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ABSTRACT

The Cell Simulation

Demetrios Dardanis

The Cell Simulation provides a software model of a biological cell. based on cell
processes and substances. A study of the Cell Simulation project 1s made, focusing on
providing new features and improving some of the existing design. The individual cell is
given some indirect control over its processes through the use of process prioritization
and as result is proven to be more stable, efficient and able to adapt to environmental
changes. Populations of cells are created and shown to have a dependence on the process
prioritics and the environment factors such as external glucose levels. Through the use of
populations, the software design of the older version 1s updated and moditied to retlect

the interaction between all entities in the simulation.
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1 Introduction

The Cell Simulation s an ongoing project in which a significant amount of work had
been done. There have been three previous versions before the current one, cach one
addressing different aspects ot cell simulation. The latest version concentrates on
providing new functionality to the simulation as well as enhancements and improvements

to the design of the previous versions.

1.1 Background

The simulation ts a software model of the events in the life of a biological cell. A cell
can have thousands of complex operations and many interdependencies and factors
aftecting their behaviour.  [n order to provide a model, it is necessary to simplity these
operations and make certain assumptions about them.

[n the next section of this report. a brief description of a biological cell 1s made: its main
characteristics, structure and ftunctionality in nature. While this has not been the main
purposc of this project. it is useful to demonstrate the actual complexity that is involved
in the life of real cell. Then, we go on to explore the assumptions and simplifications that
were made for the purpose of this simulation. We can thus have a better idea of how
close to reality our simulated cell really is and how well the software program can predict

its behaviour.



2 A Biological Cell in Nature

A cell is the most basic unit of which all living systems are composed. It is the lowest
level of organization of atoms and molecules where the charactenistics of life begin to
emerge. The living tissue of almost every organism is composed of cells.
According to the cell theory:

e Living matter is composed of cells

e Chemical reactions within organisms take place within cells

e (Ceclls are born from other cells

e Cells carry within them the genetic information of the organism they belong to

and pass it on to the next generation.

Very small organisms, such as bacteria, can consist of only a single cell that performs all
life functions. Larger organisms are organized into groups of cells that co-operate to
perform specific functions. For example, the cells that make up muscle tissue in animals
have become specialized tor movement while those that torm bone tissue, tor support.
This leads to a high degree of differentiation among cells. The human body alone is
constructed of about 200 ditterent types of cells, each type specialized to perform specific
functions. While diversity is the first remarkable fact about cells. the second (and even
more remarkable fact) is their similarity.  The conditions of life impose certain
requircments on the composition and function of all living cells. Across all life forms,
cells are composed of the same few kinds of molecules and atoms and their internal
structure and organization is strikingly similar. This enables us to study cells by

concentrating on the features that are common to all.
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2.1 Cell Structure

Cells can be categorized into animal. plant or bacterial cells. The latter case is the
simplest in terms of structure. Animal and plant cells are more interesting and they are
basically similar in their structure. They all consist of the following essential
components:

¢ Nucleus: The control centre of the cell where genetic information is stored.,
principally in terms of deoxvribonucleic acid (DNA). The nucleolus is also found
here. which is rich in ribonucleic acid (RNA).

e Ccll Membrane: Regulates the passage of materials into and out of the cell. and
defines the cell as a separate entity from its surrounding environment.

e Cyvtoplasm: Does most of the work and it consists of a very claborate system of
membranes and enzymes. with specific functions. Here, a number of organelles
can be found such as ribosomes, which consist of large RNA molecules and
svathesize proteins.

e (yvtoskeleton: An claborate system of protein tilaments that provide support for
the cell and help 1t to maintain its shape.

In the case of plant cells, there is also the Cell Iall found outside the cell membrane. It
controls both the rate and the direction of cellular growth in plants.

There are two distinct types of cells, prokaryotes and cukaryotes, which differ mostly in
the way their genetic material is organized. Prokaryotes are much simpler in their
structure and they were the first cells to appear in living organisms on our planet. Here,
the DNA s a large single molecule that carries all genetic information. Modern day

bacteria are similar to the first prokaryotic cells that appeared on earth. Eukaryotes



cvolved after almost two billion years and they are much more complex in their structure.
The components described above are all characteristic of eukaryotic cells. Herc. the
DNA is associated with proteins in complex structures known as chromosomes and it

appears within the nucleus of the cell. All multicellular organisms are cukaryotes.

2.2 Energy Flow in the Cell

The living cell contains an enormous varicty of organic molecules in constant and
dynamic interaction. Most of these are classified as protein molecules. Enzymes are
specitic types of proteins that facilitate the metabolic reactions taking place within the
cell. In the absence of enzymes, the metabolic processes in the cell do not take place at a
rate that is high enough to maintain lite and the cell dies.

Inside a living system, energy is supplied in the form of a single molecule, udenosine
triphosphate, or ATP. Glucose and other carbohydrates also supply energy but in a
stored form. They cannot be used directly by the biochemical processes of the cell. as is
the case for ATP. Instead. they are stored for future use or may be transferred from cell
to cell or between organisms. Carbohydrates are ultimately derived from photosynthesis,
which takes place in plant cells. They are converted. though the use of enzymes, to
energy (ATP) or into other kinds of molecules within the plant cells or within the animal
cells that have ingested plant materials. Simply stated, for most chemical reactions to
take place in the cell, ATP must be present and in order for the production of ATP, the
cell must have ingested carbohydrates and must have adequate amounts of enzymes for

conversion.
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The genes in the DNA chromosomes of the cell control the svathesis of these enzymes.
Genes contain information about many more enzymes than the cell uses at any given
time. However, only the enzymes currently required are produced. This is how the cell
can adapt to changes in the environment: if the conditions change, the genes will modify
the production of enzymes. This in turn, will affect the type or amount of substances that
are synthesized by the cell. For example, due to a change in environment, the cell may
start to produce a different type of molecule or may cease to produce one that is no longer
required. Based on this principle, differentiation of cells (described carlier) takes places

in higher-level organisms.

2.3 Environment and Communication

All organisims are composed of organs with specific functions. Each organ is in turn
made up of a specitic type of tissue of cells. In order to tunction properly as a unit, the
cells that form a tissue must communicate with each other.

Cells send each other chemical messages. These are signals that a cell is capable of
sending and receiving. For example, healthy human cells placed in isolation, grow and
move towards each other until they come into contact. Also, they multiply until every
cell 1s in contact with another. At that point, reproduction stops, probably in response to
some signal. There are cases where these signals do not seem to be present. [n the case
of cancer cells, for example, reproduction continues until all nutrients in the environment

have been depleted.
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When the cells are in contact, there are different types of junctions that form among
them. Their function is to hold the cells of a tissue together but also to allow the
exchange of nutrients or other materials, as well as electrical signals.

All cells move within their environment. For example. a cell may move towards a light
source or as a result of division. There 1s also movement of the contents and substances
taking place within the cell. Two principal types of protein are involved in movement
and they are actin and myosin. These are known as “muscle™ proteins but they can be

found in almost all types of cells. including plant cells.

2.4 Reproduction

A cell grows by consuming materials trom its environment and converting them into the
energy or substances it needs. When it has reached a critical size and if the state of all its
components allows, it will divide into two daughter cells. The growth cycle then begins
again.

