INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from feft to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

AN OBJECT ORIENTED APPROACH TO 3D
NETWORK VISUALIZATION

DoNG LiN CHEN

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2002

© DoONG LIN CHEN, 2002

i+l

National Library

Bibliothéque nationale

of Canada du Canada
- itons of
aﬁmbagms ngﬁ“smi:graphiques
395 Wellington Street 395, rus Wellingion
Onawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fiis Votre réddvence
Our Sie Nowe réddverce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-72928-1

ABSTRACT

An Object Oriented Approach to 3D Network Visualization

Dong Lin CHEN

A network diagram is a familiar graphic form that can represent may different
kinds of information. To achieve an aesthetic layout presentation, in a 3-
dimensional orthogonal drawing of a graph, vertices are mapped to grid points
on a 3D rectangular integer lattice and edges are routed as segments along grid
lincs. In this report, we describe the design and implementation of an objected-
oriented 3D network graphic layout program built upon OpenGL with simple
and efficient layout algorithm. The system provides an easy-to-adapt graphic
drawing framework for visualizing a network and for experimenting different
layout algorithms in a pipelined fashion. Current implementation restricts
vertices with maximum degree of six, and guarantees no crossings and

optimized shortest path for edges.

Acknowledgments

Special thanks to Professor Peter Grogono, who gives me this opportunity to
explore graph theory, object-oriented programming and OpenGL. I would like to

express my gratitude for his supervision, valuable instructions and feedbacks.

[am grateful to Xiao Wei She, my wife, who supportively shared all the
housework and looked after the kids, Ae and Miao, when [indulged myself in

the project.

Thanks to my friends, Ming Hao Xie, Wen Tian, Dong Yang and Tian Fang,
their friendship, humors and discussions made the study at Concordia University

an enjoyable journey.

Table of Contents

1

Introduction 1
1.1 VISUALIZING A NETWORKcevuiemieieceriereitesieteeesieseemesseesseameaseseesssasessasessssmeneemsnseee semeeseeeameemens 1
1.2 VISUALIZATION PIPELINE ..c.ccieiiei et teeeeeteeeemteenne e staeeeeeesraeseen e msnenone s sessenmnnsssnneesnanmneens 3
1.3 CONTRIBUTION OF THIS REPORTeciieiiiiiieeteecteeeie e e enseeeereee s nasasensmesseseesseeesseensasensansnnan 5
i.4 ORGANIZATION OF THE REPORT .ottt ettt ee s e s e s s s s s sss s e aenss s snmnesesessnnnnes 5
Background 6
2.1 GRAPH DRAWING GLOSSARY -ttt ee et ee et e e e s e e s see s eesae s st e eseeneseeaamasaennee 6
2.2 PROBLEM STATEMENT AND REQUIREMENTSonnnmiiiiiieeceeeeeeiee e eeeaaae e e eeseeeeesenssmneseammeneae 7
23 GRAPH THEORY AND DRAWING TECHNIQUESceeeeneieeieieeeeeeeeeeee e s e eeenaeaerennaeeeaaneeses 10
2.3.1 Complexity Issues and CONSITQINES..............ccccvenieinieirrereteeiereeeeeeete s e re e seesesae s 11
2.3.2 Algorithmic Approach vs. Declarative Approach................ccoooovvemvevoveiicieieeneeeeee. 12
233 Orthogonal Grid Drawingsc.ccoueiiicieineeiiiieeieeet et eeevta e eeeene et e e s anenaenesasansannes 12
24 FROM 2D TO 3D e e et s e e e e e oe e e e e eeeessinsenasaeesenoes 15
25 RENDERING ENGINE ANDOPENGL ..o e s aen 16
2.6 OPENGL FEATURES AND ITS USE FOR VISUALIZATION ..ot eeeeeeeeeee e eeeeeaeseeeeaea 17
2.0.1 GEOMCIIIC PlUNILIVES woeeeoeeeeeeeeeeieeeeeeeeeeee e eeeee et eere et e e e e s e e es e e e aeeaeeeeeeeeeee e eateanesasseseaeeaeann 17
2.6.2 CallbAcks QA TREETACLIONS oo e e e e ee e e e e e ae s e aean 18
2.6.3 Viewing 3D Modcl and Navigationc..ccooiiiioiiimvnieeeeeeeceeeieeeeeeeeeeevee s 18
A Strategy for Constructing 3D Orthogonal Drawings 20
3.1.1 Placing Vertices and Controlling Distribution Balance.....................ccoeeeeeeeeeveeerceeacnecienns 23
3.1.2 Routing Edge and Finding SHOMest Plc..coocoeeeieeeeeeeeeeeieeee e eeeeneeenenan 24
313 Advantage, Disadvantage and EnRancementoocoeeeecveeeereeeeeceeeeeeeeeeeaeeeeeeenens 27
Design 30
4.1 SYSTEM ARCHITECTURE ...veevieeeeeeeeceteeeeet v este e et e e e eeeem s e e e e eeseseeeeesmeseseseeemeeemenaene 30
4.2 COMPONENTS ..ot et eee e e eeeeee s e e eeeeeeerasaeeereeeeesseeetesesseaseseseeeemaeee s s enesesen ssam e seesesenasasesassenese 30
4.3 DIESIGN RATIONALE oot e e e et s eaaeee st eee e s e eeee s seen e e ensasessnseseannaneas 31
4.3.1 Hierarchical Data Structure for Network Representation..................oeeeeeeeioeeeeneenaeeaeaenee. 31
4.3.2 Abstracted Viewer INEErfaCeuueecoiiiniciciaianieteeeeeeeceeeeeereeeeeeeee e eneeseessesnesaesen 34
433 Wrapping OpenGL APL ...ttt eie ettt et et ea b s e eae e sas e e s s 34
44 CLASSES AND OBJECT MODEL ..cciiiiiitieecee et e e et eeaeeae e oot aaasesemesesneneeas 35
4.4.1 PATSOT «ooneeeeeeeeeeereeeeeeeeeeveeseeessesesssasaesesssssesassaes s esstesesasaseaeenssesnsm s mnnsessaeseem s ssansneaeeesemananaes 35
4.4.2 INEEWOFIK....ooooveaeoeieeeeeeeeeeeeeeieeeeeeereeesesssesrassssssssa et asmameaeaeee e aemee e e e e msmmemmman s ee e ema e smsmmaannn 35
4.4.3 MOELEN.........ooaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeie e eressese et e e emasasaaeeee e e eee e e ee e memm e e e eeae e amanamanane 37
4.4.4 VOWOT oo eeeeteeeee et et ve s asne e eneeeen s eeaesaaeeaemeameemmeee e eee et ot smaeaemaenaenenne 37
4.5 BEHAVIOR MODEL ...ttt ee e e e e e eeass st esesest o e s e smeaeseeees e ensassaeeenessesannnes 38
Implementation Details and Problems Solved 40
5.1 PARSING: GRAMMAR AND PESUDO-CODEooomeeeieiieieteeee et eeeee e aeese s snnesennanees 40

