INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Software Reliability Measurement: A Survey

Xiaobin Li

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

July 2002

© Xiaobin Li, 2002

i+l

zauaal Library dBublnoﬂ\éque naf
Acquisitions and Acquisiions et
Bibliographic Services services bibliographiques
395 Wellington Street 385, rus Wellingion
Otawa ON K1A ON4 Onawn ON K1A ON4
Canads Your Sle Voe rélérence
Our e Notre rédirence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72938-9

Canada

ABSTRACT
Software Reliability Measurement: A Survey

Xiaobin Li

Concordia University 2002

In complex software systems, reliability is the most important aspect of software quality,
a multi-dimensional property including other factors like functionality, usability,
performance, serviceability. capability, installability. maintainability, and documentation.
Software reliability engineering is becoming a standard, widespread practice applicable

to the different phases of the software development process.

The first chapter of the survey provides an introduction to software meuasurement.
Traditional and object-oriented software metrics are analyzed in detail, comprehensive
study of some empirical work is also provided in order to validate the usefulness of the
selected software metrics. An overview of software reliability is then introduced from the
basic terminologics to the reasons for the need of software reliability. Following is the
classification of the existing software reliability measures and measurement tools
discussed in several chapters. Firstly, the procedure of software reliability measurement
procedure along with a framework is addressed. Secondly, software reliability modeling
is introduced in detail together with model classification schemes. Thirdly, the
relationship between software reliability engineering and Software development process
is outlined. Fourthly, we show a classification of current development tools with some
usage information. In the final part of this survey, the research directions of software

reliability engineering are explored.

il

Acknowledgment

[would like to thank my supervisor Dr. Olga Ormandjieva, for her wisdom guidance
through the survey and her tireless effort in reading several drafts of this report. [would

also like to thank my wife, Xiaoyan Wu, for her love, patience, understanding, and

support.

v

Table of Contents

List Of FIGUICS . ..ot e viii
List of Tables. . ..o e e ix
1 Introduction 1
1.1 The need of Reliable SOftware..........cooooiiiiiiiiiiiiiiiii i i
1.2 Reliability and Software Quality..... ... 3
1.3 An Overview Of This SUIVEY.......ieiiii i 5
I B L (2] () 1oL T P 6
2 A Survey of Software Metrics 8
A DS TC . 8
2 L INtrodUCHION. ... e 8
Definition of Software MEtrics. ... 8
Classification of Software Metrics. ..o 10
Measurement Scale of Software Metrics. ... 12
Motivation of Software Metrics.co.oooiiiiiiiii i 14
2.2 Traditional Software MEtHICS. . ..ooi e 1S
Lines 0f €Code (LOC)o e et eaeans 15
Cyclomatic Complexity — v(G)..... ..o 16
Halstead's Software Metric.ot 17
2.3 Object-Oriented Software Metrics. ..o 18
Coupling MELriCS. .. .uvene i 20
CONESION MEETICS. .. ettt et et e e e e e e 25
INhertance MeLIICS. .o n e 26
Polymorphism Metrics...... ... 29
Encapsulation Metrics.oooviiii i 31
L0131 Y, (14 o T PO 33
2.4 Empirical validation Studies...............o 35
2.5 Future Work. ..o 38

o 001 o] (1] Lo T 39

PRI O 1 1) 1 1 TP

3 Overview of Software Reliability Engineering (SRE)

3.1 Definition of Software Reliability..................o.
3.1.1 Software Reliability Versus Hardware Reliability
3.1.2 Measures of Reliability...........c..ooo.

Failure Intensity............ooooiiiiiiiii s
Availability.. ...

3.2 Software Reliability Engineering.....................o

3.2.1 Some Basic Terms........ooooviiiiiiiiiiiiiiiiiiienee

RIR T (3 13 15 110 TP

4 Software Reliability Measurement Procedure

4.1 Definition of SR Mecasurement..............oooiiiiiiiiian...
4.1.1 Classification of Measures..........c.oooiiiiiiiiiinennn..
4.2 Measurement Framework. ...
4.2.1 Implement Operational Profile...................

R I L 2 o 1 [T

§ Software Reliability Modeling

IR (o120 Jo (TTa14 o) 1 DU P

5.2 Relationship of Metrics and Models......................ol

5.3 Classification of Software Reliability Models

5.3.1 Classification Schemes............c.oooiii .
5.3.1.1 Musa and Okumoto Classification Scheme
5.3.1.2 Hoang Pham Classification Scheme

Model Introduction.............coooooiiiiiiii
Halstead’s Software Metric....................o.ll
McCabe’s Cyclomatic Complexity Metric
5.3.1.3 Kishor S. Trivedi Classification......................

Model Introduction.coooeeeiiiiiiiiiiiiiennn,

45

47
49
49
51
54
57
58

60
61
63
66
69

71
71

73
73
74
74
77
77
78
78
80

vi

5.4 Summary

Mills’ Hypergeometric Model..................n
Nelson Input Domain Model....................
Jelinski-Moranda De-eutrophication Model......................oo
Goel-Okumoto Debugging Model...................
Hyperexponential Growth Model (NHPP).....................c......
NHPP S-shaped Model................
Delayed S-Shaped NHPP Model....................in,
NHPP Inflection S-Shaped Model.....................

Musa-Okumoto Logarthmic Poisson Execution Time Model.........

IR L o) 1 [T PO

6 SRE & Software Development Lifecycle

6.1 Introducti

6 1 0 1S

0.2 Benefits and COStS . oottt et ettt ettt e e

6.3 Software Lifecycle Versus SRE activities................on
6.3.1 SRE During Analysis Phase..............o

6.3.2 SRE During Design and Implementation Phase...................c.o.oe
6.3.3 SRE During The System Test And Field Test Phase............................
6.3.4 SRE During The Post-delivery And Maintenance Phase.......................

6.4 Summary

(IR L 5 0=t o T PPN

7 Software Reliability Tools
T.1 The Need of TOOIS. .. oonnri i e

7.2 Criteria of Selecting Tools..........ooviiiiiii

7.3 Classification Of TO0lS. .. oiiiit ittt e e e et e eeeeeeneees

7.4 Summary

..

AR LT (o 1) ¢ 1o DN

8 Research Directions

82

92
92
92
94
96
97
99
100
101
101

102
102
103
104
107
107

109

vii

List of Figures

Figure2.1 Cyclomatic complexity flowchart with edges and nodes........................ 16
Figure2.2 Briand et al coupling MeLrics.ooiuiiiiiiiii e 24

Figure3.1 unavailability fitting using LPET and constandt repair rate with data up “cut-

OFf POINE™ ORLY. .. ceeiiii i 54
Figure 3.2 SRE general process.ooooiiiiiiiii e 55
Figure4.1 Software Reliability Measurement Procedure Overview........................ 64
FigureS.1 Basic idea of software reliability modeling.............oooooviiiiinnnnnn 71
Figure5.2 Metrics and MOdels..........o.ooviiiiiiiiiii 72

Figure5.3 Overview of Hoang Pham’s classification with some representative models.77

Figure5.4 Overview of Trivedi’s classification...........cooooiiiininen 78
Figure5.5 De-cutophiCation PrOCESS.vvuenienarnrin ittt 83
Figure5.6 Failure Intensity for the logarithmic passion model..........coovieinn 89
Figure6.l SRE activities in the software product lifecycle. ..o 95
Figure7.1 High-level architecture for CARSE..........ooooiiiiiiiieiee 105
Figure7.2 High-level architecture of SREPT..........ooooiiiiiiiiieee 106

viii

List of Tables

Table2.1 Classification of Software Metrics. ..., 11
Table2.2 Different Scales in Software Measurement Theory............................... 13
Table2.3 Selected object oriented MELIICS.o, 20
Table3.1 Difference between hardware and software reliability............................ 48
Table4.1 Functional classification...............oooiii 62
Table4.2 Customer profile for telephone switch software.......................L 67
Table5.1 Some representative models according to Trivedi’s classification.............. 80
Table6.1 Lifecycle classification ... 94
Table6.2 Summary of software reliability activities and benefits...................... ... 97
Table6.3 Summary of software reliability activities and benefits..................... ... 98
Table6.4 Summary of software reliability activities and benefits...................... .. 99
Table6.5 Summary of software reliabiiity activities and benefits..................... ... 100

ix

Chapterl Introduction

1.1 The Need of Reliable Software

Computers are essential part of our daily lives. They are used in diverse areas for various
applications, for example, in air traffic control. nuclear power plants, aircraft. space
shuttle, industrial process control, medical equipment. telecommunications and real-time
military applications. The reliability of these computer systems is thus not only essential
but also critical. A computer system is composed by two major components—hardware
and software. Extensive research has been carried out on hardware reliability, however,
the growing importance of software dictates that the focus shifts to software reliability.
Since the demand for complex software systems has increased more rapidly than the
ability to design, im!)lcmcnl. test and maintain them, and the reliability of software

system has become a major concern for our modern society.

In recent years. software has already become the major source of reported outages in
many systems. Some software failures have impaired several high-visibility programs in
the health industry, in some cases they even killed people. For example, in 1985 & 1986,
the massive Therac-23 radiation therapy machine killed several patients after enjoying a
perfect safety record for a long time. According to the later investigation, the reason
caused the accident was that the sophisticated controlling system was malfunctioned by
some software errors [1]. Another report was from the South West Thames Regional
Health Authority (1993). On October 26, 1992, the Computer Aided Dispatch system of

the London Ambulance Service broke down right after its installation, paralyzing the

capability of the world’s largest ambulance service to handle 5000 daily requests in
carrying patients in emergency situations. This led to serious consequences for many

critical patients.

A recent inquiry revealed that a software design error and insufficient software testing
caused an explosion that ended the maiden flight of the European Space Agency’s (ESA)
Ariane 5 rocket, less than 40 seconds after lift-off on 4 June 1996. The problems occurred
in the flight control system and were caused by a few lines of Ada code containing three
unprotected variables. The ESA report revealed that officials did not conduct a pre-flight
test of the Ariane 5's inertial-reference system, which would have located the fault. The
companies involved in this project had assumed that the same inertial-reference-system
software would work in both Arianed4 and Ariane5. The ESA estimates that corrective

measures will amount to US$362 million.

In the paper “The Role of Software in Recent Aerospace Accidents*” by Nancy G.
Leveson [8], more aerospace accidents caused by unreliable software systems are
introduced and analyzed, which includes the loss of the Mars Climate Orbiter in 1999;
the destruction of the Mars Polar Lander sometime during the entry, deployment, and
landing phase in the following year; the placing of a Milstar satellite in an incorrect and

unusable orbit by Titan IV B-32/Centaur launch in 1999, etc.

Generally, software faults are more insidious and much more difficult to handle than

physical defects. In theory, software can be made to be error-free, because unlike

89

hardware, software does not wear out. All design faults are presented from the time the
software is installed into the computer. In principle, these faults could be removed
completely. Yet the aim of perfect software remains elusive. The causes of software
failures are enormous, and are introduced during each phase of software development life
cycle. During the operation of software, wrong decisions are made because the particular
inputs that triggered the problem had not been tested during the phase when faults could
be corrected. Thus, we must determine the reliability of our systems before putting them

into operation.

1.2 Reliability and Software Quality

Although software cannot be touched or seen, it is essential to the successful use of
computers. In complex software systems, reliability is the most important aspect of
software quality, a multi-dimensional property including other factors like functionality,
usability, performance, serviceability, capability, installability, maintainability, and
documentation. Software quality is one of the three most important software product
characteristics, which are quality, cost, and schedule [2]. The purpose of software quality
activity is to “identify, monitor, and control all activities, technical and managenrial, which
are necessary to ensure that the software achieves the specified SIL” and functional

performance, safety, reliability and security requirements [3].

We will give a precise definition of software reliability in chapter 3. Informally, it is the

probability that the software will work without failure for a specified period of time.

“Failure” means the program in its functioning has not met user requirements in some
way.

Reliability represents a user-oriented view of software quality [4]. Saying so, we are
comparing it with those developer-oriented measures. Initially, approaches to measure
software quality were based on attempting to count the faults or defects found in a
program. (There are a lot of related metrics, like faults per 1000 of codes) The problem is
that even if faults found were correctly counted, they are still not good measures or status
indicators. How much is enough? Is a large number good or bad? Maybe remaining faults
are even better. Reliability is a much richer measure. It is customer- or user- oriented
rather than developer-oriented. It is related to operation rather than the design of the
system. It measures the frequency with which problems occur. It relates directly to
operational expericnce and the influence of faults on the experience [4]. Thus, reliability
is casy to be associated with cost. Moreover, it is more suitable for predicting and

estimating trends and when objectives will be met.

Hence, understanding software reliability measurement and prediction has been an
essential skill for both the software managers and software engineers. Fortunately,
researches on software reliability and software reliability engineering (SRE) have been
conducted during the past several decades, and more than 50 statistical models have been
proposed for estimating of software reliability. Moreover, research on software reliability
measurement has been conducted in different institutions and companies. SRE is
currently becoming a standard [5]. For example, it is accepted as “best practice” by one

of the major developers of telecommunications software (AT&T). Other organizations

that are using, experimenting with, or researching SRE are Alcatel, AT&T, Bellcore,
BNR, Cray Research, Hewlett-Packard, Hitachi. IBM Corp., Jet Propulsion Laboratories,

MITRE Corp., NASA, NCR Corp., Northern Telecom, and Toshiba [6].

1.3 An Overview Of This Survey

Software metrics are being used by the Software Assurance Technology Center (SATC)
at NASA to help improve the reliability by identifying areas of the software requirements
specification and code that can potentially cause errors {7]. In chapter2, we introduce
basic definitions of software metrics and software measurement. We address the
classifications of software metrics and how software metrics are related to software
engineering life cycle. Some widely used traditional and object-oriented metrics are
selected and addressed in detail. This chapter is rather independent than the rest chapters

in this survey and worth its own.

In chapter 3, we provide basic definitions of software reliability and software reliability

engineering, as well as some widely used basic terms in SRE.

In chapter 4, software reliability measurement, which is one of the three activities of
software reliability engineering, are discussed. We address the procedure of software
reliability measurement, as well as the framework. Classification of measures 1s also

presented.

In chapter 5, software reliability modeling is discussed in detail. The reason is that
software reliability modeling has received the most attention of SRE. This chapter
presents some of the most important models that appeared in the recent literature, from
both a historical and application perspective. A classification of models is provided to

help understanding and using of models more easily.

In chapter 6. the relationship between SRE and Software Development Process is

provided. SRE activities in different software development lifecycle are summarized.

In chapter 7, measurement tools are discussed. We will provide a classification of current

developed tools as well as some usages information.

In chapter 8. rescarch directions are discussed.

1.4 Reference

[1] Lee, L., and Iyer, R.K., “Analysis of Software Halts in Tandem System,” Proceedings
of the 3" International Symposium on Software Reliability Engineering, October 1992,
pp-227-236.

[2] PRESSMAN, R. S, “Software Engineering: A Practitioner's approach” 4th edition,

McGraw-Hill Book Company, 1997.

[3] Gillies, A.C., Software Quality, Theory and management, Chapman Hall Computing

Series, London, UK, 1992.

[4] Handbook of Software Reliability Engineering, McGraw Hill, editor M. Lyu, 1996
[5] John D. Musa, “More Reliable Software Faster And Cheaper: An overview of

software reliability”.

Http://members.aol.com/JohnDMusa/ARTweb.htm

(6] S.Rdalal, M.R.Lyu, and C.L.Mallows “Software Reliabitity”, Bellcore, Lucent
Technologies, AT&T Research.