The daughter cells will contain about half of the constituents of the parent cell, and more
tmportantly their genetic information, present as DNA, will be an exact replica of that of
the parent. The process of replicating DNA is quite simple in prokaryotes however it is
much more complex in eukaryotes due to the fact that their DNA s attached to proteins
in the form of chromosomes. Mitosis is an elaborate process by which each daughter cell
ends up with its own complete set of chromosomes. The remainder of cell contents,

mostly contained in the cytoplasm, are about equally divided to the two children.



2.5 The Genetic Code and Protein Synthesis

The DNA molecule does not replicate by itself. For this. it requires the presence of
enzymes known as DNA polymerases. More importantly, the proteins present in every
living cell are synthesized based on information provided by DNA. Proteins are encoded
sequences of amino acids (a total of 20). Also. DNA can be broken down into four
distinct nucleotide molecules. These molecules (also expressed as a sequence of codons)
provide the code for the basis of the production of protein.

There are four nucleotides. and twenty biologically important amino acids. Therefore,
three nucleotides in sequence are required to adequately specify each amino acid (4' = 64
possible combinations). But how is the information stored in the DNA in terms of
nucleotide sequences (or codon triplets) translated into sequences ot amino acids
(proteins)? This is a two-step process:

e Transcription. A specific type of RNA (messenger RNA) aligns itselt with the
DNA molecule and essentially copies the codon triplets. This process is
controlled by an enzyme known as RNAPolymerase, which acts as a catalyst.

¢ Translation. Another type of RNA (transfer RNA) translates these sequences into
a sequence of amino acids - a protein.

Each amino acid can be specified by more that one codon triplet. Of the 64 possible
combinations, 61 have been translated to amino acid sequences whereas the remaining
three are used as signals to stop protein synthesis.

Changes in the sequences or number of nucleotides in the DNA may result in changes in

the corresponding amino acids after translation. This is the definition of a mutation.



3 The Simulated Cell

After having seen an — admittedly — very brief overview of a biological cell in nature we
can go on to study the cell as it is represented in the simulation. Before focusing our
attention on the project at hand, we may explore some of the reasons why a project of this

kind is interesting and what kind of applications it may have.

3.1 Motivation
There 1s currently a signtficant amount of ongoing rescarch in the tield ot biochemical
modelling and simulation, and specifically cell simulation. The scope of most of these
projects 1s quite ambitious: by taking advantage of the computational power ot
computers, to be able to master the complexity of biological systems. Some specific
goals are:

e To predict the changing behaviour of living cells,

e To study the minimal conditions of survival of a particular cell.

e To enrich the knowledge about cellular processes. which may still not be

completely understood experimentally. etc.

Many applications are found in genome engineering and they deal with simulating the
genetic information to find a minimal set of genes for a living cell.
Using all the information that is known about a specific biological cell, a simulation can
be built that models the cell’s behaviour. By comparing the results from the simulation,
to the behaviour of the real cell in biological experiments, we can gain useful information
about other factors that may be influencing the cell. For example, the tfunction of certain

genes for a cell may still be unknown. A simulation of the cell based on all the



information we do know about it will provide a model, which when compared to the
behaviour of the real cell may shed some light on the function of the unknown genes.
The model can be refined based on the results and then re-used to better predict the
behaviour.

Other applications have dealt with providing a model of the metabolic processes of the
cell in order to cnable scientists to chemically define a growth medium for the cell.

Much of the metabolic requirements of a cell may still be unknown and the cell may
require a growth medium (a culture). which has been determined empirically but there is
no complete chemical definition for it. A simulation can model the gene sequence of the
cell. as well as the components required for the metabolic processes of the cell (proteins,
enzymes etc) and thus give a chemical definition of the environment in which the cell can
survive and grow.

There are also graphical applications that model three-dimensional cellular architecture
and are uscd in the tield of computational biology to model specific physiological cell
processes (for example nuclear envelope breakdown during mitosis).

For our project the scope is. of course, much more limited. We aim to provide a basis for
studying cell behaviour as well as the effects of environmental changes. There are a
number of assumptions that need to be made in order to simplify the cell functionality so
that the behaviour can be simulated. At the same time we wish the simulation to be close
enough to reality so it can be more interesting and provide a good model.

First, it must be determined which aspects in the life of a biological cell are actually

relevant to the model and should be simulated. Our decision is based on whether a



certain aspect plays a decisive role in the life of a biological cell. The factors that were
dcemed to be most important and thus need to be modelled are:

e The Type of Cell: determines how the cellular contents are organized.

e The Cell Environment: a very important factor since all the nutricnts necessary for

life are found here.

¢ Genetic Information: according to the cell theory this is one of the identitying

charactenistics of cells. and thus must be modelled.

e The Cell Processes: what the cell actually does. of course. must also be modelled.
The above factors are described in more detail in the next few sections. Other aspects of
biological cells (such as a specific cell process for example) can be added to the
simulation as cnhancements to the model. Note that for the remainder of this report the

term “cell™ is used to represent the simulated cell. unless a distinction is made.

3.2 Cell Classification

The first assumption that needs to be made for the simulation is regarding the type of
biological cell to be simulated. We have seen that there is great diversity to be found in
nature depending on the functionality and purpose of a biological cell. The simulation
takes advantage of the similarity that exists in nature. Our cell can be of any of the types
mentioned in the previous section. Based on the way genetic information is organized in
the cell (DNA representation - to be discussed later) we can say that this cell belongs in
the eukaryotes category and it is part of a multicellular organism. Also since, as we shall
see, the cell structure is enclosed by a cell wall, we may conclude that this cell belongs to

a plant organism. In any case. these assumptions do not change any of the fundamental



principles used in the simulation. The simulation can be applied cqually as well to

animal or plant cells.

3.3 Cell Environment

Biological cells of higher-level organisms live and may move about in three-dimensional
space. They obtain nutrients trom their environment and they also co-exist and
communicate with each other. The simulated environment ts much more simple. Our
cell exists in a two-dimensional, [0X10 grid of squares. Opposite edges of the grid are
connccted. similar to a torus. The simulation runs in steps that are entered by the user
and the cell moves only to adjacent squares. one at cach step.

[n the beginning of the simulation, a certain amount of glucose 1s randomly distributed on
the grid. The cell can move to the adjacent square with the highest concentration of
glucose. We do not simulate any other nutrients in the environment. Glucose (and
carbohydrates in general) is the main form of stored energy used by the cell.

As far as inter-cellular communication s concerned, this is also not explicitly simulated.
After a number of cell divistons, the grid starts to become populated, as we shall see, and
it is possible to have more than one cell in any of the squares. We can visualize the gnd
as being part of the tissue of a specific organ. where all cells are of the same type and
perform the same functions.

[f many cells consume glucosc in the same square, this may cause another cell in the
square to move to another location with a higher glucose content. There is no external

message sent explicitly to the cell to move but due to the actions of the other cells it may



have to move. So, the cells do influence each other but there is no other way that they

communicate.

3.4 Genetic Information

The way that genctic information is stored in the cell is simpler than that of a real cell.
The basic principle is the same however: protein synthesis s controlled by the
information stored in the DNA molecule.

The DNA molecule appears as the genome structure in the cell. The genome is actually
represented by a sequence of genes. A gene ts a string of letters a to f and symbols < and
>. Each gence controls the svnthesis of a protein.

For example, gene b<afed> is correct, syntactically. There is no DNA replication or
translation that takes place in the program. in order to determine the amino acids
represented in the gene. In fact. cach letter between the < and > represents by itself an
amino acid. It is assumed that each protein is a sequence of four amino acids. So. if the
gene b<afed> matches with a protein sequence (ie there is a protein with amino acid
sequence afed) then that protein will be synthesized. [If the match is exact we have an
effectiveness factor of 1. Of course, i1f one or more letters do not match, the effectiveness
factors drop.

