INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM!I a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI

An Empirical Study Of Web Usage Mining Techniques

Kwun-Keung, Ng

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

September 2002

© Kwun-Keung, Ng, 2002

i+l

ional Library Bibliothéque nationale
za C“‘:l:‘da du Canada "
isitions and o ot
%mpm Services ::qtv‘:ces bibl::graphiques
305 Wellington Street 385, rue Wellington
Otawa ON K1A ON4 Otiawa ON K1A ON4
Canada Canada
Your il Vowe réidrence
Ouwr B9 Nowe réidvence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distnibute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-72942-7

ABSTRACT

An Empirical Study Of Web Usage Mining Techniques

Kwun-Keung, Ng

Most of the existing web sites organize their content in a hierarchical manner. This
organization may not be clear to the visitors because each visitor may have their own
expected organization. For instance, it is often unclear to a visitor where a specific
document is located. Usage knowledge, discovered from web usage mining, on the way
visitors navigate in a web site could prevent disorientation, help the web site owner in
designing the web site, provide efficient access between highly correlated object, and

make better marketing decisions such as putting advertisements in proper places.

In this report, we will give an overview on the web usage mining process with special
emphasis on presenting two data mining techniques: association rules and path traversal
pattern discovery. We introduced the notion of confext awareness web usage mining
which is a constraint pushed into these data mining techniques. As well, we will present
our design and implementation of a web usage mining system call WUM. Finally, we
will show the experimentation of using our WUM to mine for usage knowledge for a

Computer Science department’s web site.

iit

Acknowledgments

Thanks to my supervisor, Dr. Shiri Nematollah, who guided me through this project and
gave me encouragement, assistance and valuable opinions. Also, I would like to thank my
wife, Chiu, Siu-Fung, for her continued encouragement and support. Finally, thanks to
the department of Computer Science of Concordia University for making their access

logs available for this project.

Table of Contents

LiSt Of FIGUIES..cccetreerrrueessssnannsoscssssssannsennnnenansrosssssssettmmenesssssansnses vi
1 INTOAUCHION. cceceeeeeeesrnnnnnernnnsenesssssssessnseanssansassssssssessssatsssseessesssnses p-1
1.1 The ProbleM.eeceeecrereeececcsecasosescsnsssescescsorcssccsssssesecsssesesnanscssasns p.1
1.2 Web Usage MiNiNg...ce..ereeenseenessssssesserssssenssannanssesessssisasasascencssses p.2
D PrE-PrOCESSING.ccccreeerreeeserissartessssmmsesasssnsassassssaressssessssesssnssansnassss p-4
2.1 WED Datueeceeereereeecnsoncrsassssessnssasessessassrsssassessssscassssasncsassasnsscsce p-4
2.2 Data Cleaning and Transaction Identification......cceeeceeeeeeenennieaacccacenee p.7
2 2.1 Remove Non-User Initiated ReqUestS...ccceeeencerceseisiiciirceiaienesoniece p.7
2.2.2 Remove Unsuccessful ReqUEStS.cceeeereneeerecncasmesecteraciasenseancenncees p-8
2.2.3 User Transactions [dentifications...cceevececerceceserescsssisscescnsonccaness p-8
3 Applying Data Mining TeChniquUes........ccevveeermreinientesmmenencsccsancnnenn p-10
3.1 Association Rules Mining.....ccceeeeesrecencecansonerececencaosccnisansannacaccesee p.10
3.2 Classification MethOodS...e.eseecssccreecsserererssencssaccsccssessscesasaascsscesssscns p-1l
3.3 Path Traversal Mining TeChNIQUES.....ceeeurencastecereeinracensiaraceantanconcenes p-12
3.4 Sequential Patterns Mining Techniques...c.cceeeeieameesesessiscicsecseseneaecnens p-13
4 Designs and [MpIeMentation.........c.ceceereeressersssinsnnsessrnsimnsstsssecsanes p-15
4.1 The WUM AICRItECIUIC.ccereeesersasescrcesesnaceccccsassssasesassosssnscscnsasesssae p-15
4.2 Desig 0f WUM..eiuuueiieiiemeeenionionteciinasessenssssissesssseeiniecasnessennas p-16
421 WUM S USE CASES.ereeeecessssensssacsoscsesssssassoscesssassesssnssasscsssssacs p-17
4.2.2 WUM’s Class Diagram...ccceecruererneceeseccseraeierennsanoienicsssceosses p.18
4.2.3 WUM'’s Collaboration Diagraml...ceececereccescssiesccececasececetanscnsces p.20
4.3 Implementation Of WUM....cuceeeeeeeiennensonaenaenemssneienenniaiiiiniaaiaaiesese p-21

4.3.1 Association Rule Mining Technique Implementation......cccccceeecenenee. p.22

4.3.2 Path Traversal Mining Technique Implementation.......cc.ccceeeeenearen p-24

5 EXPETIMENIALION. .cccereereerrarrersrnessnsrasssrassesssssessansssessnessssmmesssssssasens p.32
5.1 Pre-processing of ACCESS LOS.ccceerireeieenennrnnncenaaneiticenceicacacsenncnene p.32
5.2 Usage Pattern Mining.....cc.ceeeereecseessconsceannncanannciasianionssseecsssssssce p-33
5.2.1 Association Rule MIning.....ccccceeeeeecucecetasaccrircrnesesacececnncncannes p.33

5.2.2 Path Traversal MiniNg....coecceceeecnenerercrarocactossacsssecennassosencane p.35

6 Results and their ANalysis.....ccceereeemeriiiarnumnnemeencossmmssseeesssanessocn p.38
6.1 Knowledge from Association Rules ResultSe......ceeenenineeiinniiaiansieenneneee p.38
6.2 Knowledge from Path Traversal ResultS....c.cccverenieianiniaaiiaaeiiraciennen p.40
6.3 ReCOMMENAAtIONS..eeeeeceercorsoscassascessessnsssssssssesssssssssssassassossssssasee p.41
6.4 Time measure for WUM...ucceieeinceseescncecnececcsesaressssocsesscssacessnsasssie p.43

7 CONCIUSIONS..ceeeererenerneraeeassscssossasssesteesrssssesssessasstnsesessssssssssssssannsens p.44
8 RETCTENCES. ceevueererennnreerennneeiessncsummeeserssssssssssssnsaansestasassssessessesass p.46

List of Figures

Figure 1. High Level Web Usage Mining Process.........ceeeerenncccciiccecnecncsecees
Figure 2. USer access l0@S..eeeetesecrsaceierensrnsanntaniossssaissenocnssrasenecstescessns
Figure 3. The WUM ArchiteCture..cccceeecereensrenacerennanacienncissiroconiecncsesscae
Figure 4. WUM Use Cas...ceeecriesssrresiecensernusacsaransisananniaissosssecsscessssssen
Figure 5. WUM Class Diagram....ccccoeeeieeeiierennensssiinennienancessosceescescesessen
Figure 6. WUM Collaboration Diagrams.......eeeeeseierueeeesireannsencsessrseeciesecenes
Figure 7. Apriori AlgOMithiM. . .eueeeieiiiriiieretaieiiiiiiiiieinniinneeictosscceecsanens
Figure 8. An Example of Discovering Maximal Forward Reference...........ccceveve
Figure 9. Maximal Forward Reference Algorithm....ceeiieeieiannnceniinciccioneneecens
Figure 10. Tree Building Algorithm using Maximal Forward References..............

