INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with smali overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

Trellis Decoding of 3-D Block Turbo Codes

Bo Yin

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

May 2002

© Bo Yin, 2002

i+l

National Library

Bibliothéque nationale

of Canada du Canada
- e o
ggﬁggnphicaggrvices gqrvm%ﬁ.égraphiques
395 Wellington Street 395, rus Wellington
Onawa ON K1A ON4 Onawe ON K1A ON4
Canada Canada
Yar Sie Votre réddvence
Ouwr e Nore rédérance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propnété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-72917-6

ABSTRACT

Trellis Decoding of 3-D Block Turbo Codes

Forward Error Correction (FEC) technique provides a method to detect and
correct errors in transmitted data. It is also a valuable technique to reduce the
power requirement, thus have an important role in these systems. This reduction
in power requirement is achieved at the expense of an increase in bandwidth re-
quirement. The objective is usually to find error control techniques that give good
tradeoff between power and bandwidth requirements. In this thesis, we present re-
sults for FEC technique using Turbo Block Codes and Turbo Product Codes. It is
shown that these codes, not only in theory but also in hardware implementation.
are capable of providing significant performance gains over other error-correction
schemes.

This thesis investigates Trellis based iterative decoding techniques applied to
concatenated coding schemes, Turbo Block Codes. We use RM(n, k) to construct
2-D and multi-dimensional Turbo Block Codes. Our objective is to get high code
rates and long block sizes for more bandwidth efficiency and improving the perfor-
mance of the optimised maximum @ posterior decoding algorithm. The simulation
results really show that multi-dimensional block turbo codes can achieve high coding
gains at acceptable delays for real-time and data channels. Turbo Product Codes
are investigated in this thesis to compare with Turbo Block Codes.

For reducing the complexity of hardware implementation, we introduce the
suboptimal algorithm for the decoding of the proposed coding schemes. The algo-

rithm MAX-Log-MAP is derived from optimal MAP decoding algorithm with the

il

approximation to avoid a lot of complex computations. The suboptimal MAX-Log-
MAP algorithm is combined with correction values in order to avoid performance
degradation. This decoding strategy presents a good compromise between perfor-
mance and complexity, making it very attractive for practical applications. For the
easy hardware implementation, quantization would be discussed brieflv. The Addi-
tive White Gaussian Noise channel model and different modulations like BPSK and

QPSK are used in the simulations.

iv

It is dedicated to my parents and my family

Thanks for all your love and support...

--B. Y.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Dr R. M. Soleymani for
introducing me to the area of turbo codes for wireless and satellite communications,
offerring the opportunity to me to attend the CITR conferrence, and for providing
me with continuous feedback and encouragement during the period I worked in this
thesis.

I would like to thank Miss Usa Vilaipornsawai and Miss Gao Yingzi for many
discussions and suggestions pertinent to this work.

[would like to thank Dr Yousef R. Shayan for taking his time to review my
preseniation and give me some good suggestions in my thesis, and thank all profes-
sors for their time to serve on my defense committee.

Special thanks to my husband and all my friends for their sincere support and
making my stay here an enjoyable one. I would like to thank the help and sup-
port from the faculty members of Electrical and Computer Engineering and all my

colleagues working in Wireless and Satellite Communications LAB.

vi

TABLE OF CONTENTS

LISTOF TABLES i X
LISTOF FIGURES i xi
LIST OF ABBREVIATIONS AND SYMBOLSxii
1 Introduction 1
1.1 Coding e 1
1.2 TurboCodes. 4
1.3 Block TurboCodes 3
1.4 Thesis Structure 6

2 Turbo Codes 8
2.1 Historvof TurboCodes. 8
2.2 TurboCode Encoder 10
2.2.1 Parallel concatenationof codes 10

22,2 Interleaver 11

2.2.3 Puncturingof TurboCodes 14

2.3 TIterative Decoding of Turbo Codes 16
2.3.1 Log-Likelihood Ratio 16

2.3.2 Soft Channel Outputs 18

2.3.3 Principles of Iterative Decoding 19

2.4 Decoding Algorithms for Turbo Codes 21
24.1 MAP Algorithm Lo 22

2.4.2 MAX-Log-MAP Algerithm 24

2.4.3 MAX*®Log-MAP Algorithm 26

244 SOVA .. 28

2.4.5 Chase Algorithm 30

25 Summary ... L. e e e 31

vii

3 The Reed-Muller Block Turbo Codes 33

3.1

3.3

3.4

The Reed-Muller Codes 33
3.1.1 Introduction 33
3.1.2 Construction of the Reed-Mullercodes 33
3.1.3 Minimal Trellis for Linear Block Codes 36
The Reed-Muller Block Turbo Codes (2-dimensional) 39
3.2.1 Construction of 2-dimensional RM Turbo Codes 10
3.2.2 2-Dimensional RM BTC Encoders 12
3.2.3 Iterative Decoding for 2-Dimensional RM BTCs 13
Results. 50
3.3.1 Simulation Results for RM BTC Using MAP Algorithm. . . . 30
3.3.2 The Impact of [teration 51
Conclusion 32

4 RM Block Turbo Codes (3-dimensional) Implementation Design

and TPC 35
4.1 Three-dimensional RM Block Turbo Codes 33
4.1.1 Construction of 3-dimensional RM Turbo Codes 56
4.1.2 Three-Dimensional RM BTCs Encoders 38
4.1.3 Decoding Scheme for 3-dimensional Block Turbo Codes 39
4.2 Quantization for Decoders of BTCs 63
4.2.1 TheSystem Model 63
4.2.2 Channel Input Quantization 64
4.2.3 Simulation Results for Quantization 66
4.3 Comparison the BTCsin3Dand2D 67
4.3.1 PuncturingRule 63
4.3.2 SimulationResults 00 0L 69
4.4 Turbo Product Code 70
4.4.1 TPCs Code Construction. 70

viii

4.4.2 TPC Coding Scheme

4.5 Conclusion.

5 Applications

51 DVB-RCSStandard _ .

3.1.1 ATMeells
9.1.2 MPEG2 Packet . . .

6 Conclusion and Future Works

6.1 Conclusion for the Thesis. _ .

6.2 Future Works

Bibliography

.......................

.......................

.......................

ix

81
81
83

84

2.1

3.1

4.1
4.2
4.3

4.4

LIST OF TABLES

Puncturing a Turbo Code increases its rate without changing any of

its basic attributes 15

Look-up table for correction term used in MAX*-Log-MAP algorithm 26
Example RM block turbo codes with 2-dimensional using in this thesis 41

Example of RM block turbo codes in 3-dimension as used in this thesis 36
The received sequence corresponding to the various % for RM (32, 26)% 65
Comparing the basic information between puncturing and non-puncturing
for RM(32,26)* and RM(8,4) 63
Comparing the code rate between TPC and BTC with same compo-

nent codeused

LIST OF FIGURES

1.1 Simplified block diagram of a coded system, ...

2.1 Serial Concatenation model

2.2 Parallel Concatenation model

2.3 Turbo Code Encoder with PCCC structure.
2.4 Realization of the systematic convolutional encoder with feedback . .
2.5 A block interleaver for turbocodes
2.6 Puncturing of rate 1/3 turbo code to rate /2 oo
27 BPSKmodulator
2.8 AWGN channel with distribution N (0, 62)
2.9 lterative decoding procedure with two SISO decoders

2.10 Comparison with MAP, MAX-Log-MAP, MAX*-Log-MAP and Log-
MAP algorithm for R1/(32, 26)?, iteration 5, R=0.68.

3.1 Structure of 2-dimensional RM block turbo code
3.2 Two-dimensional RM block turbo code encoding model
3.3 QPSK model used in 2-dimensional RM BTC
3.4 AWGN channel with distribution N(0, 02)
3.5 Iterative decoding procedure with two SISO decoders
3.6 Simple trellis structure
3.7 TIterativedecoding
3.8 Comparison of various decoding algorithms for RM(8, 4)%, R= 0.33,
fteration 3 L
3.9 Comparison of various decoding algorithms for RM(16, 11)%, R=

0.52,iterationd

4.1 The (n, k) 3-Dimensional block turbo code constructured from (n, k,)x

(n2, k)= (n3, k) RM Codes _ 37
4.2 3-dimensional RM block turbo codes encoding model 58
4.3 Iterative decoding process for 3-dimensional block turbo code 61
4.4 System model including quantization M0 63
4.5 The distribution of received sequence in AWGN channel 65

4.6 The effect of quantization received sequence for 3-dimensional RM (32,26) 66
4.7 Simulation for different bit quantization schemes for two-dimensional

block turbocode 67
4.8 Comparing the 3D and 2D on BER, performance, example 1 of R ((8, 4)° 70
4.9 Comparing the 3D and 2D on BER performance, example 2 of R1/(32, 26)? T1
4.10 Construction of Turbo Product Code C for 2-dimensional 2
4.11 Comparing of BTC and TPC with component R1/(32, 26) in 2-

dimension, iteration 5. e

9.1 Turbo codes for ATM cell-based transmission 78

Shortened RM({64. 57)? with code rate R = 0.733 applied for MPEG

(@]
()

packet 9

xii

LIST OF ABBREVIATIONS AND SYMBOLS

ADSL
APP
ARQ
AWGN
ATM
BCH
BCJR
BER
BPSK
BTC
CTC
CCSDs
CITR
CRSC
DSP

DVB-RCS

ETSI
FEC
FER
GF
IP
LLR
MAP
MLD

Asymmetric Digital Suberscriber Line

A Posteriori Probability

Automatic Repeat reQuest

Additive White Gaussian Noise

Asynchronous Transfer Mode
Bose-Chaudhure-Hocquenghem
Bahl-Cocke-Jelinek-Raviv

Bit Error Rate

Binary Phase Shift keying modulation

Block Turbo Code

Convolutional Turbo Code

Consultative Commitee for Space Date Syvstem
Canadian Institute for Telecommunications Rearch
circular recursive systematic convolutional

Digital Signal Processing

Digital Video Broadcasting standard for Return

Channel via Satellite

European Telecommunications Standards Institute
Forward Error Correction

Frame Error Rate

Galois Field

Internet Protocal

Log-Likilihood Ratio

Maximum A Posteriori

Maximum-Likelihood Decoding

xiii

MPEG
MSGM
OFDM
PCCC
PRBS
QPSK
RCST
RM
RRE
RS
RSC
SISO
SOVA
TC
CTC
UMTS
VA

Moving Picture Experts Group

Minimal Span Generator Matrix
Orthogonal Frequency-Division Multiplexing
Parallel Concatenated Convolutional Code
PseudoRandom Binary Sequences
Quadrature Phase-Shift Keying

Return Channel Satellite Terminal
Reed-Muller

Row-reduced Echelon

Reed-Solomon

Recursiv Systematic Convolutional
Soft-Input Soft-Output

Soft-Output Viterbi Algorithm

Turbo Code

Convolutional Turbo Code

Universal Mobile Telecommunication Service

Viterbi algorithm

Xiv

Chapter 1

Introduction

1.1 Coding

Let us start with a communication system. which connects a data source to
a data user through a channel. Because the channel is subject to various tvpes of
noise, distortion, and interference, the channel output differs from the channel input
[1]. The Figure 1.1 provides a rough idea of a general information transmission

system.

Information| ! Transmiuer
Source

(Encoder)
Noise —————s= Communication
Channel
Information Receiver
—————| —————___
sink (Decoder)

Figure 1.1: Simplified block diagram of a coded system

Coding theory, is the study of methods for efficient and accurate transfer of

information from one place to another. It deals with the problem of detecting and

1

correcting transmission errors caused by noise in the channel. The theory has been

developed in order to minimize the effect of noise from source to the destination.
Recent advances in digital electronic devices have made the implementation

of high speed and powerful encoders and decoders possible. We have to design the

encoder,'decoder pair such that, they

—

. are capable of fast encoding and decoding,

[8V]

can correct most of the errors due to the channel noise, i.e., have very low

BER.
3. can ensure maximum transfer of information per unit of time, and

1. the cost of implementing the encoder and decoder falls within the acceptable

limits.

There are two different types of codes in common use at present [2]: block codes and
convolutional codes. The & bit length message u is encoded as an n bit long code
word ¢, by predetermined rules, n— & redundant bits are added to the & information
bits to form the n coded bits., where & < n: therefore. corresponding to the 2k
different possible messages, there are 2* different possible code words at the encoder
output. This set of 2% code words of length n is referred to as an (n, k) block code.
The ratio R = k/n is called the code rate. The encoder for a convolutional code
also accepts k-bit blocks of the information sequence u and produces an encoded
sequence ¢ of n-symbol blocks. The difference from block codes is that the encoder
for the convolutional codes has a memory order of m and the encoded bits depend
not only on the current k input bits but also on past input bits because of the
memory order of m. The set of encoded sequences produced by a A-input, n-output
encoder of memory order m: is called an (n, k, m) convolutional code. The definition

of code rate is the same as the block codes.

()

In terms of digital communications systems, the maximum average mutual
information which can be exchanged through a channel is called the capacity of
the channel and is denoted by C. In 1948, Shannon demonstrated that given a
suitable channel encoder and decoder we can transmit digital information through
the channel at a rate up to the channel capacity with arbitrarily small probability of
error. Shannon’s famous capacity bound for a band-limited additive white Gaussian

channel(AWGN) is

C =log,(1+ Z2), (11)
./\'0

bits per two-dimensional symbol (bit,’sym), where E| is the energy per two dimen-
sional symbol and Ny /2 is called the double sided noise density. E,/\y is called the
signal to noise ratio (SNR) for two dimensional modulation schemes. For reliable
communication, the above function can be written in terms of bandwidth efficiency

as
n < logy(1+n—), (1.2)

where Ej is the energy per information bit. \We can see the minimum E,/\j that
can be achieved is In(2) or -1.6 dB when 5 tends to zero. This minimum SNR per
bit (-1.6 dB) is called the Shannon limit [11] for an additive white Gaussian noise
channel.

There are two protection schemes for minimization of the effect of noise when
a transmitting message through a physical channel. They are: Forward Error Cor-
rection (FEC), that is, using error correcting codes that are able to correct errors
at the receiving end, or Automatic Repeat reQuest (ARQ) systems. Recent devel-
opment in FEC technology has yielded turbo coding hardware capable of providing

significant performance gains over other error-correction schemes [12].

1.2 Turbo Codes

A newly invented forward error correcting code, Turbo Code (TC) [3] has been
shown to be so powerful that the Shannon limit finally becomes practically mean-
ingful. Impressive simulation results were presented in [3] achieving a bit error rate
(BER) of 107 at a SNR of only 0.7 dB. The turbo code(or Convolutional Turbo
Code (CTC)), which is parallel concatenation of two relatively simple convolutional
encoders and an interleaver, can provide significant coding gains over the classically
used cascading a block code (the outer code, typically a Reed-Solomon code) and a
convolutional code (the inner code) in a serial structure [3]. Because of their pow-
erful error correcting capability [see section2.1], being implemented with reasonable
decoder complexity and also for their flexibility in terms of block size and code rate,
the Turbo Codes have reached the top of interest in coding community.

Unlike the traditional encoder, the turbo code encoder introduced in [3] is built
using a parallel concatenation of two or more Recursive Systematic Convolutional
(RSC) codes with feedback. In turbo code encoder structure, an interleaver is used
for getting two or more different information bir streams, then sending each to
a different elementary encoder. All information bits with parity check bits are
combined together by a multiplexer. Those combined date streams are then sent out
to receiver side through the channel. At the decoder side, iterative decoding schemes
with “soft-in soft-out (SISO)” decoders were proposed and used in the turbo code
decoder [4]. When decoded by an iterative process, turbo codes offer near optimum
performance [3]. There are several decoding algorithms used for turbo code SISO
decoder. They are various soft decision algorithms such as MAP [10]. MAX-Log-
MAP [10], Modified Chase [6] algorithm and so on, for detail information, please
see Section2.4 in next Chapter.