[7] Dr. Linda Rosenberg, Dr. Ted Hammer and Dr. Jack Shaw “Software Metrics And
Reliability” NASA GSFC

(8] The Role of Software in Recent Aerospace Accidents®* Nancy G. Leveson, Ph.D.;

Aeronautics and Astronautics Department, Massachusetts Institute of Technology:

Cambridge MA leveson@mit.edu and http:/sunnyday.mit.edu Keywords: software safety

Chapter2 A Survey of Software Metrics

Abstract

This chapter presents a survey of software metrics. Firstly. it reviews some basic
concept of software metrics. Some traditional but still widely used software metrics
are introduced next. In the third part. we present our focus — Object Oriented software
metrics in detail incorporated with our comments. In order to validate the usefulness
of the selected software metrics, in the fourth part, a comprehensive study of some
empirical work is provided. At the last part, the conclusion is given and some future

work is discussed as well.

2.1 Introduction

Definition of Software Metrics

Intuitively. people think the term metric is restricted to mathematic usage. [t is hard to

combine the word software and metric together.

The American Heritage Dictionary (Mifflin, 1991) defines a metric as:

1. designating, pertaining to the metric system, or

2. a standard of measurement.

However, in the field of software engineering, software metrics have developed for

more than 30 years. There are many relatively similar definitions in different papers

for different purposes. Basically. software metrics is a simple quantitative measure
derivable from any attribute of the software life cycle. Yet, in the realm of software
engineering and mathematics, not everything is quantitative. Large part of
mathematics. including most of logic is not quantitative [4]. Thus, we would like to

present software metrics as follows:

Software metrics use mathematical presentation to quantify software development
process, product and resources. It offers an efficient way for software engineers to
control software development life cycle---to value the collections of software-related
activities; measure artifacts. deliverables or documents and distribute software

entitics.

Ordinarily and traditionally. the measurement of the software process and product are
studied and developed for use in predicting or evaluating the software development
process. Productivity, product quality and product costs are examples that these
metrics applied to. Information gained from these metrics and models can then be
used in management and control of the development process. leading one hope to
attain overall improvement. From another point of view, software design consumes
resources and produces a product. Thus, the measurements of resources are important.
Metrics on personnel, software and hardware including performance are used to help

the effectiveness of organization.

Good metrics should not just stay on the description level. Instead, the actual

prediction or estimation of process, product and resources should be presented. Hence,
9

a good software metrics should have the quality of simple, robust, easy of maintain,
valid and objective (to the greatest extent possible). Moreover, metrics should have
data values that belong to appropriate measurement scales for maximum utility in

analytic studies and statistical analysis [2].

Classification of Software Metrics

Since software metrics is a relatively large concept. there are many ways to classify it.
Broadly, with respecting to software design life cycle. software metrics can be
classified as product metrics. process metrics and resources metrics. Same to the
definition, the general subdivision of software metrics varies. Here. we present one

popular classification based on the work of Fenton [3] and Meyer [4] in table2.1.

Product metrics are measures of the software products at any stage of the life cycle.
from requircments to system delivered; process metrics are measures of the process
used to obtained these products. such as overall development time, type of
methodologies used and the customer satisfaction levels: resources metrics are

measures of the behavior and the development environment.

10

Process Maturity Metrics — organization ~, resource -, tech-management ~, document
Metrics standards ~, data-management and analysis ~
Management Metrics
1. Project management (milestone ~, risk ~ workflow ~, controlling management
database -~)
2. Quality management (customer satisfaction ~, review ~, productivity ~, efficiency
~, quality assurance ~)
3. Configuration Management (change control ~, version control ~)
Life Cycle Metrics — problem definition ~, requirement analysis and specification ~,
design ~, implementation ~, maintenance ~
Product Intemal | gize metrics Providing measures of how big a product is internally
Metrics
Complexity Assessing how complex a product is
meltrics
Style metrics Assessing adherence to writing guidelines for product
components
External | Product Assessing the number of remaining defects
reliability metrics
Functionality Assessing how much useful functionality the product
metrics provides
Performance Assessing product's use of available resources,
metrics computation speed
Usability metrics | Assessing a product's ease of learning and ease of use
Cost metrics Assessing the cost of purchasing and using a product
Resources | Personnel Metrics — Programming experience ~, Communication level ~, Productivity
Metrics ~, Team Structure ~

Software Metrics — Performance ~, Paradigm ~, Replacement ~

Hardware Metrics — Performance ~, Reliability ~, Availability ~

Note: here, we use ~ to denote metrics

Table2.1 Classification of Software Metrics

Another way to categorize metrics is by the computational methodologies used. Grady

pointed out this as primitive metrics and computed metrics [5]. Primitive metrics are

those that can be directly observed, such as the program size (in LOC), number of

defects observed in unit testing, or total development time for the project. Computed

metrics are those that cannot be directly observed but are computed in some manner

n

from other metrics. Computed metrics are normally used for productivity. Such as
LOC produced per person-month (LOC/person-month). Grady indicated that
computed metrics are combinations of other metrics and thus are often more valuable

in understanding or evaluating the software process than primitive metrics.

Since object-orient approach is becoming more and more popular in today’s software
development. there is a need to distinguish O-O design from traditional procedural
programs. Object oriented system requires not only a different approach to design
and implementation, but also a different approach to software metrics. Therefore. we
classify software metrics as Object-Oricnted metrics and traditional metrics.
Traditional metrics are applied in procedure-oriented programs. which typically
include Cyclomatic Complexity (CC). Lines of Code (LOC). Comment percentage
(CP). Halstead's software metrics and etc. Whereas. object-oriented metrics mainly
apply to evaluate object-oriented design in the following key features such as classes,
objects. methods, coupling, cohesion. inheritance, polymorphism, encapsulation, and
etc. From the point of effectiveness. researches [6, 7] have shown that a combination
of selected traditional and object-oriented metrics provides the best results when we

analyzing the overall quality of object-oriented system.

Measurement Scale of Software Metrics

While collecting software metrics data, software engineers have a specific purpose.
The purpose can be for use in some process models, or product models, or help to

build a resource model. Data can be used for calculations or some statistical analysis.
12

Thus. it is important to make sure of the types of information involved. before the

data are actually collected and used. Metrics

statisticians-nominal, ordinal. interval, ratio and absolute.

data are

recognized by

Scale Possible Description Examples
Operations
Nominal | =, # Simplest possible measurement; 1.Measure type of
empirical relation system consists only | program
of different classes; no notion of 2. Classifying entities
ordering
Ordinal <, > Allow rank the various data values only, | 1.Programmer
any mapping that preserves the ordering | productivity (low,
medium, high)
interval +, - Data can not only be ranked, but also 1.Temperature
can exhibit meaningful differences measured on
between values (powerful, but rare in Fahrenheit or
practice) centigrade scale
Ratio / Measurement denotes a degree in 1.Program size, in
relation to standard where a software LOC
entity manifest chosen property (most 2.Temperature
useful of measurement) (absolute)
Absolute | +,-,"./ Absolute scale measurement is just 1.Number of students
counting; the attribute must always be of | in this class
the form of ‘number of occurrences of x | 2.Number of bugs

in the entity’; only one possible
measurement mapping (the actual
count); all arithmetic is meaningful

found in one method

Table 2.2 Different Scales in Software Measurement Theory [8, 9]

It is important to be aware of what measurement scale is associated with a given

metric. Many proposed metrics have values from an interval, ordinal, or even nominal

scale. If the metric values are to be used in mathematical equations designed to

represent a model of the software process, metrics associated with a ratio scale may

be preferred. since ratio scale data allow most mathematical operations to be

meaningfully applied. However, it seems clear that the values of many parameters

13

essential to the software development process cannot be associated with a ratio scale.

Motivation of software metrics

Software metrics are measures that are used to quantify software product,
development resource and process. Thus, they are desired to assess or predict effort
and cost of development process as well as the quality of software products [20]. In
software development, the need for decreasing the probability of failing programs and
decreasing available resources are explicit. Metrics are helpful to identify the causes
of defects that have major effect on the software development. Also, metrics make it
possible for software engineers to estimate and predict necessary resources for a

project. software process, and work products.

Tom DeMarco says: * You cannot control what you can not measure.” That is.
without metrics there is not casy to determine whether the process or product is
improving. Thus, metrics may help to evaluate the software in different phases to
provide the indication of evolution effort. From this sense, metrics are helpful to
establish the meaningful goals for software evolution. A bascline from which
improvements should be measured can also be established. Currently, metrics are
widely applied in a product to identify what kind of user requirements are likely to
change, what kind of modules or classes are most fault prone, how much testing

should be planned and so on.

14

2.2 Traditional Software Metrics

The early Software Metrics techniques were introduced in software area 30 years ago
to measure the complexity of traditional program written by FORTURN, COBOL, C,
etc. Traditional software complexity metrics are measures of the ease or difficulty of a
programmer performing common programming tasks such as testing. understanding,
or maintaining a program. Complexity metrics do not measure the complexity itself,
but instead measure the degree to which those characteristics lead to complexity exist
within the code and the degree to which those code characteristics occur in the code
impact the ease or difficulty of a programmer working with the code. Some traditional
complexity metrics still used widely and can be applied to object-oriented programs.

such as Line Of Code (LOC). McCabe's Cyclomatic Complexity.

Lines of Code (LOC)[7]

LOC is a widely used metric for program size. Size of a program is used to evaluate
the ease of understanding by developers and maintainers. Size can be measured in a
variety of ways, which include counting all physical lines of code, the number of
statements, the number of blank lines, and the number of comment lines. Lines Of
Code (LOC) count all lines. Non-comment Non-blank (NCNB) is sometimes referred
to as Source Lines Of Code and counts ali lines that are not comments and not blanks.
Executable Statements (EXEC) is a count of executable statements regardless of

number of physical lines of code. For example, in C, [F statement may be written as:

If(i < 20 && i >0)f

15

X=10;

Here, there are 3 LOC, 3NCNB. and | EXEC.

Cyclomatic Complexity — v(G){7,9]

McCabe Cyclomatic complexity is to compute a number v(G) where G stands for the
associated graph of the flowchart. v(G) refers to the number of edges minus the
number of the nodes in the flowchart. Here, in flowchart graph, nodes mean the
statements and decision boxes; edges mean the links between them. The cyclomatic
complexity of such a graph can be computed by a simple formula as following as:

v(G)=e-n+2,

e: the number of edges; n: the number of nodes in the graph:

Take. for instance. the flowchart in figure 3. Here, e=9. n=8, then

v(G)=e-n+2=9-8+2=3.

[:l:l

Figure2.1 Cyclomatic complexity flowchart with edges and nodes

Cyclomatic complexity can be used as a measure of program complexity and as a

16

guide to program development and testing [11]. An algorithm with a low cyclomatic
complexity is generally better. but this may imply decreased testing and increased
understandability. Thus low cyclomatic complexity is not good for program

comprehension and maintenance.

Halstead’s software metric

Halstead's software metric is used to estimate the number of errors in the program. It
uses the number of distinct operators and the number of distinct operands in a
program to develop expressions for the overall program length. volume and the

number of remaining defects in a program. The length of the program is estimated:

N= N|+N3

Where N;= total number of operators occurring in a program
N>= total number of operands occurring in a program

N=length of the program

And the Volume of the program is estimated:

V=Nlog: (n;+na)

Where V= volume of the program
ny=number of unique or distinct operators in a program
na=number of unique or distinct operands in a program
Thus, we have:
Ni= nilogan;

N:= n:loggng

17

There are tow empirical formulac proposed by Halstead to estimate the number of

remaining errors in a program, respectively, are:

E=— and E= _A_
3,000 3.000
3
1%
he A=
where T
mN,

E= number of errors in the program

Halstead's theory of software metric is probably the most well known technique to
measure the complexity in a software program and the amount of difficulty involved

in testing a debugging the software.

2.3 Object-Oriented Software Metrics

Object-oriented technology is very popular in today’s software industry. Compared to
traditional procedure-oriented technology. they are often heralded as the silver bullet
for enhancing software quality and reducing integrating and maintenance cost.
However, there are substantially many challenges for object-oriented technology to
deal with. For instance. there are no unified solutions to validate and evaluate the
effectiveness of the existed software metrics. and there is no simplified
industry-standard metrics suite to predict and assess the quality of object-oriented

system.

18

Traditional procedure-oriented technology concerns with specific algorithm in
procedures or functions. while object-oriented technology uses object as the key
building blocks. which concentrates on the abstract object models of the real world.
Even though some traditional metrics such as LOC and Cyclomatic Complexity still
adapt to the new paradigm, object oriented technology which presents the different
perspectives of the real world. should have some unique metrics to reflect its

characteristics.

So far. there are varicus software metrics proposed for measuring object-oriented
programs. which concern the different aspects of the object-oriented paradigm. In the
following section. we narrow down our focus on the metrics that reflect object
oriented key features such as inheritance. polymorphism, encapsulation, coupling and
cohesion. Having surveyed plenty of papers, we introduce some popular or
meaningful metrics suite such as Chidamber and Kemerer metrics. Briand ct al
coupling metrics, MOOD metrics. Benlarbi and Melo polymorphism metrics, and
Bieman and Kang metrics by identifying what properties each metric going to reflect
within the context of object orientation. Thus, their relationship can be seen in the

following table.

19

Properties Object-oriented metrics Metrics suite and reference
Coupling CBO, RFC CK[15, 16]
COF MOOD [19, 21, 22]
IFCAIC, ACAIC, OCAIC, FCAEC, ! Briand et al [14,17]
DCAEC, OCAEC, IFCMIC, ACMIC,
OCMIC, FCMEC, DCMEC, OCMEC,
IFMMIC, AMMIC, OMMIC, FMMEC,
DMMEC, OMMEC
Cohesion LCOM CK[15, 16]
TCC, LCC Bieman and Kang [18, 19]
Inheritance DIT, NOC CK[15, 16]
MIF, AIF MOOQD [19, 21, 22]
Polymorphism POF MOOD [19, 21, 22]
OVO, SPA (D), DPA(D) Benlarbi and Melo[23]
Encapsulation MHF, AHF MOOQOD [19, 21, 22]
Other WMC CK[15, 16]

Coupling metrics

Table2.3 Selected object oriented metrics

In the context of object-oriented paradigm. coupling describes the interdependency

between methods and between object classes. respectively {12].

CBO (Coupling between object classes) [15,16]

CBO for a class is a count of the number of other classes to which it is coupled. An

object is coupled to another object if one of them acts on the other. i.e., methods of

one class use methods or attributes of another, or vice versa.

e Excessive coupling between object classes is detrimental to modular design and

prevents reuse. The more independent a class is, the easier it is to reuse it in

another application.

20

e In order to improve modularity and promote encapsulation, inter-object class
couples should be kept to a minimum. The larger the number of couples. the
higher the sensitivity to changes in other parts of the design. and therefore

maintenance is more difficult.

e A measure of coupling is useful to determine how complex the testing of various
parts of a design is likely to be. The higher the inter-object class coupling, the

more rigorous the testing needs to be.
RFC (Response For a Class) [15,16]

RFC is the response set for the class.
RFC=Mu U R,
Where
R ; = Set of methods called by method “i"

M = Set of all methods in the class

The response set of a class is a set of methods that can potentially be executed in

response to a message received by an object of that class.

e If a large number of methods can be invoked in response to a message, the testing
and debugging of the class becomes more complicated since it requires a greater
level of understanding required on the part of the tester.

e The larger the number of methods that can be invoked from a class, the greater

21

the complexity of the class.

e A worst-case value for possible responses will assist in appropriate ailocation of

testing time.
Coupling Factor (COF) [19,21,22]

Coupling factor (COF) is defined as the ratio of the actual number of couplings to the
maximum possible number of couplings in the system, excluding coupling due to
inheritance. COF checks whether two classes related either by message passing or by
semantic association links (reference by one class to an attribute or method of another

class).

COF = ¥ ,[S1%, is_client (C.. C))] / (TC*-TC)

Where:
1 iff C.=>CNC.ZC,

is_client (C,.. Cy) = <

. 0 otherwise

C. => C,represents the relationship between a client class C. and a sever class Cs
TC is the number of classes

TC>-TC refers to the maximum number of couplings in a system

Coupling metrics from Briand et al [14]

These measures focus on coupling as caused by interaction that occurs between
classes [13]. The measures are built on three facets by relationship between classes
(friendship, inheritance, and other), different types of interactions (attribute-class,
class-method. and method-method). and the locus of impact of the interaction (import,
export). Therefore. based on the combination of the above three facets. there are 18
different metrics such as IFCAIC. ACAIC, OCAIC. FCAEC. DCAEC. OCAEC,
[FCMIC. ACMIC. OCMIC. FCMEC. DCMEC. OCMEC, [FMMIC. AMMIC,
OMMIC. FMMEC. DMMEC, OMMEC. Definitions of these metrics are presented

in the following table.