Figure 11. Maximal Forward Reference algorithm with context awareness
COMSETAINE e uerveceeeressasessecesssossssassssesossssnssosnsscacssssssasssesessssascsessassassssse

Figure 12. Summary of the Pre-processing Phase........ccccuuueecieiaienisicceancceceene
Figure 13. Frequent Itemset With 1 iteM.....iiiiieiemennnnmieneienniciiioniecaeceenieeceen
Figure 14. Frequent Itemset With 2 itemS.....cceueuriiiiiiiioiiiienntnenaannsicecnreacecees
Figure 15. Frequent Itemset with 3 itemMS..cceuceeeuerrimeiieiiiiennncisiecccieeenneceeseens
Figure 16. Resulting tree for the CS web site with a support 0f 0.5%.....cccoeveeeee
Figure 17. Resulting tree for Comp353 with min support 0f 0.5%......cceeeeeeeeeeeen
Figure 18. Association rule algorithm.....ccccueueriiuianiaiaiiiinieneicsiieeiiinneannee
Figure 19. Frequent ItemSetS.cccceereerieerraereerancanniiinianeictnenrancecscansanccanns

Figure 20. Time measures for various WUM phases....c.cciveeciiiecsscccianseceeennenn

vii

1. Introduction

1.1 The Problem

More and more organizations rely on the Internet and the World Wide Web to conduct
business or share information. The problem of designing a web site is how to organize the
information on a page and the hyperlinks between pages to serve users “properly”. In
order to design a “good” web site, a web designer has to know how the visitors may use
the web site. In a small web site with less than 100 pages, the web designer can use
common sense and simple statistics provided by Web Log Analysis Tool [11] to predict
user’s navigation behaviour. However, for large web sites having over 1000 pages, the
size and complexity increase, therefore it is inadequate to use common sense and simple

statistics to determine the usage of such web sites.

The Web Server hosting a web site generates the usage information of the web site
automatically. This information is stored in the Web Server as a log file. The content of
this log file is commonly referred to as user access logs. Despite the evolving technology
and research in web mining, it is still not clear how to analyse user access logs and how

to extract the usage of a web site from these user access logs.

1.2 Web Usage Mining

Web usage mining is the application of data mining techniques to large user access logs
in order to extract usage patterns [6]. Web usage mining techniques have become
important for a number of applications such as web site design, business and marketing
decision support, personalization, usability studies, and network traffic analysis. Figure |
shows the components of a Web usage mining process. Basically, this process consists of
a pre-processing cleaning phase, which uses the raw user access logs from the server to
generate user session file (also called user transactions). Then, depending on the
particular interest, various data mining techniques maybe applied on these session files.
Finally, the results obtained from applying data mining techniques to these session files
are analyzed to generate rules, patterns, and statistics. There are three major steps
involved in the web usage mining process, which give rise to the following questions.

First, how to pre-process the raw data in order to obtain an accurate picture of how a site
is being used? Second, what data mining techniques to apply in order to discover usage
patterns? Last, how to filter out the results of the various data mining algorithms in order

to present only the rules and patterns that are “potentially interesting” in a given context?

Site Files

Preprocessing Mining Algonthms Pattern Analysis

User Sesston *Intarasting”
File R:r"%s'sr;:;'e'::' Rules, Patterns.
: and Statistics

Figure 1. High Level Web Usage Mining Process [8]

The rest of this report is organized as follows: Section 2 discusses the pre-processing
phase. Section 3 explains four data mining techniques commonly used for web usage
mining with emphasis on the association rule and path traversal mining techniques. In
section 4, we present our design and implementation of a system, which we call WUM
for studying and experimenting with various Web Usage Mining (WUM) techniques. In
this system, we implemented the algorithms for association rule mining, path traversal
mining, and an extension of path traversal mining to mine for usage knowledge. In
section S, we present a case study of using WUM to mine for usage knowledge in the
web site of a computer science department. The experimental results and our analyses are
reported in section 6. Finally, section 7 includes some concluding remarks and future

works.

2 Pre-processing

The amount of access log records generated on the web server for an average accessed
web site today, about 1000 hits per hour, can easily reach tens of megabytes per day,
which would cause the analysis of log records to be rather slow and inefficient. These
access log records are stored in a log file, which is essentially a sequential file. Some of
the access logs are meaningless for the majority of user access pattern discovery
techniques, because they do not provide an “appropriate” picture of the access patterns of
the web site users. This will be discussed in detail in section 2.2. Therefore, the data

should be pre-processed before mining for usage patterns.

2.1 Web Data

In a web mining process, data might be collected from different locations such as the
server-side, client-side, proxy servers, or from the organization’s database. Each of these
data may contain different kinds of information, classified as follows:

1. Content: The data in the web pages such as texts, images, videos, sounds are
intended to be transported to the users.

2 Structure: The data that describes the structure and the organization of the
information through internal tags or hyper-links.

3. Usage: The data that describes the usage pattern of the web pages. This data is
stored as access logs in a log file on the Web Server.

4. User Profile: Demographic information of the users derived from user registration.

In our study that will be presented in section 4, we used the usage data (user access logs)
that is automatically gathered by the web server. The web server stores these data as log
record in a log file. When a user request is sent to the Web Server, it will add an entry

into the log file. For example, when a user requests the page www.cs.concordia.ca

4

through his/her web browser, the web server will record an entry in the log file for this

request. These entries reflect the access of the web site by various users. The log file can

be stored in various formats depending on the Web Server. Figure 2 shows a typical

example of the structure and a sample of user access logs generated by a Web Server. An

explanation of the structure and the values in this figure is as follows:

1

2.

“n

IP Address: The client [P address.

Time: The time of the request.

Method URL Protocol: The method is the request method (GET, POST, HEAD),
the URL is the page name, and the transmission protocol is either HTTP/1.0 or
HTTP/1.1.

Status: The status code returned by the web server as a response.

Size: Number of bytes transmitted for this request.

Agent: The client application used to send the request.

However, the information in this log file cannot fully record the whole access patterns of

the users because of the presence of various levels of caching in the Web environment.

For example, if user A asks for the page www.cs.concordia.ca, and his/her browser has

already cached this page, then the browser will get this page from the cache instead of

requesting it from the Web Server. In other words, no access log entry will be created for

this particular access.

IP Address Time Method URL Protocol Status Size Agent
(The URL is the page name) (bytes)
132.205.44.148 | [20/Feb/2002:01:0 | “GET / logoconc.gif / HTTP/1.07 200 2770 IE
5:30 - 0500}
130.191.40.70 [20/Fetv2002:01:0 | “GET /~grad/mihossa/Final _Slides.pdf 404 100 Netscape
6:10 - 0500] HTTP/1.0”
65.92.160.180 | [20/Feb2002:00:3 | “GET 200 6532 Moziila
2:05 - 0500] rprograms’‘ugrad/cs/comp249.shtmlHTTP/1.0™
65.92.160.180 [20/Feb/2002:00:3 | “GET /cgi- 200 7980 IE
8:02 - 0500] bin'Course.cgifile=Schedule Winter_2002&c
ourse=comp+249 HTTP/1.0"
65.92.160.180 [20/Feb/2002:00:4 | “GET/ / HTTP/1.07 200 8100 [E
1:04 - 0500]
65.92.160.180 “GET / logoconc.gif / HTTP/1.0™ 200 2770 [E

[20/Feb2002:00:4

2:08 - 0500]

Figure 2. User access logs

2.2 Data Cleaning and Transaction Identification

The raw user access logs have to be cleaned and transformed into a table of sequences of
pages accessed, which gives a clearer picture of the user accesses to the web site. A
user’s request to view a particular HTML page often results in generating several access
log entries since graphics and scripts are downloaded in addition to the HTML file. Since
HTTP connections are stateless, several requests to the Web Server are made in order to
fulfill a single user request. For example, suppose a user requests the page
current_students.shtml that contains four images. Then, five requests are sent to the web
server that is hosting this page. The first request is to access the page
current_students.shtml, and the other four requests are for the four images in this html
page. Cleaning the user access logs consists of removing all the “irrelevant” access log
entries that does not represent an actual action of the user. In the case of the above
request, images are consider as non user initiated action, so the clean up process should
remove the four access logs entries for the four images and leave the request for the page

current_students.shtml - the only user initiated action.

