssn e cesetaesss s nseeceesen 31
FIGURE- 13 CLASS DIAGRAM OF THE CLASSES IN THE FRAMEWORK .cvrieiiieit e 37
FIGURE= 14 A PHOTO OF THE TAJ MAHAL cc.eviiiiiieceeenccntre e rctee s n e sents s e s ee s sv o san e s ssne s s eree e e 38
FIGURE- |5 THE PICTURE DRAWN BY DRAWTAJ() IN THE CLASS OF TAUMAHAL oo 38
FIGURE= 16 THE CLASS DIAGRAM OF THE CLASS OF TAJMAHAL ccoviiiiiieetcee et 40
FIGURE= 17 THE PHOTO OF TIANTAN L..oeiiiittieeceieceeeemeeeeeseeseeenecsesastsssssnanssersnasses s srnresssnas et aananssssssseaansen 45
FIGURE- |8 THE PICTURE DRAWN BY DRAWTIANTAN() IN THE CLASS OF TIANTAN ..ol 45
FIGURE- 19 THE CLASS DIAGRAM OF THE CLASS OF TIANTAN c.ei ittt 47



1. Introduction

The development of computer software proceeded from an initial concern with
programming alone. through increasing interest in design. to a concern with analysis
methods. The potentiality of reuse is always an important issue at different times.

At a time when the sole concern was programming alone. people created libraries that
consisted of commonly used functions or procedures. so that software developers could
call the functions in libraries as they developed their software. This required the reuse of
the code.

At the time of OOAD. people created commonly used classes. so that software
developers could implement their application through inheritance and composition of
classes. This entailed the reuse of classes.

Now. people are demanding a higher degree of reuse. including the reuse of analysis.
design. classes and code. Frameworks are regarded as a means of satisfying such
requirements. Frameworks are generally targeted for a particular application domain. such
as user interface. business data processing systems, telecommunications. or multimedia
collaborative work environments. By using the OOAD method. software developers
analyze. design and program for one typical application. and abstract the framework from
the development of this typical application. Mature frameworks can be reused as the basis
for many other applications.

My major report. as outlined in this paper. will develop a framework for drawing the
architecture of buildings using OpenGL and VC++. and it will implement two sample

applications based on the framework.



2. Background
2.1. Computer Graphics
The terminology of computer graphics can acquire different meanings in different
contexts.
® Simply stated. computer graphics are pictures generated by computers.
® Computer graphics also refer to the computer tools used to generate such pictures.
including both hardware and software tools.
® Hardware tools include video monitors and printers that display graphics. as well
as input devices. such as a mouse. that enable users to point to items and draw
figures
® As for software tools for graphics. there must be a collection of graphics routines
that produce the pictures themselves. For example. all graphics libraries have
functions to draw a simple line or circle. Some go beyond this. containing
functions to draw and manage windows with pull-down menus and dialog boxes.
® Computer graphics may also refer the discipline of the study related to the depiction
of pictures by using computers.
2.2. Open GL
Not too long ago. programmers were compelled to use highly device-dependent
libraries designed for use on one specific computer system with one specific type of
display device. This made it very difficult to port a program to another system or to use the
program with another device: usually the programmer had to make substantial changes to
the program to get it to work. and the process itself was time consuming and highly prone
to errors. However. device-independent graphics libraries are now available. which allow
the programmer to use a common set of functions within an application and to run the same
application on a variety of systems and displays. Open GL constitutes such a library. and

the Open GL way of creating graphics is widely used in industry and at universities.

~



2.3. Framework

As a domain of engineering. software engineering strives to establish standard. well
understood building blocks. which are expected to be developed and stored in libraries for
common use and considered as a basis for extensions and modifications in the spirit of the
reusability concept. Although software reuse had existed in software development
processes since software engineering began as a research field in 1969. it was not until
1978 that the concept of reusability was clear in the minds of peoplie as a solution to the
software crisis. Currently. the issue of software reuse is getting a great deal of attention in
regard to its potentiality in increasing productivity. reducing costs. and improving software
quality.

The advent of object-oriented techniques makes the reuse technology even more
powerful. Framework. as an object-oriented reuse technique. is playing an increasingly
important role in contemporary software development. Although people are developing
and utilizing frameworks. the definitions of frameworks vary. Johnson [9] lists two
common definitions of frameworks as follows:

® A framework is a reusable design of all or part of a system that is represented by a

set of abstract classes and the way their instances interact.

® A framework is a skeleton of an application that can be customized by an

application developer.

Although it is hard to define frameworks formally and clearly. there are several
common features of frameworks:

® A framework is for reuse in the development of application in some specific

problem domain.

® A framework is a skeleton program that can be extended into a complete

application by being filled with necessary components at hot spots. the
implementations of which vary from application to application of the framework.

® A framework is customizable to fit the applications being developed.



® A framework predefines some interfaces of the filling components as the
framework contract so that the components fit each other and fit into the
framework.
A set of abstract classes is usually used to describe the behaviors of frameworks.
® A corresponding concrete class should be implemented as the filling component
when extending the tramework to application.

Given these features. we can see that framework is a design reuse technique for
developing new application. There are a lot of advantages in using frameworks in
application development. Rather than developing an application from scratch. extending
and customizing an appropriate framework to cater to the needs of the application will save
much effort and therefore speed up the development process. Another important advantage
is that the quality guarantee of the framework as a product also assures the quality of its
application.

Fayad-Schmidt [10] categorizes the existing frameworks into three scopes: system
infrastructure framework. middle ware integration frameworks. and enterprise application
frameworks. Frameworks can also be classified as white box and black box frameworks by
the techniques used to extend them.

White box frameworks are extended to applications by inheriting from some base
classes in the frameworks and overriding their interface methods. whereas black box
frameworks are extended by customizing new components according to particular
interfaces defined by the frameworks and plugging them into frameworks.

However. the white box and black box reuse techniques frequently coexist in one
framework. because some common abstractions among many black box components
(object classes) within the same problem domain may also be expressed and implemented
using inheritance and overriding.

2.4. A Sample Framework for Graphics Recognition Applications

The framework for graphics recognition applications is an enterprise application



framework in the problem domain of graphics recognition. The recognition of graphic
objects from files of scanned paper drawings. known as graphics recognition. which is a
part of engineering drawing interpretation and document analysis and recognition (DAR) —
is a topic of increasing interest in the field of pattern recognition and computer vision.

Although many algorithms and systems have been developed. the results have not
been satisfactory due to the complex syntax and semantics these drawings convey. and
more powerful algorithms and system are therefore strongly needed. To reduce the effort
involved in developing basic algorithms for such systems. the graphics recognition
framework was developed. After comprehensive domain analysis. the design of the
graphics recognition framework was inspired by the observation that all classes of graphic
objects consist of several or many primitive components. and the algorithms for
recognizing them can employ an incremental. stepwise recovery of the primitive
components.

The tframework is implemented using a C++ template class with the graphic class used
as a parameter. It is a black box framework. whose application can be easily assimilated to
the framework contract. Some common graphic classes are also defined in a preliminary
inheritance hierarchy so that new concrete graphic classes can also inherit from some
appropriate class in the hierarchy.

The framework described above has been successfully used in developing the

application of arc detection, leader and dimension set detection. and general line detection.

W



3. Design and Implementation of a Framework for Drawing the Architecture
of Buildings
3.1. Polygonal Mesh
A polygonal mesh is a collection of polygons along with a normal vector associated
with each vertex of each polygon.
Figure-1 illustrates a simple shape which can be called a barn. It has seven polygonal
faces and a total of 10 vertices each of which is shared by three faces. Because the barn is
associated with flat walls. there are only seven distinct normal vectors involved: the normal

to each face.

Figure- 1 a sample polygonal mesh

3.1.1 Data Structure of Polygonal Mesh

The Polygonal Mesh itself plays a role in the drawing of a building. and it is also the
building block of other shapes. such as extruded shapes. shapes of revolution. and shapes
of revolution based on Bezier Curves. Therefore it is important to make the data structure

for a Polygonal Mesh efficient and to let application developers know the structure clearly.



The simplest way to represent the data structure of the polygonal mesh is to use a list to
describe all the faces, and each face consists of a list wherein its vertices are located and
where the normal for each of its vertices is pointing. This kind of data structure for the barn
is shown in figure-2. There are a total of 30 vertices and 30 normals. But this structure
would be quite redundant, and its chief defect concemns the error of inconsistency resulting
from redundancy. As in the case of bam, there are only 10 distinct vertices and seven
distinct normals. The error of inconsistency is possible in that different values may be

given for the same vertex shared by different faces.