Since there are seven proteins that are synthesized by the cell, we can say that the
“normal” genome should contain a sequence of seven genes, cach one providing a perfect
match with a distinct protein. For the cell with this “normal™ genome, it implies that

cvery time a protein is synthesized, this is done at the maximum cffectiveness.
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The letter(s) appearing in front of the <, are regulators (letter b in our example). A

regulator acts as an inhibitor during the synthesis of a protein.

3.5 Cell Processes and Substances

[n the beginning of its life. a cell receives specific quantities of substances (proteins)
necessary for its survival. As the cell grows, these substances are consumed and new
ones produced continuously. At any point in its life the cell is kept busy doing a number
of processes.

In a real cell. there are thousands of processes happening at all times and numerous
substances that take part in them. In our simpliticd model we consider only six distinct
processes and nine substances (sce figure 1). All substances except glucose are produced
in the cell. All substances are consumed by the cell. A typical cell is expected to:

e Ingest. The goal of ingestion is to provide the cell with enough glucose. which
serves as food (stored energy). The cell does not produce glucose but rather it
ingests glucose from its environment through the cell wall. Ingestion is facilitated
by transportase, however if transportase is very low, glucose may still be ingested
but at a slower (osmotic) rate.

e Generate. This process will produce the units of energy required by the cell to
perform almost all of its life functions. The energy is in the form of ATP. The
Generate process requires both sufticient glucose and energase to be present in the
cell in order to produce ATP.

¢ Synthesize. This process is extremely important for the cell to function properly

and retain a balance of substances. Synthesis produces transportase used for



ingestion, energasc needed for (energy) generation, actin required by the Build
process, cyclin and DNAPolymerase both necessary for the cell to reproduce and
myosin, which the cell needs in order to move. For the cell to synthesize proteins
it needs to consume RNAPolymerase, required for DNA replication and
translation. Without RNAPolymerase it is not possible to have protein synthesis
because the genetic information cannot be translated into amino acids. This
substance is also itselt a product of the Synthesize process. In the simulation. the
substance to be synthesized at a particular step is chosen at random. Therefore,
the Synthesize process does not guarantee that the cell will be supplied with a

substance that it actually nceds at that step.
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e Move. ltis crucial that the cell be able to change its position in the grid and
move towards areas (squares) of higher glucose concentration. If the cell does not
move, it will eventually starve. Myosin is the protein that provides the contractile
ability in muscle tissues and therefore enables the cell to move. The Move process
requires and consumes myosin.

e Build. This process requires actin to be present in the cell. Closely related to the
Move process, the Build process ensures the structural integrity of the cell. The
presence of adequate amount of actin ensures that the cytoskeleton is stable
cnough for the cell to move.

¢ Reproduce. A mature cell may reproduce provided that there is enough
DNAPolymerase and cyclin. The result is two cells with the identical genetic
information. When a cell reproduces. its substances are halved and given to the
child cell. In the casc of DNAPolymerase and cyclin however. they are set to
zcro, for both cells. This ensures that the cell will not reproduce too quickly
because this may be detrimental to it.

All of the cell processes except for Ingest and Generate consume energy in the form of
ATP as shown in figure | by the dotted arrows.

In the simulation, substances exist in discrete arbitrary units that are not meant to
represent quantities inside a real cell. For example, we can say that the cell contains 56
units of glucose. This is not meant to correspond to the amount of glucose that a real cell
may contain.

When a substance is consumed. it simply disappears and its number of units decreased

accordingly. For example, one unit of energase is consumed when the Generate process



takes place. The number of units of energase for the cell is decreased by one. No further
degradation or excretion is modelled.

We can sce that although the model simulates very tew of the cellular processes and
substances, there is a very delicate balance among them. Say. if for some reason the cell
is not synthesizing transportase. the amount of glucose ingested dramatically drops. This
results in a drop in the amount of ATP being produced, and since most processes require
ATP, all functions of the cell will be affected and it will eventually die. It is desirable

that the cell can have some indirect control over its processes.
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4 Previous Versions of the Cell Simulation

We have scen the characteristics of a real biological cell as well as those of the simulated
cell. In all versions of the simulation program (including the latest one), the cell
characteristics have remained the same. A cell executes the same processes. using the
same substances. [t exists in the environment as described and the manipulation of its
genetic information has not changed. Before studying the new features of the latest

version, an overview of what was done previously would be useful.

4.1 User Interface

The uscr interface has remained virtually unchanged in the first three versions of the
simulation. The information presented to the user is in the form of a graphical
representation of the substances within the cell. This is best demonstrated by figure 2.
Each curve has a distinet colour and corresponds to a substance on the left-hand side.
The X-axis represents the number of steps that the stmulation has exccuted. The Y-axis
represents amount of a substance (number of units). So, in the figure we can sce the
amounts of any substance in the cell, at any step between 300 and 400. The sudden drop
around step 3135 indicates that the cell has just divided: all its contents are halved and
DNAPolymerase and cyclin are set to zero until the cell starts to synthesize them again.
The death of a cell is usually detected by the fact that the amounts of substances have
stopped changing and we have the appearance of flat lines on the graph. This of course
mcans that the cell is in a state in which it can no longer produce or consume anything

and it is presumed dead.
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Figure 2 The Cell Simulation GUI (old version)
In the program, death is detected when it is highly unlikely or impossible that the cell will
synthesize anything:
¢ RNAPolymerase is zero so no synthesis can happen, or
o Encrgase is zero and ATP is less than the gene length (five). [tis unlikely that

synthesis can take place in this state.

4.1.1 Menu Options

[n brict, the menu has the following options:

e Dimensions. The user can modify the number of steps shown in the graph (X-

axis) or the maximum amount of units shown ( Y-axis).
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e Substances. The characteristics of the substances such as Regulator factors and
colours can be modificd at run-time, for the current session only.

¢ Quantitics. The amount of each substance can also be changed while the program
is running. The numbers are expressed in units.

e Mutate. The genome can be modified to see the effect of mutations on the cell.

e Reset. All substances are set to their default values and all events are erased.

e Step. When clicked by the user it will run the simulation for a number of steps
equal to the dimension setting for the X-axis.

e Report. The user can select which events they are interested in and have them
printed to a file or on the screen.

e Help. A quick user guide reference is presented.

e Quit. Exits the program.

The menu button that actually does most of the processing in the simulation is. of course.

Step. What happens when the user clicks on Step is described next.

4.2 Process Execution

Every time the Step button is clicked, it triggers the processing to take place in the code.
The cell is updated for a number of times equal to the number of steps displayed.

During each update, the cell is given the opportunity to execute all of the six cellular
processes described earlier. Before executing a process, there is a check to see if it is
actually feasible at this time. For example. if there is enough glucose and energase
present, then the Generate process will be run. [f the conditions allow it, all processes are

executed within a step.
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4.3 What Was Achieved

The goal of the Cell Simulation was to provide a good model of the very complex
mechanisms of the behaviour of a single cell. In this. it was successful: it provided a
software simulation of all of the aspects of biological cells that were deemed as relevant
to a cell model (sce section 3.1). Although not very intuitive when first using it, the user
did have a good representation of the cell in terms of the graphs of substances. Cell
functionality was well represented in terms of the cellular processes. Even in the new
version. the basic life functions that a cell performs have remained unchanged despite the
moditications/improvements that were made.

