INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, M 48106-1346 USA
800-521-0600

®

UMI

PERSONAL MULTIMEDIA CONTENT
MANAGEMENT

A Project Report
in

The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal. Quebec. Canada

August 2002

© Hon-Wai Chia, 2002

i+l

ional Library Bibliothéque nationale
oNfa (t:anada du Canada n
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 305, rue W
Onawa ON K1A ON4 Ouawa ON K1A ON4
Canada Canada
Your s Vore réddrence
Our fis Nowe réddvance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-72931-1

ABSTRACT

Personal Multimedia Content Management

Hon-Wai Chia

The explosive growth of information and the rising complexity of managing data increase
the difficulties of determining how and where to store information and how to find and
access it when it is needed. This project seeks to explore an alternative method for
computer users to store and access personal information. by implementing a content
management user interface with the use of filters and a time-based filing svstem based on

concepts introduced in Semantic File Systems and the LifeStreams project.

1l

ACKNOWLEDGMENTS

[would like to thank Dr H.F. Li for his patience and guidance.

TABLE OF CONTENTS

Chapter | INTRODUCTION ..ottt e e e s e e enne 1
MOUIVATION. ...ttt et e e et ee it et e s testestte e e ae s s eee st e snessnassssemeaeeesnaenseensnnenans I
Overview Of ThiS REPOTTocoeiiiecceiieeee ettt e e e e e 2

Chapter 2 THE FILE SYSTEM . ettt 3
The User’s Perception of the File System ..o 3
ISSUES. ...ttt ettt et e e st s e e st ee et e bt e st e e be e e e ee e et nan e e e nnee e 4

Partitioning data...........oooeiiiiieie e e e st s 4
Proliferation of FIles.........covieimiceee et 6
Single Parent Relationship......c.oocoeoiiriiiiiiiiee ettt 7
FAIE NAMES ..ottt et ettt e e e saeessaeeeennnaan 8
SUMIMIATY <.ttt te ettt e et e et e st e s e et e e e ab e e b e s e e s ssneeemneeeneeennaees 9

Chapter 3 MULTIMEDIA CONTENT ettt 10
Multimedia Data ..ot s 10
Media RePresentationcooceieiiiriiiniiiiccceeete ettt ee s ene e s 10
SUMMEATY ccee ettt et sate e ebe s e aat e e st e seaee s sse s emesaneseaneesennnen 11

Chapter 4 SEMANTIC FILE SYSTEMS oottt 12
DeSIZN APPIOACHES ..ottt ettt et e e e e e et 14

Integrated APProachcoccoiiiiiiiii et 14
Augmented APProach ..o e 14

Chapter 5 LIFESTREAMS ettt et [5
The LifeStreams INterfaceoooceieiiiiiiiieeeee ettt 16

Chapter 6 A PERSONAL MULTIMEDIA CONTENT MANAGERccccererenen. 18
Principal FEAtUIES ...cocuviiiiiiieeee ettt 19

Augmented Semantic File SYStem.....ccoooiiiiiiiiiieeeeeeee e 19
Time is the Context - Chronology-based storage of data (Temporal Storage)...... 21
Query/Filter INterationoeeeeieeeeceeeeeee et e e e eemee 23
Reference INtegration.........coveieiii ittt s 24
SIMPIICIEY ettt e ae e s e e e e ss s e e seme e mecnenneenene 24
PerSON@L. ...ttt ettt s e ee)
USQEE SCONATIO ..ttt ettt ettt et s s ebe st ee et es s as e sa e seeeseenaesnesseecns b
EXAMIPLE o ettt e e e e e rr et e b e e e e e e e e e aeneean 26
Basic Id@a.......coeomeiee e e 28
COMPONEIILS ...ttt ce e et et e et e st e te s teessse s s aessnesssensasasssnnseneestesstessons 28
Viewing — USer INterface....cc.vvvieiirieieieeeieee et et e esne e et eeane 28
ODJECT MANALETooeiiiieeteeeeeieeeeeetteete et et e eteessssae s seeessessseenseserensnsseessaesaseesane 29
BERETILS ...ttt s et eeene e 30
ISSUES ...ttt ettt sttt e e st e sen e s e e e e e e e e e anseant s 31
MUBIUSETS ettt e et e e b s e e eae s e e s st e e e semsesnness 31

ACCESS CONTIICES .ottt ettt esee e eae s aenes 31
Chapter 7 DESIGN AND IMPLEMENTATION.....coooiieeee e, 32
FIIEETS < ettt ettt ettt besaeas e e saess s s sessesnesesannas 32
PUIPOSE ...ttt ettt et et e et e e s s e s s essesaessnessenns 32
IMPleMENtatION ...t e ne e 32
SCOTINE ...ttt ettt ettt s et a e ebesse s e e s annnessassensessassenes 37
PUIPOSE ..ttt e e e sn e se s e se e e 37
IMPlemMENtatIoNcooeeiiiie ittt e a e ees 37

Data Storage and Databases.........ccocceverierinieneieiiei et et 38
PUTPOSE ..ttt ettt st ettt et et ebe s esvseess e e snensssesnensesnnanneas 38
IMPIeMENtAtIONcoveiiiiiice ettt et een 38

USEr INEEITACE....ceeeeiceeieeee ettt ae e eerere e e e eas 41
PUIPOSE ..ttt ettt e e st e st e e e e e sneennens 41
IMPIeMENtationoeiiiieeeee e 41
Example of System USageooiomiiiiiieiccceeeeeee ettt 43
Chapter 8 FUTURE WORK ..ottt et see e 56
Performance Considerationscocoveeeeertereninieieee ettt eeeae e be s seeaseseessessesnas 56
Improvements to User INIEIfaACEooueiciieieeiececee et e 57
Decoupling the Presentation LaVer........ccooceiiiieieiiireiee e 57
Integration with Operating SYSteM ..ottt 58
REFERENCES ...ttt sttt e v e e e s ess e ensannans 39
APPENDIX L.ttt ettt eae e ae st se b et et sesbens] A-1
Class DIQEIAMScoueeuieieeieeieee ettt vt e e eneesaesnesaesennes A-1

Vi

LIST OF FIGURES

Figure 6-1: An example of @ User™s Stream ... 27
Figure 6-2: Example User’s stream. with filtered results.......c.oooooiiiinniinninceene. 27
Figure 7-1: Basic Components of the “Atur™ User Interfaceccococoviveiniinnnnnnne. 43
Figure 7-2; User’s Stream and Substream StruCtureccoeeeeeieiieniiececieeeceeeeeeeeeee 45
Figure 7-3: Generated View of User’s Stream and Substream structure........ccccceccceeeennen. 46
Figure 7-4: The “Atur™ Graphical User Interface........cccooeveniniiiinicceceieee 47
Figure 7-5: Adding a SubsStream.........cccooeiiiiiiiiccccccc e 48
Figure 7-6: View based on example USage SCEeNATIO.c.cccceruerueuirieiineeiererenreeiee e 49
Figure 7-7: Feedback to update the fllter........ocooiiiiiniiiiiiiee e 50
Figure 7-8: Editing the filter flle.......ooiiii e 51
Figure 7-9: Creating @ new fIHETc.coviviiiiiiiieete et O D
Figure 7-10: The Create Filter dialogcccoinieiniiniiniiieciecceeeceeceeeseenecen 32
Figure 7-11: Defining unique words in a filter............coocooiiiiiiice 33
Figure 7-12: Selecting the “Look and Feel™ ... 54
Figure 7-13: Selecting an alternative “"Look and Feel™ ..ol 33

Vil

LIST

Table A-1: Java class packages for Atur

OF TABLES

vili

Chapter 1 INTRODUCTION

In this chapter. we briefly introduce the problem domain and give an overview of the

contents of this report.

Motivation

The proliferation of computer and web usage. and the explosion of data storage. due to
advances in technology and the continual reduction in cost of storage per megabyvte. has
created the awareness of the need for evaluation of alternative methods of managing this
data. When discussing how user interfaces might evolve. there are two distinct issues to
be addressed. Firstly. the issue of the look-and-feel of a computing environment. and

secondly. the more critical issue of determining how a system stores user content.

By challenging some of the implicit assumptions and characteristics of current systems.
and exploring new approaches to file systems and their associated user interfaces. it may
be possible evolve these systems into more meaningful and intuitive models based on
temporal or relational concepts. so that users are no longer forced to refer to their data

content using unique file names.

This report proposes a new user-interface model and discusses how file systems could be

changed to support such a model.

Overview of This Report
This report consists of two parts. In the first part. the problem is introduced. We describe
two subject areas: File Systems and Multimedia Content. At the end of these chapters.

the requirements presented by these subject areas are evaluated.

In the second part. our solution. called Atur (meaning “order™ or “arrange™). is presented.
In these three chapters. we discuss the main ideas behind the representation and the user
interface. namely Semantic File Systems. and the LifeStreams project. and describe the

Atur implementation itself.

In the final part. we discuss the current shortcomings of the existing implementation. and

possible areas for future work.

19

Chapter 2 THE FILE SYSTEM

In this chapter. we discuss the limitations of current common File Systems from the end-

user’s point of view. and the requirements for possible improvements.

The User’s Perception of the File System

Before a user can begin using a computer. users have to learn concepts behind common
file systems. For example. they have to know how their information is stored. they have
to understand what a “file™ is. and they have to be taught to how to navigate the hierarchy
of directories and subdirectories where these files are kept. These pre-requites
immediately forces a user to understand how their data is stored inside the internals of the
computer. and imposes a paradigm that may not mirror the way that a user conceptualizes
his data should be organized. For users. the most basic unit they must deal with in any
interaction with a computer is the file. However. this concept of a continuous file is a
conceit: it is not a primitive of the file system at all but is actually an abstraction: the
operating svstem alreadv masks the fact that information is usually stored on non-
contiguous sectors of the hard disk. Let us briefly look at the basic concepts that the user

must be aware of:

e Information is partitioned into discrete units. usually a file. Every file is treated as

a separate. distinct object.

(U]

e These units of information are kept in of a hierarchy or directories and

subdirectories.

e Each information object is given a single. semi-unique name. This name identifies

the units of information. and is used to access the information.

e These units of information are accessed and modified individually. These units of
information cannot be jumbled arbitrarilv with other units and manipulated

together.

