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ABSTRACT

Performance Analysis of a Multiplexer with
Priority Queues and Correlated Arrivals
Xin Xin Song

Broadband networks are integrating different applications such as data, voice and
video in a single network. The priority mechanism allows differentiating among services
such that they can meet their QoS requirements. Since a switch output port may be
considered as a statistical multiplexer, and the packets coming from an application are
correlated, it is very important to obtain a good understanding of the statistical
multiplexing with priority queues and correlated arrivals.

[n this thesis, we present performance analysis of a discrete-time system with two
priority queues and correlated arrivals. A packet is transmitted during a slot if there are
packets available in either queue. The packets in the low-priority queue are transmitted
only if the high-priority queue is empty. The arrival process to each priority queue
consists of the superposition of the traffic generated by a number of independent binary
Markov sources and the arrivals to the two queues are independent of each other.

The joint Probabilit.y Generating Function (PGF) of the two queue lengths and the

number of sources is derived and the unknown boundary function is determined using the

it



busy period distribution of the high-priority queue. From here, we determine closed form
expressions for mean and variance of queue lengths as well as mean packet delay. Also
we show the correspondence of our results with previous work by reducing our solution
to the results of a multiplexer without priority in many special cases. At last we present
numerical results, which show the effect of the high-priority traffic on the low-priority
traffic and demonstrate the significance of the correlation on the performance of the

system.

v
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Chapter 1

Introduction

Since the 20th Century, the key technology has been information gathering, processing,
and distribution. Among other developments, we have seen the installation of worldwide
telephone networks, the birth and unprecedented growth of the computer industry, and the
launching of communication satellites [1]. The communications networks is undergoing

one of the intense and dramatic changes in its history.

1.1 Communication Networks and Priority Mechanism

Over one hundred years ago, the invention of the telephone launched a revolution in com-
munications that enabled people to communicate efficiently over distance. Nowadays, the
communication networks is changing every aspect of our lives-business, entertainment, ed-
ucation, and more. In this section, we give a brief overview of the communication networks,

especially ATM and Internet, and also we will introduce some priority mechanisms.
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1.1.1 Circuit-Switching and Packet-Switching

Until early 1970’s, the long-haul telecommunications network was based on circuit-switching,
which was originally designed to handle voice traffic, and the majority of traffic on these
networks continues to be voice. A key characteristic of circuit-switching networks is
that resources within the network are dedicated to a particular call. However, as circuit-

switching networks began to be used as platforms for bursty traffic such as data, two short-

comings became apparent:

o In a circuit-switching based data connection, because the data traffic is bursty, much

of the time the line is idle, thus this approach is inefficient.

e A circuit-switching connection transmits data at a constant rate. Thus each of the two
devices that are connected to each other must transmit and receive data at the same
rate as the other, this limits the utility of the network in interconnecting a variety of

host computers and terminals.

The shortcomings of circuit-switching led to the development of packet-switching technol-
ogy. In packet-switching, data is transmitted in short blocks, called packets. Each packet
contains a portion (or all for a short message) of the user’s data plus some control infor-
mation. The control information, at a minimum, includes the information that the network
requires to be able to route the packet through the network and deliver it to the intended
destination. At each node along the route, the packet is received, stored briefly, and passed

on to the next node. This approach has a number of advantages over circuit switching.

¢ Bandwidth efficiency is greater, because a single node-to-node link can be dynami-
cally shared by many packets over time. The packets are queued up and transmitted

as rapidly as possible over the link.
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e Two stations of different data rates can exchange packets, because each station con-

nects to its node at its proper data rate.

e On a packet-switching network, when traffic becomes heavy, packets are still ac-

cepted with increased delivery delay.

e The traffic may be prioritized, such that the higher-priority packets will experience

less delay than lower-priority packets.

However packet-switching also has some disadvantages relative to circuit-switching. For
example, it incurs a transmission delay, and this delay may be variable due to process-
ing and queueing in the node, which is called jitter. This may not be desirable for some
real-time applications. Another shortcoming is that the control information in each packet
reduces the communication capacity available for carrying user information.

Two switching techniques are used in contemporary packet-switching networks: data-
gram and virtual circuit. In the datagram approach, each packet is treated independently,
so the packets with the same destination address do not all follow the same route and they
may arrive out of sequence at the exit point, an example of this technique is [P-based net-
work. In the virtual circuit approach, a pre-planned route is established before any packets
are sent, all the packets between a pair of communicating parties follow the same route
through the network, which is called connection oriented. Asynchronous Transfer Mode
(ATM) use this technique. The difference from the datagram approach is that, with virtual

circuits, the node needs not make a routing decision for each packet.
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1.1.2 ATM and IP-Based network

The objective of integration of the transmission of voice, data, video led to carrying large
volumes of traffic with different quality of service (QoS) requirements over networks oper-
ating at very high data rates. The types of network facilities that serve as platforms to this

are the ATM and IP-based network. Next we give a brief introduction to ATM and Internet

networks.

1.1.2.1 The Asynchronous Transfer Mode (ATM)

ATM is a technology that provides a single platform for the transmission of voice, video
and data at specified quality of service and at speeds varying from fractional Tl (i.e. nX64
Kbps), to Gbps [2].

ATM was standardized by ITU-T in 1987, it is based on packet-switching and is con-
nection oriented (virtual circuit technique). ATM has been designed to inherit best features
of circuit and packet-switching. An ATM packet, known as a cell, is a small fixed-size
packet with a payload of 48 bytes and a 5 byte header. ATM does not provide any error de-
tection operations on the user payload inside the cell, and also provides no retransmission
services, and only few operations are performed on the small header. The small, fixed size
cells allow fast and efficient multiplexing of sources with different QoS constraints. ATM
has built-in mechanisms that permit it to provide different quality of service to different
types of traffic. Due to its low queueing delay and delay variance, ATM technology net-
works are well suited for multimedia applications, and can handle any kind of traffic from
circuit-switched voice to bursty video streams at any speed.

At ATM switches, capacity is shared by grouped sets of connections to save bandwidth

through multiplexing efficiency. If a new connection can be admitted without any adverse
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effect on the pre-established connections then it is admitted. If not, the request is turned
down and the user has to place a new request with easier to meet characteristics. There are
five categories of services that characterize connections in ATM networks, which are CBR
(constant bit rate), rt-VBR (real-time variable bit-rate), nrt-VBR (no-real-time variable bit-

rate), ABR (available bit-rate and UBR (unspecified bit-rate).

1.1.2.2 Internet and Differentiated Services

The growth in the Internet is the dominating factor in the development of new protocols
and techniques for data communications and computer networking. Internet is a collection
of inter-connected networks running TCP/IP protocols, each machine on the Internet has
a [P address. The glue that holds the Internet together is the TCP/IP reference model and
TCP/IP protocol stack, which makes universal service possible and can run on the Internet.

Traditionally, the Internet had four main applications: email, news, remote login and
file transfer. Up until the early 1990’s, the Internet was largely populated by academic,
government and industrial researchers. One new application, the WWW (World Wide Web,
or short WEB) changed all that and brought millions of new, no-academic users to the
Internet. The WWW made it possible for a site to set up a number of pages of information
containing text, picture, sound and even video.

Internet was designed to provide best-effort service for delivery of data packets and to
run virtually across any network transmission media and system platform. The increasing
popularity of IP has shifted the paradigm from "IP over everything," to "everything over
IP." In order to manage the multitude of applications such as streaming video, voice over
IP, e-commerce, ERP, and others, a network requires quality of service (QoS) in addition
to best-effort service. Different applications have varying needs for delay, delay vanation

(jitter), bandwidth, packet loss, and availability. These parameters form the basis of QoS.
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The IP network should be designed to provide the requisite QoS to applications.

For example, VoIP requires very low jitter, and a one-way delay in the order of 100
milliseconds, and guaranteed bandwidth in the range of 8Kbps -> 64Kbps, dependent on
the codec used. On the other hand, a file transfer application, based on FTP, doesn’t suffer
from jitter, while packet loss will be highly detrimental to the throughput.

To facilitate true end-to-end QoS on an [P-network, the Internet Engineering Task Force
(IETF) has defined the model of Differentiated Services (DiffServ). DiffServ works on the
provisioned-QoS model where network elements are set up to service multiple classes of
traffic, with varying QoS requirements. The model can be driven off a policy base, using
the CoPS (Common Open Policy Server) protocol.

DiffServ addresses the clear need for relatively simple and coarse methods of catego-
rizing traffic into different classes, also called class of service (CoS), and applying QoS
parameters to those classes. To accomplish this, packets are first divided into classes by
marking the type of service (ToS) byte in the IP header. A 6-bit bit-pattern (called the Dif-
ferentiated Services Code Point [DSCP)) in the IPv4 ToS Octet or the IPv6 Traffic Class
Octet is used to this end.

Before the IETF defined IP (Layer3) QoS methods, the ITU-T (International Union
for Telecommunications, Telecommunications), the Asynchronous Transfer Mode (ATM)
Forum, and the Frame-Relay Forum (FRF) had already arrived at standards to do Layer2
QoS in ATM and Frame-Relay networks. The ATM standards define a very rich QoS in-
frastructure by supporting traffic contracts, many adjustable QoS knobs (such as Peak Cell
Rate [PCR], Minimum Cell Rate [MCR], and so on), signaling, and Connection Admission

Control (CAC).
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1.1.3 Priority Mechanism

In both types of networks, ATM and the IP-based network, dramatic changes are taking
place. In the case of Internet, it was designed for bursty data traffic for computer net-
works and provided best-effort service, now the volume of traffic carried has increased
enormously and the character of that traffic has expanded to include multimedia such as
voice and video and real-time traffic, DiffServ model has been developed and implemented
for providing different QoS to different types of traffic. On the other hand, in the case of
ATM, its high data rate has attracted not only voice and video traffic, but also increasing
bursty data traffic that used to be based on TCP/IP.

Both in ATM and in IP-based network, different applications need to receive different
qualities of services. An important network device for differentiating among services is
priority mechanism.

At ATM switches, in order to implement effectively complex scheduling algorithms, so
that different connections could be served according to their requested QoS, a number of
schedulers have been proposed and implemented. Below, we discuss some of these priority
scheduling algorithms. More details will be found in [2] and [4].

Static Priorities: Each output buffer at a ATM switch is organized into four different
queues, these queues can be assigned static priorities, which dictate the order in which they
are served. These priorities are called static because they do not change over time and they
are not effected by the occupancy levels of the queues.

Early Deadline Fist (EDF) Algorithm: In this algorithm, each cell assigned a deadline
upon arrival at the buffer. This deadline indicates the time by which the cell should de-
part from the buffer. The scheduler serves the cells according to their deadlines, so that

the one with the earliest deadline gets served first. Using this scheme, cells belonging to
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delay-sensitive applications, such as voice and video, can be served first by assigning them
deadlines closer to their arrival times.

Weighted Round-Robin Scheduler: Each output buffer of an ATM switch is organized
into a number of queues, the scheduler serves one cell from each queue in a round robin
fashion. The queues are numbered from 1 to Af, and they are served sequentially. This
sequential servicing of the queues continues until the M’th queue is served. Weighted
round-robin scheduling can be used to serve a different number of cells from each queue.

On the Internet, an important component of an implementation is the queueing disci-
pline used at the Internet routers. Traditionally routers used a FIFO (First In First Out)
queueing discipline, also known as FCFS (First Come First Serve). Cne of the drawbacks
of FIFO discipline is that no special treatment is given to packets from flows that are of
higher priority or are more delay sensitive. Then some other queueing disciplines were
proposed and implemented. In the following, some examples are given, more can be found
in [4].

Bit-round Fair Queueing (BRFQ): BRFQ is designed to emulate a bit-by-bit round-
robin discipline, BRFQ is implemented by computing virtual starting and finishing times on
the fly as if PS (processor sharing) were running, whenever a packet finishes transmission,
the next packet sent is the one with the smallest value of virtual finishing time. When
multiple packets arrive at the same time, according to this discipline, priority is given to
short packets.

Generalized Processor Sharing (GPS): BRFQ is not able to provide different amounts
of the capacity to different flows. To support QoS, differential allocation capability is
needed. GPS is a weighted bit-by-bit round-robin discipline. With GPS, each flow is
assigned a weight that determines how many bits are transmitted from that queue during

each round. GPS provides a means of responding to different service requests. Equally
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important, GPS provides a way of guaranteeing that delays for a well-behaved flow which
does not exceed some bound.

GPS discipline deals with each flow (or connection) from a traffic source separately,
assigning a weight to each connection. But the Intemnet has to handle huge number of con-
nections at the same time, sometimes it becomes very difficult to implement this algorithm
at Internet routers. The simple Priority Mechanism is easier to implement than GPS, which
groups connections into limited number of classes, and each class is assigned a priority.
All the packets coming from the same class of connections will be put in one queue, and a

lower priority queue is served only if higher-priority queues are empty.

1.2 Performance Analysis Issues

Activity in the area of broadband networks has been expanding at a rapid rate, emer-
gence of new network protocols and the integration of packetized voice, video, images
and computer-generated data traffic, each with its own multi-objective QoS, requires the
development of rather sophisticated models to carry out accurate design and performance
evaluation. In this section we will examine the well-used statistical multiplexing model and

the Binary Markov On/Of f traffic Model.

1.2.1 Statistical Multiplexing

We can view a network as a collection of nodes that are connected by a set of transmission
links. Packets are routed from a source node to a destination node, following the store and
forward principle. When a packet reaches the nearby node, it is temporarily stored there

until the transmission line to the next node becomes available. For this purpose, at each
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node, switching elements are installed to route the incoming packets to the appropriate
output link. For those packets which cannot be transmitted immediately, buffer space has
been provided at each switching element.

In a network, hundreds of sources may access a single link, such as a trunk line, then
statistical multiplexing is performed on the incoming packets to achieve high bandwidth
gain, and buffering is required to absorb traffic fluctuations when the instantaneous rate of
the aggregate incoming streams exceeds the limited capacity of the outgoing link. Inside
a switching element, packets from different input ports may go to the same output port,
again these packets will queue up in buffer and be transmitted according some queueing
discipline. Then, an output port can be also considered as a muitiplexer.

Therefore, in order to implement efficient admission and flow control strategies to main-
tain satisfying Quality of Service (QoS), one needs to acquire a very good understanding of
the statistical multiplexing of the aggregate traffic generated by multimedia sources (with
possibly different characteristics).

From a modeling point of view, the choice of a packet-switching technique leads nat-
urally to the choice of a slotted time axis with synchronized message transmission. In
addition, the multiplexing of voice, data and video sources on high capacity links gives
rise to a very interesting discrete-time queueing problem, at the multiplexer’s level, which
involves a deterministic server and a special correlated discrete-time arrival process. Most
often, the quantities of interest are the buffer occupancy (number of packets stored in the
system, or equivalently, queue length) and the packet delay (or waiting time) experienced

by the packets in the buffer.



CHAPTER 1. INTRODUCTION 11

1.2.2 The Binary Markov On/Of f Traffic Model

As mentioned in previous, the current networks must support various communication ser-
vices, such as data, voice and video, each having different traffic characteristics. In addi-
tion, the performance analysis of multiplexers has introduced a significant change in the
way uncorrelated traffic (such as Poisson and Bemoulli) dominated the traditional perfor-
mance evaluation methods. In fact, when dealing with the traffic generated by multimedia
sources, the uncorrelated random arrival process assumption becomes inadequate because
of the dependency which characterizes the packets stream. For these reasons, traffic char-
acterization has been a major field of research during the past years due to its direct impact
on the performance evaluation.

There have been many traffic models proposed in the literature for characterizing indi-
vidual data traffic sources or a superposition of a multiple sources. For instance, we have
Poisson arrival process (continuous time case), geometric inter-arrival process (discrete
time case) for data traffic, Interrupted Poisson Process (IPP) for voice traffic and Markov
Modulated Poisson Process (MMPP) for data, voice and video traffic. A good review on
traffic modeling can be found in [9].

Among those traffic models that have been used for different types of sources, the most
versatile one is the binary Markov On/O f f model. In this model, each source is charac-
terized by On (corresponding to active bursts) and O f f (corresponding to silent duration)
periods, which appear in turn. During the silent periods, no packets are generated. Even
though, more complicated models, such as the three state model [10], have been proposed
for more accurate modeling, analysis of a queueing model with these processes may be
very complex and may not be tractable, therefore, these models have rarely been applied

in mathematical analysis. On the other hand, the binary Markov On/Off model is very
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popular and has been often used for the modeling of traffic. For instance a binary Markov
model has been successfully applied for modeling the voice source (see [11] and [12]). In
addition, in {13], a video source is modeled as a birth-death process, which consists of the
superpositions of a number of independent and identical On/O f f mini-sources.

Because its versatility and flexibility, the binary Markov On/Of f model has been
chosen as the basic model for the characterization of input traffic sources. Hence this
thesis will be mainly concerned with the analysis of statistical multiplexing with correlated
arrivals process which consists of the superposition of many identical independent traffic

streams generated by binary Markov sources.

1.3 Previous work on Priority Queues Problem

Typically, networks operate on a best-effort delivery basis, which means that all data traffic
has equal priority and an equal chance of being delivered in a prompt manner. However,
as more and more different applications are running on the network, priority mechanism
is used to meet different QoS requirements. For example, when voice is introduced into a
network, it becomes critical that priority be given to the voice packets to insure expected
quality of voice calls.

Usually this problem is modeled as priority queues, a simple example is as follows: two
M /G /1 queues share one transmission line, each queue is fed by a source where source |
has priority over source 2. When source [ wishes to transmit, it is given priority irrespective
of the backlog from source 2. Then from the viewpoint of queue 2, the server (transmission
line) appears to be subject to periodic breakdowns coinciding with the initiation of the
transmission of queue 1. In this case, the server is unavailable to the queue 2 for a time

interval which is equal to what is called the busy period of the queue 1. From the viewpoint
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of queue 1, the queue 2 doesn’t seem to exist, as the transmission line is always available.

The priority queues problem has been considered by several researchers in the literature.
Now we give a brief review of the previous work on this problem.

In [14], the PGFs (probability generating functions) of queue lengths have been de-
termined for a model with two-priority queues. The number of arrivals during a slot to
each priority queue is determined by one two-state Markov source. The resuits has also
been generalized to a system with /N —priority queues. This work has the limitation that
it assumes that both high and low-priority arrivals depend on the same two-state Markov
source and therefore they are dependent on each other. This is not an appropriate assump-
tion, since in real networks, different priority traffics coming from differcnt applications,
the sources are independent of each other.