Although turbo codes were introduced based on the convolutional code, recent
research shows that turbo codes using block codes as elementary encoders can be

more suitable for certain applications especial for high code rate [3].

4

1.3 Block Turbo Codes

The other part of application of "turbo coding’ concept is to the block codes.
In 1994, Ramesh Pyndiah from ENST de Bretagne, proposed a turbo code based
on block codes at the Globecom’94 conference in San Francisco. For this turbo
code he used an iterative decoding of two Bose-Chaudhuri-Hocquenghem (BCH)
codes concatenated in series through a uniform interleaver. For decoding of the
component (elementa.r_v) codes he proposed a new SISO deccder for block codes.
These codes are quite different from the original turbo codes since they use different
component codes, different concatenation schemes and different SISO algorithms.
The turbo codes based on convolutional codes are usually known as Convolutional
Turbo Codes (CTCs) and those based on block codes are referred to as Block Turbo
Codes (BTCs).

The performance of two dimersional block turbo codes can be enhanced to
approach the theoretical limit. Compared to the CTCs . It is simple to generate
and very efficient especially for high code rates (R > 0.8) [6]. Although most
research so far has been focused on CTCs, BTCs have been shown to be a more
attractive option for a wide range of applications since they can offer a very wide
range of block sizes and code rates from below rate 3 to as high as 0.98 without
changing in coding strategy. Another advantage of BTCs is that the performance
of simple row ‘column interleaving is as good as random interleaving in CTCs. This
allows the use of simpler interleaving structures and hence a saving in terms of
system complexity. In BTCs, according to the paper (8] serial concatenation is more
advantageous over parallel concatenation and so for all practical purposes BTCs
involve iterative SISO decoding of serially concatenated block codes separated by
a simple row ‘column interleaver. Turbo block codes have powerful error-correction
capabilities when implemented in multidimensional block turbo codes. They can
also be decoded efficiently in hardware because the decoding complexity increases

only linearly with the dimensions.

Turbo Product Codes (TPCs) are an important subclass of turbo block codes.
They are also known as block turbo codes. TPCs do own all the characteristics of
turbo block codes and they are very similar except that thev have different code
structure on the encoding side, please refer to the Figure 3.1 and Figure . The
difference of encoder structure is due to the fact that with TPCs, the parity on
parity check bits are also generated and transmitted. Turbo codes without parity
on parity check bits would be called Block Turbo Codes. Product Codes were
described in 1949 by Elias. These are two dimensional codes constructed from small
component codes , and represent a special class of parallel concatenated block codes.

We will give more description of turbo product codes in a later Chapter 3 .

1.4 Thesis Structure

This thesis investigates a bandwidth efficient coding scheme for wireless and
satellite communication systems. Meanwhile, a reasonable compromise between im-
plementation complexity and degradation of decoding performance is to be presented
in this thesis. Our focus is mainly on the Reed-Muller (RM) block turbo codes.

Chapter 1 introduces the simplified communication system and coding theory.
Followed by a brief description of turbo codes, its subclass block turbo codes and
the thesis outline.

In Chapter 2 we present more detailed description of the turbo codes from
uts first introduction until the recent products in applications. After that, we will
present to various decoding algorithms that are in use.

Chapter 3 begins with the definition of RM codes and how to construct 2-
dimensional RM block turbo codes. At this place, we also present the code structure
of turbo product codes. Then the optimal and suboptimal decoding algorithms
for RM block turbo codes are presented. The simulation results are shown and

conclusions added.

In Chapter 4, we continue to extend the RM block turbo codes to 3-dimension.
In Chapter 4, the encoder and decoder model, the decoding algorithms are described
in detail and the simulations show the more interesting results than 2-dimensional.
We will also talk about the effects of quantization and show the simulation results
for implementation issues. Finally, puncturing is used for the 3-dimensional code
in order to obtain the same rate as the 2-dimensional code. This allows a fair
comparison between the 2- and 3-dimensional cases.

Chapter 5 introduces some applications of the block turbo codes.

Conclusions will be drawn in Chapter 6. Also possible future works and a

summary of this thesis will be included in this chapter.

Chapter 2

Turbo Codes

2.1 History of Turbo Codes

A good compromise between coding gain and complexity can be achieved by
serial concatenated codes proposed by Forney [13]. A serial concatenated code is
one that applies two levels of coding, an inner and an outer code linked by an
interleaver. The approach has been used in some communication svstems such as
deep-space communication [14], using a convolutional code as the inner code and a
low redundancy Reed-Solomon codes as the outer code. The primary reason for using
a concatenated code is to achieve a low error rate with an overall decoding complexity
lower than that required for a single code of the corresponding performance. The
low complexity is attained by decoding each component code separately. As the
inner decoder generates burst errors an interleaver is tvpically incorporated between
the two codes to decorrelate the received symbols affected by burst errors. The serial

concatenation model is illustrated in Figure 2.1:

! | | ’
Cuter . [nner Inner De- Outer
— |—w- interleavey) Channel !
| encder {_encoder , decoder interleave decoder

Figure 2.1: Serial Concatenation mode]

In 1993. a new encoding and decoding scheme. named Turbo Code was re-
ported by: Berrou. Glavieux. and Thitimajshima [3]. that achieves near-capacity
performance on the Additive White Gaussian Noise (AWGN) channel. In their pa-
per. Berrou et al. used a parallel concatenation of two convolutional encoders that
along with a new suboptimal decoding algorithm (modified Bahl et al. [3] algorithm)
and achieved an E,/\N; of 0.7 dB although with huge interleaver of size 256x256
(65536 bits) matrix, 18 iterations at BER of 10~ [3]. They used the parallel con-

catenation structure given in Figure 2.2.

|]

m. first Mux Channel ——* Demux [—e
encode
’ Joint A
o M
Decoder

ln:crlavc—J 2nd *, De- l—-
Lcncode interleave! L

Figure 2.2: Parallel Concatenation model

These turbo codes take advantage of the idea of connecting two codes to get
a longer code [3]. The difference is that in turbo codes two identical systematic
component codes are connected in parallel and also. the Figure 2.1. the informaticn
bits for the second code are not transmitted: therefore. increasing the code rate
relative to a corresponding serial concatenated code.

In 1994, Ramesh Pyvndiah proposed a turbo code based on block codes in
Globecom’94 [5]. For this turbo code he used an iterative decoding of two BCH codes
concatenated in series through a uniform interleaver. For decoding the component
codes he proposed a new SISO decoder for block code. After the first 1993 turbo
code paper there has been a considerable number of publications on turbo codes [4].
[3]. [7], [8] and [14], then in1997 ENST de Bretagne organized the first International
S¥mposium on Turbo Codes in Brest, France [7]-

Due to turbo codes’ excellent performance in fighting against the effects of fad-

ing and noise. they are widely used in the wireless communication svstems. Because

9

block codes can be used to construct of high code rate block turbo codes, which
can have both power and bandwidth efficiency and an outstanding error correcting
capability. They are used in data packet systems like Asynchronous Transfer Mode
(ATM) for voice and data, Motion Picture Ezpert Group (MPEG) for video, and
Internet Protocal (IP) for data.

In the following subsection, we will give more detailed information about turbo

codes, their encoder, decoder, interleaver, etc.

2.2 Turbo Code Encoder

2.2.1 Parallel concatenation of codes

The turbo code encoder of [3] is formed by parallel concatenation of two re-
cursive systematic convolutional encoders separated by an interleaver |[3].

The encoder structure is called parallel concatenation because the two encoders
operate on the same set of input bits, rather than one encoding the output of the
other, thus turbo codes are also referred to as parallel concatenated convolutional
codes (PCCC). The key to the power of parallel concatenated convolutional codes
lies in the recursive nature of the decoders and the impact of the interleaver on the
coded information stream. The block diagram of a typical turbo code encoder is
shown in Figure 2.3.

The output consists of three parts. The first is a straight copy of the input bits,
with m (memory size) additional bits appended to ensure the final trellis state is
the all zeros state. The second output is that of recursive systematic convolutional
encoder #1. Prior to sending the input to the second RSC encoder, the data is
interleaved. The interleaved data is then sent to the second encoder (which can be
identical to the first). The three parallel streams of data are then muitiplexed into
ore stream and transmitted over the channel. The naming of an “inner code” and

an “outer code” is somewhat vague for parallel concatenation, so the codes are often

10

Input RSC Information
Data Encoder #1 & Parity Bits &1
) Ouwtput
Interieaver Multiplexer Data
l
RSC
— ' Encoder#2 Parity Bits #2 Only

Figure 2.3: Turbo Code Encoder with PCCC structure

referred to as a first and second code instead. Quite often, puncturing is applied to
the parity streams to get some higher code rate. The puncturing process increases
the overall throughput of the system, but also increases the probability of bit error,

as will be seen in Section 2.2.3.

Convolutional codes are used with a svstematic feedback realization of the

encoder. The generator polynomial of a rate 1/n encoder is given as
G(D) = (go(D), g:(D). ..., ga_1(D)), (2.1)

the feedback encoder will be

QL(D) gn-'.(D)
9:(D)" " go(D)

The Figure 2.4 shows an example for the rate- 1 /2 convolutional code with

Gsys(D) = (17)- (2.2)

memory m = 2, the generator polynomials are go(D) = 1 + D + D* and a(D) =

1+ D2

2.2.2 Interleaver

Interleaver design is quite an important issue in a turbo-coded svstem. The
interleaver must perform in a way that if the output of one coder produces a low

weight codeword, the second encoder’s output should have higher weight than the

11

%

+

Figure 2.4: Realization of the systematic convolutional encoder with feedback

one coming from the first encoder. This is crucial since it lowers the number of
codewords with small hamming weight, and allows the bit error curve to drop at
a faster rate as SNR increases. Interleaving is a periodic reordering of blocks of L
transmitted symbols. Symbols are correspondingly reordered by de-interleaving in

the receiver.
To understand the interleaver. a sequence of interleaver-input svmbols can be
represented by the s-dimensional vector sequence .X' (D) where each element in the

sequence spans one period of the interleaver
4\—m = [-rm-.-(.s—l) Tins(s=2) -~ -rm,’- (23)

where m can be considered as a time index corresponding to block of s successive

interleaver-input symbols, and
X(D)=) XnD™ (2.4)
Similarly 4-\:(D) can be considered as an s-symbol-element sequence of interleaver

outputs, Then, the interleavering can be modeled as a rate 1 convolutional or block

code over the symbol alphabet with generator as

where G(D) is an s x s nonsingular generator matrix as the equation 2.1.

The de-interleaver has generator G~'(D), so that
X(D) = X(D)-G (D). (2.6)

Interleaver design is the key to achieve better performance for turbo codes.
By increasing the interleaver size [V times, the bit error probability is reduced by a
factor N [15]. There are three popular classes of interleaving methods namely: block,
convolutional and random interleaving. We will give a little bit more information
about block and random interleaving.

Block interleaving or permutation interleaving is the simplest type of interleav-
ing. The permutation of inputs to outputs is contained within one period in a block
interleaver. The information data streams will be read row-wise and column-wise to
their corresponding encoder through block interleaver [11]. Block turbo codes often
use this interleaving method. Figure 2.5 illustrates block interleaver.

In random interleaving, the idea is to eliminate the regular patterns in G(D) so
that the period is very long. Random interleaving is often used in turbo coding and
for very large frame sizes, random interleavers are near optimum. The main objective
of random interleaving is to create a very long block length for the concatenated code
when viewed as a single code. Codes selected randomly, as long as the block length
1s very long, often can achieve capacity. Random interleaving tries to install this
element of randomness in the code design. The number of ways in which to make
a specific type of error is essentially reduced by the large codeword or interleaver
length. There are several types of random interleavers such as Berrou-Glavieux
and JPL [9] interleaver. Among them, the one which makes use of PseudoRandom
Binary Sequences (PRBS) is used very often by researchers. Such sequences are

based on a theory of maximum-length polynomials.

13

Encoding the information bits column-wise

A S SN N S SN S

' [}
—
»z
£ E
: :
z —e =
=
2 <
= ‘
-4 ;‘
E ! g
= ~
E ' =
t'_‘_' — <
o
= =
L - e
E Z
-.-' — —~—
<
<
<
—
L]
[k2information bits——®*—n2-k2 parity bits——
— n2 Columns*

Figure 2.3: A block interleaver for turbo codes

2.2.3 Puncturing of Turbo Codes

The rate of a parallel concatenation of two systematic convolutional codes
(where the information bits are sent only once, along with the parity bits of each
code) will be

1
R=#

- , (2.7)
TR 1
where the code rate of two component codes are denoted by R, and R,, respectively
(10]. In general, the two component codes and their rates are not necessarily the
same: either R; # Ry or R, = R».
Various overall code rates such as 1/2, 2/3, 3/4. 5/6 and so on can be obtained
by puncturing the rate 1/3 turbo encoder. Puncturing is the regular or periodic

deletion of parity bits from a convolutional code output to increase the rate of the

14

code without changing any of its basic attributes. For example. yvou can increase
the rate 1/2 of convolutional code to a rate 2/3 code by puncturing its output -

dropping every other output bit of the parity stream. Figure 2.6 illustrates how

Figure 2.6: Puncturing of rate 1/3 turbo code to rate 1/2

the rate 1/3 turbo code that results from the parallel concatenation of two rate-1/2
codes by alternately deleting one of the two parity bits. CTCs often use puncturing,
and Table 2.1 shows some examples of how puncturing affects their code rate. The
table assumes Turbo Codes with two constituent encoders as in Figure 2.4, and that

puncturing drops half the parity bits each encoder generates.

Table 2.1: Puncturing a Turbo Code increases its rate without changing any of its
basic attributes

Rate of En- || Rate of En- | Resulting Turbo || Resulting Turbo
coder=1 coder=2 Code Rate (no || Code Rate (with
puncturing) | puncturing)
1/2 1/2 | 1/3 I 1/2
2/3 2/3 1/2 | 2/3
3/4 3/4 3/5 | 3/4 |
1/2 2/3 2/5 ' 1/7)
1/2 3/4 3/7 | 3/5
2/3 3/1 6/11 | 12/17

Puncturing is not used so often in block turbo codes or turbo product codes as
convolutional turbo codes since for the former, it is easy to get any code rate from
below rate 1/3 to as high as rate 0.98 and another reason is that performance will

be lost when using puncturing techniques for increasing the data rate.

2.3 Iterative Decoding of Turbo Codes

The turbo code decoder uses iterative soft-in/soft-out decoding. The basic
idea of iterative decoding can reduce the bit error rate by improving the decoding
performance. Turbo code’s iterative decoding scheme is based on a-posteriori prob-
ability (APP) decoding principle. Because mazimum a posteriori (MAP) decoding
[16] is optimal algorithm for turbo code decoding and plays an essential role in some
iterative decoding algorithms including turbo decoding. The MAP decoding, [see
detail in section 2.4.1] was originally defined as a decoding scheme to find a code
vector T € C, which maximizes Pr(7|7), i.e, is the APP that, for the received

sequence T, the code vector 7 has been sent.

2.3.1 Log-Likelihood Ratio

To understand the iterative turbo decoding well, we must know some elemen-
tary concepts of the algebra used in decoding.