By simplifying some very complex operations (such as DNA replication and translation)
the older versions gave us a good model without straying away too much trom the way a
real cell tunctions. Although DNA replication and translation are not explicitly
modclled, protein synthests is still controlled by the information stored in the gences.

The project has also been improving in cach version. For example, the effectiveness of

genes was dramatically improved trom version 0.1 to 0.2.

4.4 Limitations

There are a few limitations that one may notice when using the simulation.

First, it appears that the cell is not very stable because it often dies very quickly and quite
suddenly in most cases. Of course, this depends on the substances supplied in the

beginning, and there are many cases where the cell does survive for a few thousand



cycles. However, overall, it does not live very long and sometimes dies soon after
dividing.

The movement of the cell on the grid is kept track of. in the code. [t would be very
helpful to have a visual representation of the grid and the position of the cell on it. Just
by looking at the graph of substances. it is not obvious to the user it the cell is actually
moving in the environment. The only way to know is by monitoring the amount of
myosin. and whenever there 1s a drop we know that movement has taken place (because
movement consumes myosin). However, we still have no way of knowing the current
location on the grid or how the external glucose is distributed on the grid.

[n the event of cell division. the only effect on the simulation is that the cell becomes
smaller. It does not actually divide in two cells. Many times, as we saw, division can be
traumatic and the cell dies soon after. At this point we are forced to restart the simulation
since there are no actual child cells that we can monitor.

We may identify a specific set of limitations in the old version that became the goals of
the latest version. Namely, these are:

. Cell Stability

9

Modelling of Cell Division

98]

Visual Representation of Cell Movement
The latest version of the cell simulation, attempts to address these limitations, and this is

what we will explore in the rest of the report.



S Process Priorities

To address our first goal of improving the stability of the cell. the new version
incorporates the use of process priorities. Previously. cach process was given an
opportunity to run at every cycle. This scemed to work fine, however it did not take into
account the actual “neceds™ that the cell may have at certain times. Since all processcs
would run unconditionally. the cell could spend time trving to execute processes that it
did not need to do at the time. A better way to do this would be to use what is known
about the current state of the cell and decide which processes to execute. This would
give the cell some degree of autonomy: since it can have some influence over its own

process regulation.

5.1 The Ildeca

The cell should be able to improve its own stability by implementing some sort of self-
regulated feedback in the simulation. It was proposed to select only those processes
deemed necessary and execute them at cach cycle. The necessity of a process is
expressed by its priority. How do we decide the priority of a process?

To do this we look at the amounts of the various proteins in the cell and define a
relationship between the amount of a certain protein and the process that produces it. For
example, referring to figure [, the amount of ATP in the cell is related to the priority of
the Generate process: if ATP is decreasing, the priority of Generate must increase. To
express the priority as a function of the amount of a protein we use the exponential

function as outlined in [1]. Some processes do not produce any proteins. Then, we must



find another way to calculate the priority. Let’s have a look at how the priority of cach

process is calculated. based on what the program actually does.

5.2 Calculation of Priorities

For any process p we use variations of the relation:

Priority, = ¢™

Where g represents the amount of a substance and A s a constant determined

experimentally. ditferent for cach process.  The prionty can range from O to 1. We

make the following calculations for cach process:

For Ingest we use the amount of glucose present in the cell as g, [F it drops. the
priority is increascd.

For Generate the amount of ATP 1s used. as above.

The Move process does not produce any protetn but it is clearly dependent on the
amount of glucose in the cell and in its environment. So. we use an average value
of the two as g in the above formula. This way, if the amount of glucose in the
cell is very low, the priority of Move will be high, except if there is a large
amount of glucose in the square where the cell is located. In the latter case,
movement is discouraged so the cell can consume the glucose in its own square
before moving to another square.

The Reproduce process also does not produce any proteins: instead it will result in
the amounts of all proteins being halved. The cell should reproduce only if other
prioritics are not too high and the average value of the amounts of cyclin and

DNAPolymerase is high enough. So, we use this average value as g in the

24



formula. If it is equal to zero. we want the priority to also be zero and to increase
as g increases. We use (1 - ¢ ) to calculate the priority of the Reproduce
process.

The Build process is not very critical for the cell since it can survive even if it
does not take place. However, Build consumes actin. which is required for cell
movement, therefore we must ensure that this process only executes if the amount
of actin is high enough. To calculate priority we use (1 - ¢ with the amount of
actin as g.

The Synthesize process 1s like the powerhouse of the cell processes. Evervthing
depends on proteins being svathesized when they are needed most. Exeept tor
energase and RNAPolymerase all other proteins have already been accounted tor
in the other priority calculations. So. synthesis must ensure that we do not run out
of either one of these two substances.  We can say that the priority of the
Synthesize process should depend on the smaller of the two quantities. It for
example, energase ts approaching zero and RNAPolymerase 1s some high value,
the value of g is set to the amount of encrgase so that the priority is increased and
synthesis 1s encouraged to take place. In the rare case that the two values are

equal we use their average (actually either one will do).

The number of processes to execute at each cycle is set in the program and can be easily

modified. The constant A used in the calculation of priorities was determined

experimentally for cach process. Ditterent values were attempted such that the resulting

priorities would give a good range of values from 0 to . Sce the Appendix A for the

N
wn



values of A used. This constant can also be modified in the program to observe its effect
on the priority of a process.

Fortunately. in our case. the constant A is the only parameter that is determined
experimentally. [n many other simulation models there are a number of parameters that
are used and would require a much more sophisticated method of determining their
values. [t would be much more challenging (if at all possible) to experimentally

determine four or tive variable parameters in the priority calculation.

5.3 User Interface

The user interface did not change dramatically once priorities were added to the
simulation. The bigger changes took place in the actual processing and they are
described in a fater section. The GUI intertace now has one new button in the menu
called Priorities with the option of using or not using prioritics. From the point of view

of the user however. there are some very notable ditferences as the program executes.

5.4 Effects of Using Process Priorities

When the processes of the cell are prioritized it appears as if the cell is more careful
about sclecting its next process to execute. As expected, it executes processes because
they are required at the time and not just because it is able to do them, as was the case in
previous versions.

Looking at the graphical representation of a cell using priorities (sce figure 3, described
in detail in the section 6), we notice that there is kind of a cyclical appearance of the

substance curves. In other words. it appears as if the quantity of cach substance ranges



between a maximum and minimum value. These values correspond respectively to the
minimum and maximum priority of the producing process and they are a direct result of
the self-regulated feedback of the cell.  To use an example. the maximum amount of
ATP in the graph. s also the point at which the priority of the Generate process is at its
lowest. [f there is a high value of ATP in the cell. it is not really required to generate
more at that time. As the ATP gets consumed the priority will increase. This range of
values (maximum, minimum ATP amount in our example) depends on the constant A

used in the priority calculation.

54.1 Lifespan

As a result of prioritization. the litespan of the cell is increased dramaticaily. Doing
some trial runs of the simulation for a single cell. with no priorities, reveals that the
average lifespan rarely exceeds 4,000 cyeles and in many cases the cell dies much carlier.
With prioritics however. the cell is much more stable and is casily able to survive up to
40.000 or more cvcles. In fact. as will be shown later, in almost all cases, the death of a
prioritized cell, occurs when it is sharing the grid with other cells and has to compete for

the consumption ot glucose.