In {15], a model has been analyzed using matrix geometric technique with independent
high and low-priority arrivals. The high-priority traffic arrives according to a Markov chain
with multiple states. However, low-priority arrivals are assumed to have independence from
one slot to the next one. The queue length distributions and the waiting time distributions
are provided.

Reference [16] studies a system with high and low-priority traffic armiving according to
a different Markov chain with several states. This system has also been studied using matrix
geometric technique and it assumes a finite queuc for the high-priority traffic and infinite
queue for the low priority traffic. A matrix geometric solution for the state probability of the
system is provided allowing computation of performance metric of high and low-priority
classes. But the presented numerical results have been limited to systems with number of
two-state Markov sources no more than eight, because computation will be too difficult to
handle larger number of sources or Markov sources states.

Reference [17] studies a system with two priority classes, it is assumed that each class
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arrives by packet-trains with a fixed size of m packets. If a leading packet of a message
arrives in the current slot, the remaining m — 1 packets arrive consecutively in the next
m — 1 slots. The number of leading packets arriving in each slot from each class are i.i.d.(
independent and identically distributed) with respective PGFs A(z) and B(z). the joint
PGF of the queue lengths and the waiting time distributions have been obtained for each
class.

In this thesis, we model a priority-based system with a single server and two priority
queues. We assume that priority queue-i is fed by type-i sources with : = 0,1 denoting
high and low priority queues and their corresponding sources respectively. The low-priority
queue is served only if the high-priority queue is empty. Each type of sources consists of a
number of two-state independent Markov sources. Thus the arrival packets to each queue
is correlated in time but the arrival process to the two queues are independent of each
other. We derive the joint PGF of the queue lengths using the transform techniques and this
result may be used to determine closed form expressions for mean queue lengths as well as
higher moments. Mean and variance of the queue length may be calculated very easily for
any number of two-state sources. These results extend the previous works on this problem,
since we have a more general arrival process than those assumed in [14], [15] and [17].
While the arrival process in [16] is more general, however, their results are more numerical
because they cannot give closed-form expression and the state-space requirements limit
the number of sources that may be handled, as we can see in their numerical results, the

number of sources is less than 10.
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1.4 Outline of the Rest of Thesis

The objective of this thesis is to offer a simple and efficient approach for the performance
analysis of a multiplexer with priority queues and correlated arrivals. The rest of this thesis
will be organized as following:

Chapter 2 describes the model of our system under consideration, as well as the defi-
nition of the main notations. On the basis of our queueing model, we apply the embedded
Markov chain analysis and derive the functional equation that relates the PGF of the system
between two consecutive slots.

Chapter 3 presents the performance analysis of the queueing system under considera-
tion. A joint steady-state PGF of the high and low priority queue lengths and the number of
On sources will be presented. First, the functional equation will be converted into a math-
ematically more tractable form. Secondly the busy period distribution of the high priority
queue will be used to determine the unknown boundary function Q« (0.0, z;, ), then we
can perform a transformation on the functional equation which makes it easier to determine
the solution. Thirdly, we apply the final value theorem to determine the joint steady-state
PGF, then we present some discussions of the solution, the joint PGF, which gives corre-
spondence with the historical results. At last we determine the marginal PGF of the low
and high-priority queues as well as the mean queue length, variance and mean packet delay
for the low-priority queue.

Chapter 4 studies the characteristics of the priority-based queueing system fed by corre-
lated arrivals by presenting and discussing the numerical results of the queueing behavior.
As the behavior of the high-priority queue is not affected by the low-priority queue, in this
chapter we present results mainly for the low-priority queue.

Chapter 5 summarizes the research work and concludes the results, in addition, the
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main contributions of this work are given.

In the appendix, some necessary background knowledge and further proofs of this
work are presented. Appendix A determines the mean busy period for the high-priority
queue. Appendix B presents the final value theorem and its proof. Appendix C shows that
|Alid2i| < 1. Appendix D gives an altenative method to determine Q(0,0, z,y,). Ap-
pendix E shows that the solution, the joint PGF, satisfies the functional equation, which
provides further proof for the correctness of the results of this thesis. Appendix F intro-

duces the concept of fixed point, as well as the theorem and its proof.



Chapter 2

System Modeling

In this chapter, we describe the model of a multiplexer with priority queues and correlated
arrivals under consideration, as well as define the main notations to be used in the thesis.
On the basis of our queueing model, we apply the embedded Markov chain analysis and

derive the functional equation that relates PGF of the system between two consecutive slots.

2.1 Queueing Model

We model the system as a discrete-time queueing system with a single deterministic server
and two priority queues . Each queue is fed by a number of sources, and has infinite waiting
room (sce Figure 2.1). The time axis is divided into intervals of equal lengths (slots) and a
packet is transmitted at the slot boundaries. It is assumed that a packet which arrives during
a slot cannot be transmitted during the slot that it arrives, and that a packet transmission
time is equal to one slot.

We assume that priority queue ¢ is fed by type-i sources where ¢ = 0 denotes the high

priority queue and i = 1 denotes the low priority queue. The server serves the low priority

17



CHAPTER 2. SYSTEM MODELING 18

queue (type-1) only if the high priority queue is empty. Then from the viewpoint of high

priority queue, the server is always available and the low priority queue does not exist.

)

X

)G
\/\< /\/ //

G

type-0 sources

!

quecue-0
output
Server -

) (

queue-1

type-1 sources

VRN
L ] @

(

Figure 2.1: Two priority queue model of a multiplexer

Let ig x be the number of packets in high-priority queue at thc end of slot & and ¢; ;. be
the number of packets in low-priority queue at the end of slot k. Let b; x+1 be the type-:
packets generated during the (k + 1)’th slot . The evolution of the high priority queue
length is given by:

iokst = (fok — 1)" + bo ki1 2.1

where
’ g — 1 ifige —120
(lo,k - 1)+ =
0 ifige—1<0
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The evolution of the low priority queue length is given by:

Dkt = (B — gk) T + brie (2.2)

where
. Lk — Ok if ik —ge =0
(ll,k - gk)+ =

0 lf il.k — g < 0
and

1 if o =0

Gk = 2.3)
0 lf iO,k >0

2.2 Source Model Description and Notation

As stated earlier on, a binary Markov model provides a good approximation in modeling
arrival traffic to the networks. Because of its simplicity and capability to capture some of
the correlation behavior, binary Markov sources have been widely used as basic building
blocks to model broadband traffic, including voice and video.

We assume type-i sources consist of m; mutually independent and identical binary
Markov sources, where my is the number of high-priority sources and m, is the number of
low-priority sources. Each sourc+ alternates between On and Of f states (see Figure 2.2).
State transitions of the sources are synchronized to occur at the slots’ boundaries according
to a two-state aperiodic and irreducible discrete-time Markov chain. The probability of a
transition from an On state to an O f f state is 1 — o; , while a transition from an O f f state
to an On state occurs with probability 1 — 3; , where ¢ = 0, 1 corresponding to the high
( = 0) or low priority (i = 1) sources respectively(see Figure 2.2). Thus the number of

slots that a source spends in On or Of f state is geometrically distributed with parameter
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a; or 3;, respectively.

o8

1-B

1

Figure 2.2: State transition diagram of type-z sources

When «; and j3; are high, the generated packets have tendency to arrive in clusters,
alternatively when o; and 3; are low, the packet arrivals are more dispersed in time. Also,
the sum of a source’s On and O f f probabilities, o; + J3;, is an index of the correlation of
the arrivals. When o; + 3; = 1, we have Bernoulli arrivals and the packets generated by
On sources are independent from one slot to the next; while the lower or higher is the sum,
a; + 3;, there more correlation are between the arrivals in two consecutive slots.

We assume that an On source generates at least one packet during a slot while an Of f
source will generate no packets during a slot (see Figure 2.3). Let f;(z;) denote the PGF of
the number of packets generated by an On source of type-i during a slot. Let fj; x be the
number of packets generated by the j 'th type-i On source during slot £ ; and assume that

f_,‘,‘,k is i.i.d., then PGF fi(zi) — E[Z{"'k],

Sk fyivhk ] 0 Stsedik ] 0  packets
} 1 i Il 1 1 l }
T T 1 T T T ] T

On On of of On of of

i'th (i+1)th  (i+2)'th (i+3)’th (i+4)'th (1+5)'th (1+6)'th  slot

Figure 2.3: The number of packets generated by j'th source of type-i
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Let’s define the following Bernoulli random variables:

1 a type — i source remains On in the next slot
Cji = ¢ given it s On in the present slot
‘ 0 otherwise
' 1 a type — i source remains On in the next slot
dji = { given it is O f f in the present slot
k 0 otherwise

The PGFs of ¢;; , dj; are given by

c(zi) =1—a; + a3 24)

dl(:l) = ﬂx + (1 - Bi):l (25)

Define a;; as the number of type-i sources On during A'th slot. Since each source
generates at least one packet per slot during an On state with PGF f,(z;) , then f,(0) = 0
. This also implies that if the variable i,  is zero then a;, must also be zero. Thus if the
priority queue-i is empty at the end of slot &, all the type-i sources must be in Of f state
during slot & since a packet cannot be transmitted during the slot that it has arrived in. Then

we have the following relations:

Qs k

bik = fiik (2.6)
=1
Qy k mi—a; i
Qi k=1 = z Cji + z dj,‘ (27)
1=1 ij=1

In this thesis, we assume that a summation is empty if its upper limit is smaller than
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the lower limit. The first term in equation 2.7 represents the number of sources which were
in On state during slot k£ and remain in On state in slot £ + 1 , while the second term
represents the number of sources which were in Of f state during slot £ and change to On

state during the next slot.

2.3 The Embedded Markov Chain Modeling

In this section, the queueing model under consideration will be formulated as a discrete-
time four-dimensional Markov chain, and a joint probability generating function (PGF)
Qx(z0, Yo, 21, Y1) with respect to the discrete time k is used to describe the queue model.
Following the embedded Markov chain modeling, we will derive the the functional equa-
tion that relates the PGF of the system between two consecutive slots.

The state of the system is defined by (iox, @ok, i1, @1 ), Where ¢, x denotes the length
of priority queue-i at the end of slot £, and a, x denotes the number of On sources of type-i
during slot k. Let us define Qk(zo, Yo, 21, y1) as the joint PGF of igk, gk, 14 and a;k,
then,

ok @0k i1k, Glk
£

Qk(zo,yo,zhyl)=E[7-’o Yo 51 W1

o mg o my
= Z z Z Z z;)oy{)ozily-{lqk(i()ijyilvjl) (28)
i0=0 jo=0 =0 j=0
where gk (%0, jo, 71, J1) = Prob(iox = lo, @k = jo, i1k = i1, @1k = J1)-

Then Qk-{-l(an Yo, Zhyl) is given by
Q0k+1 It k+1 al.k+l]

Qi+1(20, Yo, 21, 1) = Efzg"* g™ 2y

In the following we will derive the relation between Q.41 (20, yo, 21, ¥1) and Q«(zo, Yo, 21, Y1)-
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Substituting for g k41, 1) x+1from equation 2.1 and 2.2 in Qk+1(20, Yo, 21, 41) yields:

. . o lek—UF +bo k1 doksr (Ek—gk) +biear aiksn
Qi+1(20, ¥o. 21, 1) = E['~o Yo 2y 0 ]

.

First, let us condition on gk, {1k, Gok+1, Q1 k+1 » and substitute for bo k(. by k41 from

equation 2.6, then

Lok =1 4okt okt _(trk=9x)t H0iker ark e .
E|z Yy y 20.ky ks A0k +1: ALk +1

0 “1 t

. , 0.k+1 Gt k+1
_ ok =1*t a0kt (ine—gx)* Gitt g} 2= frok 2,21 Fk
=<0 0 < I <0 <1

Loky ik Q0o k+1s al,k+l}

_ zéio.k*l)+y80.k+lz£'l,k —yk)*ytlll.kn [fo(zo)]ao'k“ [f[ (zl)]al,kﬂ

2.9)
Thus

(to.x — 1)t aq, (he~9x)t ay, .
Qes1(z0.0,20,00) = E [30“ yol ity TR g o (zo) 0k [ fu ()]
Substituting for ag k41, @) x+1 from equation 2.7 in the above equation, we have

Qk+l(20v Yo, zlvyl)

mg—ag k m

—F z((]io'k—l)+(yofo(zo))z‘;gjf C10+Z,=1 djo z{il.k _gk)+(.’/lfl(31))2::f c,|+zj=ll_¢l"‘ dy

(2.10)

Let us condition again on ik, i1 &, Qok, Q1 , and substituting from equation 2.4 and 2.5,
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then equation 2.10 becomes

Qk+1(zo, Yo. 21, yl)

(1“ b [co(yo fo(20))]** [do(yo- fo(zo))]™~ a°"2(m o) eiy Au(z)] 2 da (i fi(z )™ ove

; + 1 20 ok te-ge)t .
(o= (Zc;(Jofo( ))) [do(yofo(zo))]'""z{' 9¢) (C_‘(ﬁu) [di(y filz )™

™

(y0fo(20)) di(y1 f1(z1))
2.11)
Let us define
- ci(yi fi(z))
NS T A) @12)
1) = [di(y fiz))™ (2.13)
B(1) = fI B.(1) (2.14)

where i = 0, 1, then equation 2.11 may be written as

Qr+1(z0. Y0, 21. 1)

= Elz* 13 Bo(D) 2 7 v By (1)
I)E[ (lox—-1)* YGo:: i‘lk -gi)* Yalk]

From equation 2.8 the above equation becomes:

Qk-}-l(zOv Yo, 21, Ul)

oo mg

Z Z Z Z §o- ”+Y10 (1o YJIQL(im]OJh]l)

19=0 jo=01{;=0j; =0
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removing the ( )* operator for (ip — 1)* in the above equation results in:

Qk+1(20, Yo. <1, yl)

oc mg oo my )
=B(1){z Z Z Z (‘0 l)}0 z[ lquk(iOijwilvjl)

mg oo my
£33 S S et Y g o w}

t0=0 jo=01,=0 ;=0
In the first multiple summation, letting the initial value of o be 0 instead of 1, and removing
the ( )* operator for (i; — 1)* in the the second multiple summation, the above equation

becomes:

Qk+1(20~ Yo. 21, Y1)

{ Z Z Y sevgeapy! i (io, Jo- 1. J1)

<0 to=0 jo=01=0j,=0

mg 2 mp

L Z z Z Z ~'0Y10 l}'l-’lqk(iﬂvj()?ilvjl)

20 j5=0Jo=012,=0j, =0

mo my

+ Z > Z S 0vgo = T Y gk o, oo i1 1)

10=0jo=011=1 j1=0
0 mo 0 m
+ 3 3 Y A Y qelio o in, 1)
10=0 jo=01,=0 51 =0
letting the initial value of i; be O instead of 1 for the third multiple summation in above

equation, we have

Qk+1(30, Yo, <1. yl)

mp

= B(1 { Z Z Z Z zé°)6j°zilYlj‘qk(io’jo’il’jl)

20 190=0 jo=0: j1=0
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my

—-— Z Z Z Y zovgezt Y qili, jo, i1, 1)

10—010_.0 11=0j;=0

0 my

+ Z Z Z Z A oy0 2l LY gk (ios Jos £1, 1)

t10=0jo=01; =0 j; =0

mi

- Z Z Z Z Yy z'” lYljlflk(lo Jo- i Ji)

10—0]0—0 11—0 ][—0

+ Z Z Z Z SRTART llqlt(i0~j0~,il~jl)}

10—0 )()—0 11—0 ][—0

26

(2.15)

As stated before, an On source generates at least one packet during a slot, if j; > 0 then

i; > 0; therefore if i; = 0 then j, must be zero , where { = 0, 1. Thus we have p(ip =

0, jo.11.J1) = O for all the values of j, > 0, and px(io = 0. jo.i; = 0.j;) = O for all the

values of jo > 0 and j; > 0. Therefore equation 2.15 becomes

Qr+1(0, Yo. 1. y1)

mo o my
{ Z IS 0¥ Y g (o Jo, 14 Jt)

<0 10=039=01:,=0 ;=0

my

1 0 0 oc
- Z Z Z Z 20 Y5 21 Y g (o, Jo. i1, Jit)

0.=0

S
S
I}
o
by
3
It
o
-
=
1]

1 0 0 0 o0 4
——Z Z Z Z 260}’()10~:l)l (Ik(lov.]() llv]l)

o
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Next by recognizing the above summations from 2.8, finally we have
1 , . 1 .

Qi+1(20, %0, 21, 1) = B(1) {‘;‘Qk(zoﬂo,zl, Y1) — —Q«(0,0, 2. 1)
<0 <0

1 1
+10u(0,0,3,11) ~ —Qu(0.0.0.0) +Qu(0.0.0,0)}
1 <1

or equivalently

Qk+l(ZOv Yo. 21, !/l)

~_ -

~0~1

1 . . -2 . -1
=B(1){,—Qk(:o,»o.zl.m+ DL Qe(0.0, 20 Y1) + = Qk(o,o,O.O)} (2.16)
«~( <1

This is the functional equation that relates the PGF of the system between two consec-

utive slots. In the next chapter, we will present a solution for the above equation.



Chapter 3

Performance Analysis

The objective of this performance analysis is to determine the joint steady-state PGF of the
high and low priority queue length and the number of On sources. From this result we
will determine the marginal PGF of cach priority queue length as well as the mean queue
length, variance and mean packet delay.

First, we will convert the functional equation into a mathematically more tractable form.
Secondly we will use the busy period distribution of the high priority queue to determine
the unknown boundary function Q¢(0.0, =1, y1). Thirdly, we apply the final value theorem
to determine the joint steady-state PGF, after this we present several special cases of our
solution, which shows the derived result is correct. At last we present the marginal PGFs
for the low and high-priority queues as well as the mean queue length, variance and mean

packet delay for the low-priority queue.
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3.1 Transforming the Functional Equation into a New Form

In chapter 2 we have obtained the functional equation describing the system, but this equa-
tion is not mathematically tractable because on the right hand side of the equation 2.16, we
have Qx(zo, Yo, 21, Y1) instead of Qx(2o. Yo, 21, ¥1)- In this section we will transform the

equation2.16 into another form which lends itself easier to a solution.