23

Briand et al coupling metrics [14]

Name

Definition

IFCAIC: Inverse friend CA import coupling

ACAIC: Ancestors CA import coupling

OCAIC: Others CA Import coupling

FCAEC: Friends CA export coupling

DCAEC: Descendant CA export coupling

OCAEC: Others CA export coupling

IFCMIC: Inverse friend CM import coupling

ACMIC: Ancestors CM import coupling

OCMIC: Others CM import coupling

FCMEC: Friends CM Export coupling

DCMEC: descendant CM export coupling

OCMEC: Others CM export coupling

OMMIC: Others MM import coupling

IFMMIC: inverse Friend MM Import coupling

AMMIC: Ancestors MM import coupling

OMMEC: Others MM import coupling

FMMEC: Friends MM export coupling

DMMEC: Descendant MM export coupling

OMMEC: Others MM export coupling

These metrics count for the interactions between
classes.

The first or first two letters represent the
type of relationship considered (i.e., IF tor
Inverse Friend, F for Friend, D for
descendant, A for ancestor, O for others).
The 2 letters afterwards capture the type of
interaction (i.e., CA for class-attribute
interaction, CM for class-method
interaction, MM for method-method
interaction).

The last 2 letters say the locus of impact.
IC counts for import coupling, and EC
counts for export coupling. (i.e., Import:
class ¢ is the client class in the interaction;
Export: class c is the server class in the
interaction.)

Figure2.2 Briand et al coupling metrics

e The higher the export coupling of a class. the greater the impact of a change to

the class on other classes.

e The higher the import coupling of a class C, the greater the impact of a change in

other classes on C itself.

e Coupling based on friendship between classes is in general likely to increase the

likelihood of a fault even more than other types of coupling, since friendship

violates modularity in OO design.

24

Cohesion metrics

Cohesion describes the binding of the elements within one method and within one
object class, respectively [12]. Classes with strong cohesion are easier to maintain,

and furthermore. they greatly improve the possibility for reuse [12].

LCOM (lack of cohesion in methods) {15]

The LCOM is a count of the number of method pairs whose similarity is zero minus
the count of method pairs whose similarity is not zero. Here. the degree of similarity
based on the attributes in common by the methods. The larger the number of similar

methods. the more cohesive the class is.

e Cohesiveness of methods within a class is desirable, since it promotes
encapsulation.

e Lack of cohesion implies classes should probably be split into two or more
sub-classes.

e Any measure of disparateness of methods helps identify flaws in the design of
classes.

e Low cohesion increases complexity, thereby increasing the likelihood of errors

during the development process.

Bicman and Kang’s class cohesion measures [18,19]

Bicman and Kang concern the cohesion among class components including attributes

25

and classes. Their class cohesion measures are based on the direct or indirect
connectivity between a pair of methods. Two methods are directly connected if they
use one or more common attributes. In contrast, two methods that are connected

through other directly connected methods are indirectly connected.

Here. NDC(C) is the number of directly connected methods in a class C. NIC(C) is
the number of indirectly connected methods in a class C. NP(C)=N* (N-1)/2 is the

maximum possible number of connections in a class.

Tight Class Cohesion (TCC) is defined to be a ratio of the number of directly
connected methods in a class. NDC(C). to the maximum possible number of

connections in a class NP(C).

TCC(C) = NDC(C)/NP(C)

Loose Class Cohesion (LCC) is defined to be a ratio of all directly connected
methods, NDC(C), and indirectly connected methods, NIC(C), in a class to the

maximum possible number of connections in a class, NP(C).

LCC(C)=(NDC(C)+NIC(C))/NP(C)

Inheritance metric

Inheritance is a reuse mechanism that allows programmers to define objects

incrementally by reusing previously defined objects as the basis for new objects [24].

26

Depth of inheritance tree (DIT) [15]

The depth of a class within the inheritance hierarchy is the maximum number of steps
from the class node to the root of the tree and is measured by the number of ancestor

class [7].

e The deeper a class is in the hierarchy. the greater the number of methods it is
likely to inherit, making it more complex to predict its behavior.

e Deceper trees constitute greater design complexity, since more methods and
classes are involved.

e The deeper a particular class is in the hierarchy. the greater the potential reuse of

inherited methods.

Number of children (NOC) [15]

The number of children is the number of immediate subclasses subordinated to a class
in the class hierarchy. It is an indicator of the potential influence a class can have on

the design and system [7].

e Greater the number of children, greater the reuse, since inheritance is a form of
reuse.

e Greater the number of children, the greater the likelihood of improper abstraction
of the parent class is. If a class has a large number of children. it may be a case of
misuse of sub-classing.

e The number of children gives an idea of the potential influence a class has on the
27

design. If a class has a large number of children, it may require more testing of

the methods in that class.

Method Inheritance Factor (MIF) [19,21,22]

The Method Inheritance Factor is defined as the ratio of the number of inherited
methods to the total number of the methods that can be invoked in association with
the classes in a system. Here, for each class C,. C:...Cy. a method counts as 0 if it has

not been inherited and 1 if it has been inherited.

MIF = STSIMI(CI) / :T(;IMJ(CI)

Where
M(C.) is the number of methods inherited(and not overridden) in C,
M(C,) is the number of methods that can be invoked in association with C,

TC is the total number of classes
Attribute Inheritance Factor (AIF) {19,21,22]

AIF is defined as the ratio of the number of inherited attributes to the total number of

available attributes (locally defined plus inherited) for all classes in a system.

AIF=Y CAC)/ T <1 ALC)

Where
A(C)) is the number of inherited attributes in C;
AC;) is the number of attributes that can be invoked associated with Ci

28

TC is the number of classes

The larger of the metrics values, the greater the number of methods or attributes it is

likely to inherit. making it more complex to predict its behavior.
Polymorphism metrics

Polymorphism means having the ability to take several forms. For object-oriented
systems, polymorphism allows the implementation of a given operation to be

dependent on the object that contains the operation [24].
Polymorphism Factor (POF) [19,21,22]

POF is thc number of methods that redefine inherited methods. divided by the
maximum number of possible distinct polymorphic situations (the latter represents the
case in which all new methods in a class are overridden in all its derived classes).
Thus. POF is an indirect measure of the relative amount of dynamic binding in a

system.

POF =Y | iMu(C)/ S 1ci[Ma (C) x DC (C)]

Where
M(C;) is the number of new methods
M(Ci) is the number of overriding methods
DC(C,) is the descendants count(the number of classes descending from

29

Gi)

TC is the number of classes

Polymorphism metrics by Benlarbi and Melo (23]

Overloading

Overloading means methods have same names with different signatures within a
class scope. The OVO metrics is to gauge the degree of methods generality in a
class by counting the number of member functions that implemented the same
operation such as add “+ ", minus “-" operation. Here. overl(f. C) counts the

number of items that the function member f, is overloaded in the class C.

OVO=Y f,ccoverl(f,. C)

Static polymorphism

Static polymorphism refers to method overriding. That is. methods have the same
name and different signatures among inheritance related classes. and the
corresponding binding occurs in compile-time. Spoly(C,, C) counts the number of

static polymorphism functions that appear in C,and C.

Static polymorphism in ancestors:

SPA(C) = S Ci eAncestors€) SPOIy(CIv C)

Static polymorphism in descendents:

SPD(C) = E Ci ¢ Descendents©) SPOIY(Cx- O

e Dynamic polymorphism

Dynamic polymorphism occurs in the same name and same signature in an
overridden method, and the corresponding binding occurs in run-time. Dploy(C,,
C) counts the number of dynamically polymorphic functions that appear in C, and

C.

Dynamic polymorphism in ancestors:

DPA(C) = S C\ eAncestorsC) DPOIY(Ch O

Dynamaic polymorphism in descendents:

DPD(C) = S C ¢ DescendentscC) DPOIY(Ch O

Encapsulation metrics

Encapsulation means separating the external aspects of an object that are accessible to
other objects, from the internal implementation details of the object that are hidden for
other objects. Encapsulation prevents a program from becoming interdependent that a

small change has massive effects. [24]

Method Hiding Factor (MHF) [21,22]

MHEF is defined as the ratio of the number of the invisibilities of all methods to the

31

total number of methods declared in all classes. The invisibility of a method is the

percentage of the total classes from which this method is not visible.

MHF = Y13 Sei™ @ (1-V (M) / $12 1Ml C)

—1=

Where:

V(M) = 5, is_visible(Mu, C;) / (TC-1)

T 1 iffj# AC, may call My,
is_visible(My, C;) =<
0 otherwise
My (C) is the number of methods declared in a class (not
inherited)

TC is the number of classes
Attribute Hiding Factor (AHF) [21,22]

AHF is defined as the ratio of the number of the invisibilities of all attributes to the
total number of attributes defined in all classes. AHF was defined in an analogous

fashion, but using attributes rather than methods.

TC i TC
AHF =¥ Y ma M (1-V (Am)) 1 T 21AC)
Where:

V (Am) = 5, < is_visible(Am, C;) / (TC-1)

Pl iff j# ACcanreference An
is_visible(An C)) = {

0 otherwise

Aq (C) is the number of attributes declared in a class (not inherited)

TC is the number of methods declared in a class
Other metrics
Weighted methods per class (WMC) [15,16]

WMC is a count of the complexitics of the methods implemented within a class
(Complexities here refers to Cyclomatic Complexity). WMC belongs to the popular

CK metrics suite and reflect the complexity of classes.

WMC Considers a Class C;. with methods M. ... M, those are defined in the class.

Letcy, ¢y be the Cyclomatic Complexity of the methods. Thus, WMC = Z?:l(‘.

e The number of methods and the complexity of methods involved is a predictor of
how much time and effort is required to develop and maintain the class.

e The larger the number of methods in a class the greater the potential impact on
children, since children will inherit all the methods defined in the class.

e Classes with large numbers of methods are likely to be more application specific,

limiting the possibility of reuse.

Comments on Object-Oriented metrics

In addition to these selected metrics. there are many other metrics proposed in the
literature. We find most measurement models are expressed as a formula. To
understand the formula is not difficult. However. it’s really difficult to obtain a clear
picture of each metric and understand their practical meanings in object-oriented
systems. since “there is little understanding of the motivation and empirical
hypotheses behind many of these new measures. It is often difficult to determine how
such measures relate to one another and for which application they can be used. [13] ™.
Moreover, we think if there is no automatic tool to support the computation of the
metrics suite. it has less practical meaning to discuss the concept of metrics, for

software metrics is somewhat a statistic computation.

However, one encouraging phenomenon is that many researchers have done or are
undertaking theoretical and empirical studies to test the current popular software
metrics. So far. the metrics developed by Chidamber and Kemerer [15, 16] are the
most popular ones. because they are widely referenced, and most commercial metrics
collection tools available include these metrics. Briand et al coupling metrics are also
comprehensive, since they also receive a considerable amount of empirical studies. In
section 4, we will discuss the empirical validation work of these popular software

metrics to discover their effect in software quality.

2.4 Empirical validation studies

Recent evidence indicates that most faults in software applications are found in only a
few of a system’s components [25]. Therefore, if software metrics can identify the
fault-prone classes, we can improve the whole software qualities by refining those
classes. Consequently, we are going to investigate the relationship between the
metrics and software quality such as fault-proneness by studying the empirical work
that have been published in the literature on software metrics [21.27.26.28.29.25].

The following paragraphs abstract out the result of cach selected empirical studics.

In [28]. Victor R. Basili et al empirically investigated the suite of Chidamber and
Kemerer (briefly. CK) metrics as predictors of fault-prone classes to determine
whether they can be used as carly quality indicators. The study showed that CBO.
RFC. LCOM. DIT. NOC and WMC (exept LCOM) are useful to predict class

fault-proneness during the high and low level design phases of the life cycle.

In [21], R. Harrison et al describe the results of an investigation into MOOD metrics.
Their empirical results indicated that the MOOD metrics operate at the system level.
Comparing with the CK metrics. they found the two sets are complementary. offering
different assessments of a system. For example. the coupling metrics (CBO and COF)
are closely related, in that CBO offers a class-level view of coupling, whereas COF
offers a systems level view. Thus, the MOOD metrics could be of use to project
mangers, as the metrics operate at a system level, providing an overall assessment of a

system. However, R.Harrison also declared that these metrics need further empirical
35

validations to establish the causal correlation between the metrics and external quality

attributes of system such as reliability, maintainability. testability. etc.

In [29], Daniela Glasberg et al performed an empirical study to test CK metrics [15.10]
and Briand coupling metrics [14]. Their result indicated that the Depth of Inheritance
(DIT) has a quadratic relationship with fault-proneness. However, the Number of
Children (NOC) metrics was not associated with fault-proneness after controlling for
the confounding effect of the descendent-based export coupling metrics. Export
coupling metrics were found positively associated with fault-proneness. In {26]. El
Emam K. indicated that cohesion metrics tend not to be good predictors of
fault-proneness. Further work should be performed to provide the precise definition of
cohesion and develop corresponding effective metrics. Additionally. in [25]. El
Emam K. et al found that an export coupling (EC) metrics had the strongest
association with fault-proneness. indicating a structural feature that may be

symptomatic of a class with a high probability of latent faults.

In [27]. Briand et al performed a comprehensive empirical validation of many
object-oriented software metrics. They used univariate analysis and multivariate
analysis to understand their interrelationships, their individual impact on class
fault-proneness, and, when used together, their capability to predict where faults are
located. The univariate analysis showed “that many coupling and inheritance
measures are strongly related to the probability of fault detection in a class. In
particular, coupling induced by method invocations. the rate of change in a class due

36

to specialization, and the depth of a class in its inheritance hierarchy appear to be
important quality factors. On the other hand. cohesion. as currently captured by
existing measures, does not seem to have a significant impact on fault proneness. This
is likely to reflect two facts: (1) the weak under-standing we currently have of what
this attribute is supposed to capture, (2) the difficulty to measure such a concept
through syntactical analysis only. " As to multivariate analysis. the results showed
“that by using some of the coupling and inheritance measures, very accurate models
can be derived to predict in which classes most of the faults actually lic. When
oredicting fault-prone classes. the best model shows a percentage of correct

classifications about 80% and finds more than 90% of faulty classes. ™

In [26]. El Emam K. provided some concrete guidelines for quality management in
object-oriented application while reviewing CK metrics and Briand coupling metrics.
First. since export and import coupling arc the most important metrics. and can be
collected at the early design states. allowing for the carly quality management, we
should assign best people to work on classes with high values on the coupling metrics.
Second. if the historical data is available, we should rank classes by their predicted
fault-proneness. Similarly, we should assign best people to work on the classes with
the largest predicted fault-proneness. Third. more experienced inspection teams
should work for classes with high fault-proneness, and develop more test cases for

those classes.

37

2.5 Future work

Even though software metrics has been a subject area over 30 years. it has barely
penetrated into mainstream software engineering. Having exploring research of
software metrics. we observe two intuitional reasons. One reason is that most metrics
have been defined by an individual or a team and then tested and used only in a very
limited environment. thus it is hard to achieve the adoption in software industry.
Another reason is that most software metrics have not addressed their most
important requirement: to provide information to support quantitative managerial

decision-making during the software lifecycle [10}

Based our survey, we think further work about the current software metrics may

necessarily focus on the following directions:

Unification

To increase the adoption of the software metrics application in real software life cycle,
it should have a unified notation to address their definition and underlying principles.
Moreover. there should have one unified empirical and systematic approach to

evaluate and validate the usefulness of these metrics.

Standardization

[t is recognized that a single software metric cannot predict and evaluate software
quality effectively; however, too much software metrics also introduce redundancies
and confusions. Therefore, future research may identify one industry-standard

38

software metrics suite to reflect the quality issues of software products.