These concepts give us an idea of some of the fundamental limitations of traditional tile

systems. The next section will discuss the broader issues leading from these concepts.

Issues

Puartitioning data

How should we partition data? If we put data into discrete objects. then what should be

an object? An object is not necessarily a file: now it can also morph depending on context.

In older systems. when many user interfaces were implementing so-called WYSIWYG
(What You See Is What You Get) systems. software was attempting to present a single
representation of information objects. The idea was to closely couple the relationship
between the content and the view. In this philosophy. output and the content were one

and the same. With the explosion of hypertext and the World Wide Web. more current

user interfaces now differentiate between the content and the view. The same content
will often have many different associated views. depending on factors such as the context
of the task or the medium of presentation. For example. users might want to retrieve e-

mail on many different interfaces:

e on PDAs. where the display is small and limited
e on the telephone. through voice synthesis

e at their workstations. where the presentation limitations are the lowest and the

user interface is rich and complex

In all of these different intertaces. the view is adjusted based on the needs of the user and

the limitations and capabilities of the medium.

Another problem is that an object is usually a composite made up of other data. For
example. a single Web page comprises of a HTML file and one or more subsidiary
resources. such as Java applets. images. JavaScript. etc. These resources are rendered
together when the page is ready to be displaved by the browser. Sometimes. it is difficult
to define the object. even when taken to the smallest granularity. In the previous example.
the HTML file could have been generated using an Extensible Stylesheet Language (XSL)
definition with data expressed in Extensible Markup Language (XML). Such methods
are used to serve up on-the-tfly generation of content. The HTML file generated on
demand by the server is based on parameters passed between the browser and the server.
For example. if one downloads a Web page using a broadband connection. the HTML file
may be formatted to full screen size. with full 1024 by 768 resolution. and using 32-bit

colour images. If a slower connection. such as a PDA browsing the web over a wireless

th

connection. is used. the HTML file may be generated with Compact HTML (HTML for

small information devices) with abridged content. and using small. low-resolution images.

Thus, 1t is difficult to assign content to neat little boxes: it can change according to the

properties and the context of the presentation environment.

Proliferation of Files

There are other problems. which continue to frustrate the user. A familiar problem is the
task of installing a new application. In the days of single-filc applications, a simple. file-
based user interface will only require that you drag the application icon from the source.
such as an installation floppy. to the target space. such as personal file folder. With the
increasing complexity of software applications. it is now nearly impossible to find a
modemn application being limited to a single file: typically. the installation will copy into
the file system many subsidiary files such as user document files. program configuration
files. un-installer files. etc. all stored in installer-defined directories which are

inconsistent from one application to the next.

Not only is the number of files a problem. this also means that a unit of information 1s

associated with many files.

Single Parent Relationship

File systems are organized with strict hierarchies of directories and subdirectories. In the
real world. however. the same information unit often belongs to multiple categories. A
user’s address information may appear on many emails or documents, and thus would
belong to several objects across the system. A typical Windows user. using common
word processors or desktop publishing software. will create documents using many
picces of information. His documents may be filled with many different kinds of
information and media such as plain text. digital photographs. web pages. email
addresses etc. A specific piece of information might thus logically be categorized as
being part of many different documents in a user’s system. Intuitively. if a piece of
information is updated. all documents which contain that piece of information should also
be automatically updated. However. with a single parent system. this kind of

functionality would not be supported by the operating system.

Large hierarchies are problematical to conceptualize: it is difficult for the user to keep
track of many directorv names in order to traverse a large directory tree. This is
analogous to forcing someone to remember a long string of numbers. With large hard
disks. and large amounts of files. the single parent concept will fail because although a
piece of data may have many possible classifications. the user had to choose use one in
order to store the data in the hierarchy. In addition to the difficulty of maintaining
consistency. classifving a file is a highly subjective and personal process, and that
classification may not be easily recalled at a later date. This problem is further

compounded if a different user attempted to discern where the files are. This is

7

analogous to someone wandering into an unfamiliar office and trving to find a file from a

large filing system.

File Names

In modern desktop operating svstems, files are represented in the user interface by a
name and some additional meta-data information. These names are usually chosen by the
user who created them. These names are also used as the identifier of the file in the user
interface. as they are usually unique (the operating svstem usually enforces the
uniqueness when the file is being named). It is by these names. that a user will find and
access these files later. These file names are not ideal for identification purposes for
many reasons. Firstly. this is an inconsistent and arbitrary process. It is impossible for
users to consistently generate meaningful file names. even in systems that are designed to
allow long ones [1]. This is a subjective process. and is highly dependent on the whim of
the user. Users in a hurry will not be likely to spend the extra time to concoct a more
meaningful name. Different expressions and terms also vary from user to user. so these
names will not be consistent in a system where files and information is being shared.
Secondly. the naming may be premature. Since file names must usually be specified at
creation, before any content is created. if the file name is created on assumptions which
later prove to be incorrect. the name will no longer be suitable to help identify its
contents. Third. users usually have difficulty later recognizing and remembering what a

name represents. This is especially true when other factors are involved, such as the

passage of time. the existence of many other similarlv-named files. and the complexity
and anonymity of a large file system. Last. but not least. is the unsuitability of names as
identifiers of information units. Users are rarely able to define exactly what they are
looking for. It is only through browsing and examining of the contents of different files.

can the user find what he wants.

Summary

To summarize. we can derive the following requirements for an improved file system:

e An object-storage mechanism is needed where objects do not belong to single

parent relationships.
e A compound-document architecture is needed.

e Context information must be provided to improve the presentation

environment.

¢ An automatic mechanism is needed to augment or replace file naming so that

it is systematic and un-arbitrary.

Chapter 3 MULTIMEDIA CONTENT

In this chapter, we discuss the various types of user content and their ramifications on the

user interface and file system.

Multimedia Data

Non-textual information. such as aural and visual data. which represents multimedia
content, such as speech. music. images and videos currently can not easily be extracted
into structures useful for querying. Additional meta-data information is therefore
required. This information may be manually provided through human intervention, by
using a given set of meaningful keywords to classify the multimedia data, or through
automatic processes. by using image processing software to automatically extract

information such as colours and patterns [2].

Media Representation

There are some general data representation issues. which are relevant for the
representation of the different media. The representation of alphanumerical data is
straightforward. and formatting problems have already been mostly settled for this kind

of representation. Moreover. the operating systems mostly guide the way by providing

some standard set of data types (MIME). This is. at least for today and in the near future.

not the case for multimedia data.

The basic data types like the alphanumeric ones are not appropriate to reflect the structure
of multimedia data. New built-in data types like bitmap or audio sample have to be

provided.

Furthermore. type constructors taking into account the temporal nature of multimedia
data will be needed in some form. Additionally. appropriate support for processing these
data types has to be provided. Similar to the standard operations associated with
alphanumeric data (e.g.. add integers. concatenate strings) access operations such as

interactive video and audio editing and media playback and synchronization are needed.

Summary

To summarize. we can derive the following requirements for multimedia content:

e New built-in data types and operations for multimedia data are needed.

e Modular and efficient representation of different formats should be supported.

¢ Data representation should be transparent to the application/user.

e Different views on the same data should be possible.

11

Chapter 4 SEMANTIC FILE SYSTEMS

The concepts and design philosophies introduced by Semantic File Systems is discussed

here. as a starting point for the approach undertaken by our implementation.

Semantic File Systems [3] is the concept of using higher-level information of files to

create a unified data management framework.

Important higher-level information relating to a file include:

definitional :file extensions and magic numbers which define file type
associative :keywords in file that characterize content

structural : physical and logical arrangement of the data. including relationships

between and within files
behavioural : viewing and modification semantics. change management

environmental : creator, revision history

Relying on the user interfaces of applications (for example. a word processor) to browse
the file system will limit us to the presentation capabilities supported by the application.
We can instead use views which are application independent, so that file system itself

will provide a finer-grained. consistent and seamless interface to file data. This will also

enable the ability to integrate file information with information collected in more useful

and structured forms. such as databases.

Design Approaches

There are basically 2 possible design approaches to a Semantic File System: integrated

and augmented [4].

Integrated Approach

Integrated file svstems. such as Symphony [5]. augment the file system by directly
making improvements into the file system itself. These systems provide a unified data
model. by merging the file data and meta-data into one: both types of data are tightly
coupled and kept in synch. These systems may provide a means to define object structure.
and even behaviour. by using a type definition language such as an Interface Definition
Language (IDL). The data model is defined using this IDL so that content and meta-data.
such as file type. file structure. author, access histories. content, etc can be stored together.
Additional information such as the definitions access routines for different file type can
also defined by the IDL. These routines can then be made available to all applications in

the file system.

Augmented Approach
Instead of working in the file system layer, augmented semantic file systems adopt a

layered approach. The improvements are introduced in a separate layer, on top of the

13

traditional file system. This approach adopts an evolutionary philosophy to Semantic
File System architectures. By leaving the underlying traditional file system interfaces
untouched. the augmented files system provides an additional content abstraction view of
file contents. Tools layered on the content abstraction can be more intelligent about
querying and manipulating file information. The obvious drawback is the lack of a
unified data model. since both systems are physically separate in different layers. The
file data model is unaware of the meta-data model. Additional work also has to be done

to make applications aware of the augmented laver.

The goal of an integrated approach is to attempt to provide an evolutionary way to get to
a higher form of Semantic File Systems. without requiring radical changes to underlying
operating systems interfaces. Augmented approaches do not impose on the underlying
operating system. and provide less ideal version of the functionality of an integrated
Semantic File System. However. augmented Semantic File Systems can leverage
progress in operating systems to progressively evolve to gain the capabilities of a full-

fledged integrated Semantic File System.

14

Chapter 5 LIFESTREAMS

This chapter provides a brief overview of the concepts and metaphors introduced by the

LifeStreams project. which will be adapted for our implementation.

The LifeStreams project attempts to overcome difficulties encountered by users of

common desktop systems. namely:

[. The struggle in organizing and finding information within hierarchical file systems.

9

. The complexity of making use of archived information. which users normally

discard so that they are not overwhelmed by it.