2.2.1 Remove Non-user Initiated Requests

Elimination of non-user initiated access log entries can be accomplished by simply
checking the suffix or extension of the page name as specified in [2]. All log entries for
pages with extensions such as, gif, jpeg, GIF, JPEG, jpg, and JPG can be removed, since
these are requests for images and users do not often initiate them. For example, the first
entry in the log table in Figure 2 will be removed since it is an image with the URL

logoconc.gif, which contains .gif extension.

2.2.2 Remove Unsuccessful Requests

In hypertext transport protocol (HTTP), status code is used to show the status of the
requested page. For instance, if a request for a page fails, this will be indicated in the
Status code, which is an attribute of the log entry. Access entries corresponding to failed
requests could be easily identified and removed. This can be accomplished by checking
the status code of the access log as specified in [2]. For example, a request for a page that
no longer exists on the server will create an access log with a status code of 404,
indicating an error. Any request for a page that causes a server error will create a log
entry with a status code of SXX where XX is some two digits number. A successful
request will create a log with a status code of 2XX. For web usage mining, we are oniy
interested in requests that successfully find the requested pages. Therefore, we filter out
all access logs that have a status code different from 2XX. For example, the second entry
in the log table in Figure 2 will be removed since its status code is 404 which is not of the

form 2XX

2.2.3 User Transactions Identification

In addition to the above pre-processing methods, the user access logs have to be
transformed into a form suitable for pattern discovery. The common data often used by
pattern discovery algorithms is the identification of user transactions from these logs. A
user transaction is a sequence of pages accessed by a user across a web site in a specific
period of time. The goal of user transaction identification is to group meaningful clusters
of pages accessed by each user. Such transactions will be used later on for pattern
discovery. For details of the proposed methods for transactions identification, interested

readers are referred to [8]. As mentioned earlier, due to caching on the client side, it 1s

important to realize that the access log may not contain all the pages accessed by a user,

and hence a user transaction in this sense may be incomplete.

3 Applying Data Mining Techniques
Data mining is a process of inferring knowledge from huge amount of data. It includes
among others, techniques for discovering association rules, clustering, classification, and
sequence analysis. Once user transactions have been identified as discussed in section 2.2,
there are different kinds of data mining techniques that can be performed depending on
the needs. However, our intent in this report is not to review all the proposed techniques.
We will discuss the following four data mining techniques often used to discover usage
patterns.

e Association Rule [1]

e (Classification [10]

e Path Traversal Mining [4]

e Sequential Patterns 2]

3.1 Association Rules Mining

Association rule discovery techniques [1] were proposed for mining in databases of user
transactions where each user transaction consists of a set of pages accessed by a client
over a period of time. Let I = { iy, iz i3, ik } be the set of pagessand T = { ti.t2. 85, ..., & }
be the set of user transactions. An association rule is a statement of the form X=>Y,
where X ¢ [, Y ¢ I are disjoint sets of items called itemsets. From the set of user
transactions, we want to find all association rules with confidence and support greater
than or equal to a specified pair of thresholds confidence (C) and support (S). A
confidence C indicates that C percentage of the transactions that contain X also contain Y.

Support S is a measure based on the number of occurrences in all the user transactions.

10

To be more precise, S is the ratio of the number of transaction that contains items in X U
Y and the number of transactions.
The following examples show samples of knowledge that can be discovered using the
association rule mining techniques.
1. 40% of «clients who accessed the Web page with URL
/company/products/product1.html, also accessed /company/products/product2.htm
2. 30% of clients who accessed the page /company/announcements/specialoffer.html,
placed an online order in /company/products/productl.
Since there are a large number of user transactions, most association rule discovery
techniques try to identify and prune data that are less relevant according to a certain
support. Discovery of such association rules can help in the development of more
effective marketing strategies. In addition, association rules discovered can provide hint
as how we may organize a web page and decide the hierarchical structure of pages in the
web site. For example, if we discover that 80% of the clients accessing
/company/products and /company/products/file1.html also accessed
/company/products/file2.html, but only 30% of those who accessed /company/products
also accessed /company/products/file2.html, then it is likely that some information in
filel.html leads clients to access file2.html. This correlation might suggest moving this
information to a higher level (e.g., /company/products) to increase and facilitate access to

file2.html.

3.2 Classification Methods
Discovering classification rules [10] allows one to develop a profile of pages belonging

to a particular group according to their common attributes. This profile can then be used

11

to classify new pages that are added to the web site. In web mining, classification
techniques allow one to develop a profile for users who access particular pages based on
demographic information available on those users, or based on their access patterns. The
following examples show samples of knowledge that can be discovered using
classification algorithms for pages.
1. Clients from state or government agencies who visit the site tend to be interested
in the page /company/products/product1.html.
2. 50% of clients who placed an online order in /company/products/product2, were
in the 20-25 age group and lived on the West Coast.
User registration and online survey, if available, can be used to get profile and

demographic information on clients.

3.3 Path Traversal Mining Techniques

Path traversal mining could be used to determine most frequently visited paths in a web
site. The following examples illustrate the kinds of knowledge that can be discovered
using path traversal mining techniques.

1. 70% of clients who accessed /company/products/file2.htmi did so by starting at
page /company and then proceeding through the pages /company/whatsnew,
/company/products, and /company/products/filel.html. The example suggests that
there is useful information in page /company/products/file2.html, but users tend to
take an indirect route to the page.

2. 80% of clients who accessed the site started from the page /company/products.
This example simply states that the majority of users are accessing the site

through a page other than the main page (assumed to be /company in this example)

12

and it might be a good idea to include directory type information on this page if it
is not there already.

3. 65% of clients left the site after four or less page references. This indicates that
not many users browse further than four pages into the site. So, it would be better
to ensure that important information is provided within the first four pages from
the main page.

One technique to mine for the paths traversed by the users is to get the maximal forward
references from the user transactions as described in [4]. Using the maximal forward
references discovered, we can represent the paths traversed using graphs, which can be
used to conveniently represent the hierarchy among web pages. To be more specific, such
a graph can be used to represent the physical layout of a web site, with web pages as
nodes, and hypertext links between the pages as directed edges. Other graphs could be
defined based on the types of web pages with edges representing similarity between
pages, or creating edges that give the number of users that browsed from one page to

another [9].

3.4 Sequential Patterns Mining Techniques

The problem of discovering sequential patterns 2] is to find inter-transaction patterns
such that the presence of a sequence of pages is followed by another page in user
transactions ordered by time. The discovery of sequential patterns allows organizations to
predict user visit patterns. It also helps in placement of advertisements. The following
examples show the kinds of knowledge that can be discovered using the sequence pattern

mining techniques.