Let U = (uy, ua, ..., uy) be a binary random sequence representing the in-
formation bits in Figure 2.4. In the systematic encoders, one of the outputs .\, =
(xi, 73, ...,) is identical to the information sequence U". The other is the parity
information sequence output X, = (£, 75. ..., z%;). We use Binary Phase Shift Key-

ing (BPSK) modulation (Figure 2.7) and an AWGN channel with noise spectrum

density .Vg/2 (Figure 2.8). To avoid introducing another variable, we denote the

X, X,
BPSK Modulator [

.xk = 2¢rk ‘l

Figure 2.7: BPSK modulator

16

modulator’s input and output both by r since these are two different representa-

tions for the same random variable. The noisy versions of the output sequences are

N (0, 02)

Figure 2.8: AWGN channel with distribution NV (0, ¢°)

ys = (U v3, - ¥%), and y, = (¥, 45, -, ¥%) ,where, the kth component of the

received sequence y; is given by
Yk = Ik + Ng. (28)

where ny is a sample of a Gaussian noise with zero mean and variance o°.
The Log-Likelihood Ratio (LLR) of a binary random variable X, Ly (), is
defined as

_ Py(zy = +1)
Lx(ze) = log Py(rg =-1)

(2.9)
where Py(r) represents the probability that the random value X takes on the value
z. The left side of definition equation 2.9 will be indicated as the “soft” value. In
addition, further for the log-likelihood ratio of the information bit ux! conditioned

only by the received symbol y; is

Py(ue = +1jyk)
Loy (uelye) = log . 2.10)
ey (uelye) Pu(ur = 1|3 (2.10]

Using Bayes’ rule [11] we get

p,() - B (YT
P,(Y)

P,(UIY) = (2.11)

!As in BPSK modulator, information bit “0” and *1” will be mapped to modulated sequence
“—17 and " 1", respectively. We use modulated sequence for the information sequence for simplicity.

applying this to Equation 2.10 and since the probability P,(}") can be canceled out.
the Equation 2.10 can be expressed as

Py(ur = +1) Priv(ydue = +1))
Py(ux = —1) Prv(yelux = -1)

Loy (uelye) = 108(

Py(ug = +1) Pyiv(yelux = +1)
= log ———= +1o
® Polur = 1) 8 Py (yelue = -1)
= Ly(uk) + Ly (yelue)- (2.12)

The first part in Equnation 2.12 is called the a prior: value for the information bit

u; corresponding to the a priori probability.

2.3.2 Soft Channel Outputs
For an AWGN channel, the Probability Density Function (pdf) is

P(z) = exp ((17 (z —m)”) (2.13)

\/ To
where m and o are the mean and the variance of the noise, respectively. The

conditional pdf can be written as,

P(yelue = +1) \/_J exp (! S(r = 1)2> . (2.14)
1 1 5 -
P(yclux = -1) = = exp (—20,_, (r+ 1)“) . (2.13)

We can now compute with Equations 2.14 and 2.15 applied

P —+1) 2
log vie(yklue = + = <. yk—4£ (2.16)

© Py o (Jkluk—_l) o- No

Using the above result in 2.12 we obtain

E, Py(ux = +1) 7
= + log ————, 2.1
LL]) (ukljk) 4= No T T PU(uk = —-1) (2

where E.is the energy per symbol. We make the following definitions:

which is named the reliability value of the channel. There is a relationship between

E, energy per symbol and E, energy per information bit

= — 2.1
Eb R ' (9)

since 1/R is the number of transmitted symbols per information bit. Hence,

Ey-R
c=4— 2.20
L N (2.20)
Using the above notation we obtain
Lypy (uelye) = Le - ye + Lo(u). (2.21)

2.3.3 Principles of Iterative Decoding

As illustrated in the figure 2.1 and described above, the outputs of the encoder
are the uncoded bit .\, = U, and the coded bit X,. These outputs are modulated
with a BPSK or QPSK modulator and sent through an AWGN channel. At the
receiver side, we define the log-liklihood ratio, L(uk), as

Py (ur = +1|observation) (

g on) 2.22)
® Py (ux = —1|observation)

L(Ly) =1lo

where Py (ux = i|lobservation), i = +1, —1 is the APP of the information bit u;. If
we consider the Log-Likelihood Ratio of the information bit u, conditioned on the

whole observation sequence, we can rewrite it in a form similar to equation 2.21
LUiy(ukiyk) = Lc-ye + Lo(ue) + Le(uk), (2.23)

where L.(ug) is the extrinsic information that is derived from all y and all u,,
Li(w;), and i is different from &, i # k.

Turbo code decoder depicted in Figure 2.9, consists of two elementary decoders
(Decoder =1 and Decoder #2) in a serial concatenation scheme. Both decoders in

Turbo Codes are soft-in ‘soft-out decoders. For the first decoder, also called the

19

Priori palue L¥e (Ux) L'e(Ux)

\ 4
SISO SISO
Le*y » Decoder #1(H) Decoder #2 (V)
Received —1
sequence
APP
Soft outputs at

at the final
iteration

Figure 2.9: Iterative decoding procedure with two SISO decoders

horizontal decoder (detail in section 2 of Chapter 3): first half of an iteration, a

priori value (information) in the initial iteration Ly (ux) =0, so we have
Lyyy(ue/ye) = Le - yi + L7 (we)- (2.24)

where L (us) is the extrinsic information output from the first (horizontal) decoder.
For the decoder in the vertical dimension. which is the second half of an iteration.
the a priori value is replaced by the extrinsic information from the decoder in the

horizontal dimension and its output can be expressed as
Lyyy(ue/ye) = Le - ye + L7 (ue) + LL(uy), (2.25)

where L’e(uk) is the extrinsic information output from the second (vertical) decoder.
which will become the a priori value Ly-(u;) for the next iteration and so on. At the
beginning the extrinsic informations are statistically independent and the gain from
first iteration to the second is significant. However, since the same information is
used, the gain improvement after a few iterations becomes very small. After the last
iteration, the soft output decision will be the sum of the last two extrinsic values
and L, - yx as shown in equation 2.25. The decoder will make a hard decision using

the following equation,

—_
o
(L]
(=)}

~—

U = sgn[L(dx)),

20

the decoded information bit @y is 1 when L(if;) is greater or equal than 0, otherwise

is 0.

2.4 Decoding Algorithms for Turbo Codes

For the decoding of binary convolutional codes and block codes, many iterative

soft-decision decoding algorithms have been derived. Most of these algorithms are

devised to find the best (or the most likely) codeword in a series of candidates which

are usually generated by means of simple decoders, such as where we presented in

Section2.3, in successive iterative steps by using of information on the reliability

measures L. of the received sequence. There are several decoding algorithms for

turbo codes so far, which are listed as below:

1.

o

MAP: which is the optimal algorithm with a very high computation cornplexity

for practical applications.

MAX-Log-MAP: which is the suboptimal algorithm and derived from MAP
algorithm, its characteristic is that avoids a lots of computation though some

performance sacrificed as compared to MAP algorithm.

MAX*-Log-MAP: which is the suboptimal algorithm, too. It is mainly in-
vestigated in this thesis report. The difference between MAX-Log-MAP and
MAX*-Log-MAP is that the algorithm of BER performance with star is better
than MAX-Log-MAP because the correction term is included in the compu-
tation; furthermore the coding gain loss is negligible as compared to MAP
algorithm. This suboptimal algorithm is a good compromise between perfor-

mance and complexity, thus it is very attractive for implementation.

Soft-In/Soft-Out Viterbi (SOVA): which is the suboptimal algorithm with low

complexity.

5. Chase: which is used for the Block Turbo Codes (BTCs) especially for Turbo
Product Codes. It is a suboptimal algorithm for the performance and hardware
implementation especially for big block codes [6] though the performance is

not as good as M AP algorithm.

2.4.1 MAP Algorithm

The first MAP decoding algorithm, is the symbol-by-symbol MAP algorithm
was proposed by L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv [16]. which are known
as the BCJR algorithm. It is an optimal algorithm based on Trellis for estimating
the states or the outputs of a system observed in AWGN noise channel.

Trellis diagram 2] was first introduced by Forney in 1967 as a conceptual means
to better explain the Viterbi algorithm. A trellis T is an edge-labeled directed graph
with expanding the state diagram of the encoder in time (i.e.. to represent each time
unit with a separate state diagram). The trellis diagram shows the time progression
of the state sequences. For every state sequence S there is a unique path through

the trellis diagram, and vice versa. We list some notations used in BCJR algorithm:

e s:state at level k in the trellis

e s :state at level £ — 1 in the trellis

e S*!:all (s, s) transition caused by uy = +1
o S7':all (s, s) transitions caused by ug = —1

' .. o .. 4
e (s, s): branch transitions probability, whenever a transition between s’ and

S exists

™o
[}V
-1
~—

(s, 8) = P(sls) - p(gels’, s) = P(ykluk) - P(ug) (2.

® ay(s): forward recursion of the MAP algorithm vields

Qk(S) = Z'/k(s', S) . Qk_l(S,). (228)
® 8i_1(s): backward recursion of the MAP algorithm vields
Bea(s) = Z’Ik(sl, s) - 3k(s). (2.29)

The MAP algorithm can be applied only if the sequence length is finite and we
assume that at the start and at the end of the observed sequence all paths converge

at the zero state, then we have the following initial value for a and 3

Qstart(0) =1, and ageee(k) =0 ,VA #£0. (2.30)

The output of the MAP decoder is defined as the a posteriori log-likelihood ratio,

op Plu= +1y)

° Pu=-1|y)
Zsﬂ p(s', S,]/) (‘) 3))
2s-1P(5', 5. y)

Tke sums of the joint probabilities p(s’, s, y) in the numerator and in the denomi-

L(@) =L(uly) =1

= log

nator of 2.32 are taken over all branches in §*!' and $-!, respectively. We expand

the above equation assuming a memoryless transmission channel

p(sy 5, y) = p(s’ ypek) - P(s, els) - pyyoils)
= a1 (s) (s, s) - Bils) (2.33)

where y;.x expresses the sequence of received symbols until time £ — 1 and y,.«
is the received sequence after time k until end of the trellis. The Equation 2.32
presents the fact that each bit decision is affected by received value of both prior

and future svmbols.

The final decision depends on the sign of L(@) in Equation 2.32: the estimated
information bit will be “1” when the sign of L(@) is positive and “0” otherwise.

Though turbo codes can achieve excellent performance by iteratively execution
a MAP decoding algorithm many times, the complexity of the decoding algorithm
is significant for realization of efficient turbo decoders because of the logarithmic

functions, of mixed multiplications and additions of these values.

2.4.2 MAX-Log-MAP Algorithm

As we mentioned earlier that MAP algorithm is a very good decoding scheme
for turbo codes, but is not very practical because of its complexity. Efforts have been
made to reduce the decoding complexity of the MAP algorithm. These attempts
include a suboptimal realization of the BCJR algorithm, i.e., the MAX-log-MAP
algorithm and the SOVA algorithm.

In MAX-Log-MAP algorithm, the same computations as the MAP algorithm
is carried out in the log-likelihood domain. Hence a multiplication of probabilities
X' x Y is replaced by an addition log X" + log¥", and then addition of probabilities

is replaced by a max-operation given as,
log(e¥ +e¥) = mar(X, V). (2.34)

Using the above approximation equation, we do not calculate (s,), ar($), Be-a(s)
and will work with log (s,), log ak(s), log 3x_1(s') and then the forward recursion

and the backward recursion are now represented in the additive forms

log (s, s) = log (p(yklue) - P(ux)) (2.35)
log a(s) ~ max (log*/k(s', s)+ Iogak-l(s')) , (2.36)
log 3k-1(s') = max (log*/k(s', s) + log Bk(s)) (2.37)

24

with the initial conditions

log astar:(0) =0, and log oy (k) = —ox, (2.38)

10g 3ena(0) =0, and log Bena(k) = —cx. (2.39)

By substituting values for log 7i(s', s), log a(s), log Be-1(s'), the log-likelihood L(7)
can be expressed

T g €10B QK1 OB (S,) +log ()

=Y — T = 2.
L(u) L(uly) log ZS" eloga;‘_1+Xog-7;‘(a',a)+log,5k(s) (40)
This expression can be simplified by using the approximation
log(e® +e® + ... + %) & maxJ, (2.11)
t
where i € {1, 2, ...,n} and max§; can be computed by successively calculating (n -

1) maximum function over only two values. The Equation2.40 can be approximated

bv

-

L{n) = max [Iogak_l + (s, s) '*'3/:(3)] — max [logak-l + (s, s) + 3,;(3)} .
(2.42)

From the above equations, we can easily know that the deccding complexity
is reduced a lot because by performing this algorithm in the logarithmic domain,
the multiplication becomes addition and exponentials disappear. Therefore, these
approximations indeed avoid computing the actual probabilities, and simplifv some
computations. At the same time, when we get a reasonable decoding complexity
scheme for hardware implementation, we should expect that some coding gain are
lost as compare to the MAP algorithm. The loss of coding gain will be shown

through the simulation results in Section 2.4.3.

2.4.3 MAX*-Log-MAP Algorithm

This algorithm is also derived from MAP algorithm. As shown in Section
2.4.1, most computations are based on the logarithm of a sum of exponentials. Such
an expression can be exactly computed, two terms at the time, using the Jacobian

algorithm [17], as
log(e* +e¥) = max(X, Y) +log(1 + e~1¥-) (2.43)

That is, the expression is computed as the maximum exponent and a correction
term, which is a function of the absolute difference between exponents. With the
correction term, the performance of this algorithm is better than the pure approx-
imated algorithm. We denote the decoding algorithm with correction term using
Jacobian algorithm, MAN*-Log-MAP algorithm.

If the correction term is omitted and only the max term is used to compute
@, 3, and the extrinsic value of log-likelihood L(u), then we can obtain the MAX-
Log-MAP approximation algorithm, which was described in previous Section. This
algorithm does improve the performance as compared to the one without correction
term. However, the correction term is a nonlinear function, which still brings the dif-
ficulty to practical implementation. We then find another way to reduce complexity
and small BER performance degradation compared with MAP algorithm. Typically,

this is implemented via a small lookup table, as given by table 2.2, which is addressed

Table 2.2: Look-up table for correction term used in MANX*-Log-MAP algorithm
| _IX-¥] [00625] 05 | 1.0 | 15 | 1.5 | 2.25 | >2.25]
dy,y(decimal) | 0.6875[0.5625 | 0.375 | 0.25 | 0.1875] 0.125 0.0
dx,y(binary) | 0.1011]0.1001 [0.0110 | 0.0100 | 0.0011 | 0.0010 0.0000

based on the difference of the two operands, A and B. Though it requires extra com-
putation and more importantly, increasing the number of instructions in the loop
as well as the number of registers used, more accurate computation vields a better

performance. Where Jy y in table 2.2 is equivalent to the term log(1 + e IX=Y1) in

26

equation 2.43 and we use Jy,y to represent the correction term for simplicity. We
give two forms in decimal and binary, respectively. The four-bit-long binary form

is constructed to represent fractional part for hardware implementation. From the

{ -8 MAP algonthm 3

0~ MAX-Log-MAP algorithm
—#— MAX"-Log-MAP algorithr
-7~ Log-MAP algorithm

=

BER-bit orror rate

-7 1 ! I) ! ! 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/NO dB

Figure 2.10: Comparison with MAP, MAX-Log-MAP, MAX*-Log-MAP and Log-
MAP algorithm for R1(32, 26)2, iteration 5, R=0.68.

Figure 2.10 we can see the coding gain loss is negligible for MAX*-Log-MAP algo-
rithm, and there is about 0.15 dB degradation between MANX-Log-MAP algorithm
and MAP algorithm at BER of above 107°. For MAP algorithm, at BER of 1073,

there is a coding gain of 6.3 dB from uncoded . We will present more detail in

Chapter 3.