54.2 Reproduction

Another noticcable difference ot using priorities is that the cell does not reproduce as
often. This may be partly the reason why its lifespan is so much longer.

In the previous version, cell reproduction takes place whenever possible, so we have a
much higher rate of cell division but both the parent and child cell are much more

unstable. In many cases, the cell dies right after reproduction.
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As mentioned carlier, the priority assigned to Reproduction ensures that it takes place
only when there are no other higher priority processes and the amounts of cyclin and
DNAPolymerase are high enough. The cell divides only if it is safe to do so and thus,

Reproduction is much less traumatic than before.

5.4.3 Movement

Similar to the effects on the Reproduction process, the effect of using priorities on the
movement of the cell is that the cell moves when it has to and not just whenever it is able
to do so. Previously, the Move process did not take into account the amount of external
glucose in the square occupied by the cell: the cell could move even if there was still a
large quantity of un-ingested glucose in its square (and in fact. most of the time it did).
Since the priority calculation takes into account the external glucose, we can ensure that
the cefl will not move before it has ingested the external glucose. This will become more
obvious when we discuss the visual representation of the cell in the grid. We will sec that
a cell that uses priorities leaves behind a trail of empty (white) squares, indicating more

complcte ingestion of the external glucose.

5.4.4 Number of Processes

[t is interesting to point out the effect of changing the number of processes to execute per
cycle. This number can be from one (only the highest priority process exccutes at each
cycle) to six (this is equivalent to using no priorities).

When this number is sct to one, the cell struggles to survive and it does not make it. It is
not able to move and can only ingest or synthesize something tor a few cycles before

dying. Setting this number to two processes per cycle, the cell can survive quite nicely, it



lives a long life and it can move about on the grid, however. it never reproduces. The
priority of the Reproduce process is never high enough.

Using three processes per cycle, the cell becomes very stable (as was our goal, outlined in
section 4.4) and it can perform any process that is required for survival. including
Reproduce and Build. This is the default setting, and it has been used for all results in
this report. Higher settings tend to approach the no-priorities case.

An interesting discussion can be made regarding the number of processes to execute per
cycle in such a system. [t is clear that self-directed prioritization of cellular processes
helps to make the cell more stable. however, is there an “ideal™ number of processes to
execute per cycle? This depends on many factors one of them being the total number of
processes being simulated. [, for example, there are hundreds of processes modelled in
the system. it is very unlikely that sclecting only the three highest priority ones would
provide a good model: the cell would probably die very soon. Unless. of course, only
three of the processes are necessary for survival. In that case, the cell would always
sclect the same three processes. The other processes may never have a priority that is
high enough. There is a second factor to consider: the prionity calculation must ensure
that all processes have a good range of priority values. Otherwise, even if the number of
processes per cycle is quite high, there may be processes that never get selected to
execute.

[n general, we can say that for a good model, the number of processes per cycle should be

the smallest number that will allow all processes to have a chance to execute when their

priority is high enough.



6 A Population of Cells

To address our goal of providing a model for Cell Division (second goal in section 4.4)
we need to consider a population ot cells. Up to this point in the Cell Simulation we have
been concerned with only a single cell. However, now that the cell is stable enough. it is
interesting to sec how it can reproduce, resulting in child cells. which occupy the same
environment and may also divide at later stages. We can study how cells populate the
grid. and how the cells can - indircctly - have an effect on each other by sharing a

common environment.

6.1 The User Interface

The main change in the GUI interface for population is the appearance of the Grid (sce
figure 3 tor a pictorial view of the GUI as it appears in the new version). The prioritics
function as before. We note that in the figure. the cell displayed has just divided.
Contrast this with the cell division shown in tigure 2 for a cell that does not use prioritics.
We notice how much higher the levels of Cyclin and DNAPolymerase are before
reproduction actually happens.

For a population, 1t becomes necessary to have a way to monitor the substances and
movement of all cells on the grid. Thus we can also achieve our third goal of section 4.4
(visual representation of cell movement). The user now has the option of viewing the
grid by clicking on the Cell Grid button. A new window appears encompassing a 10X10
grid, which represents the habitat of the cell(s). A square on the grid may have a number

on it; this indicates how many cells are occupying that square at the time.
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6.1.1 Cell Information

On the left-hand side we have some new information provided to the user. The
Population field shows how many cells are currently occupying the grid.

The graphical representation has remained unchanged. However, we can now monitor
the substances for any of the living cells on the grid. By clicking on a square containing
a number, we select the cell whose graph we want to be displayed. If there are more that

one cells in that square. they can all be viewed by clicking repeatedly. The Cell ficld
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Figure 3: The New Cell Simulation GUI
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shows the cell that is currently being viewed. To distinguish among them, each cell is
assigned a name at the time of birth. The name is actually a number. which is made up
from the name of the parent followed by the order of birth of the cell. The first cell is
always cell 1. The second child of cell 1 1s 12. The cell in the figure 1s 13. 50 it’s the
third child of cell 1. Its first child will be 131 and so on. Consequently. from the length
of the cell name we can tell the generation the cell belongs to.

As cells move on the grid it is difficult to distinguish them and follow the path of a single
cell. However. the Position ficld shows where the displayed cell is located on the gnid
(starting from 0, at the top left corer).

The user may lower the number of steps executed and displayed on the graph (by using
the Dimensions button). This helps to get a better picture of how the cells move about at

cach interval.

6.1.2  Amount of Glucose

Another feature of the grid s the amount of glucose located in cach square. This
represents the external glucose available for the cell to ingest through the cell wall.
Squares with a darker shade contain more glucose and vice-versa. If the number of steps
is lowered, the user will notice that the shade of cach occupied square gradually becomes
lighter, indicating consumption of glucose by the cell(s). When priorities are used, cells
move only once the external glucose is exhausted, leaving a trail of empty (white)
squares behind. Of course, these get replenished eventually, as glucose s randomly re-

distributed on the environment.



6.2 Beginning to Populate

Each cell will reproduce when the conditions are favourable. If priorities are used, these
conditions are more restrictive but they do ensure that the parent and child cell will have
a better chance for survival. Otherwise, reproduction takes place much sooner and more
frequently, resulting often in the death of the parent or the child cell.

The population that does not use priorities will usually grow faster. but it will require
more generations of cells. since the cells often die right after dividing. This is evident if
we have a look at the Cell name shown in the Cell Simulation window. The generation of
a ccll 1s equal to the length of its name.  As the population grows, we notice that we have
only very long Cell names in the grid. since all the “old™ cells have died.

A population that does use prioritics however. will grow a bit slower initially but almost
all cells will survive until there starts to be a shortage of glucose. [t is not unusual for the

very first cell (Cell 1) to still be alive when the grid has filled up.

6.3 Stabilizing

The cell population will not grow indefinitely of course, and indeed after a certain
number of cycles we notice that it is no longer growing but it usually starts to fluctuate
about some average value. This value depends on a number of factors the most important
ones being the initial amount of glucose distributed on the grid and the priority settings.
The cell population goes through periods of many new births taking place followed by

periods when many cells scem to starve and die.  This is causing the fluctuations

33



6.3.1 Cell Deaths in a Population
A minor modification was done in the determination of death for a cell. Previously we
mentioned that in some cases, the substances would appear as flat lines in the graphical
representation. The cell was at a state where death had not been detected. but it was
essentially dead. since it could not do anything. Most ot the time the cause of this were
the following conditions occurring simultaneously:
o A very low valuc of ATP. The cell cannot synthesize any protein because the
amount of ATP is less that the length of the required gene.
e Zero glucose. The cell is not able to generate any new ATP.
e Zcro transportase. The cell cannot obtain any new glucose from the environment
at a pace that is fast ecnough (only through osmosis).
For a population. it is crucial that cells that are no longer active are presumed dead and
promptly removed from the grid. Otherwise there is a risk of having many cells
rematning on the grid but not being able to actually do anything useful. We would have
the occurrence of many cells with a graph of flat lines.
The above state was identified as a Sturvation condition and it has been added to the

reasons for cell death.