13

1. 30% of clients who visited the page /company/products/, had done a search in
Yahoo, within the past week.
2. 60% of clients who placed an online order in /company/products/producti.html,
also placed an online order in /company1/products/product4 within 15 days.
The problem with sequence pattern mining is somewhat related to the problem of mining
association rule. Association rules are rules about what items occur together within a
transaction, which are intra-transaction patterns, unlike sequential patterns, which are
sequences of items that occur together across transaction, which are inter-transaction

patterns.

In the next section, we will present the design and implementation of a path traversal
mining technique and an association rule mining technique. Since we are only interested
in intra-transaction patterns, therefore, sequential pattern mining techniques are not
implemented. Also, the classification methods are not implemented because we want to
apply web usage mining for an anonymous user website, therefore user profile is not

applicable.

14

4 Designs and Implementation

We have designed and implemented a Web Usage Mining system (WUM) to study

mining techniques for sequence patterns and experimenting using the real user access

logs from a CS department’s web server. In this section, we present the architecture and

the design of this system. We will also present implementation details.

4.1 The WUM Architecture

DB
Transaction- PathMiner AssociationMiner RuleFinder
Finder
Acvess Cleaned Transaction Pattern Usage
Logs Logs Data Discovered Knowledge

Figure 3. The WUM Architecture

The WUM system is composed of five main components:

1. LogProcessor: Reads the access logs, applies the cleaning techniques to clean the

logs, and stores the cleaned logs into the database.

2 TransactionFinder: Identifies user transactions as defined in section 2.2.3 from

the set of access logs in the database.

15

3. PathMiner: Applies a path mining technique on the identified user transactions.
4. AssociationMiner: Applies the association rule mining technique on the identified
user transactions.
5. RuleFinder: From the pattern identified, it discovers some rules to be used later is
analysis.
These components are used in different phases of the web usage mining process. First,
the LogProcessor and Transactionldentifier are used in the pre-processing phase. The
PathMiner and the AssociationMiner components are used in the pattern discovery phase.
The order of executing PathMiner and AssociationMiner is not important. Finally, the

RuleFinder is used in the knowledge discovery phase.

4.2 Design of WUM

For this system, we used a top-down approach starting from identifying the use cases. A
use case diagram describes the functionality of the system — what the system will do for
the user in order to get some useful work done. We then defined the classes and the inter-
relationship between those classes. Then, we created a collaboration diagram that
describes the details of the flow of the sequence of events for our use cases. Figure 4

illustrates the use case of the WUM system.

16

4.2.1 WUM Use Case

WUM

Association Rule

User

Mining

Path Traversa
Mining

KnowledgeDiscovery

Dad

Figure 4. WUM Use Case

As shown in the figure, the WUM system has four use cases. The user will be able to

request the system to perform pre-processing, Association rules mining, Path Traversal

Mining, and knowledge discovery.

17

4.2.2 WUM Class Diagram

Filler
1
0B Schame
1
) ogProcessor]
EBComu:timl
TransctonFinder
Uses
DBQuery
Pa Travarseliines A ssocicasoniner
RuleMiney

Figure 5. WUM Class Diagram
Figure 5 illustrates the classes used in the WUM system, as well as the relationship
between them. A brief description of each class is as follows:
1. DBSchema: This class contains table and column names of the database used.
2. DBConnection: This class knows how to get a DB connection.

3. DBQuery: This class knows how to create different types of SQL statement.

18

LogProcessor: This class implements the data reading, data cleaning, and data
insertion functionalities. It reads access logs from the specified access log file and
it filters out all access logs that do not pass the filtering criteria. It then inserts all
the access logs that satisfy the filtering criteria to the database.

Filter: Contains the logic to define filtering criteria and to determine if a page
satisfies the filter criteria. To create a Filter, you will have to pass an array of
strings and an array of integers to define the filtering criteria. The array of string
is used to filter non-user initiated action. The array of integer is used to filter
unsuccessful request.

TransactionFinder: This class is used to identify user transactions in the access
log records in the database. When creating a TransactionFinder object, you can
specify a session time. This session time will be use to define the duration of a
user transaction. By default, the session time is 30 minutes.

PathTraversalMiner: This class implements the maximal forward reference
algorithm with contextual constraint awareness. When there is no constraint
specified, it executes like the original maximal forward reference algorithm. To
create a PathTraversalMiner, you need to specify a minimum support and a
constraint (if there is one).

. AssociationMiner: This class implements the algorithm to generate the frequent
itemset with 1 item and the Apriori algorithm. To create an AssociationMiner,
you need to specify a minimum support.

RuleMiner: This class knows how to generate rules from association rule
knowledge and path traversal knowledge. To create a RuleMiner, you need to

specify a confidence value.

19

4.2.3 WUM Collaboration Diagram

WUM Collaboration diagram will detail the flow of the sequence of events for our use

cases.
1.1.1 creates(}
Filter
1.1 pre-process()
1.0 mineUsage() l 1.1.2 creates(filter, accessLogFileName)
1.1.3 process() 1.1.3.1 read:\ccessLog()
_——p> P 1.1.3.2 filerAccessLog()
Controller LogProcessor . U133 insert AvoessL o)
1.1.4 findTransactions()
— ¥ TransactionFinder
1.2 findAssociation(1.2.1 gm_cr.l_thQllthet()
. AssociationMiner 1.2.2 aprioni()
1.3 findPath() . 1.3.1 generateMFR()
T . PathMiner —— 132 buildGraph()
1.4 findRules() , RuleFinder

Figure 6. WUM Collaboration Diagram

The following are the details of each of the operation in the collaboration diagram:

1.0 The user requests WUM controller to discover usage knowledge.

1.1 The Controller initiates the pre-processing module.

1.1.1 The Controller creates the filter to be used for data cleaning,

1.1.2 The Controller creates a LogProcessor with the filter created in 1.1.1.

1.1.3 The Controller requests the LogProcessor to process access log file.

1.1.3.1 The LogProcessor reads the access log file.

1.1.3.2 The LogProcessor asks the Filter to filter the access logs.

20

1.1.3.3 The LogProcessor inserts the filtered access logs into the database.

1.1.4 The Controller requests the TransactionFinder to find the user transactions.

1.2 The Controller requests the AssociationMiner to discover association rules.

1.2.1 The AssociationMiner generates frequent itemsets for 1 item.

1.2.2 The AssoicationMiner runs the Apriori method to generate frequent itemset
with 2 items and above.

1.3 The Controller requests the PathTraversalMiner to discover frequent accessed

paths.

1.3.1 The PathTraversalMiner generates the maximal forward references.

1.3.2 The PathTraversalMiner builds the graphs with the generated maximal forward
references.

1.4 The Controller requests the RuleFinder to find rules.

1.4.1 The RuleFinder finds associations rules from all the frequent itemsets.

1.4.2 The RuleFinder finds the frequently accessed paths from the generated graphs.

1.5 The Controller returns the rule generated to the user.

4.3 Implementation of WUM

The WUM is implemented using the Java programming language and the MS Access

database in the Windows NT environment. WUM has 18 classes and 2378 lines of code.

In this section, we will go into details of our implementation. In particular, we will

discuss implementations of association rule mining technique and the path mining

technique.

21

4.3.1 Association Rule Mining Technique Implementation

To generate association rules, we first find the set of frequent itemsets. Here are the two

steps described in [1] to do this.

Stepl. Find the frequent itemsets with 1 item. An item is consider to be frequent if no
less than minimum support Smin% of all transactions contain X, that is, count(X) >=

Smin % * number of transactions. Finding the frequent itemsets with 1 item consists of
counting the number of times an item appears in all the user transactions. To compute this
information, we examined all the transactions and kept a running count for each accessed
page (e.g., all pages that were accessed). For each transaction T and for each item X, if T
contains X, it increments the count of X. Finally, we return all the items that have at least

Smin% support.