Faces | Vertex Vertex Vertex Vertex Vertex
0 (0,0,0) 0,0,1) 0,1,1) 0,1,0) Null
1 (.5,1.50) [(0,1,0) o,L,1) (.5,1.5,1) [ Null
2 (1,1,0) (5,1.50) | (5015 | (LLD Null
3 (1,0,0) (1,1,0) (LL) (1,0,1) Null
4 (0,0,0) (1,0,0) (1,0,1) (0,0,1) Null
5 0,0,1) (1,0,1) (L,L1) (5,151 [@©LD
6 (0,0,0) 0,1,0) (.5.1.5,0) | (1,1,0) (1,0,0)

Figure- 2 Face list available through using the simplest data structure

An improved way would be to use another two lists to store the vertices and normals of
the polygonal mesh, and only indices of vertices and indices of normals would be used in
the list of each face. The redundancy and thus the error of inconsistency can thus be
avoided.

® A vertex list contains locational or geometric information.

® A normal list contains orientation information.

@ A face list contains connectivity or topological information.

The face list simply indexes into the other two lists. Figure-3 shows the corresponding

data structures used in the program.



List for vertices List for normals List for faces indexing into
the other two lists

Vertex | (X.y.z) normal | (Nx.Ny.Nz) face vertices | normal
0 (0.0.0) 0 (-1.0.0) 0 0.594 |0.0.0.0

1 (1.0.0) 1 (-0.7.0.7.0) 1 3498 | LI

2 (1.1.0) 2 (0.7.0.7.0) 2 238.7 2222

3 (.5.1.5.0) 3 (1.0.0) 3 1.2.76 3333

4 (0.1.0) 4 (0.-1.0) 4 0.1.6.5 4444

5 (0.0.1) 5 (0.0.1) 5 5.6.7.89 | 55555
6 (1.0.1) 6 (0.C.-1) 6 0.4.3.2.1 | 6.6.6.6.6
7 (1.1.1)

8 (.5.1.5.1)

9 (0.1.1)

Figure- 3 Data structure to describe a polygonal mesh without redundancy

3.1.1 The class diagram for a Polygonal Mesh

The following is the declaration of the class Mesh. along with those two other classes:
VertexID and Face. which are used in the Mesh class. Point3 is declared as a structure,
because it will be used not only in the Mesh class but also here and there in the application
program. A mesh object has a vertex list. a normal list. and a face list. represented simply
by the arrays: pt, norm and face. respectively.

These arrays are allocated dynamically at run time. after it is known how large they are.
Their lengths are stored in numVerts. numNormals, and numFaces. respectively.

The face data type is an array of the faces associated with the Mesh. and each face is
composed of an array of a list of vertices and the normal vectors. which is represented by
an array of Class VertexID. It is organized as an array of index pairs: the v-th vertex in the
fth face has position pt[face[f].vert[v].vertindex] and normal vector

norm{face[f].vert[v].normIndex].
#define mesh



const float PI = 3.1415926f:

struct point3

/
t

double x;
double y:

double z;

!-
f

struct vector3

/
t

double x;
double y:
double =;

Q-
Y

typedef point3 Point3;
typedefvector3 Vector3:

class VertexID

/
t

public:
int vertindex;
int normindex;
}:
class Face

/
i

public:
int nberts;
VertexID * vert;
Color color;
Vector3 averageNormal;
Face():
~Face():

l-
J

class Mesh

!
!

protected:
int numVerts;
Point3* pt;
int numNormals;
Vector3* norm;
int numFaces;
Face* face;
public:



Mesh();

~Mesh():

void draw():

void computeNormal();

l-
e

3.1.2 The implementation of Mesh::draw()

The first method is to draw such a mesh object after the structure has been designed. It
is a matter of drawing each of its faces. so an Mesh::draw() will tranverse the array of faces
in the mesh object and. for each face. send the list of vertices and their normals down the

graphics pipeline. So the basic flow of Mesh::draw is as follows:

void Mesh::draw()

/
¢

glPolygonMode(GL _FRONT AND BACK.GL_LINE):
for (int [ = 0; f< numFaces: f++)
/
[
glBegin(GL_POLYGON):
Jor (intv = 0; v < face[f].nlerts: v++)
(2
'
int iv = face[f].vert[v].vertindex:
glVertex3dipt[iv].x. ptfiv].y. pt[iv].z):

!
s

glEnd();



3.2. Extruded shapes
Many kinds of shapes can be generated by extruding. or sweeping. a 2D shape through

space. The prism shown in Figure-5 is an example of a shape produced by linear sweeping.

Figure- 4 2D polygon on X-Y plane Figure- 5 2D polygon swept along Z

3.2.1 Creating Prisms

A prism is the shape formed by sweeping a polygon in a straight line. Figure-4 shows a
prism based on a polygon P lying in the xy-plane. P is swept through a distance H along the
z-axis. forming the prism shown in Figure-5. As P is swept along. an edge in the z-direction
is created for each vertex of P. This generates another 6 vertices, so the prism has 12
vertices in all. They appear in pairs: if (Xi. Yi. 0) is one of the vertices of the base P. then
the prism also contains the vertex (Xi. Yi. H).

More generally. the sweep could be along any vector d.
3.2.1.1 Data Structure of Prism

A prism is actually a polygonal mesh in which one bottom face is the base polygon.
another face is the top face. and other faces are side faces which are actually quadrilaterals
each of which is composed of two consecutive pairs of vertices: (Xi. Yi. 0). (Xi. Yi. H).

(Xi+1.Yi+1, H). and (Xi+1. Yi+1, 0).

i1



3.2.1.2 Class Diagram of Prism

Since a prism can be gotten by sweeping along any vector d. and such a vector is
usually not known until an application program is developed. and even in the same
application different prisms will be generated by sweeping along different vectors. it is
important that the application developers possess the flexibility to set such vectors in their
programs.

In accordance with the above ideas and requirements. we can design a new class
inheriting from the Class of Mesh by merely adding three methods to draw prism and
application developers have the desired flexibility to set the vector along which the prism is
swept. One method would be Prism::drawPrism(...). and another two comprise virtual
method Prism::setVector(...) and Prism::setFunctionForPrism(...).

The vector d along which the prism is generated can be set by two virtual methods:
Prism::setVector(...) and Prism::setFunctionForPrism(). In this way. application developers
can set any vector d by overriding the virtual function setVector(...) and
setFunctionForPrism(...) in their new sub class inheriting from the class Prism. This is the
reason why we add virtual before the declaration of these two methods. so that they may be
then overridden in the subclass of the class Prism.

The virtual keyword before “public Mesh™ is used to tell the C++ compiler that the
base class Mesh may be indirectly inherited multiple times and that it should be included

only a single instance of the base class.

#ifndef mesh
H#define mesh
#include "mesh.h"
#endif

class Prism : virtual public Mesh

/
4

public:
int drawPrism(Point3 p[]. int numPts, int numSlices, double length, char xyz):
virtual void setFunctionForPrism(Point3 pl, Point3& p2, Vector3 v. double alpha):

virtual void setVector(Vector3& v, char xyz).

}-
D



3.2.1.3 The implementation of drawing a prism: Prism::drawPrism(...)

In order to draw the prism. the base polygon must be passed to the method by
parameter p[] and numPis. while p[] contains the vertices composing the polygon and
numPts is the number of vertices of the polygon. Parameter numSlices. length and d will
prescribe the shape of the prism. Parameter numSlices will be used to determine how many
segments the prism will have. and parameter length will be used to describe how long the
prism will be. while the vector d will be the direction along which the prism is swept.

Suppose we have m vertices of a base polygon and have n segments. and if (Xi.Y1.0)
is one of the vertices at the bottom. then its pair is the vertex (Xi.Yi.H). while the
consecutive pair are (Xi+1. Yi+1. 0) and (Xi+1.Yi+1.H).

The prism is composed of segments. and each segment is composed of a bottom face. a
top face. and side faces. each of which is composed of two consecutive pairs of vertices:
(Xi. Yi. 0). (Xi. Yi, H). (Xi+1. Yi+1. H). and (Xi+1. Yi+1. 0). Thus the prism consists of
faces composed of vertices and generated vertices.

We can also determine that there will be (m-1) faces for each segment and there will be
a total of ((m-1)*n +2) faces in the prism. so that the total number of vertices is m*(n+1).
After determining the infrastructure of the prism and setting the corresponding variables
and lists (arrays) in the class of Mesh. the Mesh::draw() will be called to draw the whole
prism as a polygon mesh.

Because we allocate memory dynamically for arrays of face. norm. pt. etc.. we have to
release the dynamic memory after the polygonal mesh has been drawn. otherwise the
memory will run out very easily due to the fact that there may be hundreds or thousands of
faces in the application and the display() is called very frequently each time the window is

refreshed or redrawn.