3.1.1 Preliminary Results

At first we present some preliminary results that will be used later. Let us define the fol-

lowing:
Ni(k+1) = X, (1) [No(k) |y =v. ] with Xi(0) = 1, Xi(1) = Zi+(1=-B)y.fi(z) G.D)

Uik +1) = Xo(1) [Ui(k) lp.ov:]  with  U0) = g, Uy(1) = 1 = ay + ey filz) (3.2)

where i = 0, 1 denoting the high or low priority queues respectively, then X,(k) and U;(k)

have the recurrence relationships given below (see [22]):

[SV]

Xi(k) = [8i + ey fu(z)] (k= 1) + (1 — o = Bi) fi(z) Xu(K - 2). k>2 (3.3)

U'i(k) = [dz +a,»y,f,(z,)]U,>(k - l) + (1 - G — dl)fl(zl)Ul(l“ - 2)1 k Z 2 (34)

Let us define
bilk) = 2L with ¢(0) =y, &(1) =Y, (3.5)

Bi(k) = [X: (k)™ (3.6)
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1

B(k) = [[ Bi(k) «X))

=0
withi = 0, 1; we can see that B; (k) [k=1 = [Bi + (1 — Bi)yife(z:)]™ which is same as what

we have defined in 2.13. It is easy to show that
B(k + 1) = Bi(1) [Bi(k) |y.=v.] (3.8)
if we define B!*(k) = B;(k) lyl:ol(n) and B*(k) = B(k) |y.=¢l(n). then 3.8 becomes
Bi(k + 1) = B,(1)B}(k), B(k+1)= B(1)B'(k) (3.9)
and from 3.9, it is easy to show that

__ Bi(k+n)

B (k) = 0 (3.10)

Next, we will present the solution of the homogeneous difference equations 3.3 and 3.4,

we note that they have the following characteristic equation:
A?—[Bl-{'_alfl(zi)]Ai—(l—al_,Bi)fi(zl) =0 i=011

The roots of the above equation are given by:,

g Y . . ~. 2 . — Y, — . > .
N = d.-+a.f;(~z)¥\/[ﬂt+a;f,;~:)] H-a =BG

The solution of the difference equations 3.3 and 3.4 are given in [22],

Ui(k) = DAY, + Dy, (3.12)
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Xi(k) = Culf, + Caud,; (3.13)

where Dy;, Dy, Cii, Co;, are constants which satisfy the initial conditions given in 3.1

and 3.2:
Xi0)=C,i+Cyu=1;

Xi(1) = Cpuhii + Coidii = Bi + (1 = Bi)yfi(2i);
Ui0) = Dy; + Dy = ys;
Ui(1) = Dyidiy + Doidi = 1 — o + oy fi(zi);

From the above equations we can solve for these constants,

1 2(!/1' - ytﬁi - al)fl(zl) + (/jl + aifi(zi))
Criz = = 3.14
S e e e B
Di = Yi 21 — i + awfi(z) = (B + afi(z:))y (3.15)
' 2 2\/(5‘+a‘fl(:l))2+4(1 —a, — B3:) fi(z)

in the above expressions Ay; , Cy, , Dy; are taken with the negative sign and Ay, Cai, Dy,

with the positive sign.

Also B;(k) is determined, which is given by
Bi(k) = [X.(k)™ = [CuXi + Cade] ™ (3.16)

Substituting 1 for 2; and y; in 3.11, 3.14, 3.15, 3.16 and 3.5 we have the following

results that will be needed later on:

/\li |:,=l =q, + Bi - 11 ’\Qi l:,:l =1 (317)
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Ciilz=14=t =0, Cai|z=14,=1 =1

Dli Iz,:l,y.:l = 01 D2i 12g=l,yi=l =1

¢‘(k) I:,:l,yl:l = ].

3.1.2 New Form of the Functional Equation

(3.18)

(3.19)

(3.20)

3.21)

Now with the available preliminary results, we are ready to transform the original func-

tional equation 2.16 into a new form which is solvable. Since we have modeled the system

as a Markov chain, the steady-state of the system will be independent of the initial condi-

tions. We are only interested in the steady-state behavior of the system, therefore we will

choose a zero initial condition to simplify our analysis. We assume that initially the queues

are empty and all the sources are in the Of f state, then we have:

pO(Oqov Ov 0) = 11 QO(::O? yOVZlﬁyl) = 11

QO(anv zl*!/l) = Iv QO(O! 07 01 0) = 1

Next we will show that the functional equation 2.16 describing the system can be writ-

ten as follows:

1 20— A k-l B(]) L.
Qk(ZOv y07zlyyl) = T:B(k) + Z i Qk—j(ovo'r zlv@l(]))
20 < j=1 Z'[;

(3.22)
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as we have stated earlier on, in this thesis, if the upper limit of a summation is less than the
lower limit, we assume the summation is empty.

Proof:

The proof of the above result is given through induction. By expanding Q«+1(20, Yo. 21, 1)
in the functional equation 2.16 for the first few values of £ , we have the following:

If £ = 0, the functional equation 2.16 becomes

Ql(zo,yo, 217111) = 3(1)

If K = 1, substituting from 3.5 and 3.9, in equation 2.16, we have

Q2(ZO» Yo, 21, 1)

= B { S B'(1) - £Qu0.0.5.81(1) + ZQu0.0.z01(1) +

<0

31—1

Q:(0,0.0.0)}

>

<1

= LBE) + 222 B(1)Qu(0,0, 21, 64(1)) + 22 B(1)Q1(0,0,0,0)

20 2o~y pal

If & = 2, substituting from 3.5 and 3.9, equation 2.16 becomes

Qs(zo,yoyzhyl)

= B(1){ 5B'2) + 22 B (1)Q1(0,0, 21, 61(2)
25 2021

Z9 — z1—1

+2 2B 1)Q1(0,0,0,0) + 2 =21Q(0,0,21,41(2) +

2021 2021 21

0,(0,0,0, 0)}

1 20— 2 20 — 2
= 5B(3) + Z=B(2)Q.(0,0, zi, ¢:(2)) + ——B(2)Q.(0,0,0,0)
ZO Zozl ZOZ[
20 — 21 21 —

+ 1B(1)Q2(070v070)

B(1)Q4(0,0,z1,¢:(1)) +

202y 2y
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Zo—Zl 2 Z 2
= B3 > 2Qa-,(0,0, 21, 61(5) _Z Q3-,(0,0,0,0)

B(j)
20 =1 G- Zt;

We can see that equation 3.22 is true for £ = 1, 2. Now we assume that it is true for
order £, then we will show it will also be true for order k£ + 1. Substituting 3.22 into 2.16

yields:

Qk+l(207 Yo, 21, yl)

1 20— 21 pi lBl( )
= B(1) 7_kB (k) + Z I+ Qk-;(0,0,z1,6:(J + 1))
<0 21 j=1 <0
71— LA BY(j
I.’l Z -’Ej)Qk—](OyoyO‘O) + 0z Qk(O 0 21 é[(l)) o Qk(O 0 0. 0)}
b j=1 % = 2

substituting for B(1)B'(j) from equation 3.9,

Qk+1(zoy!/o, 2Ly

1 -2 B +1 e
= jB(k+ ].) + 9 N ! Z (;]J-{rl )Qk—](ovov zlval(.] + 1))

~0 <1 =1 <0

Qc-;(0,0,0,0) + ==L B(1)Qk(0,0, 21, ¢4 (1))

+Zl—].

B(1)Q«(0,0,0,0)

<1

or equivalently

Qk+l(301 Yo, 21, yl)

= Lppen+2zny BU

ZO 21 j=2 z(;

Qx+1-5(0,0, 21, 61(7))
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— k ]
3L BU) 1 1)(0,0,0,0) + 22 B(1)Qu(0.0.21,61(1)

1
21 j=2 z'é 2021

= )Q«(0,0,0,0)

Finally, we have

1 2 B
Qent(or o 21 01) = 2B+ 225 B 0,050 0100

29 F4l I=1 ,,0

(‘l

-~ BU),,
Z 7T Qk+1-,(0,0,0,0), k>0

35

(3.23)

the above shows that 3.22 is also true for & + 1. and this completes the proof of equation

3.22.

3.2 Determination of the Unknown Boundary Function

Qk(07 07 <1, yl)

In equations 2.16 and 3.22 we have the unknown boundary function Qx(0, 0, z1. y1), which

is the PGF of the low priority traffic when high priority queue is empty and high-priority

sources are in O f f state. In this section, at first we will introduce the busy period distri-

bution of high priority queue and determine the PGF of the busy period, ['(w); then we

will use the busy period distribution to determine Q«(0, 0, z1, y1); at last we will derive the

expressions of ®(w), which will be needed later on.

3.2.1 Busy Period of High-Priority Queue

In this section we will determine the busy period distribution for the high-priority queue,
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Let us define

b =duration of the busy period of the high-priority queue in number of slots;

£(j) =Pr(b = jslots), j =0,1,2,3......

In the above definition, we assume that a zero length busy period corresponds to the
high-priority queue being empty for two consecutive slots. We note that according to this
definition, the high-priority queue is busy during k consecutive slots; but before and after

the k consecutive slots, high-priority queue is idle (see Figure 3.1).

busy period =0 } ¢ A\{} |
0 { slots

oypenod=1 | ¢ —— |
0 | 2 slots

busypeniod =2 | $ ¢ ¢ P —
0 i M 3 slots

2

aa

busy penod = j-1  f———F--------- { & @-------- ¢ —

0 k-j kjel k-l x slots

O : high priority queue is busy at thesc imbedded points
@ : high priority queue is empty at these imbedded points

Figure 3.1: Structure of a busy period

Let p.(0) denote the probability that the high-priority queue is empty at the end of slot
k , then it may expressed in terms of mutually exclusive events. Next, we show this for the

first few values of pi(0).

* po(0)
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Under the assumption that the queue is initially empty, we have:

0 1 slots

Figure 3.2: Queue is empty at the end of 1'st slot

* p(0)
If at the end of 1'st slot, the queue is empty, that is p;(0). then from figure 3.2, we see

the preceding busy period duration must be 0. Thus we have:

pi(0) = po(0)€(0);

-

busy period=1 F A\fﬁ ¢

(=]
—
9

slots

—

&
¥

-©-

busy period=0 I T

0 ! : slots

Figure 3.3: Queue is empty at the end of 2'nd slot

* p(0)
If at the end of 2’nd slot, the queue is empty, which is p,(0), then from figure3.3, we

see p2(0) may be expressed in terms of two mutually exclusive events. Thus we have:

p2(0) = po(0)&(1) + p.(0)&(0);
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. | Pasy &H |

busy period=2 [ N4 ¢ * P 1
0 1 2 3 slots

busy period=l | I & ¢ & {
0 l 2 3 slots

. [ | 1 _h & |

busy period=0 - — [ N Y |
0 I 2 3 slots

Figure 3.4: Queue is empty at the end of 3'rd slot

* p3(0)
If at the end of 3’rd slot, the queue is empty, which is p3(0), then from figure 3.4, we

see p3(0) may be expressed in terms of three mutually exclusive events. Thus we have,
p3(0) = po(0)£(2) + p1(0)§(1) + p2(0)£(0);
Following a similar analysis, we have,

ps(0) = po(0)4(3) + p1(0)§(2) + p2(0)€(1) + p3(0)§(0);

Finally, from above we can see that, p(0) = lePr(high-priority queue is empty at
the end of (k — j)'th slot which is followed by a busy period of (j — 1) slots) . Then we

have the expression:

pe(0) = >_€(7 — 1)px—;(0) (3.24)

j=I
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3.2.2 Determination of the PGF of Busy Period, I'(w)

In subsection 3.2.1, we have defined busy period probability distribution £(;) for the high-
priority queue. Now, we will derive the PGF of £(j).

Let us define the PGF of £(j) as

[(w) =) ()’ (3.25)
J=0
and define the transformation of p,(0) as
w) =Y pe(0)f (3.26)
k=0

Substituting equation 3.24 into 3.26 yields:

Y €3 = Dpe—j(0)w* + po(0)

=1

o

Ps(w)

~
It
—_

[

k
S €U - Upe—, (0)* + 1

1 j=I

u[\”18

Interchanging the order of summations, we have

£ ~ 1)pe—;(0)* + 1

KR

n'MS

Letm =k —j,thenk =m+ j and

1 =3 3 € ~ Upm(0)w™ +1

j=1 m=0
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from the definition 3.26, above becomes:

Po(w) = £(j — D’ +1,

‘MB

-
1
—_

lettingn =7 — 1, then j =n + 1 and
Po(w) = Pofe) 3 E()u™ + 1,
n=0
from definition 3.25 we have
Py(w) = R(w)l(w)w + 1,

thus

'_Po(w)—]._l _ 1
[lw) = Po(w)w —w(l Po(“)) 27

But Py(w) has already been determined and from [18], the transform £ («) for the high-

priority queue is given as follows:

Po(w) = ——— (3.28)

M(w) = (3.29)

In the following, we will show that ['(w) |,=; = 1. First we know z*(w) is the unique

root of equation zp = wAyY , if w — 1, the equation becomes zg = Ay’ . Because

mo

A2o |:o=1 = 1 (see 3.17), zo = 1 is the root of equation zo = A}’ , but we know this root
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is unique, then z = 1 is the unique root of equation zp = w3 atw = 1, therefore

2*(w) |u=1 =l . Finally we have
2N (w
[(w) lw=1 = ( )|u=1 =1 (3.30)
this completes the proof. The result ['(w) |,=; = 1 further shows that I'() is a PGF.

Let b be the mean busy period of the high-priority queue, then b = ["(w) = . In the

following, we will determine b. We may show that (see Appendix A equation A.6).

9z (w) | 1
a(.IJ w=l = l - Po
From 3.29, we have
2 (w) = wl(w)

0z (w)
=T wlM(w
Ew (w) + wl'(w)
substituting 1 for w, we have
0z (w ,
a;f} ) lu=1 = [(w) lu=1 + (W) |u=1

substituting 1 for ['(w) |,,=; and = for d—f‘—f}’l l.=1 we have

['(@) ot = 72
— Po
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thus the mean busy period of the high-priority queue is

3.2.3 Expression of Q:(0,0,z1,y1)

After having introduced the busy period of the high-priority queue, we are able to determine
the expression for Q4(0,0, z,. y1). The analysis will be similar with that of the busy period.

Clearly, during the busy period of the high-priority queue, service cannot be given to
the low-priority queue and the arrivals to the low-priority queue will accumulate. The busy
period includes only the slots during which the high-priority packets are served, thus the
arrival slot of the packets initiating a busy period is not a part of the busy period. Assuming
that the last time when the high-priority queue is empty is at the end of (k — j)'th slot,
then a low-priority packet may be transmitted during (k — j + 1)'th slot if the low priority
queue is not empty at the end of (k — j)'th slot. Therefore it is possible that we express
Q+(0,0, 2y, y;) in terms of mutually exclusive events as the following.

¥ Q0(0,0, 21, 41)

At the beginning, under the assumption that the queue is empty initially, we have

0(0,0, z1. 1) = 1

* Ql(ovovzlvyl)
If at the end of the 1'st slot, there are no high priority packets and high priority On

sources in the system, which corresponds to Q, (0, 0, z1, 1), then during the 1'st slot there

must be no high priority packets in the system which means the busy period of high-priority
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queue is 0, that is £(0), (see Figure 3.2). Thus we have the following
Q1(0,0, z1, y1) = £(0) B1(1)Q0(0,0, zy, #1(1)) = £(0) Bu(1)

where B, (1) accounts for low-priority packets accumulation during a slot.

* Q2(0,0,z1,m1)

If at the end of the 2'nd slot, there are no high-priority packets in the system and all
high-priority sources in are in O f f state, which corresponds to Q2(0,0, z1, y,) as well as
p2(0), then there are two mutually exclusive events (see Figure 3.3), ¢): During the 1'st slot
the system is busy for the high-priority queue; 7i): during 2'nd slot there are no high priority
packets generated in the system and at the end of the 1'st slot, there are no high-priority

packets in the system and all high-priority sources are in O f f state. Thus we have
(2(0.0,z1. 1)

= £(1)B1(2)Q0(0. 0. z. 9;(2))

+E0)B() { - [Qu(0.0.51,60(1)) - @u(0,0,0,0)]+ Q1(0.0.0.0)

<1
where B,(2) accounts for low-priority packets accumulation during two slots, and B, (1)
accounts for low-priority packets accumulation during one slot; z; in the denominator ac-
counts for a low-priority packet transmission during slot 1 if the corresponding queue is
non-empty.
* Q3(0,0,z1. 1)
If at the end of the 3'rd slot, there are no high-priority packets and all high-priority

sources are in O f f state, which corresponds to @3(0, 0, z, 1), then there are three mutu-
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ally exclusive events (see Figure 3.4). i): both during the 1'st, and 2'nd slots, the system
is busy for the high-priority queue; i1): during 2'nd slot the system is busy for the high-
priority queue, and, at the end of the 1'st slot there are no high priority-packets in the
system and all high-priority sources are in O f f state; i7i): during 3'rd slot there are no
high-priority packets generated in the system and at the end of the 2'nd slot, there are no

high-priority packets and all high-priority sources are in O f f state. Thus we have
Q3(01 07 P Ul)

=£(2)B1(3)Q0(0,0, z1. ¢,(3))

+EDB2) { - [Q1(0.0,21,601(2)) = Qu(0.0.0,0)] + Q:(0.0,0,0)}

+EO)B(1) { [Q:(0.0.21.01(1)) = Q(0.0.0,0)] + @2(0,0.0.0)

where the meaning of B,(3). B{(2), Bi(1). and z, is the same as explained before.

Following the same logic it is easy to find that

Qk(ov 01 M yl)

=&(k — 1) B1(k)Q0(0,0, 21, 81 (£))

k-1

+—1' 3" & - 1)Bi(j) [Qk-5(0,0. 21, 1(4)) — Q«-;(0,0,0,0)]

Zl j:l

k-1

+ Z f(] - 1)31(].)@[;_.](0'0, 0»0)

i=1
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combining the similar terms in the two summations above, we have

Qk(os 01 2, yl)

k-1

=&k - 1)Bi(k +%Z§J_IB(J)Qk (0,0, 21, ¢1(7))
=
i1 — lk-l
+= Y & — 1)Bi1(5)Qk-,(0.0.0,0)
a o

after change of the subscriptions, equation 3.31 can be written as

Qk(0,0. 21, 1)

=§&(k-1)B +—Z£ —Jj = 1)Bi(k - 5)Q,(0,0, 2, &1 (k — j))

~l]

_J -1 B( _J)QJ(()‘OOVO)

45

(3.31)

(3.32)

Next we will transform Q(0, 0, z;. y) into a new form. At first let us define the fol-

lowings:
C*(k) =¢&(k - 1)B{ (k)

k—y

LS Cn(k - )2,(0,0,0,0)

=l

I, =
k-1 2

Substituting 3.33, 3.34 into 3.32 gives us

Qk(0,0, 2, 31) = Z k= )Q;(0,0, 21, é1(k — j)) + Ii_,

Next, we will present @, (0,0, z1, y,) for the first few values of .