Tools

Since software metrics use to quantify software development process. product and
resources. That is. they present in statistic formulas, so it's necessary to develop some
useful tools or some components easily embedded in specific software to automate the
computation of the software metrics. Some design decision suggestions based on the

computation of the metrics may also be incorporated into these tools.

Applications
Software metrics are validated widely in predicting the fault-proneness of the system.
Further empirical studics may test their capability in software maintainability.

testability reliability or other aspects of software quality.

2.6 Conclusion

In this chapter, we survey software metrics by reviewing the key concept related to
software metrics, introducing the selected popular traditional and object-oriented
metrics, and studying the comprehensive empirical validation experiments. Based on
the analysis of the results from empirical studies, we discover that most empirical
validation work focuses on testing fault-proneness of software system and declares
inheritance and coupling measures being the most effective metrics, which are
strongly related to the probability of fault detection in object-oriented system.

Especially, coupling metrics play a vital role in software quality assurance and should

39

have extra attentions by the software developers and managers.

Reliability measurement is a subset of software measurement technology. Software
metrics and sofiware reliability measurement are interrelated technologies. Some
metrics can be directly used as reliability models. In chapterS, the relationship

hetween metrics and models will be presented in detail.

2.7 Reference

[I] PRESSMAN, R. S. “Software Engineering: A Practitioner's approach” 4th

edition. McGraw-Hill Book Company. 1997.

(2] Conte. S. D.. H. E. Dunsmore. and V. Y. Shen, “Software Engineering Metrics and

Models”. Menlo Park, Calif Benjamin/Cummings, 1986

[3] Fenton NE, “Software Metrics - A Rigorous Approach” Chapmann & Hall. London,

1991

(4] Bertrand Meyer. “The role of object-oriented metrics”, in Computer (IEEE), vol.

31.no. 11. November {998, pages 123-125.

(5] Grady, R. B. and D. R. Caswell, “Software Metrics: Establishing a Company-Wide

Progrum”. Engle- wood Cliffs. N. J. Prentice-Hall, 1987

{6] Tegarden, D., Sheetz, S., Monarchi, D, “Effectiveness of Traditional Software

Metrics for Object-Oriented Systems”, Proccedings: 25th Hawaii International

40

Confernce on System Sciences, January 1992, pp. 359-368.

[7] Linda H. Rosenberg. “Applying and Interpreting Object Oriented Metrics”.

presented at the Software Technology Conference, Utah, April 1998.

http://satc.gsfc.nasa.gov/support/STC APR98/apply oo/apply_oo.html

[8] Norman Fenton. “Software Metrics For Control And Quality Assurance Course
Overview”, 2000

http://www.dcs.qmul.ac.uk/~norman/Courses/mod_903/slides/slides_2000/ail_slides

2000 _blue/

[9] Al Ehrbar . “Software measures”. John Wiley & Sons. 1998

[10] Norman E Fenton and Martin Neil. “Software Metrics: Roadmap ™. 2000

http://www.agena.co.uk/postcript_papers/metrics roadmap.pdf

[11]McCabe. “Object Oriented Tool User's Instructions”, McCabe & Associates, 1994

[12] Johann Eder, Certi Kappel, and Michael Klagenfurt, “Coupling and cohesion in

object-oriented systems”, 1992

http://citeseer.nj.nec.com/cache/papers/cs/2479/ftp:zSzzSzftp.ifs.uni-linz.ac.atzSzpub

zSzpublicationszSz1993zS520293.pdf/eder92coupling.pdf

[13] Lionel C. Briand, John W. Daly, and Jurgen wust. “A unified framework for

coupling measurement in object-oriented systems”, 1996

41

http://www.iese.fraunhofer.de/network/ISERN/pub/technical reports/isern-96-14.pdf

{14] Lionel Briand. Prem Devanbu. Walcelio Melo. “An investigation into coupling

measures for C++". 1997

http://citeseer.nj.ncc.com/cache/papers/cs/ 1 336/http:zSzzSzwww.research.att.comzSz

~premzSzicse97.pdf/briand97investigation.pdf

[15] Shyam R. Chidamber and Chris F. Kemerer. “A METRICS SUITE FOR OBJECT

ORIENTED DESIGN, IEEE Transitions on Software Engineering, 1994

http://www.pitt.edu/~ckemerer/cinicee.pdf

[16] Shyam R. Chidamber and Chris F. Kemerer. "Towards a Metrics Suite for Object
Oriented Design”, In Proc. of the Conference on Object-Oriented Programming

Systems. Languages. and Applications (OOPSLA'91), pages 197--211. ACM. 1991

[17] Bindu S. Gupta. “A critique of cohesion measures in the object-oriented paradigm’™.

1997

http://citeseer.nj.nec.com/cache/papers/cs/2 [83/ftp:zSzzSzcs.mtu.eduzSzpubzSzottzS

zreportszSzmehra-thesis.pdf/gupta97critique.pdf

[18] Linda M.Ott and James M. Bieman, “Program slices as an abstraction for

cohesion measurement”, 1998

ftp://ftp.cs.colostate.eduw/pub/bieman/istPreprint98.pdf

{19] Fernando Brito ¢ Abreu and Rita Esteves, Miguel Gouldo, “The Design of Eiffel
42

programs: Quantitative Evaluation Using the MOOD Metrics”. Proceedings of

TOOLS 96 USA, Santa Barbara, California. July 1996.

{20] L.Brooks. “Object-oriented metrics collection and evaluation with a software
process”, Proc. OOPSLA 93 Workshop Processes and Metrics for Object-Oriented

Software Development, Washington, D.C., 1993

[21] R.Harrison, S.J. Counsell. R.V. Nithi. “An evaluation of the MOOD set of

object-oriented software metrics”. 1998

http://www.computer.org/tse/ts1998/¢049 labs.htm

[22] Fernando Brito ¢ Abreu and Walcélio Melo, “Evaluating the Impact of

Object-Oriented Design on Software Quality”. 1996

http://www?2.umassd.edw/SWPI/ESEG/3 IntSoftMetSymp.pdf

(23] Sdida Benlarbi and Walcelio L. Melo, “Polymorphism Measures for Early Risk

Prediction”, 1999

htip://delivery.acm.org/10. 1 145/3 10000/302652/p334-benlarbi.pdf?key [=302652& ke

y2=8583876101&coll=portal&dI=ACM&CFID=1931617&CFTOKEN=83627676

[24] Victor Laing and Charles Coleman, “Principal Components of Orthogonal

Object-Oriented Metrics™, (323-08-14), 2001

http://satc.gsfc.nasa.gov/supporttt OSMASAS _SEPO!1/Principal Components of Orth

oconial Object Oriented Metrics.pdf

[25] Khaled EI Emam, Walcelio Melo. Javam C. Machado. “The prediction of faulty
classes using object-oriented design metrics”, The journal of systems and software

56(2001) 63-75, 2000

http://www.mestradoinfo.ucb.br/Prof/wmelo/jss-00.pdf

[26] El-Emam, K., “‘Object-Oriented Metrics: A Review of Theory and Practice”.

2001

fip://ai.iit.nre.ca/publiit-papers/NRC-44190.pdf

[27] Lionel C. Briand, Jiirgen Wiist. John W. Daly 1 . and D. Victor Porter. “Exploring
the Relationships between Design Measures and Software Quality in Object-Oriented

Systems”, 2000

http://www.sce.carleton.ca/faculty/briand/jss. pdf

[28] Victor R.Basili. Lion C. Briand. and Walcelio L. Melo. “A validation of object
oriented metrics as quality indicators”, IEEE transactions on software engineering,

Vol 22,No. 10. 1996

http://www.mestradoinfo.ucb.br/Prof/wmelo/iceetse | 996.pdf

[29] Danicla Glasberg, Khaled El Emam, Walcelio Melo. Nazim Madhaviji,

“Validating object-oriented design metrics on a commercial java application”, 2000

http://www.mestradoinfo.uch.br/Prof/iwmelo/NCR _1080.pdf

Chapter 3 Overview of Software Reliability Engineering (SRE)

The analysis of the reliability of a system must be based on precisely defined concepts.
And the fundamental definitions of reliability must depend on concepts from probability
theory [1]. This chapter, we provide the basis for quantifying the reliability of a system,
from the definition to expression of software reliability as well as terms related to

software reliability engineering.

3.1 Definition of Software Reliability

According to the 1991 [EEE standard of software enginecering, Software Reliability is
defined as the probability of failure-free software operation for a specified period of time
in a specified environment [2]. Further, John D. Musa extended the definition as the
probability that a system or a capability of a system functions without failure for a
specified period in a specified environment [3]. The period may be specified in natural

units or time units.

From the definition, we can see that software reliability depends on how software is used.
Software usage information is thus an important part of reliability evaluation. This
includes the environment information where software is used, as well as the information
on the actual frequency of usage of different operations, functions, or features that the
system offers. The usage information is quantified through operational profiles, which we

will address later in this chapter.

45

Furthermore, from the definition, we can see that “Time” is an important issue in
measuring. “Time” is execution exposure that software receives through usage. It is
usually measured in central processing unit (CPU) execution-time, calendar-time or clock
time. Experience indicates that the best metric is the actual central processing unit (CPU)
execution time. However, in many practical test environments, CPU execution time is not
always available. Thus, it is necessary to reformulate measurements, and reliability
models, in terms of other exposure metrics, such as calendar-time, clock-time, number of
executed test cases (or runs), fraction of planned test cases executed, inservice-time, or
structural coverage. In considering which time to use, it is necessary to weigh factor, such
as availability of data for computation of a particular metric, error-sensitivity of the

metric, availability of appropriate reliability models, etc.

[n Musa's definition, the concept of natural units is relatively new to software reliability.
A natural unit is a unit other than time that is related to the amount of processing
performed by a software-based product, such as pages of output, transactions, telephone
calls, jobs, semiconductor wafers, queries or application program interface calls [3].
Availability is the average probability that a system or a capability of a system is
currently functional in a specified environment. If you are given an average down time
per failure, availability implies a certain reliability. Failure intensity, used particularly in
the field of software reliability engineering, is simply the number of failures per natural

or time unit. It is an alternative way of expressing reliability.

46

3.1.1 Software Reliability Versus Hardware Reliability

Computers are composed by hardware and software. Increasing use of firmware and
embedded software is blurring the boundary lines between software and hardware. To
avoid failures, hardware and software must all be stable and reliable. Thus, we can define
software reliability as a part of system reliability, which is composed by hardware and

software reliability.

The development of hardware reliability theory has a long history and a successful
record. Hardware reliability encompasses a wide spectrum of analyses that strive
systematically to reduce or eliminate system failures which adversely affect product
performance [4]. Reliability also provides the basic approach for assessing safety and risk
analysis. Software reliability strives systematically to reduce or climinate system failures

which adversely affect performance of a software program.

Although hardware reliability models cannot be applied to software since software is not
physical, the analysis and comparison of the two will help us understand softwarc
reliability better and benefit us in developing software reliability modeling. The table

below summarizes the differences between hardware and software reliability:

47

Software Reliability

Hardware Reliability

Failures are primarily due to design faults.
Repairs are made by modifying the
design to make it robust against
conditions that can trigger a failure.

Failures are caused by deficiencies in design,
production, and maintenance.

There is no wear-out phenomena.
Software errors occur without warning.
“Old” code can exhibit an increasing
failure rate as a function of errors induced

while making upgrades.

Failures are due to wear or other energy-related
phenomena. Sometimes a warning is available
before a failure occurs.

There is no equivalent to preventive

maintenance for software.

Repairs can be made which would make the
equipment more reliable through maintenance.

Reliability is not time dependent. Failures
occur when the logic path that contains an
error is executed. Reliability growth is
observed as errors are detected and

corrected.

Reliability is time related. Failure rates can be
decreasing, constant, or increasing with respect

to operating time.

External environment conditions do not
affect software reliability. Internal
environmental conditions, such as
insufficient memory or inappropriate clock
speeds do affect software reliability.

Reliability is related to environmental conditions.

Reliability cannot be predicted form a
knowledge of design, usage, and

environmental stress factors.

Reliability can be predicted in theory from
physical bases.

Reliability cannot be improved by
redundancy, since this will simply
replicate the same error. Reliability can be
improved by diversity.

Reliability can usually be improved by
redundancy

Failure rates of software components are
not predictabie.

Failure rates of components are somewhat
predictable according to known patterns.

Software interfaces are conceptual.

Hardware interfaces are visual

Software design does not use standard

components.

Hardware design uses standard components.

Table 3.1. Difference between hardware and software reliability [14]

48

3.1.2 Measures of Reliability

The quality of software, and in particular its reliability, can be measured in a number of
ways. Availability and Failure Intensity are the most widely used two ways of
measuring. Before we continue the discussing, it is necessary for us to distinguish two
situations. In one situation, there are no fault removals during testing and maintenance
phases of software development life cycle. No detected problems will be reported before
the releases of a product. In the other situation, there arc detected problems. We are
experiencing fault identifications and corrections. The quality of the product improves
over time, and we talk about reliability growth. In this verse, we address availability and

failure intensity separately:

Failure Intensity

Failure intensity is a metric that is commonly used to describe software reliability. It is
defined as the number of failures experienced per unit “time” period {3]. Sometimes, the
term Fault rate is used instead. Mean time to failure (MTTF) is an intcresting
associated measure. Failure intensity can be computed for all kinds of experienced

failures. It is a good measure which can reflect the user’s perspective of software quality.

Suppose that the reliability function for a system is given by R(t). In situation I, when
there is no fault found, it is possible to describe the R (t) by using constant failure

intensity, A, and a very simple exponential relationship:
R(t) = ¢4l

49

‘t’ is the duration of the mission. For instance, let's suppose we are using a system which
is under representative and unchanging conditions, and the faults causing any reported
failures are not being removed. Let the number of failures observed over

1.000 hours of operation be 6. Then, failure intensity is about ~ A = 6/1000 = 0.006
failures per hour. From the above equation, and given that the system operates correctly
at time t = 10 hours, the probability that the system will not fail during a 10 hour mission

is about R(10) = ¢™%%"1° = 0.941.

While in situation 2, when reliability growth is presented, failure intensity, X (t) becomes
a decreasing function of time t during which software is exposed to testing and usage
under representative (operational) conditions [4]. Thus. the situation is much more
complex that the previous one. There is a large number of software reliability models that
address this situation in [5]. All models have some advantages and disadvantages. It is
extremely important that an appropriate model be chosen on a case-by-case basis [4. 5].

Two typical models are the “basic exccution time” (BET) model [6, 7] and the
Logarithmic-Poisson execution time (LPET) model {4, 8]. Both models assume that
every detected failure is immediately and perfectly repaired, and the testing uses

operational profiles.

The BET model represents a class of “finite-failure” models for which the mean value
functions tends towards a level asymptote as exposure time grows.

The BET failure intensity A (t) with exposure time T is:

A[l -

——

AM1)=Age ™

Ao is the initial intensity.

Vu is the total expected number of failures.

On the other hand, the LPET model is a representative of a class of models called

“infinite-failure” models since it allows an unlimited number of failures.

The LPET failure intensity A (t). with exposure time T is:

7\.()

4 (0) is the initial intensity
0 is called the failure intensity decay parameter since:

T

and p(t) is the mean number of failures experienced by time t, 1.c..

() =€l)— In(Ap9 T +1))

Availability

Availability is another important practical measure for software reliability. In

telecommunication industry, availability and unavailability targets are used to measure

the stability of system. For example, the Bellclore unavailability for telecommunication

51

network elements is about 3 minutes of downtime per year [5]. Here, availability implies

certain reliability.

The availability of a system is defined as the probabiiity that the system is successful at
time [0 t]. We can compute availability for software as we do for hardware. It is the ratio
of up time to the sum of up times plus down time. Mathematically, it is called average

availability, and shows as below:

Availability = System up time(MTTF)
System up time (MTTF) + System down time (MTTR)
where
System down time = Failure intensity * Mean time to repair (MTTR) [9]

Here, the failure intensity is a figure computed for serious failures and not those that

involves only minor degradation of the system [9].

