INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Design and Implementation of Distributed
File Access for Mobile Devices

Jing Li

A Major Report
in
The Department
of
Computer Science

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of
Concordia University
Montreal, Quebec, Canada

August 2002

© Jing Li, 2002



i+l

ey Sl
%mﬂn"s‘:rvus snmtv?ces btbl;tgraphtques
395 Wellington Street 285, rue Wellington
Ottawa ON K1A ON4 Onawa ON K1A ON4
Canada Canace Your e Vowe rélirence
Our e Nowre rébivance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni la thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72936-2

Canadia



Abstract

The objective of this project is to explore a proposal to provide seamiess file
transferring between mobile device and remote servers, while the mobile
device is moving among local stations based on IP network. At first, three
proposals are presented. One of the best proposals (the third one) is selected
for implementation. The implementation is done by taking advantage of
several prevailing software techniques: J2ME, RMI and Java Serviet. J2ME is
a platform to simulate the mobile devices(PDA). RMI is a Java package to
construct a distributed system, which is an interpreter among the mobile
device, local stations and remote server. The protocol used in the
communication between mobile device and local station is HTTP, which is

supported by Java Servlet.

There are two challenges in the implementation of the proposal. The first one
is how to choose the techniques to connect mobile devices and the fixed IP
stations and server. J2ME and RMI work perfectly with each other, in the
simulation of the mobile connectivity among a distributed system. The second
challenge is how to design the system in order to guarantee the file
transferring seamilessly. Making three separate classes, MobileAgent,

Placeholder and Requestholder, successfully solves this problem.



By Using the above three java based techniques, the result of the
implementation of the proposal shows a good performance in simulating

mobile file transfer between mobile devices and file servers.



Acknowledgements

| would like to express my sincere gratitude to my supervisor, my mentor — Dr.
R.Jayakumar, for accepting me as his student, instructing me so much in this
field.

| am also thankful to Dr.T.Radhakrishnan. Without his contribution, this report
would not have been possibly completed.

Specially, | would like to thank my dearest parents and my beloved husband.

Their greatest love is always my invincible backup.



Table of Contents

1. INTRODUCTION 1
2. RESEARCH ON MOBILE DEVICES AND DISTRIBUTED NETWORK
SYSTEM 4
2.1 TERMINOLOGY ....cuveurrnieenieneeenceesississsssessessasssssesssssassssasssssssasstassssasesssssssssssansscens 4
3. THE CONCEPT OF MOBILE DISTRIBUTED FILE ACCESS SYSTEM
(MDFAS) 6
3.1 DEFINITION OF MDFAS ...ttt ese et 6
3.2 REQUIREMENT OF MDFAS ......c.oooiiiiiiiiiitetee ettt 6
4. SOLUTIONS 8
A1 SOLUTION [ oottt sttt st 8
4.1.1 Functionality of the SYStEM.....ccccouvvumvuiermirinnenecetee e 9
4.1.2 Scenario of the SYStEM ......ccoemeeirireiimieceree s 10
4.1.3 Mobile Devices and Middleware(FA, HA) ...cccccveiiiiiiiiiieeereeeeeceeeeee 11
4.2 SOLUTION 2 ...utveeerereeeerenieteteteenestassessnsss e ssssas et s sassssstesasesassasassssnsessasssnassense 11
4.2.1 Problem Statement ..........ccceeeereeeceeeriemsniiniiiesieicesesiei s st eae s 11
4.2.2 Functionality of the SYSteM......ccccccovivirimmiminiiininreeceet e 12
4.2.3 Scenario Of the SYSIEM .......cceceeeririurniirieireieee ettt ssenens 13
4.3 SOLUTION 3 ...ttt sse s bt et e e s e sa s st b e st se s ene s 14
4.3.1 Architecture of the SYSIEM ......c.ooeiiiinrieniieiinieiieee e 14
4.3.2 System functional reqUIremMENt .........ccecveieeieiiienennieee e e 16
4.3.3 System Non-Functional requirements..........cocooverereninnicnncscninnnnninnnncenes 17
4.3.4 Scenario of the system in FA ..o 17
4.3.5 Use CaSE dESIMN ...cuvouieeirrcercneiiiintiieee ettt ettt e es 19
4.3.6 Class diagram deSigll .........cccevveevermeuemiieiriinienieiessnee s sesscseseress 22
4.3.7 Sequence diagram of the design .......ccooeeeeeeinieireceee e 23
5. IMPLEMENTATION 29
5.1 REQUIREMENT FOR SYSTEM DEVELOPMENT . .....cccvttiiimiriiriiierieinnnininineeerieieecnsesnss 29
5.2.1 Class MObBIIEAGENL ............cccoueeiceiiiiereniterceene e 29
5.2.2 Class PlaceHolder ................ouuucceeeeurieviiiiinniiiiviiinicvciicieics s 30
5.2.3 Class PlaceHolderImpi ....................cccooveivomminninrreirieereerenetesereneenenns 30
5.2.4 Class RequestHolder ....................ccoeiinvnininmnmiininiisceereee s 30
5.2.5 Class MODile..........ueueeeeereereeeereereeveereeeeeseresseesesstesseastestn et e e e sasesesseens 30
5.2.6C1ass HOMEAGENL ...........oceeeeeeeeniiiniciietieiettcee st nbe e ens 31
5.3 HOW TO INSTALL THE SOFTWARE FOR THE SYSTEM ....c.cccvmnmiminireieeereenteneannes 31
5.4 HOW TO RUN THE SYSTEM ....ciiiiieiiiiiirrrererreeemmmruanssssasssastsasistsststsssssosssssmssssseesins 32
6. TEST 39
6.1 OBJIECTIVES ....ceoveminiiniueiiiriineistisesistesssssessssnsase e sasasssasastesassssesnsessassssssessnass 39
6.2 DETAIL TESTING IN THIS PROJECT ...coouevimenmrnmimsiiisassessssmsnssssesssnesssesssssenssnsssnens 39
7. CONCLUSION AND FUTURE WORK 47

vi



T. 2 FUTURE WORK ..cuuterieiiiiiiiiiiesisassssasnsseneennsesssssiesssnmsssrsssssressarssstessssasssssnnmnnatasaeacaess 47
REFERENCES 48
APPENDIX 50

A. THE DESCRIPTION OF CLASS METHODS OF SOLUTION 3.......cociviviiiniinnninennncseennes 50

B. DESIGN DIAGRAMS OF SOLUTION L....ouomiiiieiieiietsctnc s 57

1. Use €Case DESIZN ....ceeeereeceerciriitiicsnirisitetenne ettt s s ss s s 57
2. Class Diagram Design..........cccooomimmiiiiineiecieee e 59
3. Sequence diagram Design:.........cccumiieiiiiini s 63