* Q1(0701 21, yl)

(3.33)

(3.34)

(3.35)
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From 3.35 for k = 1, we have
Q1(0,0,z1,1) = C°(1)

* Q2(0107 Iy, yl)
From 3.35 for k = 2, we have

1
Q?(Ovovzl'yl) = CO(Q) + TCO(I)Ql(0707311¢1(1)) + [?
<1

=C%2) + —I—CO(l)C‘(l) + 1

<1

* Q3(0107 21, yl)

From 3.35 for & = 3, we have

1

<1

2
Y. CO(3 = 7)Q)(0,0,21,61(3 - ) + I

1=1

Q3(07 Ov 21, Ul) = CO(B) +

= @) + ~ @) [C)] + S [erer+ ety + 1 + 1
M ~1

— 0Y3) + Leo@)cin) + Levet @) + =P )CH1)C) + %C(l)ll‘ + 1
21

2y 21 21
) 1
= C(3) + [lc"(l)] ci(2) + [ico(z) + —1500(1)0*(1)] C(1) + ~CO)I! + 12
<1 21 Zl 21

* Q4(0107 zlyyl)

From 3.35 for k = 4, we have

3
Q4(0,0,21,y1) = C°(4)+zll 3" Co(4-5)Q;5(0,0, 21, $1(4~)) + 13
Jj=1
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1 1 1
= CO(4)+Z_[CO(3)Q1(O’O’ <1y ¢l(3))+z—lco(2)Q2(07 01 <1, ¢1(2))+;CO(1)Q1(07 Ov 21, ¢l(1))+lg
= OO+ C3)CP 1)+ L) [02(2) + Lerye + 13]

21 21 21

+Looq {01(3) + [icl(l)] c(2) + [i

21 21

C'(2) + %01(1)02(1)]
“l

1 2
+—C'(1)I} +12‘} + 13

<1

+ {ZLCO(?,) + 5C%2)C* (1) + 712C°(1)C‘(2) + }—_,,CO(I)C‘(I)C'Z(l)} Cc3(1)
1 “1 “1

+IS + [%CO(I)] I} + [ﬁc"(?) + —%C“(UC‘(I)] Iy

<i

From the above, we can find that (0. 0. =, y,) can be expressed as:

Qk(0,0,z1,4) = Zak,C’“ +2ak.11k“ k>1  (336)

t=1

where a; are the following:

dg = ].,
a, = lCo(l)
2
= 2C(1)ay;

<1

1 o L 1
ar = —C°(2) + 5C°(1)C'(1)

4] 1
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1 1 1 .
az = Z—C°(3) + %CO(Q)Cz(I) + j2—C°(1)Cl(2) + KCO(I)Cl(I)CZ(l)
1 4 2 2
1 l o 1 1 1 . 1 o 1
= ~—C (3) + Z—ZC (H)C'(2) + jC (1) ~—C (2) + ?EC (1)C'(1)
“1 1 <1 <1 ot
1 L 1
= —C%3)ag + —C'(2)a, + —C*(1)az
2 2 2
From the above, we can see a; may be written as:
1 -1
a; = —Za,CJ(z -7, i>1 (3.37)
21 ;=0
Finally, a; may be expressed as :
r'(ro} ro
= Z H (f’n_[ - rn) |,-0_—_l . ] Z 1 (338)
r=0 n=1 Zi
where
r'(ro)  ro—l r -1 MZ—:[ Fro-1=1
Z rlz—o nX_:O r3=0 Z
and
ro—1 0 lf ry= 0 )
eF)=1+ Y u; with u; = 1<j<rg (3.39)
= 1 if >0

we note thatif uj, = 0, then u;, = 0 forVj; > ji .

Next, substituting 3.34 and 3.38 into 3.36 yields:

Qk(oa 07 21, yl)

all

ﬁ'[\/]’“

l:i 5 (Tnl_rn)

n'[\/]a-

,_.
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k-1 i ©T(k—=i-1)k—i-1 1

>y %

i=1 A= =0 n=1

Zl—l

. C* 1 (i41-h)C™ (rn_y —7n)Qr(0,0,0,0) (3.40)

b4 Zi(r)

Substituting equation 3.33 into equation 3.40 yields:

Qk(oy 01 2y, yl)

(i = D)BE ()€ (rnoy = ra — 1) B (Pt — Ta)

1
E(F)E(rn—l —I'n — I)B{"(rn—l - rn)
i=l h=Il F=0 n=1 <}

£(i = B V(i + 1 = h)Q4(0,0.0.0)

substituting equation 3.10 into the above equation, we have

Qx(0,0,21,u1)

Plk-k—i | . By (k) By(ra-1)
A Vg T T Dy

kgl Ll l Bl(rn—l)

2 | &1 = 1a — 1)—_Bl(—rn)_

. Bi(k - h)
SOl

Q1(0,0,0,0)

In the first multiple summation, B, (ix—,;) = B1(0) = 1; in the second multiple summation,
By (tk—i—1) = B;(0) = 1. Thus all the factors in the denominators in the above equation

will be cancelled out by the factors in the numerators, and we have:

Qk(oy 07 <1y !/l)
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2 - 1 k-1 i ri(k=t=1)k-i-1 1
+ 1 Z Z £ H "E(F)f(rn—l —T'n — 1)
< i=1 A=l r=0 n=1 ~}|
£(i = h)Bi(k — h)Qx(0,0,0.0) (3.41)

Finally, the equation 3.41 may be expressed as:

k
Qx(0,0,z,y1) Z B\ (k)
=1
2 1 k-1 t
ok —1 = 1)E(i = h)By(k — h)Q#(0,0,0.0). k>1 (3.42)
=1 h=!
where
(k) k
Z H (,.)'f("n 1 — 1), k>1 and ¢(0) =1 (3.43)

In the Appendix F, the equivalence of cquations 3.42 and 3.32 is shown through induc-

tion.

3.2.4 Determination of the Expression of ¢(w)

In subsection 3.2.3 we defined a function of ¢(k) (see 3.43), in the next, we will determine
the transformation of ((k), which is needed later on. Let us define the transformation of

o(r) as
= z o(r)w” (3.44)

r=0
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In the following we will use the PGF of busy period, ['(w), to determine ®(w). At first,
since ¢(k) is a multiple level summation, we will find a way to reduce ¢(k) to a single
level summation. As may be seen from 3.39 the power of z, £(T), 1s equal to the number
of nonempty summations. Grouping by the power of z; in equation , we rewrite 3.43 for

the first values of k.

* (1)

2 n-1r-1

EB—r = 1)&(ry—ry = 1)é(ra —ry3 - 1)

ri=0 ra=0 r3=0 ~[

0.1

=3 =€)

u-Ozl
2 0

z Z_z 3—r—1)&(ri—r - 1)
=1 ra=0 31
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rll

+Z Z Z 3£(J—rl—lf(rl—r)—l)f(rg—rg—l)

r1=2 ra=1 r3—0
* o(4)

ri—-1 ra—1 r3—-1

Z > ) :(,)f —ri=1&(ri—ra—1)§(ra —r3 = 1)§(r3 —ry — 1)

ri=0 r2=0 r3=0 ry=0 2|

° 1
= —£03)

r1=0 <1

>

ra=0

4—7'['—1)6(7'[—7'2—1)

+
2
i Mo
n
-

rp—-1

3
+3 D Z 35(3—r1—1) Eri—ry=1)€(r2=r3 = 1)
r1=2 ra=1 r3= 0 <l

-1 ra—1
+Z Z Z Z 15 ‘rl“l)'f("l—rz—1)f(r2—"3—1)5(f'3—f«x—1)

ri=3 r2=2 ri=1 ry= 0"1

Finally, (k) can be expressed as the sum of ¢;(k):

k
=Y, (k), k>1 (3.45)
=1

where 1;(k) denotes sum of the terms in 3.39 which have the same factor =] in their de-

nominators, ¥7;(k) is given by the following subset of the sample space of o (k)

pE ==Y ¥ ¥ Y S Iraa—ra=Dlne. J22 (346)

“l ii=7-1 j2=j-2 j3=j-3 1=l j,=0n=

—

1
ifi=1 k)= 7—15(16 - 1), (3.47)
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From the definition of ®(w) (see 3.44), and noting that if k = 0, »(0) = 1, we have

el 0o k
=Z<p(k)wk =Y uj(k) w1
k=0 k=1j=1

Interchanging the order of summations, above becomes
o0 00
Bw) =Y S k)t +1

Letmmn = k — j ,then A = m + j and we have

j=1m=0
If we define
¥, (w) = Z ey (m+ )
m=0
then
¢(w) = Z \Ilj(w)w’ +1 (3.48)

Next, we will find the expression for ¥(w) . Let us determine ¥, (w) for the first few

values of j,
* Uy (w)
U(w) =Y h(m+ ™
m=0

Substituting from 3.47, and using the definition of I'(w) from 3.25, ¥, (w) becomes

¥ (w) = i lf (m)w™ = zilf‘(w) (3.49)

m=0 <1

N
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£ W)
o) = 3 alm + 2w

m=0

Substituting from 3.46, ¥;(w) becomes

o© m+l 0
Upw) =Y > 2f(m-{~ L—r)é(ry —r— D™

m=0r;=1 ro-O

Em+1-r)é(r, — D™

;u -

lettingr =r; — 1,

lettingn =m —r,

r=0n=0
1
= —ff(w)l“(w),
thus
2

Wy (w) = (F—““l) (3.50)

2
* \I’g(LU)
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Substituting from 3.46, ¥;(w) becomes

m+2r—-1 0

ST Y Lem 2 r)e(r - - DE(R - 15— ™

m=0ri1=2ra=1r3=0 “i

m+2 T[—l 1

=3 >3 6m+ 2= r)g(ry = 12 = DE(ra = D

m=0r1=2ra=1 ~

lettingr =r; — 2
1 x m o r+l
Us(w) = = 2T Y £(m—r)é(r —ry + 1)E(r = D™
“1 m:Or:0r2:[

U ~—13- Z Z E(m —r)é(r - h)é(h)w™
o

lettings=m —r,

55
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interchanging the order of summation, and letting k = r — h gives

U3(w) = ?F(w) > Y &k)E(R)S N

thus

3
U3(w) = (l‘“—)> ; (3.51)

3

From equations 3.49, 3.50, 3.51 we can conclude that:

¥, (w) = (&“—))J (3.52)

finally we have the result,

P(w) = ———— (3.53)

3.3 Steady-State Solution of the Functional Equation

In this section, we will complete the solution of the functional equation 2.16, given by
3.22. The objective is to determine the four-dimensional joint steady-statc PGF of the
queue lengths and the number of On sources of both high and low priority traffic. From
this solution, we will be able to determine the marginal PGFs of the queue length for both

high and low-priority queues, and consequently the mean queue length, mean delay and
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variance.

3.3.1 Transformation of Q. (2, yo, 21, Y1)

First, we will determine the transformation of Qx(zq, ¥, 21. y1) With respect to discrete-
time k.

As may be seen from equation 3.22, Qk (=0, Yo, Z1- 1) contains the unknown boundary
function Qx_;(0.0, z;, ®(j)) which we will determine next,

From 3.42 we have
Qk-,(0,0, 21, y1)

k—y
=3 ok —j = i)&(i = )By(k - j)
=1

k—1—
I-y 1_1

%]

+ gk =1 —1—j)&(i = h)Bi(k — j — h)Qa(0.0,0,0),

1=l A=l <1

then,
Qk—j(01 01 21, él(.}))
k—j ]
= 3 olk ~ - D€~ DBk - )

F Y3 ATl = 1= - gl ~ Bk~ ~ 1)@u(0.0.0,0

Substituting above equation into 3.22 yields:

Qk(zo, Yo, 21, yl)
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klk]B

B+ 222 Y ¥ BU e ei-10Bik- )

0 <1 J=lLi=1 =<0

+’°_l““"'1z_j Z Z J. (k—1—i—Jj)E@i—h)Bi(k — j — h)Q4(0.0,0,0)
J=1 1=l h=1 <0

+21 - 1% lB(J)

=Qx-;(0,0.0,0), k>1

=1 =
from 3.7 and 3.10 we have B(k) = By(k) B\ (k). Bl (k — j) = -2 and Bi(k — j — h) =

B—;}%l, substituting these results in the above equation gives us

Qk(zﬂv Yo, <1, yl)

5 -
“l  j=1 ~0
(3.54)
Let us define the transformation of Qx (=g, Yo, 21, ¥1) as
jo o]
Q(z()v Yo, zlvylvw) = Z Qk(z()v Yo, 21, yl)wk‘ (3'55)

and define the transformation of Q,(0, 0, 0, 0) with respect to discrete-time as:

[e,9]

Z (0,0,0,0)w (3.56)
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then

o0
Q(z0. Yo, 21, Y1, w) = Qo(0, Yo, 1. y1 )’ + Z Qx(z0. Yo, 21, y1)w*
k=1

substituting equation 3.54 into the above equation results in:

Q(ZOY !/07 ME ylvw)

e k., <0 — <1 x k-l k= BO(]) k
=1+ Bk + ) —o(k—j=0g(i-1)Bi(k)w
k=1 20 U k=1 y=la=l <0
20 — = _ oo k-1 k-1-3 B,
pomnnols > 05-’)('9([,_1_1— NEGi— ) By (k= h)Q(0.0,0,0)u*
~1 ~1 k=2 j=1 =1l h=1 <0

(3.57)

Let us define A, , 1, and A3 as:

S | - KB ) .
1 = 1+4) — Bk} + Ny OjJ)gj(k —j=DE(=1)B (k)«* (3.58)
k=1 ~0 ~ k=2 ;=1 i=l ~0

£(i = h)By(k — h)Qx(0,0,0,0)w*  (3.59)

a—lz i > QH (0,0, 0,0)u* (3.60)

In the following, we will determine A, , 4, and 43 one by one.

* Determining the expression for -,:
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Interchanging the order of outer summations in the second term of A,

) k= j—i)€(i=1) By (k).

41_1+Z Bo(k) By (k)w*+ 2= ‘fj i

21

next, interchanging the order of inner summation,

o OF L ICLICTE e 35S 5= B j—ie(i-1) B, (k1

<1 j=

._.
-
1
—
.
||
~
+
-
¢
<

lettingm=k—-i—j,
A, =1+ Z — Bo(k) By (k)"

Bulj)

— 2 Z Z Z "L f([ - ]_ (m + 1 +j)wm+z+1
=1 1=l m=0
Substituting for B (k) and B, (m + i + j) from 3.16 in above equation and then expanding

it using binomial theorem yields:

o e I n _\mi-n
4 =143 3 Bl T (k)" (Caks)™ T A
=l n=0 "0 n

my Bo(]'

=0 0

N

liii w(m)&(i — 1)

j=1 i=1l m=0

2

my=n LSS

my (Cl /\m+:+]) (C /\m-rH-J)

n
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replacing (i — 1) with ¢ in the second multiple summation,

Botk) | | (Cudk)” (Cars)™ "t

my—n wm+t+l+1

(C[l/\rlr:+z+l+j) (C /\m+z+l+1)

putting together those terms with power m or i, we have ,

m m n my—-n
k k t k
11 = l+z Z (C“A“) (CQ[/\-“) w
k=ln= 0"0 n

— [ M Bo(.l)

o) (At A=) ™ g(i) (AR AR ")’

<1 j=1 i=0 m=0 n=0 n “0
1+ L+)\™~" 14
‘(C[[/\“ ) (C‘Z[/\ ) w'

substituting from 3.44 and 3.25,

X mi my £\" y™M-n g
4[ = 1+Zl Zo 0 (C“/\“) (C2l/\2l) W
n=0 < n

22255 2 e (o) T (o)

j=1! n=0 n “0

- (Cu/\}?L ) (Czlz\l“)ml-nwl“
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Substituting for Bo(k) and By(j) from 3.16 in above equation and then expanding it using

binomial theorem yields:

my mi mo ml

315 (CmA'fo)' (C.ZOA';O)’""" (Cudt)" (Cady)™ "t

b
Il
—
~
il
o
3
il
(]

—~

=

-z 0 mo mu [ m 1 1 1
Z) — 2y 0 1 J J \'no
=y 7 (CioXlo) (Caol)
d j=1 l=0 n=0 { n <0

(CuM)" (Cadi)™ T 0 (AT ) T (WA ) o,

interchanging the order of summations and rearranging the terms in above equation resuits

in:
mg my e o} l k ,”0 "ll
A=14 S (Ao A ) ClyCpo-ten ey
=0 n=0 k=1 *~0 l n
. _ ~ Mg my 1 J my my
<0 7 ~L I ymo~lyn ym—-n { ~mg-l
T Z Z (,—'\10’\20 AliAy W C1oCho
“1 =0 n=0 ;=1 ‘~C { n
n my—n n ymp-n n \my-—-n
(Cudi)™ (Canda)™ ™" @ (MAR ™) T (AT At ~"w) .
Because

o) ] L ymo-ly\n ymy—n,
z /\l Amo- l/\u /\m1-n _ /\10/\ \llA w

1020 i Wl o= o —1 mi-n
= 20 — Mg ABR A7 AL
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and from 3.53, ¢ (/\'1‘1)\'“"" ) = nn n‘;r(/\ )’ A becomes

— [ Mo mi | (Cioho)' (C20A20)™ " (Cidi)" (Cod)™ " w
A=1+2, 3, 20 — M Ap I AT

(=0 n=0 ) n

_ mg my m m
+22Ay S| el emet (Cun) (Canda)™ "
1 =g n=0 { n
AL AT -‘A?l,\"“'" al (AR "w)w

1

. il -
z0 = MoAR TARAGY M 2 — AR AR W (A A ")

1, = l+mo - | ™o my | (Ciohio) (Caora0)™ " (Cridi)™ (Carda)™ ™" w
1= mo—{yn ytiy—n
(=0 n=0 [ n .;. - /\10/\ 0~ A l’\ L %)
— e T my v { mg~{ n mp-n
+(z0—2)). Y (CroAi0) (Ca0A20)™ " (Cuudn) (Cauda)
=0 n= { n