5.2 NODE AND CONNECTION RELATIONSHIP.....ceeeveeeceeteeeeeeeeeeeeeeeeeeeseeeessssesssssssssssssensseeseessesnes 41

53 USING STL PRIORITY_QUEUE ...ovvvvterrernieeeeeeereererss e eeesseeenscmseeanasesesammeseesmseseessssnnessssssssemsmenes 42
54 DRAWING TEXT INOPENGL ..ot eeeees e e s e eeee e e 43
6 Experimental Results 45
7 Conclusions and Future Work 48
References 49
Appendices 52
A EXAMPLE OF INPUTS OF NETWORK DESCRIPTION (KO) .. oeeiiieeeeeeeeeeeeeeee e, 52
B EXAMPLE OF GENERATED LAYOUT COORDINATES { K6) ..o e 52

vi

Table of Figures

Figure 1: Visualization processing pipelinec.ccococeeirieiieciceneniceeee et 3
Figure 2: (a) 3D coordinates (b) possible free ports connecting vertex vococeveneneee..... 20
Figure 3: Illustration of free and blocked neighbors.............c.cooiiiiiiiiiieiee e, 22
Figure 4: System architecture and COMPONENLScceeeerrmieeeeieeeeeeteereeieee et eoeeeae 31
Figure 5: Case | of data structure for network representation..............e.eeveveumeveeecuieemeeceenenenn. 32
Figure 6: Case 2 of data structure for network representation..............c.ceeeeueeeererereecereeneeeeeeenen. 32
Figure 6: Case 3 of data structure for network representation..........ceeeeveveeerereerereremseeveeeeeeeenenes 33
Figure 7: Object model of parser COMPONENLccceeeurcmiricrcreeieeereceeeeree e testee e 35
Figure 8: Object model of network COMPONENL..........ccocurueieieceiiieeeeeteeeee et 36
Figure 9: Object model of modeler cOMPONENL..........ccooveiemieeeuieeecieeee et 37
Figure 10: Object model of modeler VIEWer.........c.oiiveiiiiiieeetce e 38
Figure 10:Sequence dia@ram ..ottt et 38
Figure 11: Generated KO graph ...ttt e 16
Figure 12: Generated K7 graph ...t 47

vii

1 Introduction

1.1 Visualizing a Network

The explosive growth of computing has led to the desire to visualize huge amount
information. A network is one of such example that could be applied to represent many
different kinds of information. Network graphs may represent much of this information
with the nodes corresponding to objects and the links to relationships among the objects.
In other words, a network is an abstract representation of information that can be viewed
as having nodes and links. A network is a labeled connected graph, either directed or
non-directed. The most common technique for visualizing networks involves node and
link diagrams [1]. Glyphs, graphical objects. represent the nodes positioned spatially with
lines drawn between them encoding the link relationships. The conventional and intuitive
way to represent a graph visually is to draw nodes as boxes and edges as line segments
connecting the boxes [2]. There are many ways to draw a network diagram, such as poly-

line drawing, straight-line drawing, orthogonal drawing and planar drawing.

Drawing graphs is an important problem that combines flavors of computational
geometry and graph theory [3]. The usefulness of a graph depends on its capacity of
conveying the meaning of a diagram effectively. Every approach to diagram layout
representation requires some aesthetic criteria. One aesthetic principle is to minimize
crossings between edges. Overlapping nodes and intersections between nodes and links
must also not be allowed. Besides, diagram volume, aspect ratio, number of bends, and

node-density distribution are often taken into account. Achieving such aesthetic can be

formulated as optimization goals for drawing algorithm [4]. There has been a lot of
research on topic of graphic layout algorithms [S], both in 2D and 3D, to represent non-

directed or directed graphs.

In this paper, we describe a 3-dimensional orthogonal grid drawing for a network of a
maximum degree at most 6. That is, any node will have at most 6 links going in and out
to other counterparts. The 3-dimensional orthogonal grid consists of grid points whose
coordinates are defined as (x, v, 2) with integer values, together with the axis-parallel grid
lines determined by these grid points. A 3-dimensional orthogonal drawing of a graph G
is an embedding of G into the 3-dimentional orthogonal grids with the vertices located at
the grid points and cach edge represented by a sequence of contiguous orthogonal
segments of gnd lines. An edge joins the two end points corresponding to vertices of «
and v. An edge representing a network link is directed, that is, an arrow is drawn to

indicate the link direction from one node to the other.

In a 3-dimensional orthogonal gnd drawing, certain properties are observed. No pair of
edge routes is permitted to intersect, except at common end vertex endpoints. Each grid
point corresponding to a vertex can have at most 6 ports to be used for attaching edges,
we name them as front, back, left, right, top and bottom. Other properties of drawing
include volume, total edge length, total number of bends and aspect-ratio. A bounding
box is used to describe the drawing, which is the minimum axis-parallel cubic that covers
all the vertices and edges. We use the term volume to describe the exact number of grid
points within a bounding box. Total edge length is the sum of lengths of the edge. A bend

2

is the point where two segments form the same edge meet. Aspect ratio is the longest to
the shortest side of the smallest rectangle with horizontal and vertical sides covering the
drawing. There are infinitely many drawings for a graph: however, we would like to take
into account a variety of criteria, such as those mentioned above to achieve an optimized
layout. Thus, many graph drawing problems can be formalized as multi-objective

optimization problems, so that trade-offs are inherent in solving them.

1.2 Visualization Pipeline

Generally speaking, visualization comprises methods and techniques to generate image
from some pre-processed information. Visualization often proceeds in several stages.

That forms the so-called visualization pipeline [6].

To visualize a network, the following stages of processing are often observed:

..Data acqmsmon

O e e

I

pping of data .

;.'ui .; S AL DA au“g'-—"‘}qc-"‘"‘}w y.__,', -

¥

,fR nderin
R o «gx‘;akﬂi‘&w

Latami

JHuman anal .
RS A A ,azm 168

Figure 1: Visualization processing pipeline

At the very beginning is the data acquisition stage. This stage gathers the information
from either pre-processed data or a design blueprint of a system. Any information that
can be abstracted as a network can be represented in a format by later processing for
visualization. After that, a mapping of the network information onto the attributes of a
visual representation is performed. Attributes of this visual representation can be
geometry, color, transparency, and material properties. We abstract the mapped data into
geometric objects and assign coordinates to the vertices and edges. The rendering is
projecting the visual representation onto an image planes for user analyzing. After
analyzing an image the user may change various parameters in the different stages of the
visualization pipeline to further incrcase the insight into the properties of a given

diagram.

A pipelined visualization approach enables rapid and easy adaptation to different source
data and rendering libraries. It isolates different processing stages and scparates graph
drawing algorithm from how a graphic is rendered. Changes in any components can be
made without affects others. In this report, we will focus on implementation of a network
visualization system that reads input of a network description and generates a 3D graphic
layout, as well as outputs coordinates of vertices and edges. We try to formulate the

system in a pipelined fashion.

1.3 Contribution of this Report

This report and its implemented program may be useful for future research on drawing
algorithms and graphic layout representation. The implementation tries to achieve a
generic graphic layout framework in a pipelined fashion. Its objected-oriented approach
with a model-view-controller architecture makes the program be easily extended to
accommodate different input data formats. layout algorithms and rendering libraries. In
addition, this report introduces a simple and efficient heuristic algorithm for designing

the network layout representation.

1.4 Organization of the Report

The rest of the report is organized as follows: Section 2 overviews the problem statement
and background literatures related to graph drawing techniques. Section 3 focuses on the
analysis of the graph drawing strategy. Section 4 is the design of the object-oriented
network visualization framework. Implementation details and solutions to specific
problems are described in Section 5, and the results of layout are presented in Section 6.

Finally, a conclusion and future work remark is given in Section 7.

2 Background

2.1 Graph Drawing Glossary

First of all, it may be helpful to refer some terminology on graphs pertinent to graph
drawing that has been established in this community. Here we only list the terms related

to this report and detailed references can be found in [7, 8].

degree-k graph: graph with maximum degree d <=k
digraph: directed graph, i.c.. graph with directed edges drawn as arrows
acyclic digraph: without directed cycles

transitive edge: edge (u, v) of a digraph is transitive if there is a directed path fromuto v

not containing edge (u, v)

reduced digraph: without transitive edges

source: vertex of a digraph without incoming edges

sink: vertex of a digraph without outgoing edges

connected graph: any two vertices are joined by a path

biconnected graph: any two vertices are joined by two vertex-disjoint paths
triconnected graph: any two vertices are joined by three vertex-disjoint paths
straight-line drawing: each edge is a straight line segment

orthogonal drawing: each edge is a chain of honizontal and vertical segments

bend: in a polyline drawing, point where two segment parts of the same edge meet
crossing: point where two edges intersect

grid drawing: polyline drawing such that vertices crossings and bends have integer

coordinates
planar drawing: no two edges cross

planar di-graph: admits a planar drawing

2.2 Problem Statement and Requirements

A "network" consists of components connected by links. The description of a network is
depicted as in the following format:

241 [1=245 12=246 O1=242 02=245

242 [1=245 12=24]1 Ol=246

245 11=241 O1=242 02=241

246 11=242 Oi=241

This means that component 241 has two inputs, from components 245 and 246, and two

outputs, to components 242 and 2435, similarly for the others.