vii



List of Figures

FIGURE 3-1 REQUIREMENT OF MDFAS ...ttt 7
FIGURE 4-1 SYSTEM ARCHITECTURE OF SOLUTION 1....octiiiiiiiiiiieiecaccnirenrevnnnnnsenenieneenn. 9
FIGURE 4-2 DIAGRAM OF MOBILE DEVICES AND MIDDLEWARE .......cccccceveiuunmnnnnncnnnna 11
FIGURE 4-3 GSM IN MOBILE DEVICES FILE ACCESS SYSTEM........uucoieenianrenreeenrreereannns 12
FIGURE 4-4 SYSTEM ARCHITECTURE OF SOLUTION 3.....ccocctierurrinrrenneccrnenienesenreneeseeans 15
FIGURE 4-5 SYSTEM CONSTRUCTION ...ceteiereeeieeeseeeesseseseeesenesssesssssseessssssessssnssessssrases 18
FIGURE 4-6 BEFORE AGENT MOVING ...coeoevtevierersirerereeeeascsseresasasesssnsnesarestessossssssissssses 18
FIGURE 4-7 AFTER AGENT MOVING. .....cuvttiiieriierieseeseeeresseeesssesessssssneessssessnsesessnsssssaes 19
FIGURE 4-8 USE CASE DIAGRAM OF FOREIGN AGENT .....cuuvuiiiiiiriiiennencsienieneeerersinnannnas 20
FIGURE 4-9 USE CASE DIAGRAM OF HOME AGENT .....coecvciieritierecraeeesenecsnnneeeeinesnenes 20
FIGURE 4-10 USE CASE DIAGRAM OF MOBILE .........uvveeriieiceeiieieeeceniemnnearentesesseessesssnenen 21
FIGURE 4-11 MOBILEAGENT CLASS DIAGRAM.......c..cuvevenrinirinrenreneernesessessesseocaeeseereesss 32
FIGURE 4-12 MOBILE CLASS DIAGRAM ....cooiiiiicreeeeereseernnrere s snssessanestareessessssssnasaanas 22
FIGURE 4-13 HA & FA CLASS DIAGRAM........cuvtiieiictieieecnerenianesssesaetesessssssasassserssssnses 23
FIGURE 4-14 CONNECT FAl SEQUENCE DIAGRAM......ccceccceutererrerrnrennmeerteerensersersesssennes 24
FIGURE 4-15 CONNECT FA2 SEQUENCE DIAGRAM......coveiieeurrireiernnenscenseesterersienseonsrsnes 25
FIGURE 4-16 DATA REQUEST IF AGENT EXIST SEQUENCE DIAGRAM ......cococurmeeeninnnnnnnn. 26
FIGURE 4-17 DATA REQUEST IF AGENT NOT EXIST SEQUENCE DIAGRAM ......cccceeennneenn. 27
FIGURE 5-1 HA(ORCHID.CS.CONCORDIA.CA) SIDE SCREEN......c..ccccivenmmrmmrrrreneesaniaanennns 33
FIGURE 5-2 FA 1(SUNSET.CS.CONCORDIA.CA) SDIE SCREEN......c..ccooecuveririrrrnnneeerencnneeens 34
FIGURE 5-3 FA2 (DAHLIA.CS.CONCORDIA.CA) SIDE SCREEN ......c..covcureieirerinnneensecaanenens 35
FIGURE 5-4 MOBILE SIDE SCREEN | oorerririieiiiieeereereerrecceer s s rceeeeneenstasesseseesanssnsnnnns 36
FIGURE 5-5 MOBILE SIDE SCREEN 2 .....uuetiiiieiitinieeerctneeseneessnsteesesnsanesessssssssnesesssnsasns 37
FIGURE 5-6 J2ME WIRELESS TOOLKIT 1.0.4 SCREEN........cuttivrieerecnrneeeerecseneneeeeisnnneenes 38
FIGURE A-1 THE FLOW CHART OF METHOD PROCESS ....ccccuvetiiireeenineceectestensseeninennens 52
FIGURE B-1 MOBILE DEVICES CLIENT USE CASE DIAGRAM............ccoerrieeeeieeericinnnienn. 57
FIGURE B-2 FOREIGN AGENT USE CASE DIAGRAM .....cooineeiiiiiiccececccnesseensesenessennas 58
FIGURE B-3 HOME AGENT USE CASE DIAGRAM .......ccoeiiiiiiiiiiiieececeeeneesansensernnrereensenss 58
FIGURE B-4 OBJECT DIRECTORY SERVER USE CASE DIAGRAM..........coevvievrvumniirrincnnnnenn 59
FIGURE B-5 OBJECT SERVER USE CASE DIAGRAM ........coocoviiimiriiecneneneceininieeeeeeeeisnens 59
FIGURE B-6 REGISTRYMANAGER CLASS DIAGRAM ...cocviiiiieiieieeeccenrnnnencsensensersereneersanes 60
FIGURE B-7 SESSIONSATAEREQUEST & DATAREQUEST CLASS DIAGRAM ......ccceeeuenneen. 60
FIGUREB-8 LOCATIONHANDLER CLASS DIAGRAM........cooviuieeiieeeeeeecrarerenesssnsnseessssssnanes 60
FIGURE B-9 MOBILEDEVICEREQUESTHANDLER CLASS DIAGRAM.......cccccouvreerirninnennnnnn 61
FIGURE B-10 MOBILEDEVICEDATAPROCESSOR CLASS DIAGRAM .......c.cccouvemrerrrnenerrennn 62
FIGURE B-11 SESSION BEGIN & END SEQUENCE DIAGRAM .......ccoreeeimeerreseissnneeenenssnannns 63
FIGURE B-12 LOCATION & DATA SEQUENCE DIAGRAM ......ccorcriiieerneeeeeessssssnneeeesressnens 64
FIGURE B-13 HANDLEREGISTRYREQUEST SEQUENCE DIAGRAM........oueerreumieinnenreenirennns 64

viii



1. Introduction

Although the Internet offers access to information sources worldwide, typically we
do not expect to benefit from that access until we arrive at some familiar point--
whether home, office, or school. However, the increasing variety of wireless
devices offering IP connectivity, such as PDAs, handhelds, and digital cellular

phones, is beginning to change our perception of the internet.

To understand the contrast between the current realities of IP connectivity and
future possibilities, consider the transition toward mobility that has occurred in
telephony over the past 20 years. An analogous transition in the domain of
networking, from dependence on fixed points of attachment to the fiexibility

afforded by mobility, has just begun.

Mobile computing and networking should not be confused with the portable
computing and networking we have today. In mobile networking, computing
activities are not disrupted when the user changes the computer's point of
attachment to the Internet. Instead, all the needed reconnection occurs

automatically without any interaction [15].

Considering the above fact, it is worth to setup a system connecting mobile
devices and fixed local stations based on IP network. Three proposals are
presented in this paper to show the possibility of the system for this purpose. The

first one is a broadcasting based solution. The location of a mobile device is



broadcasted to all the adjacent local stations, such that the mobile device
immediately knows where mobile device moves from, when mobile device roams
to local station. Although using a centerlized station can optimize the solution, it
introduces other new problems such as bottleneck and session state movement.
The second solution gives a different way of describing the mobile location,
which gives the coordinate (X,Y) of a mobile device by means of Global Position
System (GPS). The third solution three is a query-based one. When a mobile
device is moving around local stations, the location of the mobile device is
always stored and updated in one remote server. The local station has to query

the remote server to get the location where the mobile device moves from.

After consideration of various aspects, the third proposal is chosen as the test
bed for the purpose of simulating and testing the solution. The technique is
another important consideration in deciding how the system is implemented.
Three Java based techniques, J2ME, RMI and Servlet, are chosen as the tools to

implement the proposal, because Java is nicely independent of platform.

J2ME is a new, very small Java application environment. It is a framework for the
deployment and use of Java technology in the post-PC world. It is suitable for

the simulation of the mobile devices in the proposal stated in this project.

Java Remote Method Invocation (RMI) enables the programmer to create

distributed Java technology-based to Java technology-based applications, in



which the methods of remote Java objects can be invoked from other Java virtual
machines, possibly on different hosts. A Java technology-based program can
make a call on a remote object once it obtains a reference to the remote object,
either by looking up the remote object in the bootstrap naming service provided
by RMI or by receiving the reference as an argument or a return value. A client
can call a remote object in a server, and that server can also be a client of other
remote objects. RMI uses object serialization to marshal and unmarshal
parameters and does not truncate types, supporting true object-oriented

polymorphism.

Java Servlet technology provides web developers with a simple, consistent
mechanism for extending the functionality of a web server and for accessing
existing business systems. A servilet can almost be thought of as an applet that
runs on the server side -- without a face. Java servlets have made many web
applications possible. We use HTTP protocol to transfer the file between mobile

devices and local IP stations.

The implementation system consisted of three remote Unix hosts simulating local
IP stations and Home Agent respectively, and one windows station simulating the

mobile device.



2. Research on Mobile Devices and distributed network system

2.1 Terminology

Mobile agent: An autonomous program performs that some task on its own and

moves across a computer network in order to complete its calculation.[10]

Mobile Object. It is the object of mobile agent that handles all the information
about the Mobile Device. It moves between two or more Foreign Agent (FA), as

Mobile Device moves around.[10]

Object Serialization: Object Serialization is the process of writing the state of an
object to a byte stream. This is useful when you want to store the state of an
object in the persistent storage for example to a file. Once the objects state is
stored in a persistent storage area, the object deserialization process restores
the object state back. The object serialization process is required in Java RMI
(Remote Method Invocation). Once the object is serialized you can send the
object to a hard disk or across the network . You can aiso say object serialization

is the process of converting the Java object into bit-blot.[11]

Serialization: The mechanism used by RMI to pass objects between JVMS,
either as arguments in a method invocation from a client to a server or as return
values from a method invocation. Main uses of serialization are:[6]

e As a persistence mechanism, if the stream being used s

FileOutputStream, then the data will automatically be written to a file.



e As a copy mechanism ByteArrayOutputStream to create duplicates of the

original objects.
e As a communication mechanism: if the stream is coming from a socket, it

can be automatically sent over the wire to a receiving socket.