3. The confusion caused by the lack of a "big picture” view.

BN

. The difficulty of managing schedules and reminders.

LiteStreams provides a metaphor for organizing the electronic documents that users
collect. whether in the form of electronic mail. downloaded images. pages gathered from
the Web. or scheduling reminders, in "a fluid and natural way that reflects the way users
work™ [6]. This concept is based on earlier research studies such as the “Pile™ project.
which found that knowledge workers use physical space as temporary holders for
information pieces which they cannot vet categorize. They often prefer to deal with
information by creating physical piles of paper. rather than immediately categorizing it

into specific folders [7]. Even when the user finds it difficult to categorize items. or to

1

wh

express how or why they are interconnected. they are still often able to meaningfully
arrange them in space. Thus. computer interfaces should not force users to classify

information in order to store it for later use.

The LifeStreams Interface

The LifeStreams interface presents the user with a stream of documents. LifeStreams
presents the user with a view of the stream from the present to the past. The user can
manipulate the mouse pointer or a scroll bar to backtrack into the past. or to scan the

document representations of each document.

Users interact with LifeStreams via five primary operations: new, clone. transfer. find
and summary. New and clone create documents. New creates an empty document and
adds it to your stream. Clone duplicates an existing document. Transfer copies a
document from your stream to someone else’s. Find prompts the user for a search query

and creates a Substream.[6]

LifeStreams introduces the concept of Substreams. Substreams, like the virtual
directories demonstrated in the Prospero project [8]. present the user with a “view" of a
document collection. for example, all the documents that are relevant to a search query.
Rather than placing documents into fixed. “file folders™ directory structures. Substreams

create virtual organizations of documents from the stream. Documents are not actually

16

stored in the Substream: the Substream is a temporary collection of documents that

already exist in the stream [9].

Substreams can also be created and destroved dynamically without affecting the contents
provided by the stream or any existing Substream. If a Substream is allowed to persist. it
will collect new documents that match search criteria as they are added to the stream. For
example. a Substream created with the query “find all documents created by users other
than me" would subsume yvour mailbox and automatically collect mail as it arrives. A
Substream created from “all electronic mail [haven't responded to" would act as a
collection that only contains unanswered mail. Two Substreams may overlap.
Substreams can be created incrementally. vielding a nested set of collections.
Semantically. this incremental stacking of Substreams results in a Boolean “and™ of each

new query with the previous Substream's query.

“Substreaming” thus provides a consistent information management framework and a
way of finding information. We will see how some of these ideas will be applied in Atur

in the next chapter.

17

Chapter 6 A PERSONAL MULTIMEDIA CONTENT MANAGER

In this chapter. we describe the concepts and requirements behind Atur and its principal

features. and conclude with a usage scenario.

The purpose of this project is to address the issues brought about by the demands of
personal multimedia data. in order to explore ways to improve the effectiveness and
usability of file system user interfaces. To recapitulate on the requirements which were
arrived at from previous discussions. the following requirements must be met by the

system:

e An object-storage mechanism is needed where objects do not belong to single

parent relationships.
e A compound-document architecture is needed.

e Context information must be provided to improve the presentation

environment.

e An automatic mechanism is needed to augment or replace file naming so that
it is systematic and un-arbitrary. New built-in data types and operations for

multimedia data are needed.
e Modular and efficient representation of different formats should be supported.
e Data representation should be transparent to the application/user.

e Different views on the same data should be possible.

Principal Features

[n the following we detail the features of the proposed solution.

Augmented Semantic File Svstem:

This solution will attempt to implement a Semantic File System with the use of higher-
level file information to add content management functionality. The solution will work
on top of existing File Systems. and will therefore utilize information and functionality
provided by the operating system. The traditional file system interfaces will remain

unchanged. while providing a parallel content abstraction view of file contents.

This system will provide a content abstraction layer on top of the traditional file system
so that higher-level tools can be constructed based on our content abstraction. which can

be more intelligent about querying and manipulating file information.

Highly advanced implementations of augmented Semantic File Systems use the content
abstraction layer for either query shipping or index shipping. Query shipping relays a
repository-independent user query to the relevant files. Index shipping pulls the contents
out of files. indexes them. and maintains them as meta-data for a user level querying

engine. Our implementation will limit its scope to index shipping.

Files are abstracted into logical collections. or “Substreams™. A Substream manager
manages each Substream. Our definition of Substream for this project bears some

resemblance to traditional database concepts such as view specification mechanisms.

19

However. it is not as precise as the database view. as traditional concepts in well-defined

databases will not be present in our semi-structured problem space.

Simply put. Substream managers provide object-oriented views of the file contents in
their domains. They also provide the engines to support querying on their domains.
Substream managers contain both the content summarization engine. and the query

engine.

The content summarization engine should consist of a file classifier and a collection of
file content summarizers. based on file-type. The file classifier infers the type information
of a file based on implicit information such its file extensions or explicit data such as
magic numbers. The summarization engine processes all files to extract information
about the file. based on the file's type. This information includes attributes such as author.

access histories. content. relationships to other files, etc.

Due to the augmented nature of our layering approach. there will be implicit limitations
for our system. Our augmented file systems will have to depend on operating systems
which are not aware of the existence of the higher layer. This means that important
events such as changes to files will not be passed on to the augmented file system layer to
handle. There will therefore be a need to create a custom polling mechanism to get this
information. This solution will most likely be less efficient than a simple and elegant file
notification scheme. Moreover. the augmented Semantic File Svstems laver will also
have to do additional work to determine what incremental changes were made to the file

content.

As for transactional capabilities. we will not implement this feature in our
implementation. Although the system can easily provide transactional capabilities on the
meta-data (by imposing it in the storage transaction in the database). the system normally
cannot maintain an ACID transaction (i.e. transactions that support atomicity. consistency.
isolation. and durability) across the file data and meta-data. since it is never in the
context of the file update transactions. A caveat is that in more advanced operating
systems. which feature transactional file systems and event notifications of file update
events. this could still be implemented. However. this will be ignored as we will confine

our implementation to a common desktop operating systems only.

The file type semantics for our implementation will be limited to a simple type system.
Our approach will rely on the traditional weak implementation of file types. The
traditional implementation of types in UNIX. for example has been to add an extension to
the file name, and let programs "type check” their input based only on that extension. For
example, the TEX processor would demand that files passed to it follow the naming

convention "filename.tex": the Java compiler will demand “filename.java™ and so forth.

Time is the Context - Chronologyv-bused storage of duta (Temporal Storage)

Time based ordering will be used. Time is a natural component of experience and is the
most natural method of chaining things together in the mind. as suggested by time-based
organization studies such as the *Pile” project. File information will be maintained in a

journaling system which will be an implementation based on “LifeStreams™. Like

21

LifeStreams we will use a simple organizational metaphor and maintain all documents in
a time-ordered stream. The user will not be required to interact with files and directories.
Through the content summarization and query engines. the system will provide the

content abstraction layer. so that the user will only interact through this paradigm.

A LifeStream is a time-ordered stream of documents that is conceptually equivalent to
personal journal of a user’s electronic life: every document that is created is stored in his
LifeStream. as are the documents other people sent him. The tail of one’s stream contains
documents from the past. perhaps starting with the user’s electronic birth certificate. This
journal is purely time-ordered. The oldest documents would be placed at tail of the queue.
with newest documents at the queue’s head. So any current open projects and works-in-
progress, email correspondence. currently-used software would be placed in the front of

this stream.
We can see 2 major advantages of this simple vet powerful concept:

Firstly. the usefulness of this concept is apparent when we trv to use time-based
information as the context for a document. Instead of following links or guessing
kevwords. the user can simply scroll back in time. relving on our memory for hints to
trigger our recollection. An important benefit to recognize here is that because of the
temporal ordering. when we find the document. the context is also presented to us. In
studies conducted at the Records Deposition Division at the National Archives of Canada.
Terry Cook states that the key to effective record-keeping "lies in being able to determine.

sometimes long after the fact. not only the content but also the context of a record in

22

question." [10] Cook discovered many cases in which the lack of contextual information
made electronic records largely unusable. Thus. the use of timestamp information. when
presented in chronological order with other documents in a user’s stream. can present

valuable contextual information to the user.

Secondly. unlike other schemes. which still require users to classify their data. and which
thereby generates poor quality classifications. due to the subjective and highly arbitrary
decision-making that human categorization involves. chronological ordering is simple.
consistent and indisputable. There is no ambiguity about classification decisions since
there is no multiple possibilities for classification such as whether a document belongs in

the “Research Papers™ folder or the “Work Projects™ folder.

Quenv/Filter Integration
The implementation will allow querying/filtering of file data and metadata with a simple
unified query syntax (as defined in an XML file). This feature will provide the

“intelligence™ for the following 2 features:

1. The intelligence mechanism for fuzzy matching. .

The system will provide a mechanism for the user to specifv keyword patterns for
filters. When the system finds several viable categories for a filter. before it has
had any feedback. it will select the category (or categories) which have amassed

the highest internal score based on feature comparisons. and reject scores which

23

are below a user specified threshold. In the event of equal scores. a category is

selected arbitrarily.

2. Integration of feedback and improvement for user-directed “leamming™ by the

svstem.

The system will allow the user to provide feedback to the scoring mechanism. so

that scoring information can be constantly tuned to improve results.

Reference Integration

The implementation will allow objects to contain references to other objects. as in
composite objects. This will allow our svstem to construct objects which contain other
nested objects. Filters can therefore be combined in a hierarchical fashion to construct

more complex filters and object definitions.

Simpliciry
This solution emphasizes simplicity for speed and performance. As this will be an
augmented solution and meta-data will be limited to what the operating svstem can

provide. data content will be limited to the basic alphanumeric data types.

Personal

The solution will emphasize ease of configuration and adaptability. Scalability will not
be the prime consideration at this stage. Because our system is designed for low latency.
high processing speed. it would occasionally receive incorrect answers from the data
store while it was being written. due to lack of transactional consistencv with the
operating svstem information. or due to the imperfect nature of scoring. These occasional
incorrect answers are acceptable for storage and retrieval of personal data. but not for

business-critical data.

Let us now see how these concepts can be put to walk in a usage scenario.