The problem is to convert the above output of a network description into a graphical
representation and display on screen. A graphic layout designer maps network nodes and

links into a graph in which component is a vertex and the inputs and outputs correspond

7

to edges. The problem that a layout designer has to solve is easy to state but hard to

implement.

Here is a formal description of the problem statement [9]:

Given a graph G = (V, E). assign a coordinate to each vertex in V in such a way
that a visual representation of the graph that uses these coordinates will be easy to

read and aesthetically pleasing.

Given a network representation of G(V, E). it has the following properties: it is a digraph,
which means each link is directed and will be drawn with arrows. It may not be a
connected graph since nodes could stand alone without any connections. (This may be
true in real situation when a server being setup but not connected vet, however. we try to

abstract from real world network)

A graph is described simply by the set of its vertices and the set of its edges. no particular
geometry is associated with it. The graph layout designer embeds the abstract graph in
some geometric space. i.e., it assigns a position to each vertex and a curve to each edge.
The goal is to find a geometrical configuration of the vertices and edges such that the

layout is easy to read and aesthetically pleasing.

This task can be characterized by a list of user requirements for visualization. A summary

of the user requirements for the graph layout designer includes:

Readability of the graph

The information contained in the graph should be easy to read, that is, it should
effectively display the information of interest to the user. This implies that some
drawing criteria [4][5][7] should be followed simultaneously when assigning the

coordinates. The following lists some of them:
e minimize the number of edge crossings:
e draw edges as straight as possible:
e vertices should be evenly distributed;

e the majonty directed edges should be drawn pointing in the same

direction;
¢ in polylinc drawings, minimize bends in the edges:
¢ minimize the area of the area drawing:
e maximize display of symmetnies:
Easy visual analysis

Design the system to provide interactions for users to navigate the network
representation by using rotation, shifting and zooming. And also, other graphic
technique such as depth cuing, perspective viewing, texture and surface

characteristics can be introduced to enhance virtual reality.

Produce text output of coordinates for graphic representation

The system should produce an intermediate text log that records the coordinates
of vertices and edges. The formatted data is required to feed into other rendering

engines.
e Easy to adopt different graph drawing algorithms

Different layout algorithms can be easily adopted into the system without major
re-implementation of the framework. This allows the users to quickly and easily

realize the effects of such algorithm.

¢ Reusable components

To achieve the reusability. the designed system should be considered as a generic
framework and visualization is processed in a pipelined fashion. The visualization

process should have well-formed input and output formats at each stage.

2.3 Graph Theory and Drawing Techniques

Research on graph drawing has been especially active in the last decades. Literatures on
the subject are hundreds [5][7]. Most of the previous work focuses on the graph drawing
algorithms and its computing complexity. layout aesthetics. drawing constraints. Graph
drawing involves tradeoffs between those drawing properties. The decision mainly
depends on the domain requirements and the speed of computer in computing and

graphic rendering.

10

23.1 Complexity Issues and Constraints

To achieve the above-mentioned aesthetic criteria. there is a computation complexity
associating to the optimization. In general. the optimization problems associated with
these aesthetics mentioned in previous section are NP-hard [4]. (A problem is NP-hard if
an algorthm for solving it can be translated into one for solving any other NP-problem
(nondeterministic polynomial time) problem. NP-hard therefore means "at least as hard
as any NP-problem.” although it might. in fact. is harder [10]). Research shows that,
minimizing the number of crossings are NP-hard. minimizing the total number of bends
is also NP-hard [4]. Besides time complexity limitations. the above aesthetics are also
“competitive” in that the optimality of one often prevents the optimality of others [3].
That is. 1n most cases. you cannot simultaneously optimize two aesthetic criteria [4].

Because of such difficulties. general approaches to graph drawing are usually heuristic.

There are also factors that bevond the aesthetic criteria. these factors place constraints on
graph drawings. Some readability aspects require knowledge about the semantics of the
specific graph (e.g.. place “most important” vertex in the middle). Constraints are
provided as additional input to a graph drawing algorithm. Constraints. one the one hand.
can help to optimize our final graph representation, but it may also make the optimization

more complicated [+4].

11

23.2 Algorithmic Approach vs. Declarative Approach

Algorithmic approach produces a layout of the graph generated according to a pre-
specified set of aesthetic criteria. Aesthetic criteria embodied in an algorithm as
optimization goals, e.g. minimization of crossings, minimization of area. The Advantages
of algorithm approach is its computational efficiency. However, it has a drawback of that,
user-defined constraints are not naturally supported [4]. Extensions are explored to attach

a limited constraint-satisfaction capability within the algorithmic approach

Declarative approach uses a set of user-defined constraints and produces layout generated
by the solution of a system of constraints. In other words. this is a rule-based approach.
Advantages of this approach are its expressive power in defining the rules of how to
generate the graph. However. some natural aesthetics (e.g.. planarity) need complicated
constraints to be expressed. and general constraint-solving systems are computationally
inefficient [4]. It lacks a powerful language for the specification of constraints (currently

done with a detailed enumeration of facts, or with a set notation)

2.3.3 Orthogonal Grid Drawings

Many papers on algorithms and bounds for aesthetic criteria of three dimensional
orthogonal graph drawings have been published. The Slices algorithm proposed by Biedle
shows a linear time algorithm that draws a graph in O(n*) volume with at most 14 bends
per edge [11]. The drawing is obtained by placing all the vertices on a certain horizontal

plane and by assigning a further horizontal plan to every edge. i.e., “one slice per edge”.

12

An O(n*"*) time algorithm Komogorov is introduced by Eades. Stirk and Whitesides [12]
based on augmenting the graph to a Eulerian graph and on applying a vanation of an
algorithm by Komogorov and Barzdin. The algorithm produces drawings having O(n’*'*)
volume and at most 16 bends per edge. The Compact algorithm proposed by Eades.
Symvonis. and Whitesizes [13] requires O(n*’*) time and volume and introduces at most
7 bends per edge. In the same paper, they introduced a three-bends algorithm whose
complexity is linear with a volume of 27" and at most 3 bends. This algorithm is based

on augmenting the graph to a 6-regurlar graph and on a coloring technique.

Papakostas and Tollis present a linear time algorithm Interactive [14] that requires at
most 4.63n" volume and at most 3 bends per edge. Its key feature is incremental and it
can be extended to draw graphs with vertices of arbitrary degree. The arbitrary vertices
are represented by solid 3-D boxes whose surfaces is proportional to their degree. The
produced drawing has two bends per edge and guarantees no crossings and can be used

under interactive setting.

Woods [15] presents an algorithm for 3-dimensional orthogonal graph drawing based on
the movement of vertices from an initial layout along the main diagonal of a cube. The

result shows at most 4 bends per edge for a maximum of 6 degrees. The volume is at
most of 2.37n° and the total number of bends is always less than 72 . (m is the number
of edges). He also extends the 3-BENDS algorithm to produce 3-bend drawings with »’

13

+0(n') volume, which is the best known upper bound for the volume of 3-D orthogonal
graph drawings with at most three bends per edge [16]. Woods also in [17] presents the
DLM (Diagonal Layout and Movement) algorithm for 3-D orthogonal grid drawing that
combines the layout- and routing-based approaches and can produce general position

drawings with an average of at most 2 and 2/7 bends per edge.