‘ A AR (AR AR ") w
(20 — MoAZ ~AmAT W) [20 = AR AR "l (AR AR )]

from 3.27 we have wl(w) =1 — thus

Py (uJ)’

|
Py (Am g w)

A AR WD (AR AR ) =1 - , (3.61)

substituting 3.61 into A, gives:

, | o i (Cm/\lo)l(czol\zo)mo_[ (Curi)" (Carda)™ " w
:ll_—‘].'*'z Z /\110/\ -lA /\ml—n

(=0 n=0 ) n
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mg my mo nmy mo— n my-n
+(20—z)) Y (Cioro)' (CaoAa0)™ ™ (CirAn)™ (Cardar)™
=0 n=0 l n

[Po (350 ") ~ 1] w

'(ZO — /\ OAmo l/\?l/\mx n ) [(~ _1 [)0 (/\“/\ml nw’) + 1] (362)

* Determining the expression for 1, which is defined in 3.59

Interchanging the order of summations of A,

— 3 — 20 oc -] 1 Y
B na IZ 5 BtL(J)¢(k_1_i_j)§(z—/z)Bl(k—h)Qh(O,O,O,O)w"

Eod
|

Ay = 223 lii > ) B‘;ff)dk—l—z‘—j)&(z‘—h)Bl(k—h)Qh(o,o.o,O)wk

K
|
&
|
.t_e
&
17
—
M3
M

i Bo(j)g(k_l_l'_j)f(i—h)Bl(k—h)Qh(0,0,0.0)w"

lettingm =k -1-7j,

™

PR k1t ZZ z_j 5 B‘;?b —1)E(i=h) By (m-+i-+j—R)Q4(0,0,0, 0™,

21 21

interchanging the order of inner summations

™Ms

-1 -1 & &
Af_)=0 1<l ZZ

<1 j=lh=11i

i B(igj)Q(m—l)f(i“h)Bl(m+i+j—h)Qh(0, 0,0, 0)wm+i+j,
“0

=1

1]
>
3
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lettingn =:—h,

g

j)sﬂ(m—l)f(n)Bl (m+j+n)Qx(0,0,0,0)w™ " +h+s,

I Tk YL S B"(’)g(m)g(n)B[(m+1+j+n)Qh(o,0, 0,0)wmHLEn+h+s,

21 2l JTlhsincom=o %0

,—{2 = 20 ;‘ 21 Zl.'— 1 [Q(u) _ 1] i i i BO(j)g(ﬂl)f(n)Bl("l-f- 1 +j + n)wm+l+n+j

Substituting for By (m+ 1+ 4+ n) from 3.16 in above equation and then expanding it using

binomial theorem yields:

3

Iy

m+1l+y+n\t m4l+g+n) M
(Cudiit™+") (Coidiy

NgL

Azzijizl‘l[Q(w)-l]iZ

“1 <1 J=ln=0r

..
=
Il

=}
Il

=)
~

m)&-(n)wm+l+n+1

putting together those terms with the power of m or n, we have:

_ - oG 0 o0 my m Bol(1 i : m —i
4,=0_23 1 QW) =135 > > 1 05]) (Cu/\{fl) (C'zl)‘-lzfl)

21 21 j=ln=0m=0i=0 \ ™

W o(m) (A AR ) " E(n) (M AR W)
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substituting from 3.44 and 3.25, above equation becomes:

A, = 20 .’— 2 :’1;1 [Q(w) B 1]Z§j nmy Bo(]) (C“,\“’l) (C2l/\]+l)m‘-'

j=1i=0 i 3

w T (X AR W) T (A A )

substituting for (/\‘“/\Z‘l‘ ' ) from 3.53 , we have:

00— <1< X & m Bo(j S\
Ap= =2 - Lz [Q( -1 > l (ig]) (Cu)\{r ) ((’»11\1 l) AL
< j=t 1=0 i 20

Al (A AR w)
— AL AT 'u,r(,\ AT )

Substituting for By(j) from 3.16 in above equation and then expanding it using binomial

theorem yields:

4= 2= EED o0 gy ST (CoM)t (Caori) ™"
o Jj=1 k=0 1=0 k ;
(euNtt) (Cm,\“l)”““.w”‘ [ (A A )

) )
Z_é Z[ —'\lll/\'l"il lwr( l/\"“ t )

interchanging the order of summations,

1) Mo M|y my

A2:(ZO—21)( —I]ZZ

2y k=0 i=0 k 1

k ~mo—-k
ClOC'ZO
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(Cw\u) (Carda)™ 'l (/\'“,\""" ) o
_A“/\ml-!w["( ;ll/\ml i ) =

1 —-kyt ymp—1 J
(g)"fo’\g(l)o k’\lu’\'ul “f’)

Za — 2z — 1 mqo m nl() m
‘_‘2 — ( [ zlz( 1 ) [Q((AJ) _ 1] Z: Z L Cfocmo ~k

1 k=0 i=0 k i

(Curn)' (Carda)™ "l (’\il’\;nll—iw) )\'fgz\’"" DB
1[1\;"11—lwr( /\rnl ¢ ) AI[COA"lo k/\l /\ml lu)

o8 W
substituting for A}, A7} ~'wl (,\'“/\"‘l "t ) from 3.6! in above equation gives:
1) mo Mt my my

-1y > (CroMo)* (Caorag)™

1 k=0 1=0 k i

(Curn) (Cad)™ 'w [Po (/\‘uz\"" lu.) - 1]

(20— Ao A FMAR ) [(20 = 1) Py (AL AT ') + 1]
(3.63)

* Determining the expression for -3, which is defined in 3.60

Interchanging the order of summations, A3 becomes:

lettingl =k —j,

4= 225 5 BB 60,0,0.0
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substituting from 3.56,

A3=Zl_1 IIZBO(.} Bl ) )

h

j=l

Substituting for By(j) and B,(j) from 3.16 in the above equation, then expanding them

using binomial theorem yields:

o —1 Jo Ml my my k mo—k
4=2Low -1y 3 (CloMo)” (Cao¥ho)
21 7=1 k=0 =0 k i
j t J my -t wJ
(Cudh) (Cade)™ " o=
=0
putting together those terms with the power of j,
5 -1 = o m C vmg — r oang =1
Ay = l~ 20 [Q(w) - 1 Z Z Cfoc'zoo kCqul
Il k=0 1=0 k l

1 J
k ymo—-kyt ymy—t,

J=1

Iy -1 2 Mo my k ~mg—k, my —t
Ay = <0 Qw) - 1]2 Z CloCa’ "CLCH'
41 k=0 1=0 k ]

k ymo—-kyi ymp—t,

. /\10/\ ’\ll’\ll w
mo—k m 1

20 — M A0 N Ag
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finally we have:

_azl o -y ™™
k=0 1=0 k i

3.64)
_(Cm/\lo)k (Caodao)™ % (Cridny)! (Cudy)™ w
20 — AR AT TEAL ATy,

Now by putting 3.62, 3.63 and 3.64 together, we are able to determine Q( zq, yo, 21, Y1, w)

as follows:

Q(201y03311 ylvw)

— o [ Mo m (Cm/\lo)k(czof\m " (Cudu) (Coda)™ ™ w

143 5

k ymo—k my—t
k=0 i=0 k ! — AMoAze ALY W
mo my my my
k y "l()"k
+ (20 — 21) (CioA10)” (C20A20)
k=0 1=0 k i

. (Curi) (Coda)™ l[Po (/\‘“)\"” : )— l]w |
(20 = MoA5E ™ XL ASE "'w) [(20 = 1) Po (M AR ) + 1]

+(ZO - le (Zl - 1) [Q(w) _ 1] § il: Mo ™ (ClO/\lO) (Cz()/\zo) -k
2 k=0 i=0 k )

(Curu) (Cada)™ ™t w [Po (/\‘“/\"“ ' )— 1]
(~0 = MoAS M A T w) [z - 1) Py (M AR w) + 1]

mo nm mo ml

Q) -1y S

k=0 1=0 k 1

(CloA10)* (Capha)™ "
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(Cu)\u)i (Cay )™ W
/\kO,\mo—k/\ /\m[ -t

we note that the second term and the third term of the RHS of the above equation have some
common factors, after combining these terms, we have the transformation as the following

result:

Q(307 Yo, 1, yly‘-‘J)

_ l+§ g‘: Mo my \ (CioA10)* (Caodao)™ ™ * (Cridin)' (Carda))™ ' w
k=0 i=0 \ i 2g — AR ATk AL ATy
/
p— 2 Moo / my my mg—k t my—1
= 'Z ) (Cro10)* (Caodao) ™ ™" (Cridin)* (Can dan)™

LO:O\/; \i

[P (MAfw) = 1] w |
(20 = Mo TEA AR W) [(20 = 1) Po (MM ) + 1]

20— 21 ) (21 — 1 mo my mg m 3 mo -
e 13( : )Q(w)z > (CioA10)* (Caoa)™ ™
2 k=0 i=0 k t

. (Cudin) (Carday)™ ™ [Po (/\'u)\"“_' )— 1] |
(20 — Mo A5 * M AT ) [(20 = 1) Po (M ~'w) + 1

1 = Mo mi mo—
2 [Qw) - 1]>. (Cioro)* (Cagag)™*
k=0 i=0 \ &k ;

) (Curur)’ (sz/\-n)m‘_' w

20— Mo Ao AL G w .69
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3.3.2 The Steady-State Solution of the Functional Equation, Q(z, yo, 21, y1)

In the previous subsection, we have obtained the transformation of Qk(zo. ¥o, 21, 1) with
respect to discrete time k (see equation 3.65), now we are ready to determine the steady-
state joint PGF Q(zo, ¥o. Z1, ¥1). which may be determined from Q« (2. ¥o, =1, ¥1.w) through
the application of final value theorem.

Let us apply the final value theorem to both sides of equation 3.65,
Q(z0, Yo, 21. 1) = ii_’ml(l—w)Q(Zm Yo, 21, Y1, W)

2 g | Mo | m (CmAm)k(C»o,\,o)"“’"‘(cmur(Cw\n)"'*"’w

—-hm —w) |1+ Z — vy
] OSSR VIS

(Cll)/\lo)k (C'.’O/\-_)g)'""“k

' (Cudu) (Copda)™ ™ [Po (Ailz\f;i“‘w) - 1] W }
(20 = MoAge AR ) [(21 - 1) Po (Mg ) + 1]

. 20— 21) (2 Jo M| mo my o~
+ lim (1 -w) (o lz)( — w) S (CoAo)* (Caodzo)™ ™"
“= t k=0 i=0 \ k& i

(G Cada)™ e [P (MM ) — 1] }
(20 = MoAme ™ MR w) [(21 — 1) Py (M AT w) +1

mo my Mg m o —
+lm(1 —w) ( Q(.u =21 (Ciohi0)* (Caoao)™ "
k=0 i=0 \ & ]

(Cu/\u)l (Carda)™ ' w
/\LO/\mo —k/\; Aml l
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Because

— | ™o my | (Ciohio)* (Czo/\zo)mo_k (Cu/\u)' (Caur))™ 'w

lim(l-w) |1+ o mi—i
w=l Z_‘:) ;) k i 20 — MoA% ‘u/\ '

lim(1 - w)Q(w) = Q(0.0,0.0) =1 —p,

w1
lim(1 - w) [Q) - 1] = Q(0.0.0.0) = L = p,

where p is the total system load (see [22])

! m(L-8)f _ dA\y!
= X it} ;= 'l,l = <t
p Zp e .)—al—‘jl

Z: f;’(zi)lz,:l

2 dz, '
the joint PGF becomes:
Q(=0, Yo- 21. Y1)
20 = 21 > e Mo m mo-— l mp -t
= O~ -3y ¥ (Crodo)* (Caoag)™ ™ (Cridn) (Conda)™
“l k=0 1=0 k )

limy, 1 (1 = w) Py (M, A5} 'w)
(20— MoA A AR ) [z - 1) P (M) + 1]

Mo B myg (ml

+(30 - zlz (Zl Z Z (CIO/\lO)k (020/\20)m0—k
2 =0 =0\ %k \ l

. (Cidun) (Cada)™ " '[Pg (/\‘u/\"ll ') - 1]
(20 = Mo AT MR ™) [(z - 1) Py (M A5 ) +1]
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20 (20 — mo mi [ g my o —
+_°_(_.(1 -0Y 3 (Croro)* (Caodao)™ *
21 k=0 i=0 k i

(CuAri) (Conda)™ ™
20 — Mo A5 TEAL AT T

Since |A;; M| < 1 (see Appendix C), thus [Ay;| < 1. |A12| £ 1, we have

MM =1, ifj=0andz =1

—1 < MM T <1, otherwise
therefore

k l—py. ifj=0andz =1
llm( —w) Py (,\{l,\"”—l ) = klim pe(0) ()\ /\"“'J) = ’ !

W=l —0 .
0. otherwise

(3.66)
then the first term of the RHS of above equation is equal to 0 except at z; = 1. Since the
limit operation includes continuous values of a variable, we ignore the point z; = 1 and

therefore the first term will be zero and it is not part of the steady-state PGF. Thus we have

Q(ZO, Yo, <1, !/l)

20— 2:) (2 mo mg mg my mo -~
— ( 0 l)( 1 (1 _ Z Z (Cm/\m)k (CQ()/\‘Z()) o=k
2y k=0 i=0 \ &k t

 (Cud) Cade)™ T [Py (MR ) - 1]
(20 = MoA ™ MR ) [(zo = 1) P (Mg ™) +1]

) T MLl omy m

szl st s

<1 k=0 i=0 k i

(Crorio)* (Caohag)™ "
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. (Cudnn) (Cada)™ ™ (3.67)
<0 — /\,fof\g(l)o—k/\‘u’\'znll—l .

From 3.61 we have

1
P (,\gl,\.;"ll*') ’

MARTT (A AR ) =1

then
1

L= AT (A am )

Py (Muas ) =

substituting this result in equation 3.67, we have the final solution of the joint four-dimensional

PGF:

Q(30’y0v31-yl)

20 — 2 . =1 mg my My g My —
_ (e 12( 1) 1-p> > (Crohio)* (Caghag)™ ™
~1 k=0 1=0 k i

C (Cudn) Coda)™ AN T (M)
(30 - )‘lfo/\'fz'(l)o_k/\'n)‘glll_l) [Zl — A AT (/\'u/\;"ll_‘)]

o (2 — 1 mo m [ m, m mo —
+ 0( 1 ) (1 __p) Z Z (C[O,\lo)k (C‘ZO/\QO) ok
21 k=0 =0 \ £k l

(Cll’\ll)l (C'.’IA’ZI)"“ -

'__ k ymo—k\yi mip—i
<0 — ’\10)“20 ’\llA‘Zl

(3.68)

This is the main result of this work.
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3.4 Some Discussions of the Solution

In this section, we will determine the marginal PGF for the high-priority queue as well as

the low-priority queue, and also we will discuss the results of the solution Q(zo. ¥o, =1, Y1)

in some special cases.

3.4.1 The Marginal PGF for the High-Priority Queue, Q(z, vo, 1, 1)

In order to obtain the marginal PGF of the high-priority queue, we substitute 1 for z;, y,

in equation 3.68. Let us define -, 4, as follows:

20— 2)(z = 1) Mo mi my my o —k
A= (0 12( : (L -p) (Croro)* (Caorao)™ ™"
< k=0 1=0 \ & l
(Crdn)' (Canda)™ 7 MR T'T (M AR )
(20 = Mo A MR ™) [z = MaAm T (M )]
(21— 1) & [ Mo m : mo ~
A4, = —0—(—1——— (1 -p) Z Z (010/\10)" (CaAae) ™ ¢
~1 k=0 1=0 k 1

(CllAll)i ((:".’.IA‘ZI)"”_l

- k mo—k 1 my -t
“0 — /\‘10’\‘20 /\ll’\'ll

First we consider A,. Let us substituting 1 for z; y,, then the numerator (z; — 1) is
zero, and (C“/\“)i (Cm,\zl)”"“" = 0 except at { = 0, also noting that ['(1) = 1, we
have A} A7 T ( {IAZ{"‘) =1 at i = 0. Thus the first term A, is zero except at i = 0.
therefore,

-41 |21:y1:l
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(20 — 21) (21 = 1) (Car o)™ AT (AY) |
F~ 20T () nent

mo [ Mo | (Ciodio)* (Caoao)™ *
(1-0) Y 7o — b \moF
Farl NS 2o — AloA20

we can see that both the numerator and denominator are zero at z; = y, = 1, then it is

gtype. After we apply the L'Hospital’s rule with respect to z;, we have

(20 — 1) (21 = 1) (CAa)™ AT (A3) | _ -1
2t — 20 T (A1) ==l | — a(xn'r(xnY))
dzy

Since (see Appendix A, equation A.8),

(AT (A1) P

the above equation becomes

(l=po)(z0—1) (1=po)(z0~1)

(z0 = 21) (21 = 1) (Car A2)™ AT (AGY) |
: m m =y =1 = =
i — 2 A0 T (A1) Y L —po—pt lL—-p

Substituting the above resultin 4, gives us

mo | my (C[o)\lo)k (C'zof\m)mo-lc

A lszp=1 = (1 = po) (20 — 1) ek
e kzz;) k 20— /\fof\zoo ¢

After substituting 1 for z; y,, A, becomes:

Ay |:|=y1=l =0
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At last, by adding up A; and A,, the marginal PGF of the high-priority queue is:

mo "l() C /\ k C A mo—k
Qe 1.1) = (1= po) (20— ) 3 (Cuodo) (Crotan) *
k=0 k 29 — Ao

We find that as expected Q(zo. Yo. L. 1) is the same as the result of a multiplexer with single
type of traffic given in [18] . This result conforms that the high-priority queue “does not

see” the low priority-queue and the behavior of the high-priority queue is not affected by

the low-priority queue.

3.4.2 The Marginal PGF for the Low-Priority Queue Q(1, 1, z;,y1)

In order to obtain the marginal PGF of the high-priority queue which is Q(1, L. z;, 1), we
substitute | for zg. yo in equation 3.68.
Let us define 4, A, as before in subsection 3.4.1.

