INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A DYNAMIC LAYOUT ALGORITHM FOR GRAPH
DRAWING IN THREE DIMENSIONS

Yuejing Meng

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE
Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at

Concordia University
Montreal, Quebec, Canada

July 2002

© Yuejing Meng, 2002

i+l

Nationa! Library Bibliothéque nationale

of Canada du Canada

mnphc Services ::qtv‘:ces bibli:'graphiques

395 Wellington Street 395, rus Welington

Otawa ON K1A ON4 Onawa ON K1A ON4

Canada Carace Yow e Vowe rdidverce

Our e Nowe réldvance

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-72941-9

ABSTRACT

A Dynamic Layout Algorithm For Graph Drawing in Three Dimensions

Yuejing MENG

Graph drawing is the problem of representing graphs visually. How to efficiently
represent graphs for visualization and intuition, as well as the pure beauty of the interplay
between graph theory and geometry, has been investigated by mathematicians for
centuries. Methodologies for creating graph displays have typically focused on drawing
the graph on a two-dimensional surface. Today, interest in computer-based visualization
has increased attention on methodologies for the display of graphs in three dimensions.

A dynamic layout algorithm designed by Szirmay-Kalos takes a description of a graph
G = (V, E) and assigns coordinates to the vertices and edges so that the graph can be
drawn by a graphics program. The algorithm is based on physical simulation of an
analogous mechanical system in which the vertices correspond to particles and the
presence or absence of edges correspond to driving forces among these vertices. From the
initial configuration of the vertices, the system is replacing them in such a way so that the
local forces exerted on a vertex for all vertices are at minimum, which is defined as stable
state of the system. Allowing the system to reach the stable state in three dimensions
would enable the use of interactive computer visualization as a tool in revealing the
graph’s structure.

The purpose of this Report is to describe the algorithm introduced by Szirmay-Kalos

and discusses the utilization of this algorithm in three dimensions.

it

Acknowledgements

When I started to do this report, [had no idea that research in graph drawing has already
grown so advanced. I would like to take this opportunity to express my sincere gratitude
to my supervisor, professor Peter Grogono, for giving me the chance to dive into this
exciting field, for all his ideas, guidance and support throughout the course of this report.
Most importantly, professor Peter Grogono provided me with the useful resources for the
report. Best wishes goes to professor Hovhannes Harutyunyan for reviewing my report.

I would also like to thank the anonymous students for their encouragement and
thoughtful comments through the period of my studying. My special thanks are also due
to all the professors and staff in the computer science department for their endless support
during my studies.

I gratefully thank my dear parents and sisters for their love, their help and their
support. Finally, but most significantly, I dedicate this to my beloved husband Julian
Cheng and my two wonderful daughters Sophie Cheng and Juliana Cheng for being the
greatest family one could have, without their extraordinary support, this work would not

have been done.

v

Table of Contents

LiSt Of TADIES..........oovereneeeieeieeieeeeeeeeee ettt e mene viii
LiSt 0f FRGUEESoniininieecececec sttt ix
1 INTRODUCGTION ...ttt 1
Ll INrOAUCHION ...ttt ettt s sb e e aeas |
1.2 Basic Concepts for Graphs and Graph drawing.........ccooeveeiiiiiinninnncnnncnns 3
1.3 Problem Statement...........cccceeeeermriniiiiiiiieie et s 5
1.4 Report OrganizZaltioN.........coccevivuirimimrririnieninreieietets sttt se st eseeneacnnas 6
2 BACKGROUND AND RELATED WORK ..o 7
2.1 Background of the Force-Directed Approach...........ccocoeeeieiinininininoniicnienns 8
2.2 Spring and Electrical Forces Model..........ooovieiiiiniicins 9
2.3 The TUtte MOEloeeeeeeeeeeeee ettt 11
2.4 Graph Theoretic Distances Modeloooiemiiiiniincs L1
2.5 Magnetic Fields Model ..o 13
2.6 General Energy FUNCHONS. ..ottt 15
3 DYNAMIC LAYOUT ALGORITHM ...t 17
3.1 INUOAUCTIONceeceveeeeeieeteeteeeeeee ettt st s e b s s san e ss e e sases 17
3.2 The Dynamically Balanced Mechanical System ..o, 18

33

34

3.5

3.6

4

4.1

4.3

44

4.5

4.6

53

54

5.5

6.1

6.2

6.3

6.4

=

Computing a Local FOICE.......ommiiee e
Positioning vertices in Three DImenSions ..o
INItIAl POSTLION ...ttt s e s st e et
Dynamic Layout AIZOMtRM.......oouii e
SYSTEMDESIGN ...t a e s e
Vector Data Structure Designccooveevivmivmireeciiiciiiiineecrcetete et
NodeElem Data Structure Design.........ccoooueeirvevircnnnienicinieiieee e
RelationElem Data structure Design.........ccccovivviiiniinmeiiniiiinineieiee et
Graph Data Structure Desi@ncoovimiiricie e
The Class Diagram of the SyStem..........ccooiriiiiiininiire e
The Graphic Program Designcocoeveeiiiniiiiiieee e
THE IMPLEMENTATION ..ottt
VECIOT ClaSS o.nveerieerieeeeeieereeeeee ettt st eae et sat s s et s e an b es
NOAEEIEM Class......cooueeieieeieeceietcectctecretrc et
RelationElem Classc.cocueeevieeeneniiicitiic et
Graph Class......cocooeemeimiiininiie et
Problem and SOIULIONSc..coovreieeiiiiciiiniieicnc ettt
MAIN RESULT ...ttt s st e e e ens e arne s
Comparison of Three Dimensions to Two Dimensions..........cccoeevriirninnnnnn.
My Experiment Results for the Algorithm ..o
Directions and Related Results.........c.ccocceiiiiiiciiniiiiiniiiieceieeee
The Knowledge I Learned From This Project ..o,

CONCLUSION. ...ttt b

vi

20

22

23

25

25

26

26

26

28

29

32

32

7.1 Conclusion

...

T2 FULUIE WOTK c.oeeeeeeeeeeeeeeieeeeeeeeeetieseesesnnssssesessnssnssasassssasnsnssssrsrnsssmsssssmsosarssesssssansnnn

BIBLIOGRAPHY

...

vii

List of Tables

Table 1: An adjacency matrix for graph G, shown in Figure 1 (@).....cccoeiivennnncnncn.

Table 2: Adjacency list for digraph G> shown in Figure 2 (b) ..o

viii

List of Figures

Figure 1: (a) A drawing of graph G, and (b) A drawing of directed graph G, 4
Figure 2: Types of magnetic fieldooomemimiinniiiie 13
Figure 3: Magnetic SPIiNGc.c.oveiiiniiiirinieirteee ettt 14

Figure 4: Magnetic spring drawing using a vertical magnetic field and unidirectional

MAZNEHC SPIAMES...ecuenriiiiiiieneicriesiisi e rees et essa et sttt be s e 15
Figure 5: Graph structure for implementing the algorithm ... 27
Figure 6: Class Diagram of the SyStem.........ocoooomimiiinn e 28
Figure 7: The main window of the graphiC programcoooviiniinninnnicnnienieinnae 29
Figure 8: The display window of the graphic program............coveciiniiiiinniicnnnne. 30

Figure 9: A weighted graph with 20 vertices in two dimensions after running the

AIZOTILRIM ...ttt e 38
Figure 10: Three-dimensional solution of same graph in Figure 9.......ccccooeviicnnnns 38
Figure 11: Three-dimensional solution of graph viewed from up side of Figure 10 39
Figure 12: Three-dimensional solution of graph viewed from right side of Figure 11.....39
Figure 13: A sample graph with 30 vertices arranged randomlyccoovviininnnccnn 40
Figure 14: The same graph after applying dynamic layout algorithm...........coevereennees. 41
Figure 15: A complex graph with 60 VEITICESc.covvmruiriemnirieniitecc e 42
Figure 16: The same graph of Figure 10 with minimum force as 1........cooeeirinnnncns 43

Figure 17: Graph with 30 vertices after apply the algorithm with heuristic

Figure 18: The same graph after applying the algorithm without heuristic

.....................