From the definition, we call the availability as instantaneous availability, when the
system will be available at any random time t during its life. A Markov model was
developed by Trivedi (1975) [10] that depicts the concept of software availability. A
more recent paper by Laprie (1992) [11] improved the model and dealt with the

evaluation of availability during the operational phase.

In the definition, if the time [0,t] is fong enough, then the availability approaches steady
state availability, which, given some simplifying assumptions, can be described by the

following relationships [12, 13]:

Steady state Availability = A .
A+ p
A= Total number of Failures in T

Total time system was operational during period T

p= Total number of failures in period T
Total time system was under repair or recovery during Period T

/. is fault intensity.

p is the repair rate, which is the number of repaired failures per unit time.

From the previous defined equations. we can see that two measures that directly intluence
the availability of a system are its failure rate (failure intensity) and its field repair rate.
Failure rate is usually connected to both the operational profile and the process of
problem resolution and correction. Recovery rate depends on the operational usage

profile, the type of problem encountered, and the field response to that problem.

In practice, reliability and availability models are used to predict future unavailability of a
system. Of course, only the data up to the point from which the prediction is being made
would be available. The prediction would differ from the true value depending on how

well the model describes the system. The figure below shows the empirical unavailability

53

data and fits for two simple models. Both models appear to predict future system

behavior well.

Model for
Average Unavadahility

Empirical average

ML] .
. el - unavailability
pas)
=
o
‘©
> ‘\
(4] “ M
S \ S WY
- i Cut-off vy '.," ~
4 point ’ I‘, \
Model for Instantaneous
] Instantaneous Unavailability unavailability
P
L] 1 L
0 100 200 300 400 500

Inservice Time
Figure 3.1. Unavailability fitting using LPET and constant repair rate with data up to
“cut-off point’’ only [5]

3.2 Software Reliability Engineering

Software reliability engineering is a currently a daily practiced technique in many
engineering disciplines. By definition, software reliability engineering (SRE) is the
“applied science of predicting, measuring, and managing the reliability of software-based
systems to maximize customer satisfaction” [9]. It is the quantitative study of the
operational behavior of software based systems with respect to user requirements

concerning reliability, it therefore includes [5]:

54

1. Software reliability measurement, which includes estimation and prediction, with the
help of software reliability models established in the literature;
2. The attributes and metrics of product design, development process, system
architecture, software operational environment, and their implications on reliability:
3. The application of this knowledge in specifying and guiding system software
architecture, development, testing, acquisition, use, and maintenance.

'
In later chapters, we will address reliability measurement, modeling and some other

issues in detail. In figure2, we present an overview of a general SRE process.

[.Define Reliability
objective

2. Denive an
operational profile

3. Setect Test
Cases

4. Run Test
cases

5 Apply
appropriate model

6. Keep on
gathening data

Figure3.2 SRE General Process

In stepl, the reliability objective is determined by specifying balance among key quality

objectives (e.g., reliability, cost, delivery date).

In step2. an operational profile is derived. This is a usage distribution, i.c., the extent to

which each operation of the software system is expected to be exercised. By definition,

55

Operational profile is a set of relative frequencies (or probabilities) of occurrence of
disjoint software operations during its opcrational use [5]. A software-based system may
have one or more operational profiles. Operational profiles are used to select test cases
and direct development, testing and maintenance efforts towards the most frequently used
or most risky components. Construction of an operational profile is preceded by
definition of a customer profile, a user profile, a system mode profile, and a functional
profile. The usual participants in this iterative process are system engineers, high-level
designers, test planners, product planners, and marketing. The process starts during
the requirements phase and continues until the system testing starts. Profiles are
constructed by creating detailed hierarchical lists of customers, users, modes, functions
and operations that the software needs to provide under each set of conditions. For cach
item it is necessary to estimate the probability of its occurrence (and possibly
risk information) and thus provide a quantitative description of the profile. If usage is
available as a rate (e.g., transactions per hour) it needs to be converted into probability. [n
discussing profiles, it is often helpful to use tables and graphs and annotate them with

usage and criticality information.

In step3, test cases are selected in accordance with the operational profile to ensure that

the system testing usage is similar to the usage environment expected after release of the

system.

56

In step4, test cases are executed. For each test that results in failure the time of failure is
noted, in terms of execution time, and the execution time clock is stopped. After repair

the clock is started again, and the testing resumes.

In step5. an appropriate software reliability model is applied to the distribution of the
failure points over time, and an estimate of the reliability is determined. If the reliability
objective has been reached, the system is released. Thus, reliability modeling is an
essential element of the reliability estimation process. It determines if a product meets its

reliability objective and is ready for relcase.

In step6. failure data continue to be gathered after system release.

3.2.1 Some Basic Terms

Here it is nccessary to provide some widely used terms in Software Reliability

Engineering to avoid confusing.

Error. Human action that results in software containing a fault. Examples include
omission or misinterpretation of user requirements in a software specification, and

incorrect translation or omission of a requirement in the design specification. [15]

Failure. (1) The termination of the ability of a functional unit to perform its required
function. (2) An event in which a system or system component does not perform a

required function within specified limits. A failure may be produced when a fault is

57

encountered [15]. Failure can be caused by hardware or software faults (defects), or by

how-to-use errors.

Fault. (1) An accidental condition that causes a functional unit to fail to perform its
required function unit to fail to perform its required function. (2) A manifestation of an
error in software. A fault. if encountered, may cause a failure. Synonymous with bug
[15]. Inherent faults are the faults that are associated with a software product as originally
written, or modified. Faults that are introduced through fault correction, or design
changes, from a separate class modification faults. An associated measure is fault density.

Faults are results of errors, or mistakes.

Fault density. The number of faults per thousand lines of cxecutable source code.

Software reliability management. The process of optimizing the reliability of software
through a progrum that emphasizes software error prevention, fault detection and
removal, and the use of measurements to maximize reliability in light of project,

constraints such as resources (cost), schedule, and performance.

3.3 Reference

[1] Alfs T.Berztiss “Software Reliability Engeneering™ university of Pittsburgh
[2] Institute of Electrical and Electronics Engineers, ANSI/IEEE Standard Glossary of

Software Terminology, IEEE Std. 729-1992, 1991

58

(3] John D. Musa, “More Reliable Software Faster And Cheaper: An Overview Of
Software Reliability”.

Http://members.aol.com/JohnDMusa/ARTweb.htm

[4] J.D.Musa, “Operational Profiles In Software Reliability Engineering,” IEEE
software, vol. 10(2), pp. 14-32, March 1993

(5] Handbook of Software Reliability Engineering, McGraw Hill, editor M. Lyu,
January 1996.

(9] J.D.Musa, and W.W Everet, “Sofnware-Reliability Engineering: Technology For The
1990s..” IEEE software , VOL 7. pp. 36-43, November 1990

[10]Trvedi, A.K., “Computer software Reliability: Many-State Markov Modeling
Techniques,” Ph.D dissertation, Polytechnic Institute of Brooklyn, June, 1975

[11] Aprie, J.-C., Dependability Basic Concepts and terminology, Dependable computing
and Fault-tolerant systems, Vol.5, J-C. Lapric (ed.), Springer Verlag, Wien, New York,
1992

[12] K.S Trivedi, Probability & Statistics with Reliability, Queuing, and computer
science applications, Prentice-Hall, Englewood Cliffs, N.J., 1982

{13] M.L.shooman, software engineering, McGraw-Hill, New York, 1983

[14]Debra S.Herrmann, software safety and reliability, [SBN 0-7695-0299-7

(15] IEEE Standard Dictionary of Measures to Produce Reliable Software (IEEE Std
982.1-1988). New York, N.Y.: Institute of Electrical and Electronic Engineers, Inc.,

1989.

59

Chapter 4 Software Reliability Measurement Procedure

As we have introduced in chapter 2, 3. software measurement is a quantitative assessment
of the degree to which a software product or process possesses a given attribute:
reliability measurement is a main activity of software reliability engineering. Thus, in this
chapter we will discuss the issues in software reliability measurement from the definition

to the framework of measurement, as well as a classification of measures.

4.1 Definition of SR Measurement

Software reliability measurement is the application of statistical inference procedures
to failure data taken from software testing and operation to determine software reliability

(1]. It mainly includes two activities: reliability estimation and rcliability prediction.

Estimation evaluates current software reliability by applying statistical inference
techniques to failure data obtained during system test or system operation [2]. This is a
measure regarding the achieved reliability from the past until the current point. We use
reliability estimation to assess the current reliability and determine whether a reliability

model is a good fit in retrospect.

Prediction predicts future software reliability based upon available software metric and

measures [2]. During different software development stage, prediction involves difterent

techniques:

60

I. During system design and coding phase, when failure data is not available, some
metrics obtained from the software development process and the characteristics of the
resulting product are used to predict reliability of the software upon testing or delivery.

2. During system test and operation phase, when failure data are available, the estimation
techniques are used to parameterize and verify software reliability models, which can

perform future reliability prediction.

Most current software reliability models fall in the estimation category to do reliability
prediction. Still, some prediction models are proposed and described in the literature. In

next chapter, we will discus software reliability modeling in detail.

4.1.1 Classification of Measures

In the [EEE Guide of dictionary of measures to produce reliable software [3],
measurements are classified into two kinds. One is “functional classification™; another is
“lifecycle classification”. The lifecycle classification addresses the problem of “when are
the measures applied” to assist the user in more practical considerations. The “lifecycle”
which is the software development lifecycle is divided into early, middle, and late
segments and covers the following: Concepts, Requirement. Design, Implementation,

Test, Installation and Checkout, operation and Maintenance, Retirement.

According to the functional classification, measures are classified based on two main
objectives of reliability measurement: product maturity assessment and process maturity

assessment. The first objective is a certification of product readiness for operation

61

(including an estimation of support necessary for corrective maintenance). The second

objective is an ongoing evaluation of a software factory’s capability to produce products

of sufficient quality for user needs. The process maturity assessment includes the product

maturity assessment with the objective of process repair when necessary [3].

Product measures address cause and effect of the static and dynamic aspects of both

projected reliability prior to operation. and operational reliability. As an example,

reliability may change radically during the maintenance effort, due to the complexity of

the system design. These product measures cover more than the correctness aspect of

reliability; they also address the system utility aspect of reliability. Tablel including six

product measure subcategories addresses these dimensions of reliability:

Cost Evaluation

Category Sub-category Function
Product Errors Count of defects with respect to human cause, program
. Faults bugs. and observed system malfunctions
Matunity A .
Failures
Assessment Mean-Time-to-Failure | Derivative measures of detect occurrence and time
Failure Rate
Reliability Growth The assessment of change in failure-treeness of the product
Projection under testing and in operation
Remaining Product The assessment of fault-freeness of the product 1n
Faults development, test, or maintenance
Completeness The assessment of the presence and agreement of the
Consistency presence and agreement of all necessary software system
parts
Complexity The assessment of complicating factors in a system
Process Management Control | The assessment of guidance of the development and
Maturity maintenance processes __
Coverage The assessment of the presence of all necessary activities to
Assessment develop or maintain the software product
Risk The assessment of the process tradeoffs of cost, schedule.
Benefit and performance

Table 4.1 Functional Classification

(Table4.1 is based on the classification of functional measure classification [3])

4.2 Measurement Framework

Software reliability measurement takes place in an environment that includes user needs
and requirements, a process for developing products meeting those requirements, and
user environment within which the delivered software satisfies those neceds. This
measurement environment establishes a framework for determining and interpreting

indicators of software reliability. [4]

Mecasurement framework has been proposed in a lot of papers, books and [EEE standards,
like in [2.4,5,6]. These frameworks are normally developed focusing on the practice of
SRE. The purpose is to enhance an organization's ability to deliver timely, high-quality
products through an application of SRE practices. as well as to help ensure that software
vendors deliver high-quality component products. Here we present the framework

developed by M.R. Lyu, shown as in figured.1:

63

Determine . 1 Develop
rehability objectve |\ | opershonal profile
N

4

- Y

Perform system testing
| Collect failure data
Continue testing l
) Apply software
ity tools
Select sppromale
sothware relisbilityy tools
Ve
//l wae ot =~ ‘
L oble <! ><_——--—1 Use sothware rebabihty models
~ / to calculate current relability

Stat tlo deploy

I
v Feedback tothe
Vabdate rlability o the field next pelease

Figured.1 Software Reliability Measurement Procedure Overview

[t can bc seen that there are four major components in this software reliability
measurement process, namely,

(1) reliability objective,

(2) operational profile

(3) reliability modeling and measurement, and

(4) reliability validation

We have the list observations from this framework:

64

(1) According to this framework, quality is first defined quantitatively from the
customer's viewpoint by defining failures and failure severity. by determining a
reliability objective, and by specifying balance among key quality objective (e.g.,
reliability, delivery date, cost).

(2) Customer usage is quantified by developing an operational profile. As we discussed in
chapter3, operational profile is a set of disjoint alternatives of system operation and their
associated probabilities of occurrence. The construction of an operational profile
encourages testers to select test cases according to the system’s operational usage, which
contributes to more accurate estimation of software reliability in the field. We will
discuss the implementation of operational profile in the later verse of this chapter.

(3) Resources are then managed by advocating the cmployment of operational profile and
quality objectives to guide through softwarc development phases (c.g., design,
implementation, testing).

(4) Reliability during testing is tracked to determine product release, using appropriate
software reliability measurement models and tools. This activity may be repeated until a
certain reliability level has been achieved.

(5) Reliabilities are analyzed in the field to validate the reliability engineering effort and

to provide feedback for product and process improvements.

Reliability modeling is an essential element of the reliability estimation process. It
determines if a product meets its reliability objective and is ready for release. It is
required to use a reliability model to calculate, from failure data collected during system

testing (such as failure report data and test time), various cstimates of a product’s

reliability as a function of test time. These reliability estimates can provide the following

information useful for product quality management [2]:

(1) The reliability of the product at the end of system testing.

(2) The amount of (additional) test time required to reach the product’ reliability
objective.

(3) The reliability growth as a result of testing.

(4) The predicted reliability beyond the system testing already performed.

4.2.1 Implement Operational Profile

From chapter 3 and the previous verse of this chapter, we can sec operational profile is an
important aspect in SRE. A reliability estimate established by the SRE process is
meaningful only if the conditions under which the software is tested closely correspond
to the conditions under which it will be used in the field [7]. This ensures the test cases to
have the same distribution according to type as the inputs after the system has been
released. This distribution is just the operational profile. Lyu and Musa {2, 5] discussed
the implementation of operational profile in detail. Normally, the development of an

operational profile may take five steps, as follows:

(1) Definition of client (customer) types. A client (customer) is a person, a group, or an
institution that acquires the system. Table4.2 illustrates a hypothetical customer profile

for telephone switch software. This relates to product software, i.e., to software that is

66

developed for a number of different clients. Consider a generic automated enquiry system
that responds to telephone calls by customers. The system consists of prompts to the
caller, call routing, canned responses, the possibility of speaking to a customer service
representative, and wait lines. This structure is the same for all systems, only the content
of the prompts and the canned responses differs from system to system. The systems for
airlines will be more similar to each other than to a system that handles health insurance

enquiries. Airlines and health insurance companies thus form two client types.

Custermer Group Probability
Local Carrier 0.7
Long distance Carrier 0.3

Table 4.2 Customer profile for telephone switch software

(2) Definition of user types. A user is a person, a group, or an institution that employs the
system, it can even be other software (as in automatic business-to-business e-commerce)
who will use the system in the same way. In the case of the enquiry system, some users
will update the canned responses, and this will happen more often for airlines than for
health insurance companies. Other users will listen to responses, and still others will want

to talk to customer representatives.

(3) Definition of systern modes. A system mode is a set of functions or operations that are
grouped for convenience in analyzing execution behavior [5]. System can switch among
modes; two or more modes can be active at any present time. These are the major

operational modes of a system, such as system initialization, reboot after a failure,

67

overload duc to excessive wait line build-up, gathering of system usage statistics,
monitoring of customer service representatives, selection of the language in which the

customer will interact with the system.