Substituting 1 for zo and y, from 3.17 and 3.18, we have
C'10/\10 |:0=y0=1 = 0, C'ZU’\'.’O I:o:yozl = 1‘

Moo=t =a@o+30—1. Aylz=1 =1
then the first term A; becomes:

(Zl _ 1)2 my my (C“/\“)' (Czl/\zl)ml—i ’\il’\'rlnll_ir (/\i”/\g:l—i)
o S ) (- Mon) [a- AomT (s )

And the second term 4, becomes:
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A = (le'l' 1) a _p)g‘% n:1 (C“/:“_)i(:f\l;;l\f_‘,)ml—i
Therefore,
QL 1,21, y1)
P[] G Coda ™ G (M)
. S\ ] (- MR [ s T ()]
+(:l; 1) (1- f’)i:; n:1 (Cll/:l:)l/\(i?f\%?lzjl)"ll_‘ 569)

Since Q(1. 1, z1, y1) is the PGF of the low priority queue, it should satisfy the normal-
ization condition, that is Q(1,1,z.y1) |:;=5=1 = 1. In the next, we will show this is
true.

We note that if we substitute | for z;, y;, the numerators of Q(1, 1, z, y,) is zero, and

the denominators of Q(1, 1, 2y, y;) is non-zero except at i = 0; then we have:

Q(lv 1v:lv !/l) I-’.lzyl:[

_ _(21 —1)? (- ) (CarA20)™ Ant'T (AR) '
2, (1= 231) [zt = AR T AR, oy
CEU PRGN
“l T2t ==l
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combining the above two terms, we have:

Q(lv 17 zlyyl) ’:1=y|=l

_ (1=p) (21 = 1) (CorAa)™ [L = AT (A5Y)]
(1= A3 [21 = A0 T (A3Y)]

a=y=l1
We can see that both the numerator and the denominator are zero, let us apply L'Hospital’s
rule with respect to z;. As the first order derivatives of the numerator and denominator are

still zero, we have to take the second order derivative of the numerator and denominator,

and noting that

— my —
- lv ’\21 |z1=y1 =1

Codatlai=p=t =1, AR T (AR

L=

we have
ol,\;"lr(,\.','“ |
QUL 2| il [-1%!-, ) ]
o &y 1. =y = = m . m = m
YU =g =t _20,\2‘ (1 _ oA:”l[: Aﬂl) )
- 921 =y =L
because
O\l' ) AN T R  p;
=2~ ), : —
aZ{ 031 l - o

(see Appendix A, equations A.7 and A.8); finally we have the result:

(1-p)&- 1-p
Q(lv 11 Iy !/l) l:l=y|=l = ~ = = ]-
p(l-:2) L-p-p

this shows that the PGF Q(1, 1, 2y, y; ) satisfies the normalization condition.
Further, we can see that the high-priority traffic affects the low-priority queue through

the function I' (Aﬁl,\;"p“) . If the high-priority traffic load py = 0, then its busy period
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will also approach to zero, thus
lim [(w) =

po—0

also we note that if pg =0, p = pg + p1 = py; therefore

Q(l, 17 21, Ul) |po=0

ot B 1 2 ot m C /\ C’) /\) = l/\l Aml :
____(1~ ) (I—PI)Z | (Cu 1:) (ml 1‘ 21) “rnl -
1 1=0 i ( i1 A21 [3 - Al Az
z _1 mi m C /\ 1 C) ) "l[—l
+(1 )(l_pl)z 1 ( 1AL ( 1””1‘
21 i=0 i 1 - /\

m(my | (Cudn)t (Canda)™ ™
:(l—pl)(zl—l)z ( - “) i; \lmll)z
_Illl

1=0 ] <1

We can see that the above result is the same as the PGF for the high-priority queue. This is
expected, since when there is no high-priority queue traffic, the low-priority queue should

behave like the high-priority queue.

343 Q(ZQ, Yo, 21, yl) at mg = 0

If mg = 0, then there is no high-priority traffic in the system, thus the high-priority traffic
load p, = 0, as stated in the previous subsection, p = po + p1 = p; and lim,yo ['(w) = 1,

therefore, 3.68 becomes:

Q(ZO! Yo, 21, yl) |m0=0
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_(o-zx) (-1 (1= p) il: m (Cu/\u.)l (Szi:\zl)ml_i/\'ﬁ/\gl:i
21 =0 ] (30 — AlAz)' ) [31 — Az ]
L2 (Zi - 1) (- ) i my | (CpyAn) (?21:'\31_):"[—'
21 im i 0 — '\11/\21

m my Ciidii )V (Cop Aoy )™M
—(l-p)(@-DY Cudu) (i)
L= A2t

1=0 ) ~

As we expect, the result is again reduced to the same PGF of a multiplexer with single

queue.

344 Q(Zo, Yo, <1, yl) atm; = 0

[f m; = O, then there is no low-priority traffic in the system, and the low-priority queue
doesn’t exist, we have p; = 0, thus p = py. In this case, the system should also be reduced
to a multiplexer with single queue. Now let us show this is true.

Let us substitute O for m, in 3.68, we have:

Q(Z()v Yo, <1, yl)

— (ZO - le (z[ — ].) (1 _ po) io: Iy (ClOAlz)k '(nf"_l(;/\'zo)mo_k
~1 k=0 k (ZO - /\10/\20 )(Zl — 1)
29 (21 — 1 mo | mg |\ (Ciodio)* (CogAog)™ ¥
+°(_‘__). (1 — po) (CroAi0)” (CaoA20)

k mo—k
“1 k=0 k 20 — AfgAz0
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mo m A k A mo—k
:(l—po)(zo—l)z 0 (Clo 10 (Czo 20

k=0 \ k — Moz~

We can see that as expected the system has been reduced to a multiplexer with single queue.

345 Q(z,y0, 2, 1)

If we drop the priority then the two queues reduce to a single queue. In this case, again
the system should reduce to a multiplexer with two types of traffic but without priority. In
Q(z. yo, 2, 1), we should not distinguish between z; and 2.
Let us define 4,, -, as before in subsection 3.4.1
Letting 29 = z; = z, ;, A, becomes :
(~ - :)(: _ 1) Mo my my ny

A= - (1—-p) (CIO/\IO)k (Czo/\‘zo)mo-k

~ k=0 1=0 k i

: (Cudu) (C'zl)‘"l)ml*l/\'u/\"z"nl_'r( AN ')
( \llcol\mo -k ,\"‘l l) [: - A zﬂil—lr( ”/\ml z)]

2 (z Mo il myg my -
A, = —g_—(l - Z z (C'm/\m)lc (Ca0A20)™° g
z k=0 i1=0 \ % ]

(CllAll)i (CQI./\Ql)"“_i
_Allco/\mo—k/\x Am‘ i

It is easy to see that the first term 4; = 0. Only the second term A, remains there. Thus

Q(Z‘ Yo, 2, yl)
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mo my mg my ' . C A I(C A my—t{
=:-10)1-p> > (CroAi0)* (Caprao)™ " -« { _il/\,:l/)\mo il/\lzl:ml ~
10

k=0 1=0 k i

we can see that as expected this result is same as that of a multiplexer with two types of

traffic without priority given in [22].

346 Q(0,0,z1,1)

Q(0,0. zy, 1) is the steady-state PGF of the boundary function, in order to get this result,
we should substitute O for zy and yo in our solution 3.68. Recall f,(0) = 0, from equation
3.11 we have Ajg |:p=0 = 0 and Ay |:o=0 = o from equation 3.14 we have Cyg|:p=0 =0

and Cy |;,=0 = . Therefore, we have

Q(0,0, 21, y1)

— :l)(zl - 1) (l )% m, o (C“/\“) (C)[/\“)ml l/\‘“/\glll 'r (Al“/\ml ‘)
= P ~0 m my —t mg—1 i o\mp-t
2 el B (0= 37 A ) [z = MR (MAR )]
m (my C (M)
= (l-p)(z1—1) (Cridun) (Caha |
l ,2 i U S NARTT (AR

(3.70)

Actually, we have an alternative way to determine (0,0, 21, 1,). In section 3.2, we
have obtained the unknown boundary function @«(0.0, z;, y;) with respect to the discrete
time k, then we may perform transformation on it and finally apply the final value theorem
to determine the steady-state PGF of the boundary function Q(0,0, 21, y;). We show this
method and the corresponding result in Appendix D, from there we can see that the result

through the transformation technique is the same as the result in 3.70.
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347 Q(0,0,1,1)

Next, let us consider the specific value of @(0.0,1,1). According to the definition of
Q(0,0, z;,y1), Q(0,0, 1, 1) should be equal to 1 — po. In the following, we will show it is
true for our solution. Substituting 1 for z; and y, in 3.70, we have (C,; A}, ) (Cary)™ ™ =
0 except at j = 0, thus

C(An')
2= A T (')

Q(0,0,1,1) = (1 = p)(z1 = 1)

=1

Since I (AT) |, = [(1) = 1, Q(0,0.1.1) is 3 type, after we apply L'Hospital’s rule

with respect to z, and noting (see Appendix A equation A.8),

d[/\;'rm;'ml’ _
dz =1 1 = po
we have
1~-p (L =p)(1 =po) _ (1 =p)(1—po)
0,0, 1,1 = - " = = =1-
Q( ) d /\'.’llr(A'-'l‘) I - Po — Py 1 - p Po

1 - dzy _

=1

This is what we expect.

3.5 Performance Analysis of the Low-Priority Queue

Since we have shown that the marginal PGF of the high-priority queue Q( 2o, yo. 1, 1) is the
same as the multiplexer result with single type of traffic given in [18], and, the behavior
of the high-priority queue is not affected by the low-priority queue, then the performance

analysis of the high-priority queue will be the same as in [18] . Therefore, in the following
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analysis, we will focus on the performance analysis of the low-priority queue.

3.5.1 The PGF of the Length Distribution for the Low-Priority Queue

Let P(z,) be the steady-state PGF of the low-priority queue length distribution, then P(z,) =
Q(1, 1.z, 1). Let us substitute 1 for y; in the marginal PGF 3.69 for the low-priority queue,

we have P(z,) as the following:

ml—-i

Py =B a5 ™ (Crrn) (Cadn)™ " MAR T (MA5 ™)

S0 ) (= mom) [ —os T (i )]

m -t

(z1 - 1) (1-p) "‘Z‘ m (én/\u)l (,62:,,):2_1,)
1= Mg

~1 =0 ]

3.71)

where Cy; = Cyy Iyl:l , Cy = Cyy |y1=l-
Following the similar steps as we have derived in subsection 3.5.2, if the high-priority

traffic load po = 0, then its busy period will also approach to zero, thus limy, o ['(w) = 1;

once again, if py = 0, p = po + p1 = py: therefore,

(zl _ 1)2 my my (é”A“)‘ (é’llAgl)ml—‘ /\'“A;nl‘_'
P(z) = -3 =21 - |
i o ( pl)g l (1 - ‘11'\"2'?—') [Zl - «\‘Mé"x"‘]
(1 -1) m[ omy (C"u/\u)i (621/\21)"”_1

(I-PI)Z

2 i=0 1

i oymi-t
1- ll’\‘ll
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After we combine these two term, we have

m G (Coda )™
P(21)=(zl—1)(1—m)§f ™ ( - “) flilmlml) .
1

=0 1

as expected, P(z,) approaches to the single multiplexer result given in [22].

3.5.2 Mean Queue Length of the Low-priority Queue

With the steady-state PGF of the low-queue length P(z,) , it is easy to calculate the mean
queue length of the low priority queue, which is ¥, = P'(z) |z, =1 -

We note that in the equation 3.71,if z; — 1. exceptat: = 0,

(éll/\ll)l(é;z[/\o[)"ll lA‘“,\"‘l ‘[‘(/\1“/\"11 1)

=0
(=08 ) [ 3 T (0 )]

and _ o _—
(Cll/\ll) (C2l’\21) l

T

thus let us define:

F(Z ) _ m, ny, (6‘“,\“)l (é2l/\2[)"ll /\11/\’?1[ ir (/\;“)‘ml x)
= i=1 . (1 - ,\ml 1) [21 _ /\“,\gnll—zr( /\ml z)]

% m (élv\u)‘(én/\zl)ml—‘.

o\ ml i !

then we have, F(z)) |;,=1 =0, E(z)|5=1 =0.

my

Let us define again that G(z;) = (5‘2[)\21) . H(z)) = A0 then G(z2)) |5=1 = 1,
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H(z)|. =1 = L. With these definitions, P(z;) simplifies to:

G(z))H(z)T (H(21))
H(z))] [z — H(2)T (H(21))]

\

. _1\2
Py =- ") [E(zl) b

(zi— 1) . G(z1)
% (1-p) [F(~1) Y T HGD H(zl)‘

We note that H(z,) always comes up with ' (H(z)), then let us define

6(21) = H(Z[)F(H(Z[)) (372)
then P(z;) becomes:
G A G(z1)0(1)
R R & e
(20— 1) . G(z1)
L (l—ﬂ)[F( )+~1—H(z[)]’

When we take first order derivative of P(z;) with respect to z; and then substitute 1 for z;
in above equation, we will have 0 in both the numerator and denominator; therefore first let

us move the denominator to the LHS in above equation, then we have:

21 [1 = H(z))][z1 = ©(z1)] P(21)

=—(21 = 1)*(L = p) {E(21) [1 = H(21)] [z21 = ©(21)] + G(21)O(21) }
+zi(z1 = 1) (1 = p) {F(21) [l = H(21)][z1 = O(a1)] + G(21) [21 — O(21)]}  (B.73)

Let us take third order derivative of both sides of equation 3.73 with respect to z;, then

let z; — 1, and we note that F(2)]|;,;=1 = 0, E(z))|;,=1 = 0, G(21)|5,=1 = 1,
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H(z) ':lzl = 1, then we have:

Nl = P,(zl) lzlzl

_=2H'(1) - H"(1) + (2 — 2p + 2H'(1) + H"(1) + 2G"(1)(1 - p)| ©(1) + [l — p + H'(1)]©"(1)
B 2H'(1)[1 - ©'(1)]

where
Gy = U002y,
H(1 = %lf—la_l‘[j_l)% =pr,
H"(1) = ml((gll_;ll)_(lgl—)fl)z(71)2 + 2my (1 - (l(;)(—la—lil)g?)l"-*_ 3y — 1)(702
7 C 2 pay

2—a — 3 t
the closed-form expressions for ©'(1) and ©”(1) are given in Appendix A. Now every term
in the expression of mean queue length for the low-priority queue, :V,. is determined, so

we can calculate the mean queue length easily.

3.5.3 Mean Delay of the Low-Priority Packets

From the well known Little’s result, the mean packet delay of the low-priority queue d, is

given by,

d _-1\71 _7\7—1(2'01—/31)
l—*’—
4

my (1 —/31)71
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3.5.4 Variance of the Low-Priority Queue Length

According to the queueing theory, the variance of the low-priority queue length, 0%, is

given by :
ofvl = P"(1) + P'(1) [t - P'(1)].

where P"(1) = P"(z) |z P'(1) = P'(z1) |sy=1.
P'(1) is the mean queue length of the low-priority queue which has been determined.
In the next, we will determine the second order moment of the low-priority queue length,
P"(1).
Let us take fourth order derivative of both sides of equation 3.73 with respect to zy,
then let z; — 1, and we note that F(z,)].,,=1 =0, E(z)|s=1 = 0.G(z1) ;=1 = L

H(z1)|:;,=1 = L, then we have:

P"(l) _ F[ +F3+F3+F4 +F5
T GH(1) (1) - 1]

where

Fy = —6H"(1)0'(1) + 6p©" (1) + 12pG"(1)&/(1) + 2H" (1) + 6H"(1) - 6H'(1)0"(1)

Fy = —60"(1)=20"(1)-12G'(1)0'(1)-6G" (1)©'(1)-6G'(1)©" (1) -6 H'(1)0" (1) P'(1)
Fy = —12pF'(1)H'(1)@'(1)=3H"(1)0"(1)~2H'(1)0" (1) +6 H"(1) P'(1)+ 12H'(1) P'(1)
Fy = 12F' (1) H'(1)©'(1) — 6H"(1) P'(1)0'(1) — 12H'(1)P'(1)6'(1) + 12pF" (1) H'(1)
Fs = 6pG"(1)0'(1) + 6pG'(1)0" (1) — 2H" (1)6'(1) + 290" (1) — 12F'(1)H'(1))

In the expression of P"(1), F'(1) = F'(z,)]|:,=1 . which is easy to compute, and G'(1),
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H'(1), H"(1) are already determined in the previous section, G"(1) , H"(1) are easy to
compute by taking derivatives and then substituting 1 for z,. In Appendix A, we present the
closed-form expressions for ©'(1), ©”(1) and 8" (1). Therefore we can determine P"(1)

so that finally we can compute the the variance of the low-priority queue length, a,zvl.



Chapter 4

Numerical Results

In this chapter we present some numerical examples regarding the results of our perfor-
mance analysis. As has been shown that the behavior of the high-priority queue is not
affected by the low-priority queue, and it is determined by a multiplexer with no priority
mechanism (see (18] ). Thus in this chapter we present results mainly for the low-priority
queue. In our simulation, for all the numerical results, we assume that an On source gen-
erates a single packet during a slot, that is we assume f(z,) = z, .

Figure 4.1 presents the mean length of low-prionty queue N, versus the low-priority
traffic load p; with high-priority traffic load as a parameter. We set ap = a; = 0.75.
me = 100, m, = 120, and Fy, 3, vary corresponding to different values of py and p,
respectively. From left to right, the curves are for gy = 0.3, pp = 0.2, py = 0.1, po = 0.01,
po = 0 respectively. We may see how the system load p, for the high-priority queue affects
the low-priority queue: as pg decreases, low-priority queue length decreases, because the
server can spend more time on serving the low priority packets. Also we can see as pg
decreases, low-priority mean queue length approaches to that of the mean queue length

without priority mechanism which is pg = 0. For the curve of that py = 0.3, the mean
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low-priority queue length approaches to infinity when p,approaches 0.7, because at this
point, the total system load p = py + py = 1. For the curve of that py = 0.2, the mean
low-priority queue length approaches to infinity when p,approaches 0.8, and so on and so
forth. This shows that the mean queue length of low-priority queue is determined by the
total system traffic load, not only by its own traffic load.

Figure 4.2 presents the mean queue length versus the number of low-priority sources
in the system with high and low-priority traffic load as parameters. We set ap = o =
0.75, and fix mg = 20. The traffic load py and p, are also fixed for each curve, for the
upper two curves, the total load p = 0.9, while for the lower two curves, the total load
is p = 0.7. Here, it may be seen that our analysis method can handle large number of
sources. As the traffic generated by a source approaches to zero or one, the burstiness of
a source increases (see [20]). Since the low-priority load is held constant in this figure,
as the number of low-priority sources, 1 increases, the traffic gencrated by each source
approaches to zero, therefore its burstiness increases. On the other hand, as a result of the
statistical multiplexing, increasing the number of the sources smoothes out the superposed
traffic. From this figure, it can be seen that for constant values of traffic loads, low-prionity
queue length increases slightly with the number of sources which means the burstiness
over-weighs traffic smoothing. Another conclusion we can draw from this figure is that if
the number of sources is not small, m; > 20 , the mean queue length is not affected much
by the number of sources, as we may see the four curves are almost flat when m; > 20.

