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ABSTRACT

Handwritten Numeral Recognition Using Multiwavelets

Yueting Chen

In this report. we review different techniques for handwritten numeral recognition. More
importantly we develop and test a hand-written numeral recognition system using
multiwavelets. Given a black-and-white numeral, we first trace the contour of the
numeral. Secondly we normalize and resample the contour points. Thirdly we perform
multiwavelet orthonormal shell expansion on the contour points and we get several
resolution levels and the average. We use the multiwavelet coefficients as the features to
recognize the hand-written numerals. We use the L1 distance as a measure and the
nearest neighbour rule as classifier for the recognition. The experimental result shows

that it is a feasible way to use multi-wavelet features in handwritten numeral recognition.
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1. Introduction

The recognition of handwritten numerals is an important problem in optical character
recognition (OCR) with applications such as automatic ZIP-code reading or
understanding annotations in technical drawings. Feature or descriptor extraction is
probably the most important factor in achieving high recognition performance. We
should use features that have small intra-class variance and large interclass separation.
i.e. features derived from different samples of the same pattern class should be close and
features derived from samples of different classes should differ significantly. One of the
difficulties specific to handwriting recognition is that it has to deal with large intra-class
variance due to the shape variations caused by the different writing styles of people.
Since it is impossible to find features that are invariant with respect to writing style. one
can only aim at finding features that experimentally prove reasonably insensitive to shape
distortions caused by individual writing style and that at thc same time maintain the

ability to separate samples of different classes.

Experience shows that shapes that “look alike™ have similar low-frequency components
in the Fourier domain. Low-frequency components reflect the basic shape of a function,
where as the high-frequency components represent the details. It is observed that low-
frequency components of a character are less sensitive to writing style variations. This
leads to the popularity of Fourier descriptors for handwritten character recognition. (-4
However, Fourier descriptors are inherently global. The frequency information obtained

from a Fourer transform is global. Intuitively, a more localized frequency representation

should be more effective for handwritten character recognition. Wavelet transforms can



have variable time-frequency localization and orthonormal wavelets with finite support
provide a powerful mathematical tool for decomposing a function into a multiresolution

hierarchy of different localized frequency channels.

In this report, we present a novel set of shape descriptors that represents a digitized
pattern in a very concise way and that is particularly well-suited for the recognition of
handwritten numerals. The descriptor is derived from the multiwavelet shell expansion of
an object’s contour. The motivation to use multiwavelet basis is twofold. First,
multiwavelets provide a localized frequency representation, which can reflect local
properities much better than Fourier based method. Secondly and more importantly,
orthonormal multiwavelets provide a natural hierarchical multiresolution representation,
and there is substantial evidence that the human visual system use similar mutiscale

representations. It should be mentioned that this work is in parallel with the work in [9].

The report 1s organized as follows. In Section 2. a background review is given on OCR -
the process and various feature extraction methods, with emphasis on features using
contours. Sections 3 and 4 introduce the foundations of our feature extraction method -
discrete multiwavelet transform and the orthonormal shell expansion, respectively. Our
new shape descriptors are presented in Section 5. The experimental results, using our
shape descriptors and using nearest neighbour classifier, are provided in Section 6, and a
conclusion is given in Section 7. Programming is considered as an important work of the

report. Programs are listed as appendix. They are written in MatLab.
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2. Background Review

Optical character recognition (OCR) is one of the most successful applications of
automatic pattern recognition and has been a very active field for research and
development since the mid 1950s. An OCR system is easily available to general public
today. A home scanner under $100 may include an OCR package. But the less expensive
OCR system can only recognize high quality printed text documents or neatly written
handprinted text. The challenges for a good OCR system are to be able to recognize
severely degraded printed text or unconstrained handwritten text with high recognition

rate and low substitution/reject error rate.

An OCR system typically consists of the following steps (Figure 1):
1. Gray-level scanning at an appropriate resolution, typically 300-1000 dots per
inch.
2. Preprocessing:
e Binarization (two-level thresholding), using a global or a locally adaptive
method.
e Segmentation to isolate individual characters.
e (Optional) Conversion to another character representation (e.g. skeleton
or contour curve),
3. Feature extraction.
4. Recognition using one or more classifiers.

5. Contextual verification or postprocessing.
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Figure 1. Steps in a character recognition system.

2.1. Feature Extraction in OCR

Feature extraction is an important step in achieving good performance of OCR systems.
However, the other steps in the system also need to be optimized to obtain the best
possible performance and these steps are not independent. The choice of feature
extraction method limits or dictates the nature and output of the preprocessing step. Some
feature extraction methods work on gray-level subimages of single characters (Figure 2),
while others work on solid four- or eight-connected symbols segmented from the binary
raster image (Figure 3), thinned symbols or skeletons (Figure 4), or symbol contours
(Figure S). Further, the type or format of the extracted features must match the
requirements of the chosen classifier. Graph descriptions or grammar-based descriptions
of the characters are well suited for structural or syntactic classifiers. Discrete features

that may assume only 2 or 3 distinct values are ideal for decision trees. Real-valued



feature vectors are ideal for statistical classifiers. However, muitiple classifiers may be
used, either as a multi-stage classification scheme or as parallel classifiers, where a
combination of the individual classification results is used to decide the final
classification. In that case, features of more than one type or format may be extracted

from the input characters.

gro 7610

Figure 2. Gray-scale subimages of segmented Figure 3. Digits from the hydrographic map in
characters. the binary raster representation.