(4) Definition of functional profile. A function may represent one or more tasks,
operations, parameters, or environmental variables. In this step, each system mode is
broken down into the procedures or transactions that it will need, and the probability of
use of each such component is estimated. The functional profile is developed during the

design phase of the software process.

(5) Definition of operational profile. The functional profile rclates to the abstractions
produced as part of software design. The abstractions of the functional profile arc now
converted into actual operations, and the probabilitics of the functional profile are
converted into probabilities of the operations. The operations are the ones that are tested.
Their profile will determine verification and validation resources, test cases and the order
of their execution. The operations need to be associated with actual software commands
and input states. These commands and input states are then sampled in accordance with
the associated probabilities to generate test cases. Particular attention should be paid to

generation of test cases that address critical and special issues.

The five steps are actually part of any software development process. The operations

have to be defined sooner or later in any case, and a process based on the five steps can

be an effective way of defining operations. For example, user types can be identified with

68

actors and system modes with use cases in use case diagrams of UML (8]. Identification
of user types and system modes by means of use case diagrams can take place very early

in the software process.

What is specific to SRE and what is difficult is the association of probabilities with the
operations. They include the uncertainty of how a new software system will be used.
Many systems are used in ways totally different from how the original developers
envisaged their use. The Internet is the most famous example. Another problem is that

requirecments keep changing well after the initial design stage.

Fortunately, it has been shown that reliability models are rather insensitive to errors in the
operational profile [9]. Note that reliability is usually presented as a value together with a
confidence interval associated with the value [5]. Adams [10] shows how to calculate
confidence intervals that take into account uncertaintics associated with the operational
profile. Note that Adams defines reliability as the probability that the software will not

fail for a test case randomly chosen in accordance with the operational profile.

4.3 Reference

[1] M.R Lyu and A.Nikora, “Using Software Reliability Models More Effectively,” [EEE
Scitware, July 1992
[2] M.R Lyu (ed), handbook of software reliability engineering, McGraw-Hill and [EEE

Computer Society Press, New York, 1996,

69

(3] IEEE Standard Dictionary of Measures to Produce Reliable Software (IEEE Std
982.1-1988). New York, N.Y.: Institute of Electrical and Electronic Engineers, Inc.,
1989.

[4] IEEE Standard Dictionary of Measures to Produce Reliable Software (IEEE Std
982.2-1988). New York, N.Y.: Institute of Electrical and Electronic Engineers, Inc.,
1989.

[5] Musa, John D.; lannino, Anthony: & Okumuto, Kazihra. Software Reliability
Measurement, Prediction, Application. New York, N.Y.: McGraw-Hill, 1987.

[6] Baumert. John H. Software Measures and the Capability Maturity Model (CMU/SEI-
92-TR-25). Pittsburgh, Pa.: Software Engincering Institute, Carnegie Mellon University.
1992.

[7] Denise M. Woit, “*Operational Profile Specification, Test Case Generation, and
Reliability Estimation for Modules”, 1994

http://citeseer.nj.nec.com/cache/papers/cs/5949/http:2SzzSzwww.sarg.ryerson.cazSzsargz

SzpaperszSz199402-CRL281zSzindex.phtmlzSzsarg.pdf/woit94operational.pdf

{8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[9] A. Pasquini, A.N. Crespo, and P. Matrella, Sensitivity of reliability-growth models to
operational profile errors vs testing accuracy, IEEE Trans. Reliability 45, 1996, 531{540
(crrata ibid 46, 1997, 68).

(10] T. Adams, Total variance approach to software reliability estimation, IEEE Trans.

Software Eng. 22, 1996, 687-688.

70

Chapter 5 Software Reliability Modeling

5.1 Introduction

In the field of software reliability engineering, one particular aspect that has received the
most attention is software reliability modeling. It is rational, since all activities in SRE
are based on models established in literature. Models are the basis of SRE. During the
past 25 years, research activities in software reliability engineering have been studied and

more than 50 statistical models have been developed.

A software reliability model specifies the general form of the dependence of the failure
process on the principal factors that affect it: fault introduction, fault removal, and the
operational cnvironment [1]. FigureS5.1 shows the basic idea of reliability modeling:

Fatlure
Rate

A

Presemt
I"arture
Rate

Specticdp-sodeommemcoccmoaccccce TS

:
I :
Goal :

>
Present Projected Testing lime
lime Finush Thime

Figure5.1 Basic idea of software reliability modeling [2]
From figure5.1, we can see that the failure rate is decreasing due to the discovery and
removal of software failures. At any “present time”, it is possible to observe a history of

the failure rate of the software. Software reliability modeling forcasts the curve of the

71

failure rate by statistical evidence [2]. Thus the testing time and the reliability of the

software could be predicted.

5.2 Relationship of Metrics and Models

Models, metrics are two interrelated technologies in the measurement technology.
We have talked about metrics in chapter2. Here, it is necessary for us to identify the

relationship between metrics and models to avoid confusing.

Generally speaking, a model is an equation (or set of equations) that takes software
metrics data as input parameters and calculates some other parameter. The output from a
model is therefore a software metric, too, and may be used as input to another model. For
example, a key input parumeter for many cost and some reliability models is the software
size. When these models arc used to predict the cost or reliability of yet-to-be-developed
software, the software size is not known but can be estimated by feeding project

estimates into a sizing model [3]. Figure5.2 shows this relationship:

Software

=

Software rehability model

Soﬁk

metrics data

Figure5.2 Metrics and models

5.3 Classification Of Software Reliability Models

Even through software is pervasive in today’s world, and the need of reliability
engineering in software development is obvious, not many software practitioners,
developers, or users utilize software reliability models to evaluate computer software
reliability. A survey conducted in the late 1990s by the American Society for Quality
(ASQ) reported that only 4% of the participants responded positively when asked if they

could use a software reliability model.

There are many reasons for this phenomenon, one of them is because these participants
do not know how to select and apply these models. Numerous analytical models for
predicting reliability and fault content in a softwarc system are available. These models
attempt to capture and quantify the inherent uncertainties in a software production
process. However, none of the single model is sufficient for measuring the software
reliability. Besides, the accuracy of these models varies. Thus, it is necessary to have an
overview of these proposed models, and learn how and when to apply them. A good way

to perform this is to classify these models and study them.

5.3.1 Classification Schemes

During the past researches, many classification schemes have been developed and

introduced. Here we pick up three most widely used classification scheme.

73

5.3.1.1 Musa And Okumoto Classification Scheme

In his early research, Musa and Okumoto [4] developed the first classification scheme. It
allows relationships to be established for models within the same classification groups
and shows where model development has occurred. For this scheme, Musa and Okumoto

classified models in terms of five different attributes. They are:

1. Time domain: Wall clock versus execution time.

o

Category: The number of failures that can be experienced in infinite time. This is

either finite or infinite, the two subgroups.

3. Type: The distribution of the number of failures experienced by time t.

4. Class: (Finite failure category only). Functional form of the failure intensity
expressed in terms of time.

5. Family: (Infinite failure category only). Functional form of the failure intensity

function expressed in terms of the expected number of failures experienced.

This classification scheme has a strong inference to the field of software reliability
engineering. Many later researches follow the scheme, the handbook of reliability

engineering by Lyu [2] utilize this scheme to introduce different models.

5.3.1.2 Hoang Pham Classification Scheme

In his book “software reliability and testing” {5], Hoang Pham classified the software

reliability models into two types: the deterministic and the probabilistic.

74

The deterministic model is used to study the number of distinct operators and operands in
a program as well as the number of errors and the number of machine instructions in the
program. Performance measures of the deterministic type are obtained by analyzing the

program texture and do not involve any random event [5].

The probabilistic model represents the failure occurrences and the fault removals as
probabilistic events. The probabilistic software reliability models are classified into five
different groups:

e Error seeding

e Failure rate

e Curve fitting

e Reliability growth

¢ Non-homogeneous Poisson process

Error Seeding: There are two types of errors: indigenous and induced. This group of
models estimates the number of errors in a program by using the multistage sampling
technique. The unknown number of indigenous is estimated from the number of induced

errors and the ratio of the two types of errors obtained from the debugging data.

Fault Rate: This group of models is used to study the functional forms of the per-fault

failure rate and program failure rate at the failure intervals.

75

Curve fitting: This group of models uses regression analysis to study the relationship
between software complexity and the number of errors in a program, the number of

changed, failure rate, or time between failures.

Reliability Growth: This group of models measures and predicts the improvement of

reliability through the debugging process.

Non-homogeneous Poisson process (NHPP): This group of models provides an
analytical framework for describing the software failure phenomenon during testing. The
main issue in the NHPP model is to estimate the mean value function of the cumulative

number of failures experienced up to a certain time point.

Markov: A Markov process has the property that the future behavior of the process
depends only on the current state and is independent of its past history [2]. This group of
models is a general way of representing the software failure process. The number of
remaining faults is modeled as a stochastic counting process [4]. When a continuous-time
discrete-state Markov chain is adapted, the state of the process is the number of
remaining faults, and time between failures is the sojourning time from one state to
another. If we assume that the failure rate of the program is proportional to the number of
remaining faults, linear death process and linear birth-and-death process are two models
readily available. The former assumes that the remaining errors are monotonically non-

increasing, whereas the latter allows faults to be introduced during debugging.

76

Helstead’s Software Metnc l Mulls* Exror Seeding Model

‘ McCabe s Cyclomatx Conplexty Metnc Cat’s Model

Hepergrometnc Distnbution Model
Enror Seecing Models J
Jelinska-MVoranda MMode!
Schuck-Wolverton Model
Jeknski-Moranda G Model
Momnnda Geometae Posson Model
Probabilistic 1 Negatrve-Binonual Poisson Model
\{ Fulue RateModels |
Modified Schick-Wolverton Model

Goel-Okumato Debugging Model

Estimaton of Errox Madet
Estimation of Complexty Model
Cuwrve Fitting Modsls lj Estimation of Falure rate Model
1 Cauntinbo_Model
Rehality Growth Models I - Mot J
erguson

Markov Structure Models]-\ Markos Model wath {rrperfect Debugging J
Luttle Wood Mazkav Model

Non-Homogeneous Pomson
Process Models Software Safety Model

Figure5.3 Overview of Hoang Pham’s Classification with some representive models

Model Introduction

In this verse, we will have a look at two deterministic models. Because there are too
many models, it is hard to cover them all in this survey. In the next verse, we will have
look at another classification scheme developed by Kishor S.Trivedi. Thus, we will
introduce more models there. For the overview of Hoang Pham's classification, please

reference figure3.

Halstead’s Software Metric

Halstead’s software metric is used to estimate the number of errors in the program, it falls

in the deterministic category. For dctail reference, please check chapter2.

77

McCabe’s Cyclomatic Complexity Metric
In chapter 2, we have taiked about this metric. The reason to mention it here is to notify

that this metric can be used directly to model the reliability of software.

5.3.1.3 Kishor S. Trivedi Classification

Trivedi [6] classifies the popular software reliability models as data-domain models and
time-domain models. An overview of Trivedi's classification is provided in figured:

Software Reriability Models

Data Domain 'l‘imT Domain
Error Input I-Jomn Non-Home Semi Others
Seeding Domain Markov Marrov Markov
Finite | nllmite
Failures Failures

Figure5.4 Overview of Trivedi’s classification

Data-domain models

This group of models focus on the fault content of the software product under
consideration. They select sample data sets representative of the expected operational
usage for the purpose of estimating the residual number of faults in the software under

consideration [6]. It is further classified as (1) error seeding models and (2) input-

78

domain models. We have introduced error seeding models in the previous verse. Here,

let us have a look at input-domain models.

(2) Input-domain models: This group of models use the execution of an input state as
the index of function reliability. The ratio of the number of the successfully execution
inputs to the total number of inputs gives an estimate of the reliability of the software
product [6]. The basic method involves the generation of test cases from an input
distribution, which represents the operational usage of the program. Since it is difficult to

obtain this distribution, the input domain is partitioned into a set of equivalence classes.

Time-domain models

This group of modcls model the underlying failure process of the software under
consideration, and usc the observed failure history as a guideline, in order to estimate the
residual number of faults in the software, and the test time required to detect them. Let us

have a look at the subcategonies.

(1) Homogeneous Markov Meodels: This group of models assume that the initial number
of faults in a program is unknown but fixed. The number of faults forms the state space of
homogeneous Markov chain.

(2) Non-Homogeneous Markov Models (NHPP): Sce 5.3.1.2

(3) Semi-Markov models: This group of models assumes that the initial number of faults

in the software product is unknown but fixed, and that the failure intensity of the

79

software, or the transition rate from a given state. depends not only on the number of

residual faults in the software, also on the time elapsed in the state.

Category Representative models

Error-seeding Mills® Hypergeometric Model

Models

Input-domain Nelson Input domain Model ; Brown and Lippw [nput Domain Model ;
models

Homogeneous Jelinski-Moranda de-eutrophication Model; Goe-Okumoto Impertect

Markov Model Debugging Model
LittleWood Markov Model

Finite Failures Goel-Okumoto NHPP Model: Delayed S-Shaped NHPP Model:

NHPP Models Inflection S-Shaped Model; C1 NHPP Model: Pareto NHPP Model;
LittleWood NHPP Model; Hyperexpeonetial NHPP Model

Infinite Failures Musa-Okumoto Logarithmic Poisson Execution Time Model ; Duane

Modeis Model ; Log-Power NHPP Model;

Other Models Littilewood-Verall Bayesian Model; Littlewood and Keiller Bayesian

Model; Random Coetficient Autoregressive Model
Table 5.1 Some Representative Models According To Trivedi’s Classification

Model Introduction
In this section, we will have a close look at some representative models according to

Trivdi’s classification scheme, as shown in Table5.1.

Mills’ Hypergeometric Model [2, 4, 7]

The model was originally developed in 1970 by Mill, and with later improvements by
Baisin(1973) and Huang(1984).

This model estimates the number of errors in a program by introducing seeded errors into
the program. From the debugging. the unknown number of inherent errors could be
estimated. In this model, a known number faults, ny, are induced errors, in a software

product. n, originally has N indigenous faults, N is estimated from testing by a

80

hypergeometric distribution. The probability that exactly k out of r detected faults are

seeded faults is given by:

where

N = total number of inherent errors

r = total number of errors removed during debugging

n; = total number of induced errors

k= total number of induced errors in r removed errors

Since ny. r. k are known, the maximum likclihood estimates of N, can be shown as:

N‘:ﬂ
k

In Mill's equation, the probability of selecting a sample of size r is given by:
N
#- ()

Since the total number of faults is N + n, . the above probability is incorrect, Basin (8]

[N +n1]
p=
r

A= n(r-k)
k

gives the actual probability by:

Nelson Input Domain Model [6]

To begin the discussion, let us first identify a word ‘run’. A run is the exccution of an

input state. The reliability is estimated by running the run. The run is randomly chosen

81

from a set {E; := 1.2,...,N}. Each E, is a set of data values needed to make a run. The
random sampling of n is done according to a probability vector P;, where P; is the
probability that E; is sampled. The probability vector {P, : I= 1,2,..., N} defines the
operational profile or the user input distribution. If the number of failures is k, then the

estimate of reliability is given by

Jelinski-Moranda De-eutrephication Model {2, 9]
This model is one of the earliest models proposed: moreover it is still used today. It has
the following assumptions:

. The software has N faults at the beginning of the test.