Step2: To discover all frequent itemsets with 2 items and above, we have applied the
Apriori algorithm described in [1]. This algorithm consists of several passes over the
transactions. Pass & finds all frequent k-itemsets (itemsets of size k). It uses the set of
frequent (k-1) itemsets found in the previous pass to narrow the search for k-itemsets.

Figure 7 gives a pseudo code for the Apriori algorithm [1] where minimum support is 1%.

22

Apriori Algorithm

Input: Var Smin% = 1%
Li.1 = The set all frequent 1-itemsets
Output: The set of frequent itemsets

1: For (k=2; Ly.1!= null; k++) {
2. Generate Cx, the set of candidate k-itemsets, from L., the set of frequent (k-
1) Itemsets found in the previous steps;

Scan the transactions to count the occurrences of itemsets in Cy;

Find Ly, a subset of Ci containing k-itemsets with counts no less than 1:
: (Smin% * total number of transactions),

}

10:RetumL; UL, UL U ... Lk

11:

12: To generate candidate. From Ly to Ci

13: insert into Ck

14: select p.iteml, p.item2, ..., p.item(k-1), q.item(k-1)
15: from Ly p, Lkt q

16: where p.item; = q.item ; AND ...

A e B A s

17: p.item k.2 = q.item .2
18: p.item . < q.item .,
19:

20: For each itemset ¢ in Cy;

21: Foreachitem X inc:

22: If c - {X]} is not in Ly then:
23: Delete ¢ from Ci

Figure 7. Apriori Algorithm [1]

Line ! — 10 is the pseudo-code for Apriori. On line 2, it generates the candidate k using
the method on line 12-23. Line 12-18 forms candidate k-itemsets by joining frequent (k-1)
itemsets. Line 20-23 ensures all itemsets in the candidate k-itemsets is frequent. On line

18, it ensures that the candidate itemsets generated has no duplicates.

23

4.3.2 Path Traversal Mining Technique Implementation

To build the graphs to mine for path traversal pattern, we need to find all the maximal
forward references (MFR). To find the MFR from the user transactions, we used the
technique described in [4]. Briefly, maximal forward reference is a user access path
without backward reference. Backward reference means revisiting a previously visited
page by the same user access. Backward reference is mainly provided for ease of
traveling but not for browsing, and in web usage mining, we want to concentrate on the
discovery of forward patterns. The maximal forward reference algorithm described in [4]
will filter out the effect of backward references. The following is an example of finding
maximal forward reference from a user transaction:

Transaction of a user: {A,B,C,D,C,B,E,G,H,G,W,A,0,U, O, V}
MFRs found: {ABCD, ABEGH, ABEGW, AOU, AOV}

N
1// /,// ‘ \ . ‘: 2
¥ 4 Q
B -~ { --.f“'ﬁ O
_,\ 1 : ——
DG SR B PR
34 27 U

’/ S 4 ’ /

S G ,

D 614 \10

H w

Figure 8. An Example of Discovering Maximal Forward Reference [4]

24

In Figure 8, some nodes in the graph might be revisited because of its location, rather
than its content. When a backward reference occurs, a forward reference path terminates.

The resulting forward reference is called a MFR. The following is an algorithm that finds

MFRs [4]:

Mazximal Forward Reference

Input: The set user transactions
Output: The set of MFRs written into the database

1: For each user transaction:

2

3: Step 1: Set i= 1, string ¥ = null for initialization, and flag F = 1
4

S:Step 2: Let A= siand B =di.

6: If A is equal to null then

7: /* this is the beginning of a new traversal */
8: begin

9 If (Y = null) then

10: write Y to the database Df,

il: Set string ¥ = B;

12: Go to Step 4.

13: End

14: End

15:

16: Step 3: If B is equal to some reference (say the j-th reference) in string Y
17: then

18: /* this is a cross-referencing back to a previous reference */
19: begin

20: If F is equal to 1 then write out string ! to database;
21: Discard all the references after the j-th one in string ¥,
22: F=0;

23: Go to Step 4.

24: End

25: else, append B to the end of string Y.

26: /* we are continuing a forward traversal */

27: If Fis equal to O, set /"= 1.

28: End

29: Step 4: Set i =i + 1. If the sequence is not completed scanned then go to Step 2.

Figure 9. Maximal Forward Reference Algorithm [4]

25

A user transaction is a traversal sequence of the form {(s1, d1), (s2, d2), ... (sn, dn)}
where s is the source and d is the destination. On line 3, i is the index of the current path
in the transaction and Y is used to store the current forward reference path. Also, the flag
F is set to 1 to indicate a forward traversal. On line S, si and di indicate the current

traversal path and the associated sets A, as the source, and B, as the destination.

Compute Graph

With the resulting MFRs, we can now compute the graph (a tree) that represents the
physical layout of a web site, with web pages as nodes and hypertext links between pages
as directed edges. On each node of the tree, there is a count to indicate the number of
users who accessed the node. Figure 10 shows the algorithm to build the tree. After the
tree is generated, nodes that do not pass the minimum support are pruned away.

With this graph, we can identify which paths are frequently visited with respect to a

confidence value.

26

Build tree from MFRs

Input: The set of MFRs
Output: A tree

1: Var MFR = The set of MFRs

2: Var parent =0

3: Var minSupportCount = Smin% * number of MFR

4: Step 1: Create a tree with a dummy node call root at level 0

5:

6: Step 2: Fori=0; i < MFRsize (); i++

7: MaximalForwardReference A = MFR [i];

8: parent = root

9: For j = 0; j < A’s number of pages; j++

10: Page page = A getPageOnPosition())

11: If the tree level j contains a node with this page’s name
12: Increase the count of this node

13: parent = this node

14: Else

15: Create a node with this page’s name
16: Add this new node under the parent
17: parent = this new node

18: End If

19: End For

20: End For

21:

22: Step 3: For each node in the tree

23: If node’s count < minSupportCount then

24: Remove node and its child.

25: End If

26: End For

Figure 10. Tree building algorithms using Maximal Forward References.
For example, if MFR = {(A, B, C), (A, D, E)}, then the graph will look like the following:
ROOT ---A(2)---B(1)---C (1)
|
—eeeeD(1)—E (1)
Naturally, not all “sections” in a web site will be relevant or interesting to every user of

WUM; therefore we can use the “section” interested by the user as a constraint. The idea

behind this constraint is that user normally has something in mind and his/her search is

27

focused, which is modeled through constraint awareness WUM. This constraint driven
mining prunes away all irrelevant information. Obviously, we achieve efficiency with a

smaller set of information to perform mining.

With the MFR algorithm, we are able to mine for general usage pattern of a web site, but
we will not be able to mine for usage pattern of a specific part in a web site. The is
because when the minimum support is based on the number of occurrences in all the
paths traversed for all parts of the web site, it may prune away paths traversed for that
specific part. We can still mine for user access patterns for a particular part using MFR
algorithm if we set the minimum support low enough, so that it will not prune away paths
traversed for that particular part. However, if the minimum support is set too low, we will
end up having too much information to analyse at the pattern analysis phase. Therefore,
to mine for usage pattern of a specific part, we have added context awareness constraint

into the MFR algonthm.