27

2.4.4 SOVA

This algerithm is another suboptimal decoding strategy for turbo codes, which
was first introduced by J. Hagenauer and P. Hoeher [18]. It is a soft output Viterbi
algorithm (VA), which is an extension of the Viterbi algorithm({19] and has an im-
plementation advantage over MAP because it is much less complex than MAP al-
gorithm.

We have to start with the VA because it is the basis of SOVA. The VA was
originally proposed for decoding of convolutional codes by A. J. Viterbi in April
of 1967 [19]. The VA is similar to BCJR algorithm, performs estimation of the
input sequence of a discrete time finite-state Markov process observed in memoryless
noise. However, BCJR algorithm needs forward recursion and backward recursion to
calculate the estimated information sequences and it is applied only if the sequence
length is finite, while the VA can be used for any sequence length, by truncating the
survivors. So it is used as a solution to various communication estimation problems
as long as the system can be represented by a time invariant or time varving trellis
diagram. For each step and for each node of the trellis, there is always 2 path merging
and in these 2 paths, only one is kept, the one with the highest cumulative metric
(the most likely one) will be selected as the survivor. Maximum likelihood detector
is used in the VA. In Equation 2.11 of Section 2.3.1, assuming that the signals are
equally likely, it suffices for the receiver to maximize the likelihood function P,(Y|U),
this results in the mazimum likelihood decoder. The probability P,(Y|U") fer the

received sequence of length n can be expressed as

PY|0) = P(yilu]) = T]P(wlu)
t=1

a
_ e kv k)

D2 (2.44)

I
—
:,:1-

We introduce the log function and the Equation 2.44, the above equation becomes

log P,(Y|U) =) log P, (ylu)
t=1

T n-1

nr (ye,k = ue k)? 5 4=
-y log(27) — nrlogo — ZZ T ogr (2.43)

t=1 k=0

maximizing P,(Y|U) is equivalent to minimizing the Euclidean difference

T n-1

Z Z(yt,lc - up k)’ (2.46)

t=1 k=0
between the received sequence y{ and the modulated sequence u] in the trellis
diagram. We name the Euclidean distance as branch metric

n-1

w =Y (e — wes)?, (2.47)

k=0
then the path metric corresponding to the path 7. denoted by ALy, is given by

t
MO =3l = A+, (2.48)

f=1
the computation is based on keeping only one path per node with the minimum path
metric at each time instant. The decision for the estimated information sequence is
made at the final time instant T and the maximum likelihood path is chosen as the
survivor in the final node.
The SOVA estimates the soft output information for each transmitted binary
svmbol in the form of the log-likelihood function

. P(u, = +1{y])

: 2.49
° Pluy = =1[y]) (249)

L(ﬂt) =lo

it makes a hard decision like the Equation 2.26 that are described in Section 2.3.3.
the sign of L(4,) determines the hard estimate at time ¢ and its absolute value
represents the soft output information that can be used for decoding in the next

stage.

2.4.5 Chase Algorithm

This algorithm was first discovered by D. Chase in 1972 [20] for block codes
(n, k, d), where d is the minimum distance. It can be used under the condition
when the encoding/decoding processing can not be represented by trellis diagram
like non-binary block code: Reed-Solomon codes. R. M. Pyndiah [6] shows that
BTC using the Chase algorithm had performances comparable to those of CTC.

The soft-input /soft-output concept is also used in Chase decoding algorithm
for Turbo Codes except that the decoder is replaced by a Chase decoder comparing
with another decoding algorithm. The soft output of the decoder is an estimation of
the log-likelihood ratio of the binary decisions given by the Chase decoder. Let us
assume the transmission of block coded binary sequences X using QPSK or BPSK

over a AWGN channel, the received sequence Y = (y1, -.-yn) can be modeled by:

I | .

Y =X+ N, (2.530)

where N = (ny, ..., n,) are the samples of standard deviation o. From the received
, —_

svmbols Y, the decoded optimum sequence S = (s, $2, ..., $,) corresponding to

the X buy using maximum-likelihood decoding (MLD) is given by:

?:Ffif'?-?gglﬁ—c_*?z Vj#i (2.51)
where ¢, 7 € [1, ..., 2¥] and
- = Sl (2:52)
i=1
is the squared Eucliden distance between Y and 3 , where 3 =(c, ..., ¢,) is the

ith codeword of C.

In 1994, R. Pyndiah [3] supplemented this algorithm to compute the soft de-
cisions associated with the maximum likelihood sequence ?, which gives a measure
of the reliability of each component of ? This reliability function is represented

by the LLR of the decision S, (jth element of ?). Let us consider the decoding

30

of the BIC C in two-dimensional: C = 5{ ® C_G It is transmitted through an
AWGN channel using BPSK signaling. The iterative turbo decoding process can be
achieved by cascading several elementary Chase decoders. The soft input for the

decoding of the columns or rows at the second decoding of T is given by
Y(m)=Y +a(m) - W(m), (2.53)

where ¥ is defined as before, m is the mth elementary decoder, m is the vector
which contains the extrinsic information computed by the previous decoder (which
is the difference between the output information and the input information) and
a(k) is the scaling factor determined by simulation. Paper [6] and [21] tell us how

to choose the scaling value of a.

2.5 Summary

In this Chapter, we started with the classical serial concatenation of convo-
lutional codes and Reed-Solomon codes, then introduced turbo codes, which use a
parallel concatenation of two codes. We briefly presented the history of turbc codes
from its discovery, development and the applications. Turbo codes have been imple-
mented in hardware for use in the broadband wireless communication system, AT)M
and MPEG even IP because of their impressive performance.

Some fundamental elements of Turbo Codes were described in Section 2.2 such
as turbo code concatenation methods, the related concept of interleaving techniques
with a few popular classes of interleaving methods, the procedure for designing codes
with different rates using puncturing.

In this chapter, we introduced many basic equations for developing common
turbo code iterative decoding algorithms and the principle of iterative decoding in
Turbo codes. In future Chapters, we will show the simulation results concerning the
impact of the number of iterations in turbo code decoding and give simple analysis

of it. A few approaches based on bit-by-bit MAP decoding are discussed in the

31

following chapters. Among them, the most important concepts are MAP decoder
and the soft value for turbo codes decoding. Each algorithm has its own merits
and disadvantages in terms of complexity and performance. The simulation results
show the different BER. performance for a given SNR. As a compromise between the

complexity and the performance, we have chosen the MAX*-Log-MAP algorithm in

our research.

Chapter 3

The Reed-Muller Block Turbo Codes

3.1 The Reed-Muller Codes

3.1.1 Introduction

The Reed-Muller Codes (RM codes) form a class of linear block codes over
Galois Fields, GF(2) (For the definition of GF(2), see the book of Shu Lin and
Costello[2]). The Reed-Muller codes and their decoding algorithm were discovered
by Reed and Muller, respectively in 1954 [22], [23]. These codes can be easily
constructed for a wide range of rates and minimum distances. These codes can be
decoded effectively with trellis-based decoding algorithm [30]. This allows us to use
BCJR algorithm directly. RM Codes include the extended Hamming codes, which

are the best known linear block codes, too.

3.1.2 Construction of the Reed-Muller codes

Linear block codes, which are specified by their code length n and information
dara length k. RM code [24], [25] can be specified in the same way. Moreover, it is
defined very simply in terms of Boolean functions. For any m and r, let r satisfv

0 £ r < m, there is a RM code of blocklength 2™ called the rth — order RM Code

33

of blocklength 2™. The RM code is usually denoted by R(r, m), which is different
from usual description of linear block codes in terms of n and k. There is a code in

this class for which

_)
m m
1 r ’
4 (3.1)
m m m
n—k=1+ + + ... ,
1 2 m-r—1
d = 2™~ " = minimum distance (weight))

RM code will be defined by a procedure for constructing its generator matrix:
we will construct a nonsystematic generator matrix that will prove convenient for
decoding. First, define the product of two vectors f and g by a component-wise

multiplication. That is, let

?_ va 1y =2 fn—l)' (32)
? 907 glv aeny gn—1)7
then the product is the vector
_—)
fg = (fogo, fi91, s fa-19n-1)- (3.3)

We define the generator matrices for the rth — order RM code of blocklength 2™ as

an array of blocks:

Go
G
G=| 1, (3.4)

Gk

where Gy is the vector of length n = 2™ containing all ones; G, an m by 2™ matrix

that has each binary m-tuple appearing once as a column: and G is constructured

34

from G, by taking its rows to be all possible products of [rows of G,. For definite-
ness, we take the leftmost column of G; to be the all zero vector, the rightmost to
be the all one vector, and the others to be the binary m-tuples in increasing order,
with the low-order bit in the bottom row. So in general, the generator matrix of the
rth —order RM code consists of all linear combinations of the vectors corresponding

to the products

1, U1, «y Um, UV2, V103, ey Um—1, Um, ...(up to degreer)

m
which form a & basis vectors for the code. Since there are ways to choose

m
the [rows in a product, G, is an by 2™ matrix and it provides the rows of G,
[

which are linearly independent. As an example for r = 2 and m = 4, the generator

matrix for the 2nd — order RM code of blocklength 16 is the 11 by 16 matrix:

Go
G
G
Gy

and each G, is

Go=[1111111111111111]= [fo]

- ~ -

-0000000011111111 fi

G, = 0000111100001111 _ f2

0011001100110011 fa
0101010101010101 _f4~

[0000000000001111 | -flfz-
0000000000110011 fifs
G, o 0000000001010101 [_ | fify
0000001100000011 fafs
0000010100000101 fafs
| 0001000100010001 | | ffs |
[0000000000000011 | | fifefs |
e 0000000000000101 | | fifefs
0000000000010001 fifsfs
| 0000000100000001 | | fofsfs |

This generator matrix gives

RM(16,11) over GF(2).

3.1.3 Minimal Trellis for Linear Block Codes

In 1974, Bahl et al [16] introduced an optimal decoding algorithm with a
method of representing the words in an arbitrary linear block code by the path
labels in a trellis. In 1978, Wolf [26] introduced a trellis for block codes and showed
that it could be used to implement the Viterbi algorithm for Maximum likelihood
decoding of an arbitrary block code and a trellis diagram for a linear block code. The
trellis diagram for block codes is time-variant [30], whereas the one for convolutional
code is time-invariant. Because the Forney trellis minimized the number of vertexes

and edges at each depth, Muder [27] called the Forney trellis the “minimal” trellis

36

for the code. Later, Massey [28] made a further work on how to represent a block
code by a trellis and gave an alternative solution. At the same time, a lot of research
developed the properties of the important “ Trellis-oriented” generator matrices. So
far, the theory of “minimal trellises” has been applied successfully to reduce the
decoding complexity of Turbo Codes. To use BCJR algorithm for a linear block
code, we have to use the trellis to represent this block code and in order to reduce
the complexity, we use minimal trellis with the method of Massey’s construction.
We will present the theory of “minimal-span” generator matrices (MSGM'’s) [29] in

the next subsections.

3.1.3.1 Minimal-Span Generator Matrices (MSGM)

We begin with some definitions. If T = (x1, T2, ..., In) IS @ nonzero binary

n-vector, then its left inder L(z) and right inder R(x) are defined as following:
o L(r): the smallest index ¢ such that r, # 0.
e R(z): the largest index ¢ such that r, #0.

e Span(r): the span of r, which is a discrete interval [start, end] = (L(r). L(x)=+
1. ..., R(x)).
e spanlength(r): the span length of r, which is the number of elements in
Span(z).
Now, we can give the definition of the MSGM as following:
e M[SG)M: Let C be an (n, k) binary linear code over GF(2). Among all gener-

ator matrices for C, the one for which the span length is as small as possible

is called Minimal Span Generator Matrix (MSGM).

For our purpose to get the “best” trellis, we will use the Massey construction method,
then we will get the corresponding generator matrix, which is called generator matrix

in row-reduced echelon form (RRE).

e RRE form: Given a k x n matrix G = [z, ;] over GF(2), if the rows 1y, T2, ...,

I of G are such that
L(z,) < L(z2) < ... < L(xx) (3.6)

and the k£ columns found at position L(z;), L(z2), ..., L(zx) in G are all of
weight one: if j = L(z;), then z;; # 0 is the only nonzero entry in the 7 — th

column of G.

3.1.3.2 Construction of the Minimal Trellis From a Generator Matrix

with RRE form

Every path in a trellis T represents a unique code codeword that can be easily
determined by reading the branch labels along each path in T. Given a trellis, it
is easy to find the code by listing the codewords by tracing the different path and
reading the labels. \We usually need to solve the converse problem: given a code C
over GF(2), there are several trellises representing the same code. Among them.
we would generally like to construct the simplest and the most efficient trellis for
a given code. The “best” trellis is the one or the ones with the smallest number of
edges. Qur purpose is to construct the minimal trellis that minimizes one ore more
measures of trellis complexity for a fixed permutation of the code.

We have a linear block code C with a length n and dimension k£, and we have a
k x n generator matrix G with RRE form for the code C. In this matrix, we denote
the left indices of its rows by <1, J2, ..., 7k, and they have the following relationship

with each other
<7< . <% (37)

The Massey trellis T for a code C is constructed by first defining the vertices 1; with
the parity check bits that are observed at time instant ¢ while the information bits

have been observed at time instant i and the rest of information bits are assumed

38

to be 0. Let m be the largest integer such that +,, < ¢, then
V. = {(Cig1y s Cn) = (Cy, ooy Co) = (g, s U, 0, .., 0) - G}, (3.8)
where u;, u», ..., u, are information bits. We have
wre ={0}, Vs ={®) (39)

The edges of T are defined as follows by considering two cases: one is the case of
i > “m, the other is i = 7. In the first case, there is an edge e from a vertex

v € Vi_; toavertex v € 1 iff there exists a codeword (cy, ¢, ..., ¢qj € C, such that

’

(ciy Cia1s ey Ca) =T (3.10)
(Cieys o Cp) =T (3.11)
The label of this edge is ¢,. For the second case of i = =, there is an edge

from a vertex ¢ € Vi_;to a vertex v € 1} iff there exists a pair of codewords

c=(c..ca .., cq € C and c = (c',_, c_, c'n) € C, such that

(Cor Conty s Ca) = U (3.12)

(Cyy) =0 (3.13)

1417

and in this case, there are two choices: either ¢ = ¢ or (c+c) equals the m — th row

of G and the label for this edge is c,.

3.2 The Reed-Muller Block Turbo Codes (2-dimensional)

R)M block turbo codes are relatively large codes built from smaller code word
blocks [33]. In this thesis, we first research two dimensional codes constructed from

small component codes. Recent research and development on iterative decoding

39

show that high rate product codes can achieve a performance close to Shannon
capacity, which is similar to that of the convolutional turbo codes. In the paper
[31], a rate 0.98 Hamming product code (1023, 1013)2 was shown to achieve a BER
of 10~5 within 0.27dB of the Shannon channel capacity, which was at the cost of
high decoding complexity. Research has shown that block turbo codes are more
efficient than convolutional turbo codes for high code rate [32]. We will show this

with our simulation results in Section 3.3.

3.2.1 Construction of 2-dimensional RM Turbo Codes

A 2-dimensional RM block turbo code is constructed from smaller component
code word blocks. BTCs involve serial concatenation of two or more block encoder
separated by simple row and column interleaver.

Let us consider two linear block codes: R\ (ny, k), RMs(na, k»), where n,
and k, represent the code word length. and the number of information bits, respec-
tivelv. The structure of 2-dimensional RM block is illustrated in Figure 3.1. the
k. x k» information block T is ordered in a rectangular matrix. In order to encode
the RM block turbo code, each information data bit is placed both into a row en-
coder and a column encoder. For instance, let us consider a R}/ (16,11) code. This
code takes 11 information {input) bits, computes 5 parity bits, and appends these 5
parity bits to the information bits to create a 16 bit code word to be transmitted.
Ve denote Py to represent the parity check bits with each code word constructured
horizontally, Py are the parity check bits with each code word constructured verti-
cally and RM(ny, k;)(na, k) to represent the 2-dimensional RM block turbo code.
In general, we can use different codes for both the horizontal and the vertical blocks
as shown in the Figure 3.1.