The Dynamic Staircase algorithm presented in [18] introduces a volume bounded by

O(n*) for 3D orthogonal drawing of degree 6. This algorithm supports full dynamic

insertion and deletion of vertices and edges with O(n) time. In the same paper. it also
introduces a Dynamic Spiral algorithm, which draws in a bounding box of O(vn) X

O(V/n)x O(n) at the expenses of allowing 7 bends per edge.

An ad-hoc approach to 3-dimensional orthogonal graph drawing is presented in [19] as
Reduce-Forks. This algorithm starts with degenerate drawing with all vertices on one
point and repeatedly inserts planes splitting the drawing apart until all crossings are

removed.

Although the algorithms presented in above-mentioned papers are interesting and have
been explored deeply. They are generally good but complicated in analysis and
implementation. As we mentioned early, most of the aesthetic criteria optimization is a
trade-off between different metrics, and the problem is generally NP-Hard. In most cases,

we do not necessary require such limitations on bounds and bends of edges, therefore, in

14

later section; we will discuss a simple and efficient heuristic approach used in this report

for generating a 3D graphic network layout.

2.4 From 2D to 3D

Almost all of the early work on visualization has involved 2D presentations. Moving
network visualization from 2-dimensional to 3-dimensional has the obvious advantage of
obtaining an extra degree of freedom. However, it is beneficial to determine whether the
expense and complexity of using three dimensions could significantly improve

visualization effect and help understanding of a network diagram.

While there has been much work in 2D displays. the number of different strategies for
visualization has been quite limited. Most displays are simple graphs containing boxes
and arcs. However, in 3D spaces, the representation of visualized objects will be much
richer. In recent years, 3D graph drawing and visualization has drawn significant

attention from graph research community.

Recent advances in hardware and software technology for computer graphics open the
possibility of displaying three dimensional visualizations on a variety of low cost
workstations and a handful of researchers have begun to explore the possibilities of
displaying graphs using this new technology. Previous research on 3D graph drawing has
focused on the development of visualization systems; however, much work needs to be

done on the theoretical foundations of 3D graph drawing [7].

Most of the solutions devised in early days for utilizing 3D for data visualization involve
extending what is normally a 2D representation into a 3D one. This is desirable since it
maintains a 2D philosophy and presentation, allowing the viewer to see all the data at
once while also allowing the additional dimension to be used for a variety of purposes.
There are a variety of techniques that can be used here. Several of these techniques do a
2D layout and then extend the graph into the third dimension using some property of the
data. Other solutions to moving from 2D to 3D space attempt to actually use the full
capabilities of three dimensions without attempting to preserve a full 2D view from some

perspectives.

2.5 Rendering Engine and OpenGL

Combined advances in hardware and software technology for computer graphics
produces high cost-effective rendering facilities. Displaying three-dimensional
visualization on a variety of low cost workstations is feasible. Once we have mapped the
vertices and edges of a graph, we come to how to render the geometric objects on a

computer screen. These geometric objects are simply cubics, pipes and cylinders.

Choosing a rendering package is based on the following factors: availability, platform
independent and performance. There are a couple of rendering libraries available, for

example, OpenGL, QuickDraw 3D, Direct 3D, etc. Some of them are free packages

16

whereas others are proprieties of respective corporations. OpenGL turns out to be the

candidate suitable for our research purposes.

OpenGL is a cross-platform standard for 3D rendering and 3D hardware acceleration.
There are software runtime libraries available shipped with all Windows. MacOS, Linux
and Unix systems. It delivers fast and complete 3D hardware acceleration [20]. Our

experience of using it in this project turns out to be satisfactory.

2.6 OpenGL Features and its Use for Visualization

We choose OpenGL for its platform independent interface and its availability on different
platforms. Moreover, we are also interested in OpenGL's interactive 3D features that are
essential to the usability of a network visualization system. Bear in mind. a 3D network
visualization system should provide easy navigation, satisfactory 3D effect. and on-line

interactions with users.

2.6.1 Geometric Primitives

OpenGL is a software interface to graphics hardware. The interface provides about 150
distinct commands to specify the objects and operations needed to produce interactive
three-dimensional applications [21] [22]. All modules are built from primitive parts, and
OpenGL has functions for drawing primitive objects, including points, lines, and

polygons. Such commands might allow us to specify relatively complicated shapes such

17

as automobiles, parts of the body, airplanes, or molecules. There are also a few functions
for building familiar objects, such as spheres, cones, cylinders, toruses and teapots, and
certain sophisticated libraries built upon OpenGL provide these features. The primary use
in this project is to use OpenGL to build graphic representation of vertices and edges.
This is an easy task by using GLU and GLUT libraries. We use the familiar object cubic

for denoting a vertex, and a pipe attached with a cylinder as arrow to denote an edge.

2.6.2 Callbacks and Interactions

OpenGL also provides callback functions to handle user events. This enables users to
have interactions with the rendering system. If you want to handle an event such as
keystroke or mouse movement, you may register your functions with OpenGL callbacks.
With this feature, we can implement the visualization system to accept user inputs to
dynamically add/delete network nodes, reorganizing layout, and navigating the layout

insights.

2.6.3 Viewing 3D Model and Navigation

OpenGL provides rich transformation functions for viewing a 3D model in different
aspects. The effect of a transformation is to move an object, or a set of objects, with
respect to its coordinate system. These features allow the most advanced visual effects
when viewing a 3D model. The viewing transformation is used to position the eye
(camera) position and adjust the aim and the direction of viewing. The modeling

transformation is used to position and orient the model. You can rotate, translate, or scale

18

the model - or perform some combination of these operations. Note that, the viewing
transformation and the modeling transformation are complementary, the effect of
applying viewing and modeling transformation should be judged simultaneously [22].
The projection transformation is to determine what the field of view or view volume is
and therefore what objects are inside it and to some extent how they look. The project
transformation also determines how the objects are projected onto the screen, that is,
perspective or orthographic. In addition, the viewport transformation determines the size

and location of the available screen area into which the scene is mapped.

All the different kinds of transformation, or their combination, are essential to build a
visualization layout with easy navigating capacities. Layout of network graphs. especially
large graphs with hundreds nodes and links, will be of very limited use or no use at all if

there are no navigating abilities.

Many other OpenGL features may also help on building a more realistic and high
usability graphic layout system. For example, we can improve the illusion of depth by
simulating the lighting of a scene. We can also apply texture images onto geometric
objects to make them look more realistic. We will discuss details of how those features

can be used in this project in later section.

19

3 A Strategy for Constructing 3D Orthogonal Drawings

We choose to use a 3D orthogonal grid drawing to represent our network layout based on
the requirement of that, there should be no edge crossings. A 3D orthogonal grid drawing
can produce aesthetically pleasing layout. Network is a directed graph, and its nodes can
be represented at grid points in 3D spaces and the links are chains of segments parallel to
the axes. An arrow is drawn at the ends of a link to represent the direction of network

connection.

Strategies can be applied to the layout designer for assigning coordinates to vertices and
edges according to the desired aesthetic criteria. A general strategy would construct the
drawing in a sequence of steps. At each phase, we apply certain optimization criteria. The
focuses of optimization include vertex scattering, direction distribution, edge routing and

crossing removal.

z top
A
y back
left
X v right
o -
front bottom
(a) (b)
Figure 2: (a) 3D coordinates (b) possible free ports connecting vertex v

20

Each vertex of a 3D orthogonal drawing has six possible ports around it from incident
edges that may connect to the vertex; namely, top, bottom, left, right, front and back. The
two directions parallel to z-axis are rop (extending towards the positive part of z-axis) and
bottom (extending towards the negative part of z-axis), which enters v perpendicular to
the xy-plane. Front (extending towards the negative part of y-axis) and back (extending
towards the positive part of v-axis) directions are parallel to the y-axis and enter v
perpendicular to the xz-plane. The remaining two directions are parallel to the x-axis and
are called left (extending towards negative part of x-axis) and right (extending towards
positive part of x-axis), they enter v perpendicularly to the yz-plane. The six contiguous
grid points of vertex v is called its neighbors, which could be potential points for
connected vertex or edge joints. If the neighboring grid point is taken by either a vertex
or an edge joint (two grid lines merge to form a straight line is still considered as a joint),
this neighbor is considered hlocked and thus cannot be allocated for vertex point or edge
Joint. The opposite case will consider as free port, and consequently allocation of either

vertex or edge joint is allowed.