First, we will only consider user transactions that contain at least one page having the
constraint in it. The constraint being one or more values in the page name of the access
log records. For example, a constraint can be “comp353”. Using this, we can make sure
that all the user transactions considered are meaningful and relevant for the usage pattern
of that specific constraint. Also, the concept of when a forward reference terminates is
redefined. The forward reference will terminate if a backward reference occurs, or, when
a page not containing the constraint occurs. This latter refinement in the definition will
better capture the destination page for that particular section. These two constraints have

been added based on the fact that web pages that are closely related usually contain some

28

similar pattern in their page name. For instance, all pages related to comp353 will contain
comp353 somewhere in their URLs. Figure 11 shows the pseudo code of the MFR

algorithm with constraint.

29

Maximal Forward Reference with context awareness constraint

Input: The set user transactions and the constraint
Output: A set of MFRs written into the database

1: For each user transaction with at least one page containing the constraint:
2:

3: Var isContainSatisfy = false

4: Var constraint = X

5:

6: Step 1: Set i= 1, string ¥ = null for initialization, and flag F = 1

7
8

:Step 2: Let A = siand B =di.

9: If A is equal to nuil then

10: /* this is the beginning of a new traversal */

I: begin

12: If (Y != null) then

13: write Y to the database Df.

14: Set string ¥ = B,

15: If B containConstraint X then

16: IsContainSatisfy = true

17: End

18: Go to Step 4.

19: End

20: End

21:

22: Step 3: If B is equal to some reference (say the j-th reference) in string ¥
23: or (isContainSatisfy and B not containConstraint X)

24: then

2S: /* this is a cross-referencing back to a previous reference */
26: begin

27: If F is equal to 1 then write out string ! to database Df,
28: Discard all the references after the jth one in string ¥,
29: F=0;

30: Go to Step 5.

31: End

32: Else, append B to the end of string Y.

33: /* we are continuing a forward traversal */

34: If B containConstraint X, set isContainSatisfy = true

3S: If Fis equal to 0, set F = 1.

36: End

37:

38;Step 4: Seti= i+ L. If the sequence is not completed scanned then go to Step 2.

Figure 11. Maximal Forward Reference algorithm with context awareness constraint

30

An example of the application of this algorithm is to mine for the usage pattern of the
comp353 course in the CS web site. The constraint here will be “comp353”. First, only
user transactions having at least one page containing “comp353” will be considered.
Then, in the MFR algorithm, in addition to filtering backward references we will also
filter pages that do not contain the “comp353” because the user probably went to a page
that is not part of the comp353 course. Here is a possible scenario:

User A accesses pages A, B, comp353/C.html, D, E, comp353/F html.

In this case, it will generate 2 maximal forward references:

1) A, B, comp353/C.html
2) D, E, comp353/F.html

31

S Experimentation
We used the user access logs from a CS (Computer Science) department’s Web Server to

carry out our experiment. We used WUM to mine for usage knowledge for this web site.

5.1 Pre-processing of access logs

The user access logs for the CS web site that were made available to this project contains
about 2,500,000 entries from February 20, 2002 to March 8, 2002. Initially, these entries
are stored in a log file. We restored them in a database for processing in a later phase.
Each access log contains the following information: [P address, time, method URL
protocol, status, size, and agent. However, since we do not need all these information for
web usage mining, we extracted the required information, which includes: the [P address,

time, and page name. The page name is extracted from the method URL protocol.

As explained in section 2.2, we need to clean the data before storing them into the
database. We filtered the access logs against some filtering criteria and stored the rest
into the database. The filtering criteria are pages that contains either one of the following
extensions gif, jpeg, GIF, JPEG, jpg. JPG, or have status code that is not in the two
hundreds levels range. As a result of data cleaning phase, 480,266 access logs considered
clean and were inserted into the AccessLog table in the database. Then, we identified user
transactions by grouping access logs with the same IP and that are created within 30
minutes. The number of user transactions identified is 57,807 records. Figure 12 shows a

summary of the pre-processing phase.

32

Description of Pre-processing Results Number of records

Number of raw user access logs from Feb.20, 2002 | 2,570,515 logs
to March 8, 2002

Number of user access logs after removing non-user | 500,388 logs
initiated access

Number of user access logs after removing 480,266 logs
unsuccessful requests
Number of user transactions (30 min session time) 57,807 transactions

identified from the cleaned user access logs

Figure 12. Summary of the Pre-processing Phase

5.2 Usage pattern mining
After the user transactions are identified, we applied the two data mining techniques: an
association rule mining technique and a path mining technique to discover the usage

patterns.

5.2.1 Association Rule Mining

First, we applied the association rule mining technique with some minimum support s%.
The value s we considered were 50, 30, 20, 10, 5, 1 and 0.8. The accessed are distributed
among a large number of items, and some were accessed about 1000 times, which is
about 1% of the transactions. Therefore, we picked 1% as the minimum support for
finding association rules in this case study. Figures 13, 14, and 15 show the frequent
itemsets found as the result. Note, 7 means www.cs.concordia.ca and there is no itemset

for 4 items because there is no candidates generated for 4 items.

33

44040
/current_students.shtml 6720
/programs/ugrad/courses.html 1444
{/people/people.html 1411
/~teaching/comp691l/ 1390

//~faculty/grogono/tunick.html

1323

/~teaching/comp239/2002W/

1263

//people/faculty.html

1208

/~teaching/comp2 18/

1142

//~teaching/comp69 1 /html/

1140

Figure 13. Frequent Itemset with 1 item

iteml . Item2 count
o/ /current_students.shtml 1577
/people/faculty. html /people/people.html 852
i/ /people/people.html 464
/ /programs/ugrad/courses.html :407
/ /people/faculty.html 355
/~teaching/comp691V/ /~teaching/comp691V/html/ 327
//~teaching/comp239/2002W/ i/current_students.shtml 304
/current_students.shtml /people/people.html 249
/~teaching/comp691V/ /current_students.shtml 221
/ /~teaching/comp691V/ 164
/ /~teaching/comp239/2002W/ :150
Figure 14. Frequent Itemset with 2 items
/ /people/faculty. html /people/people.html 1305
/ /current_students.shtml i/people/people html 126 :
/~teaching/comp6911/ {/~teaching/comp691/html/ /current_students.shtml:117

Figure 15. Frequent Itemset with 3 items

34

A frequent itemsets is a set of items that happen frequently together. The itemset with |
item is basically all the most accessed items. The itemset with 2 or more items are items
that are accessed together frequently inside a transaction. We will use these frequent

itemsets to generate association rules in section 5.1.

5.2.1 Path Traversal Mining

We applied the general path mining technique with a minimum support of 0.5% to obtain
a set of maximal forward references. The various s values we considered were 50, 30, 20,
10, 5, 1 and 0.5. The frequently accessed pages were accessed about 300 times, which is
about 0.5% of the transactions. Therefore, we picked 0.5% as the minimum support for
finding frequently accessed paths. Figure 18 illustrates the tree generated from this set of

maximal forward references.