#include <afowin.h>
#include <gl\gl.h>
#include <gl\glu.h>
#include <fstream.h>
#include <math.h>



#include "prism.h"
int Prism::drawPrism(Point3 p[]. int numPts, int numSlices. double length. char xyz)
{
double alpha:
int whichFace;
Vector3 v:
numVerts = numPts * (numSlices + 1):
numNormals = numVerts;
numFaces = (numPts) * (numSlices):
pt = new Point3[numlerts]:
face = new Face[numFuaces]:
norm = new Vector3[numNormals]:
alpha = length / (numSlices):
sethector(v.xyz).
Sor (inti = 0;i<numSlices + [ ; i++)

/
!

Jor (intj = 0: j < numPts; j++)

/
¢

setFunctionForPrism(p[f].pt[i ¥ numPts + j].v.alpha*i):

!
s

for (j = 0:j < numPts: j++)
/

!
if (i < numSlices )

s
!

whichFace = (i) * (numPts) + j;

Sface[whichFuce[.nVerts = 4:

face[whichFace].vert = new VertexID[4]:

facefwhichFace].vert[0].vertindex = (i) * (numPts) + j:
face[whichFace].vert[]].vertindex = (i) * (numPts) + (j + 1) % numP1s:

face[whichFace].vert[2].vertindex = (i+1) * (numPts) +

G + 1) %o numPts;
face[whichFace].vert[3].vertindex = (i+1) * (numPts) + j:

~—

!
/

draw();

delete [] pt:
delete [] face:
delete [] norm;
return 0;



In setFunctionForPrism(...). p1 stores points of the bottom face. p2 stores the points of
the top face which is generated by sweeping pl along the vector d for a length of len. and

p2 is passed by reference as it has to change the actual parameter.

void Prism::setFunctionForPrism(Point3 pl. Point3& p2, Vector3 v. double alpha)

4
]

p2.x = pl.x + alpha * v.x;
p2y =pl.y + alpha *v.y:
p2.z =pl.z +alpha * v.z;

!
/

The setVector(Vector3& d) in the base class is virtual. so that application developers
can override the method by defining their own special vector d. and the prism can then be

along any vector they require.

void Prism::setVector(Vector3& v, char xyz)
{
if (xyz==%"|| xyz =="'X))
{
e
0'.
0'.

1
V.

ek
1

V.
!

/
if (yz==%" || xyz =="¥)

vx =0,
vy = -/;
vz =0;

if (yz==""{| xyz == "Z)

/
!

vx =0;
vy =0;
v =-I;

3.2.2 Building segmented extrusions: Tubes or Pipes based on 3D curves

In section 3.2.1 the base polygon is swept linearly in order to get a prism. What



happens if we expand the idea of sweeping by allowing the base polygon to sweep
non-linearly. For example. a base polygon can be modeled by employing a sequence of
extrusions. each with its own transformation. and thereby laying them end to end to form a
tube or pipe. The various transformed polygons are called the waist of the tube.

It is much easier to think of the tube as polygons wrapped around a curve. which is
called the spine of the tube. that undulates through space in some organized fashion. The
curve can be represented parametrically. For example. the helix shown in Figure-6 has the
parametric representation:

C(t) = (cos(t). sin(t). bt) . for some constant b

Figure- 6 a 3D helix

3.2.2.1 How to generate each waist of the TubePipe
What kind of transformation should be implemented to get each waist polygon trom

the base polygon. To form the various waist polygons of the tube, we sample C(t) at a set of
t-values. {tg .ty .ty ...}. and build a transformed polygon in the plane perpendicular to the
curve at each point C(t;j ). as shown in Figure-7 and Figure-8. It is convenient to think of

erecting a local coordinate system at each chosen point along the spine: the local “z-axis™

points along the curve. and the local “x- and y- axes™ point in directions, both normal to the



z-axis and normal to each other. The waist polygon is set to lie in the local xy-plane.

Figure- 7 a quadrilateral wrapping around a helix

/-

Figure- 8 How a point moves along a curve

At each value t; of interest. a vector T(tj ) that is tangential to the curve can be

computed. Consequently. two vectors. N(t; ) and B(tj ). which are perpendicular to T( t; )

and to each other. can be computed. These three vectors constitute the coordinate frame at

17



ti].
Once the new coordinate frame is computed. it is easy to find the transformation
matrix M that transforms the base polygon of the tube to its position and orientation in that

frame. It is the transformation matrix that carries the world coordinate system into the new

coordinate frame. So the matrix M; must carry X. Y and Z into N(t; ). B(t; ) and C(t;).
respectively. and must carry the origin of the world into the spine point C(t; ). Thus. the

matrix has columns consisting directly of N(tj ). B(t; ). T(t; ) and C(t j ) that are expressed

in homogeneous coordinates:

Mj = (N(tj ) I B(t) | T(t;) | C(t )
N(t).x B(t).x T(t).x C(t)x
Nty By Ty C().y
Mi = N().z B(t).z T(t).z C(t).z
0 0 0 1

C(t) = (cos(t). sin(t). bt). for some constant b
Let C1(1) represent the first derivative of C(t)

Let C2(t) represent the second derivative of C(t)

T(1) = Cl(1)
B = -C1OXC2Y
|cimxc2)

T(t) = (-sin(t). cos(t). b) / \/ 1+b2

B(t) = (bsin(t). -beos(t). 1)/ \/ 1+b2
N(t) = B()xT(t)
N(t) = (-cos(t). -sin(t). 0)



-cos(t)  bsin(t) 1+b2 -sin(t) 1+b2 cos(t)

-sin(t) -bcos(t) 1+b2 cos(t) 1+b2 sin(t)

0 1A 1+b2 bA 1+b2 bt

0 0 0 1

=
Il

3.2.2.2 Class Diagram of TubePipe

We can design a new class TubePipe to draw a tube and pipe. The class TubePipe
inherits from the base class Mesh and we then add two methods and one data type into the
new class. One method is TubePipe::drawTubePipe(...) and another is
TubePipe::setMatrix(...). The new data type is Matrix which is used to represent the
transformation matrix by which the waist polygon can be gotten with the Transtormation
Matrix multiplied by the base polygon.

The application class may multi-inherits from Prsim and TubePipe. both of which
inherit from the same base class Mesh. so that the base class may be indirectly inherited
multiple times. I[n such a case. the base class Mesh has to be declared virtual in the place
where it is inherited. so that only one instance of the base class Mesh is included: otherwise
the base class Mesh will be included multiple times and vield a compile error of ambiguity.
The same is true for Class Prism: virtual public Mesh.

Application developers can make the base polygon wrap about other Kinds of 3D
curves with formulae by changing the content of the transtormation matrix M. However.
according to the OOAD principle of information hiding and encapsulation. the apllication
developers may not change anything in the class TubePipe. They can elaborate a new class
inheriting from class TubePipe and write their own special setMatrix(...) in the sub class of
TubePipe to override the method in the parent class. Therefore we add virtual before

setMatrix(...) in the class of TubePipe to make such overriding possible.

#ifndef mesh
#idefine mesh
#include "mesh.h"

19



Zendif
typedef double Matrix[4][4]:
cluass TubePipe : virtual public Mesh

!
]

public:
int drawTubePipe(Point3 p[]. int numPts, double t[]. int numTimes):
virtual void setMatrix(Matrix m, double t. double b);

!-
o

3.2.2.3 The implementation of drawing TubePipe: TubePipe::drawTubePipe(...)
The main idea used for drawing TubePipe is similar to that used for drawing prism.

zinclude <afewin.h>
dinclude <gl'gl h>
Zinclude <glglu.h>
Zinclude <fstream.h>
Zinclude <math.h>
zinclude "tube&pipe.h”

int TubePipe::drawTubePipe(Point3 p[]. int numPts. double t[]. int numTimes)

/
]

float b = 1.0:

int whichFace:

Muatrix m;

numlerts = numPts * numTimes:
numNormals = numlerts:

numfFaces = numPts * (numTimes-1);

pt = new Point3[numPts*numTimes]:
norm = new bector3[numPits*numTimes|;
face = new Face[numPts*(numTimes-1)];
for (int i =0;i< numPts; i++)

/
!

ptfi].x = p[i].x:
ptfi].y = p[i].y:
ptfi].z = p[i].=:
!
J
Sor (i = 0: i < numTimes: i++)

f
t

setMatrix(m, tfi]. b);
Sor (intj = 0:j < numPts; j++)

/
t

ptfi*numPts + j].x = float((p[j].x)*m[0][0] + (p[j].y)*m[0][1] +



(plj]-2)*m{0][2]+ m[0][3]):
pt[i*numPts + j].y = float((p[j].x)*m[1][0] + (p[j].y)*m[1][]] +

(plj]-=)*m[1][2]+ m[1][3]):
pt[i*numPts + j].z = float((p[j].x)*m[2][0] + (p[j].y)*m[2][]] +

(plj]-=)*m[2][2]+ m[2][3]):

)
!

for (j=0:j<numPts;j++)
/

t
if(i>0)