19

Each of the faults is independent and all faults will cause a failure during testing.
3. The repair process is instantaneous and perfect, i.e., the time to remove the fault is
ncgligible. new faults will not be introduced during fault removal.
4. The software failure rate is proportional to the current content of the system.
The program failure rate at the ith failure interval is given by
A)=¢ [N-(i-1)], i=1,2,...N
¢ = a proportional constant, the coniribution any one fault makes to the overall
program;
N = the number of initial faults in the program

t; = the time benwveen the ({ — 1) and the ith failures

X

—

Time between failures

Figure5.5 De-eutrophication process [2]
The software reliability function is:
R(l) =e - (N-i+l)u
When the failure data set t, is given and ¢ is known. The maximum likelihood estimation
of N can be obtained by solving the following equation:
" l n

Y ————=0)

o N-(@+1) =
When ¢ is unknown, we can obtain ¢ and N by solving the following equations:

" 1

(Dz 1=1

and

,,g,‘ =[g[zv—(i—l)]r, }[Z,‘V‘_—(l,‘:[_)}

=]
e Based on the basic JM model, much has been written in the literature and many
variation of it have been proposed. Goel-Okumoto Debugging Model and LittleWood

Markov Model are two of them, as we discuss below.

83

Goel-Okumoto Debugging Model {2, 4, i0]

This model extends the basic J]M model by adding an assumption:
l. A faultis removed with probability p whenever a failure occurs.
The failure rate function of the base JM model with imperfect debugging at the ith failure
interval becomes
At)=¢d [N-p(i-1)], i=1,2,...N
The reliability function is
R(t,) = e ¢ Npi-bu
e The basic JM mode! assumes that the fault removal process is perfect. However. it is

not practical. The Geol-Okumoto debugging model overcomes this shortcoming.

Hyperexponential Growth Model (NHPP) [4, 11]

This model is based on the list assumptions

l. A program has a number of clusters of modules.

2. Each cluster has a different initial number of errors and a different failure rate.
Since the sum of exponential distributions becomes a hypereponential distribution, the
mean value function (m(r)) of the hyperexponential class NHPP model is

n
m(t) = Z all-e™]
i=1
where

n = number of clusters of modules

a; = number of initial faults in cluster i

84

b, = failure detection rate of each fault in cluster i

The failure intensity A (t) is given by
n
— —b;t
At)= az abe
i=1

NHPP S-shaped Model (2, 12]

S-shaped means the reliability growth curve is an S-shaped curve which means that the
curve crosses the exponential curve from below and the crossing occurs once and only
once. The detection rate of faults, where the error detection rate changes with time,
become the greatest at a certain time after testing begins, after which it decreases

cxponentially.

It is based on the following assumptions:
l. The error detection rate differs among faults
2. Each time a software failure occurs, the software error which caused it is

immediately removed, and no new errors are introduced.

This can be shown in the following differential equation:

om(t)
ar

=b(t)[a—m(t)]

where
a = expected total number of faults that exist in the software before testing
b(t) = failure detection rate, also called the failure intensity of a fault

m(t) = expected number of failures detected at time t

85

Solve the above equation, we have

t

-‘-b(u)du
m()=all—e°

e Faults are covered by other faults at the beginning of the testing phase, and before these
faults are actually removed, the covered faults remain undetected.

e Software testing process usually involves a learning process where testers become
familiar with the software products, environments, and software specifications.

e There are several S-shaped models, e.g., delayed S-shaped models. and inflection S-

shaped models. (We will introduce in the following sections.)

Delayed S-Shaped NHPP Model (2, 12]

The delayed S-Shaped software reliability growth model was proposed to model the
software fault removal phenomenon in which there is a time delay between the actual
detection of the fault and its reporting. The test process in this case can be seen as
consisting of two phase: fault detection and fault isolation. The mean value function,
m(t), and the failure intensity A (t), is given by:

P

bt
bt +1

Assume: b(t) =

Where
b = the error detection rate per error in the steady-state

From the m(t) of NHPP S-Shaped model, we have

86

m(r) = a[1-(1+bt)e™]
A@t) =ab“te™

The reliability of the software system is

R(s l[) = Amirrry-meen]

. =-out
- e Y —(lebttrshe butes)
al(lvbe)

The expected number of errors remaining in the system at time t is given by
N(t) = m(®) - m(t)

= a(1+bt)e™

NHPP [nflection S-Shaped Model [11]

This model was proposed to analyze the software failure detection process where the
faults in a program are mutually dependent. Mutually dependent means that some faults
are not detectable before other faults are removed. Moreover, the probability of failure
detection at any time is proportional to the current number of detectable faults in the
software. The isolated faults can be entirely removed. The mean value function, m(t), and

the failure intensity A (t), is given by:
b
Assume: b(t) = ——-
1+ fe
b = failure-detection rate

B = the inflection factor

m(t) = —l——a—_[;(l —e™

+ fe

87

ab(1+ Be™

A@) =
([) (l.*.&;'/”)l

The expected number of remaining errors at time t is thus given by

a(l+ Be™
+ &,-bt)

m(ee)—m(t) =

Musa-Okumoto Logarithmic Poisson Execution Time Model (2, 4, 13]

This model assumes the number of failures experienced by time 7 (7 is the execution
time) is Non-homogeneous Poisson process (NHPP), with the mean value function,

m(7) given by

m(7) = éln(/l,,ﬁzw 1)

where A, = initial failure intensity

0 = the failure decay parameter (6 >0)

The failure intensity is given by

A(T) = __/l_q__—
(4,07 +1)
The program reliability is given by
Y
Rz |z.)= N +.l
A0 +7,)+1

¢ The total number of failures for this model is infinite. It is very likely that the number

of inherent faults in a program is finite.

88

e It would be very useful if we could relate the execution time component parameters of
the model to characteristics of the software product, the development process, and the
execution environment. (4]

e the relationship of failure intensity and execution time is show as figure 6 below:

Execution time 1

Figure5.6 Failure Intensity For The Logarithmic Passion Model

5.4 Summary

So far, three software reliability model classification schemes have been introduced as
well as some representative models. It will be very hard to introduce all the previously
reported models in this survey due to the time and space limitation, and it will be

meaningless.

One problem with models is very similar to metrics, which there is an overwheiming
number of models has been proposed to address the issue of software reliability
assessment. We must be aware that no single model can be recommended universally to
users under any circumstances. In the mean while, the best models may vary trom time to
time and differ form application to application. Classification is one efficient way of

studying and applying models.

89

5.5 Reference

[1] S.R.Dalal. : M.R. Lyu. ; C.L.Mallows. Software Reliability, Bellvore, Lucent
Technologies, At&T research.

Http://www.cse.cuhk.edu.hk/~lvu/paper pss/ENCBSTT4.ps

[2] M.R Lyu (ed), handbook of software reliability engineering, McGraw-Hill and [EEE
Computer Society Press, New York, 1996,
[3] “A History of Software Measurement at Rome laboratory”,

http://www .dacs.dtic.mil/techs/historv/toc.html

[4] Musa, John D.: lannino, Anthony; & Okumuto, Kazihra. Software Reliability
Measurement, Prediction, Application. New York, N.Y.: McGraw-Hill, 1987

[5] Huang Pham, “‘software reliability and testing”, IEEE computer society press. the
institute of electrical and electronics engineers., Inc. 1995.

(6] http://www.ec.duke.edu/~kst/

[7] H.D.Mills, “On the Statistical Validation of Computer Prograums”, IBM Federal Syst.
Div., Gaithersburg, MD. Rep. 72-6015, 1972

(8]S.L.Basin, “Estimation of software Error Rates via Capture-Recapture Sampling,”
Science Application, Inc., Palo Alto, CA, Sept. 1973

[9] A.A. Abdel-Ghally, P.Y.Chan, and B.LittleWood, “Evaluation of competing software
reliability Predictions,” IEEE Trans. On Software Engineering, VOL. SE-12, No.,9
September 1986.

[10] A.L.Goel, “software reliability models: Assumptions, Limitations, and Aplicability,”

[EEE Trans, on software engineering, VOL SE-11, NO12, December 1985.

90

(11] M.Ohba, “software reliability analysis models,” IBM J.Res Develop, VOL. 28, No.t,

July 1884
[13] J.D.Musa, “A theory of software reliability and it’s application.” [EEE Trans. On

software Engineering, vol.SE-1, No.3, September 1975

91

Chapter 6 SRE & Software Development Lifecycle

6.1 Introduction

Software Reliability Engineering (SRE) is a practical augment of software engineering.
Recently, it was accepted as “best practice” by one of the major developers of
teleccommunications software (AT&T). Many other organizations are using,
experimenting with, or researching SRE. In this chapter, we will have a look at the
benefits and cost of practicing software reliability engineering. Then, we will analyze the
relationship between software development life cycle and software reliability engineering
activities to solve the problems like, “when arc the measures applied?” and “what should

be done to augment the software engineering by software reliability engincering?”

6.2 Benefits and Costs

Due to proprietary reasons, the direct economic report of practicing SRE is hard to
access. Previous studies show that the cost-benefit ratio of applying SRE can be six or
more [1]. As one example of the proven benefit of SRE. AT&T applied SRE to two
different releases of a switching system, International Definity PBX. Customer-reported
problem decreased by a factor of 10, the system test interval decreased by a factor of 2,
and total development time decreased 30%. No serious service outages occurred in 2
years of deployment of thousands of systems in the field [2]. Another example was from
Tierney (1997), the late 1997 survey showed that Microsoft had applied software
reliability engineering in 50 percent of its software development groups, including

projects such as Windows and Word. The benefits they observed were increased test

coverage, improved estimates of amount of test required, useful metrics that helped them

establish ship criteria, and improved specification reviews [3].

Generally, SRE will support the software development in the following ways:

o Satisfv customer requirements more precisely.

Precisely defined reliability requirements help to testers to verify that the finished product
meets customers’ needs before it is released.

e Better schedule control.

SRE avoids wasting time for unnecessary testing, and help delivering the exact reliability
needed by the customer.

e Increase productivity.

The productivity is improved by using the Softwarc Reliability Measurement
technologies to focus on developing and testing for cxactly the reliability needed.

® Better Resource allocation

SRE supports to predict the amount of system test resources needed, avoiding waste.

Although software reliability engineering brings a lot of benefits, the cost of practicing is
affordable. It is estimated that routine application of SRE does not add more than several
percent to the overall cost of a project. A medium to large project involving 40-100
persons may require prc-project activities totaling about onc to two person-weeks,
definition of operational profiles may require on to three person months, and routine
collection and analysis of project failure and effort data may cost between one half to one

person-day per week. [4]

93

6.3 Software Lifecycle versus SRE activities

A software lifecycle provides a systematic approach to developing, using, operating, and
maintaining a software system. The standard [EEE computer dictionary has defined the
software lifecycle as:

“That period of time in which the software is conceived, developed and used.”

There are many different definition of software lifecycle. and the classification of
software lifecycle varies. The IEEE standard dictionary of measures to produce reliable

software classifies the software lifecycle into early, middle, and late segments. as shown

in table6.1:

Lifecycle segments | Phases Reliability Objective

Early Concepts The carly segment relates to the potential
Requirements causes of system reliabihity
Design

Middle [mplementation The middle segment relates to the reduction of
Test process errors that can improve the efficiency

es R
of software development.

Installation and checkout

Late Operations and Maintenance The late segment relates to actual system
Retirement performance reliability.

Table6.1 Lifecycle Classification (according to [5))

[n this classification scheme, the software reliability engineering activities are not clearly
defined, and the boundary between each segment is vague. Thus, it is not widely
accepted.

A more popular software development lifecycle phase is given in the handbook of

software reliability engineering in [2], which shows in figure6.1:

94

Lifecycle phase Development steps SRE Activities
I Problem definition j ¢ Determine functional profile
Analysis ¢ Define and classify fatlures
— T] ¢ [dentify customer reliability needs
. - ¢ Conduct trade-off studies
Requirements Specification o Set reliability Objectives
|]

Design Design o Allocate reliability among concepts
And ¢ Engincer to meet reliability objectives
Implementation o Focus resources based on functional profile

] o Manage fault introduction and propagation

Implementation o Measure reliability of acquired software
System Test System Test ¢ Determune operational profile
And ¢ Conduct reliability growth testing
Field Trial o Track testing progress
Field Tral ¢ Project additional tesung needed
o Certufy rehability objectives are met
| ¢ Project Post-release staff needs
Post Delivery o Monitor ficld rehability vs. objectives
And o Track customer satisfaction with rehability
Maintenance o Time new feature ntroduction by
tmonttoring reliability
Operation Mantenance ¢ Guide product and process improvement

with reliability measures

Figure6.1. SRE activities in the software product lifecycle (based on [2])

Figurel also illustrates SRE activities across the phases of the software product lifecycle.

The phase as well as SRE activities need not follow a neat sequence. There is

considerable and overlap and iteration. Each SRE activity is therefore simply placed in

the phase in which most of the effort occurs. The rest sections discuss the SRE activities

of each phase in detail.

6.3.1 SRE During Analysis Phase

The analysis phase is the first step in the software development process. It is also the
most important phase in the whole process and the foundation of building a successful
software product. The purpose of the analysis phase is to define the requirements and
provide specifications for the subsequent phases and activities. It is composed of three

major activities: Problem definition, requirements and specifications.

Problem definition develops the problem statement and the scope of the project.
Requirement activity consists of requirement collection and requirement analysis. Which
further includes a feasibility study and documentation. The specification is transforming
the user-oriented requircments into a precise form oriented to the needs of software
engineers. According to the ANSVIEEE standards: “The requirements specification shall
clearly and precisely describe the essential functions. performances, design constraints,
attributes, and external interfaces. Each requirements shall be defined such that its
achievement is capable of being objectively verified...”. Research indicates that
increased cffort and care during specification will generate significant rewards in terms of

dependability, maintainability, productivity, and general software quality. [6,7,8]

Software reliability engineering augments analysis phase through a set of activities.

Table2 shows the summary of these activities and their benefits:

96

Activity Name/No.

Content

Benefit

Activity 1:
Define and classify
failures

o Define failure from customers’ perspective
o Group identified failures into a group of severity
classes from customer’'s perspective

eUsually 3-4 classes are sufficient

Release software at a time that meets
customer reliability needs but is as early and
inexpensive as possible

Conduct trade-off
studies

o Reliability, cost and delivery date

Activity 2: eWhat is the level of reliability that the customer
Identify customer needs?
reliability needs #Who are the rival companies and what are rival
products and what is their reliability?
Activity 3: eoBased on the tasks performed and the Speed up time to market by saving test time,
Determine operationai environmental factors reduce test cost, have a quantitative
profile measure
Activity 4: ¢ Reliability and functionality Increase market share by providing a

software product that matches better to
customer needs

Activity 5:
Set reliability objectives

¢ Explicit requirement statements from a request
for proposal or standard documents
o Customer satisfaction with a previous release or

similar product

¢ Capabilities of competition

¢ Trade-offs with performance, delivery date and
cost

eWarranty, technology capabilities

Release software at a time that meets
customer reliability needs but is as early and
inexpensive as possible.

Table 6.2 Summary of software reliability activities and benefits (base on [2])

6.3.2 SRE During Design and Implementation Phase

The design stage is concerned with building the system to perform as required. [t

involves translating a requirements specification into a design of the software product.

There are two stages of design: architecture design and detailed design. The architecture

design expresses the system concept in terms of hardware and software components and

the interfaces among them and with the external environment [9]. Detailed design is

about designing the program and algorithmic details. The activities within detailed design

are program structure, program language and tools, validation and verification, test

planning, and design documentation.

97

Implementation stage involves translating the design into the code of a programming

language, beginning when the design document is baselines. Coding consists of the

following activities: identifying reusable modules, code editing, code inspection, and

final test planning. The output of this stage is an operational system. [6]

Software reliability engineering augments the design and implementation phase through a

set of activities. Table3 shows the summary of these activities and their benefits:

Activity Name/No.