Chapter 1

INTRODUCTION

1.1 Introduction

Many programs designed for interactive applications, scientific visualization, multimedia
etc., should draw or display graphs on the computer screen. For visual presentations
layout criteria center on the topological relationships of the graph, the geometrical
position of the nodes is not that important, but the meaning of the diagram should be
conveyed to the viewer quickly and clearly. Usually the following criteria are expected to
be the features of an easily understood graph [24]:

e Bein the center of the display area and expand loosely over the available area.

e Minimize the number of edge crossing and have enough space around nodes to

provide some readable information.
e Place linked node groups in a compact manner and put unrelated nodes as far

away as possible.

e Have a “natural” arrangement (similar to those human observers are used to).

Unfortunately, these subjective criteria are almost impossible to be formulated by
mathematics. However, they can be formulated as optimization goals for the graph
drawing algorithms [27]. Sometimes, these aesthetics are such that optimality of one may
prevent optimality in others. Additionally, graph layout algorithms in general can be
viewed as optimization problems and are typically NP-complete or NP-hard. These
observations suggest a heuristic approach to general graph drawing for many applications
[26].

The dynamic layout algorithm [24] is an analogous approach, which applies
mechanical system theory [25] to provide the solution for the “natural” arrangement
problem, combined with heuristic methods to add those features that are not reflected by
the behavior of mechanical systems and also to reduce the response time of the algorithm.

This algorithm is one of the force-directed methods. It simulates a mechanical system
in which edges in the graph are modeled as springs and vertices are modeled as rings
connecting edges (springs) incident on a vertex. Then it aims to have the system reach a
minimum-energy layout of the vertices. Allowing the system to reach its equilibrium in
three dimensions would enable the use of interactive computer visualization as a tool in
revealing the graph’s structure [26]. This paper reports the extension of the dynamic
layout algorithm from two to three dimensions. The implementation and paper are closely

following the approach and explication of Szirmay-Kalos [24].

(88

1.2 Basic Concepts for Graphs and Graph drawing

To improve the understanding of this general graph drawing algorithm, I introduce some
basic concepts related to the graph drawing. These concepts can be found in many
textbooks and here are from [1].

A graph G = (V, E) consists of a finite set V of vertices and a finite multi-set E of
edges, that is, unordered pairs (u, v) of vertices. The vertices of a graph are sometimes
called nodes; edges are sometimes called links, arcs. or connections.

An edge (u, v) with u = v is a self-loop. An edge that occurs more than once in E is a
multiple edge. A simple graph has no self-loops and no multiple edges. The algorithm
described in this report deals with simple graphs.

The end-vertices of an edge e = (i, v) are u and v; we say that « and v are adjacent to
each other and e is incident to u and v. The neighbors of v are its adjacent vertices. The
degree of v is the number of its neighbors.

A directed graph (or digraph) is defined similarly to a graph, except that the elements
of E, called directed edges, are ordered pairs of vertices. The directed edge (u, v) is an
outgoing edge of u and an incoming edge of v. Vertices without outgoing (resp.
incoming) edges are called sinks (resp. sources). The indegree (resp. outdegree) of a
vertex is the number of its incoming (resp. outgoing) edges.

A graph G = (V, E) with n vertices may be described by a nxn adjacency matrix A
whose rows and columns correspond to vertices, with A,, = 1 if (1, v) € Eand A,, =0
otherwise as shown in Table 1, or it can be described by giving a list L, of edges incident

to vertex u for each « € V as in Table 2.

1
0
1
1
1
1

wnl & WL I —

Of re] +m | Of =] I
Ol —| O] | —]| W
— O]|] -]
(=1 Il =] =] B V]

Table 1: An adjacency matrix for graph G; shown in Figure 1 (a)

L (1.2) (1,5)
L, (2,3)
L (3.4)
Ly 4.5) (4,6)
Ls (5.2)
Le (6.3)

Table 2: Adjacency list for digraph G2 shown in Figure 2 (b)
i 2 2 3
1
6
4 3 s ‘
(a) ®)
Figure |: (a) A drawing of graph G, and (b) A drawing of directed graph G.

Figure 1 above shows the drawing G, for graph in Table 1 and the drawing G- for
graph in Table 1. Here we need to mention that a graph and its drawing are d:fferent
concepts. A graph can have many different drawings according to the definition of a
drawing. A definition of a drawing of a graph in the simplest form is as following [1]: a

drawing T of a graph G is a function which maps each vertex v to a distinct point ['(v)

and each edge (u, v) to a simple open Jordon curve ['(u, v), with endpoints ['(«) and ['(v).

A drawing T is planar if no two distinct edges intersect. A graph is planar if it admits
a planar drawing [1]. From the experience in our daily life, we know that edge crossing
reduce readability [13] of the graph. Therefore in graph drawing, we need to apply the
theory of planar graphs as much as possible, since this well-developed theory [28] can be
used to greatly simplify topological concepts. Also we need to know that planar graphs
are “sparse”: Euler’s formula [29] implies that a simple planar graph with n vertices has
at most 3n — 6 edges. For large n, this is much less than the maximum number of edges,
which is n(n-1)/2. Thus most graphs with many vertices are either non-planar or have few
edges.

Finally, when drawing a directed graph, the underlying undirected graph can be
constructed by forgetting the directions of the edges and then the directed edges can be

drawn as arrows. Thus the terminology of graphs can be applied to digraphs too.

1.3 Problem Statement

The dynamic layout algorithm takes a graph G = (V, E), V is a set of vertices and E'is a
set of pairs of elements of V and the graph is undirected. But the graphic program should
be able to show the directions of edges if the graph is directed. The task of the algorithm
is to determine the positions of all the vertices of graph G in the display area and the
resulted layout of the algorithm should be the subject to the primary aesthetic criteria
stated in Section 1.1.

The graphic program should have two ways to display the graph. First, it displays the
graph randomly by assigning coordinates of vertices randomly. Second, it should display

the graph according to the subjective criteria of graph drawing after applying the

algorithm. It displays each vertex as a spheres (or cubes, ovals) and each edge as a thin
directed cylinder joining two vertices. The user should be able to move and rotate the

graph to see it better.

1.4 Report Organization

This report is organized as following: the first section talks about basic concepts for
graphs and graph drawing and problem statement of the algorithm. Section 2 discusses
fundamental issues in graph drawing and introduces the most general and easy techniques
of the best-known force-directed model for graph drawing. Section 3 describes the
dynamic layout algorithm used in this system. The design of the mechanical system to
simulate the algorithm is presented in Section 4. The purpose of Section 5 is to explain
the detailed implementation of the algorithm and to discuss some problems met during
implementation. Section 6 presents the results attained in several aspects. Finally, Section

7 gives concluding remarks and future enhancements.