/
!

whichFace = (i-1)*numPts + (j):

face[whichFace].nlerts = 4:

face[whichFace].vert = new VertexIDf4]:

face[whichFace].vert[0].vertindex = (i-1) * numPts + j:

face[whichFace].vert[]].vertindex = (i-1) * numPts + (j + 1) % numPts:

face[whichFace].vert[2].vertindex = (i-1) * numPts + (j +~ 1) % numPts +
numbpPts;

face[whichFace].vert[3].vertindex = (i-1) * numPts + j +numPls:

]

/

]
/

!
/

draw():

delete [] pt:
delete [] face:
delete [] norm:

return ();

!
)

The transformation matrix can be set in the method of setMatrix(...) by the application
developers according to the kind of spine they have chosen for their application. The

default matrix is for helix. Application developers have to decide all the elements of the

transformation matrix if the spine is not helix.

void TubePipe: :setMatrix(Matrix m, double t. double b)

/
t

m[0][0] = -cos(t).
m[1][0] = -sin(1);
m[2][0] = 0:
m[3][0] = 0:



¢
/

m[0][1] = b*sin(t)/sqrt(] +b*b):

m[1][1] = -b*cos(t)/sqrt(1+b*b):

mf2][1] = I/sqri(1+b*b);
m{3][1] = 0:

mf0][2] = -sin(t)/sqrt(] +b*b):
mf1][2] = cos(t) / sqrt(l+b*b);
mf2][2] = b/sqrt(I1+b*b):
mf3][2] = 0:

mf0][3] = [0*cos(1):

mfl1][3] = [0*sin(t):

mf2][3] = b*.

m[3][3] = 1I:

3.3. Shapes of Revolution

In the building domain. there are many shapes for which we may not find suitable

parametric formulas. but they are frequently used for classical buildings. such as

Renaissance-style domes (a famous one in Montreal is the dome of the Marche Bonsecours

(Figure-9)) . neoclassical domes (such as the dome of the Bank of Montreal at Notre-Dame

across Place d”Armes). Indian style domes (a famous one is the dome of the Taj Mahal).

Islamic style domes. and so on. However. most of them can be considered as a curve

rotated around an axis. For such curves. we can not tind parametric formulae. but we can

use a profile consisting of a collection of discrete yet important data points along the curve

to describe the curve. and then rotate the curve consecutively around a certain axis to form

the dome we want. In this way. complex shapes of revolution can be easily drawn.

Figure- 9 Marche Bonsecours with its Renaissance-style dome

[0
N~



3.3.1 How to generate the shape of revolution

We only consider the case of the curve rotating around y-axis because we can
transpose the former one in any location and orientation by implementing transformation
afterwards.

Suppose the base curve is based on a set of Points Pi(xi, yi, 0), and the curve is rotated
about y-axis consecutively, and there are a total number of K-1 generated curves equally
spaced at angle 6 about y-axis. We call the polygonal mesh between Ki-1 curve and Ki
curve a slice of the shape of revolution, and call the base curve and generated curve the
waist of the shape of revolution. There are k waists and k-1 slices.

® = angle/(k-1), the angle is the degree of the revolution from O to angle.

So the basic transformation Matrix Mi of rotation about y-axis can be used to
determine the generated vertices from the vertices of the base curve, since the base curve is

used to obtain the generated vertices for every waist, the rotation angle should be i*0
cos(i0) O sin(i®) O
0 | 0 0

-sin(i@) 0 cos(i0) O

0 0 0 1

3.3.2 The class diagram of the shape of revolution

We can design a new class Revolution to draw shapes of revolution. Class Revolution
inherits from the base class Mesh, and we can add two methods and one data type into the
new class. One method is Revolution::drawRevolution(...) and another is
Revolution::getProfile(...).

Application developers can override getProfile(...) by writing their own version of
getProfile(...) in their inheriting sub class. This is why we add virtual before the declaration
of the method. The base curve can be described by sampling the discrete yet important data
points along the curve, and getProfile(...) can be designed to ask user to use the mouse to

input the points or to store the coordinates of points in a file and to let getProfile(...) read



from the designated file.

#ifndef mesh

#define mesh

#include "mesh.h"

#endif

typedef double Matrix[4][4]:

class Revolution : virtual public Mesh

/
t

public:
int drawRevolution(Point3* p, Point3 cPoints(].int numPts. int numSlices.
double angle);
virtual void getProfile(Point3*& p. Point3 cPoints[]. int& numPts):

t-
g

3.3.3 The implementation of drawing the shape of revolution

The main idea of drawing the shape of revolution is consequently the same as that of

drawing a prism and a TubePipe.

ginclude <afowin.h>

#include <gl'gl. h>

dinclude <gl'glu.h>

dinclude <fstream.h>

#include <math.h>

#include "revolution.h”

int Revolution::drawRevolution(Point3* p. Point3 cPoints[]. int numPlts.
int numSlices. double angle)

/
!

double alpha:

int whichFace;

numberts = numPts * (numSlices);
numNormals = nurVerts;
numFaces = (numPts - ) * (numSlices);
pt = new Point3[numVerts];

face = new Face[numFaces];

norm = new Vector3[numNormals];
alpha = (angle) / (numSlices-1);
getProfile(p, cPoints, numPts);

Jor (int i = 0; i < numSlices; i++)

/
]

Sor (intj = 0; j < numPts; j++)

/
l



ptfi * numPts + j|.x = (p[j].x) * costalpha * i) + (p[j].2) * sintalpha * i):

ptfi * numPts + jl.y = p[j].y:
ptfi * numPts + j].z = -(p[j].x) * sin(alpha * i) + (p[j].z) * cos(ulpha * i);
]

J
for (j = 0:j < numPts; j++)

{
if j < numPts - 1)
{
whichFace = (i) * (numPts - 1) + j:
Sface[whichFace].nberts = 4;
face[whichFace].vert = new VertexID[4]:
face[whichFace].vert[0] vertindex = (i) * (numPts) + j:
face[whichFace].vert[]].vertindex = (i) * (numPts) ~ (j - 1):
if (i == numSlices -1 && (2*PI - angle) >= 0.1)
/
!
face[whichFace].vert[2].vertindex = (i) * (numPts) ~ (j + 1):
Sface[whichFace].vert[3].vertindex = (i) * (numPts) + J:
!
else
l’
face[whichFace].vert[2].vertindex = ((i+1) % numSlices) *
(numpPts) ~ (j ~ 1);
face[whichFace].vert[3].vertindex = ((i+1) % numSlices) *
(numPts) - j:
!
)
/
!
draw():
delete [] p:
delete [] pt:
delete [] face;
delete [] norm;
return 0;

!
s

It is possible that the number of points of the curve is derived from getProfile, while its
new value has to be returned to drawRevolution(...). and this is why parametric numPts is

declared to be passed by reference; it is also the reason why p is declared as a dynamic



array. Since new operation may change the value of p. and we must pass its new value back.

pointer p is also declared to be passed by reference.

void Revolution::getProfile(Point3*& p. Point3 cPoints[].int& numPts)

/
!

p = new Point3[numPts];
Jor (inti=0:i<numPts; i++)

/
t

pli].x = cPoints[i].x:
pli].y = cPoints[i].y:
pli].z = cPoints[i].z;

S

3.4. 3D Surface with formulae

[n section 3.3. we outlined how to draw shapes of revolution without formulae. we use
a profile to record the important points to simulate the curve in 2D dimension. then rotate
the 2D curve to get the 3D shape. However. sometimes we know the formulae for the 2D
curve. and we can also determine the formulae for its 3D surtace after revolution or
through other kinds of movement if and only if we also know the formulae of the
movement. In such cases. we can draw 3D surface according to its 3D formulae.
Theoretically speaking. we can draw any 3D surface if and only if we know its formulae.
This kind of drawing is therefore much smoother and much more realistic than the method
described in section 3.3. It is more suitable to draw pillars or columns. such as corinthian.
ionic and doric structures. which are used for ancient Greek style modes of architecture.
Pillars are also popularly used in other styles of building. Examples in Montreal include the
Bank of Montreal building (1847)(Figure-10) across the Place d’Armes offering an ornate

facade that boasts six Corinthian columns with pediment sculptures.