Distributed system: A collection of loosely coupled processors interconnected by

a communication network.[8]

Distributed File System (DFS): It is a file-service system whose users, servers,
and storage devices are dispersed among the various sites of a distributed

system.[8]



3. The concept of Mobile Distributed File Access System
(MDFAS)

Before the description of three solutions based on the three proposals, it is
necessary to introduce the concept of Mobile File Access Distributed System

(MDFAS).

3.1 Definition of MDFAS

The MDFAS is a combination of mobile access distributed system and file
transfer system. It gives the mobile devices (i.e. PDA, cell phone) the ability of
transferring files between the file server and itself, while it is in mobile status. In
general, MDFAS should be automated to support accurate services for Mobile

Devices. It has the following features:

¢ A Mobile device is able to send/receive files while it is moving around local
stations.

¢ File must be transferred/stored in a safe way.

¢ The response time, when mobile device moves from one station to another,

should be short enough to keep the file transfer seamless.

3.2 Requirement of MDFAS

The elements involved in MDFAS is shown in the following figure:




Mobile Local File
Devices ------ Station ------- Internet -------- Server

FIGURE 3-1 Requirement of MDFAS
The MDFAS basically consists of four elements: mobile device, local station, and
Internet connection and file server. The connection between a mobile device and
local station is wireless. Local station is actually a node with two interfaces. The
mobile side interface is in charge of the communication with the mobile device. It
can handle the roaming of the mobile device. The network side interface is in
charge of connection between local station and file server. All the data transfer
from the mobile device to IP network has to be nicely handied in local station, in
order to guarantee the correctness and entirety of the data. File server has to

keep a record of the necessary information (i.e., the location of the mobile

device).

The key point in MDFAS is how to synchronize the data transfer when mobile
device is moving around local stations. Certain technology must be utilized to

realize this function.



4. Solutions

According to the ideas presented in the three proposals, three solutions are
introduced in this report. All three solutions are the extensions of the basic

MDFAS model. Their system structure and functionalities will be stated in detail

in the following.

4.1 Solution 1

Solution 1 provides a broadcasting based solution that the location of mobile
device is broadcast to all the adjacent local stations so that mobile device
immediately knows where a mobile device moves from. When a mobile device
roams to a new local station, the station can get all session states from old
location. Using a centralized station, called Home Agent, the solution can be
optimized although it still introduces other new problems such as the problem
that Home Agent may be involved in session state movement. The following

figure shows the optimized solution.



Home Agent

4.
N I
3
7 12
4
Mobile Device [« Foreign
2 » Agent(A)
9 >
13
14
1
15 v
10
Foreign Agent(B)
>
>

l

Directory Server

Tn

'

1 Object Server

FIGURE 4-1 SYSTEM ARCHITECTURE OF SOLUTION 1

4.1.1 Functionality of the system

Manually initialize a MOBILE DEVICE

Display the current read/write information



e Update the current read/write information

e Handle data transfer between a MOBILE DEVICE and servers

o Store middleware status information when a MOBILE DEVICE is online
o Relocate new address from local area

e Provide a MOBILE DEVICE interface for read/write

4.1.2 Scenario of the system

The following steps (as indicated in Figure 4.1) illustrate the operation:

1.

2.

A

o

MOBILE DEVICE sends initial registration request to Home Agent

MOBILE DEVICE sends data service request to Foreign Agent (A) and
update location information

Foreign Agent (A) forwards update location request to Home Agent

Home Agent sends data service request to directory server and object server
Directory server sends data service request to object server

Object server acknowledges the data service request to Home Agent (A) and
returns required data.

Home Agent then responds to Foreign Agent (A) about data information.
Foreign Agent (A) continues responding to MOBILE DEVICE about data
information.

MOBILE DEVICE sends other data service request commands, for example:

read file, write file.

10.When MOBILE DEVICE moves from Foreign Agent(A) to Foreign Agent(B),

MOBILE DEVICE is detected by Foreign Agent(B)

10



11.Foreign Agent (B) informs Home Agent immediately about the new MOBILE
DEVICE by sending update location request.

12.At the same time, when Foreign Agent(A) disconnects from MOBILE
DEVICE, Foreign Agent (A) have to upload the current information about
MOBILE DEVICE to Home Agent

13.Home Agent receives the latest status information about MOBILE DEVICE,
and Home Agent forwards status information to Foreign Agent(B)

14.New connection between MOBILE DEVICE and Foreign Agent (B) is set up

15.MOBILE DEVICE receives updated data from Foreign Agent(B)

4.1.3 Mobile Devices and Middleware(FA, HA)

The following figure shows the type of messages exchanged among them.

Update Location Foreign Update locauon Get session state Foreign
l PDA Client ! " ! Agent(A) I Update session m,e Home Agent |\ nqate session state Agent(B)

FIGURE 4-2 DIAGRAM OF MOBILE DEVICES AND MIDDLEWARE

The PDA client can send updatelocation and data transferring to foreign agent A.
When foreign agent A receives the updatelocation request, it will forward to home
agent. When the PDA client moves to ancther foreign agent B, foreign agent B
sends getsessionstate request to home agent, home agent will send
updatesessionstate request to foreign agent A, Upon receiving response, Home

agent will send updatesession request to foreign agent B.

4.2 Solution 2

4.2.1 Problem Statement

11



Global Server Mobile(GSM) Functionality:

In this section we will describe the functions of GSM from the perspective of
users. The GSM system consists of three major interconnected subsystems that
interact with each other and with the users through certain network interfaces.
The subsystems are called the Base Station Subsystem (BSS), Network and
Switching Subsystem (NSS), and the Operation Support Subsystem (OSS). The
Mobile Station (MS) is also a subsystem, but is usually considered to be a part of

the OSS for architectural purpose.

4.2.2 Functionality of the system

This solution gives a different way of describing the mobile location, which gives
the coordinate (X,Y) of the mobile device by means of Global Position System
(GPS). Therefore, at the edge area where mobile may move to a new location,
the Old Foreign Agent can find more suitable other Foreign Agent and move its

object to the other Foreign Agent. The following figure shows the principle.

/ FAB) &
Mer

FA(A)
& MSC
I

M - -
-~ P
. -

Neighbor |
table

FIGURE 4-3 GSM IN MOBILE DEVICES FILE ACCESS SYSTEM

MSC: Mobile Server Center

GSM: Global Server Mobile

12



NT : neighbour table

e FA(foreign agent) can move to different object host(station)

e FA can decide when, how and where to move at the new
address

e Mobile Station Center can calculate the coordinate(x,y) of

the Mobile device

4.2.3 Scenario of the system

1 Mobile device sends signal every 10 seconds

2 When FA gets this information, FA find out whether or not
the Mobile device is on the edge of the area.

3 When Mobile device is at the edge of the area, FA checks
neighbor table on the current object host (server). Every
object host has different neighbor table, it means it is
configured manually in static manner.

4 When the Mobile device is in the area, the connection
between the Mobile device and the Station continues.

5 FA can move to different object host after FA gets the new
address of the station.

6 In GSM, mobile devices send signal in several seconds, two

adjacent mobile station accept these signals.

7 FA can move one mobile object to a new suitable FA.

13



4.3 Solution 3

This solution is an inquiry-based system from the perspective of Mobile
Device(MD) address searching. The IP addresses are stored in home agent.
When MD moves from FA1 to FA2, FA2 does not know where MD moves from.
FA2 must ask home agent (HA) where MD comes from. After getting the IP

address of FA1 from HA, FA2 is now able to get mobile agent from FA1.

4.3.1 Architecture of the system

In Foreign Agent station, there are three objects, Mobile Agent object, which
does data processing, PlaceHolder object, which moves mobile agent by using
RMI and query location information with HomeAgent, RequestHolder object,

which communicates with the Mobile device.