Chapter 2

BACKGROUND AND RELATED WORK

This section introduces the background of force-directed graph drawing algorithms and
overviews some more popular algorithms in comparison to the dynamic layout algorithm.

Researchers have done a lot of hard work to define the aesthetic criteria of a graph
drawing as much as possible in the proposed algorithms. One of the most important
challenges in the graph drawing algorithms is to efficiently give the topology of the graph
without higher computation cost. In general, graph drawing algorithms can be grouped
according to several approaches. The algorithms in each approach can work only or better
on graphs belonging to specific classes [1] and also are confined to specific drawing
convention, aesthetic, constrain. Since the dynamic layout algorithm described in this
paper is grouped in force-directed approach, we focus here on the main idea of force-

directed approach.

2.1 Background of the Force-Directed Approach

Force-directed algorithms view the graph as a virtual physical system, where the nodes
of the graph are bodies of the system. These bodies have forces acting on or between
them [30]. The algorithm seeks a position for each body such that the sum of the forces
on each body is zero, which means the system is in a state with locally minimal energy.

Force directed algorithms are suitable methods for creating straight-line drawings of
undirected graphs [1]. Roughly speaking, a forced directed algorithm works like this: it
takes an arbitrary input graph, computes the forces acted on each node according to the
methods used to defined forces in this system, and then the system oscillates until it
stabilizes at a locally minimum-energy configuration. There are two components in this
approach: a force model and an algorithm.

e The force model: A model that contains the vertices and edges, which is defined
by some physical forces acted on the graph.

e The algorithm: A technique for finding a locally minimum force state of the
model, that is, a position for each vertex, such that the total force on every vertex
is zero. This state defines a drawing of the graph [1].

Thus the force directed algorithms differ in two ways: one is the different force model
used and another one is the different algorithm applied to find an equilibrium or minimal
energy configuration.

Usually, the model contains the information for aesthetic criteria. The forces are
defined so that an equilibrium configuration sashes these criteria.

Force-directed algorithms are widely used since they have two advantages. First, the

physical phenomena exist in real would, so they can be understood easily and be

relatively simple to implement. Second, in general, they can produce a nice-looking
graph since a variety of constraints can be defined for aesthetic purposes. They often give
highly symmetric drawings, and tend to distribute vertices evenly.

The simulation of a virtual physical system for object placement pre-dates the
development of force directed algorithms for graph drawing [31]. Eades [9] first
proposed a heuristic algorithm for drawing undirected graphs in two dimensions, based
on a virtual physical model. This model is now referred to as the famous “spring model”,
since in this model each node is replaced with a steel ring and each edge with a spring.
More recently, a lot of force-directed algorithms have been proposed and tested ([9], [10],
[30], etc.). Many of them are based on the spring model.

Below are some well-defined force directed models.

2.2 Spring and Electrical Forces Model

The most popular and simple force model uses a combination of spring and electrical
forces, which usually is the underlying model for other models. In this model edges are
modeled as springs, and vertices are equally modeled as charged particles which repel

each other. Precisely speaking [1], the forces acted on vertex v is

FO= Y fot 2 8w .1)

(uVvEE (u.v)eVxy
where f;, is the spring force exerted on v by the spring between « and v, and g, is the
electrical repulsion exerted on v by the vertex u.
Battista er al. have described the basic idea behind this algorithm in [1]. They follow

Hooke's law to define the force f;,, which is f,, is proportional to the difference between

the distance between u and v and the zero-energy length of the spring. The electrical
force g, follows an inverse square law.

It uses three parameters /,, (the natural length of the spring), k" (the stiffness of the

spring). and k' (the strength of the electrical repulsion) to control the appearance of the

drawing. It satisfies two important aesthetics: the spring force is used to guarantee the
desirable distance between u and v, and the electrical force ensures that the two related
vertices are not too close.

According to this model, there are several algorithms proposed to find its minimum
force state. For example: Eades’ [9] heuristic algorithm works with this model; Eades
also notes that using the spring model can obtain an indirect benefit, which is that all
edges typically have relatively uniform length and the drawing tends to be symmetric.

Quigley [30] proposed an algorithm that is based on a spring and electrical forces
model, but he has a more efficient way to find the locally minimum energy layout of the
system. The algorithm is named as FADE2D (Force Directed Algorithm by Decomposed
Estimation 2-Dimension) that can also extend to FADE3D. It has complexity O(nlogn),
which means large graphs can be laid out using this algorithm. The main idea of the
FADE algorithm is to take the initial graph layout and perform a geometric clustering of
the location of the vertices, which is conducted by recursively decomposing the space.
Thus it allows us to approximate the non-edge forces in a force directed graph drawing
algorithm. FADE improves the performance of force directed algorithms by computing
forces using a recursive decomposition of the location of the nodes rather than all the

nodes directly.

10

2.3 The Tutte Model

The Tutte model [20. 21] differs from the model described in the previous section in three
ways. First, it defines that the spring has l,, = 0. Second, the stiffness parameter of the
spring is equal to one for every edge in the graph. And third, there are no electrical forces

acting on each vertex by other vertices. Thus force F(v) can be simply expressed as

Fv)= Y.(p,-p) (2.2)

Vel

Through the comparison with the previous model, we can see that the drawing with
this model is not a good one, since two important aesthetics mentioned above cannot be
satisfied. In order to obtain the desirable drawing, the vertex set V is divided into two
sets: one contains fixed vertices and another one contains movable vertices. Therefore, to
have a drawing of the graph, we need only to resolve the assignments of positions of the
movable vertices. Tutte proposed a technique to solve this problem by placing each free
vertex at the barycenter of its neighbors, which is the position where its coordinates are
the average of the coordinates of its neighbors. Thus this technique is also named the

barycenter method, which is one of the earliest graph drawing methods.

2.4 Graph Theoretic Distances Model

This Graph Theoretic Distance Model was pioneered in [12] and developed
independently in [10]. It uses Euclidean distance to model graph theoretic distance and
works only on a connected graph that is there exists a path between u and v for each pair

(u, v) of vertices [1].

11

The main idea behind this model is: the graph theoretic distance d(u,v) is defined to
be the number of edges on a shortest path between u and v. Then the algorithm seeks a
drawing of the graph such that for each pair (1, v) of vertices, the Euclidean distance
d(p,,p,) between u and v is approximately proportional to O(u,v) between all pairs u
and v of a connected graph G. Therefore the force of system is proportional to
d(p,.p,)—d(u,v) between vertices u and v.

Kumar and Fowler [26] extend the algorithm proposed by Kamada and Kawai [10]
from positioning nodes in a plane to positioning nodes in three dimensions. The
algorithm considers the energy of the system rather than the forces. It obtains a balanced

layout by decreasing the energy of the system to a minimum. In order to get the minimum

energy 7, the following condition must hold:

on d
— =0,
ay,

AN

an ~0

— =0,VvevV.
ox,

QU
[&]

That means the partial derivatives of », with respect to each variable x,, y, and z,, should
be zero. These 3n nonlinear equations must be solved, where n is the number of the
vertices in the graph. Usually they are solved using an iterative approach. During each
iteration, the vertex on which has the largest force acting is moved to a position with
minimized energy, while all other vertices remain fixed.

There are two major steps in this algorithm. One is to find graph theoretic distance and
another is vertex position algorithm. According to Kamada and Kawai [10], the running
time for the first one is O(n3) and for the second step is O(n) as mentioned by Kumar and

Fowler [20].