35

'Ej ROOT (2147483647)

© [)/(21986)
[ferogramssgradscourses.html (514)

[rprospective_students.ntml (455)
[} metpmelp htmi (358)
@ [speopiespeople htmt (1057)
D) meopiefacutty.ntmi (738)
[eoplesgraduates. htmi 297)

@ (I scument_students.shtml (5711)
ol e | Icgi—binICourse.cgi?ﬁle=Schedule_Wlnter_2002&course=c0mp*353 (319

@ (3 1~teachingicomp353f (314)
[s~teachingicomp353winter2002findex htmi (227)
3 !cgi-bin!Course,cgi?ﬁle:ScheduIe_Winter_2002&course=comp¢691 1(429)
[i~teachingfcomp681V (327)
@ 3 segi-binfCourse.cgi?fie=Schedule_Winter_2002&course=comp+354 (285
[~teachingsicomp354f (282)
3 !cgl-bln!C0urse.cgl?ﬁIe=ScheduIe_Winter_2002&course=comp~229 (327
[/~teaching/comp229f (314)
® () scgi-binCourse cgi?file=Schedule_Winter_2002&course=comp+451 (264)
© [r~teaching/comp451/ (250)
[) /~teachingicomp451iwinter2002/ (331)
@ (9 scgi-binvCourse cgi?file=Schedule_Winter_2002&course=comp+249 (232)
[/~teachingicomp2497 (232)
® [rcgh-birvCourse cgi?fite=Schedule_Winter_20028course=comp+444 (283)
® ([1~teaching/comp444s (282)
[r~teachingicomp444iwinter2002s (273)
© [/cgr-binyCourse.cgi?file=Schedule_wvinter_2002&course=comp+239 (337
® 3 1~teachingfcomp239/ (327)
[7~teachingicomp239/2002v¥/ (314)
® 3 Icgl-binICourse.cgl?ﬁle=ScheduIe_W|nter_2002&course=compo471 (316)
[/~teaching/compa 71/ (310)
D) rorogramsisugradicourses ntmi (1151)
[/programsigradidiplomascourses himi (235)
[\ rdepartmentradmissionsfadmissions.htmi (348)
[rcusecs (444)
' [rsearchysearch.htmi (267)
@] i~facultygrogonontunick html (612)
D {~facultyfgroganoftunick-pictures.htmi (221)
: D {~teachingf/comp248/ (450)
9 3 1~facultygrogonoftunick-pictures.html (290)
[s~facuntyfgrogonasphota.htmi (251)
N fcusecr (224)
[r~teachingicomp6911/ (315)
D) scurrent_students shimi (731)
[i~teachingsrcomp218/ (528)
0 r~grad/mias (229)
D) /~teachingfcomp229f (235)
[t~teaching/comp238/2002W/ (228)

Figure 16. Resulting Tree for the CS web site with a support of 0.5%

36

We then applied the path mining technique with a contextual constraint of “comp353”

and the same minimum support, of 0.5%. Figure 10 is the tree generated from the set of

maximal forward references found after applying this technique.

CIROOT (2147483647
. [} r4eachingicomp353Mail2000/shides06 pdr (39)
D f~teachung/comp353/docsioraciafform htmi (165)
D) r-teaching/comp353docsioraciereport btmi (37)
D i~teacting/comp53/dacsioraciesbrowser htmi (117)
'© [/egroin/Count cgi?dt=bed08dd=B&pac=0 (81)
‘@ (Y fegi-bin/Count cgi?df-bcd88dd=B8pac=0 (55)
D feaching/lugrad/comp35Voraciesrowser htmi (70)
¢ Cr@e
© (1 reurrent_students shimi (334)
© £ regrbiniCourse cgr?file=Schedule_Winter_2002&cour (333)
© Y r-teachingfcomplsy (275)
© C}s-teaching/comp352winter2002/index htmi (209)
© (3 /~teachingicomp353mwnter2002notess (158)
D) r~teacningsicomps 2002note tdoe (35)
D 1-tgaching/comp353minter2002inotesWeek? 2ip (29)
@ (9 rprograms/ugrad/courses himi (33}
() jeurrent_students shtmi (46)
D fegrbinCourse cgi™lie=Schedule_Winter_2002&cour (120)
@ [iteaching/comp353/ (114)
[} s+teachingicomp 35 3mwinter2002Andex htm! (68)
D I-teacting/comp353mnter2002/notess (46)

Figure 17. Resulting tree for Comp353 with min support of 0.5%
Figure 16 and 17 show two trees with web pages as nodes and hypertext links between
pages as directed edges. For these two trees, a dummy node call ROOT is created and is
set as the root node. On each node, there is a count to show the number of times a page

was accessed in the path.

37

6 Resuits and their Analysis

With the results obtained from the two data mining techniques applied, we can obtain
useful rules, patterns, and statistics that can be used to provide recommendations to the

owner of the Computer Science’s department in our case study.

6.1 Knowledge from Association Rules Results
With the frequent itemsets found, we can determine association rules for the Computer

Science web. Here is the algorithm from [1] that we used to generate these rules:

Association rule algorithm

Input: Frequent itemsets and the confidence value Cmin%
Output: A set of association rules.

1: For each itemsets i

2 For each nonempty proper subset s of i:

3: If confidence = count(i) / count(s) >= Cmin % then:
4 Qutput s => (i —s);

Figure 18. Association rule algorithm

38

Itemset Coumt

/ 44040

‘current_students.shtml 6720

iprograms/ugrad/courses.html 1444

-people/people.html 1411

~teaching/comp691V 1390

/~faculty/grogono/tunick. html 1323

'~teaching/comp239:2002W/ 1263

/people/facuity.htmi 1208

~teaching/comp218/ 1142
| ~teaching/comp691Lhtmy/ 1140

‘current_students.shtmi 6720

/ 1577

current_students.shtm}

people/facuity. html, 852

-people/people.htmi

. 464

people/people.html

. 407

‘programs/ugrad/courses. htmi

. 355

people/faculty.htmi

~teaching/comp69 1L, ' ~teaching/comp69 1 Vtml/ 327

~teaching’comp239/2002W/. ‘current students.shtml 304

current_students.shtml, 249

‘people/people.html

~teaching/comp691L.. ;current_students.shtml 221

. 164

~teaching comp691L/

. 150

~teaching/comp239:2002W/

. 305

‘people/faculty.html,

people peopic.h

“ 126

current_students.shtm.,

people people.html

/~teaching/comp691V, 117

~teaching/comp69 1 Uhtml/,

‘current_students.shtml

Figure 19. Frequent Itemsets

Examples of association rules for i = { /, /current_students.shtm, /people/people.html }

1.

N

/, lcurrent_students.shtm => /people/people.html (confidence 126/1577 = 8%)
/. Ipeople/people.htm => /current_students.shtm (confidence 126/464= 27 %)
/current_students.shtm, /people/people.html =>/ (confidence 126/249= 50 %)

/ => [current_students_shtm, /people/people.html (confidence 126/44040= 0.3%)
Jcurrent_students shtm => /, /people/people.html (confidence 126/6720= 1.8%)

/people/people.html => /, /current_students.shtm (confidence 126/1411=9%)

39

Also, with the frequent itemsets, we can determine which items were frequently accessed.
For instance, if the owner of the site wants to know which 5 pages were most frequently
accessed, then by looking at the frequent itemsets, we can conclude that /,
/current_students.shtml, /programs/ugrad/courses.html, /people/people.html, and
/~teaching/comp691V/ are the top S items accessed. Other association rules could also be
discovered from the frequent itemsets, but since it is not the goal of this study to list all
the rules that could be generated from frequent itemsets, therefore, we will not discuss

them.