As shown in Figure 3, vertex v is placed on a grid point at the center, it neighbors left and
right are blocked since they are allocated to vertices w and «, and also its bottom
neighbor is also blocked since there is an edge joint on the bottom grid points. However,
its top, front and back neighbors are free since there are neither vertices nor edge joints at

these neighbors. To route an edge connecting nodes at grid points A and D, we cannot go

via the center point which is taken by v. Instead, we should seek a free port, for example,

B, and route along C and D. The total number of bends of routing this edge will be 1.

Figure 3: lllustration of free and blocked neighbors

All the grid points have a relative distance to others. The distance of v to « (or u to v) is

simply the sum of the absolute differences of the 3 axes. That is,
distance(u,v) = distance(v,u) = sum(abs(vx — ux) + abs(vy — uy) + abs(vz - uz))

(vx, vy, vz) and (ux, uy, uz) denotes the coordinates of grid point of v and u.

In the following sections, we present our strategy of how a vertex is placed in a graph and

how its incident edges are routed. The decision on where to place a vertex and how its

88
8%

incident edges will be routed depends entirely on the free ports around the adjacent
vertices and the criteria for optimization. The layout must be performed heuristically

since there is, in general, no optimal layout.

3.1.1 Placing Vertices and Controlling Distribution Balance

Our approach to choose which vertex to be placed first and where it will be placed based
on the intuition of that, vertices have higher degrees should be placed first; along with all
its incident edges and adjacent vertices, a kind of breadth-first strategy. This will localize
the edge routings in a small area as much as possible and reduces the chances of blocking

free ports by surrounding vertices and edge joints.

We initialize all the grid points as free and sort them according to the distance to the
origin of the coordinate. The next available grid point will be the one that is free and has
shortest distance to the origin of the coordinate. Since the grid points are sorted according
to their distance to the origin, the choosing of next available gnid points will control
where the vertex be placed and also the vertex distribution. As we can see, vertices
distribution will be balanced along all the six dimensions since they have equal distance

to the origin.

Assume we start from an empty graph; we choose the first vertex v that has the highest
rank of degrees and place it at the center of the coordinate. Then we look at all incident

edges of v, i.e, e(v, u). For each vertex u of e(v, u), we place it at next available grid

23

points, we also rout this edge e¢(v, u) immediately according to the shortest path
optimization criteria. Then we pick up the next vertex with highest degree, if it is not
placed, we place it at the next available grid points, and place all its adjacent vertices and

incident edges similarly. We continue such process until all the vertices were placed.

3.1.2 Routing Edge and Finding Shortest Path

An edge e(v, u) is routed depends on the placed grid points of v and « and the free ports
along the way that potentially connect these two vertices. We will discuss the algorithms

used to find a shortest path between two vertices.

3.1.2.1 Dijkstra’s Shortest Path Algorithm

Dijkstra’s Algorithm, introduced in 1959, provides one of the most efficient algorithms
for solving the shortest-path problem. In a weighted graph, it is frequently desired to find
the shortest path between two vertices. The weights attached to the edges can be used to
represent quantities such as distances, costs or times. In general, the distance along a path
is the sum of the weights of that path. The minimum distance from vertex u to v is the

minimum of the distance of any path from vertex u to v.

The basic idea of Dijkstra’s algorithm is, let we define a triple of <V, P, L> as <Vertex,

Path, Length>:
. initialize all vertices with <V, null, INFINITY>

2. push start vertex triple S into to priority queue PQ

3. while (PQ.size() < total vertices) do
o pop the vertex V from PQ
o get vertex V’s neighbors
o foreach vertex U that has edge to V
= if weight(V, U) + length (V) < length (U)
1. set U with trple <U, V+U, weight(V, U) + length (V)>

2. if no such U exist in PQ, add triple U into it, else update it

in PQ if the length is less

This algorithm will calculate the shortest path starting from vertex S to all vertices.

3.1.2.2 A* Shortest Path Algorithm

A* is probably a better choice for path finding since it can be significantly faster than
Dijkstra’s algorithm. It was developed in 1968 to combine heuristic methods (which use
information about the problem to be solved to make decisions) and formal methods
(which don't use problem-specific information, but can be formally analyzed). Unlike
most graph searching algorithms, A* utilizes a heuristic function that estimates how close
its current position is to the goal. By using the heuristic, it can guide its search to look in

the best direction first.

A* is like other graph-searching algorithms in that it can potentially search a huge area of

the graph. It is also like step-taking algorithms in that it starts out going straight for the

goal. A* can "backtrack” if going straight for the goal doesn' take you there. It does this

as it’s going by keeping track of possible path that might lead to a good path.

The heuristic function tells A* an estimate of thc cost from the current position to the
goal. To find the best path, A* uses both the heuristic and the cost of the best path from
the start to position goal. The sum of these two values is called the estimated cost. It's
important to choose a good heuristic function. A bad heuristic can really slow down A*

or make it produce bad paths.

We can take advantage of the naturc of a grid orthogonal graph. We know that, to
connect one vertex to the destination, the relative coordinate shows how close they are.
As we search along the path on each grid points for potential routing candidates, we can
estimate how far the current position to goal is by calculating thc distance from current

position to the goal. Thus we define our heuristic function as:
heuristic (p) = distance (p, g)

where p stands for the current position and g stands for the goal

Considering that, we do not need to find the shortest path to all vertices in graph, we only
need the shortest path to the destination vertex. Therefore, our algorithm is slightly
revised. Finally, the algorithm to find the shortest path between two vertices can be

depicted as the following:

1. initialize all vertices with <V, null, INFINITY>

2. push start vertex triple S into to priority queue PQ
3. while (PQ is not empty) do
a. pop the vertex V from PQ
b. get vertex V’s neighbours
c. foreach vertex U that has edge to V
i. if U is destination, exit (found shortest path)
ii. if cost(V, U) + length (V) + heuristic < length (U)
. set U with triple <U, V+U, weight(V, U) + length (V)>
2. add triple U into PQ

As we can see from the revised algorithm, we do not update the triples (delete the old one
and add the new one) when there is a better path. Instead. we just add the triple with the
new value (smaller length) into the priority queue. This is a trade-off between

performance and space.

3.1.3 Advantage, Disadvantage and Enhancement

The advantage of this approach is its runtime efficiency and simplicity in
implementation. Unlike other algorithms, this approach only needs one run of
computation to allocate coordinates of vertices and edges. It also satisfies the aesthetic
criteria in terms of drawing volume and minimized bends. The produced graph maintains
quite satisfactory layout with vertices well distributed. It produces a perfectly optimized

K6 graph with at most 2 bends of a minimum drawing volume.

Due to the time constraints and the nature of this report, however, the proposed approach
suffers some limitation on the degrees of a vertex. In the case of a K7 graph. where every
degree is used for an incident edge, there may have some edges that cannot be
successfully routed due to the intervention of vertices and edges that may block inner free
ports to connect to an outer vertex. This behavior can be well understood since the

algorithm is doing only one run of best-effort optimization.

Enhancement can be added upon the current implementation. One heuristic approach is
to, instead of arbitrary getting the next available grid point to place a new vertex., we
might place the vertex in random positions and then try to move them: a move is
considered “good” (and performed) if it reduces the number of edge crossings (and of
course. eliminating the failure to route an edge). otherwise it is considered “bad” [9].
However. this approach will involve substantial computation for backtracking and
finding the best optimization. Moreover, due to the heuristic nature of this approach. an

optimal layout with no failures on routing still cannot be guaranteed in clustered edges.