Figure 4.3 presents the mean packet delay d, for the low-priority traffic as a function
of the high-priority traffic load po for constant values of low-priority traffic load. It can be
seen that mean packet delay increases as the low-priority traffic load increases, it also can
be seen that mean packet increases as the high-priority traffic load increases for any given

value of low-priority queue load.
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Figure 4.4 demonstrates the significance of the correlation in the arrival process. This
figure presents the mean packet delay d; for low-priority traffic as a function of the sum of
the On and Of f probabilities of a low-priority traffic source, a; + 3y, for constant values
of high and low-priority traffic loads p, and p;. As well known, an uncorrelated source
corresponds to a; + 8, = 1 and it generates Bernoulli arrivals which are independent from
one slot to the next. It may be seen that an uncorrelated source is at the low end of the delay
curve. As the correlation increases, the mean packet delay increases although the high and
low-priority traffic loads py and p; are kept constant.

Figure 4.5 presents the standard deviation of the low-priority queue length versus the
low-priority traffic load p, with the number of low-priority sources m; as a parameter. It
shows that the queue length variation increases as the traffic load p, increases. We can see
the two curves, m, = 20 and m; = 100, are very close to each other, this is in agreement
with the result of figure 4.2, showing that the standard deviation, as well as the mean queue
length, is not affected much by the number of sources when m; > 20 .

Figure 4.6 also presents the standard deviation of the low-priority queue length versus
the low-priority traffic load p, but with the high-priority traffic load py as a parameter. From
the figure, we can see that the deviation of the low priority queue length increases with the
high-priority traffic load py , which means larger variations from the low-priority queue

length will occur as pg increases.
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Chapter 5

Contributions and Conclusions

5.1 Main Contributions

The main contributions of this thesis can be briefly summarized as follows:

First, we derive explicit closed-form expressions for the joint Probability Generating
Function (PGF) of the system, as well as for the high and low priority queues. Comparing
with the results using matrix geometric technique given in [15] and [16], our results are
easier to follow.

Second, we obtain the closed-form expression for the mean queue length, mean packet
delay and variance of queue length for the low-priority queue. These results are easy for
people to follow and calculate specific values, and we can handle very large number of
sources such as over 10,000, since we don’t have the limitation of state-space requirements
for matrix computation.

Third, we have derived our results for more general arrival process compared with
those assumed in [14], [15] and [17]. We have two types of independent sources, within

each type, the sources are independent of each others. This assumption is closer to the real

100



CHAPTER 5. CONTRIBUTIONS AND CONCLUSIONS 101

networking environment, as the networking traffic is generated by different applications,
and these applications are independent of each other. But in our model, the number of
packets generated by the same source in different slots are correlated, which again reflects
the reality better since the packets from the same message source such as a big file or image
have strong correlation.

Forth, since the server is unavailable to the low-priority queue for a interval which
is equal to what is called the busy period of the high-priority queue, the busy period
of the high-priority queue has been used to determine the unknown boundary function
Q+«(0,0, zy, y1). This boundary function has been a difficulty in many performance analy-
sis problems. Also we have determined the transform of the busy period distribution, ['(w).
As from the viewpoint of low-priority queue, the server is available only intermittently, the
technique we have developed is general and it can be applied to solve problems that the

sever (or transmitting line, output port...) is available intermittently.

5.2 Conclusions

This thesis presents a performance analysis for a discrete-time multiplexer with two priority
queues and correlated arrivals. In the queue model the low-priority queue under consider-
ation is served only if the high-priority queue is empty and the correlated arrival process
consists of two types of binary Markov On/Of f sources. We have obtained the joint
steady-state PGF of the high and low priority queue lengths and the number of On sources,
from which, the performance metrics such as mean queue length, mean delay and queue
length variance are expressed in closed-forms that are easy to calculate for any number of
sources.

At first, through an embedded Markov chain analysis, a functional equation relating
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the PGFs of the system between two consecutive slots is obtained. Then we transform the
functional equation into a suitable new form which is mathematically tractable. Since the
low-priority queue could be served only when the high-priority queue is not in its busy
period, we introduced the busy period of the high-priority queue to determine the unknown
boundary function in the new form. Finally we can determine the joint steady-state PGF of
the high and low priority queue lengths and the number of On sources. From this result,
we derive the marginal PGFs of the high and low-priority queues, as well as the PGF of
the low-priority queue length. It has been shown that the results can reduce to that of a
multiplexer without priority when priority is dropped given in [18] and [22]. In the end, we
present some numerical examples regarding the results of this thesis.

The analysis shows that the high-priority queue does not see the low-priority queue, its
behavior is not affected by the low-priority traffic. But the the low-priority queue is affected
by the high-priority queue dramatically. When the high-priority traffic load increases, the
mean queue length and variance of the low-priority queue increase correspondingly. In the
closed-form of the PGF of the low-priority queue, it can be seen that the high-priority queue
affects the low-priority queue through the busy period distribution, which is determined in
our analysis.

The results also show that the low-priority queue length increases slightly with the
number of sources. The source burstiness increases with the number of sources, but this
is over-weighed by the smoothing effect of the statistical multiplexing due to increased
number of sources.

The numerical results demonstrate the significance of the correlation in the arrival pro-
cess. As the correlation increases, the mean queue length and mean packet delay for the
low priority queue increase correspondingly, although the traffic for both queues are kept

constant.
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Appendix A

The Derivatives of Function O(z;)

In chapter 3, we have defined ©(z,) = H (=) (H(z1)), where H(z;) = A3} (see equation
3.72). As we need the first order, second order and third order derivatives of O(z;) at z; = 1
to determine the mean and variance of queue length of low-priority queue, in this appendix,
we will determine the closed-form expressions for ©'(1), ©"(1) and ©"(1).

* Determining ©'(1)

From equation 3.29 we have

thus
O(z) = 2" (H(z1)) (A.1)

where 2*(w) is the unique root of equation zy = wAyy . Thus the first order derivative of

9(21) is

oz* (H(z oz* OH
O'(z1) = (a:l( 1)) _ [ zai)w) |u="(=1)] 62:71)
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we note thatat z; = 1, we have w = H(z,)|;,=1 = 1, thus

0z* (w) 0H(z)
O'(z)].._, = w=l | —— A2
0l [ 5| ‘] 021 |,y 2
In the next we shall determine a—ofT”ll  an —ai—f‘— -
w= n=
Let us take first order derivative of both sides of equation z*(w) = WAY |:y=;+(u) With

respect to w, then we have the following,

0z (w) dAy 0..0
=A% + mowAhe ! (e
8&) 20 |zo=2"(w) 0 a"o 0“) o=2"(w)
az‘(u,V) — \mo L + mgw ,\mo—l 81\20 (?;‘(&J)
EX 20 [so=z2"(«) 20 D20 et (o) 0w
r)- (.J)

Solving for in the above equation, we have

9= (w) _ A

OUJ 1 _ "lou)/\nlo L 3A20
d-o

-QZ:'(.J)

, we need the root of equation

W=

Since we need to determine the specific value ‘L”‘—,—Eﬂ

2*(w) = WAR |s=:(w) atw = 1. Thisroot is z*(1) = 1, and because Ay’|. _..;)—; = 1,
therefore
6za(w) _ 1 -
» a0
w=1 1 — Mg ( Jdzo 50::.“):1)

from 3.11, we have:

Agg = Bo + o folzo) + \/[730 + g fo(20)]* + 4(1 — a0 — Bo) fo(=0) (A4)
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From the above we have

OAyg 1

12 (8o + a0fo(20)) o folzo) +4(1 — o — /3o)f6(30)]
2 /180 + o fol20)]* + 4(1 = a0 ~ o) folz0)

next we substitute | for zg, then

Maw| 1 laof’(1)+ 1280 + aofo(1)) aofg(1) +4(1 —Go—ﬁo)fé(l)}
020 ler 2172 1o + aofo(L]F +4(1 = ag — Ho) fol1)

0\ 1 12 (30 + ao)aofo + 41 — ag — 30) fo
N 5 oo fo + > 2
0 |yo=1 < —ao— o
l — do —_
_ | A.
2_ao_%fo (A.S5)

Substituting the above result into A.3 we have

dz% (w) _ l _ 1
., ) 1 _ 1-do0 _F°
Ju w=1 1 - My (%'\.‘,'Q ) 1 rno'z—oo—ljofo
0 lzp=1

1-3o
2—ag—do

but mg E = pg, then we have

. 1
2 C)I (A.6)
ow | _, Ll=-po
Now let us determine 9—’;(:—‘4 g from A.5, we have
|z =
OH(z (A mi—1 (A
321 n=t ~1 =1 <1 =1
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finally from equation A.2, we have

(A.8)

* Determining ©" (1)
In the next we will determine 6"(1). From equation A.1, we have the second order

derivative of O(z,) as follows:

_ & (H(z) _ [82:‘((.«1)

OH () '-’+ Bz'(w)l O H(z)
Ow? T, |w=H(z1)

E)zl Ow 63%

w=H(z)

when we substitute 1 for z;, we have w = H(z) ;=1 =L, thus

"w) OH (z)) P[0 (w) O H(z)
P (2] ) [ T, o

e/l(:‘l)l:lzl = [ ;

Uf{(ZI)l

In the above equation, we can see that and ‘)—diﬂ | -1 arc determined, but

9z )

|o=1 is unknown. In the next we will determine it.

After taking second order derivative of both sides of equation =*(w) = wAj

z0=z2"(w)

with respect to w, we have the following,

Pz (w) Oz 20 o (O 020\’

L Sl ) /\nxo—l__ . -1 /\"m—- e e

dw? MyAgg 929 O 1= () + mo(mo — LwAy Bz Ow ) 1= (w)
' a (?zo m 0/\20 0 70
+mgwAyy’” ! 823 (&u o=z (w) T+ MWy’ ™ 13* F52 o=@

or equivalently
8%z" (w)

Ow?
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9z*(w)\?
Oow

3z (w)
zg=z(w) dus?

)
820 o=z

0z*(w)
Ouw

2
z*(c A
0% (w) + mow A;’:f“a 20
z0=2*{w) 6&} 6:0

Solving for '3—0%(—“—’1 in the above equation, we have

Ao\’
a.';’o

+m0(m0-— l)w /\;7(1)0—2 (

= 2m0 [Ag(l)o_l

zp=z"(w)

mg-1
+rmyw [A20 —

0z (w)

dw?

—1 Az 92°(: —2 [ dAag D7)\ 2 ~18%a (32°(w))?
2mgAyy’ laa’\:o a:) + mo(mo — 1)wAyy 2("'\ ( )) + mow Ay la—,ﬂi):}u ( o:))

a:n 0'..)
1 - nzow/\'z"‘f"l%’\:iﬂ
z9=2"(w)
Because if w = 1, 3 = z*(w) = z*(1) = L.and Axl, ., = L, we have
9z (w)
ow? | _
w=l
e e 2 . e\ 2
9 s d= (.J) _ g U2 (W) HEPST (d: (-U))
_2mg el vl mg(mo — 1) FR=) + '”OT;})“L === ALO
N | — oLz (A-10)
0 dzo

o=lw=l

in the above equation A.10, ‘3—*39 is unknown, but it is easy to determine by taking
q d:3 y Yy )

=1

second order derivative of Ay in A.4 with respect to zg and then substituting 1 for 2o,

which gives us

2
=m0 = 1) (72 22) s

zo=1

)2 ' 1—6 "
I + m 0

(1)
(A.11)

+ [2(1 —ag)(l = Bo)(ao + 580 — |

(2-ag — 5)3
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substituting this result into A.10, we have

02z* (w)
ow?

w=1l

2 -1 203 1-3 \°.
_ Po +mo Py n my (mo_l)(—.0> fo(l)

(1=p)? mo (L=p) (1-po)® 2—ao—f
2(1 - 1 - 3. - 1)2 1 -3
T :n:,O)s [ ( ao()é _a/jol(;:): o= 1 [f(D) + 5T}—030 6’(1)}

(A.12)
Now we can determine the second order derivative of ©(z;) at z; = 1. Substituting

A5,A6, A1l and A.12 into A.9, we have

@"(1) = e”(Z[) l:l:l

_ 203 ' +mo -1 2p, . +(mo —1)(1 = pg)? + (myg = L)mopd ‘ 1 -3 -f(;(l)
(1= po)? my (1 — po)? (L= m)? 2—ag—

mopd + (1 = po)? [2(1 —e0)(1 = J)(ag + A = 1)* ., v . (1= 3R
(1 - po)? (2-ag - 3)3 oD +2—ag—dof0(1)]
(A.13)

* Determining ©O"'(1)
At last we show how to determine ©"(1). From equation A.1, we have the third order

derivative of O(z) as follows:

0*H(z) 0H(z1)
9z} dz
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0z* (w)
M [ ow

3’H(:l)
az}

w=H(zy)

Once again, because we have w = H(z)) ;= = 1, thus

OH (z)) 0% (w)
w:l]< azl :1:l> + aw2

} 831'{(:[)
w=l

em(z[)IZl:l _ [8382';(:1)

JBQH(:I) BH(Zx)I
1 n=1

t,
i

(A.14)

Ow

0z*(w)
* [ dz3}

=1

R 3 - ey,
In the above equation, we can see that a—;—;’f”’l , and ngﬂ , are unknown. The for-
“1 1= w=

. . . . . . 3.,
mer expression is easy to determine, in the next we will show how to determine ‘3(—3;(%’1

w=1"

Let us take third order derivative of both sides of equation z*(w) = w\jy y with

p=2"(«

respect to w, then we have,

Pz (w) oy (020 (w) DA\ A (027 (w)\
E i 3myg(mg — 1)\ 2 EW 3:20 + oA ! 026)0 Ow )

BAgo(?z‘(w) 3
Jdzy Ow

+mg(mo — 1)(mg — 2)wApe™? (

,vymo—1

a,\.m>2 92" (w) 8 z*(w) P Ao (63‘(w))3

+2mg(mg — 1w ™2 (

92 ow  Ou? 923 Ow
+2mow/\§'(‘,°"lagj§0 Bza‘iw) 82;;(2.';:) + mg(me — 1)AJP ™2 (Z)/\z.;o (zlaiw(z—d—)
+mg(ng — wAgp 6;:‘;0 aza‘iw) 62;;(;)) + mo(mg — l)m'/\§%°'2%azg;gw)
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Once again, because if w = 1, zp = z*(w) = z°(1) = 1, and Ayl, _, = 1, then we have

3. * 2 2 ~ 2
A C) = {3m0(m0 -1) (az (w)a/\go) + 3moa /\.20 (a~ (w))
w=1

Ow?

dw 9z a3 dw

3/\20 az'(w) 3
+"L0(mo 1)(m0 2) ( 620 8;‘;
A2g (w) FPhy (0" (w) ’
+2rng(mg — 1) (6..0 ) 6@2 + my 33 W
62/\20 3~ ( ) Z ( ) 0/\20 32z'(w)
+2my 92 0w 752 + mg(mg — 1) 0r 07
021\20 3:'(w) 32:'(w) 0/\20 833'((4))

+mg(mgy — 1) + mg(my — 1)

dz3  Ow Ow? 0z Ow?

o Phap [0 (w)\® . Oy 0¥zt (w)
, +2myg—— ——
dzg 0323 Ow dzg Ouw?

+3rmg(mo — 1)

o=lw=l

After we solve the above equation with respect to ")—(J—‘— and follow the similar steps as we

. 9%z°(w) . Azt (w)
did for 5o |u=1' we can determine =5~

- But the expression is too complicated

W=

and will not be presented here. It may be best determined using symbolic software such as

Maple.

Now every term in equation A.14 is determined, so we arc able to determine ©"(1).

Again, because the expression of ©"(1) is too complicated, it will not be presented here.



Appendix B

Final Value Theorem

Assume r(n) is causal sequence,
if
X)) =Zm)]=) r(n):"
n=0

and 2, r(n):" converges for || < |
then

lim r(n) = lim [(z - 1) X (2)]

n—00

this theorem is also called Abel’s theorem
Proof of the theorem:

Since

1

Zlz(n+1) —z(n) = l\ (2) - 2(0) - X (2) = (- - 1) X(z) - ér (0)

then

(1-2)X()=z0)+z-Z[z(n+1) -z (n)

115
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taking the limit of both side
o<
11_[}}(1 -2)X(2) = 1:(0)+£l_tf}§z [z (n+1) =z (n)] 2

=z(0)+[x(1) -z (0)]+[z(2) —z (V)] +[z(@) -z (2)] +---
=r(0) — z(0) + r(o0)

therefore

lT}(l - 1)X(z) = z(=x)



Appendix C

Proof of |\j;) ;| <1

From the characteristic equation:
N oB+afilz)) N —(L—a, - 3)fi(z)=0 t=0,1

we have

’\111\21 = —(1 -G, — ‘31)fl(zl)v

thus

Auida] = (1 —a, = B0 fiz)l =11 = a, = 8il | fi(z:)];

since fi(z;)isaPGF, |f(z)| <l;and0 <a,<1,0< 3 < L, thus|l -, = 3] < 1
Therefore, |1 — a, — 3| |f.(z:)] < 1, this shows that [A;; A < 1.

17



Appendix D

Determination of Function (0,0, z1,y1)

In subsection 3.4.5, we have determined Q(0. 0. =, y;) by just substituting 0 for 2y, yo in
3.68. Now we will use another method to determine (0. 0. z;. y;). We perform transfor-
mation on Qx (0, 0, z;, y1), and then we apply the final value theorem to obtain Q(0, 0. z;. y1)-

We will see the result of the alternative method is the same as in subsection 3.4.5.

D.1 Transformation of Q,(0,0, z,y,)

In this subsection, we will determine the transformation of (x(0.0, 2, y) . so that we can
apply the final value theorem to find out Q(0, 0, zy, y1) , which is the steady state PGF of
the low priority traffic when there are no high-priority packets and high-priority On sources
in the system.