2.5 Magnetic Fields Model

This Magnetic Fields Mode! proposed by Sugiyama and Misue (15, 16] has a global
magnetic field that acts on the system and also some or all of the springs are magnetized.
Using the magnetic field we can control the orientation of the edges and thus the model
can satisfy a greater number of aesthetic criteria than the models of previous sections.

Three basic types of magnetic fields are shown in Figure 2 [1]:

e Parallel: All magnetic forces operate in the same direction.

e Radial: The forces operate radically outward from a point.

e Concentric: The forces operate in concentric circles.

Parallel Radial) Concentric

Figure 2: Types of magnetic field

These three basic fields can be used together on a force system. For example,
orthogonal edges can use a parallel magnetic field in the horizontal and vertical
directions.

A magnetic spring is shown in Figure 3. There are two types of magnetic springs. One
is an unidirectional magnetized spring that tends to align with the direction of the
magnetic field. Another one is a bidirectional magnetized spring that tends to align with

the magnetic field, but in either direction.

13

Figure 3: Magnetic spring

Algorithms applied for this model are the same as for the spring model. That is first
placing vertices initially at random location, and then at each iteration the vertices move
to positions with a lower energy.

The magnetic spring model is more frequently used to handle directed graphs. We can
find this model is useful in applications like tree drawing. Figure 4 shows a parallel
vertical magnetic field combined with unidirectional magnetic springs. The result is that

the edges tend to point downward.

14

Figure 4: Magnetic spring drawing using a vertical magnetic field and unidirectional
magnetic springs

2.6 General Energy Functions

Until now we have only discussed about a simple and continuous energy function 7 of
the locations of the vertices. In order to improve the readability of a graph, we need to
consider as many aesthetic criteria as possible. Some of the important aesthetics for
drawings of general undirected graphs are symmetry, minimization of edge crossing and
bends in edges, uniform edge lengths, and uniform vertex distribution [27]. But these
aesthetic criteria are not continuous. In order to broaden aesthetic criteria in each
drawing, we need to include some discrete energy functions.

Battista er al. [1] proposed a model, which uses an energy function that linearly

combines a number of measures

15

n=Aim+ A+ ...+ Ay, (3.3)
where, fori =1, 2, ..., k, n; is a measure for an aesthetic criterion and A, is a constant.
The function 7; can also be spring energy, electrical energy, and magnetic energy, as well
as discrete functions for aesthetics.

In this way, a variety of aesthetics can be included by adjusting the coefficients Ai. A
large value for A; indicates that the ith aesthetic criterion is important. In general, the user
can adjust the weights 4, Az, ..., A; to suit the aesthetics of a particular application or a
particular user according to the model above. Mendonca [32] has done some work on
these. In his PhD thesis he shows how these coefficients can be automatically adjusted to

the user’s preferences without explicit user intervention.

16

Chapter 3

DYNAMIC LAYOUT ALGORITHM

The description of dynamic layout algorithm below closely follows Szirmay-Kalos™ [24]
terminology and methodology, extending his algorithm from positioning vertices in two

dimensions to positioning vertices in three dimensions.

3.1 Introduction

The dynamic layout algorithm [24] is an analogous approach, which applies mechanical
system theory [25] to provide the solution for the “natural” arrangement problem,
combined with heuristic methods to add those features that are not reflected by the
behavior of mechanical systems and also to reduce the response time of the algorithm.
The algorithm is based on a force-directed approach, since force directed approach
makes sure that the wanted layout of the graph can be achieved by defining
corresponding constraints. It has the features such as flexibility, ease of implementation,

and the aesthetically pleasant drawing it produces.

17

3.2 The Dynamically Balanced Mechanical System

The algorithm models the graph as a mechanical system. where a dynamic three-
dimensional structure is proposed. Vertices, v, in the graph correspond to particles, p,
while edges, or absence of edges, correspond to driving forces among these particles.

General speaking, the force should be attractive between two vertices when they are
not very close to each other, and should be repulsive when they are too close. In this
mechanical system, whether the force is attractive or repulsive between two vertices
depends on the threshold distance of the pair of vertices. If the distance of two vertices
exceeds their threshold distance, the force between them is attractive, and otherwise the
force is repulsive. The threshold distance of pairs of vertices is different from linked
vertices to unlinked vertices. This can be easily understood, since linked vertices are
expected to be close and unlinked vertices are expected to be far away. Therefore the
threshold distance for linked vertices is defined as required minimum radius of a vertex to
have some space for readability of vertices, and the threshold distance of unlinked
vertices is defined as a parameter related to the display size and the number of vertices in
the graph. To simplify the definition for these two threshold distances, the weighted
edges are used, where for unlinked vertices, the weight of edges between them is zero
and maximum weight of an edge is also set to control threshold distance of unlinked
vertices. So the threshold distance (“‘constraint” in equation (3.1)) is proportional to the
value of the weight:

If A and B are arbitrary objects:

constraint(A, B) = constrainty, + (weightmax — weight(A, B)) X constraintycy. 3.D

18

here the constraint scale is used to adjust value of weight to consist with constraint.

3.3 Computing a Local Force

The force exerted on a vertex A consists of three different components.
(1) The first component is the force on A due to its linked vertices. It is defined as being
proportional to the difference of the actual distance of the vertices and threshold distance
of the vertices. For example, the force on A due to B is:

force;(A) = (constraint(A, B) — distance(A, B))/distance(A, B)-(pos(A)— pos(B))(3.2)
where pos(A) and pos(B) are the position vertices of vertex A and vertex B
respectively.
(2) The second component is the force on A due to the forces of the wall of the display
area boundaries. The direction of these forces always points inward and is perpendicular
to the wall. It is defined to be zero if the vertex is inside and far away from the wall. In
order to keep the vertices well inside the display area, some margin around the wall is
defined. The force of the wall and the force of margin are different. If the vertex is inside
but is in margin, the force of the wall is defined to be proportional to the distance from
the wall with the force of margin, otherwise it is defined to be the combination of the
force of the wall and the force of the margin. The following formulas are used to
calculate the force according to three situations.

If A is inside the working area, but not in the margin:

force,,(A)=0 (3.3)

If A is in the margin:

19

force, , (A) =(marginy,y — distance(A, wall)) X marg in _driveg,y 3.4)
If A is outside:
force, , (A) =distance(A, wall)) X out_out _Jn’ve wall + margin X margin _driveyay (3.5)
(3) The third component is the friction on A due to its movement. Let the coefficient of

the friction be & and the current speed v(f) in time r. Then the friction on A is

proportional to 4 and the speed of A’s movement. The direction of this force always
points to the opposite of the driving forces.

fOFcefnrmm = ‘7(’) '# (3'6)

Since the driving force
D = foFce,(A)+ foFce,, (A) (3.7)
Then the resultant force on a vertex A is
F= ﬁ—fofce 3.8)

Jriction

3.4 Positioning vertices in Three Dimensions

The position of a vertex in a three dimensional space is represented by a triple (x, y, 2),
where x, y and z are the values of the X, Y, and Z coordinates respectively. The type of
vertices in the graph can be fixed to some location initiated or can be moveable, which
means only moveable vertices are moved according to the forces exerted on them. Thus
each moveable vertex will move until the system reaches equilibrium, where all forces
exerted on each vertex for all vertices and the speed of all vertices are zero or under a

minimum acceptable value.

20

Since the forces are minimized in the stable state, linked vertices are located close to
each other and unlinked vertices are located far away. Since the forces of the display area
boundaries are also considered, the whole system (the graph) will be placed somehow in
the middle of the display area.