Figure- 10 Bank of Montreal with six Corinthian columns and a neoclassical dome

3.4.1 How to generate 3D surface with formulae
Framework Tor Dirawing Anchitecture Vising ClpenGl o and Ve ﬁmm“

Figure- 11 a Circle wrapping around a helix



Suppose the parametric form for the surface is given by P(u.v) = (X(u.v). Y(u.v).
z(u.v)). We can subdivide the whole surface into small patches. supposing. for instance.
that there are m pieces equally spaced in the direction of u between uMin and uMax. and
there are n pieces equally spaced in the direction of v between vMin and vMax.
Consequently, the whole surface is composed of a face list consisting of mxn patches
which are actually quadrilaterals. If we send each quadrilateral to the OpenGL pipe line to
draw each patch one by one. then the whole surface can be drawn.
For example:
2D curve of circle can be represented by (cos(u). sin(u). 0)
if the circle wraps about the helix C(v) = (cos(v). sin(v). bv) . b is constant.
then the parametric formula for the 3D surface is
P(u. v) = C(v) + cos(u) N(v) + sin(u) B(v)

N(v) = (-cos(v). -sin(v). 0)

B(v) = (bsin(v). -bcos(v). 1)/ [+b2

Therefore any point P on the surface can be determined by:

P.x =cos(v) + (cos(u)(-cos(v)) + sin(u)bsin(v)/ l+b2
P.y =sin(v) + cos(u)(-sin(v)) + sin(u)(-bcos(v))/ 1+b2

P.z = bv + cos(u)(0) + sin(u) 1+b2
3.4.2 The class diagram of 3D surface with formulae

We can design a new class CurveSurface inheriting from class Mesh to draw 3D
curved surface. There are two methods employed in the class. one of which is
CurveSurface::drawCurveSurface() which is called by application program to draw 3D
surface.

Another one is CurveSurface::setFunctionForCurveSurface(...) designed to enable the
application developers to obtain the necessary flexibility to set different 3D surfaces with
different formulas by writing their special setFunctionForCurveSurface(...) in their

inheriting class so as to override this function. so this method has to be declared as virtual.



Because setFunctionForCurveSurface(...) will change the value of variable Point3 p and
this value has to be returned to the caller. the parameter p has to be declared to be passed by

reference.

#ifndef mesh
t#define mesh
#include "mesh.h"”
dendif

class CurveSurface : virtual public Mesh

4
]

public:
int drawCurveSurface(int numValsU, int numValsv. float uMin. float uMax.
Sfloat vMin. float vMuax);
virtual void setFunctionForCurveSurface(Point3& p. double u. double v):
?-
/

3.4.3 The implementation of drawing 3D surface with formulae

Since we subdivide the whole 3D surface into numValsU x numValsV patches which
are actually quadrilaterals. The main goal of the function of drawCurveSurface(...) is to
put all the vertices into the vertices list. describe each quadrilateral along with its proper
vertices index. put each of these quadrilaterals into the face list. then call method draw() in
the parent class Mesh to draw all the patches or quadrilaterals. so that. in this way. the
whole 3D surface is drawn. The degree of smoothness and reality can be gotten by
changing the value of numValsU and numValsV. wherein the larger values result in a
higher degree of smoothness and reality.

uMin. uMax and vMin.vMax are used to determine which part of the 3D surface is

drawn.

dinclude <afewin.h>

#include <gl\gl.h>

#include <gl\glu.h>

#include <fstream.h>

#include <math.h>

#include "curveSurface.h”

int CurveSurface::drawCurveSurface(int numValsU, int numValsV, float uMin.float
uMax, float vMin, float vMax)

/
!



inti, j;

double u, v;

double delU = (uMax - uMin) / (numValsU -1);

double delV = (vMax - vMin) / (nimValsV -1);

numVerts = numValsU * numValsV + I;

numFaces = (numValsU - 1) * (numValsV - 1);

numNormals = numVerts;

pt = new Point3[numVerts];

face = new Face[numFaces];

norm = new Vector3[numNormals];

for (i =0, u = uMin; i < numValsU; i++, u += delU)
for (j =0, v=vMin; j < numValsV; j++, v += delV)
[
int whichVert = { * numValsV + j;

setFunctionForCurveSurface(pt{whichVert], u, v);
if(i>0&&j>0)

{
int whichFace = (i-1) * (numValsV - 1) + (j-1);
face[whichFace].vert = new VertexID[4];
face[whichFacej.nVerts = 4;
face[whichFace].vert{0].vertindex = whichVert;
face[whichFace].vert[1].vertindex = whichVert - ;
face[whichFace].vert[2].vertindex = whichVert - numValsV -1;
face[whichFace].vert[3].vertindex = whichVert - numValsV;
/
/
draw();
delete [] pt;
delete [ face;
delete [] norm;
return 0;

/

The default formulae of setFunctionForCurveSurface is:
P(u,v) = C(v) + cos(u) N(v) + sin(u) B(v)

which is a circle (cos(u),sin(u),0) wrapping about a helix :
C(v) = (cos(v), sin(v), bv)
N(v) = (-cos(v), -sin(v), 0)

B(v) = (bsin(v),-bcos(v), 1)/ \| 1+b>

P.x = cos(v) + cos(u)(-cos(v)) + sin(u)(bsin(v))/ 1+b2

30



P.y =sin(v) + cos(u)(-sin(v)) + sin(u)(-bcos(v))/ \/ [+b2

P.z =bv + cos(u)(0) + sin(u) (1) 1+b2
Application developers have to find the formulae if the 3D surface is not generated by
wrapping a circle about a helix. then decide the elements for P(u.v). C(v). N(v) and B(v)

accordingly. finally override the method setFunctionForCurveSurface(...).

void CurveSurface::setFunctionForCurveSurface(Point3& p. double u. double v)

/
]

float b:
b=1;
D.X = cos(v) + cos(u)*(-cos(v)) + sin(u)*sin(v)*b/sqrt(1+b*b):
p.y = sinfv) + cos(u)*(-sin(v)) + sin(u)*(-cos(v))*b/sqri(1 +b*b);
p.c = b* + cos(u)*0 + sin(u) * 1'sqri(1+b*b):

4
’

3.5. 3D Surface based on Bezier Curves

In reality. it often happens that we can not find formulas for some natural and beautiful
3D shapes or surfaces. however we still want to render them while importing a high degree
of smoothness and reality. What should we do for such kinds of surface? We need another
method to deal with such kinds of surface.

Since Bezier Curves are widely used to simulate the real curves for which we can not
find formulae. we can also use them to simulate real 3D surfaces. Theoretically speaking.

we can render any 3D surface very well as long as we can set the control points properly.

Figure- 12 a Bezier curve rotating about y-axis

31



3.5.1 How to generate 3D surfaces based on Bezier Curves

Suppose one Bezier curve rotates about axis-Z, which means that a profile is swept
about z-axis. Such a profile can be represented by:

C(v) = (X(v). Z(v))

The resulting surface has the parametric form:

P(u,v) = (X(v)cos(u), X(v)sin(u), Z(v))

Since the profile represents a Bezier curve, we can express the profile by the following

formulae:
3
(X(v). Z(v))= £ (Xk.Zk)Bk (V)
k=0

(X0.Z0 ). (X1.Z1).(X2.Z2),(X3.Z 3) are control points of the curve
Bo (v) = (I-v)?
B| (v)=3(1-v) 2 v
B2 (v) =3(l-v)v 2
B3 (v)=v3
Therefore, any point on the surface can be determined by:
P.x = cos(u) (XO(1-v) 3 + X1(3(1-v) 2 v) + X2(3(1-v)v 2 ) + X3(v 3))
Py = sin(u) (XO(1-v) 3 + X1(3(1-v) 2 v) + X2(3(1-v)v 2 ) + X3(v 3))
Pz =( Z0(1-v) 3 + ZIG3(1-v) 2 v) + Z2(3(1-v)v 2) + Z3(v 3 )
3.5.2 The class diagram of 3D surfaces based on Bezier Curves
According to the above analysis, we can design a new class to draw the 3D surfaces
based on Bezier Curves. Application developers can write their own special method in
their new class inheriting from the class BezierCurveSurface to override the virtual method

setFunctionForBezierCurveSurface(...), so that they can obtain different degree of Bezier,

B-Spline, Nurbs curves.



Hifndef mesh
4define mesh
Zinclude "mesh.h"
#endif

class BezierCurveSurface : virtual public Mesh

/
?

public:
int drawBezierCurveSurface(Point3 c¢Points[]. int numPts. int numlalsU.
int numValsV, float uMin, float uMax, float vMin. float vMax):
virtual void setFunctionForBezierCurveSurface(Point3& p. Point3 cPoints(].

int numPts.double u, double v);

!
i

3.5.3 The implementation of drawing 3D surfaces based on Bezier Curves

The control points of the bezier curve are passed by the caller of the method
drawBezierCurveSurface(...). and the control points are also passed to method
setFunctionForBezierCurveSurface(...) to calculate the value of the point at (u. v).

The new value of the point p has to be returned to the caller. so it is passed by reference.

and this is the reason why it is declared as ~“Point3& p™.