14



Home Agent
(Servlets)

PlaceHolder
(RMD)

Mobile Agent
(Serializable)

RequestHolder
(Servlets)

ForeignAgent (FAl)

PlaceHolder
(RMI)

Mobile Agent
(Serializable)

RequestHolder
(Servlets)

Mobile Devices
(J2ME)

Foreign Agent (FA2)

FIGURE 4-4 SYSTEM ARCHITECTURE OF SOLUTION 3

15




4.3.2 System functional requirement

This system consists of three elements: mobile device (MD), Foreign Agent (FA)
and Home Agent (HA). MD is the mobile equipment (i.e., PDA or cell phone).
Foreign Agent is actually the local station in the IP network, which is the
connection point of the mobile device and the IP network. Home Agent (HA) is a
node in the IP network playing the role of the file server, and address
management for mobile devices. The above three elements work together to set
up a system of MDFAS. The functionalities of each element are specified as

follows:

Mobile Device

Mobile agent is simulated by the tool, J2ME, as an independent simulation
program. It communicates with FAs by means http protocol. it is the mobile end

of the file transfer.

Foreign Agent

Foreign agent is the core of the system. It is the intermediary between mobile

devices and file server. As a result, it brings up three basic requirements:

e Communicate with mobile devices: All the data, either from the transferred
file, or from the communication messages, must be properly handled by FA,
so that when the mobile device moves around FAs, the connectivity is

seamless. This is done by RequestHolder.

16



¢ Handle the mobile agent: Each mobile agent containing the dynamic status
information for the session of file transfer corresponds to one mobile device.
When a mobile device moves around FAs, the mobile agent corresponding to
that mobile device moves around in consequence. The action of the mobile
agent movement among FAs must be handled by FA appropriately. This is
done by PlaceHolder.

e Communicate with Home Agent: The data for file transfer and mobile location

tracking must be updated by the Home Agent.

Home Agent

Home agent is actually the place registering and storing the current address of

the mobile agent.

4.3.3 System Non-Functional requirements

e The users must manually activate the Mobile device at first time from the
original FA

e Three conditions must be satisfied to run the system
1. Three remote hosts, one for HA, two for FA.
2. Windows machine running simulation of Mobile device.

3. Valid Internet connection.

4.3.4 Scenario of the system in FA

17



The FA consists of three parts: RequestHolder, PlaceHolder and Mobile
Agent, corresponding to the three functional requirements described above.
How they cooperate to complete the migration of mobile agent is the key point in

the design of this system.

Foreign Agent (FA)
Virtual machine

PlaceHolder (PH) and
RequestHolder (RH)
Mobile Agent(MA)

FIGURE 4-5 SYSTEM CONSTRUCTION

FA1 FA2

FIGURE 4-6 BEFORE AGENT MOVING

FA1 FA2

18



FIGURE 4-7 AFTER AGENT MOVING

1. RequestHolder gets the request from MD.

2. PlaceHolder(PH) in FA2 gets the object of Mobile Agent (MA)
through RMI

3. PH2 calls moveto() of PH1 to inform PH1 of the new address
where MA has moved to.

4. PH2 gets the object reference of PH2 through using RMI

5. PH1 calls method pass() of PH2 to transfer the object of MA of PH1
to PH2.

6. Agent manager 1 kills it's mobile agent

7. Agent manager 2 loads the agent which was transferred from FA1

8. Agent Manager 2 creates new object from real agent

9. New object agent starts to work

4.3.5 Use case design

As shown in Figure 4-8, the Foreign Agent has four function modules, one is for
processing requests from the Mobile PDA, one is for Handling Read/Update Data
requests. The other two are for Handling Move procedure and Get/Update agent

location information module.

19



/"/\\
Process Request from mobile device
~ - <<usé>> ;;use»
. . s ""\\\ -
mobile PDA . e
Handle Move procedure Hanle Read/Update Data
<<Use>>
Get/Update Agent HomeAgent
FIGURE 4-8 USE CASE DIAGRAM OF FOREIGN AGENT
o o
_~handieUpdateAgentLocation
. .
N \\~.\‘
X —
\\ N
FA(placeholder) T T

S~ T

handleGetAgentLocation

FIGURE 4-9 USE CASE DIAGRAM OF HOME AGENT

20



The Home Agent has two function modules as shown in Figure 4-9, one is to
handle updateAgentLocation request from FA, the other is to handle

GetAgentLocation request from FA.

~ T ety

\\\C\onnect/Disconnect Request

Read/Update Request

FIGURE 4-10 USE CASE DIAGRAM OF MOBILE

The Mobile has three function modules(Figure 4-10), one is to send Open/Close
request to FA, one is to send Connect/Disconnect Request to FA, the third one is

to send Read/Updaterequest to FA.

21



4.3.6 Class diagram design
O

Seralizable

A
LA

MobileAgent

®currentPos
@DataSenObj

BHandleOpenRequest()
MHandleCloseRequest()
BiHandleReadFirstRequest()
allHandieReadPrevRequest()
BlHandleReadNextRequest()
BRHandleUpdateRequest()

FIGURE 4-11 MOBILEAGENT CLASS DIAGRAM

_MiDlet !

I
—_—
A

-

3 Mobile
®currentText

'MopenRequest()
'IMcloseRequest()

WlreadFirstRequest()
BreadPrevRequest()
lireadNextRequest()
'MlupdateRequest()
MhandleConnectFAhostA().
'ElhandleConnectFAhostB()-

FIGURE 4-12 MOBILE CLASS DIAGRAM

22



HpSend

WPass)

FIGURE 4-13 HA & FA CLASS DIAGRAM

4.3.7 Sequence diagram of the design

4.3.7.1 Connect FA1

As shown in Figure 4-14, Mobile handles to connect FA1, then invokes init
method of FA1 RequestHolder to init FA1 RequtestHolder and to init FA1
PlaceHolder object with its local Naming Service.

FA1 RequestHolder receives Get Http request from mobile and forwards it to its
local PlaceHolder object. FA1 PlaceHolderimpi will responsible for processing
the request. It will first check if local mobile agent exists. If the mobile agent
exists, it will process the request from mobile. Otherwise, it will send request to

ask the Home Agent the location of the mobile agent. If the mobile agent doesn't

23



exist in any Foreign Agent, a new mobile agent will be created in local agent.

Then, send request to inform Home Agent that agent location will be updated.

: Mobile rh FA1 : ph_FA1 : : HA
RequestHolder PlaceHolderimpl

| I
handleConnectFAhostA( ) ?

Init( ) fr

L > Init( )
doGet() .
I ,.,>,L_' Ers:ces;(.)

_ ChacklfAgentExist( )

< .
GetAgentLocationinfo( )

handleGetAgentLocation( ):

. >, IS

Agent not found
New Mobie Agent

UpdateAgentLocation( )

<A____
handleUpdateAgentLocation( )

FIGURE 4-14 CONNECT FA 1 SEQUENCE DIAGRAM

24



4.3.7.2 Connect FA2

. Mobile - th_FA2 - ph FA2 : HA
' ReguestHolder Plac eHolderimpl

ph_FA1 :
PlaceHoiderimpl

i !
handieGonnectFAhostB( ) | :
SO |

Init( )

doGet( )

D Process( ) E
e - ChpekifAgentE xist( )

S
GetAgentLocationinfo( )
<
nandleGetAgentLocation( )
[ — — _— >._
Agent found
Mowe to Here
MoweTo( )

Pass()

<
UpdateAgentLocation( )

< -
handleUpdateAgentLocation( )

FIGURE 4-15 CONNECT FA2 SEQUENCE DIAGRAM

Mobile handles to connect FA2, then invokes init method of FA2 RequestHolder
to init FA2 RequtestHolder and to init FA2 PlaceHolder object with its local
Naming Service. FA2 RequestHolder receives Get Http request from mobile and
forwards it to its local PlaceHolder object. FA2 PlaceHolderimpl is responsible for
processing this request. It will first check if local mobile agent exists. If the mobile
agent doesn't exist, it will send request to ask the Home Agent the locatin of the
mobile agent. If the mobile agent exists in a remote Foreign Agent, FA2 will get

the remote Agent location from Home Agent while move mobile agent from FA1

25



to FA2.Then, send request to inform Home Agent that agent location will be

updated.