Usage Scenario

User creates a stream. The system creates a database for the stream. Initially. the system
will scan the root user directory to load information on all existing files and save this
information to the database. All subsequent activities such as creation or modifications
of objects are stored in the databasec. All usage is stored in a manner consistent the

“LifeStreams™ model, 1.e. the information will be time-ordered.

User interacts with the system using the Graphical User Interface to create filters based
on kevwords. The user can create a Substream by associating it with a filter. The system
picks the elements of the user's stream which fit the Substream based on its filter.

Substreams are layered on other Substreams to become a hierarchy of Substreams. Using

t9
n

a tree diagram. the system provides the user with a hierarchy of Substreams. which

presents a user-specific view of the contents of the user’s stream.

Let us now walk though a more detailed example. with some example files.

Example

User A creates a stream. which currently contains 3 files:

. An email containing a job ad for a java programmer : JuvaJob.ixt,

t9

. A java source code file for the “Atur™ project: StreamMunager java.

(Y]

. A list of contact information for people working on the “Atur” project: Contuct.txt

4. A java source code file for POP3 email client: PopClient.java.

th

. A web page on Auto Maintenance and Repair: dutoMaintenance. html

The names of these files are created by the user. The semantics of these file types are

derived from the file extensions. using the traditional UNIX-style simple tvpe svstem.

The user creates 2 filters:

“Java Source File™ filter — a filter which contains keywords and type information of java

source files.

“Atur Project”™ filter - a filter which simply contains the “Atwr™ kevword. for all files

related to the “Atur™ project.

The user creates and structures his Substreams as demonstrated in Figure 6-1:

26

User’s Stream

— Java Source Substream

— Atur Project Substream

_

Java Source Substream

Figure 6-1: An example of'a User’s Stream

Note that the user has used the same filter twice. once at the top level. and once as child

Substream to the Atur Project Substream

Based on the user’s stream, the system presents the following view in Figure 6-2:
User’s Stream

— Java Source Substream: StreamManager.java PopClient.java

— Atur Project Substream: StreamManager.java Contact.txt

Java Source Substream: StreamManager.java

Figure 6-2: Example User’s stream, with filtered results

The web page on Auto Maintenance and Repair. AutoMaintenance.html. on the other

hand. is rejected as it does not belong to any specified filter.

Basic Idea

The solution will create compound objects based on a simple object specification file.
An object will have an associated view. and can be composed of other objects. The most
basic object would be files. Files will be managed automatically by the system. File
Naming. physical location of the file. storage of file and behavioural information will all
be managed automatically behind the scenes. The files will be stored and managed in a
variation of the FileStreams metaphor. Files created by the user will automatically be

named and placed into stream according to chronological order.

Components

Viewing — User Interface

The interface allows the user to create compound objects based on a simple object
specification file. The object specification file will behave like a filter. which specifies
attributes of objects. which belong to the specified object. The interface will allow the
user to manipulate objects/files by calling on its associated viewer/editor. The interface

will interact with the object manager.

Referring again to the illustration in Figure 6-2. the Atur Project and Java Source
Substreams are objects that are defined by an object specification file. In this example.

the user can manipulate 3 different types of objects:

1. Substream objects: Java Source Substream. Atur Project Substream

Selecting this object for manipulation will call up the program associated with this

object type. The system will call up the filter/object specification editor.
2. Java source file objects: StreamManager. PopClient.java

Since this is primitive object (a file in the operating system). selecting this object for
manipulation will call up the program associated with this file type. be it the java
compiler or the java source code editor. The type association is externally specified

by the configuration of the underlying operating system.

3. Text file objects: Contact.txt

Since this is also primitive object. selecting this object for manipulation will call up

the program associated with this file type. such as a text editor.

Object Manuger

The Object Manager will manage the database of information on all objects and files such
as file names. the physical location of the files. meta-data and collected behavioural
information. Files created by the user will automatically be named and placed into a

stream according to chronological order.
29

Benefits

Information 1s partitioned into meaningful units. which are principally
dependent on content. For example. the flexibility will also allow the user to

specify an object. which composes of all files and data on a particular project.

The object-storage mechanism does not limit objects to single parent
relationships. An object can belong to multiple compound objects. This
¢liminates the need to have multiple copies of the same or similar data. and
also makes redundant updates on data unnecessary. (Example. updating an

email address for various web pages).

The user 1s protected from dealing with the file system directly. Names are no
longer pertinent for data retrieval. Kevwords and higher-level attributes
would be the keys to retrieving data. which 1s more natural and consistent with

usage patterns.

The added flexibility will also make it possible to change the view for an
object depending on the environment or context. For example. if the user is
using a PDA with a limited displav. the view can be modified to a reduced

detail.

30

Issues

Multi-users

How does the system support multiple users? Objects created in the system are linked to
the user. i.e. each user has her own database repository. This means that unlike primitive
objects (files). which are accessible to all. compound objects are not visible to other users.
Since objects are defined using more abstract meta information. this information can be

simply imported or duplicated into the personal systems of other users.

Access Conflicts
A related issue to multi-user support is resolving access conflicts. The Object Manager
will support access locks at the operating svstem level. There will be no different from

the scenario of a file in a shared network directory. Access conflicts will be resolved by

whatever controls are implemented by the operating system.

31

Chapter 7 DESIGN AND IMPLEMENTATION

This chapter gives an introduction to the basic concepts of Atur. describes the main

components and the design features. and concludes with an overview of the user interface.

Filters
Purpose
The purpose of a filter is to support querving and filtering of file data and metadata. This

will be done using simple unified query syntax (as defined in an XML file)

Implementation

The filters are represented using Extensible Markup Language (XML). XML was chosen
because of its ability to adapt to and support later improvements and extensions. Another
important advantage is that it is the universal format for structured documents and data on
the Web. and is widely supported by a wealth of software tools and programming

languages.

The filter file uses XML tags to define the meta information for the objects defined by the

USCr.

The Filter XML Tags

The filters are defined using XML tags. The structure of the tags is analogous to a

HTML document. The basic tags are as follows:

1. filter
2. title
3. body

4. file type

tn

. keyword

The file type property defines the type of the file. In our primitive Unix-style simple type
system, this simply defines the file extension of the file or files which belong to this filter.

The property also recognizes wildcards such as **", which specifies all file types.

The keyword property is the most important tag. It defines what the tokens which are

defined for an object and its value for scoring purposes.
It has the following properties:
a. token

This is the string. which is defined for the keyword. made up of a variable length

string of any ASCII characters.

33

b. scoreweight

This defines the scoring weight for this token. This is a positive integer. which
can be of any number. The scoring will be normalized. so the relevance of the
amount of the number is relative to the scoring weight numbers of the other

keywords for the same filter.

C. scoretype

This detines the scoring type for this token. This is a single char. There are 3

possible values:

i. “1":a positive scoring weight. This is a moderately strong keyword for

matches.

ii. *2": a positive scoring weight. This is a very strong keyword for

matches.

iii. *-": a negative scoring weight. This word will be used as an

undesirable keyword for matches.

A Filter Example

Here is a sample basic filter file:

<?xml version="1.0" standalone="yes"?>

34

<filter>
<head>
<title>java files</title>

</head>

<body>
<file type="java" />
<keyword token="extends" suffix="" scoreweight="1" scoretype="1" >
<keyword token="implements" suffix="" scoreweight="1" scoretype="1" />
<keyword token="package" suffix="+" scoreweight="1" scoretype="1" />
<keyword token="import" suffix="*" scoreweight="1" scoretype="1" />
<keyword token="return" suffix="*" scoreweight="1" scoretype="1" />

</body>

</filter>

In this example. the object is simply defined as an object which contains all data
primitives which are java files that contain the following keywords: “extends™.
“implements”. “interface”, “package”. “import”. and “return”. The suffix tag is used to

define:

1. The length of the suffix after the word.

(7]
h

For example. if we are looking for Concordia University Student Ids . which currently
have a length of 7 digits (e.g. 2640449) . and we are only interested in students of a
particular vear (let’s say that they all have a ID number which begins with 310). then

we can specify the criteria like this:

<keyword token="310" suffix="4" scoreweight="1" scoretype="1" />

2. Wildcard for suffixes of zero of more length: *

For example. if we are looking for items related to French culture, we may want to

look for the following terms: “French™. “Frenchman™, and “Frenchmen™.

In this case. we can specify the criteria like this:

<keyword token="French" suffix="*" scoreweight="1" scoretype="1" />

3. Wildcard for suffixes of I of more length: +

This is useful if we are looking for items related to a word with different endings. A
simple example is a verb which ends in "y, such as “worry™. In this case. there can
be many suffixes. such as “worry™. “worries™, “worrying™, “worried”. “worrier” etc.
But in all these cases. there is at least one char after “worr™. In this case. we can
specify the criteria like this:

<keyword token="worr" suffix="+" scoreweight="1" scoretype="1" />
36

Scoring

Purpose

The purpose of scoring is to support querying and filtering of file data and metadata.
This will be used to determine the “fit” of a piece of a data primitive according to an

object’s filtering criteria.

Implementation

Scoring 1s done using the properties of the “kevword™ tag which is explained in the
previous section, in “Filters™. Scoring is done on all data primitives in a defined
Substream (or root stream. as the case may be). In our prototype implementation. a data
primitive would be a single file. Using the criteria of the “token™ property as prefix for
matching. and using the suffix property to calculate the required length of an encountered
word for a match. we then proceed to score the matching keyword. Using the scoring
weight and scoring type properties defined for a keyword. we use a simple formula to
calculate a score for the matched word: scoreWeight * scoreType. The scores are tallied
for the data primitive. to be compared with scores of other data primitives. The results

and then ranked. and data primitives with scores below a defined threshold are rejected

from the result set.

Because of the demanding number of operations of disk 1/0 and string comparisons. the
scoring engine has to be optimized in order to ensure efficiency. This is done by limiting

the data to be stored in memory, and avoiding unnecessary reads from disk.

37

The final score as presented to the user is normalised. so that it will be an integer between
0 and 100. This part is actually independent of the scoring engine. and is dependent on

the user interface.

Data Storage and Databases
Purpose

Data storage is needed to record user activity and to store the definitions of objects

defined by the user.