Another enhancement may adopt the Dynamic Staircase and Dynamic Spiral model as
we discussed early to reserve some free ports when placing the vertices [18]. The vertices
are embedded in an orthogonal staircase and spiral manner. The edge routings are

analyzed and described in a list of rules to formulate how the edge could be routed. This

approach requires detailed analysis of the routing cases and it is not a simple task in

implementation.

Interested readers are also referred to literatures in the Appendices for other drawing
techniques, such as Battista’s split&push approach [19] and the incremental approach

proposed by Papakostas [14].

4 Design

Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder [23]. One of the main design goals of this project is to achieve
reusability, which allows the system serve as a framework for future enhancements of

particular needs in 3D graph drawings.

4.1 System Architecture

With such goals in mind, the model-view-controller (MVC) [23] architecture is a perfect
candidate for this project’s architecture. The MVC can help decoupling components and
allows that changes to one can affect any number of others without requiring the changed
object to know the details of others. In our design. we adopt the MVC architecture to
minimize the coupling between drawing a graph and modeling a graph representation.
The view object is the component responsible for displaying a graph. the model object is
the component for modeling a graph layout, and the controller is responsible for taking
user interactions for navigating a graph, which has very limited use in current

implementation.

4.2 Components

The system is conceived according to an object-oriented methodology. It consists of three
main components that interchange information and services to each other, as shown in the

following figure. These components are responsible for parsing input, modeling graphic

30

representations and rendering the graph. The parser component takes a pre-defined
format of network description file and parses it into a data structure. The modeler
component applies certain layout algorithm upon a network and assigns coordinates for
vertices and edges. The viewer component takes graphic layout representation data and
renders a graph on screen by using a graphic package. We will discuss the design

decisions on how the components could share and exchange data later.

<<subsystem>> <<subsystem>> <<subsystem>>

<<subsystem>>

Network <<subsystem>>

Displayer

<<library >>
OpenGL

Figure 4: System architecture and components

4.3 Design Rationale

4.3.1 Hierarchical Data Structure for Network Representation

[t tumed out to be a tough decision on how should the three components share data. Let’s

discuss the possible approaches and choose the one best suits our needs.

The first one is to share one data structure across the three components. This data

structure will contain information about a network (e.g., node D, connections) as well as

31

the vertex and edge coordinates. The parser will firstly read in the descriptions from a file
and load the information into the data structure. Then the data structure is passed to

modeler to set coordinates and then the viewer uses those coordinates to render a graph.

Parser Modeler | = Viewer

"
o
.

Network

Figure 5: Case 1 of data structure for network representation

A second approach would use two different data structures. The first structure is used to
load the information by parser, and the second data structure is used for modeler to set
the coordinates and then the viewer uses the coordinates of graph (vertices and edges) for

displaying. This approach obviously follows the visualization pipeline processes.

Parser |c—=——=>| Modeler |=—=—>| Viewer

\\ 7 \\\ E
Network Graph

Figure 6: Case 2 of data structure for network representation

Both of the above approaches are not satisfactory. The first approach has a tight coupling
between three components. Since the parser only uses the information regarding to

network description, the rendering component only concems vertex and edge coordinates

(possibly also a tag for the network connection and nodes), the coupling resulting from
the shared data structure makes it hard to develop the components in parallel. And also.
the change of the data structure at any stage will affect the other components. The second
approach does not retain network information (e.g., network node and connection tag)

that we may need to display them when rendering a graph.

We introduce a hierarchy of information that could be used by parser. modeler and
viewer respectively. We consider a network consists of nodes and connections. which is
the description of a network and are mainly used by the parser to retricve data. Node and
connection can be abstracted as vertex and edge in a graph term; those two types of
information are used by modeler to assign layout coordinates. Vertex and edge are also
used by viewer to render a graph. We come up with a dada structure as depicted in the

following:

Parser |t=——>| Modeler |c—=>| Viewer

;| Connection |isa ’ Edge

Figure 6: Case 3 of data structure for network representation

33

The above strategy has the obvious advantage of enabling parallel development of parser
and viewer, and the change of one structure does not affect the other components that are
not using it. It also conceptually separates the processing phases into data acquisition.

data processing, and rendering in a pipelined fashion.

4.3.2 Abstracted Viewer Interface

It is desirable to separate the interface of displaying a graph from the details of how a
graph is displayed. This abstraction allows us to easily extend the system to render a
graph in different forms, or using different rendering packages. For example. we may
display the layout representation in a textual histogram. render a 3D graph in 2D spaces,
or switch the rendering package from OpenGL to QuickDraw etc. Thus. we introduce a
base class for defining the interfaces as Viewer. and a concrete class GraphicViewer for

viewing the graph.

4.3.3 Wrapping OpenGL API

The rendering functionalities of a graph are built upon lower-level 3D rendering library
of OpenGL. The OpenGL APIs are basically C functions. and its use has to follow certain
procedures. Thus, developers are forced to understand those details and are exposed to
another different technical domain. We would like to hide the OpenGL details from
developers and encapsulate its APIs in C++ classes. The Displayer class is introduced for

that purpose.

34

4.4 Classes and Object Model

44.1 Parser

There is only one class in the parser component. which is the Parser class. This class is
responsible for parsing a network description file and loading it into the system. The
network description file serves as a communicating portal to other systems, it has well

defined syntax of what a network description file format is.

parse(Network®, istream&) : Boolean |

~ Nework

Figure 7: Object model of parser component

4.4.2 Network

The network component consists of class Network, class Node, class Connection, as well
as class Vertex and class Edge. Class Network is the core of the system, which serves as
a composite of retaining network information as well as chaining the rendering operation
of its components. Class Node and Connection match to the real world entities of a
network node and connection, as such, they maintain information associating to a
network’s hosts and wires. Class Vertex and Edge are the abstraction of a network node

and connection in a graph term that maintain the coordinates of vertices and edges.

[
i Drawable |

! |
- 4
! :
S S i
| Edge . " Network ' . Vertex
TN oy~ w
‘(/ \‘\ s
' RN X
7)
‘/ N
! Connection - = = s
[Point ! I Node
L ! ; ' :

Figure 8: Object model of nenwork component

The hierarchical design of Node versus Vertex, Connection versus Edge demonstrates
how we model the network and represent their characteristics in object-oriented
methodology. Conceptually, a Node is a Vertex in graph abstraction: similarly a
Connection is an Edge. The hierarchical design minimizes the dependencies between

different components and allows us to develop then independently.

Both Network and Edge and Vertex share the characteristics of a drawable object. That
means, by inheriting the interface of base class Drawable, we can draw a Network by
chaining the operation to draw its vertices and edges. This polymorphism makes the

drawing generic, regardless what the real objects are drawn.

36

4.4.3 Modeler

The modeler component is essentially a layout designer, which is responsible for
assigning coordinates for vertices and edges according to a specific drawing algorithm. It
takes the graph relationships of vertices and edges as input and assigns the coordinates in
either 2D or 3D spaces based on the chosen drawing method and algorithm. There are
two classes in this component. class Modeler and class Mesh. Modeler applies certain
graphic layout algorithm on a predefined 3D space. which is a 3D mesh. Mesh is a utility

used by Modeler to manage 3D grid coordinates.

~Network __ _ __. Modeler

Point

: L aintntt N T“

o 1.
.

Edge ! Vertex Mesh

Figure 9: Object model of modeler component

444 Viewer

The viewer component is responsible for displaying a produced graph visually on a
computer screen. This component consists three classes, a base class Viewer;
GraphicViewer, which is a specification of Viewer; and a Displayer. Class Displayer
wraps OpenGL APIs and hides the rendering library from clients. It provides uniformed
methods for displaying a graph. Base class Viewer provides interfaces for drawing (or

displaying) the layout representation, whereas GraphicDisplayer is a subclass of Viewer

37

that implements methods of drawing 3D geometric objects. The abstract interface defined

by Viewer provides flexibility to represent a graph layout in other forms, for example, in
2D or textually.