4.3.7.3 Data Request If Agent Exist

: Mobile : PlaceHolderimpl : MobileAgent
oqen Request()
<
Process( )

ChecklfAgentExist( )

e—

If Agent exist ﬁ

HandleOpenRequest()

g

|

FIGURE 4-16 DATA REQUEST IF AGENT EXIST SEQUENCE DIAGRAM

Mobile executes open request, PlaceHolderimpl processes the request. First,
PlaceHolderlmpl checks if Agent exists in local station. If it exists, Mobile Agent
opens one of the remote files on distributed file system and loads the whole

contents of file into its local buffer when mobile sends open request.

26



4.3.7.4 Data Request If Agent not exist

: Mobile " FA2: PlaceHolderimpl : HA ‘'EA1 ; PlaceHolderimpt; : MobileAgent
PlaceHolderimpt
oa_enﬂequast() ! j 1 [
S i ! !
Process( ) . i .
1 > |
N CheckitAgentExist() if not exist - !
| «— *
! ————————
GetA?gentLocalionlnfo( ) '
‘ < ’ . ! t
handleGetAgentLocation( ) ' :
| ; >
f MoweTo( )
1 >
; Pass()
1 < :
UpdaleAgentLocation() |
I =

hallldIeUpdateAgentLocati&n( )
s
|

—

' HandleOpenRequest() ‘
_ nandiet K >

FIGURE 4-17 DATA REQUEST IF AGENT NOT EXIST SEQUENCE DIAGRAM

Mobile executes open request, PlaceHolderimpl! processes the request. First,
PlaceHolderimpl checks if Agent exists in local station. If it doesn't exist, it will
send request to ask the Home Agent the location of the mobile agent. If the
mobile agent exists in a remote Fcreign Agent, FA2 will get the remote Agent
location from Home Agent while moving the mobile agent from FA1 to FA2.Then,

it sends request to inform Home Agent that agent location will be updated. Mobile

27



Agent opens one of remote files on the distributed file system and loads the

whole contents of file into its local buffer when mobile sends open request.

4.3.7.5 Move Procedure

FA1 : ! FA2 : PlaceHolderimpl
PlaceHolderimpl ‘
| MoweTo( ) |
| >.
Pass()
<

Figure 4-18 Move Procedure sequence diagram

FA1 PlaceHolderimpl calls MoveTo method of FA2 with location address of FA1,

FA2 PlaceHolderimpl calls Pass method of FA1 with Mobile Agent of FA2.

4.3.8 Summary

In summary, the tracking of the location of mobile agent has to be done through
the inquiring of HA. This makes FA less loaded in terms of determining the trace
of mobile agent. But it results in longer time locating the location of mobile agent.
When the system carries time critical data transfer, real time application for
example, certain mechanism must be found to solve the problem of slow
response. Apparently, the system structure in this design is rather simple, which

implies great advantage in the employment of this technique in real world.

28



5. Implementation

5.1 Requirement for system development:

e Hardware:
IBM compatible PC with CPU equivalent to Intel Pentium 200 or higher
Minimum hard disk space: 50 MB
Minimum RAM: 64MB
Operating system: Microsoft Windows 2000/RedHat Linux 6.0 higher
e Software:
JDK 2 standard edition [11] version 1.2.1 or later
J2EE Enterprise Edition [16]
SSH secure shell client [12]
JSDK2.1 small server [13]
J2ME wireless Toolkits for Windows 1.0.4 [14]

5.2 Class description

We select solution 3 as the system configuration for implementation. The coding
is all based on Java technology. Following is the description of the classes. The

description of methods is given in the Appendix.

5.2.1 Class MobileAgent

MobileAgent class is responsible for processing the file access request, such as
Open, Close, Read, and Update from mobile devices. For the consideration of
object mobility, Class MobileAgent inherits from Class Serializable because any

objects inheriting Serializable can be used as a parameter in RMI method to

29



provide mobility functionality from one location to the other location without loss

of state the object.

5.2.2 Class PlaceHolder

PlaceHolder class is an interface, which inherits from Class Remote, to define

two public methods (MoveTo, Pass) that can be invoked remotely by RMI.

5.2.3 Class PlaceHolderlmpl

PlaceHolderimpl class, which inherits from unicastRemoteObject class and
PlaceHolder interface, is used to analyze requests from the mobile device and
manage mobility of the Mobile Agent by implementing MoveTo and Pass method

of PlaceHolder interface.

5.2.4 Class RequestHolder

RequestHolder class, which inherits HttpServiet class, is responsible for the
reception of HTTP requests (GET and POST) from the mobile devices and
forwards its request to its local PlaceHolder Object.

5.2.5 Class Mobile

Mobile class, which inherits Midget class and CommandListener class, is
responsible for simulating any mobile device, such as palm device, that can use

J2ME to communicate with foreign agent server.

30



5.2.6Class HomeAgent

Home Agent class, which inherits HttpServiet class, is responsible for the HTTP

request from FA to get or update location request.

5.3 How to install the software for the system

e Server side installation
1. Install Java 2 Platform, Standard Edition, (J2SE).

Download J2SE from java.sun.com, then install it.

2. Install Java 2 Platform, Enterprise Edition, (J2EE).

Download J2EE, and install it.

3. Install Java Serviet Development Kit 2.1 (J2SDK), a small web server.

4. Set CLASSPATH

setenv CLASSPATH /usr/javal.2/bin:~/jsdk2.1/servlet. jar:..

5. Set permission
chmod 700 startserver

chmod 700 stopserver

6. Copy serviet
copy serviet class and other compiled class to

/jsdk2.1/webpages/WEB-INF/serviets

31



e Mobile side installation
1. Install Java 2 Platform, Standard Edition, (J2SE).
Download J2SE from java.sun.com, then install it.
2. Install Java 2 Platform, Micro Edition(J2ME)
Download J2ME from java.sun.com, then install it.

3. copy the directory of mobile to /i2me/apps directory

5.4 How to Run the system

We have described the system deployment steps above. It is time to put
all the things together to see how the entire system works on both the server

side and the client side.

Server Side:

1. For Home Agent (HA):

¢ Connect to orchid.cs.concordia.ca
¢ cd /home/grad/jingli/orchid-jsdk2.1

¢ run startserver

32



Probleas? Foc best tesults, send e-msil to “monitocfics.concordie.ce™ -‘-l

He1ling Lists: Everyone should subscride to “general”. Grads should subscribe
to “grad”. Undecgreds should subscribe o “ugzed”. I[n ocder to do Zh13 ceed
htTp: //www.cs. concordia. ca/help/tutorials/aatlinglisc.hmal

RENOTE ACCESS: Telnet and Rlogln efe no longer evaileble. Please use ssh,

FOLL ESENTS eand ANKOUNCEMENT DETAILS eze in:

http: //wwe.cs.concordia. ca/events

hetp: //wve. c3. concosdlae. ca/departaent/announcenents
LOCAL DOCURENTATIOE look in: http://www.cs.concordia.ca/help/
You have pazl.
ozckad. jingl: % cd ozchid_js3dk2.l/
orckid.jinglt & starcserver
Using classpath: ./secver.)ag:./serviet.jlar:/usc/jevel.2/din:.:
archid. jiagly v JSDK WebServer Version 2.1
Loaded configuration from file:/home/grad/jinglt/orchid 3sek2.l/default.ctg
endpaint created: :8190
com. sun.web.coce. lnzokerServiet: imit
HA: imit
zeceive tequest frca FA: cosasndsgetagentzlocation :locatione
handle cegistzetion
currentigentlocetion 19: null
Get Agent location is done
zeceive request from FA: loceticn :l0Cations//sunset.cs.conco
tdis.ca:2050/FlaceHolder
hendle Updatelocation
Update Locetion OK: gnew location 13 //sunset.c¢3.concotdis.ca: 2050/PleceHolder
Update Agent Location 18 done
receive request fros FA: comaandegetagentlocation :locations
handle registcation
currentAgentlocation 18: //sunsec.cs.concordie.ca:2050/?1aceHalder
Get Agent Location 13 done
teceive gequest froe FA: tlocatian :locations//dahlla.cs.conco
zdta.ca:2050/PlaceBolder
handle Updatelocation
Update Location OK: new location 13: //dahiia.cy.concocdis.ce:2050/PlaceHolder
Update Agent Location i3 dane
orchid. jinglt o

dto crchid.cs. EE"_—_—I—"F_IQI—I_W
.&"l Y 24 ‘3 IWMMJ P wriss ... | .§ Watsortwe] [HEHORPEE 1om

FIGURE 5-1 HA(ORCHID.CS.CONCORDIA.CA) SIDE SCREEN
Using classpath: ./server.jar:./serviet.jar:/usr/javal.2/bin:..
orchid.jingli % JSDK WebServer Version 2.1
Loaded configuration from file:’home/grad/jingli/orchid_jsdk2.1/default.cfg
endpoint created: :8190
Note: Serverlet is running at port 8190, which is specified in the code. It can
be modified to any free port for user in the host. But the code needs to be

recompiled to effect the change.