Content

Benefit

Activity 6:
Allocate reliability among
components

e Determine which systems and components are
involved and how they affect the overall system
reliability

Reduce development time and cost by
striking better balance among components

Activity 7:
Engineer to meet
reliability objectives

¢ Plan by using fault tolerance, fault removal and

fault avoidance technologies

Reduce development time and cost with
better design

Activity 8:
Focus resources based
on operational prcfiles

o Operational profile guides the designer to focus

on features that are supposed to be more critical

Speed up time to market by guiding
development priorities, reduce development
cost

Activity 9:
Manage fault introd-
uction and propagation

¢ Reliability and functionality
e Reliability, cost and delivery date

Maximize cost-effectiveness of reliability
improvement

Activity 10:
Measure reliability of
acquired software

o Certification test using reliability demonstration
chart

Reduce risks to reliability, schedule, cost
from unknown software and systems

Table 6.3 Summary of software reliability activities and benefits (base on [2])

Notice: Activity 7,8,9 are normally involved in the design stage; activity 89,10 are

normally involved in the implantation stage. In the design stage, activity 8 can help a

developer focus on what is really important from the customer’s standpoint, also it can

help allocate effort during the implementation stage, based on the relative usage and

criticality of different functions.

98

6.3.3 SRE During The System Test And Field Test Phase

Testing is the verification and validation activity for the software product. The goals of
the testing phase are (1) to affirm the quality of the product by finding and eliminating
faults in the program, (2) to demonstrate the presence of all specified functionality in the

product, and (3) to estimate the operational reliability of the software. [10]

The system test tests all the subsystems as a whole to determine whether specified
functionality is performed correctly as the results of the software. The field test, also
called field trial, beta test, is to install the product in a user environment and allows the
user to test the product where customers often lead the test and define and develop the
test cases. Normal activities include: (1) execution of system and field acceptance tests,
(2) checkout of the installation configurations and (3) validation of software functionality
and quality. SRE augments the testing process by the following activities shown in

table4:

Activity Name/No. | Content Benefit

Activity 11
Determine operational
profile used for testing

o Decide upon need of multiplicity of operational Reduce the chance of critical operations
profile

¢ Decide upon ultrareliable operations by saving test time, reduce test cost

going unattended, speed up time to market

Activity 12:
Track testing progress
and certify that reliability

o Conduct feature test, regression test and Know exactly what reliability the customer

performance and load test
e Conduct reliability growth test the software is released at those points

objectives are met

would experience at different points in time if

Activity 13:

Certify that reliability
objectives and release
criteria are met

e Check accuracy of data collection

¢ Check whether test operational profile reflects
field operational profile

¢ Check customer's definition of failure matches
with what was defined for testing the product

Release software at a time that meets
customer reliability needs but is as early and
inexpensive as possible; verity that the
customer reliability needs are actually met

Table6.4 Summary of software reliability activities and benefits during the system test

and field test phase (base on [2])

99

Normally, activity 11, 12 are used in the system test stage; activity 13 is used in the field

test stage.

6.3.4 SRE During The Post-delivery And Maintenance Phase

This phase is the final phase in the software lifecycle. Operation phase usually contains
activities like installation, training. Maintenance is defined as "modification of a software
product after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment.” [11]. Maintenance activities include system

improvement and replacement strategies. There are four types maintenance: correction

maintenance,

maintenance.

adaptive

maintenance, perfective

maintenance,

and emergency

SRE augments this phase by the activities described in the table5:

Activity Name/No.

Content

Benefit

Activity 14:
Project post-release staff
needs

¢ Customer’s staff for system recovery; supplier's
staff to handle customer-reported faiiures and to

remove faults

Reduce post-release costs with better

planning

Activity 15:
Monitor field reliability
vs. objectives

o Collect post release failure data systematically

Activity 16:
Track customer
satisfaction with
reliability

¢ Survey product features with sample customer

set

Maximize likelihood of pleasing customer

with reliability

Activity 17:

Time new feature
introduction by
monitoring reliability

o New features bring new defects. Add new
features desired by the customers if they can be
managed without sacrificing reliability of the whole
system

Ensure that software continues to meet
customer reliability needs in the field

Activity 18:

Guide product and
process improvement
with reliability measures

¢ Root-cause analysis for the faults

eWhy the fault was not detected earlier in the
development phase and what should be done to
reduce the probability of introducing similar faults

Maximize cost-effectiveness of product and
process improvements selected

Table6.5 Summary of Software Reliability activities and Benefits

100

6.4 Summary
SRE presents a lifecycle approach to manage the software reliability. Through practicing
SRE activities, software engineers and managers can estimate and predict the rate of

failure occurrence in software.

6.5 Reference

[1]. W. Ehrlich, B. Prasanna. J. Sampfel, J. Wu, "Determining the Cost of Stop-Test
Decisions," IEEE Software, Vol ‘0(2). pp 33-42., 1993

[2]. Handbook of Software Reliability Engineering, McGraw Hill, editor M. Lyu. 1996.

[3]. http://www.geocities.com/itopsmat/SoftwarcEngineeringReliabilityModel.pdf

(4] http://www.computer.org/proceedings/issre/0443/04430062abs.htm

[5] IEEE Standard Dictionary of Measures to Produce Reliable Software (IEEE Std
982.2-1988). New York. N.Y.: Institute of Electrical and Electronic Engincers, Inc..
1989.

[6] Software Development Lite Cycle Models

http://www .cs.ucd.ie/staft/dwilson/home/comp30 | 3/sdlc.ppt

[7] Roger S. Pressman, “Software Engineering: A Beginner's Guide™ Published 1988
[8] Donald J. Reifer (Editor), “Software Management”, IEEE Computer Society; ISBN:
0818680016; Sth edition (September 1997)

[9] Ian Sommerville, “Software Engineering (6th Edition)” Addison-Wesley Pub Co;
ISBN: 020139815X: 6th edition (August 7, 2000)

[10] S. Norman: Software Testing Tools, Ovum Ltd, London, 1993.

[11] [EEE Standard Glossary of Software Engineering Terminology, [ANSVVIEEE Std.

729-1983]

101

Chapter 7 Software Reliability Tools

7.1 The need of tools

There are around 50 software reliability models proposed in the literature. To practice
SRE, engineers must apply these models during different phases of software development
lifecycle. Since the engagement and application of software reliability models and the
evaluation and interpretation of model results involve tiring computation-intensive tasks,
it is widely believed that the only practical usage of reliability models is through software
reliability tools. In the handbook of software reliability engineering by M.R.Lyu [1]. the

advantages of using tools are summarized as follows:

¢ Tools provide most of the features needed in executing a software reliability analysis,
resulting in a decrease of programming time.

¢ Comparing multiple models on the same fatlure data and changing the analysis to use a
different model is easier to accomplish.

¢ Tools provide better error detection because many potential types of errors have been
identified and are checked for automatically. The chance of a bug in the tool itself is very
small.

¢ They provide a general framework for reliability estimation and prediction. Their basic
structure is from the theores developed by researchers and uses the terminology of those

models.

7.2 Criteria of selecting tools

Current available tools in the field of software reliability are enormous. Appendix A of
The Handbook of Software Reliability Engineering, edited by M.R. Lyu, lists the
characteristics of seven quantitative software reliability estimation and prediction tools.
Annex B of Software Safety and Reliability [2], written by Debra S.Herrmann, lists
sixteen commercial products except for the previous seven tools. Many other reliability
estimation and prediction tools’ lists can be found in the Intemet resources [3.4]. How to
select a proper tool is thus an issued placed in front of an analyst. Generally, the
following criteria should be considered in sclecting a tool for an organization [1]:

l. Availability of the tool for the company’s computer system.

o

Cost of installing and maintaining the program.

3. Number of Studies likely to be done.

4. Types of system to be studied.

5. Quality of the tool documentation and support.

6. Easc of learning the tool

7. Flexibility and power of the tool.

8. Availability of tools, either in-house or on a network.

9. Goals and questions to be answered by the study.

10. Models and statistical techniques understood by the analyst
1. Schedule for the project and type of data collected.

12. Tool’s ability to communicate the nature of the model and the results to a person

other than the analyst.

103

7.3 Classification of Tools

There can be many ways to classify the tools, from the tools’ characteristics to the
development time, or from the models’ point of view to see how models are applied. In
this survey, we make the classification based on the time when the tools can be applied to
predict or estimate the reliability during the software development lifecycle. Current tools

can be broadly classified into three categories:

1. Tools which use static complexity metrics at the end of the development phase as
inputs and either classify the modules into fault-prone or non fault-prone categories, or
predict the number faults in a software module. An example of such a tool is the Emerald

svstem [5].

The Emerald system uses the Datrix software analyzer to collect about 38 basic software
metrics from the source code. Based on the experience in assessing previous software
products, these metrics are used to identify patch-prone modules. The Emerald system
can thus be used to determine the quality of a software product after the development
phase, or before the test phase. It does not offer the capability of obtaining predictions

based on the failure data collected during the testing phase.

2. Tools which accept failure data during the functional testing of the software product to
calibrate a software reliability growth model based on the data, and use the calibrate
model to make predictions about the future. AT&T SRE Toolkit, SMERFS, SoRel and

CASRE are examples of such tools [1].

104

The very good description and comparison of such tools can be found in [1]. These tools
are applied very late in the software development lifecycle. They can be used to estimate
software reliability using the failure data to drive one or more of the software reliability

growth model.

Here, we highlight the CARSE (Computer-aided software reliability estimation system).
Major corporations including AT&T, Lucent, Microsoft. NASA, [BM, Motorola, and
Nortel have used CASRE [6]. It is implemented as a software reliability modeling tools
that address the ease-of-use issue as well as other issues. As a result, CASRE has a much
better user interface. It is designed for the Windows environment. A Web-based version
is also available. The high-level architecture for CASRE is shown in figure |:

To scicen,
peintes. us
ast

T

Eat —ﬂ[Sommary

Madels

T =

Esecutina

Failwe data
(imterfoibase
dmes._ fail-
ure eOMBts

4

; | Model Yt >
< . Combindtion) —

_1 Smoothing d m
J<

Tiansformations > Plotting
To seteen,
Cenponest models. silater. os
weighting schemes disk

Figure7.1 High-Level Architecture For CASRE [7]

105

3. Tools which track the quality of a software product and provide insights throughout the
lifecycle of the software. An example of such a tool is Software Reliability Estimation
and Prediction Tool (SREPT) [8].

SREPT is design to suit the increasing need for a tool that can be used to track the quality
of a software product during the softwarc development process, right from the
architectural phase all the way up to the operational phase. The high level architecture for

SREPT is shown in figure2:

Inputs Processing Outputs
r Faul Densiny
Estimation of he
Complexity Metrics
Regression Tree mumber of fault
}
B
'; L w{ ENHPP
e model
c | I. Fuilure Imensity
K Coverage — 2. W faults remaining
. A. Reliabilny afier release
B —i ENUPP
o model
X
1. Failure [iensity
A ; ENHPP 2 ¥ fuulns remaining
P Inserfaiture time model 3. Reliability afler releave
P 4. Extimaed coverage
g Luesfuilure Optimization Release time
A Times & Release | ——mw| & ENHPP e —— dand
c Criteria Model coverdge
H
NHCTMC 1. Failure lnensity
Failure intensin e fntensity
Debussing rate 2. % fuuls remaining
Rgeng Dacrete-evenl 3. Reliabillsy afier release
sim ulativn
A
R
C
W [—
A ¥
! Architecgere -y n;a
T modeling
1
E
c I Reliabilisy
T and
U - Performance
R
E Failure behavior B Discreteevent
A of compene nts - simulation
P
P
R

Figure7.2 High Level Architecture Of SREPT

106

SREPT uses black-box-based approach and architecture-based approach to software
reliability prediction. Black-box-based approaches treat the software as a whole without
constdening its internal structure, basic techniques used are complexity metrics. test
coverage, interfailure times-data, for the pre-test and testing phases. Architecture-based
approaches use the internal control structure of the software to predict the reliability of
software, it is applied at all stages in the software’ lifecycle.

SREPT is a more recently developed tool, which has a user-friendly form in a GUI-based
environment. [t is expected to have a powerful impact in the area of software reliability

estimation and prediction.

7.4 Summary
In this chapter, we provided a general description of selecting criteria for SRE tools as
well as a broad classification of tools. Two tools (CASRE and SREPT) are highlighted to

gain a global understanding of SRE tools.

7.5 Reference:

[1] Handbook of Software Reliability Engineering, McGraw Hill, editor M. Lyu, 1996.
[2] Debra S.Herrmann, Software Safety and Reliability, published by the [EEE Computer
Society 10662 Los Vaqueros Circle, 1999.

[3] http://rac.iitri.org/InfoResources/Rac_Tools.html

(4] http://www.enre.umd.edu/

107

[5] J.P. Hudepohl, S.J. Aud, T.M. Khoshgoftaar, E.B. Allen, and J. Mayrand, \Eme-rald:
Software Metrics and Models on the Desktop”, IEEE Software, September 1996, pp. 56-

60.

[6] http://www.cse.cuhk.edu.hk/~Ivu/book/reliabilitv/casre.html

[7] Michael R. Lyu, “Design, Testing, and Evaluation Techniques for Software

Reliability Engineering”. http://citeseer.nj.nec.com/32587.html

[8] http://www.ee.duke.edu/~kst/srept.himl

108

Chapter 8 Research Directions

Based on this survey software reliability engineering, the further work about the current

software metrics may necessarily focus on the following directions:

Model development

Models are the base of software reliability engineering. Even though more than 50
models have been proposed during the past 25 years. the development of new models is
always essential. Most existing models for predicting software reliability are based purely
on the observation of software product failures. These models also require a considerable
amount of failure data to obtain an accurate reliability prediction. However, information
concerning the development of software product, the method of failure detection,
cnvironmental factors, etc., are ignored. Many researchers are currently developing new

models concerning these tuctors.

Standardization

It is recognized that no single software reliability model is appropriate to predict and
estimate system reliability; however, multiple models may also introduce redundancies
and confusions. Therefore, future rescarch may identify one industry-standard software

reliability models suite to reflect the reliability issues of software products.

Tools
Before 1996, tools were mostly developed as research projects by industrial, government,

or academic labs. Many of them are not commercial products, and only very limited

109

models are applied. Since it is widely believed that the only practical usage of reliability
models is through software reliability tools, it is necessary to develop more useful tools
or some components easily embedded in specific software to automate the reliability

application.

Adoption

To increase the adoption of SRE in real software development lifecycle, the SRE
activities should be defined more clearly. This is especially true for software reliability
prediction in the earlier phases of the lifecycle (e.g., the analysis and the design phase).
There are a lot of works to do in specification reliability, requirement reliability to

cnhance the robustness of the carlier phases.

Reliability and Reuse over the Internet

As computers become more interconnected, it is being apparent that there are many
benefits to being able to communicate with other computers and combine computing
power. However, communication over long distances, and especially over the Internet, is
fairly unreliable. There are many different points where problems could arise - from
transmission delays to locating the proper computer to query. Through various techniques
such as redundancy, fault tolerance, and reliable protocols can be applied to improve

communications between computers.

Database reliablity
SRE approach can also be applied to estimate the level of completeness of data base

schemas [1]. The study has just started and needs further work. Current approach is as

110

follows. A set of queries likely to be put to a database under construction is collected
from prospective users, together with usage ratings. A usage rating is an integer between
1 and 5 that indicates the relative frequency with which a particular query will be put. A
test suite is constructed in which each query has as many copies as its usage rating, and
this collection of queries is randomized. The queries arc put to the database one after
another, and if the database schema has to be extended to deal with a query, this is
registered as a failure. The failure data are analyzed using SRE techniques, thus

providing a quantitative estimate of the completeness of the schema.

Component Reliability

Software components are the most promising idea extant for the efficient design of
quality software system. Most of the rescarch in components is devoted to specification,
design, reuse, and cataloging of the components. The reliability of component is also very
important, but has reccived less attention. Currently. the theory of component reliability
has just been establishing [2]. A lot of future works (e.g., experimental validation, tool

support for component developers and system designers) are required to be done.

Reference:

[1]. A.T. Berztiss and K.J. Matjasko, Queries and the incremental construction of
conceptual models, in Information Modeling and Knowledge Bases VI, pp. 175{

185, IOS Press, 1995.

[2]. “Theory of software reliability based on components™, Dick Hamlet Portland State

University Portland, OR, USA hamlet@cs.pdx.edu Dave Mason Denise Woit Ryerson.

111