6.2 Knowledge from Path Traversal Results

With the graphs generated from the path traversal pattern results, we can determine the
frequently accessed paths. We consider a path frequent if it is visited with a confidence of
at least 1% in 57807 transactions that were found from the pre-processing phase. Here are

the frequently accessed paths:

1. page/ was visited 21966 times (confidence 21966 / 57807 = 38%)

2. page /, and /people/people.html were visited 1057 times (confidence 1057 / 57807
= 1.8%)

3. page/, and /current_students.shtml were visited 5711 times
(confidence 5711 / 57807 = 9.8%)

For the specific graphs generated for a course, for example comp353, we have
determined the frequent accessed paths. We consider a path frequent if it is visited with a
confidence of at least 1% in 2182 transactions related to the constraint comp353. Here are
the frequently accessed paths:

1. page/ was visited 816 times (confidence 816/ 2182 = 37%)

40

page /, and /current_students.shtml were visited 334 (confidence 334 /2182 =
15%)

page /, and /current_students.shtml,
/cgi-bin/Course.cgi?=file=Schedule_Winter_2002&cour were visited 333
(confidence 333/ 2182 = 15%)

page /, and /current_students.shtml,
/cgi-bin/Course.cgi?=file=Schedule_Winter_2002&cour,
/~teaching/comp353/ were visited 275 (confidence 275 / 2182 = 12.7%)

page /, /current_students.shtml,
/cgi-bin/Course.cgi?=file=Schedule_Winter_2002&cour,
/~teaching/comp353/, and /~teaching/comp353/winter2002/index.html
were visited 209 (confidence 209 / 2182 = ~1%).

With the graphs generated for a course, for example comp353, we also discovered the

following rules:

1.

70 % of the users who accessed /~teaching/comp353/ do so by starting at page /.
This was concluded with the following facts:

a. /~teaching/comp353/ were accessed 389 times

b. 275 times of those accessed started from page /

c. 114 times of those accessed started from other page

57 % of the users who accessed /~teaching/comp353winter2002/index.html
accessed /~teaching/comp353winter2002/notes/ right after. This was concluded
with the following facts:
a. /~teaching/comp353winter2002/index.html! were accessed 277 times
b. /~teaching/comp353winter2002/notes/ were accessed 158 times right after
/~teaching/comp3 53winter2002/index.html was accessed.

6.3 Recommendations

From the few rules generated as described in sections 6.1 and 6.2, there are already some

recommendations that can be made for the designer of the CS department’s web site.

41

First, with the association rules generated, we can dynamically provide links for what is
likely to be accessed next in a highly visible area, so that it will help a user navigate the
web site. For example, if a user accessed /current_students.shtml and /people/people.html,
then we can dynamically add / into the highly visible area since we are 50% confident
that the user may access / later in the transaction. An algorithm to generate dynamic

hypertext links from user access patterns can be found in [5].

Second, with the knowledge of mostly accessed pages, we can concentrate putting
important messages on those pages. For instance, we can put important message on the
top five accessed page which are / /current_students.shtml,

/programs/ugrad/courses.html, /people/people.htmi, and /~teaching/comp691V/.

Finally, with the knowledge of the most traversed paths, we can provide some hot links
to get to the destination of such paths or put important messages along these paths. For
example, we can provide hot links in pages /~teaching/comp3 53winter2002/index. html
through /~teaching/comp353winter2002/notes/ since we know that 57% of users who

accessed index.html also accessed “notes” right after.

42

6.4 Time measures for WUM

The following is the time measures for the various WUM phases:

Description of process Time Taken
(sec)
Pre-processing 1 - Convert Raw Log File to | 21600
Access Log (includes filtering process)

Pre-processing 2 - User transactions 1020
identification
Pattern Discovery 1 - Association rule 380

(Candidate and Itemset)
Pattern Discovery 2 - Maximum Forward 1341
Reference (including Tree Generation)
Pattern Discovery 3 - Maximum Forward 180
Reference with constraint (including Tree
Generation)

Pattern Analysis — Finding Rules 110

Figure 20. Time measures of various WUM phases
From Figure 20, we can see that the most time consuming phase in web usage mining is
the pre-processing phase. Therefore, it is very important that we define the “correct”
filters, so that we can prune away as much as possible the unwanted information in the
access logs. Also, the time taken to do MFR with constraint is just 13% of time of the
general MFR. If the interest of the MFR is to find usage knowledge of a particular part of
a web site, then it is definitely more efficient to use MFR with constraint as opposed to

MFR

43

7 Conclusions

In this work, we studied the web usage mining process. We designed and implemented a
system (WUM) to do web usage mining. We presented our results of the experimentation
of doing web usage mining with WUM for a CS department’s web site. Using the
knowledge obtained, we are able to recommend changes to the structure of the CS
department’s web site to improve its usability. In particular, we can make suggestions to
put important messages and announcements at frequently accessed pages, or provide

dynamic links that shows what pages are most accessed next.

To mine for the usage knowledge, we applied two data mining techniques: Association
rule, Path Mining. To solve the problem of mining for a specific part in a large web site,
we introduced an extension to the maximal forward reference algorithm that has context
awareness constraint. With this extension, we were able to mine for usage pattern for a
part of a web site more efficiently. From Figure 20, we can see that we saved 83% of the
time when we use this extension. Also, the concept of when a forward reference
terminates were redefined to better suit the analyses of the usage of a specific part of a
web site. With this extension, we were able to filter out irrelevant user transactions in the

access log to a particular part of the web site.

As a future work, we would like to provide in the WUM system a library of mining
techniques for sequential patterns and allow users to choose their favourite technique(s)
to apply on a desired set of user transactions. This will provide a high-level generic

environment to study, apply, and compare various mining techniques. In addition, the

44

extended system can be used to study the effect of an optimization technique more

readily and conveniently

45

8 References

[1] Agarwal. R and Srikant R., “Fast algorithms for mining association rules”, /n
Proceedings of the 20" VLDB conference, pp.487-499, Santiago, Chile, 1994.

[2] Agarwal. Raand Srikant R., “Mining Sequential Patterms”, Proc. / 1" Int'l Conf.
Data Eng., pp.3-14, mar.1995.

[3] Cooley R., Mobasher. B., and Srivastava J., “Data preparation for mining World
Wide Web browsing patterns”, Journal of Knowledge and Information Systems, (1) 1,
1999.

[4] Chen, M. S., J. S. Park, et al., “Data Mining for Path Traversal Patterns in a Web
Environment”, In Proceedings of 16th International Conference on Distributed
Computing Systems, 1996.

[5] Yan. T., Jacobsen M., Garcia-Molina H., Dayai U., “From user access patterns to
dynamic hypertext linking”, /n Proceedings of the 5" Imernational World Wide Web
Conference, Paris, France, 1996.

[6] B. Mobasher, R. Cooley, and J. Srivastava., “ Automatic personalization based on
Web usage mining”, /n Communications of the ACM, (43) 8, August 2000.

[7] Cooley, R., B. Mobasher, et al, “Grouping Web Page References into
Transactions for Mining World Wide Web Browsing Patterns”, In Proceedings of
Knowledge and Data Engineering Workshop, Newport Beach, CA, IEEE, 1997.

[8] Cooley, R., B. Mobasher, et al., “Data Preparation for Mining World Wide Web
Browsing Patterns”, Knowledge and Information Systems, 1(1), 1999.

[9] P. Pirolli, J. Pitkow, and R. Rao., “Silk from a sow's ear: Extracting usable
structures from the web”. In Proc. of 1996 Conference on Human Factors in
Computing Systems (CHI-96), Vancouver, British Columbia, Canada, 1996.

[10] M. Mehta, R Agrawal, and J. Rissanen., “SLIQ: A fast scalable classifier for
data mining.”, In Proc. of the Fifth Int'l Conference on Extending Database
Technology, Avignon, France, 1996.

[11] K. Wu, P. S. Yu, and A. Ballman, “Speedtracer: A web usage mining and
analysis tool.”, IBM Systems Journal, 37(1):89-105, 1998.

46