Implementation

Data storage is implemented using an object database (ObjectStore PSE). instead of using
the more familiar relational database. Relational databases require the developer to
convert and map the data to be stored into relational tables consisting of rows and
columns. The columns of data. or data fields. can only contain predefined data types.
The relationships between rows in different tables have to be defined at the database level.
and must be directly supported by the database engine. An object database, on the other
hand is a more direct translation from the characteristics of runtime objects. The
relationships between defined objects are directly supported from the object design. For
example. the database is aware of the relationship between a base class and an extended
class based on the class definitions. No further intervention is necessary. In object

databases, querying objects simply becomes a process of traversing the class structure

38

that defines the relationships between objects. Query traversals should therefore tend to
be simple. straightforward. and very application specific. We can therefore retrieve.
update and store the objects we need when we need them. while maintaining their object
relationships. For relational databases. on the other hand. universal query languages like
SQL will be forced to deal with references which are not directly related to our objects.
and we would be forced to translate our objects to tables and rows. This would encumber
the project with the addition of Data Access Object (DAO) classes and would

unnecessarily increase code complexity.

The Time-bused Stream

As previously discussed, all objects which are created are placed in a Stream. The
Strcam construct 1s used to enforce a consistent and clearly defined chronological
ordering. The temporal ordering created here is also what is used to add contextual

information to the system.

The database management classes are mainly in 2 packages: atur.strcam and

atur.stream.substream.

The atur.stream package is responsible for implementing our Chronology-based storage
of data i.e. “Temporal Storage™. and will provide tne automatic chronological ordering
and context functionality discussed earlier. All file creation and manipulation activities

are stored into this stream. The chronological order preserves the order and the method

39

of the creation, similar to a journal or a diary. Once notified of activity in the system
(through the Atur user interface). the system will get the data pertaining to the activity
and store it into the stream. Data. such as the name of the data primitive (in our
implementation. this would be the file). and the location of the file (its path or Uniform
Resource Locator). the timestamp. the duration of the activity. and the type of activity

(creation, modification, deletion etc) will be stored into the record.

The User-defined Substream

The package atur.stream.substream handles the “Substreams™ for the user of a system.
The Substream is actually the implementation of the notion of a user-defined Object as
discussed earlier in this report. The Substream stores the member set of primitives and
other Substreams which belong to an object as defined by the user. The definition of a
user-defined object is as specified by the use of the Filters as explained in the previous
section. To recap. the filter defines the properties of what constitutes an object as defined
by the user. cach Substream is associated with a unique Filter, and the Substream

contains all e data primitives (or files) and other Substreams which fall into this filter.

Data Management Strategy
For retrieval. the overall strategy of the data storage packages atur.stream and

atur.stream.substream is to obtain a root object from the PSE object store, traverse it in

40

Java code to find the objects were looking for and do our work on those objects. and then

commit them back to the object store.

Processing the retrieved objects is carried out in StreamManager. This code traverses the
object lattice and does the useful work. When a retrieved object needs to use another

object that is still on the disk. the StreamManager will retrieve it transparently.

Because this example deals only with objects. instead of objects and relational tables. we
can use more object-oriented techniques to build it. In particular. our stream and
Substream objects are very flexible. and can be extended in many ways as our needs

change.

User Interface

Purpose

The purpose of the user interface is to present the user with a simplified intuitive view of
the system. according to the notion of Streams and Substreams model. The interface will

also capture the interactions of the user in order to store useful data into the user's Stream.

Implementation
The user interface is implemented using Java 2 Swing [11] classes. The user interface
classes are implemented in the atur.ui and atur.ui.statusbar packages. The interaction

between the streams/Substreams and the tree display model in the User interface is done

41

through the use of “bridge™ classes such the “SubstreamModel™ class which keeps the

stream and user interface models in sync.

Currently. the user interface is presented in a window. with three sub windows:

Figure 7-1: Basic Components of the “Atur™ User Interface

The bottom window is used to present data stored in the main time-based Stream. The
top left window is used to present objects as defined by the user’s Substreams. The top

right window presents all the user’s defined Filters.

Example of System Usage

User A creates a stream. which currently contains 5 files:
1. An email containing a job ad for a java programmer: Job.1xt,

2. A java source code file for the “Atur” project: SmreumManager.java.

43

3. A list of contact information for people working on the “Atur™ project: Contact.txt

4. The text for a seminar on Web Services in Microsoft Word format: I'eb Services

101.doc

5. A web page on Auto Maintenance and Repair: AutoMaintenunce html

The user creates 3 filters:

“Computer Science™ filter — a filter which contains keywords and type information of

files related to computer science.

“Java Files™ filter — a filter which contains kevwords and tvpe information of files

related to java technology.

“Hobbies™ filter - a filter which simply contains the kevwords related to personal hobbies.

44

The user creates and structures his Substreams as outlined in Figure 7-2:

User's Stream

— Computer Science Substream

Java Files Substream

— Java Files Substream

— Hobbies Substream

Figure 7-2: User’s Stream and Substream structure

Note that the user has used the same filter twice (the “Java Files™ filter). once at the top

level. and once as child Substream to the Computer Science Substream

N
th

Based on the user’s stream. the system presents the view as illustrated in Figure 7-3:

User’s Stream

— Computer Science Substream: Job.txt

Java Files Substream: StreamManager.java. Web Services 101 .doc

— Java Files Substream: StreamManager.java. Web Services 101.doc

— Hobbies Substream: AutoMaintenance.html

Figure 7-3: Generated View of User’s Stream and Substream structure

46

The figure below 1s an annotated screen capture of the Graphical User Intertace the system presents user:

Name | Score : Type | Modffied N
[personal (0 SubStream Dec 31,1656 m @ m @

€ (4 compScience { SubStream Mar 25, 2002
& % Hobbies 0SubStream Mar26, 2002 | fcasivecan TompScience can Hobbiee can HIML egn

,é"

Catalog of
Created Filters

ﬂ{
.
5y
| -
3]
Yy
\J
3
-
=
(]
3
()
i3
3

Journal View
® §le /T Projects/atur/AturPootirun cmd

® Created on Sun Mar 17 18 2844 EST 2002
TtldSite:]ll

Figure 7-4: The "Atur™ Graphical User Interface

Substreams are added to the root stream or to existing Substreams by selecting “File-Add

new file to Substream™ from the Menu Bar.

Note that the Journal view displays the user’s Stream. which will record all known files
in the system. i.e. all files created by the user. The scrollbar is used to quickly browse

through all entries in the stream.

0 SubStream Mar 25

o y i_Score | Type j.odiﬂed:
Retoas 0SubStream Decd m m m m
Stop
Exi

100 File Mar28 | Assistive can CompScience can Hobbies can
; 0SubStream Mar 26 . .
StreamManager java 100Fie Mar 17
Web Seriices 101 doc 100 File Feb 27 .
© [JavaFiles 0SubStream Mar 26 | Javafiles can MyDactionary can WebServices can
StreamManager java 103 Fite Mar17
Web Services 101.doc 100 File Feb27..|
¢) Hoooes dSubStream Mar 26 .
D AutoMaintenance htm 100 Fue Mar 24

> —— ‘i y 4 — l...“ o
’ ® file /C ProjecisaturraturRoct/Job ty
® Created on Sun Mar 24 21 54 54 EST 2002

Figure 7-3: Adding a Substream

48

Given the usage scenario for our example. the system will present the following

Substreams
view
PRI ST
;3’&—.':' ’ -d—ja-’-'
Fis Options
Name i Score | Tye | Modified .
[personal GSubSteam Dec 31, 196G @ m @ m
© (I CompScience (SubSteam Mar 25,2002 -
DJobm 100Fte Marz4 2002 | Assstvecan JomeSuence can Hebbees can I
€ (JuavaFies 0 SubStream Mar 26, 2002 |
StreamManager 13va 10CFle Mari7.2002 .
web Semces 101 o¢ 100Fds Feb 27,2002 JasaFies can MEanens
© JuavaFies 0SuoSteam Mar 26,2002 | 2&=des can Mylwwoasry con
SteamManager java 100 Fie Mar 17,2002 -
Web Services 101 goc 100FiIe Fed 27,2002
© (3 Hobbies 0SubStream Mar 26,2002 ¢
AutoMainiznance himi 100Fie Mar 24, 2002
3
av. T . T -
o "B Yy
g ® Jl=/C Frojectsratur/Aturf oct/Autol famtenanc s htm!
® Created on Sur Mar 24 22.17 25 EST 2092
Totai Size: 300

Figure 7-6: View based on example usage scenarnio

As can be seen in the “Score™ column in the Substreams view. the system scores the files
according to the filters. and groups them into the filters. We can also see that files
belonging to a Substream also belong to all ancestor Substreams i.e. a Substream will only

filter a set which belongs to the parent Substream.

49

Feedback can be passed back to the system through the GUI. by right-clicking the mouse

on the relevant filter (Figure 7-7).

2101 %]
Name | Score | Tye | Modified :
[nersonal 0SubStream Dec 31, 196G - m @ @ m
€ [CompStience 0SubStream Mar 25,2002 . ‘
D) yob &t 100File Mar 24,2002 { Asuistve can ComgScience can Hobbnes can HIME can
¢ JJavafies 0SubSteam Mar 26, 2002 -
B StreamManager java 100 Fie Mar17,2002
web Semces 101 doc 100Fe Fep 27,2002 | e
© ClJavaFiles 0SubSteam Mar 26,2002 | | GBfiles can Myluctinary can
3 Filles Feadack ! 100Fite Mar17, 2002
v | 100Fie Feo 27, 2002
© (JHont__ Cancel 0SubStream Mar 26,2002
D) AutoMarntenance hmi 100 File Mar 24, 2002
aw | - . K .
¢ @ . .}lf
'f ® file /C Projects/Atur/AterFoot/AutoMarmtanance html
© Created on Sun Mar 24 2217 25 EST 2002
T " Total Size: 300
Figure 7-7: Feedback to update the filter

At present. the system’s feedback mechanism will simply present the user with an editor

to edit the filter file. as demonstrated in Figure 7-8:

< winvile - JavaFiles.cari

Fevword tolber=
bevword toberns e

ckevunrd toler=C =T rutrix

cbevword tolen="paclage’ sultix="+"
tobent Timport T osutt '
roben = Treturn” o suttik= e

subttix=

tokerns "autonablle

s=2=x JavaFiles cari szzsszsssszxessssexsssr al] ==

Figure 7-8: Editing the filter tile

New filters can be created by selecting a file and right-clicking the mouse (Figure 7-9).