The code rate for the 2-dimensional RM block turbo code is given as follows:

kxk
R= el (3.14)

40

]

v

Parity
Check
Information bits

on

Symbols Rows

k;

n;

Parity Check bits on Column

v
Figure 3.1: Structure of 2-dimensional RM block turbo code

also the code rate in general is given by:
kv E 3 k-’l
R = — .
nyxny — (ny — ki) = (n2 — k)

(3.15)

VWe list the all RM codes used in this thesis in Table 3.1:

Table 3.1: Example R)M block turbo codes with 2-dimensional using in this thesis

[Code | Block size | Data size | Code rare
RM(8, 4)? 48 16 0.33
RM(16, 11)* 231 121 0.52
RM(32, 26)2| 988 676 0.6
RM(64, 57)° 4047 3249 0.803

41

3.2.2 2-Dimensional RM BTC Encoders

Turbo code encoders are composed of two elementary encoders and an in-
terleaver. Two-dimensional Turbo block encoders often employ recursive system-
atic convolutional encoding with two parallel-concatenated constituent encoders. In
BTCs the systematic convolutional encoders are replaced by block code encoders.

The encoding system model is shown in Figure 3.2. Both horizontal and vertical

Input RM Code Infomz'atzor?
Data Encoder #1 & Parity Bits #1
1
Ouwput
Intetleaver Multiplexer [Data
RM Code
% Encoder £ Parity Bits #2 Only

Figure 3.2: Two-dimensional RM block turbo code encoding model

pu—
block code words. C, with the length, n, are generated by the information data

bits. L, with the length of k£ and generator matrix with the RRE form,

o=

=T -G= (wpua, cug)- | |- (3.16)

[74

L. -

The output codeword consists of three parts: information matrix of k£ =k, the parity
bits, Py and P,-. The information block is first encoded horizontally. The infor-
mation data bits are then sent to the second encoder after block interleaving. The
three parallel streams of data are then multiplexed into one stream and sent to the
channel. It is not necessary to apply puncturing of the parity streams to get a higher

code rate because it is easy to get any code rate by combining different RM block

42

codes with different information data lengths or with multi-dimensional linear block
codes. For example, we can combine RM(8, 4) with RM(16, 11) as 2-dimensional
R\ block turbo code RM (8, 4) x (16, 11) to get code rate R = 0.407 or we can com-
bine RM(16, 11) with RM (32, 26) as a RM block turbo code RM (32, 26) x (16, 11),
with code rate R = 0.593 and so on.

The output of the turbo encoder is the code word or code sequences, which
can be BPSK (Figure 2.7) or Quadrature Phase Shift Keying (QPSK) (Figure 3.3)

modulated . Then the modulated sequences are sent through the channel as shown

C. L& >
QPSK modulator

Cor > X
X, =2c -1
X =2C, -1

Figure 3.3: QPSK model used in 2-dimensional RM BTC

in Figure 3.4. These received sequences, which are affected by AWGN channel noise,

will be decoded by BTC iterative decoding.

3.2.3 TIterative Decoding for 2-Dimensional RM BTCs

The decoding techniques used for convolutional turbo codes can also be used
for BTCs. Let us consider the two dimensional case in which A} x &, information
data bits are ordered in a rectangular matrix. Let C; be a linear systematic code
(n,, k;) in horizontal dimension and C- be a linear systematic code (ns k) in the
vertical dimension; both Cjand C» are used to encode the same data. This two-
dimensional code is a direct product of C and C. A lot of studies investigate the

iterative decoding method considering the complexity and perfermance. Therefore,

43

Figure 3.4: AWGN channel with distribution V(0, ¢?)

we first used tke original MAP algorithm based on the minimal trellis to get good
performance, and then used iteration a few times to make the performance better.
Our idea of iterative decoding for 2-dimensional RM BTCs is to first decode the
code in one dimension and then decode the code in the second dimension. This idea
was introduced in the paper written by J. Hagenauer in 1996 [10]. All the ideas are

illustrated in Figure 3.5. We have some notations listed as follows:

e L. =Y : Information data bits with parity bits affected by AWGN channel

noise.

o L(T) = 0 : Soft (logarithm) value of a priori probability of the information

data bits.
e L. — H(T) : Extrinsic values of the 1* dimension (horizontal) decoder
e L,—17(T) : Extrinsic values of the 2™ dimension (vertical) decoder
e [NT : interleaver

De — INT : deinterleaver

44

feedback for the next iteration

De-INT
e _H(U) Le_V(U)
Ll)=0_2Y soft-in/soft-out INT soft-in/soft-out
Decoder #1 in Decoder #2 in
Le*y, Horizontal Vertical
1
De-INT
INT]

Soft output values

Figure 3.5: Iterative decoding procedure with two SISO decoders

The received sequence will be decoded by these two SISO decoders. The principle of
iterative decoding in BTCs is basically follows the concept of MAP decoder, which

was discussed in the previous chapter,
LU(uk) =Lc-ye+ L;(uk) + LL(uk), (3.17)

the equation explains the SISO decoding procedure. In the beginning, the received
sequence affected by AWGN noise, L.-yx, and the soft values of a prior: probabilities
for information data bits, L(f}), which is initialized by 0, through the first decoder
produce the extrinsic values L] (uk) for these information data bits. These extrinsic
values of the horizontal decoder are interleaved to be used as a priori information
L(?) and sent to the second decoder with, also interleaved, L. * yx to produce the
extrinsic values L}(ux), which are de-interleaved and sent to the first decoder to
start the second iteration. The procedure will continue from the first iteration to

the last iteration and the final result for the estimated information is obtained by

hard decision

U = sgn[Le(u)]- (3.18)

3.2.3.1 Trellis Based MAP Decoding Algorithm

As we presented before, this algorithm is optimal but too complex for hardware
implementation. It is still meaningful for the researchers to realize how close it is to
the theoretical limitation with MAP algorithm applied to BTCs and even for BTCs
with high code rate. The BTC decoder is made up of two MAP decoding modules
that cooperate in an iterative scheme.

As we showed in Section 2.4.1, the three most important values are (s, s),
a,(s) and 3;_;(s’). We assume that we have a linear systematic (n, k) block code
T, which can be represented by trellis T with the depth of n [34]-[36], [25], [37],
[10], [29]. The trellis is a time-indexed version of the state diagram. Each node
corresponds to a state at a given time index i, and each branch corresponds to a

state transition. which is shown in Figure 3.6. Before we present the MAP decoding

State index s State index s
Srtate S... State S,
with forward O O with backward

probabilities & (s) probabilities Bi(s)

O O
U.,=-1- -
O~ @
O : each node for Trellis
O @)

e--.: branch with label U,=-1

——: branch with label U =+1

Figure 3.6: Simple trellis structure

16

rule, we list some denotations:
-— R .
e (: a linear systematic (n, k) block code.
= . . o
e [: the information data bits with length &.

—_—
e X : the modulated code sequence with the values of “+1” or “—1" after en-

coding for BPSK modulation.

e T : the received sequence through the AWGN channel.

Each transition between any two states is labeled with the corresponding codeword
svmbol .\;, where the first k symbols are equal to the information bit ux and the
following n — k symbols represent parity bits. The branch transition probability in

equation 2.27 can be written as the following equation:
7;'(3’, s) = p(yilw,) - P(w) = p(z:: yi)s (3.19)

where p(rx: yz) is defined for two parts, the information bits part and parity check

bits part as follows

p(yilzi) - Plu), 1<i<k
p(yilzi), k+1<i<n.

(3.20)

p(z:: vi)

From Trellis T, we can easily understand that there are two branches for the first
depth of & because first k bits are information bits. However, there is only one
branch from the time point i — 1 to ¢ for the remaining depths of n — k. By taking

the log-likelihood ratio associated with definition 3.20, we get

=)
Le-yi+L(w) 1245k (3.21)

Lc.y‘ k+1_<_lsn.

The forward recursion, a, and backward recursion, 3, of the “symbol-by-
svmbol” MAP algorithm are performed using equations 2.28 and 2.29 as given in

Section 2.4.1. Then, each MAP decoder for BTCs can be written as

Ts+i aizi(s) - 5i(s) (3.22)

L(@)=L. -y + L(w) + log S o (5) s

3.2.3.2 MAX-Log-MAP Algorithm with Correction Value

Although MAP algorithm offers very good performance for BTCs, its complex-
itv makes the hardware implementation very difficult. For the purpose of reducing
the complexity, we introduce the sub-optimal algorithm: MAX-Log-MAP. It is an
approximation of MAP using equation 2.41 applied in MAP decoding algorithm for

BTCs and gives the following approximation equation

Lyrax-tog-amap(lls) = Lc-yi+ L(u,)
+mazs+ (logai_i(s) + log 3.(s)) (3.23)

—marg-i(loga;_(s) + log 3,(s)),

where

log ay(s) = marsr(loga,-_l(s') + %L(r,; yi) - L, (3.24)

&

and
. 1
log 3;-1(s) = mazx,(log 3i(s) + §L(I,; yi) - .. (3.23)

From the simulation results in Figure 2.10, we can see that coding gain loss is
around 0.15 dB at BER of 107* for MAX-Log-MAP algorithm as compared to
MAP algorithm. To obtain a better performance and at the same time not add
considerable complexity to the hardware implementation, we introduce the MAX¥-
Log-MAP algorithm as a compromise between the complexity and performance.
This algorithm was presented in Section 2.4.3. The max™ operation is the basic

operation in the Log-MAP algorithm. This operation can be implemented efficiently

48

with a maximum operation and an optional lookup table. We use the dynamic values
to replace the correction part: log(1 +e~*751) in equation 2.43, which is shown in
the small lookup table 2.2 in Section 2.4.3. The results show that the performance
of MAX-Log-MAP algorithm with the correction value of § 4, g is very similar to the
decoding with MAP algorithm without degradation of the bit-error performance.
The MAX*-Log-MAP algorithm is a very good decoding scheme providing excellent
compromise between the complexity and performance because it does reduce the
complexity and avoid costly shift operations [38]. The coding gain lost is almost
negligible (only 0.04 dB for the RM(32,26)%, R = 0.68, iteration 5 at the BER of

above 10™%) as compared to MAP algorithm applied under the same conditions.

3.2.3.3 The Iterative Decoding

The iterative decoding algorithm, proposed by Berrou in 1993, works very
well in practice. In Figure 3.7, a half iteration is defined as the decoding of the

sequence through one of the decoders of the turbo decoding system, and a full it-

SISO Dec. #2 — -

——— | SISO Dec. ¢l

le——— half iteration ____I

full iteration

Figure 3.7: Iterative decoding

eration includes decoding by two decoders of turbo decoding system. Each encode
n-bit sequence in a BTC is decoded independently. First, all the horizontal blocks
are decoded then all the vertical received blocks are decoded or vice versa. The
decoding procedure is generally iterated several times to maximize the decoder per-

formance. To achieve the optimal performance, the block by block decoding must be

49

done utilizing soft information, This soft decision decoder must also output decision
matrices corresponding to the likelihood that the decoder output is correct. This
is required so that the next decoding will have soft input information as well. In
this way, each decoding iteration builds on the previous decoding performance. At
the beginning the extrinsic values are statistically independent and the coding gain
from one iteration to another is high. However, since the same information is used,
the improvement after a few iterations becomes very small. After the last iteration,
the soft output decision will be the sum of the last two extrinsic values and the
received sequence affected by the AWGN noise L. * yx. The decoder will make a
hard decision by comparing the soft output to a threshold equal to zero. In the
equation 2.32, if L(7)> 0, the decoded bit is 1, if L(u)< 0, the decoded bit is 0. We
can see the impact of iteration to the BTC decoding from the simulation results in

Section 3.3.

3.3 Results

3.3.1 Simulation Results for RM BTC Using MAP Algorithm

We give some simulation results in Figures 3.8 , 3.9, 2.10 on the performance in
terms of BER versus Ey/Ny for RM block turbo codes with MAP and MAX*-Log-
MAP algorithm for different code rates: RM(8, 4)%, RM(16, 11)%, RM(32, 26)°.
The results show that RM block turbo codes with high code rate performs better
or even much better than the ones with low code rates, especially at higher E,/No.
This is due to their longer block length. Also we investigate the RM block turbo
codes with different modulations such as BPSK and QPSK and in AWGN chan-
nel, the simulation results show that the performance is almost same for these two

modulations.

Comparison of MAP, MAX-corr and quantization for AM(8.4F. iteration=3

1 ¥ 1
crinot =8= MAP aigorithm
--------- -#— MAX-Corr.aigorithn

BER-DbIt error rate

Eb/NO dB

Figure 3.8: Comparison of various decoding algorithms for R1/(8, 4)2, R= 0.33,
iteration 3

3.3.2 The Impact of Iteration

Figure 3.10 (Page 52) illustrates that at the first iteration, the performance is
improved with increasing the number of iterations. The gain from the first iteration
to the second one is high as shown in these figures. However, after a few iterations,
the gap of performance becomes very narrow. That is because in the beginning the
extrinsic values are statistically independent and become more and more correlated.
So after a few iterations, the decoders practically use the same information in dif-
ferent iterations. since the decoding always uses the same information sequence.
Moreover, we can see that the number of iterations for high code rates is more than
the low rate ones. For a low code rate such as for RM (8, 4)?, the coding gain would

be saturated after 3 iterations, whereas for RM(32, 26)? the iteration number is 3,

T ;
MAP aigorthm 3
-6~ MAX-Log-MAP algorithrm
—a— MAX"-l.og-MAP aigorithr

- Log-MAP aigorithm 1
__________ p— PSK 3

..

10°Y

107

[

BER-bHR error rate
s

10 1 1
0 0.5 1 15 2 25 3 a5 4 45 5
EbINO dB
Figure 3.9: Comparison of various decoding algorithms for RM(16, 11)%, R=0.52,

iteration 4

which is because different code lengths causes the different sizes of interleaver.

3.4 Conclusion

This chapter discussed 2-dimensional RM BTC. We discussed the RM block
code construction. The RM block turbo code encoding system model employs the
same principle as the conventional turbo code encoding system model, except that
the two convolutional encoders are replaced by block encoders. Then we presented
the optimal decoding algorithm: MAP, based on the trellis. The decoding process is
performed block by block employing a forward and a backward recursion. To reduce
the complexity of the decoding, we introduced the minimal trellis and described

the Massey trellis used in this thesis. We also described the decoding algorithm:

[&]]
(8]

MAN*-Log-MAP, which is an approximation of the MAP algorithm with a correc-
tion term to compensate the difference. The MANX*-Log-MAP, while a suboptimal
algorithm, does provide a good trade-off between the hardware and performance.
The simulation results showed that this suboptimal algorithm meets the practical

implementation and performance goals.