T6/0 -
I

Figure 4. Skeletons of digits (after thinning) in Figure S. Contours of two of the digits in Figure
Figure 3. 3.
In their extensive survey paper on feature extraction (reference [6]), @. D. Trier et al
reviewed the following feature extraction methods (except the last one):

e Template matching;

e Deformable templates;

e Unitary image transforms;

e Graph descriptions;



e Projection histograms;

e Contour profiles ;

e Zoning;

e Geometric moment invariants ;

e Zemike moments;

e Spline curve approximation;

e Fourier descriptors;

e  Wavelet descriptors.
Each of these methods may be applied to one or more of the following representation
forms:

(1) Gray-level character image;

(2) Binary character image;

(3) Character contour;

(4) Character skeleton or character graph.
For each feature extraction method (with exception of Wavelet descriptors) and each
character representation form above, they discussed the properties of the extracted

features.

2.2. Feature Extraction Using Contour Information

As mentioned above, there are more than 10 types of feature extraction methods using
contour information. But our interest is in developing a set of wavelet descriptors, which
in turn are closely related to Fourier descriptors. Therefore only these two types of

feature extraction methods are reviewed here.



2.2.1 Fourier descriptors
Zahn and Roskies !'! defined a normalized cumulative angular function ¢ (¢) fora simple
closed curve y and expand ¢ in a Fourier series to obtain descriptive coefficients (Fourier

descriptors). A formula for reconstructing a curve from its Fourier descriptors and the

explicit formulas for calculating the Fourier descriptors of a polygonal curve were given.

In Zahn and Roskies’s method, the angular difference Ag between two successive line
segments on the contour is measured at every pixel center along the contour. The contour

is followed clockwise. Then the following descriptors can be extracted:

| & . 2ml
=—— ) Ag,sin k 1
an nr ; ¢k ( )
and
| 2l
b =—) Ag, cos L, 2)
n nr ; ¢l( L (

where L is the length of the boundary curve, consisting m line segments, / is the
accumnulated length of the boundary from starting point p, to the kth point p, and Ag, is

the angle between the vectors [p, .p,] and [p.p,.]. a, and b, are size- and

translation-invariant. Rotation invariance can be obtained by transforming to polar

coordinates. Then the amplitudes:

A =.al+b; (3)

are independent of rotation and mirroring, while the phase angles «, = tan(a,, / b,,) are

not. However, mirroring can be detected via the @ s. It can be shown that:



F,

) =j.ak _k.a/ (4)
is independent of rotation, but dependent on mirroring. Here, ;= j/gcd(/,k),
k* =k/gcd(j,k) and ged(/,k) is the greatest common divisor of j and k.

Zahn and Roskies wamn that a, becomes unreliable as 4, — Oand is totally undefined

when A, = 0. Therefore, the £, terms may be unreliable.

Granlund ! described a pattern-recognition method using Fourier transformations to
extract features which are significant for a pattern (contour of a character). He claims that
the ordinary Fourier coefficients are difficult to use as input to categorizers because they
contain factors dependent upon size and rotation as well as an arbitrary phase angle. But
other more useful features can be easily derived from these Fourier coefficients. By using
these derived property constants, a distinction can be made between genuine shape

constants and constants representing size, location, and orientation.

Granlund uses a complex number z(¢)= x(¢)+ jy(¢) to denote the points on the contour.

Then the contour can be expressed as a Fourier series:

=(e)= iane’:"’” r, (5)

n=—x

where

R

a,=—|z(¢)*" Tdr (6)
T 0

are the complex coefficients. a,is the center of gravity and the other coefficients a,_,

n # Qare independent of translation. T is the total contour length. The derived features
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1
are independent of scale and rotation. Here. n#land k =gcd(m.n) is the greatest

common divisor of m and n. Furthermore:

by = 2okl 9)
at
and
.od al"
@, = "";f’,“ : (10)
a,

are scale-independent, but depend on rotation, so they can be useful when orientation of

the characters is known.

In Fuhl and Giardina ), a classification and recognition procedure is presented that can
be applied directly to classes of objects that cannot change shape and whose images are
not subject to sensory-equipment distortions. The features used in the procedure are
normalized Fourier coefficients derived from chain codes of the image contours. The
normalization is performed according to various elliptic properties of the Fourier

coefficients themselves.

In Fuhl and Giardina’s approach, the closed contour, (x(¢),y(s)),t=1,...,m, is

approximated as:
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.€(t)=AQ+Z[a"cos 2';:n+b"sin 2’;”} (11)
n=|

A
y(t) =G, +Z[c,, cosznTm+d,,sin ZnTm} (12)
n=|

where T is the total contour length and with x(¢) = x(¢r)and y(t) = y(¢) in the limit when

N — OO0 . The coefficients are:

l r

A, =7Ofx(t)d1, (13)
[ T

Co=o Oj_v(r)dz.. (14)
9 r

a, =lj.r(r)cosz"—mdr. (15)
T T
27 . 2nm

b, =—Ix(t)sm—dt. (16)
T} T

T 7

c, =3J._v(t)cosﬂdt, (17)

T, T
and
d —Z'-]-v(t)sinzn—mdt (18)
Ty T

The function x(¢) and y(¢r) are piecewise linear and the coefficients can be obtained by

summation instead of integration. It can be shown that the coefficients a,, b,, ¢, and

d ., which are the extracted features, can be expressed as:



and

where ¢ =2nm /T, Av, =x-x_., Av, =y -1v._, A,

T Ay
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2n*r? -
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Wit <
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(21)

(22)
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t , and m is the number of pixels along the boundary. The starting point

(.r,,y,) can be arbitrarily chosen and it is clear from ecquations (15)-(18) that the

coefficients are dependent on this choice. To obtain features that are independent of the

particular starting point, we calculate the phase shift from the first major axis as:

|

2(ab, +cd,

)

6, = —tan
2

hd hd A b
\/a,' +b +¢ +d

Then, the coefficients can be rotated to achieve a zero phase shift:

a, b, |_|a, b,
c, d. c, d,

—sinnﬁl}

cos nb,
sinn@, cosnb,

(24)

To obtain rotation invariant descriptors, the rotation, y,, of the semi-major axis can be

found by:



w, =tan" <L (25)

and the descriptors can then be rotated by -y, so that the semi-major axis is parallel with

the x-axis:

a: b':. _ co§ y, siny, | a; b,,. ‘ (26)
c, d; —smy, cosy fc. d,
This rotation gives b, = ¢; = 0.0, so these coefficients should not be used as features.