The discrete time simulation is used to simulate the movement of vertices until the
stable state of the system is found.

Let the mass of the vertex be m and the current position be r(¢) in time ¢

Then Newton'’s law can be applied to calculate the approximate speed and position in

time ¢ + dt of a vertex:

(Tt +dt)—v(@t))/dt = F/m (3.9)
(F(t +dt)—r(2))/dt = (1) + V(1 + dt))/2 (3.10)
Placing the resultant force (3.7) obtained in previous section into (3.8), v(t +dt) and

r(t +dr) can be expressed:
F(t+dty=(~f)-5t)+1-D (3.11)
F(t+dt)=F()+ @) +V(t+dr))-di /2 (3.12)
where fis the friction parameter: f = #/m-dr and [is the inverse inertia describing how

quickly a vertex reacts to forces: I = dt/m.

Here f and [are also time-dependent to allow quick stabilization without excessive
transients and oscillation. It can be easily understood, since the system reacts to the
driving force quickly when the friction parameter f is small and the inverse inertia [is
large. It is a desirable phenomenon in the beginning of the simulation but not at the end,

when the system reaches the stable state, since it can result in excessive transients and

oscillation around the stability point. So the following formulas are used to defined f and
I
f(0) = frictiong + (frictionmax — frictionmis) X t | timemax 3.13)
1 (t) = iinertiag;, + (iinertidgy — iinertiay;) X t 1 timeg,y (3.14)
where timepn,y is the maximum response time allowed in an interactive environment.
Thus the position of all vertices at time ¢ + df can be obtained with equation (3.11) by
calculating the speed of vertices that are moved under the forces exerted on them at first.

The simulation has three possible states: first, it found the stable state of the system,
which means D is zero or less than a minimum value defined for all vertices; second, the

force on some vertices is too strong (D > force,) so that the excessive transients and

max
oscillation around some points happened; third, maximum response time has been
exceeded without finding a stable state of the system.

The placement of the position of all vertices is iterated. During each iteration the
system is checked to see if it is in one of the three states described above. If this is the

case, the simulation stops and the resulted position of all vertices is the final layout of the

graph for this simulation.

3.5 Initial Position

The initial positions of vertices in the system is critical, since there are many possible
stable states, which means the forces on all vertices are minimum, to give good or bad

layout of the graph. Another reason for careful selection of the initial positions is that the

(£
~

acceptable simulation time also depends on the initial positions of vertices, which means
a poorly selected initial layout may need a great amount of time to reach a stable state.

In order to find appropriate initial positions, Szirmay-Kalos also proposed a heuristic
method [24] which guarantees that linked vertices are close together while unlinked
vertices are distant from each other, and also that the initial positions are not too far from
mechanical stability view. This heuristic method places the fixed vertices first, which
may be chosen randomly or be given by user, then places the movable vertices one after
another. That is: calculating the center of gravity of the vertices that have a link to the
new vertex and the center of gravity of unlinked vertices first, then placing the new
vertex at the reflection of the center of gravity of unlinked vertices about the center of
gravity of linked vertices. After placing a new vertex, the dynamic layout algorithm is
applied to establish a nearly stable state of subsystem (already placed vertices). Thus the
whole movement of already placed vertices decreases when every time introduces a new

vertex as the number of already placed vertices increases.

3.6 Dynamic Layout Algorithm

Below summarizes the algorithm for locally minimum forces in the mechanical system in

which vertices move in three dimensions. The input to the algorithm is a graph.

Inpur: graph G = (V, E); a partition V= Vo U V, of V into a set of fixed vertices and a

set of movable vertices
Outpur: a position p, for each vertex of V, such that the energy minimum of the graph is

to be found

!\)

. Set the maximum response time (maxi_time) allowed in an interactive environment
Find the first movable vertex in the vertices list
If no movable vertex is found, return STOPPED
If the first movable vertex is found, Set the speed of every movable vertex to 0
Repeat
for each dt time step do

1. Initialize force in each vertex to 0

2. Calculate friction and response (inertia) values according to dt

3. Calculate drive force between each pair of related vertices

4. Repeat add additional forces and determine maximal forces

foreach movable vertex do

I. Calculate drive force of boundaries and add to relation forces

9

Move vertex by force
3. Calculate maximum force
5. If maximum force is less than minimum force which is considered as 0,
return STOPPED
6. If maximum force is greater than maximum force which shows instability,
return UNSTABLE

until maxi_time is reached, return TOO_LONG

Chapter 4

SYSTEM DESIGN

The main feature of this mechanical system is that it can apply the dynamic layout

algorithm quickly and efficiently. It is designed by using object-oriented method.

4.1 Vector Data Structure Design

The vector data structure is designed to provide the vertex operations such as addition,
subtraction and multiplication, etc. It also provides the functions as obtained the current
x, y and z coordinates of a vertex in the world coordinate system. It is the basic element
used in the system, since the calculation of the forces and placement of vertices need to

use its basic operations.

4.2 NodeElem Data Structure Design

NodeElem data structure is designed as a vertex item in the dynamic graph data structure.
The main role of the NodeElem is to get the next vertex item in the graph, get the relation
list that contains all linked vertices to the vertex and also get the unique identity number

for the vertex. It is designed in a way such that it connects the vertex with the graph.

4.3 RelationElem Data structure Design

The RelationElem data structure is designed to present an edge in the dynamic graph data
structure. The goal of RelationElem is to get the next edge of the vertex, get the weight of

the edge and return a pointer which points to the linked vertex with the edge.

4.4 Graph Data Structure Design

In order to apply the algorithm efficiently on a graph, a graph data structure plays a very
important role in the system. Actually it is a dynamic graph data structure.

The graph is designed to represent a mechanical analogy system, which is an
orthogonal list of vertices and edges. In this graph data structure, the vertices are placed
on a single linked list, where fixed vertices are at the beginning with negative serial
number, and movable vertices are at the tail with positive serial number. The edges of a
given vertex are also stored on a linked list that connects to the given vertex. The edge
object contains its name, type, intensity parameters and a pointer to the related vertex.
The relation of two vertices is stored on the edge list of the vertex that has smaller serial

number, which can be seen in the Figure 5 clearly.

Figure 5 is a simple graph structure diagram. In this diagram we can see that vertex
node contains at least two pointers, one points to the next vertex node in the vertices list
and another one points to its relation list. The node on the relation list also contains at
least two pointers, one points to the next relation on the relation list and another one
points to related vertex node. We can see clearly that the related vertex pointers always
point to the vertex nodes that stored after the given vertex in the vertices list. The detailed

structure for vertex node, relation node and graph structure can be found in Section 5.2,

5.3 and 5.4.
Start_vertex_node last__vertex_node
- - - — >
y
/ |
‘ Related_vertex_pointer
* Edge_node
A
Edge_list

Figure S: Graph structure for implementing the algorithm

The graph structure has all the functionality to apply the mechanical approach. The
most important one is the function to apply the dynamic layout algorithm. Other

functions are designed to help the implementation of the algorithm.