10— T I I
"""" -~ itoration 1 for RM(16.,11)%, Ra0.524
ORI b~ iteration 2 for RM(16.11)%, R=0.524
------------------ - -+ 1 -#= iteration 3 for AM(16.11)%, R=0.52¢
10" : -8~ itorati

BER

-4 Il L 1 Il 1 2
1
0 0 1 2 3 4 § 6 7
EWNO, a8
10" | — T 1 —T I —

-6~ iteration 1 for AM(32.26)°, R=0.684
C U] b= dteration 3 for AV32.26)%, Ra0.684
- o | o= iteranon 5 for AM(32.26), R=0.684

-8 I | y 2 ! L
10 0 1 2 3 4 5 (] 7
EXNO, dB

Figure 3.10: The effect of iteration to RM(16, 11)? , RM(32, 26)*

Chapter 4

RM Block Turbo Codes
(3-dimensional) Implementation

Design and TPC

Block turbo codes are composed of simple block codes applied not only in
two (orthogonal) dimensions, but also in multiple dimensions. To obtain better
performance for block turbo codes and to ensure that, the complexity does not grow
exponentially, which is easier for hardware implementation, we extended the 2-
dimensional block turbo code to 3-dimensional case. Three dimensional block turbo
codes can provide flexibility in choice of code rates and coding gain advantages. In
this chapter, we will investigate 3-dimensional RM block turbo codes with MAP
decoding algorithm. Then, we will describe some of the implementation issues:
how to quantize the received sequence and how to choose the best bit-width for

quantization through simulation results.

4.1 Three-dimensional RM Block Turbo Codes

Multi-dimensional BTCs are higher dimensional codes where each bit is also
encoded by three or more encoders. Therefore, third or more codes are produced.
With multi-dimensional block turbo codes, we can get a large number of block sizes
and information sizes. In this way, we also can get a large range of code rates. This
flexibility allows BTCs to be used in a wide range of applications. The following

table shows the example codes for 3-dimensional block codes. From this table, we

Table 4.1: Example of RM block turbo codes in 3-dimension as used in this thesis

Block size | Information size | R (Code rate)
RM(8, 4)° 256 64 0.25
RM(16, 11)° 3146 1331 0.423
RM (32, 26)° 29744 17576 0.59
RM (64, 57)° 253422 185193 0.73
| RM(16, 11)%(8, 4) 1408 | 484 0.344 |
[RAM(16,11)%(32,26) | 6732 | 3146 | 0.467 |

can see that 3-dimensional block turbo codes have a greater possibility to get various
code rates than convolutional turbo codes and even 2-dimensional block turbo codes

and, thus, meet the practical applications.

4.1.1 Construction of 3-dimensional RM Turbo Codes

For a three-dimensional block turbo code, the element ordering for input:output
of both encoding and decoding is usually in the following order: X-axis (rows), Y-
axis (column) and then the Z-axis. For a three-dimensional information block of
size (i * j * k) and total block size ((i x j x k)+parity check bits), we can further un-
derstand that a product code is a relatively large code just built from smaller codes.
For example, let us consider RM (8, 4), R = 0.5. This code has 4 information bits,
computes another 4 parity checking bits via the encoding system, and then trans-

mits the - parity check bits together with the 4 information bits. In Chapter 3, we

36

investigated the two-dimensional RM block turbo codes, which result in a (48, 16)
code, R = 0.33. In this chapter, we consider 3-dimensional RM turbo block codes,
which would result in a (256, 64) code with code rate R = 0.25. Consequently, we
can see that by introducing the multi-dimensional block turbo code, we get a lower
code rate but a larger block size code.In addition, performance is getting better,
which will be shown from the future simulation results.

The three-dimensional block turbo code structure can be seen in the following

n.

]

k. —

-

13

Figure 4.1: The (n, k) 3-Dimensional block turbo code constructured from (n,, &)=
(n-;, kz) * (ng, k3) RM Codes

Figure 4.1. Each code symbol is a cube, or a 3-D vector. This model can be extended
to an arbitrary of dimensions. In this 3-dimensional block code, we do not think
about “parity on parity” bits so the block length, n, and information length, &, are

given for the new code (n, k), respectively as

n= [Tl1 x g — (n1 - kl) * (Tl-_) - k_g)] * k3 T kl ® k-_g * (n3 - l»3) (41)

k= kl X li}_) * I\I:;. (42)

[&]]
-1

Therefore, the code rate for this new code is

k ky x Ky = k3
n

_ 13
[ny % ny — (ny — ky) * (n2 — k2)] * k3 + Ky x k2 x (n3 — ks) (43)

R =

4.1.2 Three-Dimensional RM BTCs Encoders

Two-dimensional RM BTCs encoding systems are based on two parallel-concatenated
block codes: the interleaver is simply row-wise and column-wise. Three-dimensional
BTCs encode the same information bits three times. There is a similar encoding
svstem mode for 3-dimensional RM BTCs except there are three elementary en-
coders for each dimension and three interleavers . The encoding system model is

shown in Figure 4.2. There are three block interleavers: .\'-axis, }'-axis and Z-axis

Information data bits

Interleaver
X Encecder

Interleavel
Y Enccder S

Interleavel
z Encoder >

Figure 4.2: 3-dimensional RM block turbo codes encoding model

in this model. Those block interleavers are used to separate each dimension so that
the information bits can be effectively exchanged in the iterative decoding process.
The output codes are combined by four parts: information matrix of ki x ks x k3, the
coded bits P, for X-axis (the first RM block code encoder), P, for Y -axis (the second
R\ block code encoder), and P. for Z-axis (the third RM block code encoder) by

generator matrix and information data bits. The information data bits are sent to

38

the second and the third encoder after block interleaver. The four parallel streams of
data are then multiplexed into one stream and sent to the channel. We notice that
the interleaver for block turbo codes is very simple and each elementary encoder
is similar and not too complicated for hardware implementation. For these three
elementary encoders, we can use different RM block codes on each dimension. For
example, in the code of R./(8, 4)(16, 11)(32, 26), the first encoder encodes 4 infor-
mation bits to code length of 8 for X-axis, the second one computes 5 parity check
bits to create a 16 —bit code word for Y-axis, and so on. Different code combinations
for different dimensions will easily create a large range of codes with different code
rates and different block sizes, which can avoid the use of puncturing technique to
increase the code rate but result in a worse performance if compared with turbo
codes of the same rate. Later. when we talk about multi-dimensional block turbo
codes decoding, we will see that multi-dimensional block turbo codes provide ex-
cellent performance while the complexity of encoding and decoding increases only
linearly with the dimension.

The output codes are modulated as modulation sequences by BPSK or QPSK
and then sent out through AWGN channel. The process is identical to that of
2-dimensional block turbo codes. These modulation sequence with affected noise

component value are transmitted to the receiver side waiting to be decoded.

4.1.3 Decoding Scheme for 3-dimensional Block Turbo Codes

The received sequences of 3-dimensional block turbo codes can be decoded by
several algorithms as in the case for 2-dimensional block codes and convolutional
turbo codes: BCJR algorithm, SOVA algorithm, chase algorithm, and so on. In
this thesis, we used the suboptimal decoding algorithm MAX*-Log-MAP algorithm.
This decoding scheme, was presented in Chapter 2 and Chapter 3, and we now apply
it to 3-dimensional block turbo codes for the reason that it is a good compromise

between performance and hardware cost.

39

We still use the suboptimal algorithm based on the minimal trellis, which is no
more than 2*~* states in the trellis depth to reduce the decoding complexity. The
trellis starts and ends in the same zero state. This characteristic allows the use of the
MAP or MAX*-Log-MAP decoding algorithm without the need of appending any
tail to the information sequence in order to drive the encoder to the zero state like
convolutional turbo codes do. To use the suboptimal algorithm for 3-dimensional
block codes, we have to present it beginning with MAP algorithm. In Chapter 3
(2-dimensional block turbo decoding), we showed how the iterative decoding with
MAP algorithm works. It is a serial structure for a block turbo decoder [10]. Each
decoder uses the a priori value that actually is the ertrinsic value from the other
decoder after de-interleaving and at initial state, a priori value is 0. As illustrated
in Figure 4.3, the input arrows to each block represent the a priori information.
The output arrows represent the extrinsic information generated by the particular
block. Each estimated information bit is decided by the soft value of equation 2.25,

which is for 2-dimensional BTCs:
Loug) = Le - ye + L7 (ug) + Li(u).

For the lower biock size and code rate, we use BCJR algorithm, based on the trellis
diagram MAP decoding algorithm because it is more precise for decoding. Then,

equation 2.25 can be further expanded in to equation 3.22 as follows:

ZS-H ai—l(sl)) 3;'(8)
> aini(s) - 8ils)

For the 3-dimensional block turbo codes decoding, we use Figure 4.3 to illus-

L(@)=L. -y + L(w;) +log

trate the decoding process. The three-dimensional RM block turbo decoder depicted
in Figure 4.3, consists of three elementary decoders (Decoder in .X" — azis, Decoder
in ¥’ - azis, and Decoder in Z — azis) in series. We have presented how the in-
formation from this iteration to next iteration is passed. The process also works
for 3-dimensional BTCs. Three decoders in this diagram are soft — in/soft — out

decoders. For each decoder, there are two input values: a prior: value, received

60

Jeedback (X) for the next iteratio
De-INT
Jeedback (Y) for the next iteration Jeedback (Z) for the next iteration
Dt-l L\'T
De-INT
r
2T
L= | soft-in/soft-out INT || soft-in/soft-out |3l INT L, soft-in/soft-out
Decoder #1in |La X(U] Decoder 82 in Decoder 43 in
Lety X-axis Y-axis e YLD Z-axis
INT
INT
INT De-INT
INT
/
Soft output values

L,'

Figure 4.3: Iterative decoding process for 3-dimensional block turbo code

sequences in the beginning, then after decoding, the extrinsic value is generated to
replace a priori value. The extrinsic value is just a soft output value. This value
will be passed to the next two decoders for decoding. Each decoder uses the a
priori value that is actually the extrinsic values from the other two decoders. At

the receiver end, the decoding algorithm is as follows:

e the X — azis decoder produces the extrinsic information for the received se-

quence

e the received sequence is interleaved and input to the Y —azis decoder together
with the interleaved extrinsic information summation from .X - azis, and

Z — azis which is used as the a priori value to the Y — azis decoder.

e similarly with the ¥ — azis decoder, the interleaved received sequence with
the interleaved summation of extrinsic value used as a prior: value input to

the Z — axis decoder.

61

e the Z — aris decoder produces the new extrinsic information which will be
added to the new extrinsic value produced by Y — aris, deinterleaved and
used as a priori input in the X" — azis decoder in the next iteration, and so

on.
The soft-outputs produced by the decoder for X — azis is given by
Ly (uk) = Le - yx + LY (ux) + L3 (us), (4.4)

where L. - yr is the received sequence affected by AWGN channel noise, LZ(ux),
L¥(ug), Li(ug) are respectively the extrinsic values from corresponding decoder, .

Similar equations can be written for L¥;(ux) and Lj;(ux)

Li-(ug) = Lc- ye + LE(ug) + Lo {uk). (4.3)

Li(uk) = Le - ye + L7 (uk) + LY (uk). (4.6)

At the final iteration, the final soft value will be obtained by the sum of channel
values L. - yx and the three extrinsic values of the three decoders in different axes.
Three-dimensional turbo codes require 3 sub-iterations per iteration and, therefore,

require twice as much extrinsic information as two-dimensional BTCs.
LU(uk) =L.- Ye + Lﬁ(uk) + Lg(uk) + L:(uk) (47)

Note that the a priori information is provided only for the information bits in the
block part. The decoding of the parity bits does not use any a priori information. In
addition, the rule for making decisions regarding the information bits is exactly the
same as the one in 2-dimensional BTCs, which we presented in Chapter 2. Similarly,
with the increasing of the iteration number, the BER performance will be improved.

From the above equations and combined with the approximation equation,
which is described in Chapter 2, we obtain the suboptimal decoding scheme for 3-

dimensional BTCs. This decoding scheme does not lose much coding gain and is

62

much easier for hardware design as compared to MAP algorithm. We will see how
much coding gain loss with the suboptimal algorithm comparing to the optimum

MAP algorithm.

4.2 Quantization for Decoders of BTCs

Software simulation for BTCs in any applied algorithms, such as MAX*-Log-
MAP algorithm used in a BTC-decoder, are usually specified in the floating-point
domain. It is necessary for an actual hardware implementation to transform from
floating to the fixed-point because fixed-point number representation is mandatory
for most target architectures [38]. The basic goal for a software simulation for
implementation is to find a fixed-point model that corresponds to the given bit-
width of the decoder chips. Quantization of the received sequence is very important
because a large word length not onliy takes a lot of hardware for the buffers but
also causes a large amount of hardware for the computation [39]. The simulation for
software implementation with fixed-point number offers a suitable bit-width as small
as possible and, at the same time, the performance degradation is of an acceptable
value. We investigate the dynamic range of received sequence and the influence of

quantization and fixed-point arithmetic for the implementation of the turbo decoder.

4.2.1 The System Model

A block diagram of the communication system considered in quantization is
illustrated in Figure 4.4. The coded bits are BPSK modulated into (—1, +1) signal
and transmitted through the channel. AWGN noise ny € N(0,0?) is added to the
transmitted signal and the received bits are scaled by a factor g before they are
digitized by the quantizer. The gain control adjusts the amplitude of the signal
to minimize the distortion with the optimal scaling factor or to achieve the best

signal-to-distortion ratio at the quantizer.

63

information n.-N(0, o)

bits (0, 1) BPSK
— Turbo Modulator
Encoder (-1, +1)
Estimated
infegmasionl Turbo Quantizer Gain
bits (0, 1)| Decoder Control

Figure 4.4: System model including quantization [40]

4.2.2 Channel Input Quantization

In [41], an optimized quantization scheme of the internal values does not de-
grade the bit-error performance, so in this thesis, we only investigate the quan-
tization for the input received sequence and the effect of the quantization on the
performance. Because the system model we have studied is only AWGN channel,
the input received sequence is distributed with a Gaussian distribution around the
transmitted symbols (-1, +1). Assuming we have a data stream with a mean equal
to 0 and a variance equal to o,more than 99% of the data sequences are covered in

the range of (—30, 30).

Semee [-E] = 6t -6
= G¥) -G

= G(3)-[1-G(30)]
= 0.997

Also more than 99% of the received sequences are covered by limiting the dynamic-
range of the received channel values (-1 — 30, +1 + 3¢), where ¢ is the variance
of the AWGN distribution because the transmitted sequence is either —1 or +1
as shown in Figure 4.5. There are several quantizations: uniform, non-uniform and

logarithmic quantizers [42]. We use uniform quantizer to quantize the input received

64

Figure 4.5: The distribution of received sequence in AWGN channel

sequence. There is a simplified method that considers that the received sequences
are in the range of (-4, 4) because most received sequences are limited to this area

as shown in the fcllowing table. For the reason of precision, in this thesis. uniform

b
-

Table 4.2: The received sequence corresponding to the various % for R\ (32. 26)
% 1 0dB |0.5dB| 1dB [2dB [3dB [1dB|15dB|5.0dB |

Vn

c 0.855| 0.807 | 0.762 | 0.68 | 0.605 | 0.51 | 0.51 | 0.481 |
1+30]3.565| 3421 | 3.286 | 3.04 | 2.815| 2.62 | 2.53 | 2.443 |

quantizer deals with the range of received sequence at (—1 — 30, +1 + 30). We
suppose D =1 + 30 and that all received sequences in the range of (—=D, D) are
divided by 2™ evenly spaced bins, where m is the number of bits of the quantizer

[43]. The quantization step size d is
d=2D/2™, (4.9)

each step size boundaries are at

1

1 7
3D, 0% (0, 2D)---(5D, x)} (1.10)

{(=, 2D (3D, (3D

and each received sample is mapped into the center of the corresponding bin. For

example, when %is 0 dB, then D is 3.565 and a sample with the value 0.246 is

65

mapped into 9th step. The sample falls into the bin boundary (0, D), it will be

mapped into the

(30~ 0)/2=0223, (411)

and then it will be represented as a binary number.

4.2.3 Simulation Results for Quantization

Figure 4.6 shows the performance with MAX*-LOG-MAP decoding algorithm
for three-dimensional RM(32, 26) at iteration 5 when the received signal is quan-
tized. At the BER =107?, we find 0.3 dB coding degradations for an AWGN channel

under the condition of 4-bit quantization.