Further, both these rotations are ambiguous. as 6 and 8 + x give the same axes, as do

and v + .

To obtain size-invariant features, the coefficients can be divided by the magnitude, £, of
the semi-major axis, given by:

E=Ja+c =a". (27)
Then a7 should not be used as a feature as well. In any case, the low-order coefficients

that are available contain the most information (about the character shape) and should

always be used.

Lin and Hwang ™! derived rotation-invariant features based on Kual and Giarddina’s
features:

[, =a] +b] +c} +d;, (28)
J, =ad, ~be,, (29)

and



Ki=(a;+b))al +00)+(c} va} el +di)e2ac, +b,d Jae, +bd,). (30)
As above, a scaling factor may be used to obtain size-invariant features.

2.2.2  Wavelet Descriptors

In Wunsch and Laine P!, a set of shape descriptors derived from the wavelet transform of
a pattern’s contour is presented. The approach is closely related to feature extraction
methods by Fourier series expansion. The motivation to use orthonormal wavelet basis
rather than the Fourier basis is that wavelet coefficients provide localized frequency
iuformation, and that wavelets make it possible to decompose a function into
multiresolution hierarchy of localized frequency bands. They describe a character
recognition system that relies upon wavelet descriptors to simultaneously analyze
character shape at multiple levels of resolution.
A pattern contour can be represented as a closed parametric curve ¢ in the complex plane
C ie.

ct)=x(t)+ jy(t). O0<Li<T, 31
where j denotes the imaginary unit. The wavelet transform of the curve ¢ can be taken
independently for each component

WTc(u)=WTx(u)+ jWhi(u). (32)

The continuous wavelet transform (CWT) of a function f € L*(R) is defined as

Wf@b)= [fOw.d=<fy,, >, (33)



where wavelet basis y_, is given by shifted and dilated version of a basic wavelet

Vis =V%V[[-;—bj- (34)

Hence the CWT decomposes a function f using a family of functions that are dilations

and translations of some basic wavelet .

Orthonormal wavelets enable multiresolution  decompositions. The concept of

multiresolution analysis is mathematically formalized as a nested sequence of subspaces

V, € L*(R). A function f e L*(R)is represented as a limit of successive approximations.
each of which is computed by projecting f onto some ¥, . The sequence of subspaces
V, must satisfy the following properties:

e Containment: V, <V, ,vjeZ i.ec. sequence {I ; is nested. This implies that a

function approximated at resolution 2’ contains all the information of its lower

resolution approximations.

o Completeness: N, _, V. =0,u,_, ¥, = L*(R). This implies that if the resolution is
increased to =, the approximation converges to the original function, whereas the
approximated function converges to zero as the resolution approaches zero.

® Scaling property: f(x)eV, . < f(2x)eV, . This property states that the
approximated functions are derived by scaling each other by the ratio of their
resolution levels.

Given such a sequence of subspaces, the approximation of a function fat resolution 2’ is

defined as the projection of fonto V, . There exists a unique function ¢ € L*(R).called a



scaling function, whose translations at scale 2’ form an orthonormal basis of V, . In
general ¢ is a lowpass filter and the multiresolution approximation of a function f is
sequence of smoothed versions of /. Let i, be the orthogonal complement of V. in V_ ..
Each scaling function has an associated wavelet function y  L*(R)whose dilations and
translations provide a set of orthonormal bases of W, . Each f,. €. can then be
decomposed by

j =g T gttt g +f:\,,, (35)
where g, €W, and f €V, . The dilations of  can be regarded as bandpass filters and
the coefficient sequences of the g,, provide localized spectral information of f within the

frequency bands l2’ (Hy —04):27 (g +ox,,)J. The coefficients of the g, can hence be

interpreted as high-frequency details that distinguish the approximation of f at two

subsequent levels of resolution. On the other hand, f,., represents a coarser
approximation of f,. .

Let 4, f denote the operator that computes the approximation of f at resolution2’, i.e.
that projects fonto/,, . Let D, be the operator that computes the projection of f onto the
sunspaces W,, . If f is a discrete function, the decompositions described above can be

achieved by successive convolutions of f with discrete filters, followed by resampling the
approximated function by a coarser grid.

The resulting set of coefficients

PVT;J {f} = (Az—lf»(Dyf)-Js/s-l) (36)



forms a pyramidal structure and is called a multiresolution representation of the discrete

function f (A4, f = f). If the original function has N samples, then 4, f and D, f shall

have 2’ N samples. Thus the above wavelet transform has the same total number of

samples as the original function. i.e. the representation is non-redundant.

Experience shows that shapes that “look alike™ have similar low-frequency components
in the Fourier domain. Low-frequency Fourter coefficients reflect the basic shape of a
function, whereas the high frequency components represent the details. As far as
handprinted character recognition is concerned. low-frequency components of a character
turn out to be less sensitive to writing style variations. The frequency information
obtained from a Fourier transform is global. Intuitively, a more localized frequency
representation should be more effective for handprinted character recognition. The above
wavelet transform have variable time-frequency localization and decompose a function
into a multiresolution hierarchy of different localized frequency channels. Such a
decomposition allows to simultaneously analyse a function at several levels of resolution
and favors coarse-to-fine recognition strategies similar to those known to exist in the
human visual system.