2. Foreign Agent1(FA1):

33



¢ Connect to sunset.cs.concordia.ca
e cd ~/sunset_jsdk2.1/webpages/WEB-INF/serviets
e rmiregistry 2050 &

e cd ~/sunset_jsdk2.1/

e run startserver

a-nn-u "»m'" S T e I
ntomnaluaemmalslon! A :
| £) Quek cormact. Cymetee | -

sunget.jingly & com.sun.web.core.InvokerServliet: init

RequestHolder: init

initialize requestholder

begin create placeholder object

initialize placeholder

Init:alizing placeholder: please wait.

The PlaceHolder is up and running.

get request from mobile

Check 1f Agent exist

Agent not exist

Get Agent Location Info

New URL: http://orchid.cs.concordia.ca:8190/serviet/HA?2command=getagentlocations
locations=

Read Page: http://orchid.cs.concordia.ca:8190/serviet/HA?commandagetagentlocatio
nélocation=

Receive response:null

oldAgentlocation 1s: null

can not find location of agent, Create a new one -J

Read Page: http://orchid.cs.concordia.ca:9190/serviet/HA?command=updateagentloca
tionslocation=//sunset.cs.concordia.ca:2050/PlaceHolder
Update Location OK
Agent exists

handle connect request

the buffer 13:Connection accepted

Process request <connect> from Mobile 13 done
get request from mobile
Check i1f Agent exist
Agent exists

handle open regquest

the buffer 1s:Cpen OK

Process request <open> from Mobile 1s done
get request from mobile

Check 1f Agent exist
Aqont exists

) W[_f-ﬂ[- F_FJ
zﬂmaovc -uw &lﬂﬂ&l&.—.lm.n_l CUPEOLR umm

FIGURE 5-2 FA1(SUNSET.CS.CONCORDIA.CA) SDIE SCREEN
Note: Serverlet is running at port 2050, which is specified in the code. It can
be modified to any free port for user in the host. But the code needs to be
recompiled to effect the change. To recompile the source code of
PlaceHolderimpl.class

Rmic -v1.2 PlaceHolderimpl

34



3. Foreign Agent2 (FA2)

¢ Connect to dahlia.cs.concordia.ca by SSH

e Cd ~/dahlia_jsdk2.1/webpages/WEB-INF/serviets
¢ rmiregistry 2050 &

¢ Cd ~/dahlia_jsdk2.1

¢ Run startserver

nlamsnlmna!umalsloni e e

Dourcoves nems | -

dahlia.jingli § com.sun.web.core.InvokerServlet: init 2
RequestHolder: init

i1nitialize requestholder

begin create placeholder object
initialize placeholder

Initializing placeholder: please wait.

The PlaceHolder is up and running.

get request from mobile

Check if Agent exist

Agent not exist

Get Agent Location Info

New URL: http://orchid.cs.concordia.ca:8190/servliet/HA?comnand=getagentlccations
location=

Read Page: http://orchid.cs.concordia.ca:8190/servlet/HA?comnmand=getagentlocatio
nglocation=

Receive responge://sunset.cs.concordia.ca:2050/PlaceHolder

oldAgentLocation 1s: //sunset.cs.concordia.ca:2050/PlaceHolder

find old location 1s ://sunset.cs.concordia.ca:2050/PlaceHolder
Get placeholer from: //sunset.cs.concordia.ca:2050/FlaceHolder call remote move
Mobile Agent is passed here

Update new Agent Location

Read Page: http://orchid.cs.concordia.ca:8190/servlet/HA?conmand=updateagentloca
tionélocation=//dahlia.cs.concordia.ca:2050/PlaceHolder

Update Location OK
Agent exists

handle connect request

the buffar is:Connection accepted

Process request <connect> from Mobile is done

get request from mobile

Check if Agent exist
Agent exists

handle open request

the buffer is:Open OK

Process request <open> f:om Hobxle 1s done

Cowaciad o debda.cr.commde.cs, o ﬁ'—'—_:—m—r——'r'-r‘l"ﬁ—l
i B B R ] o | e [ [ gn | [T

FIGURE 5-3 FA2 (DAHLIA.CS.CONCORDIA.CA) SIDE SCREEN
Using classpath: ./server.jar:./serviet.jar:/usr/javal.2/bin:.:
dahlia.jingli % JSDK WebServer Version 2.1
Loaded configuration from file:’home/grad/jingli’dahlia_jsdk2.1/default.cfg

endpoint created: :8190

35



Note: Serverlet is running at port 8190, which is specified in the code. It can
be modified to any free port for user in the host. But the code needs to be
recompiled to effect the change.

Client side:

FIGURE 5-4 MOBILE SIDE SCREEN |

36



FIGURE 5-5 MOBILE SIDE SCREEN 2

The Mobile side needs to have the J2ME Wireless Toolkit to run Mobile
project. From the mobile interface, select launch, then screen display menu

from which one can select any command to connect FA1 or FA2.

37



| Ooviax |OefauttGrayPhone

jopen  comnecticn 0K
lenth 13:-1

Read OX
Response t3:Close 0K
ot true private choice,” today upheld the use of public money Cor feligious school G00345SS

resdfitst reques”

jsend BTTP cequest: hetp://sunset.cs.concordis.cs:8190/sezviet/Requestiiolder >connendsreadfirstitexts
jopen. connection OK

lenth i3:-1

Read 0K

Response 13:Close 0K

bt true privete choice,” todey wpheld the use of public money for feligisus school 00034SSS

teadfizst cequest

jsend HTT? tequest: http://sunset.cs.concordia.
jopen connection 0K

Llenth 13:-1

Reed OK

:8190/3ecviet/Requestiicider consandezeadnextetexta

pE =13 Y

tion
ho a decisive 445-to-4 ruling that the aajority called @ logicel cutgrowth of recent decis

xecucion completed successtully

13144374 Dytecodes executed

4444 cthread svitches

322 classes in the systea (including system classes)

|S755 dynamic odjects allocated (308284 bytes)

06) garbage collections (294520 bytes collected)

[Total heap size 500000 bytes (curzently 473108 bytes Cree)
xecucion completed successtully

S2140 bytecodes executed

[7 thcead switches

319 classes tn the systea (including systes clesses)

519 dynamic abjects allocated (21852 bytes)

4 guzbage collections (9840 bytes collected)

Total heep size 500070 dytes (cucrtently 435940 bytes free;

Pl b SVE | O] O [Els | Do fGr Doc|Du| ve |mncfou|

FIGURE 5-6 J2ME WIRELESS TOOLKIT 1.0.4 SCREEN

38

QdO%OLl nxm



6. Test

6.1 Objectives

Software testing is one of the major processes of system development. The
objective of testing is to ensure that the system conforms to its requirement
specifications (i.e. Software Verification) and the system implementation has
met the expectation of the customer (i.e. Software Validation). A successful
testing process should systematically uncover different classes of errors in a
minimum amount of time and with a minimum amount of effort. It also
demonstrates that the software is working as stated in the specifications. The
data collected through testing can provide an indication of the software’s

reliability and quality.