Comparison of MAP, MAX-corr, and Quantization for RM(32.267, iteration=5
10’ f————— e T e Y

SEEHENEE £ 5 MAP algorithm

7] =+~ MAX"-Log-MAP aigonthm |
-+-{ =6~ Quantization with 5 dB
.| — UncodedBPSK L

....................................

......
.....

BER-bil error tate

..................................
................................

............

..........

4
EbiNO dB
Figure 4.6: The effect of quantization received sequence for 3-dimensional RM(32.26)

The amount of bits needed for quantization is also a problem for the effect of

performance and also for reducing the complexity of hardware design. Figure 4.7

66

shows the performance of the code for different numbers of quantization bits. From

Comparison of MAP, MAX —corr with different bit quantization for RM(32.25F. iteratione5
0 — —

: -8~ MAP algonthm 3

- -9~ MAX-Corr.algorithm with 3 bit quantization

L] % MAX-Corr.algorithm with 4 bil quantization ||
-~ MAX-Corr.algorithm with 5 bit quantization

10°

..

...

..

BER-bit error rate

Eb,N0O dB

Figure 4.7: Simulation for different bit quantization schemes for two-dimensional
block turbo code

the simulation results of Figure 4.7, which shows that the performance degradation
from the infinite precision is negligible if 4-bit quantization is used for received se-
quence, we can see that 4-bit quantization is the best choice because the performance
for 4-bit quantization is much better than that of 3-bit quantization. It can be seen
that 4-bit quantization provides a good tradeoff between hardware complexity and

BER performance. Hence, we choose 4-bit quantization and o is fixed for % = 3dB.

4.3 Comparison the BTCs in 3D and 2D

To compare the three-dimensional and two-dimensional BTCs in terms of BER
performance, we have to use puncturing skill to get the same code rate for these

two different dimensional BTCs. As we have presented in Chapter 2, puncturing is

67

the technique used to obtain any higher code rate by deleting the parity check bits
periodically or regularly from a encoder output without changing any of its basic
attributes. Since all information bits should be retained to obtain good results from

iterative decoding, only the parity bits are punctured.

4.3.1 Puncturing Rule

We compare 2D and 3D BTCs in terms of the BER performance under the
same conditions such as all the code words with BPSK are modulated and affected
by an AWGN channel noise before reaching the received end, and optimum MAP
algorithm is used. We choose the component code R (32, 26) and R1/(8, 4) as
our experimental sample. For the component code R (32, 26), there are different
code rates for 2-dimensional R (32, 26), R, = 0.68 and 3-dimensional RV (32, 26).
R> =0.59. This is why we have to use the puncturing method to increase the BTC
R}M (32, 26)3 and to get the new code rate R, = 0.68. We list some information in

the below table for these two component codes with puncturing and non-puncturing.

Table 4.3: Comparing the basic information between puncturing and non-puncturing
for RM(32, 26)° and RM (8, 4)3

| | No puncturing i Puncturing |
Block Size | R(Code Rate) | Block Size | R(Code Rate)
RM(32,26)° | 2974 0.39 25688 0.68
| RM(8, 4)° 256 | 0.25 } 192 | 0.33 |

The criteria to select puncturing pattern should also be based on the theory of
output weight distribution [44]. There are several ways to delete these redundancy
parity check bits: 29744 — 25688 = 4056 for the R1/(32, 26)3. One is we can leave

with (29, 26) component codes in 2 of the dimensions, then we can delete:
(32 — 29) = 26 * 26 = 2 = 2028 * 2 = 1056. (4.12)

We use this way to delete the 4056 parity check bits from 2 dimensions: x-axis

and v-axis, for each one we delete 2028 parity check bits, then we obtain R =

68

0.68 for RM(32, 26)3. e can also increase the code rate from 0.39 to 0.68 for
RM (32, 26)° by doing another puncturing: keep the 13 information columns and
13 information rows as the complete encoded code bits (32,26), the remaining 13
information columns and 13 information rows only keep information bits, all parity
check bits for the rest columns and rows will be deleted. By that we get the code after
puncturing with block size 25688 and the code rate is R = 0.68 for RM(32, 26)3.
We could use the puncturing technique for RM(8, 4)%, which is the same as
the one used for RM(32, 26)%. We keep (6, 4) component codes in any 2 of the
dimensions by deleting the 2 parity check bits in each code word instead of sending
4 parity check bits in each code words. In total, we delete 64 parity check bits in
the two dimensions, then we obtain code rate R = 0.333, which is same as that of
R(8, 4)°. The simulations to compare 2D and 3D BTCs will be described in the

next section.

4.3.2 Simulation Results

Fig. 4.8 illustrates the performance on BER of RM(8, 4)°, RM(8, 4)3 and
RM(8, 4)3 after puncturing, the three BTC codes BPSK modulated and, through
an AWGN channel, decoded by MAP algorithm with 3 iterations. The code rates are:
0.33, 0.25, 0.33, respectively.We can see that the BER performance of RM(8, 4)°
with code rate R = 0.25 is better than R)M(8, 4)* with code rate R = 0.333.
However, it is different story for the puncturing RM(8, 4)® with the same code rate
as RM(8, 4)°. At low {:-g, such puncturing 3D code performs slightly better than
the full 2D code (in this case of RM(8, 1), until % =1.5 dB), after 4.5 dB, the
puncturing code performs worse than the 2D code.

For the case of component R1/(32, 26), until % =2.8 dB, the puncturing one

performs slightly worse than the R/(32, 26)% though it performs better than 2D

before 2.5 dB.

69

e Comparison of AM(8.9)2 and RM(8.4)° and after puncturing for MAP aigonthm, iterationa3
. I.. .. I T

" 111§ ~#~ MAP algorithm for RM(8.4)2. R=0.333
-~ { B~ MAP algorithm for RM(3.4)°, R=0.25

~0- puncturing RM(8.4)° with MAP, R=0.323 |

BER-bit error rate

........

Eb/NO dB
Figure 4.8: Comparing the 3D and 2D on BER performance, example 1 of

RM((8, 4)?

4.4 Turbo Product Code

4.4.1 TPCs Code Construction

TPCs are a class of block turbo codes. The turbo product code structure is
similar to that of block turbo codes. Both of them encode twice or more times the
same information bits. The difference for turbo product cede is that the parity bits
are also encoded. This part is called parity check on check bits. However, this part
does not exist in block turbo codes. For the TPC construction, we can refer to Fig.

4.9.The turbo product code C = C; = (', is obtained by:
1. placing (k, x k;) information bits in a matrix of k; rows and &, columns,

2. coding the £, rows using code (7,

Comparisan of AM(32.26) and RM(32.26)° and after puncturing for MAP algorithm, iteration=5

N . ; o)3
::::| -=— MAP algorithm for RM(32,26)%, R=0.634
................ .| =8 MAP algorithm tor RM(32,26)°, R=0.591
0 —©— puncturing RM(32.26)° with MAP, R=0.684
107
2
S0
g
3
B b N IR e e]
-4
< 10
=]
10
10
107" L ' : L
0 1 2 3 4 s 6
Eb/NO dB

Figure 1.9: Comparing the 3D and 2D on BER performance, example 2 of
R (32, 26)°

3. coding the n. columns using code Cs.

The matrix of parity on parity check bits can also be obtained by coding n; rows.
This gives the same result as the result of the listed processing. Block codes C;
and C; have parameters (ny, ki, d1) and (ns, ks, d2), where d; (i =1, 2) is the code
word weight, respectively.
From this structure, we can get the parameters (n, &, d)for the turbo product
code C, (n, k, d).
n=n; Xno, k= kl x k-_) and d= dl X dg. (413)
and the code rate is R = R} x R, where R;(i =1, 2) is the code rate C,(i =1, 2).
Because of the parity on parity check bits, the code rate for BTC is smaller than

that of TPC when the same component codes are used.

il

k,

Parity
Information Check

bits

Symbols on

n Rows

Checks
Parity Check bits con columns on

J checks
)

Figure -1.10: Construction of Turbo Product Code C for 2-dimensional

Table 1.4: Comparing the code rate between TPC and BTC with same component
code used

R (code rate for BTC) | R(code rate for TPC) |

RM(8, 4)° 0.33 0.25 i
RM(16, 11)? 0.52 0.473 !
RM(32, 26)° 0.68 0.66 !
RM(64, 57)° 0.803 0.793 }

4.4.2 TPC Coding Scheme

The TPC encoding model is the same as that of BTC. For more details, please
refer to Section 3.2.2.

There are several decoding schemes investigated for TPC. Reddy [45] used
iterated method to decode product code, however, the performance is not so good
as it is based on hard decoding which is sub-optimal on an AWGYN channel. In
1992, in [46], the decoding algorithm was proposed using a separable MAP filter,
which allows soft decisions to be passed from one iteration to the next. A one-

dimensional MAP filter is used sequentially in each dimension. The probabilities of

=1
[SV]

error obtained at the first step are further refined by another MAP filter used for
the next dimension, which completes a single filtering cvcle. After the first cvcle,
the resulting word may not be a valid codeword, but , by iterating the decoding
operation a small number of times, the MAP algorithm is able to decode valid
codewords.

Following the famous results obtained from Turbo Code in 1993, research
started to focus on the iterative algorithm which yields near optimum decoding
of products in terms of BER based on soft decoding and soft decision output. In
1994, Pyndiah [3], [6] and some other people [8] modified chase algorithm to achieve
excellent BER performance comparable to the those of CTCs especial for high code
rate. Although modified chase algorithm can achieve a very good compromise in
terms of BER performance and hardware cost for TPCs, it is still a suboptimal
algorithm. e use BCJR and also suboptimal MAX*-Log-MAP algorithm based on
minimal trellisin this thesis. The BER performance is better than the modified chase
algorithm. The decoding procedure for TPCs is similar to the decoding of BTCs.
Decoding can be performed either row-wise first and then column-wise or vice versa.
For iterative decoding, the decoding process at each step should be SISO. For more
details regarding iterative decoding, please refer to Section 3.2.3 and Section 1.1.3.
During the decoding processing, the a priori information is provided only for the
information bits in the block part, which is the same for BTCs. The decoding of
the parity bits and parity on parity check bits do not use any « priori information.
The rule for making decision of the information bits is exactly same as the one in 2-,
3-dimensional BTCs, which we presented in Chapter 2. Also, with more iteration
used, the BER performance will be improved. Figure 4.11 shows us the simulation
for TPC with component R)/(32, 26)2, the block size is 32 x 32 = 1024, data size
is 26 x 26 = 676, and code rate is R = R, *x R, = 0.66. At BER of 103, there is
0.12 dB coding gain loss for TPC RM(32, 26)* as compared to BTC RM(32, 26)2.

o Companson of TPC and BTC with component biock code AM(32.36)in 2-dimension, iteration=5

10 L] L]]

-8 BTC AM(32.26)2. R=0 68
—e— TPC AM(32.26), R=0 66

BER-bit error rate

Eb/NO 0B

Figure 4.11: Comparing of BTC and TPC with component R (32. 26) in 2-
dimension, iteration 5

4.5 Conclusion

This chapter presented the multi-dimensional BTCs as an example of three-
dimensional RM(32. 26) and R)M(8. 4). Since multi-dimensional BTCs can offer
more choices for code rate and block size and avoid the using of puncturing that
can deteriorate the performance and the decoding complexity increases only linearly
with the dimension, the study and investigation of multi-dimensional BTCs is very
meaningful. For 3D BTCs. we gave the structure of this kind of code and presented
the encoder model consisting of three encoders for three different axis: X.vand z. At
the receiver end. we explained how the decoder works with BCJ R algorithm based on
the Massey trellis. From the simulation results. multi-dimensional BTCs do provide
more excellent performance than 2D BTCs do. To achieve a higher code rate, some

of the bits in the code word must be punctured. Using puncturing method, we get

74

we get the same code rate as the 2D code such that they can be compared in terms
of BER performance. The simulations show that at low SNR, the puncturing one
performs better than the 2D code, that is due to a better overall weight spectrum.
When increasing the SNR, the puncturing one starts to perform worse than the
2D code due to a worse minimum distance. Due to a larger minimum distance,
block sizes and lower code rate, multi-dimensional BTCs perform better than 2-
dimensional BTCs though they use the same component codes.

In this chapter, we have talked about the quantization, this is the first and
most important step of hardware design. Choosing the good quantizer will not affect
the BER much. The simulations show us that the 4-bit quantization is the good
tradeoff in terms of hardware design and BER performance.

As TPCs are the important part of block turbo codes, we briefly describe
TPC in terms of construction product code, encoding and decoding algorithm. The
product code encoder is the svstematic block code encoder, which is the same as
BTCs". As they belong to the same class, their decoding procedure and decoding

algorithms are similar.

Chapter 5

Applications

Block turbo codes and turbo product codes are a class of codes with a wide
range of flexibility in terms of performance, complexity and code rate. This flexibility
allows BTCs and TPCs to be used in a wide range of applications. For this reason.
we suggest the use of BTCs and TPCs as alternatives for the forward and return
chanrels of DV'B-RCS (Digital Video Broadcasting - Return Channel via Satellite).
The present DVB-RCS standard suggests the use of non-binary convolutional turbo
codes. In this chapter, we will present the DV'B-RCS standard and discuss the

application of BTCs in this standard.

5.1 DVB-RCS Standard

DVB-RCS is a standard for Return Channel via satellite recently approved
by the DVB-RCS Committee or EN 301 790 in ETSI (European Telecommunica-
tions Standard Institute http://www.etsi.org/getastandard/home.htm) to com-
pete with ADSL (Asymmetric Digital Subscriber Line) and Cable modem to pro-
vide broadband access [47]. DV'B-RCS system provides two-way, full-IP, asvmmetric
communications via satellite.

The standard illustrates the syvstem model, which is to be used within DV'B

6

for interactive services. Two channels are established between the service provider
and the user: the broadcast channel and the interaction channel. For the latter, a
bi-directional Interaction Channel is established between the service provider and

the user for interaction purposes. It is formed by:

® Return Interaction Path (Return Channel): it is from the user to the ser-
vice provider. It is used to make requests to the service provider, to answer

questions or to transfer data.

® Forward Interaction Path: from the service provider to the user. It is used
to provide information from the service provider to the user and any other

required communication for the interactive service provision.

We will present two types of traffic bursts: one is the ATM cells used in the return

channel and the other is the MPEG2-TS packet used in the forward channel.

5.1.1 ATM cells

Standardization of ATM over Satellite is currently under progress and several
organizations are working in parallel. Recently, there have been some important
developments that have had a big impact on the use of ATM over Satellite. Most
important is the trend using DVB-S to the end-user. This enables bundling of ser-
vices such as video broadcast and IP traffic, The use of £ ATM cells is recommended
in the return channel. On the return link (from the end-user to gateway direction)
the DVB Interaction channel for satellite distribution system may be the key to
affordable transmit/ receive user terminals. In order to compare the performance
of TPC with traditional coding methods, the ATM packet size of 33 bytes will be
used. Figure 5.1 shows the AT cell with 53 — 4 bytes, in where 4 byvtes is added to
the packet for physical level administration. In order to code this packet size with

block turbo code, a component code of RA/(32, 26) is used. This structure has a

——

tl bytes [¢.5 bytes 48 bytes -

]
1 Reguest

F“b;iéeld Header Payload
]

Figure 5.1: Turbo codes for ATM cell-based transmission

data size of 262 bits, or 84.5 bytes. In order to optimally fit the 57 byte packet, the
code is shortened by 220 bits for block turbo code: 26° — 57 x 8 = 220. In order
to optimally fit the 57 bytes packet, the code is shortened by 5 rows and 4 columns
or vice versa, and the first row shortened by an additional 6 bits. The block turbo
code is shortened as (714, 456) with code rate of 0.64. Note that other code rates
are achievable with different shortening patterns [48]. The BER performance of this
shortening pattern is better than the results in[49], which shows the performance
of Reed-Solomon /convolutional concatenated codes for ATM cell transmission. by

about 0.4 dB at BER of 1073.