Zinclude <afxwin.h>

ginclude <gl\gl h>

dinclude <gliglu h>

#include <fstream.h>

#include <math.h>

tinclude "bezierCurveSurfuce.h”

int BezierCurveSurface::drawBezierCurveSurface(Point3 cPoints[]. int numPts.int

numbalsU, int numbalsV, float uMin, float uMax., float vMin, float vMax)

s
4

int i, j:

double u. v;

double delU = (uMax - uMin) / (numValsU -1);
double delV = (vMax - vMin) / (numValsV -1);
double b = 1.;

numVerts = numbalsU * numlbalsV + I;
numFaces = (numbalsU - 1) * (numValsV - 1);
numNormals = numVerts:

pt = new Point3[numberts]:

face = new Face[numFaces];

33



norm = new Vector3[numNormals];
for (i =0, u=uMin; i < numValsU; i++, u +=delU)
for(j =0, v=vMin; j < numValsV; j++, v +=delV)
{
int whichVert = i * numValsV + j;
setFunctionForBezierCurveSurface(pt[whichVert],cPoints,numPts,u,v);
if(i>0&&j>0)

{
int whichFace = (i-1) * (mumValsV - 1) + (j-1);
face[whichFace].vert = new VertexID[4];
face[whichFace].nVerts = 4;
face[whichFace].vert[0].vertindex = whichVert;
face[whichFace] vert[1].vertindex = whichVert - [;
face[whichFace].vert[2].vertIndex = whichVert - numValsV -1;
face[whichFace].vert[3].vertindex = whichVert - numValsV:
/
/
draw();
delete [] pt;
delete [] face;
delete [] norm;
return 0;

/

The default 3D surface is generated by a Bezier Curve rotating about axis Y, and its
formulae are listed as follows:
P(u,v) = (X(v)*cos(u), X(v)*sin(u), Z(v))
C(v) = (X(v), Z(v))
3

(X(v), Z(v)y= ¥ (X[K], Z[k]) (B[k}(V))
k=0
P[0].P[1],P[2],P[3] are control points of the curve

Bo (v) = (1-v) 3
B (v)=3(1-v) 2 v
B2 (v) =3(1-v)v 2
B3 (v)=v 3

If 3D surface is not generated by a Bezier curve rotating about one of the axis, then

34



application developers have to deduce the proper formulae for P(u.v). X(v). Z(v)

respectively according to what type of the curve rotating about which vector.

void BezierCurveSurface::setFunctionForBezierCurveSurface(Point3& p. Point3

cPoints[]. int numPts. double u, double v)

!
4

p.x = cos(u)*((cPoints[0].x) * pow((I-v).3)+ (cPoints{1].x) * 3 * pow((I-v).2) *v +
(cPoints[2].x) * 3 *(l-v) *v *v + (cPoints[3].x) * pow(v.3)).

p.y = sinfw)*((cPoints[0].x) * pow((1-v).3)+ (cPoints[1].x) * 3 * pow((]-v).2) * v +
(cPoints[2].x) * 3 *(I-v) *v *v + (cPoints[3].x) * pow(v.3)):

p.z = (cPoints[0].z) * pow((1-v).3)+ (cPoints[1].2) * 3 * pow((I-v).2) * v +
(cPoints[2].z) * 3 *(l-v) *v *v + (cPoints[3].2) * pow(v.3):

2
3.6. Auxiliary class CopyTools
3.6.1 The importance of class CopyTools

Symmetry is the most significant property of most forms of architecture. and the same
kind of compartments may appear here and there in the same building. and so it is
important for us to have tools to duplicate or copy the same kind of compartments into
different locations. The methods employed in the class of CopyTools are used for such a
purpose.

We can also use the OpenGL transformation function to arrive at the above purpose
without using the methods in class CopyTools. In order to illustrate the chief ditterences.
we can use methods in the class CopyTools for help in drawing Taj Mahal. while we do not
use them at all for drawing Tian Tan.

® MirrorCopy(...) is used to get new points after known points mirrored about x-axis.
y-axis or z-axis:

® lincarCopy(...) is used to get new points after known points swept along x-axis.
y-axis or z-axis:

® scaleCopy(...) is used to get new points after known points scaled in Xx. y. z
dimension:

@ rotateCopy(...) is used to get new points after known points rotated about x-axis.

y-axis or z-axis.



3.6.2 The declaration of class CopyTools

Variable oldPts[] is used to store the known points. and variable newPts{] is used to
store the new points after known points are copied in one way of linear. scale. rotate copy.
Variable numPts is used to specify how many points there are in the arrays of oldPts[] and
NewPts[].

In method mirrorCopy(...). variable xyz is used to specify which axis is used as the
mirror axis.

In method linearCopy(...). variable dist is used to specify the length of movement. and
variable xyz is used to specify which axis is emploied as the vector along which the point is
moving.

[n method scaleCopy(...). variables x. v. z are used to specify the scale factors in each
direction of X. Y. Z.

In method rotateCopy(...). variable alpha is used to specify the angle of rotation. and

variable xyz is used to specify the axis about which the point is rotated.

class CopyTools

/
!

public:

void mirrorCopy(Point3 oldPts{]. Point3 newPts[]. int numPts, double a. char xyz);

void linearCopy(Point3 oldPts[]. Point3 newPts[]. int numPts, double dist. char xyz):

void scaleCopy(Point3 oldPis[]. Point3 newPis[]. int numPts, double x.double .
double z);

void rotateCopy(Point3 oldPts[]. Point3 newPts[]. int numPLs. double alpha. char
xyz).

-
e

36



3.7. Class diagram of the framework for drawing architecture of buidling

Mesh

Prsm TubePipe Rewolufon CuneSurface BezerCuneSurface

Figure- 13 Class diagram of the classes in the framework

37



4. Applications
4.1. Taj Mahal

Figure- 14 A photo of the Taj Mahal

bramework tar Dirawing Architectyre lang Cipentsl nnd VI .

Figure- 15 The picture drawn by drawTaj() in the class of TajMahal

When the program is running and other picture is displayed. user can press F2 to

switch to the picture of Taj Mahal, press F1 to switch to Tian Tan. F3 to switch to Sphere.

38



4.1.1 How to generate 3D Model of Taj Mahal

After analyzing the architecture of the Taj Mahal. we found it is mainly composed of
three totally different kinds of compartments. comprising the dome. the wall and the pillar.
all of which can be drawn by the methods in our framework.

Domes can be regarded as a 2D curve on x-y plane rotating about y-axis. so we can
draw them using the method drawRevolution(...) in the class of Revolution. and we have
to write our own getProfile(...) to override the default method.

Pillars can be regarded as circles swept along the direction of the positive direction of
y-axis. and so we can draw them with the method draw3DcurveSurface(...) in the class of
CurveSurface. and we have to write our own special setFunctionForCurveSurface(...) to
override the default method.

Walls can be regarded as polygons swept along a certain direction of x-axis. y-axis or
z-axis. Therefore we can draw them with the method drawPrism(...) in the class of Prism.

After drawing the compartments. we can place them in the proper location by using the
transformation functions provided by OpenGL. such as glTranslatef{...). glRotatef{...). and
we can get the proper size by using glScalef(...) provided by OpenGL. glPushMatrix(...)
and glPopMatrix(...) are used to make the transformation affecting only certain parts of the
building.

Because most buildings are based on design symmetry. methods in the Auxiliary class
CopyTools can be used to determine the values of points from known points. In this way
we only sample points for one kind of compartment, and as for the points for each instance
of such compartments in the building, we can derive their points using the methods of class
CopyTools.

4.1.2 The class diagram of 3D model of Taj Mahal

Class TajMahal multiply inherits from classes Prism. TubePipe. Revolution.

CurveSurface and BezierCurveSurface. and we have our own setFunctionForPrism(...),

setFunctionForCurveSurface(...) and getProfile(...). Therefore we must rewrite them in

39



TajMabhal class to override these methods.
#ifndef Application
#define Application
#include "mesh.h"
#include "prism.h"
#include "tube&pipe.h”
dinclude "revolution.h”
#include "curveSurface.h”
dinclude "bezierCurveSurface.h”
#endif
class TajMahal : public Prism. public TubePipe. public Revolution. public

CurveSurface. public BezierCurveSurface

/
e

public:

void drawTaj():

void setFunctionForPrism(Point3 pl. Point3& p2. Vector3 v. double alpha):
void setFunctionForCurveSurface(Point3& p. double u.double v);

void getProfile(Point3*& p. Point3 domePoints(]. int& numPlts):

!
Y

Prism TubePipe Revolution CuneSurface BezerCuneSurface

TajMahal

Figure- 16 The class diagram of the class of TajMahal

40



4.1.3 The implementation of drawing 3D model of Taj Mahal

#include <afowin.h>

dinclude <gl\gl.h>

#include <gl\glu.h>

#include <math.h>

#include "TajMahal h"

void TajMahal::drawTaj()

{

CopyTools copyTools:

Point3* revolutionPoints = NULL:

Point3 domePoints[31] =
[30.0.172.0.0.0).{3.0.169.0.0.0}.{2.5.167.5.0.0}.{2.5.165.0.0.0;.
{0.0.160.0.0.0}.{5.0.158.0.0.0}.{6.0.149.5.0.0}.{0.0.145.0.0.0}.{3.0.143.0.0.0},
[5.0.140.0.0.0}.{9.0.135.0,0.0}.{16.5,130.0.0.0}.{26.5.125.0.0.0}.{23.5.122.5.0.0}.
{34.0.115.0,0.0},.{39.5.110.0.0.0}.!46.0.105.0.0.0}.50.0.100.0.0.0}.{53.0.95.0.0.0;.
{36.0.90.0.0.0}.[57.5.85.0.0.0}.{56.5.80.0.0.0}.{55.5.75.0.0.0,./53.5.70.0,0.0;.
{50.5,65.0.0.0}.{48.0,62.5.0.0}.{48.0.35.0.0.0}.{51.0.50.0.0.0}. [48.0.45.0.0.0;.
{48.0.45.0.0.0}.{48.0.0.0.0.0}}:

Point3 cPoints[9] = {{0.0.28.0.0.0}.{6.0.25.0.0.0}.{7.0.24.0.0.0}.{9.0.21.5.0.0}.
19.5.18.5.0.0}.{9.5.0.0,0.0},[15.5.0.0.0.0}.{15.5.36.0.0.0}.[0.0.36.0.0.0} }:
Point3 myPoints{10][9]:

% declarations of other variables

// Drawing the biggest dome

/* Domes can be regarded as a 2D curve on x-y plane rotating about y-axis. so we can
draw them using the method drawRevolution(...) in the class of Revolution. and we have

to write our own getProfile(...) to override the default method. */
drawRevolution(revolutionPoints,domePoints,31,36,2*PI);

/* Walls can be regarded as polygons swept along a certain direction of x-axis. y-axis
or z-axis. Therefore we can draw them with the method drawPrism(...) in the class of Prism.
In drawTaj(), we use methods in the class copyTools to transpose walls into proper location

and to scale them into proper size. ¥/

// Drawing arched walls

41



for(inti=0;i<4 i++)

if(i%2==20)
copyTools.scaleCopy(myPoints[0].myPoints[2].9.3.548*cScale.3.548%Scale. 1.0).
else
copyTools.scaleCopy(myPoints[0].myPoints[2].9.1.0.3.548*Scale.3.548*xScale):
copyTools.linearCopy(myPoints(2]. myPoints{2].9.35.0 + 15.5*Scale*3.548.signl):
drawPrism(myPoints{2].9.2.thickness.sign2):

copyTools.mirrorCopy(myPoints[2]. myPoints{3].9. 53.0 + 15.5 * xScale*3.548. signl):
drawPrism(myPoints[3].9.2.thickness.sign2):
copyTools.linearCopy(myPoints[2]. myPoints[4].9.3.548*Scale*36."y'):
drawPrism(myPoints[4].9.2.thickness,sign2):
copyTools.mirrorCopy(myPoints[4].myPoints{5].9.55.0+15.5*xScale*3.548.signl):
drawPrism(myPoints[3].9.2.thickness,sign2).
copyTools.mirrorCopy(myPoints[{2].myPoints[6].9.0.signl).
copvTools.mirrorCopy(myPoints{3].myPoints[7].9.0.signl).
copyTools.mirrorCopy(myPoints(4].myPoints[8].9.0.signl).
copyTools.mirrorCopy(myPoints(5].myPoints[9].9.0.signl).
drawPrism(myPoints[6].9.2.thickness,sign2):
drawPrism(myPoints[7].9,2.thickness.sign2):
drawPrism(myPoints[8].9.2.thickness,sign2):
drawPrism(myPoints{9].9,2.thickness,sign2);
glPopMatrix():

!
/

// Drawing four polars around temple

/* The pillars around Taj can be regarded as circles swept along the positive direction
of y-axis. and these pillars become thinner gradually at one end. so we can draw them with
the method draw3DcurveSurface(...) in the class of CurveSurface. and we have to write

our own special setFunctionForCurveSurface(...) to override the default method. */

for(i=0;i<4:i++)
{
Sfloat signl, sign2;

glPushMatrix();
if(i<2)
signl = +1.0;



else

signl =-1.0;
ifti==1]|i==2)

sign2 = -1.0:
else

sign2 = +1.0;

glTranslated(signl *180.0,-30*3.5480.sign2*180.0):
glScaled(2.0.2.6,2.0);

glRotatef(90.0.1.0.0.0.0.0):
glTranslated(0.0.0.0.-132.567):

drawCurveSurface(20, 20, 0.. 2*P1l. 73.540f. 132.567f):
glPopMatrix():

/

//Drawing four smaller domes
/* It is similar to the drawing of the biggest dome. so the codes for drawing them are

omitted. */

void TajMahal::setFunctionForPrism(Point3 pl. Point3& p2. Vector3 v. double
alpha)

/
t

p2.x = pl.x + alpha * v.x:
p2y =pl.y + alpha *v.y:
p2.z =pl.z + alpha * v.z:
!
/

/* The pillars around Taj can be regarded as circles swept along the direction of the positive
direction of y-axis. these pillars become thinner gradually at one end. They are different
from the default curve surfaces generated by wrapping a circle about helix. Therefore Class

TajMahal has its own setFunctionForCurveSurtace(...) to override the method in its parent

class. */
void TajMahal::setFunctionForCurveSurface(Point3& p, double u. double v)

!
t

float b = I;

p.x = v/tan(Pl/2-0.01745*2.16) *cos(u):
p.y = v/itan(Pl/2-0.01745%2.16)*sin(u);
p.z = b*;

43



/* Each point in the curve profile for drawing revolution surface has to be passed into
Point3 p. regardless how application developers get the points for its curve profile. In the

case of drawing Taj Mahal. we set curve profile points into array variable domePoints. then

getProfile(...) will duplicate domePoints into array variable Point3 p. */

void TajMahal::getProfile(Point3*& p, Point3 domePoints[]. int& numPts)

/
]

p = new Point3[numPts]:
Sor (inti=0;i<numPts: i++)

/
!

pli].x = domePoints[i] x:
pli].y = domePoints[i].y:
pli].z = domePoints[i].z:

.~

44



4.2. Tian Tan

framework tor firmwing Anc Bites tyce Tloang Dipentil amd vio.

Figure- 18 The picture drawn by drawTianTan() in the class of TianTan



4.2.1 How to generate 3D Model of Tian Tan

The most significant characteristic of the architecture of Tian Tan is that most of its
compartments are round. in order to inform people quietly that it is a temple of heaven.
since the ancient Chinese people considered heaven as round. While another temple of the
earth displays the characteristics of squares. as in this instance they thought of the earth as
being square shape.

The roof of Tian Tan can be regarded as a 2D curve rotating about axis-y. and since this
2D curve has no formulae. we can use a profile to simulate the 2D curve. so that it can be
drawn using the method in class Revolution.

The pillars between the walls. the round bases and the small pillars between the
railings along the round bases can be regarded as circles swept along axis-y. Since we can
determine the formulae for 2D circles and thus 3D formulae for pillars. we can use the
method in the class CurveSurface to draw these artifacts.

Stairs between the round bases can be regarded as 2D zigzag curve rotating about
axis-y from a certain distance. we use a profile to describe the 2D zigzag curve. so it can be
drawn with the method in the class of Revolution.

4.2.2 The class diagram of 3D model of Tian Tan

Class TiaTan multiply inherits from classes Prism. TubePipe, Revolution.
CurveSurface and BezierCurveSurface. since we have our own setFunctionForPrism(...).
setFunctionForCurveSurface(...) and getProfile(...). we have to rewrite them in TianTan

class to override these methods.

46



~ Pnsm TubePipe Rewolution CuneSurface BezerCuneSurface

TianTan

Figure- 19 The class diagram of the class of TianTan

difndef Application

#define Application

#include "mesh.h"

#include "prism.h"

#include "tube&pipe.h"

dinclude "revolution.h"”

#include "curveSurface.h”

#include "bezierCurveSurface.h”

#endif

class TianTan : public Prism. public TubePipe. public Revolution. public

CurveSurface, public BezierCurveSurface

/
1]

public:

void drawTianTan():

void setFunctionForPrism(Point3 pl. Point3& p2, Vector3 v, double alpha);
void setFunctionForCurveSurface(Point3& p, double u,double v);

void getProfile(Point3*& p. Point3 domePoints[], int& numPts);

}'.

47



4.2.3 The implementation of drawing 3D model of Tian Tan
#include <afowin.h>
finclude <gl\gl h>
#include <gl\glu.h>
#include <math.h>
#include "TianTan.h"

void TianTan: :draw TianTan()

/
!