6.2 Detail testing in this project

Since this project is using several java based technologies, such as JDK,
J2ME, Serviet and RMI, software debug giving and testing is not as easy as
in the IDE like JBuilder and VC++. Due to this reason, a number of print
commands were added outputting messages indicating the processing of the
program. It is a kind of debug/test information, which gives the developer real
run time information. Those test information are listed as follows:
e When MA is connected to FA1
HA displays:
com.sun.web.core.lnvokerServiet: init

HA: init

39



receive request from FA: command=getagentlocation ;location=
handle registration

currentAgentLocation is: null

Get Agent Location is done

receive request from FA: command=updateagentiocation
;location=//sunset.cs.concordia.ca:2050/PlaceHolder

handle UpdatelLocation

Update Location OK: new location is:
//sunset.cs.concordia.ca:2050/PlaceHolder

Update Agent Location is done

FA1 displays:

RequestHolder: init

initialize requestholder

begin create placeholder object
initialize placeholder

Initializing placeholder: please wait.
The PlaceHolder is up and running.
get request from mobile

Check if Agent exist

Agent not exist

Get Agent Location Info

40



New URL:
http://orchid.cs.concordia.ca:8190/servletYHA?command=getagent|
ocation&location=

Read Page:
http://orchid.cs.concordia.ca:8190/serviet/HA?command=getagent!
ocation&location=

Receive response:null

oldAgentLocation is: null

can not find location of agent, create a new one

Read Page:
http://orchid.cs.concordia.ca:8190/serviet/HA?command=updateag
entlocation&location=//sunset.cs.concordia.ca:2050/PlaceHolder
Update Location OK

Agent exists

handle connect request

the buffer is:Connection accepted

Process request <connect> from Mobile is done

When MA move from FA1 to FA2

FA1 displays:

begin move

Agent exists in my location, begin call remote pass

41



FA2 displays:

RequestHolder: init

initialize requestholder

begin create placeholder object

initialize placeholder

Initializing placeholder: please wait.

The PlaceHolder is up and running.

get request from mobile

Check if Agent exist

Agent not exist

Get Agent Location Info

New URL:
http://orchid.cs.concordia.ca:8190/serviet/HA?command=getagent|
ocation&location=

Read Page:
http://orchid.cs.concordia.ca:8190/serviet/HA?command=getagent|
ocation&location=

Receive response://sunset.cs.concordia.ca:2050/PlaceHolder
oldAgentLocation is: //sunset.cs.concordia.ca:2050/PlaceHolder
find old location is :/sunset.cs.concordia.ca:2050/PlaceHolder

Get placeholer from: //sunset.cs.concordia.ca:2050/PlaceHolder
call remote move

Mobile Agent is passed here

42



Update new Agent Location

Read Page:
http://orchid.cs.concordia.ca:8190/servieHA?command=updateag
entlocation&location=//dahlia.cs.concordia.ca:2050/PlaceHolder
Update Location OK

Agent exists

handle connect request

the buffer is:Connection accepted

Process request <connect> from Mobile is done

HA displays:

receive request from FA: command=getagentlocation ;location=
handle registration

currentAgentLocation is:
//sunset.cs.concordia.ca:2050/PlaceHolder

Get Agent Location is done

receive request from FA: command=updateagentlocation
;location=//dahlia.cs.concordia.ca:2050/PlaceHolder

handle UpdateLocation

Update Location OK: new location is:
//dahlia.cs.concordia.ca:2050/PlaceHolder

Update Agent Location is done

43



e When MA open a file from FA1:
FA1 displays:
get request from mobile
Check if Agent exist
Agent exists
handle open request
the buffer is:Open OK

Process request <open> from Mobile is done

¢ When MA send ReadFirst command to FA1:
FA1 displays:
get request from mobile
Check if Agent exist
Agent exists
handle readfirst request
Agent handle read first
the buffer is: Close OK
of true private choice," today upheld the use of public money for
religious 0s2345tuitio
n

Process request <readfirst> from Mobile is done

¢ When MA send ReadNext command to FA1

44



FA1 displays:

get request from mobile

Check if Agent exist

Agent exists

handle readnext request

Agent handle read next

the buffer is:

i

n a decisive 445-to-4 ruling that the majority called a logical
outgrowth of recent decisions and

Process request <readnext> from Mobile is done

When MA send Update command to FA2:

FA2 displays:

get post request from mobile

Check if Agent exist

Agent exists

handle update request

begin get text str:

length is:18

the buffer is:

Open connection OK. updated text string is:Open connection OK

Agent handle update

45



e When MA send Close command to FA2
FA2 displays:
get request from mobile
Check if Agent exist
Agent exists
handle close request
the buffer is: Close OK

Process request <close> from Mobile is done

46



7. Conclusion and Future work

7.1 Conclusion

According to the description of the proposal and the result of the
implementation, it looks pretty promising that mobile file transferring could be
implemented in IP network, by taking advantage of the new software
techniques. Compared with the traditional telephone network, it effectively
utilizes the existing tremendous IP network, which has the advantage of low

cost.

7.2 Future work

The mechanism proposed in this paper is far less mature.
e There should be more FA involved the simulations.
e The protocol used to transfer the object among FAs should be
TCP/UDP.
e Mobile devices should be able to recognize the wireless connection.
e The speed responding the mobile devices should be taken into

account as one essential aspect of the system design/implementation.

47



References

[1] G. Booch, J. Rumbaugh and |. Jacobson. The Unified Modeling Languag
User Guide. Addison Wesley, 1999.

[2] Theodore S.Rappaport Wireless communication principles & practice in

1996 ISBN 0-7803-1167-1

[3] Marie-Bernadette PAUTET Michel Mouly The GSM System for Mobile

communications in 1992 ISBN 0-945592-15-9

[4] Object Management Group, OMG Unified Modeliijg Language Specification,

Version 1.4, Http://www.omg.org, Nov 15,2001.

[5] Kobryn, Cris. UML 2001: A Standardizaiont Odyssey, Communication of the
ACM October,1999/Vol.42,No.10

Http://www.omg.org/attachments/pdf/UML_2001 CACM_Oct39 p29-Kobryn.pdf,

Nov. 21, 2001.

[6] http://java.sun.com/products/jdk/1.1/docs/quide/rmi/release-notes.htmi

[7] vartan piroumian wireless j2me platform programming ISBN 0-13-044914-8
Sun Microsystems Press in 2002

[8] Avi Silberschats, Peter Galvin & Greg Gagne Applied Operating System
Concepts ISBN 0-471-36508-4 Jihn Wiley & Sons, Inc. In 2000

[9] H.M.Deitel & P.J.Deitel Java How to program ISBN 0-13-899394-7 Prentice-
Hall, Inc. In 2000

[10] Jeff Nelson Programming Mobile Objects with Java ISBN 0-471-25406-1
John Wiley & Sons, Inc In 1999.

[11] Enterprise Java Specifications v1.1 Sun Microsystems:

48



httg://iava.sun.com/docs/books/tutorial/servlets/servletrunner/server-start.htmI

[12] SSH secure shell client

http:/ftp.ssh.com/cgi-bin/download.cgi?download=sshwkswin

[13] JSDK2.1 small server

http://java.sun.com/docs/books/tutorial/serviets/servietrunner/server-start.html

[14] J2ME Wireless Toolkits 1.0.4

http://java.sun.com/products/j2mewtoolkit/download.html

[15] Mobile Networking Through Mobile IP,Charless E.Perkins,Sun Microsystems

[16] J2EE Enterprise Edition http://java.sun.com/j2ee/

49



Appendix

A. The description of Class methods of Solution 3
A.1 MobileAgent

Method HandleOpenRequest()
This method simulates the functionality that the Mobile Agent opens one of
remote files on distributed file system and loads the whole contents of the file into

its local buffer when the mobile device sends open request.

Method HandleCloseRequest()
This method simulates the functionality that the Mobile Agent writes all updated
buffer to the remote file on the distributed file system and closes it when the

mobile device sends close request.

Method HandleReadFirstRequest()
This method reads the first 100 characters(default vaiue) of the remote file from
its local buffer which is already initiated by HandleOpenRequest() method and

keeps the current read position value into variable currentPos.

Method HandleReadprevRequest()

This method reads the previous 100 characters of remote file from its local buffer
and keeps the current read position value into variable currentPos.

Method HandleReadNextRequest()

50



This method reads the next 100 characters of remote file from its local buffer and

keeps the current read position value into variable currentPos.

Method HandleUpdateRequest()

This method updates part of its iocal buffer with the contents from mobile.

Method Read()

This method gets 100 characters from its local buffer.

Method ReadWhole()

This method reads the contents of remote file into wholebuffer.