4.5 The Class Diagram of the System

The following class diagram (Figure 6) shows the relationship between data structures of

the system.
vector ~ Node ‘ Relation
Qx double | ame{MAXNAME+1] : char - @name[MAXNAME +1] : char
&y : double |] e : TYPE &intensity : double
&x double | &pos : vector ! Qrelation_to : Node*
— Qspeed vector
| Qvector() i Qlorce vector r/o QRelation()
? :voector() f -~ ‘ - ®GetRelation()
| perator=() - ode() ' © 9GetOtherNode()
' @operator+=() /O QPosition()
‘ Q;)(;()?rator/ () :gpeec:()) :
¥ , - ®Force —
L Y() . ' Q@AddForce() ‘
- 9Z() } ‘
. ®size() a : ,
Soperator*() /s RelationElem
" Qoperator+() ‘ &next_relation : RelationElem"

Qoperator-()

~ ORelationElem()

oy
/

Graph

&nfixnode : int
&nmovnode : int
. @curmode : NodeElem*
' @relatenode : NodeElem*
. @start_node : NodeElem*

" NodeElem : . &last_node : NodeElem"
'&ser_num : int : | @currelation : RelationElem*
{Qnext node : NodeElem Qprevrlatlon RelationElem”
 &vrelation : RelationElem
% ‘ * @Graph()
®NodeElem() : . ®-Graph()
QSetNext() —— $DynamicLayout()
$SetRelation() ‘ . ®Placement()
®SetSerNum() | ®RandomArrange()
QGetNext() & ¥SetNadePos()
$GetRelation() s . ®SearchNode()
®GetSerNum() ! | @Setintensity() J
‘ ; . ®GetNode() :
‘ ; ! ®GetRelateNode() ‘
! QGetRelation()
i ®Getintensity()

@SearchRelation()

Figure 6: Class Diagram of the System

28

4.6 The Graphic Program Design

The graphic program used here is to display the layouts of the graph in three dimensions
before and after applying the dynamic algorithm so that we can compare and observer the
difference between them more clearly.

The following diagrams show the interfaces for graphic program. It contains a display
window and a main window. In the main window (Figure 7) it contains all the guidance
for manipulating the display of the graph. It also shows the number of iterations and the
state of the system after applying the algorithm. In the display window (Figure 8) the user
can click the right button on the mouse to get the menu, which gives the user the options
to manipulate the perspective viewing, lighting and the shape of the vertices etc. in the

graph.

Figure 7: The main window of the graphic program

231 ayout Manage ment

Figure 8: The display window of the graphic program

30

Chapter 5

THE IMPLEMENTATION

The simulation of the algorithm was written in C++ and the resulted layout of given

vertices was showed by using OpenGL. Microsoft Visual C++ is the tool to implement

the system and show the resulted layout. Development of this algorithm in three

dimensions was based on a program written by Szirmay-Kalos for two dimensions.

5.1

Vector Class

The class vector has three attributes. They are x, y and z coordinates.

The main inethods of class vector are:

operator=(vector& a): the assignment operator
operator+(vector& a): the addition of two vertices
X(): return the x coordinate of the vertex

Y(): return the y coordinate of the vertex

Z():return the z coordinate of the vertex

31

e Size(): compute the actual distance of vertex to original point of world coordinate

system

5.2 NodeEiem Class

The class NodeElem inherits class Node. It has five inherited attributes to describe the
status of a vertex in the graph such as the vertex type, the position, the speed and the
force to this vertex. It also has two control pointers:

e next_node: pointer to next vertex in the graph

e relation: pointer to the first relation of this vertex
The main methods of class NodeElem are:

e Position(): return the position of the vertex

Speed(): return the speed of the vertex

AddForce(vector& f): add the given force to the vertex

GetNext(): return the next vertex in the graph

GetRelation(): return the first relation of the vertex

5.3 RelationElem Class

The class RelationElem inherits class Relation. It has three inherited attributes to describe
the edge of the graph such as the weight of the edge and the linked vertex. It also has a
pointer that points to the next relation of the vertex.

The main methods of class RelationElem are:

e Get Intensity(): return the weight of the edge

e GetOtherNode(): return the linked vertex

5.4 Graph Class

The Graph class uses the NodeElem and RelationElem classes to represent the vertices
and edges of the graph. It has two attributes to represent the number of fixed vertices and
the number of moveable vertices. It contains four vertex control pointers in vertex list:
e currnode - points to the actual vertex
e relatenode - another node which forms a pair with curmode for relation
operations
e start_node - the beginning of the list
e last_node - the end of the list
It has two edge control pointers in relation list too:
e currelation — points to the actual relation
e prevrelation - points to the relation just before currelation on the actualrelation
list
The main methods of class Graph are:
e SetNodePos(vertor a): sets the position of current vertex in the vertices list
e AddNode(pchar, TYPE): add the new vertex to the vertices list
¢ AddRelation(pchar, double): add the new relation to the relation list of the vertex
with lower serial number

e SearchNode(pchar): search the vertex by its name

33

RelSearchNode(pchar): search related vertex of current vertex by name. If the
related node has smaller serial number than the current vertex, related vertex is set
to be current vertex and current vertex is set to be the related vertex
SearchRelation(): search for a relation between current vertex and related vertex
RestoreNodes(pchar, pchar): Put the vertices and their relations read from vertices
file and relations file into the graph data structure

FirstNode(): select first vertex of the vertices list

FirstMoveNode(): select first vertex whose TYPE is moveable in the vertices list
NextNode(): select the next vertex of current vertex in the vertices list
FirstRelation(): select the first relation in the relation list of current vertex
NextRelation)(): select the next relation of current relation in the relation list of
current vertex

Placement(): place the vertices one by one according to initial positions’ heuristic
method

RandomArrange(): place the vertices randomly

DynamicLayout(int): place the given number of vertices at the beginning of
vertices list by using dynamic layout algorithm

Compare(): replace all the vertices in the graph from their random positions by

using dynamic layout algorithm

34

5.5 Problem and Solutions

When I implemented the system, I encountered two problems that involved with the
display of the graph, for example, keeping the track of some specific vertices while the
graph is manipulated by the user, and the efficiency of the algorithm.
Problem I: How could we keep track of a specific vertex in the graph display, since the
user often lose track of the position of their current view point with respect to the global
structure of the graph when he is navigating the graph?
Solution: At first I think about numbering each vertex so that when the graph is viewed
after it was rotated, the relative position to other vertices of a vertex can be kept
following. Since the number of vertices can be solved in this algorithm is random, the
texturing of OpenGL is hard to be applied in this situation. There are several ways to
partially solve the problem.

1. Adding a smaller secondary window showing a global overview with the current

view location marked can provide some guidance to the user

(A

Put numbers in some vertices, then it helps to follow the relative positions of
vertices, especially when the number of vertices in the graph is moderate

3. Texturing the fixed vertices or moveable vertices so that they can be distinguished

easily from each other. I used this solution in this Report.

Problem 2: How to know the total number of iterations after the system to reach the
stable state?
Solution: Declaring a global variable to hold the number of iterations for each time the
algorithm is applied and sum them, which is used with heuristic initial position method.

The same variable can be used for Compare() function too, when the algorithm is applied

35

from scratch configuration of the graph. The difference is that in Compare() function the

algorithm only is applied once.

36

Chapter 6

RESULTS

6.1 Comparison of Three Dimensions to Two Dimensions

The dynamic layout algorithm extended to three dimensions exhibits the same ability as
dynamic layout algorithm for graph drawing in two dimensions. It displays symmetries
clearly in the resulted layout. In addition, a three dimensional display provides a means
for overcoming some of the difficulties with two dimensions display such as false
appearance of edge crossing, since it allows the graph observer to move and rotate the
graph in an interactive system so that the projection of graph can be found with true edge
crossing.