I<s results show:

Wunsch and Laine ©°
e wavelet descriptors are a compact representation for digitized characters that

contain sufficient shape information to allow for reliable recognition;

e wavelet descriptors are insensitive to individual writing style variations;



e although closely related to Fourier descriptors. wavelet descriptors are a better
shape representation for handprinted characters than a complete Fourier descriptor
set of the same dimensionality;

e Multiresolution recognition is a powerful methodology to increase recognition
reliability. In contrast to most single scale techniques. it enable the system to
reject patterns which could not be unambiguously classified. and thus
considerably reduce the rate of substitution errors observed:

e although the multiresolution recognition scheme reduced the error rate at the

expense of rejections. the rate of correct classifications remains satisfactory.

3. Discrete Multiwavelet Transform

Multiwavelet transform plays an important role in many applications. In this section, we
will give a short introduction to multiwavelet transform. Multiwavelets are generalization
of single wavelets. Multiwavelet basis uses translations and dilations of M > 2 scaling

functions {@#(x)} ;«<yrand M mother wavelet functions { wi(X)} j<<y. Let D(X) = (i(x).

@:(x), ...qzﬁ_u(x))T and W(x) = (wi(x), va(x). ... w,u(.\:))r. then we have

L-]
®(x) =2) HD(2x - k). (37)
k=0
and
L-1
W(x) =2) GiP(2x - k), (38)
k=0

where {Hi} o<ks-s and {Gi} o<k<r-s are MxAM filter matrices. The scaling functions @(x)

and associated wavelets y(x) are constructed so that all the integer translations of @(x)

17



are orthogonal, and the integer translations and the dilations of factor 2 of y(x) form an

orthonormal basis for L(R).

As an example, for M = 2, L = 4, we give the most commonly used multiwavelets

developed by Geronimo. Hardin and Massopust Ol Let

3/10  242/5) 4 3/10 0
—_ . 1= .
~J2/40 -3/20 9J2/40 1/2

oo 0 0 g 0 0
T 9V2/40 -3/20) T\ =V2/40 0

and

- - 40 -1/
GO:( J2/40 3/20 j Gl=(9«/§/4o 12].

-1/20  -342/20 L 9/20 0

then the two functions ¢,(x) and ¢:(x) can be generated via (1). Similarly. the two mother
wavelet functions y;(x) and y>(x) can be constructed by (2). Let V, be the closure of the
linear span of 2J2¢,(2Jx -k), I =1, 2; k € Z. With the above constructions, it has been
proved that ¢(x - k), 1 = 1, 2; k € Z form an orthonormal basis for V,, and moreover the
dilations and translations 2 21;/;(2’5( -k),1=1,2;/, k € Zform an orthonormal basis for
L’(R). In other words, the spaces V;, j € Z, form an orthogonal multiresolution analysis
of L°(R). The two scaling functions ¢,(x) and @:(x) are supported in [0, 1] and [O, 2],
respectively. They are also symmetric and Lipschitz continuous. This is impossible to

achieve for single orthogonal wavelets.



4. The Orthonormal Shell Expansion

This section reviews briefly the concept of orthonormal shell developed in reference [8].
It is well known that the coefficients of orthogonal wavelet expansions are not shift-
invariant. However. if all the wavelet coefficients of n circulant shifts of a vector (signal)
are computed, we may use them when shift invariance is important. Based on this
observation, the notion of a shell (much more redundant than a frame) was introduced in

reference [8] to obtain a redundant bur shift-invariant family of functions.

In our applications, there is always the finest and the coarsest scales of interest and
therefore the number of scales in finite and we can consider only shifts by multiples of
certain fixed unit. Assuming that the finest scale is described by the n-dimensional

subspace V, and consider only circulant shifts in Vo Let /). be the subspace describing

i
the coarsest scale (1</o<J) where n = 2. and let Wa(x) =2 *w(2/(x-k)) and ¢ «(x) =

)
2 2¢(27/(x = k)). Therefore, the functions {y;} 1<,<,054<2’~/-1 and { ¢ o

R LLLEE
generate the coefficients s/ and 4, :
5p = If (X)8,, (x)dx, (39)
and
dj = If (X)W, (x)dx, (40)

forj=1,2,....joand k=0, 1, ..., 2’7 _ 1. The coefficients {d] } 155500277721 are known

as orthonormal wavelet coefficients.



In the case of orthonormal shell decomposition, Saito and Beylkin define the functions

{WaX)} s s 00scs2’ -0 and {@ ,(x)}osi<2’ -1 as a shell of the orthonormal

wavelets for shifts in Vy. As a consequence, the coefficients {d/ } 1<, < ,o-«<2” -1 and
/» Yosi<2? -1 are called the orthonormal shell coefficients. Clearly the set of

coefficients in the orthonormal shell is much more abundant and overly redundant
compared to the set of coefficients in the orthogonal wavelet transform. However. this
redundancy is needed for our shift invariant property.

Assuming that the orthonormal wavelet coefficients of the finest scale {9,‘3 im <,y are
given as an original signal and let us consider the function. The orthonormal shell
coefficients of this function f are obtained from the quadrature mirror filter H = {;}y </ <

t-1and G = {gi}o </ < L1 (associated with the orthonormal basis of compactly supported

wavelets)
L-1
si= hsl (41)
=0
and
L-1 \
d) =3 g5/, (42)
=0

forj=1,....jo, k=0, ..., 2”7 - 1. The complexity of (5) and (6) is O(x log n).

[t is easy to show that the recurrence relations (41) and (42) compute the orthonormal

wavelet coefficients of all circulant shifts of the function f. For d/, the first scale is:



L-

L-1 t L-1
P_ o _ 0 0 _ gt I ,
dy = Zgisk-z = Zgzszi-l +Zg151k~1-1 =d; +dy, . (43)
1=0 1=0

=0

fork=0,.... =-1.