6.4 Consumption of Glucose

The first few times the simulation was run using populations we noticed a curious event:
once we had reached about 100 cells (roughly | cell per square), instead of reaching some
stable condition as expected, the population increase seemed to accelerate! Cells

multiplied faster and also by looking at the graph, they were much heavier and did not

34



move to adjacent squares. Each cell had huge amounts of ATP and especially glucose.
The large amount of glucose explained why the cells did not need to move but where was
all the glucose coming from?

After some investigation the question was answered. In the old versions of the Cell
Simulation, as soon as the cell ingested some glucose from the environment, that same
amount of glucose was distributed randomly into the environment again. The problem is
that now:. the total amount of glucose in the environment plus that of the cell is actually
higher than the amount of glucose we started out with. For example, if the grid initially
contains 4.000 units of glucose and the cell at a certain point ingests 3 units, it will also
distribute 3 units somewhere on the grid. Now the external environment still has 4.000
units but the total amount in the whole systemn ts 4,003 units. This may not have caused a
problem for one cell or even for small populations, but it was devastating once we had
growing numbers of cells. [f there are 100 cells on the grid and say half of them ingest 5
units of glucose cach during a step. then we would have a total of 4.250 units in the
whole system. The external glucose remains constant at 4,000 units, but now most of the
squares on the grid are occupied, the cells contain their own internal glucose and they are
basically ingesting more glucose and then “throwing™™ around the same amount to cach
other.

For onc or a few cells on the grid, we do not notice this effect because chances are that
the re-distributed glucose will randomly go to a square which is not occupied and it will
remain unused for a while. For 50 cells or more, the glucose will probably go to a square

occupied by a cell and will be ingested and re-distributed right away.



What needs to be considered is having an equilibrium for the whole system: glucose in
the environment plus glucose inside all living cells should not exceed the initial amount.
This 1s a more realistic model and gives better results.

What the program does now is instead of distributing the glucose as soon as it is ingested.
each cell distnbutes glucose back to the environment in two cases:

e After it has been converted to ATP. [t n units get converted to ATP during the
Generate process. then 72 units will be given back to the environment.

e After the death of the cell. If the cell contains n units of glucose at its time of
death, then this will be distributed. [t is possible not to return the glucose ot dying
cells to the grid and still have an interesting model. [n that case, the external
glucose does not get replenished at a rate that is tast enough. The population
grows, then some cells start to starve and die without returning their not-
converted glucose. Consequently. the living cells start to starve uatil the whole
population disappears after some cycles.

Looking at the user interface, we notice that for higher populations, almost all squares
appear white (no external glucose). This is expected since higher populations should
deplete the nutrients in the environment. [f communication among cells was modelled in
the simulation, this would be the point where cells could send signals to stop multiplying.

This is what happens in normal healthy human cells, as discussed earlier.

6.5 Characteristics of Population
It is interesting to sec how different factors can influence the cell population. especially

the way the population grows and how it reaches an average value. By varying the
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amount of initial glucose distributed on the grnid we get the following results for

maximum population:

Prioritics No Priorities
Init.Gluc | Max.Pop. | Ave.Pop. | Ave.Gluc. | Max.Pop. | Ave.Pop. | Ave.Gluc.
1000 1 - - 1 - -
2000 26 17 118 2 - -
3000 61 40 75 13 4 750
4000 98 63 61 24 10 400
3000 135 96 32 38 19 263
10000 220 186 53 139 82 i21
20000 428 392 51 223 178 12

Table 1: Effect of [nitial Glucose on Population

[n the table above, maximum population is the highest number of cells recorded while
running the simulation, at a specific amount of initial glucose. The average population is
the number around which the population scemed to fluctuate. after running the program
for many cycles (>40.000). Of course, in the cases where there were no cells alive after a
few cycles, there is no average value. Finally, the average glucose is the amount of
glucose per cell.

As expected, the cells using prioritics are much more efficient and able to grow to larger
populations. They require smaller amounts of glucose to survive. The ditference is more
dramatic at smaller amounts of glucose where the no-priority cells are struggling to

survive. At an amount of 20,000 units of glucose we can have almost 2 cells occupying

each square and more than double that it we use priorities.



The graph in figurc 4 demonstrates the pace of population growth in each case. The
results were taken from just onc sample test run, with 3,000 units of initial glucose.
Clearly, a population that uses priorities grows at a slower pace for about the first 10.000
cycles. The no prioritics case has already levelled oft at that point and it has started to

fluctuate.
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Figure 4: Effect of Prioritics on Population Growth

In both cases we notice that there is a period of many births and few deaths during which
the population grows abruptly. This occurs sooner tf prioritics are not used. After that.

we have periods of births followed by starvation of some cells.



As a final point. we note that if the simulation was run for an even greater number of
cycles there was a tendency for the population to gradually decrease. We can sec this by
extrapolating the curves in the graph. This means that we are probably losing some
glucose as time goes by. From investigating the code, it appears that the cause of this
was that since the amount of glucose is represented by an integer. during reproduction,
it’s possible to lose some glucose when dividing in half. Each time the amount of
glucose of the parent cell was an odd number, and the cell divided. one unit of glucose
was lost in the division. The effect ot this was magnified with larger populations and the
total glucose decreased. resulting in a population that tended to decrease with time as
well. Moditying the code by ensuring that no glucose is lost during cell division has now

rectified this problem.
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7 Design Modifications

At this point we have a good idea about the cell functionality. its processes and the
behaviour of the system. [n this section. we will study how the program itself was
modified during this stage of the project.

The most radical change in this version is that we are no longer dealing with a single cell
but with a population. We need to monitor the changes taking place in a whole
population of cells and update all cells accordingly. We will have a look at changes done

for populations. prioritics and some improvements to the old program.

7.1 The Cell Simulation Design

The cell simulation is based on the Object Oriented paradigm and makes use its
tundamental principles such as encapsulation, inheritance and polymorphism. For the
purpose of better explaining the design, we have identified three hierarchical levels of
classification based on function. [n cach of these, we have a number of classes or
modules that may co-opcrate within their level to accomplish a task required by a higher
level. This should become clear in the discussion that follows. Going trom top to
bottom. the levels are described next (Note that the classes and functions described here

refer to the old version. The changes to the design will be described later)

7.1.1 The User Interface Level
At this level we have modules that receive input directly from user commands. Every

time a button on the GUI is clicked, the required action is handled here. The two
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modules we can identify in the code are Sim and Fiewer. Sim is responsible for tasks
such as initializing the simulation in response to the user starting the program, or
resetting everything in response to a click on the Reset button and so on. It is not
required to know exactly how these tasks will be executed. It is sufficient to trigger the
correct operations in the lower level (Cell Processing). For example. the following

function is found in the Sim module:

volid deCycles ()

// Update the cell and record the quantitv of each substance.
for {int time = 0; time < maxSteps; times++)
{

cell->update();

for {(int s = 0; s < NUM_SUBSTANCES; s++)

subs [s] - >setamount (time, cell->getAmount(s))
}
stepsSoFar += maxSteps;
}

The tunction executes when the user has clicked the Step button. [t triggers the cell to
update its data though the cell-s>update () statement. The cell is updated a number of
times cqual to the number of steps on display in the GUL

The Viewer module handles the look and tecl of the report window in response to the
user having clicked the Report button. It does co-operate with Sim, however no

commands to lower level modules are 1ssued by the Viewer.