The main usefulness of three-dimensional graph is lying on the ability of conveying,
or allowing the observer by interactive viewing to discover more and true information of
the graph that may not be possible displayed in two dimensions. Below I show two graph
layouts that take a same description of graph and present it both in two dimensions and
three dimensions. Figure 9 is the layout of a weighted graph with 20 vertices presented in

Szirmay-Kalos® paper. Using the same data the three-dimensional layout is presented

37

from three different views with lighting and perspective. The first one is presented in
Figure 10, which is the three-dimensional layout of the same weighted graph. Figure 11 is
a view of three-dimensional layout from up side of the graph in Figure 10, and Figure 12

is shown the graph viewed from right side of the graph in Figure 11.

Figure 9: A weighted graph with 20 vertices in two dimensions after running the
algorithm

Figure 10: Three-dimensional solution of same graph in Figure 9

38

E | ayout Moanagement

Figure 11: Three-dimensional solution of graph viewed from up side of Figure 10

Figure 12: Three-dimensional solution of graph viewed from right side of Figure 11

39

Through diagrams above, we can see that the algorithm in two dimensions tries to
place the vertices on circumference of a circle and the algorithm in three dimensions tries
to place the vertices on the surface of a ball. This can be seen more clearly in Figure 15.
It is also in accordance with local minimum energy theory that is the energy of the system

is dependent on the length of elongation that the distance of two vertices underwent.

6.2 Experimental Results

I used the dynamic algorithm to assign the coordinates for two graphs. One has 30

vertices and another one has 60 vertices. It is shown in the following diagrams.

Figure 13: A sample graph with 30 vertices arranged randomly

40

31 apout Management

Figure 14: The same graph after applying dynamic layout algorithm
Figure 13 shows a sample graph with 30 vertices arranged randomly and Figure 14
shows the same graph after applying the dynamic algorithm with proposed heuristic
initial positions method [24]. Figure 15 shows a complex graph containing 60 vertices
after running the algorithm. The white vertices with red letters on them are the fixed
vertices and the others are movable vertices. It is quite clear that the graph after running
the algorithm is more readable and understandable than the random one, which implies

that the algorithm is working.

41

Figure 15: A complex graph with 60 vertices

There is something I also need to mention after I implemented this algorithm:

Usually when we discuss about the algorithm, we will think about its efficiency right
away. The efficiency of an algorithm is measured by estimating its resource consumption.
Of primary consideration when evaluating an algorithm’s efficiency is the computational
time required by the algorithm based on an input size. In our case here I use the number
of iteration to represent the computational time. Many factors affect the computational
time of the algorithm. For example, the number of vertices and edges in the graph, the
initial positions of the vertices, and the used tolerance of equilibrium, which is minimum
force to be considered O in the system. This tolerance can result slight asymmetric in the
final layout of the graph (see Figure 14).

Before we apply the algorithm, Some parameters such as the value of minimum force

that is considered to be O in this physical system, the value of maximum force that is

42

considered to show the instability of the system, fiction boundaries and inverse inertia

boundaries are needed to be set. The question here is what values we should choose for

them and if they will affect readability of the graph or the computational time.
To my understanding, these parameters really influence the computational time and
the final layout of the graph.

1) If we choose the value of minimum force to be bigger than the actual force exerted on
any vertex, according to the algorithm, all the vertices in the system only moved once
as the forces work on them, thus the computational time for the final layout of the
graph is the minimum and the final layout of the graph tends to be less compact and
part of it may not be as good as it should be. This can be seen in Figure 16, which is
the same graph as in Figure 10 but with minimum force value set as 1, the right side

of the graph is less readable.

| apoul M anogemend

b
...._..-‘

Figure 16: The same graph of Figure 10 with minimum force as |

43

In Figure 10, I set the minimum force value as 0.002 and the computational time is
415 iterations. When I changed the minimum force value to 0.001, the computational
time goes up to 691 iterations. Therefore a carefully chose minimum force value can
result a more compact layout of the graph and have a moderate computational time.
The use of heuristic method of initial positions of the vertices is critical to the
computational time too. I will discuss this more detailed in the next section.

To the final layout of the graph, it shows that by using heuristic method after
applying the algorithm the system gives a better arrangement of the vertices than
without the heuristic method. Following two diagrams show two layouts of the same
graph and illustrate the some point of view. Figure 17 is the layout obtained after
applying the algorithm with heuristic initial positions and Figure 18 shows the layout
of the graph obtained after applying the algorithm without heuristic method. We can

see clearly that the graph in Figure 18 is less readable and less beautiful.

731 spout Management

23 1 apout Management

Figure 18: The same graph after applying the algorithm without heuristic

45

3) The number of the vertices and the number of edges in the graph is also a very
important factor that affects the computational time. For example, the computational
time of 20 vertices’ graph with minimum force as 0.001 and heuristic method is 691
iterations, while the computational time of 30 vertices’ graph with minimum force as
0.001 and heuristic method would be 1445 iterations, which is two times more than

the former graph.

6.3 Related Results and Future Directions

Experiments could be conducted with more complex graph. As discussed in [24] by
Szirmay-Kalos the number of total iterations, in the range of 10 to 100 vertices of the
graph, is a sub-linear function of the number of vertices in the graph. The probability of
finding the global minimum energy optimum decreases as the number of vertices
increases. The complexity of the dynamic algorithm is O(Tn?), where T is the total
number of iterations, since in a single iteration the computation required to calculate the
driving force between each pair of vertices is proportional to the square of number of
vertices. The algorithm is designed in such a manner that the number of iterations to be
performed can be controlled effectively by augmenting the minimum force value as
discussed in previous section.

If the algorithm used combining with heuristic method, the complexity can go up to
O(n*), since the heuristic method places each vertex step by step with the dynamic layout
algorithm. But the final layout of the graph can have partial optimal even when the

system stopped before reaching the stable state because of the response time constraints.

46

So this allows the system to manipulate the graphs with more than 50 vertices. The

example like this is shown in Figure 13.

6.4 The Knowledge | Learned From This Project

[have learned a lot from this project in various ways. When I took this graphic project as
my major report, [didn’t really understand the objective and meaning of it, since I did not
have the enough fundamental knowledge of the graph drawing. After talking with
Professor Peter Grogono and reading a lot of related materials, I knew exactly what the
graph drawing is and what problems a specific algorithm is going to solve.

The force-directed approach is a popular choice for general graph drawing, since its
intuitive clear analogy of a mechanical system with attracting forces along the edges and
magnetic-style repelling forces for unlinked vertices. Vertices are places in initial
positions and as the mechanical system works to a stable state, at which the forces
exerted on a vertex for all vertices in the system are minimum, vertices are replaced to
provide a nice-looking graph drawing.

From this project, I know exactly what graph drawing is, what applications it is useful
for and how an algorithm worked to reach the requirement of the application. For finding
an algorithm first we need to know what kind of graph we are dealing with (eg. Series-
parallel digraphs, planar acyclic digraphs and orthogonal drawings, etc.); then what
aesthetics the graph need to apply; and finally what techniques to use to have the graph

had those aesthetics as much as possible.

47

Chapter 7

CONCLUSION

7.1 Conclusion

This Report introduced a dynamic layout algorithm and extended it from two dimensions
to three dimensions. The algorithm takes an input of graph, uses mechanical system
theory to provide a solution of positioning the vertices in three dimensions in a way such
that the local forces exerted on a vertex for all vertices is minimum. Although the
algorithm does not have any explicit techniques to eliminate the edge crossing, it is quite
effective in doing so since it minimizes the length of edges and keeps unlinked vertices
far from each other [24].