9

It is clear that the sequence {d:, } contains all the orthonormal wavelet coefficients that

appear if f{x) is circularly shifted by even numbers and the sequence {d:,_, | contains all

the orthonormal wavelet coefficients for odd shifts.

Similarly. at the j-th scale

st =) hst . (44)

2 kem T2 T lk-iem

and
dl;k-m =ngslj-'l‘|2kon-m‘ (45)

fork=0,....277. m=1.....Y-1.

The sequences {d.,( !, {d,, } ... {di,,  } contin the orthonormal wavelet

k-1 2 k=2
coefTicients of the j-th scale of the signal shifted by O. ..., 2 - I, respectively. Therefore.

the set {a’,{ },S/SJHOS“:,..}_K and {% Lgﬁ,.c_[ contains all the coefficients of the

orthonormal wavelet expansion f{x), f{x+1), .... f{ix—n-1). This set of coefficients defines
the orthonormal shell decomposition. Figure 8 illustrates how these coefficients are

obtained.
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Figure 6. Diagram illustrating the algorithm for expanding a signal into multiresolution scales using
the quadrature mirror filter H = (lig, hy. s, h;).

5. Orthonormal Multiwavelet Shell Descriptor

Feature selection is the critical step in the recognition process, and what distinguishes
OCR methodologies from each other are the types of features selected for representation.
In general, good features must satisfy the following requirements: First, intra-class
variance must be small, which means that features derived from different samples of the
same class should be close. Secondly, the interclass separation should be large, i.e.
features derived from samples of different classes should differ significantly.
Furthermore, features should be independent of the size and location of the character.

This independence can be achieved by pre-processing or by extracting features that are



translation- and scale-invariant. General object recognition systems should also recognize
objects regardless of their orientation. which requires rotation-invariant features. In hand-
written recognition. however. this property is not necessary. on the contrary it may lead

to confusion of characters like *6" and *9’.

In this report. we introduce a set of descriptors which uses orthonormal multiwavelet
shell expansion to recognition handwritten numerals. In order to get invariant features.
we have to normalize the start point of the contour. Suppose O is the upper-left corner of
the minimal bounding rectangle of the numeral. we select the start point as the point on
the numeral that has the shortest distance from O. After finding the start point, we can
trace the contour. We have to resample the contour so that the total number of contour
points is fixed, say 64. We also need to normalize the contour so that the numeral falls
into a unit circle. This finishes the normalization stage. We perform orthonormal
multiwavelets shell expansion on this normalized contour and use the multiwavelets

coefficients to query the database.

The algorithm can be summerize as follows:
1- Find the start point and trace the contour of the handwritten numeral.

2- Resample the contour and normalize the contour so that it falls inside a unit circle.

(P
]

Apply orthonormal multiwavelet shell expansion to the contour (x.y).

PN
|

Recognize the numeral by using the features extracted in the previous step.



In theory, the matching process can be done from coarse to fine scales. For each scale, we
match the features of the target with those of the patterns in the database and we have
three decisions to make:

1- Accept the target as a specific pattern.

2- Reject the target.

3- Mark those entries in the database that are similar to the target as to be determined

and begin the next iteration.

If the target is accepted or rejected, the matching process in then terminated. [f the target
is undetermined, we continue the matching process to the next finer scale, but only apply
to those entries that are marked as to be determined. We can use either L; or L. distance
metric in each scale. Even though the above mentioned multi-resolution approach is
similar to human’s simultaneous interpretation of visual information, it is not trivial to
apply it in real applications. There are two aspects we have to consider. First, we have to
determine a threshold in order to give a guideline for acceptation, rejection, and to be
determined. There is no way to give an optimal threshold mathematically. One has to
choose it by doing a lot of experiments. Second, significant features are lost at very low
resolution scales and it is likely that for very high resolution scales the intra-class
variance becomes larger because of the deformation of the pattern and the accumulation
errors during the transformations. Therefore, it is desirable to use only intermediate

resolution scales during the classification phase.



6. Experiment Results

We use a file containing 1000 numerals as our training dataset. We apply the above

mentioned multiwavelet orthonormal shell expansion to each numeral of this file and

save the shells into a file. The testing data set contains about 100 hand-written numerals

(as shown in Figure 7).
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Figure 7. Numerals in the testing data set.

Some of the numerals are very difficult to recognize even with our human eyes. For each

numeral, we apply our multiwavelet orthonormal shell descriptor on it (the computation

process are depicted in Figure 8) and use nearest neighbour rule to query the database file

to get the minimum difference between the coefficients. In our experiments, we only get

19
w



86% recognition rate. We are expecting a much higher recognition rate if we feed the

multiwavelet coefficients into feed-forward neural network.

The confusion matrix of our test is as the following
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Figure 8. Graphs depict the computation of our descriptors



7. Conclusion

In this report, we introduced a novel set of features that is well-suited for representing
digitized hand written numerals. The features. which we term multiwavelet orthonormal
shell descriptor, are derived from the multiwavelet shell expansion of the character
contour. Since we only consider the low-frequency bands of the shell coefficients, the
features are relatively insensitive to the shape variation caused by the writing styles of
different persons. Multiwavelet shell coefficients depend on the scale and the
parameterization starting point of the original function. Therefore, we presented
normalization that allow us to derive a scale- and shift-invariant multiresolution for

characters of known orientation.
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9. Program Lists

9.1. Test.m

% Open the data file and get the character
num = 64;

cur_num = 0;
counter = 0;

confusion zeros(10,1C) ;

% Load the database (double arrays DBCONMWT_x and DBCONMWT_y)
load DBCONMWT.mat;