7.1.2  The Cell Processing Level
This is where all the interesting work happens in response to messages sent from the Sim
module. From our discussion of cell life so tar we may identify the classes that exist in

this level. A cell is a separate entity that exists in an environment that has its own
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characteristics. The interactions between the cell and its environment are ¢vents in the
life of the cell. The three classes found here are:

o Cell class. Arguably the most important class of the program. Here we have a
good example of the use of encapsulation. The characteristics of the cell such as
mass, substances it contains as well as how it executes the cellular processes are
all found in the private data of this class. These are only a concern of the cell
itselt. The public functions enable other objects to send messages to the Cell
class. Using the previous cxample, update () is a public member tunction which
cnables Sim to send messages to the Cell object.

e Environ class. This class represents the environment of the cell. Inits private
data. it keeps track ot the amount of (external) glucose in cach square on the gnid.
The public functions enable other objects to get the amount of glucose in a square
or to take glucose from a square during the Ingestion process.

e Events class. This class is used to provide the lists of events that take place
during the lifetime of a cell. Here we have the use of polymorphism. There is a
generalized Event class, which specifies the interface that derived classes will
have. Since there are many different events (such as the Move event or Death
event etc) each derived class (such as MoveEvent or DeathEvent) can specify the
actual method of implementation.

The environment and events are both private associations of the Cell class so that the cell
may update its own environment and events. In this level the classes described co-
operate with cach other in order to accomplish the tasks input from the Sim module. To

do this, they need to employ the services of other functions at a fower level.



7.1.3 The Implementation Level

Here we have a number of smaller classes and modules that do not seem very interesting
on their own but are used to provide the implementation details of how cell data is stored.
The Coord class provides the methods and data needed to keep track of cell movement in
terms of coordinates on the grid. The Genome class specifies the representation and
operations possible on the cell’'s DNA, whereas the Locus class does the same for a single
gene. Finally, the Substance class defines how the program keeps track of substance

data. Each object of this class represents a ditferent cell substance.

7.2 Design for Priorities

The design changes required by the implementation of priorities in the program were
quite simple and straightforward. The Cell class was modified by adding a new private
method that calculates priorities and a private variable to store the actual priority values
for cach process:

double priority [NUM_PROCS] ;
double calcPriority{int currprocess);

The implementation of calePriority (), is taken directly from the previous discussion
of how prioritics were implemented in the program (see section 3.2). The exponential
tunction was used in the calculation with the values for the constant A.

Also, in the Sim module the required interface code was added for the Process Priorities

option in the GUL.
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7.3 Design for a Population

Adapting the existing design for a single cell to one for a population of cells was the
biggest challenge in the project. We need to be able to monitor all processes and
substances just as before. but now these must be applied to many cells. We also need to
keep track of the locations and movements of all cells on the grid. New considerations
come into play such as removing dead cells from the grid as soon as death is detected and
so on.

The first decision to be made was how to represent the population of cells. The most
natural way scemed to be using a tree where the root would be the oldest cell and the
leaves the youngest. However, a tree would require the use of recursion and since much
of the functionality for one cell already existed, it would mean almost a total redesign of
the system. Also. since cach cell can have more than one child. this would not be a
binary tree of course. and the complexity becomes even higher. Consequently, it was
decided to use a simple linked list of cells added in chronological order.

What the program does now 1s that cach time a cell reproduces, a new Cell object is
instantiated, and added to the end of the list of cells while ensuring that it contains the
right amounts of all substances. As the list grows, there are some new operations that
need to be applied to the whole population of cells and some old operations which no
longer apply to just a single cell. An example of the latter case is when the Sim module
sends a message to a single cell to update itself — as we saw in function doCycles ().
This now needs to be applied to a whole population of cells. We would require to place
code in the Sim module that traverses the list and calls cell->update () at each cell.

Although this would work fine, it would mean that more of the processing code would



become mixed with the GUI code. This is contrary to the goal we set out to achieve in
the beginning of the project. We would like as much as possible to stick to the three
levels of classification discussed.

Finally, for new operations such as the removal of dead cells from the grid, it was not
obvious where they should be placed. Is this something that the Cell class should take
care of? A cell object cannot remove other cells from the list. so this is not possible. The
operation could be placed in Sim but we run into the same problem as betore: too much

cell processing becoming a part of the GUI code.

7.3.1 Functionality and Data

To solve this problem we must realize that these operations are not part of the Uscer
Intertace code (for obvious reasons) and they are not part of the Cell Processing code
either (they do not deal with only one cell). They seem to belong to a level that is in
between the two. This is a level that contains “global™ information about the whole
population of cells. We may call it the Population Processing Level.

The Population class was created to provide all of this “global™ functionality. Visually.
we can say that a Population object represents the grid of cells. Thus, only one instance
of it is required throughout the program. During initialization of the simulation we now
have:

void initialize ()
// Initialize the simulation.

{

// Create a new population of cells
Sim = new Population() ;

}

To decide whether some new operation should belong to the Population class or the Cell

class, we need to ask if it is common to all cells or does it depend on the cell. The same
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is true for data. For cxample, the calculation of priorities is dependent on the cell
concemned because it needs to know the amounts of substances of the cell. So. looking at
figure 6, calcPriority() is still 2 member of the Cell class. Only the cell knows and is
able to calculate the priorities of its processes. However. the decision on whether to use
priorities does not depend on the cell; it is common for all cells, so we make it a member
of the population (variable usePriorities in Figure 5). Any future extensions to the
program can use this way to decide if the Population or the Cell class should be modified.
Using a Population class provides an elegant solution to the problems mentioned before.

The doCycles () function in the Sim module is now :

void doCycles ()

{

// Update the cell and record the quantity of each substance.
Sim->doCycles (maxSteps) ;
stepsSoFar += maxSteps;

All that 15 required to do 1s simply to call the docycles () function of the Population
object in statement sim->docycles (). The population object will take care of updating
all the cells in the list.

As for the removal of dead cells, it should now be obvious that it is the responsibility of

the Population class (see private member function removebeadcells () in figure 5.)