The dynamic layout algorithm extended to three dimensions exhibits the same ability
to clearly display symmetries and make linked vertices in a compact way as the algorithm
in a two dimensions. The extension of the algorithm to three dimensions affords one

means to enhance viewing in an interactive graph visualization system. Such system

48

would allow the user to get more information of final layout of the graph and provides an

enriched display mechanism compared to the typical two-dimensional static display.

7.2 Future Work

The algorithm can be regarded as the base technique to provide a solution for the layout

of a given graph. It can be combined with other techniques of graph drawing to reach the

goal of the specific applications. The following are some suggestions for future work.

Since in this algorithm, minimization of edge crossing is not considered
explicitly and it is obtained by the side effect of the algorithm. So one possible
enhancement to the algorithm for minimization of edge crossing can be proposed
like this: the edges in the graph are also labeled, and the midpoints of the edges
also have some repulsive force so that it can repel other vertices and other edges
from the midpoints of the edges. Thus it would minimize the edge crossing.

The algorithm can be used combining with magnetic fields introduced in chapter
2 to handle directed graphs. Such applications are widely used in software
engineering design. One obvious example is the graph data structure in this
Report. We can use two parallel magnetic fields, one horizontal and one vertical,
as well as unidirectional magnetic springs. This ensures that the drawing of the
graph has a tendency to be orthogonal, and the result is close to an horizontal-

vertical drawing.

49

BIBLIOGRAPHY

(1]

(3]

[4]

(5]

(6]

Giuseppe Di Battista, Peter Eades, Roberto Tamassia and loannis G. Tollis, graph
drawing: Algorithms for the visualization of graphs, New Jersey: Pentice-Hall,
Inc., 1999.

J. Branke, F. Bucher and H. Schmeck, Using generic algorithms for drawing
unidirectional graphs, In J. T. Alander, editor, Proceedings of the Third Nordic
Workshop on Generic Algorithms and their Applications 3NWGA), pp. 193-205,
1997.

C. Batini, L. Fulani and E. Nardelli, What is a Good Diagram? A Pragmatic
Approach, In Proc. 4th Internat. Conf. On the entity Relationship Approach, 1985.
C. Batini, E. Nardelli and R. Tamassia, A layout Algorithm for Data-Flow
Diagrams, [EEE Trans. Softw. Eng., SE-12, no. 4, 538-546, 1986.

M. J. Carpano, Automatic Display of Hierarchized Graphs for Computer Aided
Decision Analysis, IEEE Trans. Syst. Man Cybern., SMC-10, no. 11, 705-715,
1980.

R. Davidson and D. Harel, Drawing Graphics Nicely Using Simulated Annealing,

ACM Trans. Graph., 15, no. 4, 301-331, 1996.

50

(7]

(8]

(9]
(10]

(1]

[13]

[14]

[15]

(16]

G. Di Battista and R. Tamassia, Algorithms for Plane Representations of Acyclic
Digraphs, Theoret. Comput. Sci., 61, 175-198, 1988.

G. Di Battista, Roberto Tamassia and loannis G. Tollis, Constrained Visibility
Representations of Graph, Inform. Process. Lett., 41, 1-7, 1992.

P. Eades, A heuristic for Graph Drawing, Congr. Numer., 42, 149-460, 1984.

T. Kamada and S. Kawai, An Algorithm for Drawing General Undirected Graphs,
Inform. Process. Lett., 31, 7-15, 1989.

C. Kosak, J. Marks and S. Shieber, Automating the Layout of Network Diagrams
with Specified Visual Organization, IEEE Trans. Syst. Man Cybem., 24, no. 3,
440-454, 1994.

J. B. Kruskal and J. B. Seery, Designing Network Diagrams, In Proc. First
General Conference on Social Graphics, pp. 22-50. U. S. Department of the
Census, 1980.

H. C. Purchase, R. F. Cohen and M. James, ValidatingGraph Drawing Aesthetics,
In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), vol. 1027 of Lecture
Notes Comput. Sci., pp. 435-446. Springer-Verlag, 1996.

E. Reingold and J. Tilford, Tidier Drawing of Trees, IEEE Trans. Softw. Eng.,
SE-7, no. 2, 223-228, 1981.

K. Sugiyama and K. Misue, Graph Drawing by Magnetic-Spring Model, J. Visual
Lang. Comput., 6, no. 3, 1995, (special issue on Graph Visualization, edited by 1.
F. Cruz and P. Eades).

K. Sugiyama and K. Misue, A Simple and Unified Method for Drawing Graphs:

Magnetic-Spring Algorithm, In R. Tamassia and I. G. Tolis, editors, Graph

51

[17]

[18]

[19]

[20]

[23]

[24]

Drawing (Proc. GD '94), vol. 894 of Lecture Notes Comput. Sci., pp. 364-375.
Springer-Verlag, 1995.

K. Sugiyama, S. Tagawa and M. Toda, Methods for Visual Understanding of
Hierarchical Systems, IEEE Trans. Syst. Man Cybern., SMC-11, no. 2, 109-125,
1981.

R. Tamassia, On Embedding a Graph in the grid with the Minimum Number of
Bends, SIAM J. Comput., 16, no. 3, 421-444, 1987.

R. Tamassia, G. Di Battista and C. Batini, Automatic Graph Drawing and
Readability of diagrams, IEEE Trans. Syst. Man Cynerb., SMC-18, no. 1, 61-79,
1988.

W. T. Tutte, Convex Representations of Graphs, Proceedings London
Mathematical society, 10, no. 3, 304-320, 1960.

W. T. Tutte, How to draw a Graph, Proceedings London Mathematical society,
10, no. 3, 743-768, 1963. [Tut63]

J. Warfield, Crossing Theory and Hierarchy Mapping, IEEE Trans. Syst. Man
Cybem., SMC-7, no. 7, 502-523, 1977.

M. Hofman, H. Langendoerfer, K. Laue and E. Luebben, The principle of locality
used for hypertext navigation, Technical Report 1991, TU University of
Brauschweig, 1991

Laszlo Szirmay-Kalos, Dynamic Layout Algorithm to Display General Graphs,

Graphics Gems IV, Academic Press, Inc., 505-517, 1994

[25]

(26]

[27]

(29]

{30]

[31]

D. Tsichritzis and X. Pintado, Fuzzy Relationships and Sffinity Links, In Dennis
Teschritzis, editor, Object Composition, pages 273-285, Universite de Geneve,
Geneva, 1991

Aruna Kumart and Richard H. Fowler, A Spring Modeling Algorithm to Position
Nodes of an Undirected Graph in Three Dimensions, Technical Report 1996,
university of Texas, Edinburg, Texas, 1996

P. Eades and R. Tamassia, Algorithm for Drawing Graphs: An Annotated
Bibliography, Technical Report, CS-89-09, Brown University, 1989

T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithins, Ann. Discrete
Math., 32, 1988

J. A. Bondy and U. S. R. Murty, Graph Theory with applications, Macmillan,
London, 1976. ISBN 0-333-17791-6

Aaron Quigley, What is a Force Directed Algorithm (Spring Algorithm)?,

http://www.cs.newcastle.edu.au/~aquigley/3dfade/, 2002

N. R. Quinn, Jr. and M. A. Breuer, A forced directed component placement
procedure for printed circuit boards, IEEE Transactions on Circuit and Systems,

CAS-26, no. 6, 377-388, 1979

53