% Open the data file and get the log data
fidl = fopen('alllcg','z');
[al,COUNT1] = freadi(fidl);

§ Close the file
fclose(fidl);

% Open the data file and get the character
fid = fopen('alltest','r'j;
{a,COUNT] = fread(fid):

% Close the file
fclose(fid);

§ Deal with the whole data set
pos=1;
while pos < COUNT,

% Get the numeral

row = 0;

col = 0;

clear AA A contour_x contour_Yy C_X c_y len con_x con_y;

% Get the row and column of the numeral

while a(pos) ~= 10,
if a(pos) -= 32
if row ==
row = a(pos) - 48;
else
i€ (a(pos-1) ~= 32) & (col == 0)
row = row*l0 + al(pos) - 48;
else
if (a{pos - 1) == 32)
col = a(pos) - 48;
else
col = col * 10 + al(pos) - 48;
end
end
end
end
pos = pos+1l;
end

poOsS = poOS+2;

% Get the character from 'a‘'
for ii = 1l:row,
for jj = 1l:col,
AA(ii,jj) = a(pos) - 48;



if a(pos+l) == 10
pos = pos + 3;
else
pos = pos + 1;
end
end
end

pos = pos + 1;

% add zero boundary

row = row + 2;

col = col + 2;

A = zeros(row,col);

for i = l:row-2,
for j = l:col-2,

A{i+l,j+1) = AA(i,]);

end

end

% Calculate the centroi<d of the numeral
xsum = 0;

ysum = 0;
count = 0;
for 1 = l:row,
for j = 1l:col,
if A(i,j) == 1
Xsum = Xsum + i;
ysum = ysum + j;
count = count + 1;
end
end
end
cen_x = floor(xsum / count);

floor(ysum / count);

cen_y

% Find the start point of the contour
first_y = 1;
quit_y = 0;
for j = l:col,
for i = l:row,
if A(i,3) -= 0
first_y = j;
quit_y =1
break;
end
end
if quit_y -= 0
break;
end
end

first_x 1;
quit_x 0;
for i = l:row,
for j = 1l:col,
if A(i,j) ~= 0

first_ x = i;
quit_x = 1;
break;
end
end

if quit_x -= 0
break;



end
end

distance = 0;
start_x = first_x;
start_y = first_y;
fecr 1 = first_x:row,
for j = first_y:col,
if A(i,j) -= 0
dis = sgre((i-first_x)*{i-first_x) + (j-first_y)*(j-first_y));
if distance ==
distance = dis;
end
if dis < distance
distance = dis;
start_x = 1i;
start_y = j;
end
end
end
end

% trace the contour
% chain code definition:

% i 2 1

% 4 0

% 5 6 7
contour_x(1l) = start_x;
contour_y(l) = start_y:
nnext=0;

i=0;

3=0;

pt=1;

for pt = 2:10000,
start = nnext + 3;
if start > 7
start = start - 8;
end

con_x = contour_x{pt-1);
con_y = contour_vi(pt-1l);
{i,j.nnext] = next_point (A, start, con_x, con_y);

contour_x(pt) i;

contour_y(pt) = j;

if ((i == start_x) & (j == start_y))
break;

end

end

C_X = contour_x;
c_y = contour_y;
c_x{pt+l) = c_x(1);
c_ylpt+l) = c_y(1l);

% display the contour
$figure;
$line(c_x,c_y);

% move coordinate origin to the centroid



contour_x = cContour X - Cen_x;
contour_y = contour_y - cen_Yy;

% size normalization
lengl = sqgrt(contour_x(1l)*contour_x(1l) + contour_y(l)*contcur_y(l));
for 1 = 2:pt,

leng2 = sgrt(contour_x(i)*contour_x(i) + contour_y(i)*contour_y(i)!};

if lengl < leng2
lengl = leng2;
end
end
contour _x = contour_x / lengl;
contour_y = contour_y / lengl;

% Calculate the length array

len(l) = 0;
for 1 = 2:pt,
len(i) = len(i-1) + sqgrt{(contour_x(i} - contour_x(i-1)) =*
(contour_xi{i} - contour_x{i-i)) =
(contour_y(i; - contour_y(i-1l;) *
(contour_y (i} - contour_y(i-1)));
end
% Resample the contour
con_x(1l) = contour_x(1l};
con_y(l) = contour_y(l);
for i = 2:num,
curlen = (i-1) * len(pt) / num;

for j = l:pt-1,
if curlen > len(j; & curlen <= len(j-1)

break
end
end
con_x{(i) = contour_x(j+1);
con_y(i) = contcour_y(j+l;;
end

% multiwavelet transform shell
{qmf_lo gmf_hi] = MMakeONFilter ('GHM');

L = 2;
aver_out(l,l:num) = con_x(l:num};
aver_out(2,l:num) = con_y(l:num)j;

mwcoef = zeros(2,num);
shell x = zeros(L+l,num);
shell y = zeros(L+1l,num);
for level = 0:L,
for i = l:num,
aver_in(l,i) = aver_out{l,mod((i-1)*2"level,num)~+1);
aver_in(2,i) = aver_out(2,mod((i-1)*2%level,num)+1);
end
{aver_out, mwcoef] = MDownDyad(aver_in,qmf_ lo,qmf_hi);
shell x(level+l,l:num) = mwcoef (1,1:num);
shell y(level+l,l:num) = mwcoef (2,1l:num};
end