=10/
Name i _Store i Type ! Modified }¢
[perscrat 0 SubStream Dec 31, 1968 ’ m m m m
® 3 CompScence 0SubStream Mar 25 2002 -
Job te 106 Frie Mar 24,2002 | AsAawe can JompScience can Hobbier can gL (an
¢ JavaFiles G SutSream Mar 26, 2002 .
StreamManager java 103G Fuie Mar17, 2002 @ m
Web Services 101.doc 100 File Fed27,2002: | | .
© (Juavarites e o e e A T | iambdes can ifylacuongry can
StreamManager java
VVeb Servces 101 doc .
© (3 Hodties JSubSream Mar 26, 2002
[} Automaintenance rtmi 100 Fuie Mar 24, 2002

@ fle T Proets’s

® Created o

Figure 7-9: Creating a new filter

This will call up the Create filter dialogue. as shown in Figure 7-10:

- (reate afhiter

¥
o’\; 4

Locki: |(JFiers v,

B
4]
m

W,

i Assistive can

D CompScience can
[} Hobvies can

D HTML can

D JavaFies can

D) myDictionary can

filepame: |webSerices| || sov l

Files of type: {Alﬂn('-') 'H Cancel

Figure 7-10: The Create Filter dialog

32

After a name for the new filter is tvped-in by the user. the svstem parses the file and

creates a filter of all unique words in an XML file (Figure 7-11).

=z=x JabServices car:i (modified] ssassczasssxsasstsssssssssascsscsnnsnsnssazsnn all

Frgure 7-11: Defimng umque words 1n a filter

n
[U¥]

For customization of the user interface. there is an “Option™ menu item to select the

“Look and Feel™ of the system. In the example in Figure 7-12. the OS-neutral “Metal™

“Look and Feel™ is selected.

- * Matal b |__Score Type _{Modified|*
[ni = COEMW 0SuoSteam Dec3 | m %1 m
9 C ° Windows 0SusStream Mar 25
“Lroorw 1GOFue Mar 24 Assistrve cant TompSoience can Hobbies can HTML
© (3 JavaFies 0SubStream Mar 26
StreamManager 13va 100Fue mar17 m m
web Semces 107 dac 100F e Fec 27 - e
© CYuavaFiies 0SuoStresm Mar 26 JaraFides can MyLactonaey can WekSermaces can
StreamManager 1ava 100 File Mar1?
web Semces 101.doc 100File Fed 27...
¢) Hobbres 0SubStream Mar 26
D) AutoMaintenance ntmi 100Fve Mar 24
)
'
1
S 4 -
4] 771 [pid
' ® fle /7 Projecteistur-dmrR got/Jab 1o
i ® reated cn Sun Mar 24 21 54 54 EST 2062

Figure 7-12: Selecting the “Look and Feel™

tn
N

[f the user selected the windows “Look and Feel”, she would be presented with the following

view (Figure 7-13):

e =101 x|
F Metal
5 coem S P kO WL O} ™ COY
- " o windows | 0SunSweam Mar 25 , -
Asaistive can CompSqence can A L
® Job b 100 File Mar 22 Hobbes can HIML ¢
- _4JavaFdes 0SubStream Mar 26 m m m
® SlreamManager java 100Fe Mar 17
® Web Services 101 dac 100 Fue Feb 27 JavaFies can MyDiclionary san WebSewices can
o _JETEN TR
® AutoMaintenance htmi 100 Fule Mar 24
=l | =l
o] J | 243
! ® fle/C Projects/AtursAturRoct/Job 1t
® Created on Sun Mar 24 21 54 54 EST 2002
o T - Totaisze 300 GEEEEEN)

Figure 7-13: Selecting an alternative “Look and Feel”

U
i

Chapter 8 FUTURE WORK

This chapter discusses some of the current limitations of Atur. and areas for improvement

in future work.

Performance Considerations

Performance is one of keyv factors in the usability of the interface. Due to performance
demands. some components of Atur must be tuned to attain faster processing times. The
parsing engine for the filters is a prime example. Due to the high overhead of XML
parsing. commonly available schema-based XML engines. such as the Xerces XML
parser from the Jakarta Apache Project. which use call-back mechanisms. could not be
used. Instead. a custom parsing engine was built to ensure speedy performance of the
filter engine. However. this creates the drawback of limiting the ease of extending the
filter grammar. Any extensions to the filter grammar would entail changing the custom
parsing engine. instead of simply adding call-back handlers to handle new XML tags.
The performance overhead of the parsing engine will be likely be less important in the
future: at the current rate of progress in the performance of client desktop systems. the
time would soon come when high-performance client systems would present the

opportunity for the parsing engine to use a commonly available XML engine.

N
(o))

Improvements to User Interface

Another limiting factor is the simplicity of the feedback engine. At present. feedback
involves adding filter keywords to a filter file. which can later be manually edited by the
user. The feedback interface and mechanism could be improved together the interface for
creation of Substream filters. Improvements could be made with front-end interfaces
with "wizard"-like properties that will guide the user through the filter-making and

feedback processes.

Decoupling the Presentation Layer
Currently, the presentation layer is tightly coupled with the summarization and filtering
engines. User data filters and processing can and should be abstracted into a server laver.

The presentation or client layer can then be hosted on a separate machine.

This coupling also results in severely limiting the system’s capabilities in the creation of
multiple views for an object. Because the view is tightly coupled. extending the object
definition language in order to support adding and extending dynamic view and access

methods to different object types is problemat:c and time consuming.

Another significant benefit of refactoring the presentation layer would be to open up the
possibility of using the same interface on different display hosts. This would also make it

possible for all data and filtering preferences to exist on the same host.

Integration with Operating System
The Substreams layer works on top of the operating system laver. Thus. this makes it

difficult for the user interface to be available to other applications on the system.

The Substreams layer can be integrated into the operating system layer. as an alternative
to the traditional directory structure. This would enable all applications on a system to

utilize the same Substreams interface when using file-system services.

With the continuing progress and maturity of the Java Accessibility API [12] and
assistive technology on the Java platform. investigation could be done on the feasibility
of Atur leveraging user interface information generated directly by the Java Virtual
Machine through the Java Accessibility interfaces. as a replacement for the polling

mechanism for file system activity.

W
n

(1]

(8]

(9]

[10]

(1]

[12]

REFERENCES

G. Ballintijn and M. v. Steen. "Scalable Naming in Global Middleware." Vrije
Universiteit. Amsterdam. The Netherlands. IR-464. Oct. 1999.

T. C. Rakow. E. J. Neuhold. and M. Lohr. "Multimedia Database Systems - The
Notions and the Issues.” presented at Datenbanksysteme in Buro. Technik und
Wissenschaft (BTW). GI-Fachtagung. Dresden. 1995.

D. K. Gifford. P. Jouvelot. M. Sheldon. and J. O Toole. "Semantic File Systems."
presented at 13th ACM Symposium on Operating Systems Principles. 1991.

P. Pazandak and V. Vesudevan. "Semantic File Systems."” OBJS Technical
Reports and Publications 1997.

P. J. Shenoy. P. Goyal. S. S. Rao. H. M. Vin. and S. A. [. M. F. System.
"Symphony: An Integrated Multimedia File System.” presented at ACM
SIGMETRICS Conference on Modeling and Evaluation of Computer Systems.
1998.

S. Fertig. E. Freeman. and D. Gelernter. "Lifestreams: An Alternative to the
Desktop Metaphor." presented at ACM SIGCHI Conference on Human Factors in
Computing Systems. 1996.

R. Mander. G. Salomon. and Y. Y. Wong. "The Pile” Metaphor For Supporting
Casual Organization Of Information,” presented at ACM CHI92, 1992.

B. C. Neuman. "The Prospero File System: A Global File System Based on the
Virtual System.." Computing Systems. vol. 5(4). pp. 407--432. 1992.

"

E. Freeman and D. Gelernter, "Lifestreams: A Storage Model For Personal Data.

ACM SIGMOD Bulletin.

T. Cook. "Its Ten O Clock. Do You Know Where Your Data Are?" MIT
Technology Review 98(1), pp. 48-53.

"Creating a GUI with JFC/Swing." The Swing Connection, Sun Microsystems,
1999.

"The Java Accessibility API Interfaces and Classes." Java Accessibility, Sun
Microsystems, 2002,

o
O

APPENDIX

Class Diagrams

The following class diagrams illustrate the class design diagrams for the the following

packages:

Package Name Purpose Figure

atur.can Sorting & Filtering Engine Figure A-1

atur.filesystree Creation and management of | Figure A-2
object trees for the user interface

atur.stream Data management and storage | Figure A-3
for Streams and Substreams

atur.stream.substream Figure A-4

atur.ui User Interface classes Figure A-3

atur.ui.statusbar Figure A-6

atur.util Utility and helper classes for | Figure A-7
common routines. debugging

Table A-1: Java class packages for Atur

A-1

6404 oBue I TNASH8G
s pe:

e

o+ pebusy)sspopman.
P T T Y)

jv.a- B sumy eurge
peoa g0 e vl e
8. e

Fute Lenr:sg fiole L epaa

L LAl
oy eue !
ey dewgal

naie Lapicq Liroks 1.en.00

e vk, opna”
QU I 1990 P
TCIRCIV TN
waryr 0w gal
vouNQr M Aal

TTITTIR "I WIONS YRGS w068 2!
PR TR 19COMNOS! | lr i) | IR oo X!
I CEUIVEV T I R W o L LR T TTVETITRTY BT 2L ST G I8N
ST HOIVEVI IS OO Sasir sen TETIT XS g ovegl
KRIBA SNE L \pOm ISETIOY IRy
1uns eyl
-y gt BTy 1| AdmengOuiydurig - T

[

|

4 14

1

$20k7) W

Dt Sarq@mn
PO S008NI | VA 0

DOA DI, 10 (#8024

[2l STl AT 2]
LT LI

N oIty
i e et

LI SN

B e e B e Jeal o
D% JRoOP L«
AN

pes

lea gamecionysa
bot M eIy
g8 | eI

iy pranigwa
DIONWIUsWND Lh

LR Y

4

o0 palusydanm:.