Point3* revolutionPoints = NULL;

Point3 domePoints{30] =
[70.0.171.0.0.0}.{4.0.170.0.0.01.{7.5.167..0.0}.{7.163.5,0.0},
{3.0.160.0.0.0}.{5.0.157.0.0.0).[6.0.156.0.0.0}.{5.0,155.0,0.0}.{5.0.150.0.0.0;.
[7.0.146.3.0.0}.{9.0.142.5.0.0}.{9.0.136.5.0.0},{20.,124.0.0.0}.{30.0.116.5.0.0;.
[48.5.109.0.0.0}.[56.5.106.0.0.0}.{65.0,105.0.0.0}.[63.0.95..0.0}.[53.5.81.0.0.0}.
{48.3.80.0.0.0}.;48.5.67.0.0.0}.[88.5.51.5.0.0}.{88.3.453.3.0.0].{70.0.33..0.0}.
{70.0.27.0.0.0}.{72.0.25.0.0.0).{72.0.21.0.0.0}.}102.0.8.0.0.0}.{102.0,3.5.0.0,.
[86.0,10.,0.0}):

Point3 stairPoints1[20] = [{0..4*3..0.}.[4*5,4*3..0.}.{4*.53.4%2.5.0.}.

(A%, 4%25,0.0. (4] 4*2.0.0.{4*1.5,4%2..0.}. [4*].5,4*1.5.0.}.

HAF2. %1500 04F2. 4*1.0.0.0.[4%2.5.4%1.0.0.}.[4%2.5.4%0.5.0.}.
[4%3.0.4%0.5.0.0}.[4%3.0.0.0.0.0}. [4*3.0,-4*0.5.0.}. {4*3.5,-4*0.5.0.0,.
[4*3.5,-4%1.0.0.0}. [4*4.0.-4%1.0.0.0}. [4*4.0.-4*1.5.0.0}. [4*4.53.-4*1.5.0.0}.
[4%3.0.-4*%1.5.0.0}}:

Point3 stairPoints2[20]:

double basis.thickness.xScale.yScale:

double alpha;

basis = 32.526:

thickness = basis/3;

xScale = 0.419:

vScale = 0.361:

//drawing the roof

/* The roof of Tian Tan can be regarded as a 2D curve rotating about axis-y. and since
this 2D curve has no formulae. we use a profile to simulate the 2D curve. so that it can be

drawn with the method drawRevolution(...) in class Revolution. */

drawRevolution(revolutionPoints, domePoints, 30,36, 2*PI):

//drawing pillars between the walls

48



/* The pillars between the walls. the round bases and the small pillars between the
railings along the round bases can be regarded as circles swept along axis-y. since we can
determine the formulas for 2D circles and thus 3D formulas for pillars. we can use method
drawCurveSurface(...) in class CurveSurface to draw these artifacts. We only use OpenGL
transformation functions to transpose objects into their proper location and direction and to

scale them into proper size. */

alpha = 360.0:12.0;
SJor(inti=0:i<[2:i++)

/
¢

glPushMatrix():

glRotated(i * alpha + alpha’2,0.0.1.0.0.0);
glTranslatef(83.5.0.0.0.0):
glRotatef(90.0.1..0..0.);
glScaled(2.5.2.5.0.55):
drawCurveSurface(20.20.0.0.2*P1.0.100):
glPopMatrix();

!
/

//drawing the walls between pillars

/* Walls can be regarded as polygons swept along a certain direction of x-axis. y-axis
or z-axis. therefore we can draw them with the method drawPrism(...) in the class of

Prism.*/

alpha = 360.0/12.0;
Jor(i=0:i<12;i++)

/
t

glPushMatrix():

glRotated(i * alpha.0.0.1.0.0.0):
glTranslatef(0.0.-55..83.3);
drawPrism(cPoints.28.2.thickness.'z');
glPopMatrix();

!
s

// drawing the round bases
// drawing the balcony
/* 1t is similar to the drawing of pillars. so the codes for drawing them are omitted. */

49



// drawing stairs

/*Stairs between the round bases can be regarded as 2D zigzag curve rotating about
axis-y from a certain distance. and we use a profile to describe the 2D zigzag curve. so it

can be drawn with method drawRevolution(...) in the class of Revolution. */

for(i=0:i<4:i++)

/
4

glPushMatrix():
for (intj =0:j<3:j++)

/
!

for(m=0:m<20: m++)

!
]

stairPoints2[m].x = stairPoints|[m].x ~ [48 + ] * 25
stairPoints2[m].v = stairPointsi[m].y:
stairPoints2[m].z = stairPointsl [m].z;

4
/

glPushMutrix();

glTranslated(0.0.-(63+j*20).0.0):

glRotated(90*i + (3*360.0/16).0.0.1.0.0.0);
drawRevolution(revolutionPoints. stairPoints2, 16, 8. 2*P['16);
glPopMatrix():

!
!

glPopMatrix():

!
/

/I drawing arms

/* It is similar to the drawing of pillars. so the codes for drawing them are omitted. */

void TianTan::setFunctionForPrism(Point3 pl, Point3& p2, Vector3 v. double alpha)

/
]

p2.x =pl.x + alpha * v.x:
p2y =pl.y + alpha * v.y;
p2.z=pl.z +alpha *v.z;

S



/* The pillar can be regarded as a 3D surface generated by sweeping a circle along one of
the axis. It is different from the default curve surface generated by wrapping a circle about
helix. therefore Tian Tan has its own setFunctionForCurveSurface(...) to override the

method in its parent class. */

void TianTan::setFunctionForCurveSurfuce(Point3& p. double u. double v)

s
4

floath = I;
p.x = cos(u):
p.y =sin(u);
p.z = b*v;

!

!
/* Each peint in the curve profile for drawing revolution surface has to be passed into array
variable Point3 p. regardless how application developers get the points for its curve profile.
In the case of drawing Tian Tan. we set curve profile points into array variable domePoints.

then getProfile(...) will duplicate domePoints into array variable Point3 p. */

void TianTan::getProfile(Point3*& p. Point3 domePoints(]. int& numPis)

s
!

p = new Point3[numPls];
Sfor (inti = 0; i < numPts; i++)

/
¢

pli].x = domePoints[i].x:
plil.y = domePoints[i].y:
pli].z = domePoints[i].z;



§. Conclusion

While we developed the typical application for drawing Taj Mahal. we designed and
implemented certain classes and methods for drawing different kinds of compartments in
this building. After analyzing the possible use of each kind of compartment in the
architecture domain. we can then improve the corresponding methods and classes. so that
they can be reused in other applications. In this way. we can derive a framework for
drawing the architecture of the building.

By using this framework. we can implement the second application for drawing Tian
Tan very easily. while we can also improve certain methods and classes in the framework
to enable them to develop more flexibility in drawing the architecture of building.

From the above introduction of the design and the implementation of the framework.
as well as two sample applications. we can conclude that it is feasible to develop a practical
OpenGL framework to help application developers in drawing the architectures of
buildings. We can also conclude that successful frameworks will permit the reuse of design.
classes and codes. and thus improve the efficiency and quality of application software
development.

Besides drawing the architecture of buildings. people can also design OpenGL

frameworks for other domains. as with rendering Piping in Refinery and Chemical works.

w
(5]



6. Readme file for running applications

All the files are stored in the directory of frameOne. Users can use VC++6.0 to open
the workspace file: frameOne. and they can then use build to compile and link the files to
generate executable file frameOne.exe.

While the application program is running. users can press F1 to switch to TianTan. F2
to Taj Mahal. F3 to Sphere. F4 to the Tube as Prism swept non-linearly. F5 to Pipe as 3D

curve with formulae. and finally F6 to 3D curve based on Bezier Curve.

53



References

[1] Getting Started with OpenGL. Peter Grogono. Concordia University. 1998.

[2] Computer Graphics using OpenGL. F.S.Hill. JR. Prentice Hall 2001

[3] OpenGL Programming Guide. Mason Woo. Jackie Neider. Tom Davis. Dave Shreiner.
Addison Wesley. 1999

[4] Interactive Computer Graphics. A top-down approach with OpenGL. Edward Angel.
Addison Wesley. 1997

[5] Implementing Application Frameworks. Object-Oriented Frameworks at Work.
Mohamed E.Fayad. Douglas C.Schmidt. Ralph E. Johnson. Addison Wesley. 1999

[6] Object Oriented Methods. Principles & Practice. lan Graham.Addison Wesley. 2001
[7] Programming with C++, John Hubbard. McGraw Hill. 1996

[8] Unified Objects. Object-Oriented Programming Using C++. Babak Sadr. IEEE
Computer Society, 1998

[9] Frameworks = (components + patterns). Johnson R.E.. Communications of the ACM.
October 1997

[10]Object Oriented application frameworks, Fayad M.E. and D.C. Schmidt.

Communications of the ACM. October 1997