% Query the data base
for noch = 1:20,

char_row = (noch-1)*(L+1);

dist (noch) = 0;

for ii = 1:(L+1),

for jj = l:num,
dist (noch) = dist(noch) + abs(shell x(ii,jj) -
DBCONMWT _x{ii+char_row,jj));



dist (noch) = dist{noch) + abs(shell_y(ii,jj)
DBCONMWT _y (ii+char_row,jj)):

end
end
end

% Find the least difference
min_loc = 1;
min_val = dist(1l);
for ii = 1:20,
if min_val > dist(ii)
min_val = dist(ii);
min_loc = 1ii;

confusion(min_loc+l,al(cur_num*16+5)-48+1)

end
end
min_loc = floor((min_loc-1)/2);
min_loc
confusion(min_loc+l,al{cur_num*1l6+5)-48+1
if min_loc == al{cur_num=*l6+5) - 48
counter = counter + 1;
disp('OK'};
else
disp ('WRONG') ;
end

cur_num = cur_num+l;
end

disp{counter / cur_num);
save confusion_MT.mat confusion;

9.2. next_point.m

function [x,y,nnext] = next_point (A, start, prev_x, prev_y)

ii=1; xx=1; yy=1l;
for i=start:-1l:start-8,
ii = 1i;
if i<0
ii=i+8;
end

switch ii
case 0,
XxX=prev_x;
yy=prev_y+l;
case 1,
XX=prev_x-1;
yy=prev_y+1l;
case 2,
Xx=prev_x-1;
Yy=prev_Yy;
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case 3,
xx=prev_x-1;
yy=prev_y-1;

case 4,
XX=prev_x;
yy=prev_y-1;

case S,
XX=prev_x+1;
yy=prev_y-1;

case 6,
XxX=prev_x+1;
yy=prev_Yy:

case 7,
XX=prev_X+1;
yy=prev_y+1l;

end

if A(xx,yy) ~= 0
break;
end
end

nnext=ii;
X=XX;
Y=YYi:

9.3. sample.m

% Open the data file and get the character
num = 64;

cur_num=0;

fid = fopen('sample.txt','r');

while cur_num < 20,

clear AA A contour_X contour_y C¢_X C_y len con_x con_y;

% get the label

for i=1:6,
¢ = fscanf (fid, '$c',1);
end

label = fscanf(fid, '%d',1);
while ¢ ~= 10

¢ = fscanf(fid, '%c',1);
end
row=20;
col=20;

% get the numeral
for i=1:row,
for j=1l:col,
AA(i,j) = fscanf(fid, '$c',1) - 48;
end
¢ = fscanf (fid, '%c',1);
while ¢ -= 10
¢ = fscanf(fid, '%c',1);
end
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end

% add zero boundary

row = row + 2;

col = col + 2;

A = zeros(row,col);

for i=1l:row-2,
for j=1l:col-2,

A(i+l,3+1) = AA(1,]):

end

end

% Calculate the centroid of the numeral
xsum = 0;
ysum = 0;
count = 0;
for i=l:row,
for j=1:col,

1f A(L,j) == 1
Xsum = xsum + 1i;
ysum = ysum + J;
count = count + 1;
end
end
end
cen_x = floor(xsum / count);
cen_y = floor(ysum / count);

$ Find the start point of the contour
first_y = 1;
quit_y = 0;
for j=1l:col,
for i=1l:row,
if A(L,j) ~= 0
first y = j;
quit_y = 1;
break;
end
end
if quit_y -= 0
break;
end
end
first_x 1;
quit_x 0;
for i=1l:row,
for j=1l:col,
if A(i,j) ~= 0
first_x = i;
quit_x = 1;
break;
end
end
if quit_x -= 0
break;
end
end
distance = 0;
start_x = first_x;
start_y = first_y;
for i=first_x:row,
for j=first_y:col,



if A(i,j) ~= 0
dis = sqrt((i-first_x)*(i-first_x} =«
(j-first_y)*(j-first_y)i;
i1f distance ==
distance = dis;
end
if dis < distance
distance = dis;
start_x = i;
start_y = J;
end
end
end
end

% trace the contour
% chain code definition:

¥ 3 2 1

% 4 0

% 5 6 7
contour_x (1) = start_x;
contour_yl(l) = start_y;
nnext=0;

1=0;

j=0;

pt=1;

for pt=2:10000,
start=nnext+3;
if startc > 7
start=start-8;
end

con_x=contour_x(pt-1);
con_y=contour_y(pt-1);
{i,j.nnext]=next_pecint (A, start, comn_x, con_y);

contour_x(pt)=i;
contour_y(pt)=j;

if ((i==start_x) & (j==start_y))
break;
end
end

X contour_x;
y = contour_y;

x(pt+l) = c_x(1);
c_yl(pt+l) = c_y(l};

C
C
(o

% display the contour
$figure;
$line(c_x,c_y);
$pause

%$close

% move coordinate origin to the centroid
contour_x = COntour_x - cen_x;
contour_y = contour_y - cen_y;

$ size normalization
lengl = sqgrt(contour_x({1l)*contour_x{(l) + contour_y(1l)*contour_y{l));



for i=2:pt,

leng2 = sqrt(contour_x(i)*contour_x{i} + contour_y(i)*contour_y(i)};

if lengl < leng2
lengl = leng2;
end
end
contour_x = contour_x/lengl;
contour_y = contour_y/lengl;

% Calculate the length array

len(1) = 0;
for i=2:pt,
len(i) = len(i-1) + sgrt{{contour_x(i!-contour x:ii-1}) *
(contour_x(1)-contour_x{i-1)j =
{contour_y (i} -centour_y{1-1); =
(contour_y (i} -contour_y(i-1}!,1;
end