R UL

6 0uonesy 10MegBur e

WSA Seaw

—powesiys may

ey

(o]

Lo vy uebe
1R ey b e
way o

£« Paf, Jupe a0 poryms s

LU VAL LIV
WO PEed)70 Lty o

MpomssijrIRusaY

ISR St L8
LORGT 8 AP 93]

ey dgal
wosgQs am
LR LAY

[CETS TN Ty)

a1 un]) 20

1RGSR Y
LY FTITT I

1oems o0y

R 8 Ring e s |

wuegess svu)
eani A

1‘ e SO I o

SaniBwiigpeseedniy
LA

RTTEI LTI ST
.01y

e

e

ues (|

-1 (a): Class Diagram for atur.can

Figure A

A-2

Buwt Bas

1.3
K

TevrsT
e cona o 1pn e’
g 0o
£ e pew WAL g e

< vy
Boegndus
Boevpndu. .

ueaorg ¥
TTsCeTIRER Y

e e

wIe ey ypnd e iacem
IR R

Do By an feay!
relevecog !

s ey
ey sy
Ve ac R prate acan
ey 10,00

s s8su0
mbeieppeng one s

ts 3003 gl

Preeniemng s pigesgel

w nrd,

LR PP
>3 8 pLgecy
wole om0

lﬁcd‘..
Wod ax] Jaykiy s
[RR LW 2
LT

wbevepm g

TONYRIT TR

tn

Lbeuenorey,
wherpcae).
rabeueapean o

[ST)
hwhe i

L 0ep s) 007,
B wbsisn § pont

mBevenore.yg
apy

uw |z

Dot Faw YoMy (o W
€0 Busn ot g
posp.mt

wle.opmova.y, teueppes.g

T
Tl e gt deay
280q M2dyy
T

raan oe, it aeg
abowpiy g olerin

e S0t agan
Wt el [Vew et e
g

Class Diagram for atur.can

¢ A-1(b):

Figur

A-3

1218 PUB IO ML)
1epwoye

TRIXTRwOT

IROA |3G8 TeMeIGaepdng

POA puoers

INGUUPNE P GNUARIIDINg
UL U JOIVeIg
TPONIIGIRAG N J (00P10108
0|Qe L 001 [0ME 00 | 8jweIDg
[Tt T LR DL TTUTY P TOI Y Pv
|ouRgoqn jans) -
US| eas)

ﬂ 13840 OPONPBIINe

Q@OILF U
e Jylheng o
W OBy py

el

WA S PO 19508, 1041%Y
JOVP JRODIN G 03] o
OISO M DN BRI o

MUA Ineepdin e
oEL001) -

100PUOURB NG | DOIL LIILg

ﬂ 100l Buspieayoguns

Yiegens) Bupeojywd
Lo Bupucye s
HES00Y WU TSPUSISeD
1 INODWE LN
wuGUl ey seLUSE O

Buing wwdg

MURSr ey @

19QEf (equIsShrisg
1oun| soumg

W ISIUNODNN RO
U0 i) Yitgpe s

W oy PeoNeIg

UL LRILE OHIML VLI
OPOPRIOISAG O 4 (10PON
“TTRnonuy

“ITOSEAG
1OBHO TRRONSY o
VPON 4

sMae Lot
Qe r

ﬂ oA ofiowg

oA Boselmug
FLE RS TIPV VP = YIT S V7Y
ROA B0

D120duO voipwyDiIsle
ongd vpgiolly

1suvgsqeeeiy

opp Juea

19030 OMBAIOND JHoD

BHOA papue 0P Jo s
POA. pedduiGBurp I8 N
PUA DUIEP 30 NEOUNO «
uttegoy Buipp RODPdore .
VBRHOOG YO D IIGBBENNNYS +

fluoy ongwio) o s
g YV Ivd o

poa Bspeopionm

MOA USIPIYDPWROS +
14IG0 avergvp1e8 .
BB SRR D0 ¢
Buing swIYNUWNODINB »
U OOM] Jar0 TaE ¢

120{00 PMIDI00 «

o O D180 ¢
SIvPOWLOISASON g o
TIOPOPRLIBINAGEY o
TIOTIITGEXSXITTE

TTOTIBIR BVWT
[T TTONS RSO TS X [aWTd
UBSOOG BUIPUesseg
N RO DPYoe s
VPO 0N BLONPROIOIE
NSO PRUANE

Oixdq oamigdumeg
Diasbao uogor

nogeliay
[(7o)

S

[LC BT U e T)
A PO DULLNIGD

08 ol D geCiape L v u i Aiaprg
PIOA lyoeAlos .
USSOUY BIPEEP IO W
10O tyoEA0 .
130410 M310 Jopou s
BIWD s DULIIO D3l
Bung aurpuwnoed .
19rdepyIepORIKIT L e +

DINSANDGY) |

Happoyea 1y

10O Kxs

PHOA g ONILA JOS ¢+

UBOOOC) OeYp JROI ™ «

S ssOMUNOD 0l «

EHOA POBUBYDVINEINKGLLI LB
IHOA POAUIOMROPONDOIL Dii) s
PIOA POLISSUISOPONSSI) 8I)) +
IR0A POlIBYDIOHONODI | D)+
W PPy Repupel «

oA palluuyDuieg I Juinaa
UBOO0 oYM -
190N L 801) 1DV NBAY ¢
- I HULAT 1w
top 10041 av L-U
Al
.
\/
g
1 DO IO
IVOA JPINNUAJOS ¢
L] QU INA Dl e

IO Iyoryented o
SULY) SSUIDUMINODMN) o

U0q QUi o0 « “FICIE VOO Dang eunugoeld
TISCIUT SHIY T 1DPOMNGU | 8811 |GHOYWRINY | B8Y
IVSUSIHTUDAD NV 1BuLinYyg TUSISSSOR T avILr GU
R YT] 1opoweiqe 00
IonpRIISIIIeNsQY 13 IePWISPONWIIQE L 08I) soejiopn
N0 TIspOWWaIsAg 0|14 o 1PPONGIR L | s)ay WO, n.U

2: Class Diagram for atur.filesystree

Figure A-

A-4

1012AAS0 X3+
[2URHWIRINGGNG +
12PONWIR3NSANS +
now.
19peoWedSqANg
19538 S0 X3+
19110535095 +
Ajujweeisgng .
131059215

SiueIxgs
SpONWEANGANG +
1ebeuepywengung +
1eBeuepyweansang s

weansqns

L

JAnuawesns whiua
U S3UWJOI8quinu
Bug swenweans

Buoj isaiey
6uo) 1saied

pioA aysepeo)-
pioA aydeJajepdn-
PIOA UMODINYS +
uee|00q Anuzpasuls
sabeuepweanss

J0J09A JOPOIASSILG -
Wt sauuPoIequinu -
Buing swenI0os”
“Buoy seie) -

uo| 1SaIJe3; -
Bung awepweans™
Buiig swenap™
eseqeIe(] Weaijss

1aBeuveyweang H-U

it adA [ssadde
Buoj mopuim
Buing un

Buo) dweigawn
6uo| xapu

1301q0 auo0)dg

6utg Bugol.

PIOA SJUBILODUSN| 42id s
p10A sjuaix3atepdn
Anu3weangs
Anu3wesngs
Augweang.
Ajjujweanse

WU N3O SS3DDve.

W 31VIND SSIOIVe

WEAJIJOW SS3IDIV+

ue9|00q BWENIOISMOYS +
N GRE ELED

Anugweans

)

PIOA el «

aseqele(] weans.

dog

tUeans

[RE L ToRIVEILE EICELIN
JORBASO IXFe

J0129ASO X3

pioa ejepdnes
193190 suaix3ieb+
133la0 sluaxgzajean.

—> 195931150 1xJ+

198931180 3

123lqQ swaa
6unig sweNI00)

uesjooq adA | ¥oayou
pioA ajepdns

178lgQ sjuaix3iab+
1960 sjuejxjejead.
SlUdIXT e

123lqQ 1001w
128lQ0 lqo"w
aseqeieq weans w
Buing sweu w

sjueix3g _H_U

Figure A-3: Class Diagram for atur.stream

wrassgny

PIOA SIUGIUODYSN| 401d«
PI0A sjusix3ajepdn
Anuzweansqng s
AnuJweangang «
Anujweangqng e

ﬂ 1alqo sweix3elean.
10129AS0O X+

I0IDIASO UIIpIYd -
Buu)g eweu”
uLS|00q OWENIOISMOYS +

195994 |SQO 1IXF IxJe

JOIPASO 123

Anujweangqng

=

'

proA ajepdn,

138190 saxJ4ab .
1291Q0 $IUIXF0L0)I.
1958811 SO 1XJe

1959211 S0 3

[.m Y/
U1 IySIuaWI) Josedwiod. n
1940G2G .
120{qQ swand
6uig eweNio0)
pogans uesj|ooq 9dA | YIYOH
uogebioy PIOA 9jepdn,
128lqQ S1uaIx3}ab.
1081Q0) sjuair 3o,
sjueix3.
v
Ul 1yySIuRWa L
Ul jysiuaws3aiedwos. | — 123lqQ 100: W
18110G2103G « -
PIOA UI@UI+ alag lyo " w
aseqele(] weans w
Iseqele weaiss Buuig sweu w
190581008
uogeBiepw doy sy

==

Class Diagram for atur..stream.substream

e A-$ (1)