Method WriteWhole()

This method writes the wholebuffer into remote file.

A.2 Class PlaceHolderimpl
Method ChecklIfAgentExisK)

This method checks if the mobile agent object exists in its local machine.

Method Process()

The flow chart of method Process

51



Start
Process /
placeholderimp
]

Yes

MoveTo ‘ _new MobileAgent() |

v
UpdateAgentLocation

heck if agen
exist?

Handle mobile
request

FIGURE A-1 THE FLOW CHART OF METHOD PROCESS

This method is mainly responsible for analyzing request from the mobile device,
and moving the mobile agent from remote location to its local location. It will first
check if local mobile agent exists. If the mobile agent exists, it will process the
request from mobile and call corresponding method of mobile agent according to
the kind of request from the mobile device. Otherwise, it will send request to ask

the Home Agent server the location of the mobile agent. If no mobile agent exists

52



in any Foreign Agent server, a new mobile agent will be created in the local
server. If the mobile agent exists in a remote Foreign Agent Server, it will call
remote MoveTo method to inform the remote Foreign Agent Server to pass

mobile agent in its local machine.

Method getTextStr()

This method is used to get text string that is going to be updated.

Method sendBack()

This method is used to send updated text string back.

Method MoveTo()
This method is invoked by the remote foreign agent server that needs the mobile
agent. The method will then invoke Pass method of the remote foreign agent

server to pass its local mobile agent to remote foreign agent server.

Method Pass()
This method is invoked by the remote foreign agent server for passing the

remote mobile agent to its local machine.
Method GetAgentLocationinfo()

This method is used to ask the home agent server for the current location of

mobile agent.

53



Method UpdateAgentLocation()

This method is used to send requests to inform the home agent server that the

mobile agent has been moved to its local machine.

Method init()

This method is invoked by the init method of RequestHolder object to register the

new PlaceHolder object with its local naming service.

A.3 Class RequestHolder

Method init()

This method is used to create a new placeholder object and bind it to its local

naming service.

Method doGet()

This method is used to receive GET HTTP request from mobile and forward it to
its local PlaceHolder object.
Method doPost()

This method is used to receive POST HTTP request, which is mainly for update

requests, from mobile and forward it to its local PlaceHolder object.

A.4 Class Mobile

54



Method startApp()

This method is to start Mobile midlet application.

Method startPage()

This method is to show the first Welcome page.

Method pauseApp()

This method is inherited from midlet and do nothing.

Method destropApp()

This method is inherited from midlet and do nothing.

Method showText()

This method is used to show text that receives from foreign agent server.

Method commandAction()
This method is used to execute the command that user activate by invoking

different method.

Method handleConnectFAhost()

This method sends connect command to the foreign agent server with HTTP

request.

55



Method openRequest()

This method sends open command to the foreign agent server with HTTP

request.

Method closeRequest()

This method sends close command to the foreign agent server with HTTP

request.

Method readfirstRequest()
This method sends readfirst command to the foreign agent server with HTTP

request.

Method readnextRequesk)

This method sends readnext command to the foreign agent server with HTTP

request.

Method readprevRequest()
This method sends readfirst command to the foreign agent server with HTTP

request.

Method readPage()

This method sends HTTP GET request to the foreign agent server and receives

response from the foreign agent server.

56



Method updateRequest()
This method sends HTTP POST request to the foreign agent server for updating

its local buffer, and received updated contents from the foreign agent server.

B. Design Diagrams of Solution 1

1. Use Case Design

1.1 MOBILE DEVICES client Use Case Diagram

~— /,‘w‘\\\ —

Location Request™x _ Tt

\¥'_4,,/~11 . . \
Read & Write Request 1. — -
—’\ T R - - o /// .
- N .
\ Home Agent

— "

Registration Request

FIGURE B-1 MOBILE DEVICES CLIENT USE CASE DIAGRAM

57



1.2 Foreign Agent Use Case Diagram

. /_\~ P
J j
‘//’, — }\/ E—
Handld Read & Wnte request Session State Request

S

Handile Location Update Request

FIGURE B-2 FOREIGN AGENT USE CASE DIAGRAM

1.3 Home Agent Use Case Diagram

Client

Update Location info

Handle Read & Write
Request K

session state

Session Management

Objext Read & Write
Request

Update Session & forward

N

" Foreign Agent

I

-~ Object Server

Directory Server

FIGURE B-3 HOME AGENT USE CASE DIAGRAM

58



1.4. Obiject Directory Server Use Case Diagram

//—\\1

. — P ¥ |
N o K
Vs N \___/
- N

Home Agent Object Registration Service

FIGURE B-4 OBJECT DIRECTORY SERVER USE CASE DIAGRAM

1.5 Object Server Use Case Diagram

— RMI T

~

— o

Object Senvice

Home Agent

FiGURE B-5 OBJECT SERVER USE CASE DIAGRAM

2. Ciass Diagram Design

2.1 RegistryManager class diagram

Registry Man;giér
ECurrentP os

MRe gistrationReuestHandler()

~ Sessioninterface

MigetSessionState():

EliputSessionState()

N b

S(ﬁess—uo;ﬁ/l;;aig_;ra SessionAgent )
MlopenSession() | 'HlopenSession()
McloseSession() | ElcloseSession()
BigetSessionState(): MlgetSessionState()
WputSessionState() MputSessionState()

59



FIGURE B-6 REGISTRYMANAGER CLASS DIAGRAM

SessionStateR |
equest

WllgetState()
WupdateState().

DataRequest

IligetObject()
/MireadData()
BwriteData()
llopname2()

FIGURE B-7 SESSIONSATAEREQUEST & DATAREQUEST CLASS DIAGRAM

LocationHandler

MupdatalLocation()

i

.

HAL ocationReques FALocationRequest.

t T

BEllupdateLocation()

JupdateLocation()

FIGUREB-8 LOCATIONHANDLER CLASS DIAGRAM

60



Mobile Device
RequestHandler

handleOpenRequest() -
EhandleReadRequest()
HlhandleW riteRequest()
BlihandleCloseRequest()

DataService

?.getData()
HiputData()

DataServic
elmpl

ElgetData()
BpuiData()

FIGURE B-9 MOBILEDEVICEREQUESTHANDLER CLASS DIAGRAM

61



Mobile Device Data
Processor

llopen)
PreadNext(

EireadPrevious()

‘J@writeCurrent()

‘ikctose()
X

Mobile Device
Editor

Mllopen(
ElreadNext()
readPrevious()
ElwriteCurrent()
EEdit)

Mobile Device
___Location Monitor i

EliRegister()
§8UpdateLocation()

FIGURE B-10 MOBILEDEVICEDATAPROCESSOR CLASS DIAGRAM

62



3. Sequence diagram Design:

3.1 Session begin & end sequence diagram

Editor MgbigDewceDalaR|  MotvieDewcoRlog. | SessionAgent  SessionManager | CataRequest RataSonece
sguest | uestandier : !
open() : i 1 i i
S > HandieOperRequest | i ! |
i ——>" OperSession | i :
, Caniiiitauinstialll getOl
! > T i
, _ T
; !
: i : |
; s ' 1
. | ‘ | ; ‘
; read) )_ handieRequest | ' ReadData é :
e e D > getData
| ’ i
! : ‘
! write() : !
. ->‘ B Wnlaq:g . > putData '
!
j close \ ‘ ' ‘
e D nmocmoﬂocues; cioseSession
.- - ~  closaSession
o S

FIGURE B-11 SESSION BEGIN & END SEQUENCE DIAGRAM

63



3.2 Location & data sequence diagram

MobileDevicelocationMonitor ~ FA(BILocgtionRequest | HALocationRequest EA(AlStateRequest

| i

! updateLocation ! :

o T wedeaten - gesiae ‘
e ol

T ) updateState :

) updateState [0 LR

I (¥ - o .

i T

K datatransfer ‘ —

O - ,7>.-

FIGURE B-12 LOCATION & DATA SEQUENCE DIAGRAM

3.3 HandleRegistryRequest sequence diagram

MobileDevicelL ocationRequest ‘ HARegistry Manager

HandleRegisterRequest

FIGURE B-13 HANDLEREGISTRYREQUEST SEQUENCE DIAGRAM

64