¥ Resample the contour
con_x{1l) = contour_x(1l);
con_y(l) = contour_y(l);
for i=2:num,
curlen = (i-1) * len(pt) / num;
for j=1:pt-1,
1f curlenslen{(j) & curlen<=len(j+1

break
end
end
con_x(i} = contour_x(j+l};
con_y (i) = contour_y(j+l);
end

% multiwavelet transform shell
(qmf_lo gmf_hi] = MMakeONFilter('GHM');
L=2;
aver_out(l,l:num)=con_x(l:num};
aver_out (2, l:numj=con_y(l:num);
mwcoef = zeros(2,num;;
shell x = zeros(L+l,num);
shell_y = zeros(L+1l,numi;
for level=0:L,
for i=1:num,
aver_in(1l,i) = aver_out(l,mod((i-1)*2%level,num)+1];
aver_in(2,i) = aver_out(2,mod((i-1)*2"level,num)+1);
end
(aver_out, mwcoef] = MDownDyad(aver_in,qmf_lo,gmf_hi);
DBCONMWT_x (cur_num* (L+1)+level+1l,l:num) = mwcoef (1,l:num);
DBCONMWT_y (cur_num* (L+1)+level+l,l:num} = mwcoef (2,1:num);
end

cur_num = cur_num + 1;
end

% Close the file
fclose(£fid) ;

¥ Save the database
save DBCONMWT.mat DBCONMWT_x DBCONMWT_y;
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9.4. MMakeONFilter.m

function {qmf_lo,gmf_hi] = MMakeONFilter (Type)

% MMakeONFilter -- Generate Orthonormal Filters for MultiWavelet Transform
§ Usage

% [qmf_lo,qmf_hi] = MMakeONFilter (Type!

¥ Inputs

% Type string, ‘'GHM', 'Linear’',

% Outputs

% aqmf_lo Low pass filter matrices [HO H1 H2 H3 ...]

% gmf_hi High pass filter matrices [GO Gl G2 G2 ...]

%

$ Description

% The "GHM" filters were the first multiwavelet developed by Geronimo,
% Hardin and Massopust. Reference: "Fractal functions and wavelet

% expensions based on several scaling functions," J. Approx. Thecry,

¥ 1994.

%

% The "Linear" filters were piecewise linear orthogonal multiwavelets
% developped by Gilbert Strang and Vasily Strela. Refernece: "Orhtogcnal
% Multiwavelets with vanishing Moments," J. Optical Eng. 33(1394),

% pp. 2104-2107.

$

%

if strcmp(Type, 'GHM'),
sqrt2 = sqrt{2);

gmf_lo(l,:)=[3/10 2*sqgre2/s 3/10 c 0
0 0 0] ;

qmf_lo(2,:)=[-sqrc2/40 -3/20 9*sqrt2/40 1/2 9*sqre2/4¢
3/20 -sqgrt2/40 0}

qmf_hi(l,:)=[-sqrt2/40 -3/20 9*sqre2/40 -1/2 9*sqrt2/40
3/20 -sqgrt2/40 0]J;

gqmf_hi{2,:)=[ -1/20 -3*sqre2/20 9/20 o} -9/20
3*sqre2/20 1/20 0);

end

if strcmp(Type, 'Linear'),
sqrt3 = sqgrt{3);
sqrt? = sqre{?7);

gmf_lo(l,:)={ 1 0 1 0 0 0] ;
qmf_lo(2,:)=[sqrt3/2 0 -sqre3/2 1/2 0 1/2};
gmf_hi(l,:)=( -1 0 1 2*sqrel 0 0] ./ sgre7;
gqmf_hi(2,:)=[sqrt3/2 0 -sqrti/2 1/2 0 -7/2) ./ sqrt7;

end

9.5. MdownDyad.m

function [aver_out, mwcoef] = MDownDyad(aver_in,gmf_lo,qmf_hi}

$ MDownDyad -- Hi-Pass and Low-Pass Downsampling Operator (periodized)
¥ Usage

% (aver_out, mwcoef] = MDownDyad(aver_in,qmf_lo,qmf_hi)

% Inputs

% aver_in 2-d signal at fine scale

% qmf_low low pass filter matrix (2 rows) [HO Hl H2 H3 ...]
% gmf_hi high pass filter matrix (2 rows) [GO Gl G2 G3 ...]
% Outputs

% aver_out 2-d signal at coarse scale

% mwcoef multiwavelet coefficients

%
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% low pass

flen_1

[e]

{s_pad]

s_len

aver_out
for 1i=0:

(no shift)

length(gmf_lo(1l,:)};
[aver_in aver_in{(:,1:
length(aver_in(1l,:));

flen_lo)

= zeros(2,s_len);

s_len-1,

for nn=0:flen_lo/2-1,
aver_out (1l,1ii+1)

end
end
aver_o

% high pass

flen_h
(s_pad

mwcoef

for ii=0:

ut

1

]

= aver_ocut .*

{no shifr!
length(gmf_hi(l,:):};
[aver_in aver_in(:,l:flen_hni)

= aver_out{l,ii-1

- gnf_lo(l.nn*2+1

- gmf_loil,nnv2.2

= aver_out{2,:i+i.

- gmf_loi2,nn*2+1
- qnf_le(2,nn*2+2

sqreiz);

= zeros(2,s_len);

s len-1,

for nn=0:flen_hi/2-1,
mwcoef (1,1i+1) =

end
end
mwcoef

-

-

mwcoef (2,1ii+1) =
.

mwcoef

mwcoef (1,ii+1)
mf_hi(l,nn+*2.1)
qmf_hi(l,nn+*2+2!
mwcoef (2,11i+1)
qmf_hi(2,nn*2+1)
gmf_hi(2,nn+*2+2}

.* osqrti{2);

1

)

i v s _padil,il-nn-
i v s padi2,ii-nn-

) * s_padil,ii-nn-
) * s_padi{2,ill.nn-

1

* s_pad(l,ii+nn+1}
* s_pad(2,ii-nn+1)

* s _pad(l,ii+nn+1)
* s_pad(2,ili-nn~1!

‘

5
.
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