—0.1 ! —
;. Viewer = s Drawable

. GraphicViewer ' Network

OpenGL o

Figure 10: Object nodel of modeler viewer

4.5 Behavior Model
There are no complicated behaviors of the system. The sequence of call is simply as

depicted in the following:

T mang . n_Netwok g Parser " m_Mogeler v_ ¢ Dispiayer
! ! GraphicViewer ,
. parse(Network®.istgam*)
N -
o . layout{Network")™
i -
new - f
e : e
| SetVewer(Viewer') =
e ‘
b - . load(Drawable®)
T > :
P _ show() Vi
- L ; > display()
i i i

o

Figure 10:Sequence diagram

38

From the above sequence diagram, we can see the sequences of object interactions. The
main function will create a Network object; this object is passed to the Parser object for
parsing (call parse()). After the parsing is done, the Modeler object is initialized and
layout message is passed to it with a Network object. This call will setup all the
coordinates of the graphic layout. A GraphicViewer is then created and setViewer is
passed to the Network to point to the Viewer object for graphic display. The Network
object is then loaded to the Displayer and the show() message is passed to it. After that,

the Displayer is in the main loop of display().

39

5 [Implementation Details and Problems Solved

5.1 Parsing: Grammar and Pesudo-code

Parser provides solely one method, which takes an input file and loads the information
into a network. The parser creates a Node for each entry of the input file and creates a
Connection for each item in the in- and out- connection list. We delegate checking of
duplicated nodes and connections to the Network since the parser does not retain

information of a network as a whole. whereas a Network does.

The parsing follows the following grammar:

network: entry*, eof

entry: node, (connection)*, endl
node: id

connection: conn_direct, id, eq_sign, node
conn_direct: Tro

id number

eq_sign: =

The pseudo-code for reading in the network information is:

40

For each line of entry,

Read in the Node ID,

Create Node,

While {more connections)

Read in the connection properiies

Create new Connection

If (is in-directionCconnection)

Add indirection connection to Node

Else if (is out-directionCconnection)

Add out direction connection Node

Add connection into Network (network check dups)

If (add Connection return fulse)

Delete Connection // duplicate

Add Node into network (network check dups)

If tadd Node returns false)

Delete Node // duplicate

5.2 Node and Connection Relationship

There are many ways to model the relationship of Node and Connection [24]. We can
model it as many-to-many association between nodes and connections are treated as a
linked attributes. We can also do it as many-to-many association between connections
and nodes are treated as linked attributes. Another way is to treat both nodes and

connections as objects and have associations to nodes for each end of the connection.

41

We need a binary traversal of association for efficiency when modeling vertices and
edges. That is, we should be able to easily get the two end nodes from a connection, and
also we can easily query all the in- and out connections of a node. However, this will
introduce a cyclic dependency between Node and Connection if we implement the
association by embedding a list of pointer to Connections (in-connection list and out-
connection list) in class Node and embedding a pointer to Node as two ends (from-end
and to-end) in class Connection. The problem can be solved by introducing a primitive
type, e.g. Nodeld as int, shared by both of Node and Connection. In this way, class Node
contains a list of Nodeld for its in- and out- connections and Connection will have two

Nodelds as for the two ends of nodes.

5.3 Using STL priority_queue

In our implementation of finding the shortest path, according to the algorithm, we need to
store the triple <Vertex, Path, Length> in a priority queue. The priority is based on the
length, i.e., the cost from the starting vertex to where the current position is. The triple

having the shortest length will have the highest priority and it will be guaranteed as the

top element.

Standard C++ library (STL) provides a priority_queue [25][26], which is an adaptor that
provides a restricted subset of container functionality: it provides insertion of elements,

and inspection and removal of the top element. It is guaranteed that the top element is the

42

largest element in the priority_queueue, where the function object Compare is used for

comparisons. Priority_queue does not allow iteration through its elements.

The restriction on iterating through its element can be overcome by slightly revising the
algorithm. Instead of maintaining the processed queue (CLOSED) and the pending queue

(OPEN), we could just jump out the processing when our goal is met.

We need to define a function object, or a functor, to be passed to the priority_queue for
comparison. Bear in mind that, the standard behavior of priority queue is the largest value
being sorted as top element, we need to redefine this behavior as the smallest value of
length to be sorted as the top element. The defined comparison functor looks like the
following:

struct Compare (
bool operator() (const Vertex& x, const Vertex& y) const {
// we need the opposite to get the least length

return x->length() > y->length();

5.4 Drawing Text in OpenGL

It is desirable to draw a text string to denote the network node names. There are three
approaches to rendering fonts in OpenGL: raster fonts, geometric fonts, and texture

mapped fonts. Each method has its own advantages and disadvantages [27].

43

Raster fonts: Use giBitmap or giDrawPixels to draw a rectangular bunch of pixels onto
the screen. The disadvantage of using bitmap fonts is that they are not possible to rotate
and scale. However, there is one significant advantage to raster fonts on software-only

OpenGL implementations, they are likely to be faster than the other approaches.

Geometric Fonts: Draw the characters of the font using geometric primitives - lines,
triangles, whatever. The disadvantages of this are, it is bad for performance, and it is
difficult in designing fonts. The advantage is that geometric fonts can be scaled, rotated,

twisted etc as normal geometric objects.

Texture-Mapped Fonts: Typically, the entire font is stored in one or two large texture
maps and each letter is drawn as a single quadrilateral. The advantage of this approach is
its generality. Texture fonts can be rotated and scaled. It's easy to convert other kinds of
fonts into texture maps. It is probably an order of magnitude faster than either raster or

geometric fonts.

Many resources can be found on how to draw a text in OpenGL [27], and thanks to their
hard work and sharing the knowledge and sources. It would be a good idea to use existing
library instead of reinventing the wheel. In this project, we adopt Brad Fish’s glFont [28].
For detailed information on how it works and how to use it, please refer to the source

files glfint2.h and gifont2.cpp.

6 Experimental Results

One important feature of the drawing strategy described in this report is its simplicity.
We have implemented the system in C++ using GNU gcc 2.95 in a Cygwin (version
2.249.2.2) environment on Windows. It uses C++ STL containers and algorithms
extensively. The rendering package uses OpenGL libraries bundled within the above-

mentioned Cygwin.

The implemented program can read network descriptions either from a file or from
standard input. The format of the input file is attached in the Appendices. The program
will display the gencrated 3D layout on screen, and it also produces a log file recording
the generated coordinates of vertices and edges. The format of the log file is also attached

in the Appendices.

User can explore the graphic network displayed on screen from different angels and
distances. By pressing the left mouse key or right mouse key, the displaying will be in
animation mode to rotate the graph in left-hand side or right-hand side direction. The left
and right arrow keys adjust displaying angels similarly. Pressing the up arrow key will
zoom out the graph and let user look at it from a far distance for an overall view. The

down arrow key will drag the graph close to the user and let the user have clear insights.

Our trial tests show that the implemented program runs efficiently. Although, due to time

constraints, we have not conducted comparisons to other implementations or algorithms,

45

we can say that, due to the algorithm’s simplicity and efficiency (only one run of

processing is needed), it should give quite satisfactory performance.

DG aphe Setwork | ayout

Figure 11: Generated K6 graph

We consider the number of bends, the average edge length and the volume of the graph
as the readability of the graph. Extensive tests have not been available due to time
constraints. From the layout generated for a K6 graph, we obtained as good
measurements as other algonthms (Reduce-Forks) [19] in terms of the number of bends

(achieved a maximum of 2 bends) and drawing volume.