Figur

A-6

PHoA pawiopaduoide
PIOA UIB(U »
p1oA |8qeismiejSatepdng
ploA peOI3ig
1EGNUINT JegnUINSIRAIN
Jwel4I ewei4aledsdn
19PONWBNSANS [2POYIRDION
ojqe | eal ([B|1qe | 831 [Blealdy
teger |1aqeIsnie|gaiessdy
19Ue4WRINTANG «

pioa nuaydndogaieaid
DIOA PBYIDBSNOW 9118
jauedquiealiggng «
|auequieadngqng s

JBUIRIUOY) 1AUIROD
nuawdndodr nuaydndod™-
[|Buing swaynuaw™-
[16ung sweynuayiany -
[IBuig swaynuayggany -
Buing ylede

swel 4r sweny g

1eqer |agesnieisy

8w 1auwg

W §9UNOJPROIFIN
uledaaly yiedprojaig

WI MOYDPEOIIIg

91q€ | 3911 [9|qe | 931y
19pOKwRaNSANS |19poW g
W Lo OuN

uedwedisgng
10udjsiluondy

=)

ueajooq Buipeojar
UedI00G SHUMSPUIISIP
U1 JUNo JuWNoI
vogabiay 19uogans

weansyns |

(haalao vaippynebe
o4 o)1 41964

6uo) angie0)106.
Butiis ylediabe«

pioa Buipeoidoiss

PIOA UBIPIIYDPROIDI +
133Iq0 IvanieAlabe
$seD sse(QuwWnoebs
Buing aweNuwnoNabe
ue|00q RIS
13190 pruDIabs
W unoappy b
19pOWILIRANGANG »
12POWIRBNSGNG «
[N X IEELEETT]

Jweansans NIYAUHD ALdW3Is
URJI00Q SHUITPUIISBPN

W uNeDpeoa)
DONWESNSANS GPONDROI0IS
Ued|00q PIEASIH

WIEIG S1910S

T9be0] Ou3z,

ssei3 sedkon

UG Sawenay

I3poweansSang
19powaIqe 1 09) 1 101Sqy

=)

Suing awey

[JAnujweangang uvaipiyd

PHOA PPIYDRBAOWDI«
P1oA ppyppe «
Buing Buingols

9

Class Dragram for atur.stream.substream

A ()

Figure

A-7

weasyns |y

opopweansansy
IpONWeANSANG Y
poNWeaNSANS K
8pONWeRAISANS Y

ue8|00q 9jepdNa -
W 21036 xRW -
[liabaiul 2100gdun”-
w3028~

uing yiegiayy -
“Buiis wiegioor -
[laporpueengang uaippyar 'y
10129/ JOLIBAURIDIYI

oA 110G AR08
PIOA UBIpRYDPROIN

PHOA unse
13pPOTWeINsang
vosebiayy 1auc5ang aby

19pOWwWedigqQng |apow”
os3beR SHIT
uosabian swazs
BpONWIRIISANG 3POU

1apeoweangang

oiqeuuny

UBINWEANGANS JBBUTNWRINGGNS
Anugweansang Anu3weanggns”
uea00a 8y 4s|q”
uea00q 100MSIq
19pONWedIISQNG japow
PioIIYILAWA J APONSIYY™
P1033}1udwa 3 apoNudsed ™
1abeueyyai 4 1abeuepyiany”
butig awepyapou g
6uol peypopyise; s
U300 YUIISIN
Butig yiedieauoued g
ue?)00q PleA3DGeI0) 8
[TLIER ST T
{lsporiweangang uaipias
apoNweaNgqng Juaiedy
a4 9t 4opou g

poNweansgns

WwauodwoJr jaqeisniels
uex00q geddew

19.19pUa y10181DU|
13pe0jay

1P3UNAA nnnawniawdnAn sanipe

. 0

139lq0 Buipeoapou

e aaar Runenined

Diagram for atur.stream._substream

Class

A~ ()

Figure

A-8

(Anujweansang sweansqns
bunig swenweans

DIOA BYIBDYSNY+
pI0A 3yl)pROy-

oA ayseHajepdn-
PIOA UMOPINYS ¢

P10A Weasngangppes
1abeuepweangangs

weanisyns | ¢

r

PIOA JBYI 4010310+
ueaoaq UAIPIY AW

J01I9A UBIDIYDIUBDUNDIYIAOWO LY
Buiis awepnab«

ueDj00Q P11 J51e
PIOA B10IGhUI-
Buoy a2g1eI014

pioa pabueydapouy

pioa pabueydangielo ppyin

PIOA DI|EAB2ISIE)0 | 92108

PIOA piRAGIGIRI0 | |05

PIOA 3AGej0 | 19)ey

PIOA UIPIIYDIISH
[lapotyweonsang 100x0 yied1064
uR00G HUISIe

Bunis yiegieavoueJieb+
{laponweangang uiediabs

J0J28A J01DIAWEINSGNS
Buing sweN100:~
“Buop e -

“Buo) 1semel -

Suiig swenuieagqans”
Bunig swenweais”
Bug ewengp”
9SEQe|e() WeadNss

A

uedo0a UIIPIYIPIDROIR
[leponweansang uaippydeieaidy
[{6uris 19

w aj00G1008

PIOA 8i03GlaSH

DIOA UaIppy)peOIR
[loponweansans uaipiy D106y
PIOA 9216105018

PIOA payipoyise Nlosaig
uedjooq PYRAINGIRIO] Sis
ued|00q JBI 1SIs
IPONWEINGANG Judsedlale
Buo| azigei0) e

apg ap 4136+

Buuig Buingole

aleq paipowIse)s
BpONWRINGANGH

Class Diagram for atur.stream.substream

A-d(1v)

igure

A-9

Atur

[;';] JFrame

canFrame atur can CanFrame

+MIN SCORE int

StatusConstants
AturFrame

statusbar

+Atur
+cleanup vod
+main vora

-_paneileft JScrollPane
-_panelBottomLef JPanet
-_panelRight JScroliPane
-_filterPane JEditorPane
A -_splitHorz jSpitPane

-_splitvert JSpitPane
-_splitBottomrorz JSputPane
-_streamName String

-_aturlcon imageican

-_rootPath Stnng
_ournalTextPanel JEditorPane
_streamManager StreamManager
_subStreamManager SutStream
-_hiterPath String

_app Atur

_siderStream JShcer

_menuBar JMenuBar
menuStream JMenu
menuitemAdaStrearn JMenuitem
menultemDelStream JMenuitem
jPaneit JPanel

[Menut JMeny

Menu2 JMenu

Menuitemt JMenuitem
{Menuitem2 JMenuitem
JMenuitem3 JMenuitem
Menuitemd JMenuitem

Menu3 JMenu

JMenuitemS JMenuitem
Menuitemé JMenuitem
-_iabe!Status JLavel

-_labeil eft JComgenent

«PLAF
+JStatusBarTest
+StatusArea
+JStatusBar
~Abstractlayout
«StatusContainer
+StatusConstraint
+StatusLayou?
«ThreeDBorder
+StatusConstants

+AturFrame

-intFilterPane veid
erefreshfiiterPane void
-intJournalPane voig
«insertStreamEntry voic
-jbintt vorg

-initShder veie
-insertTestFiles voie
-insertTestSubStreams vaig
#orocessWindowEvent void
#newlapel JComponent
#newProgressBar JComponent

+getUrl URL
+geticon imageicon

StigerListener

statusLabel JLabel
statusBar JStatusBar

Figure A-3: Class Diagram for atur.u

Jd PIOA 12UIRBJUO DINOAR)+
UoISUBWI() 8ALINVARTIEOIUId .
UOISUIWIQ 821G INoAR JINWILIWL «
pioA JuauodwoDINoAR18A0WSE) +
ptoA uauodwopinodeippu s
nocAe 1snie)g .«

nodesnielg .

||QejyseH 9jquly

nochAeismes

i deBa
U1 deBy

Buuig Buingole

PIOA JuEUOdWODINCARBADWS] +
P10A WavodwoDinoAeppe

p10A JuouodwoDinokeppe +

PIOA INoAR 1918 DIBAUN ¢

120y AluowubipinoAeieBe

1eoy XivdwubipinoAe 1108
uoIsuUWIQ e21SiNcAR TWNWIXGW +
nokeToensqy e
incAeoensqy ¢

JnoAeoniisqy
08/q82/10UeS
2iebouvyyinoker

F
ues|00q YIPIAABAIIR|B)

120 wipaapoanbeyieba
wensuo DsNIeIS «
IeNSUOHSNIBIS .
W NSUODSNRIG «
IRISUO DSBS »

2ol winme
uEeI00q SANRIDIN

wiensuonsning L-u

uegjong enbedQiepiog

ploA Jeprogjuied s

10107) 1010)MOpeYSIeB .
10100 1010)pybybiy 106+
sjasu| sjasu1ep1ogiebe
oplogadIyy +
18pI0EUIBIIY]| +
19pIOE(JINIY] »
19p10g()0dIY | +

10100 mopeysy
1010 Wbnybiyw
U SSeUNIIYIE
W adAly
WEQIYIMO T
0 gIsIvy e

JapiogQgaaiyy
1epiog

Jugsnels

v

ueeI00q |83 4PUYNLOTBAIRU

ELAL)

PIOA UiBW+

weuodwodr iegssaiboigmauy

Wauodwo D |3geTmauy

5 g

PIOA JUBWIBPPE +
PIOA US| JPPEe .+
PIOA juBWIB|IppE +
PIOA JUSWY| IPPE »

legsmeisre

v
IBuIRluODSNIRIS +

isapseganieigr
|oueyr

jegsmeisr
ouedr

Jdujejuolsmiels
suedr

t
\/
j‘

UeI00Y YIPIANABAILR|D)

190y Yippmpennbey1eb.

sosysmeIs
govpei

CEGLENGENED

uesi0oq ANV,

asejielu

sjue)suosmes

Class Dragram for atur.ui.statusbar

Figure A-6

A-11

11 ul

[;‘J FileFilter F‘J,:l UtilFunction Debug
SimpleFileFiiter
-WIN ID String +debug:boolean
extensions:String(] -WIN_PATH:String -writer PrintWriter
-WIN FLAG String
+SimpleFileFilter -UNIX PATH String +log.void
+SimpleFileFilter -UNIX FLAG:String +log void
+accept.boolean +log:void
+fileToURL . URL +og void
description: String +isURLWellFormed boolean +log:void
-1 | +isFileExist:boolean +log void
+displayURL void +og:vod
+sleepvo:d +log void
ArrayList +log:void
FileList windowsPlatform:boolean +log'void
— 2
+NAMEint
+SIZE int
+DATE int
+FileList
+FileList
+order.void
'—6

Figure A-7: Class diagram for atur.util utthity classes

A-12