7.3.2  Who Should Know What?

The single cell needed to know just about all the information available in the program:
the cell environment, the events taking place etc. With a population of cells, much of this
information is no longer the concern of just one but of all cells. The cell itselt now has

morc limited knowledge. [t only knows information directly related to it, like its genctic

46



information, or its substances. For this reason the old private associations of the cell to
the environment and list of events have now been removed. Looking again at figure 3,
these are now the responsibility of the Population class. We can say that the Environ and
the Events classes are now part of the Population Processing Level since all cells share
the same environment and events. The following classification can be made (again.
going from top to bottom):

e The User Intertace Level containing the Stm and Viewer modules.

e The Population Processing Level containing the Population, Environ and Events

classcs.

o The Cell Processing Level, which now includes only the Cell class and

e The Implementation Level, which has not changed trom the carlier description.
There ts a drawback that arises when individual cells need to add events to the List of
Events. This can no longer be done directly by a cell: it is done only through accessing
the population object and appending a new event to the list. The cells do not know what
other events are in the list: only the population knows that. Making Cell a friend of the
Population class would be another solution that would allow direct access to the
environment, however we opted to preserve encapsulation.
On the other hand, what does the population object need to know about the list of cells?
The population does not need to know the small details such as the substances that an
individual cell contains. All that it requires to know is the first cell in the list (i.c. the
oldest cell) so that it can traverse the list when needed. Also, it nceds to keep track of the

cell that is currently displayed in the graph and the number of cells located in each square
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of the grid. All of these are now part of the private data of the Population class (shown in

bold):

class Population

{

// A simplified model of a population of biological cells
public: // All public data goes here

private:
void removeDeadCells () ;

// The first (oldest! cell in the population
Cell *firstCell;

// The displayed cell in the graph

Cell *graphedCell ;

Envircnment *env;
ListEvents *events;

// The grid containing cells in each square

int Grid[DIVISIONS] [DIVISIONS];
bool usePriorities ;

b

The Population class could have been made a friend ot the Cell class to be able to

manipulate cells directly, but again, to preserve encapsulation this was not done.
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7.4 Design Changes to the Old Version

We have already seen some of the effects that the addition of a population has had on the
previous design. By only allowing access through the population object. we not only
avoid having to place a lot of cell processing code in the GUI code. but in some cases we
have removed much of the processing that was there. To use an example. the old version
executed the following function each time the user reset the simulation (from the Sim

module):

void resez (bool randomvalues)
// Peset everything in response to ‘reset' button.

stepsSoFar
for (int s

{
}

if (randomValues)
cell->setRandomValues () ;

else
cell->setDefaultValues();

events->kill();

delete [] viewText;

viewText NULL;

totLines l;

0;
0; s < NUM_SUBSTANCES; s++)

subs[s] ->clearAmounts () ;

H

The highlighted code does not really belong to the User Interface Level. [t deals mostly
with cell functions and substances and the cell events are also accessed. One can imagine
that resetting the simulation for a population of cells within the Sim module would be
even more complex. [nstead, the function now looks like this:

void reset (bool randomvValues)
// Reset everything in response to 'reset' button.



stepsSoFar = 0;
Sim->reset (randomValues) ;
delete [] viewText;
viewText = NULL;

totLines = 1;

}

That section of code has now been replaced by a single call to the population object.
There is no need to access the events, or substances from this level.

The GUI no longer has direct access to the environment. or the events. These are
instantiated by the constructor of the Population class. During initialization the
population object is created and it creates the first cell in the population, the environment
common to all cells and the list of events that all cells can update.

When the user clicks on the grid to select a cell to view. a message is sent to the
population to inform it of the user’s selection. Our goal was to limit the actions
pertormed by the GUI code and replace them with messages sent to the population.
whenever possible. This should give cleaner separation in the code of the program.

We also have separation in terms of the tasks performed by each class in the application.
The Cell class for example, is only concerned with the individual tasks ot one cell. These
tasks use only entities that are “smaller”™ than the cell, such as the genome or the
substances classes. So. these are the only modules included in the Cell class. Looking at
the old Cell class we had:

#include "defs.h"
#include "events.h"
#include "environ.h"
#include "locus.h"
#include "subst.h"
#include "coord.h"

Now the same class includes:

#include "defs.h"
#include "locus.h"
#include "subst.h"

wh
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We don't need to have as many #include statements in our class definitions and we can
say that this is one way to have lower coupling among modules.

Finally. some additional changes were done mostly to the GUI code. These had nothing
to do with the simulation application itself, but were related to Windows API
functionality. Much of this has changed since the first version of the project and needed
to be updated. For example, the syntax of the caliback functions is different in many
cases. The old version looked like this:

// Main window callback function.
long APIENTRY WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM

lParam}
whereas now it has been modified to

/7 Main window callback function.
LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM

l1Param)

Hopefully. this will make the program more portable across difterent platforms.

L)
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8 Future Enhancements

The simulation currently provides a good basis for studying cell populations. We have
seen how the cell has been made more stable through the usage of priories. Also. we saw
how the cells reproduce and we now have a pictorial representation of the cell population
as 1t appears on the grid.

One limitation of the current design is that the Synthesize process has no control of which
substance will be synthesized. This ts chosen at random. [t would be useful to have
prioritics used within the Synthesize process itself. For example, if the cell is very low
on RNAPolyvmerase. the priority of Synthesize is increased; however, there 1s no
guarantee that RNAPolymerase will be synthesized in the next cycle. [n fact. chances are
that some other protein will be synthesized which may not be needed at the time. [t
would be usetul to have some way to promote a certain needed substance during the
Synthesize process.

Also, in the future. it would be interesting to go beyond the point of studying just the
growth of population, but also to study the way the population evolves. By varying the
genetic information, and giving each cell the capacity to change and adapt to new
environments we should get some interesting results. For example, the way A is
determined now is not very scientific. Instead, A values could be specified by the
genome of the cell itself. Thus, in combination with cellular evolution, the genome could

actually optimize the cell priorities and the cell would be better able to survive ina

changing environment.



9 Conclusion

The goal of this report was to provide an in-depth analysis of the Cell Simulation project.
at the latest stage of its development. This is a project closely related to many on-going
large-scale projects in the field of biochemical modeling. We have scen the great
complexity that exists in the life of a real biological cell in nature: Some of its processes
and substances still remain undetined and are being actively rescarched.

A study of the older versions of the project was made and how some of their imitations
were addressed in the new version. Process Prioritics have now been added to the cell
and it was shown that the cell is now much more stable and able to survive for longer
periods of time. Also. we now have a simulation that models a population of cclls living
in the same environment and sharing the same nutrients from the surroundings. [t was
shown that new concerns must now come into play especially from the coding aspect of’
the simulation. Changes to the old design were done to accommodate the new
requirements for a growing number of cells. The user interface code has been updated to
become a little more intuitive especially where populations are concerned. At the same
time. we have demonstrated how some improvements to the old program help to reduce
coupling of modules and provide cleaner code.

Overall, I believe this project has been a success and we have achieved what we set out to
accomplish. Many lessons were learned not only in terms of the design and
implementation specific to such a project, but also in terms of the complexity that a real

living system encompasscs and the challenge of simulating life processes.

W
w



References

l. P.Grogono, The Cell Simulation, Versions 0.1 - 0.4, May 2000

2. J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, W.Lorensen, Object-
Oriented Modeling and Design, Prentice Hall. New Jersey. 1991

3. R.Lee. W.Tepfenhart, UML and C++. Prentice Hall. New Jersey, 1997
4. H.Curtis, Biology , Worth Publishers Inc., New York, 1983
5. M.Tomita et al. E-CELL.: software environment for whole-cell simulation.

1999 Oxford University Press



Appendix A

Determination of A in the priorities calculation

[n the priorities calculation we used variations of the equation Priority, = ¢ fora
process p. The values of A were determined experimentally by trying different values
and analyzing the results. To give realistic results, A should be a value between 0 for a
maximum priority and [ for a prionity of 0. Here are the values actually used in the

program and all results in the report:

Process A value
Ingest 171000
Generate 11000
Build 130
Move /200
Reproduce 1/100
Synthesize 171500

Table 2 The Values of A

We can sce that based on those values the Synthesize process is the one most promoted

by the value of A. It is followed by Ingest and Generate, while the Build process is the

least promoted by the A value followed by Reproduce and Move.