46

No algorithm can be considered “the best”. The tradeoff between efficiency and
readability in this project tends to favor efficiency. As mentioned in early sections, the
algorithm may fail to route edges with no free ports (that may be blocked by others) to
connect to. This is understandable for a heuristic approach and its best-effort nature of the
algorithm. The generated K7 graph layout shows the defect of this algorithm with failed

edges been indicated as *“failed™.

I (. aphu “etwork [ayout

Figure 12: Generated K7 graph

47

7 Conclusions and Future Work

In this report, we presented the design and implementation of an objected-oriented
network 3D graphic layout system built upon OpenGL. We also introduced a simple and
efficient layout strategy for 3D orthogonal grid drawing of graphs of maximum degree of

6. Our trial tests show satisfactory efficiency and layout aesthetics.

The implementation provides an easy-to-adapt graphic drawing framework for
visualizing a network, as well as for experimenting different layout algorithms in a
pipelined fashion. The generated layout coordinates may be used by other rendering
entitics. Enhancement to the framework can be made to introduce components for parsing
the generated coordinates and feed it directly into other rendering engines. Beautifying
the drawing geometric objects by using OpenGL features and enhancing user interactions

can be beneficial.

Improving the heuristic in placing vertices of the proposed strategy and providing
backtracking when a bad placing decision is made is a desirable enhancement. And also,
experimenting a strategy to reserve some free ports to ultimately eliminate failed routings
is also valuable. More tests and comparisons to other algorithms in terms of efficiency
and readability are an area for more work. Determining the trade-offs in applying

heunistics is also an interesting problem.

48

References

[1] Jacques Bertin, Graphics and Graphic Information Processing, Walter de Gruter

&Co., Berlin, 1981

[2] Stephen G. Eick, “Aspects of Network Visulization”, Computer Graphics and

Applications, Vol. 16, No. 2, pages. 69-72, March 1996.

[3] R. F. Cohen, G. Di Battista, R. Tamassta, and [. G. Tollis, “A Framework for

Dynamic Graph Drawing”, Technical Report No. CS-92-34, August, 1992
[4] Isabel F. Cruz, Roberto Tamassia, Graph Drawing Tutorial

[5] G. Di Battista, P. Eades, R. Tamassia and [.G. Tollis, "Algorithms for Drawing

Graphs: An Annotated Bibliography”, Jun, 1994

[6] Lukas Mroz and Helwig Loffelmann and Eduard Groller, Selected Trends in
Scientific Visualization, Institute of Computer Graphics, Vienna University of

Technology, Austria

[7] Roberto Tamassia, Advances in the Theory and Practice of Graph Drawing,

Department of Computer Science, Brown University, 1996
[8] Roberto Tamassia, GRAPH DRAWING, 1997
[9] Peter Grogono, Layout Designer Requirements, Concordia University, Sept. 2001

{10] Enc W. Weisstein, NP-Hard Problems - A Wolfram Web Resource,

http://mathworld.wolfram.com/NP-HardProblem.html

(11] T. C. Biedl. Heuristics for 3d-orthogonal graph drawings. In Proc. 4™ Twente

Workshop on Graphs and Combinatorial Optimization, pages 41-44, 1995

49

[12] P. Eades, C. Stirk, and S. Whitesides. The Techniques of Komolgorov and

Bardzin for Three Dimentional Orthogonal Graph Drawings. Inform. Process. Lett.,

1996

{13] P. Eades, A. Symvonis, and S.Whitesides. Two Algorithms for Three
Dimensional Orthogonal Graph Drawing. In S. North. editor, Graph Drawing

(Proc.GD’96), volume I 190 of lecture notes, pages 139-154, Springer-Verlag, 1997

[t4] Achilleas Papakostas and Ioannis G. Tollis, Algorithms for Incremental
Orthogonal Graph Drawing in Three Dimensions, Journal of Graph Algorithms and

Applications, vol. 3, no. 4, pp.81-115, 1999

[15] David R. Wood, An Algorithm for Three-Dimensional Orthogonal Graph
Drawing. In S. H. Whitesides, editor, Graph Drawing (Proc GD '98), volume 1547,

1998

[16] David R. Wood, Minimizing the Number of Bends and Volume in Three-
Dimensional Orthogonal Graph Drawings with a Diagonal Vertex layout. Technical

Report CS-AAG-2001-03, The University of Sydney, 2001

[17] David R. Wood, The DLM Algorithm for Three-Dimensional Graph Drawing in
the General Position Model, Technical Report CS-AAG-2001-04, The University of

Sydney, 2001

[18] M. Closson, S. Gartshore, J. Jonansen, S. K. Wismath, Fully Dynamic 3-
Dimensional Orthogonal Graph Drawing, Jourmal of Graph Algorithms and

Applications, vol. 5, no. 2, pp 1-34, 2000

50

[19] Giuseppe Di Battista, Murizio Patrignani, A Split&Puch Approach to 3D
Orthogonal Drawing, Joumnal of Graph Algorithms and Appilications, vol.4, no. 3, pp.

105-122, 2000
[20] OpenGL Overview, http://www.opengl.org/developers/about/overview.html|

[21] Mason Woo. Jackie Neider, Tom Davis, OpenGL Programming Guide, 2™

Edition, ISBN 0-201-46138-2, 1996

[22] Peter Grogono, Getting Started with OpenGL, Course Notes for COMP 471 and

COMP 676, Department of Computer Science, Concordia University, 1998

[23] Ench Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns,

Addison Wesley, ISBN 0-201-63361-2, 1994.

[24] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy. William
Lorensen, Object-Oriented Modeling and Design, Prentice Hall, ISBN 0-13-629841-

9, 1991

[25] Bjame Stroustrup, The C++ Programming Language, Special Edition, Addison

Wesley, 2000, ISBN 0-201-70073-5.
[26] Standard Template Library Programmer’s Guide, http://www.sgi.com/tech/stl/

[27] Gerard Lanois, Survey of OpenGL Font Technology,

http://www.opengl.org/developers/code/features/fontsurvey/. 2001

(28] Brad Fish’s glFont Version 2.0, http://students.cs.byu.edu/~bfish/glfont.php

51

Appendices

A Example of inputs of network description (K6)

I1=2 I2=3 I3=4 I4=5 I5=6
0l1=1 I2=3 I3=4 I4=5 I5=6
O0l=1 02=2 I3=4 I4=5 I5=6
01=1 02=2 03=3 I4=5 I5=6
01=1 02=2 03=3 04=4 I5=6
0l=1 02=2 03=3 04=4 05=5

NN B W N

B Example of generated layout coordinates (K6)

1 p(0,0,0)

2 P{64,0,0)

3 pP(0,64,0}

4 P(0,0,64)

5 P(0,0,-64)

6 P(0,-64,0)

2->1 P(64,0,0)->P(0,G,0)

3->1 P(0,64,0)->P(0,0,0)

4->1 P(0,0,64)->P(0,0,0)

5->1 P(0,0,-64)->P(0,0,0)

6->1 P(0,-64,0)->P(0,0,0)

3->2 P(0,64,0)->P(64,64,0)->P(64,0,0)
4->2 pP(0,0,64)->P(64,0,64)->P(64,0,0)
5->2 P(0,0,-64)->P(64,0,-64)->P(64,0,0)
6->2 P(0,-64,0)->P(64,-64,0)->P(64,0,0)
4->3 pP(0,0,64)->P(0,64,64)->P(0,64,0)
5->3 P(0,0,-64)->P(0,64,-64)->P(0,64,0)
6->3 P(0,-64,0)->P(-64,-64,0)->P(-64,0,0)->P(-64,64,0)->P(0,64,0)
5->4 P(0,0,-64)->P(-64,0,-64)->P(-128,0,-64)->P(-128,0,0)}->P(-
128,0,64)->P(-64,0,64)->P(0,0,64)

6->4 P(0,-64,0)->P(0,-64,64)->P(0,0,64)
6->5 P(0,-64,0)->P(0,-64,-64)->P(0,0,-64)