2.1.2 MPEG2 Packet

Another application of the developed turbo codes can be the use of MPEG-
2 systems digital audio and video transmission in satellite. MPEG is the family
name of standard of coding audio-visual information (e.g., movies, video, music)
in a digital compressed format. It is an ISO,TEC (International Organization for
Standardization, International Electrotechnical Commission) standard for medium
quality and medium bit rate video and audio compression. It allows video to be
compressed by the ratios in a particular range.

The MPEG? transport stream has a frame composed of 188-byte packets con-
taining program-specific information. The 4 additional byvtes will be added in the
beginning of the packet. According to the standard for DVB-RCS, it is recommended
to use two coding schemes: turbo code and concatenated coding. As a kind of turbo

code, BTC or TPC is alternative for the forward link to carry MPEG-2 Transport

8

Streams. For example, use the product code of RM(64. 57) by shortening certain
bits such as: 57 x 57— (188 +4) x 8 = 1713 bits. The shortening pattern could be the
following: shorten 25 rows of information bits and then shorten another 9 columns
of information bits. The block turbo code is shortened as (2096, 1536) and the
code rate is 0.733. Figure 5.2 shows the result of shortened RM (64, 57)% with the

shortening pattern we presented. We compare the simulation result with Pyndiah’s

Shortened AM(64, 57)2 code applled to MPEG packet. fteration=6

[= MAX-Conr pr— for AM(64. 577 Red. 733 |

BER-bit error rate

10'7 ! !

EB/NO dB

Figure 5.2: Shortened RM (64, 57)? with code rate R = 0.733 applied for MPEG
packet

paper in 1998 [6] for RM (64, 57), we can get a 0.2 dB coding gain. Moreover, the
simulation result obtained from Pyndiah is based on the modified chase algorithm
and without any performance loss in shortening. By comparing this to DVB-RCS.
[47]. which uses double-binary CTC, we can see that thev are very close to each
other by using the empirical formula: for 188-byte packet: BER <= PER /300 for
PER < 107,

Chapter 6

Conclusion and Future Works

6.1 Conclusion for the Thesis

The purpose of this research is to study the characteristics of block turbo
codes, turbo product codes, and to investigate ways to practical application as
alternatives for the forward and return channels from DVB-RCS svstem. Turbo
codes offer a performance superior to all other coding techniques. The main factors
that make turbo codes so efficient include parallel concatenation structure of the
encoding system, recursive convolutional encoder, interleaver, puncturing techniques
and iterative decoding.

As another type of code, we found that the iterative decoding also performs
very well when we use the linear block code as the component code for turbo code.
With the linear block codes being the component codes and through different con-
catenation, we can easily get a larger number of block turbo codes with different
code rates from low to high (up to 0.98) without puncturing. Also, compared to
CTCs, BTCs use simple block interleaving (row/column), which is as good as ran-
dom interleaving in CTCs. Some papers have already mentioned that BTCs are
more efficient than CTCs in terms of high code rates [8], [7].

We briefly presented a few popular decoding algorithms used in Turbo Block

80

Codes in Chapter 2 and also presented in later Chapters how the construction of
the encoding model for multi-dimensional BTCs. For the purpose of obtaining good
performance, we take advantage of optimal MAP algorithm based on the trellis as the
basic decoding scheme. Furthermore, for the purpose of reducing the implementation
complexity, we employ an approximation method to avoid a lot of computations and
we also introduced minimal trellis for the same purpose. Simulation results show
that the coding gain degradation for BER performance can be negligible using the
approximation method with a correction term. Through simulation, also showed
how the number of iterations affect the turbo decoding performance.

For practical implementation, it is necessary to translate the floating point to
fixed-point. For software implementation, a fixed-point model that corresponds to
the given bit-width of quantization is to be found in order to avoid the much loss
in BER performance. This thesis research also helps hardware implementation to
find a reasonable bit-width quantizer to avoid much performance loss. Easier for
hardware implementation leads to lower costs. So, this thesis also presented a little
implementation design with the sample of 3-dimensional BTCs in Chapter 4.

A better approach to obtain higher coding gain is to use multi-dimensional
turbo codes. The performance of multi-dimensional block turbo codes shows us that
BTCs and TPCs are the more attractive option for a wide range of applications.
Furthermore, we can get different code rates of block turbo codes by combining dif-
ferent linear block codes and with different dimensions in BTCs rather than using
puncturing techniques to avoid the loss in BER performance. BTCs provide excel-
lent performance at high code rates and can offer a very wide range of block sizes
and code rates without change in coding strategy. BTCs offer a low complexity and
higher efficiency than CTCs for higher rates. The simple row/column interleaving
and linear block encoding in the BTC encoding system are a good example. All
simulations of 2-, 3-dimensional BTCs in Chapter 3 and 4 show that the BTCs de-

coder is nearly optimal as compared to the convolutional turbo codes, thus, making

81

the BTCs very attractive for practical application such as DV'B-RCS system.

6.2 Future Works

In this thesis, we have investigated the BTCs from the encoding and decoding
aspects. From the research. we know that the multi-dimensional BTCs have more
potential and deserve further consideration. All the simulations were performed for
these kinds of codes under ideal channel conditions for AWGN channel with BPSK

or QPSK modulation. We would like to suggest the following future work:

1. Using minimal trellis reduces the complexity. but as the code length increases.
the number of trellis state would increase exponentially, which can cause de-
coding delay and also much more complexity. So. we suggest that in the
future work to use a more economical representation of the codes such as the

sectionalized trellises.

2. To study the performance of BTCs and TPCs on other channel models. such as

the fading channels: also use different modulation techniques such as OFDM.

3. Comparing to another decoding scheme usually applied for BTCs or TPCs:
modified Chase algorithm. the chase algorithm is much less complex than
suboptimal MAX*-Log-MAP algorithm based on the trellis. however. the per-
formance is not as good as the latter. So, we have to further find a good
decoding scheme to satisfyv a better performance and less complexity. That is,
tc find an implementation having a complexity similar to the Chase algorithm

and a performance close to MAF algorithm.

83

Bibliography

[1] FroRichard E. Blahut, Theory and Practice of Error Control Codes, Addison-
Wesley Publishing Company, 1983

[2] Shu Lin, Daniel J.Costello, JR. Error Control Coding, Prentice-Hall, Englewood
Cliffs, 1983

[3] C. Berrou, A. Glavieux, and P. Thitimajshuma, “Near Shannon limit error-
correcting coding and decoding: turbo codes,” Proc. 1993 IEEE International
Conference on Communications, Geneva, Switzerland, pp. 1064-1070, May

1993.

[4] J. Lodge, R. Young, P. Hoeher, “Separable MAP filters for the decoding of
product and concatenated codes,” in Proc.. IEEE Int. Conf. on Communication

(Geneva, Switzerland, May. 1993), pp. 1740-1745.

[5] R. M. Pyndiah, A. Glavieux, A. Picart and S. Jacq, “Near Optimum Decoding
of Product Codes,: in GLOBECM 94, San Francisco, CA, Dec. 94, pp. 339-343.

[6] R. Mahendra Pyndiah, “Near-Optimum Decoding of Product Codes: Block
Turbo Codes,” IEEE Trans. Commun., vol. 46, pp-1003-1010, Aug. 1998.

[7] - Tterative decoding of product codes: Block turbo codes,” in Proc. Int. Symp.

Turbo Codes, Brest, France, Sept. 1997, pp.71-79.

84

8] S. Dave, J. H. Kim, S. C. Kwatra, “An Efficient Decoding Algorithm for Block
Turbo Codes,” IEEE Trans. Commun.. vol. 49, pp. 41-46, Jan. 2001.

[9] Divsalar, D. and Pollara F., “On the Design of Turbo Code”, The JPL TDA
Progress Report 42-123, Nov. 15, 1995

[10] J. Hagenauer, E. Offer, L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-443, Mar.
1996.

[11] J. G. Proak, Digital Communications. McGraw Hill.

[12] B. Thomson, “Advanced Error Correction Enables Broadband Wireless,” Wire-

less System Design, Jun. 2000.
[13] G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: M.I.T. Press, 1996.

[14] S. Benedetto, G. Montorsi, “Unveiling Turbo Codes: Some Results on Parallel
Concatenated Coding Schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409-
428, Mar. 1996.

[15] B. Vucetic, J. H. Yuan, Turbo Codes Principles and Applications, Kluwer Aca-
demic Publishers, 2000.

[16] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbols Error Rate,” IEEE Trans. Inform. Theory, vol.
[T-20, pp. 284-287, 1974.

(17] J. A. Erfanian, S. Pasupathy and G. Gulot, “Reduced Complexity Symbol De-
tectors with Parallel Strucutres for ISI Channels,” IEEE Trans. Commun., vol.

42, pp.1661-1671, Feb./Mar./Apr. 1994.

(18] J. Hagenauer,P. Hoeher, “A Viterbi Algorithm with Soft Decision Outputs and
its Applications,” Proceedings of IEEE GLOBECOM, pp. 1680-1686, Nov. 1989.

85

[19] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, No.2,
pp. 260-269, Apr. 1967.

[20] D. Chase, “A Class of a Algorithms for Decoding Block Codes with Channel
Measurement Information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170-
179, Jan., 1978.

[21] Kerouedian, S.; Adde, P. “Block Turbo Codes: towards implementation,” Elec-
tronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International
Conference on, Vol:3, pp. 1219-1222, 2001

[22] 1. S. Reed, “ A Class of Multiple-Error-Correcting Codes and the Decoding
Scheme,” JEEE Trans. Inform. Theory, vol. IT-4, pp. 38-149, 1954.

[23] D. E. Muller, “Application of Boolean Algebra to Switching Circuit Design and

to Error Detection,” IEEE Trans. Computers, vol. 3, pp. 6-12, 1954.

[24] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Code,
North-Holland Publishing, 1981.

[25] V. S. Pless, W. C. Huffman, Handbook of Coding Theory, vol I & II, Elsevier
Science B.V., 1998.

[26] J. K. Wolf, “ Efficient Maximum Likelihood Decoding of Linear Block Codes,”
IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80, 1978.

[27] D. J. Muder, “Minimal Trellises for Block Codes,” IEEE Trans. Inform. Theory,
vol. 34, pp. 1049-1053, Sept., 1988.

[28] J. L. Massey, “Foundations and methods of Channel Coding,” NTG-
Fachberichte (Proc. Int. Conf. on Information T heory and Systems), vol. 63,
pp. 148-157, 1978.

86

[29] R. J. McEliece, “On the BCJR Trellis for Linear Block Codes,” IEEE Trans.
Inform. Theory. vol. 42, No. 4, pp. 1072-1092, 1996.

[30] S. Lin, T, Kasami, T, Fujiwara, and M. Fossorier, Trellises and Trellis-Based
Decoding Algorithms for Linear Block Codes, Kluwer Academic Publishers,
1998.

[31] H. Nickl Nickl, J. Hagenauer, F. Burkert, “Approaching Shannon’s Capacity
Limit by 0.27 dB Using Simple Hamming Codes,” Communications Letters,

vol. 9, no. 3, pp.130-132, Sept. 1997.

[32] S. Dave, J. H. Kim, S. C. Kwatra, “An Efficient Decoding Algorithm for Block
Turbo Codes,” IEEE Trans. Commun.. vol. 49, no. 1, pp. 41-46, Jan. 2001.

[33] W. Peterson, E. Weldon, Error Correcting Codes, The MIT Press, Cambridge

Mass., 1972.

[34] A. B. Kiely, S. Donlinar, R. J. McEliece, L. Ekroot, and V.. Lin, “Trellis Com-
plexity Bounds for Decoding Linear Block Codes,” The Telecommunications and
Data Acquisition Progress Report 42-121, January-March 1995, Jet Propulision

Laboratory, Passdena, California, pp. 159-172, May 15, 1995.

[33] A. B. Kiely, S. Donlinar, R. J. McEliece, L. Ekroot, and W Lin, “Trellis Com-
plexity Bounds for Decoding Linear Block Codes,” The Telecommunications and
Data Acquisition Progress Report 42-121, January-March 1995, Jet Propulision
Laboratory, Passdena, California, pp. 148-157, May 13, 1995.

[36] G. D. Forney, “Dimension/ Length Profiles and Trellis Complexity of Linear

Block Codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 1741-1752, 1994.
[37] C. Schlegel, Trellis Coding, IEEE PRESS, 1997.

[38] H. Michel, N. Wehn, “Turbo-Decoder Quantization for UMTS,” IEEE Commu-
nications Letters, vol. XX, No. Y. Month 2000.

87

[39]

[40]

[41]

[42]

[43]

[44]

[46]

Z. F. Wang, H. Suzuki, K. K. Parhi, “\'LSI Implementation Issues of Turbo De-
coder Design for Wireless Applications,” JEEE Workshop on Signal Processing
Systems Design and Implementation, Taibei, Taiwan, Oct 20-22, 1999.

Y. Wu and B. D. Woerner, “ The Influence of Quantization and Fixed Point
Arithmetic upon the BER Performance of Turbo Codes,” in Proc. IEEE In-
ternational Conference on Vehicular Technology (VTC Spring '99), May 1999,
vol. 2 pp. 1683-168T.

H. Michel, A.Worm, and N. Wehn, “Infuence of Quantization in the Bit-Error
Performance of Turbo-Decoders,” in Proc. VTC 00 Spring Tokyo, Japan, May
2000.

G. B. J, D. H, “Optimal Quantization for Soft-Decision Turbo Decoder,” in
Proc. IEEE International Conference on Vehicular Technology VTC 99 Ams-
terdam, the Netherlands, Sept 19-22, 1999.

T. K. Blankenship, “Design and Implementation of a Pilot Signal Scanning Re-
ceiver for CDMA Personal Communication Services Systems,” Master's thesis,

Virginia Tech, Apr. 1998.

F. Mo, S. C. Kwatra, J. Kim, “Analysis of Puncturing Pattern for High Rate
Turbo Codes,” Dept. of Electrical Engineering and Computer Science, the Uni-

versity of Toledo, Toledo, OH 43606.

S. M. Reddy, “On Decoding Iterated Codes,” IEEE Trans. Inform. Ti heory, vol
IT-16, Sept 1970, pp.621-627.

J. Lodge, P. Hoeher and J. Hagenauer, “The Decoding of Multidimensional
Codes Using Separable MAP Filters,” 16th Biennial Symposium on Communi-
cations, Kingston, Canada, pp. 343-346, May 1992.

88

[47] C. Doucillard, M. Jezequel, C. Berrou, N. Brengarth. J. Touch and N.Pham.
“The Turbo Code Standard for DVB-RCS,” 2nd International Symposium on
Turbo Codes & Related Topics, Brest, France, 2000, pp. 535-538.

[48] U. Vilaipornsawai, M. R. Solevmani, “Turbo Codes for Satellite and Wireless
ATM,” in Proc. ITCC 01 International Conference on Information Technology:
Coding and Computing, Las Vegas, Nevada., 2-1 Apr, 2001

[49] M. Vanderaar, R. T. Gedney and E. Hewitt, “Comparative performance of turbo
product codes and Reed-Solomon/convolutional concatenated codes for AT
cell transmission,” Fifth Ka Band Utilization Conf.,, Toarmina, Italy, October

1999.

89