Define the transformation of Q4 (0, 0, 2, y1) as

o0

Q(0,0, 21,y w Z (0,0, 21, y1)w (D.1)

118
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from equation 3.42 we have

oQ
Z Qx(0,0, 21,1 )wk
k=1

o k 20 L,
=Y 3 o(k—i)E(i-1) Bi(k)wk+Y" S p(k—i=1)€(i=h) By (k—h)Q4(0.0,0, 0)w*

k=1 i=1 k=0 t=1 h=1 ~I

Let 4,, .4, be the following:

[
-
—

ok — i — 1)E(i = h)By(k — h)Q4(0,0.0.0)w*

Interchanging the order of summations, -, becomes

ﬁMg

i' (k= 0)E(i — 1) By (k)"
k=t

Letr=k—1i,thenk=t+r

:i i i —D)B (i +r)w'™

Substituting from 3.16 in above equation and then expanding it by binomial theorem yields:

(Cuxit?) (Corst)™ ™ )i~ 1)+
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rearranging the terms,

3

1 m, t—1

(CuAn) (C'zl/\m)ml_j‘#(’”)f( 1)(/\11/\"" JW) (1\11)‘"1l I ) w

_M8

=3

i=1 k

i j=0 ]

Let us define the transformation of >(r) as

Blw) =Y o(r)” (D.2)

r=0

then above becomes

il m ~
=2 z | (Cudu) (Cadg)™ ™ @ ()‘Jv\"ll I )f(i - 1) (,\Jn/\gil_J) "w
1=0 = _]

leth =i - 1then

my ’”l

-3 >

J=0 h=0 _]

_\h
(CohY (Caha)™ ™ @ (MR ) €() (Mirg )"

Let us define the transformation of £(/t) as
Cw) = 3 E(h)w” (D.3)
h=0

finally 4, becomes

m
.4[ = El: m

=0\ j

(C“)\“) (C)l/\) ml-']([) (/\J /\ml—j )F(/\] /\m‘_’w)w (D4)
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Interchanging the order of summations, -4, becomes:

= f: i > a ,,— l‘?(k — i = 1)&(i - h)Bi(k — R)@4(0,0,0,0)u*
i=l k=141 h=l 1

~

letn=k—-i—1,thenk=n+i+1

1,=Y Y - L(R)EG = h)By(n + i + 1 — B)QA(0,0,0,0)w™+!

Interchanging the order of summations again, .4, becomes

(J

y(n EGi—h)B(n+i+1—=h)Q.(0.0,0,0)w" !

PP IR IETS

3
o
-
Il

-

letr=1¢-~h,

=3 5 Y BT (e Buln + 1+ DQ(0.0.0, 0 T

Let us define the transformation of ((0.0.0.0) as

20

Q(w) =Z (0.0,0,0)w (D.5)

(\l

= i i Er)By(n +r + )" Qw) — 1]

Substituting from 3.16 in above equation and then expanding it by binomial theorem yields:

mi m

(C[[«\?f'“) (C /\n+r+l) my-J 31271¢(,,l)£(r)wn+r+l

QW -1 3

n=0 r=0 ;=0 j
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Rearranging the right hand side of -, , we have:

mi ml

(J

Yy Y (Curur)’ (Codat)™

n=0 r=0 ;=0 ]

2(n)&(r) (/\ /\ml JJJ)" (/\ /\ml—.l )rw

Substituting from the definitions of 3.44 and 3.25, finally 4, becomes:

Pl e 1 i my

1 = [Qw) - 1] —— (Cudn) (Curo)™ ™ @ (’\ At )F(’\Jw\ml J )w

~[ _0 j
(D.6)

Now we have

Z 00 Zls J[) =.-{1+.-12

which is equivalent to

x

Z Oolel)u)—[—'il'*"‘)

substituting for the summation from definition D.1 we have,
Q(0,0, <t ylsw) =1+ "ll + -'1'2
Substituting for 4, .1, from D.4 and D.6 yields

Q(Ov Oa 21, ylvw)
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mp )
=142 I e (Cadan)™ ™ @ (MAT ) T (MM ) w

12 m

+[Qw (Curu) (Cauda)™ _]‘b(/\J Aot 7 )F(/\’u/\m‘ - )u}

[n the above equation, we note that the first summation and the second summation have

some common factors, combining some term, we have

Q(0,0,z1.y;.w)

my
=1+ " Gy Cad)™ @ (MAS w) T (MG ) w
=\
a-l < i m
W= =2 (Cutun)’ (Carda)™ 7 @ (MG ) T (MR o) w

~1 ]:0 J
(D.7)

D.2 Determination of the Steady-state Boundary Function

Q(O7 07 21, yl)

With the results we have obtained in section 3.2.3 and 3.2.4, we are able to determine
Q(0,0, z,y,) by applying final value theorem to Q(0,0, zy, y,,w). Q(0.0, z,¥1) is the
marginal stead-state joint PGF when there are no high priority packets and no high priority

On sources in the system.
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Substituting 3.53 into D.7, we have

Q(Ov 07 21, ylvw)

Al (MG 7w w
— MR Wl (MG w)

m m j my—)
= 1+Z (Curi) (CarAar)

J
~ | \Mu-)
zZ - 1 my m, m ylr (r\J /\'Zl (U) w
+ (Q(w Curn) (Cogdy))™” .
[Q( ) 2l = J ( 1t ll) ( 21 Zl) 2 — ,\’l,\"“"w[‘ (/\111/\3:1-}(‘")

Combining the common terms in the first and second summations, we have

Q(0.0, zlv.’/lvw)
l g:l ™ \ C I (CyAy)™ ™ F()\]“/\"“-J )'d
= 1 + _— /\ 217\2 '
o & j } (Curn) (Cadn 5= MM ]w[‘(/\]l/\nu -J, )
_1m [ my 20 (MG 7w w
_ Curn) (CoNg)™ ™
2 Z ( It ll) ( 21 21) —/\“/\ml ’wl—‘(/\’l/\"“ -J. )

'\ ;

(D.8)

From 3.27 we have

1
Py (AT %)

MR Wl (M A5 w) = 1 -
then the above equation becomes

Q(Ow 01 <1, yl,UJ)
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Po (M A5 w) - 1

mlm
=1+% | " |anem .
=0\ j (21 —-1) P (/\u/\ ) +1
+O ) 1'}'5 my (Cuir )]. (Cau> s er(,\ A'nl -] ).u
w AL 21421 - -
21 J=0 J /\-{IA‘zll I F(A'{l/\ 1= )

Applying the final value theorem gives us:

Q(0,0,2,.4) = llm Qr(0.0.z1.1n) = llm(l——' NQ(0.0, 2y, y1,w)

= liml(l - w)
m, . Py (M A Tw) =1
+[lﬂ(1 - w) Z ' clCt ! 1([)“ \ \ml)x l
=0\ ] (=1 0(/11/ )+

mni my T
+ liml(l -w) [Q(W) - 1](31 - 1)2 (Cudi) (CogAz)™ ’
w— 1=0 _}
[ (M )
= Mg Wl (M A )

because
liml(l —w) =10
lim(1 - w)Q(w) = lim (1 - w)Qx(0,0,0,0) = 1 - p

w—1

Finally we have

Q(07 07 21, yl)
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m e ) lim (1 — w) Py (A AT~
=) l Curu) (Cada)™™ ! .0 (ml,l—z )
_ ) (21— 1) Po (M A T) + 1
I Y P L . ) BN
+Hi—pN2— SRR 21421 - my— .
,‘:0\ J 2= AhAy JF(/\]W\'M J)

Let 4, , A5 be the follows:

mf o my o [iman (1 = w) Py (A A5 i
DY (CuiAn)’ (Cogdoy)™ ™ ‘ (mllﬁ )
1=0 ] ([’l)Po(,\ l’\ )+1

' 0 " 1)% m (ot (Conda )™ F(,\{l/\mx 1)
A = — PN - 1L 2121 m mi —
7=0 J <1 — /\ju’\'.nl T ('\Ju/\'zll j)

then we have Q(0,0, 2, y) = 4 + Ao .

Since |A;,Ay;| < 1 (see Appendix C), thus [Ay| < 1. |A2f < 1, we have

MM =1 ifj=0and 2, =

1< M /\"“-j <1, otherwise
therefore

-1\ K 1—[)0, iszOandzlzl
llm(l -w)P, (/\]“/\"” ™ ) = llm pk(O) (z\’l,\ ! ’) =
0, otherwise

(D.10)

lim p(0) =1 —pyo
k-

where py is the system load for the high-priority queue.
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Since |A;; Aaif < L(see Appendix B), thus [A1;| < 1. [Ap2] < 1, we have

MAR T =1, ifj=0andz =1

—1 < M Am <1, otherwise
therefore from D.10 we have:

_ l—pg. tfi=0andz =1
lim(1 - w)Py (M) = ,
T 0. otherwise
thus A, is equal to 0 except at z; = 1. Since the limit operation includes continuous values

of a variable, we ignore the point z; = 1 and therefore A, will be zero and it is not part of

the steady-state PGF, and only -1, remains there. Therefore

Q(Ovov :lvyl)

F (M)
2= MR T (Mg )

—l-p=-n | ™

1=0 J

(C“/\“)J (C'Zl/\‘z[)"“_}

Comparing this result with that in section 3.4.5, we can see that as expected they are equal

to each other.



Appendix E

The Solution Satisfies the Functional

Equation

Since we have derived everything on the basis of the original functional equation 2.16, the
solution 3.68 together with the boundary function 3.70 that we have obtained should satisfy
2.16. In this section, we show that the solution of Q(zg. yo. 21.y:1) and Q(0,0, z,¥,) do
satisfy the original functional equation, which provides further proof for the correctness of

the results that we have obtained.

E.1 Preliminary Results

Before we present the proof, let us show some preliminary results that will be used in the

proof. At first let us show the following result:

Ao — X, Ni(1) = Au
c,=2- N o N =

= E.1
Aoi = A Az = Ay D
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Proof: From 3.11, we have

Bi + a,fi(z) F [ +aufi(z P +4(1 - a; = 8) fi(z)
5 ,

/\li,2t -

thus

Ai + Ao = 8 + aufi(z). Az — A = [B +atfz(3:)]2 + 41 —a; - 3,) fi(z)

and

[5,+(¥ fl("! ] {[f3 +(lex ] +'l(1 -y — fjl)fl(:l)} _

1 _(l_ai—ﬂt)fz(zi)

/\li’\‘Zi -

From 3.1, we have X' ,(1) = 3, + (1 = J)u. f.(2.),
thus (1 — 3;)y. fi(z) = (1) - 3, .

From 3.14, we have

C _ 1 :.( J,d -0 )f(~) (d +axfx(zx))
=35 F
2 2\/ J + f; ~x)) (1 =y — Bl)fz(:t)
thus
C _ 1 T 2(1 - .di)ylfl(zl) - 2Qifi(zl) + /\li + ’\‘.Zi
15,2t — 5 ’
2 Q\E\u + Agi)? = A A
I 2[‘\’,(1) —IB,'] —‘2a,f,(::,) +/\1,‘ +/\Ql‘
C' =5 F !
T2 24/ (A2 = Ay)?
1 2X,(1) - [/3,+af, ']+/\u+/\2:
Cliai = 5 + 20 — M)
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2-\’1(1) - (/\lx + /\21') N

1

1 2‘Y,(1) — 2(/\(;‘ + /\21) + /\li + ’\2i 1
C i2% == =3
=5 F 20 — Ar) 27T 20 - M)

Finally,
2N (1) — (A + X)) Ay — Xi(1)

1
e RTS VS v Rl g w

I 2X,(1) — (A + A Xi(1) = A
Co o Ly 250 = Ot ) X1 = he
2 2(A = Au) An — Ay

this completes the proof.

Let us define Cl‘z =Cy Iy‘_-_}" , Cz“ = Cy ly‘=Y; . \.;l(l) = ‘\';‘(1) Iy.=\'; , then

from E.1, we have

Aoy = X(1) X(1) = Ay
e BT LU T ST U Rl 2
1t /\’g _ A“ 2 /\)1 /\[‘ (E )

From 3.3,

‘\'1(2) = [dz + alylfl(:l)] -\’t(l) + (l L .‘}l)fl(:l)‘\'l(o)‘

‘\’,'(2) = [dn + a’iff:f:(-:x)l Xo(1) + (1 -, = 3) fi(z)
then substitute for 3; + a,y; fi(2:) and (1 — a, — 3,) fi(z:) , we have

-\'((2) = (’\lx + /\'Zi)-\’l(l) - ’\11/\21 (E3)
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E.2 Proof of that the Solution Satisfies the Functional Equa-
tion

Now with the available preliminary results, we are ready to show the solution satisfies the
original functional equation through substitution.

Letting £ — oo, the original functional equation 2.16 becomes:

<1

1 <0 — <1

- . , -1
Q(z0, Yo. 21.31) = B(1) {j‘Q(Zov Yo, 21, 11) + ——Q(0.0. 2, }7) + . Q(0,0,0,0)}
(E4)

20 Zo2t
Let us define

l ) . .
:{1 = TB(].)Q(:Q, )0. 1. } l)'
)

<0 — 2

Ay = — B(1)Q(0.0. 2. 1)

Ay = 13(1)::(2(0. 0.0.0)

~

21
then E.4 becomes Q(zg, Yo, 21, y1) = A + 42 + A3, in the following, we will show that
this is true.

First let us consider the part A, , substituting our solution 3.68 in 4, we have

1 . I . mo [y my - -
A= ;()‘B(I)Q(Zo,yo,zh Y = ;[-\0(1)] [ (W™ Q(z0, Yo, 21, 1)

20-1 0 \m My ey s 2o [ mo | (Ciohio)* (Caohao)™ ™"
= (1 - po) Z— [Xo(U)]™ [X, ()™ Czma(a-1) Y Cinul i)
20 k=0 \ &k 20 — AoAz

Jazn)@-Da eam o s ™™

%0t k=0 =0 k 7
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.(C‘.O’\‘O)k (Cz.o/\"o)mo_k (C' /\u) (Cz'v\ﬂ)m‘ '/\‘u/\gil T( ‘“,\"" ‘)

: z m Yn[ o~ i m nl
20200 o s S ‘
“0<1 k=0 1=0 k i

(Cioro)* (Ciodan)™ ™" (Cr A1) (Cida)™ ™
zo — A§p Ao~ 'w“,\"“ :

Substituting for C;,. Cs4, Cy,, C3,, from E.2, above equation becomes

-1, Xi)=A,]™. mo [ g Ak Apeo—k
Ay =(1-po) 2 X)L 6(s -1 AL e LS
1= ( Po) N [ 1(1) Not — At (1 )kgo N 20 — Ak ATIo" -k

e k me -k
~(‘\'o(l)/\20_'\0(1)) ( V(1 )\ o(l) — /\10>

’\'20 - ’\10 /\).0 - ’\IO

20— 1) (2 Mo " my ny !
e = IIEV') 30 R P LR CRUTED
“0~1 k=0 =0 k L
A2 -X2(1 , Xo() =A™=k £ oA —XT(D)) [ v Xr(L)=Ap M-t
,(ko(l)ﬁ) (LM (B (W)

(~0 _ /\kO/\mo —k b AR z) [ — AL AT zr( A z)]

sz — 1 mo m Mg my /\L‘ \mo k/\z /\ml t i Mog — X5(1 k
2E=D0 )5S ol A (o K0
201 k=0 i=0 \ £k ;] 20— Al T ALAg Az — Ao

X;(1) —Am)"“’"‘( A —X{(l))‘( . X3 (1) -,\“)'"“‘
= Xi()=—————] [ X\(1)=/————
( 0( ) A20 — Aqg l( ) A = Ay l( ) Aap — A

noting that X;(2) = .X/;(1).\[(1) (see 3.1), we can find that 4, becomes:
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N

Al _ (1 _ po) 0 — I [Xl(‘Z) - 4\[[1\’1(1)} )

mg k ymo-—k
Z my Ao
20 A2 — A k=0

k z0 — MoAx’~ -

, (Azo.\'o(l) ~ .\'0(2)>* (Xo(?) ~ )\mXo(l))mo_k

/\20 - /\10 ’\20 - /\10

20— 21)(z1 — Jo ML mg my
+( 0 j)z( 1 Z Z Allc(y\mo k/\fxll\z("ll l)[w(/\: \ml 1)
<0<l k=0 =0 k i

A20-A1o A0 —Ar0 A —An Az =

(,\20.\'0(1)—4\'0(‘2))k (.Y.)(Z)—Am,\'o(l))""0—"' (A‘-‘lf\'l“)—-\'l('.?))‘ (l\-l(-_).)_,\n‘\'l“))"ll—l
(20 = M EMG ™) o1 = Mg T (M)

20 (Z[ — 1) Jo Mmgo ny /\llc()/\"m K \‘ \ml ‘ /\20.\—0(1) - ‘\'0(2) ,
+ (1 - /)) k ym k my -1
ZOZl k=0 1=0 k l /\lol\ )0‘) ’\l l/\ ! /\‘20 - /\[0

. (Xo(?) - «\10‘\’0(1))"10_/‘ (/\21-\'1(1) - -\'1(2))' (-\71(2) - /\uxl(l))ml—l,

/\20—/\10 /\21 —All /\21 -’\ll '

Substituting (Ayi + Xs;) X1 (1) — A Az for X,(2) from E.3 and noting that €y, = 22=%4),
Cy = \A—S% results in:

' - mo —k)
20 —1 no [ mg | Ck Cmok \2k \2mok
Av=(1-p) Z—CRé(z - 1Y Ao
0 k=0 k 102
CENCESY o [ 1o m

2% y2(mo—k) y 3¢ y 3(my —1)
\lOA "o /\‘l/\ -
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_ chemereucm =t (M) |
(20 = MoAg MG ) [0 = A A T (Mg )]

-\ 2(mo—k ~i
+Zo (21— 1) (1-p) § :V‘l‘ Mo m '\%3’\28"0 )’\%ll)‘g(lml !
. N k —k i -
<0~1 k=0 t=0 k i 20— Moz AN
CloCi® " CHCa ™ (E.5)

Next let us consider the second part A, . Substituting 3.70 and following the similar

steps as we did for A, we have

20<y
20\ 20my —1) mi—t
+(1 - (~0 - zl)(:l - l) Ball — my C: my -t /\1‘11\21 r (/\'“/\'-’1 ) .
( /)) " - O( )Z 111 M-t ; mi—t) '
~0~l =0 L :l - /\'ll/\-Zl (’\ll’\Zl )

From 3.16 we have

mo me JO | my . o —
Bo(1) = [Xo(1)]™ = [Clo/\lfo + Czof\’fo] =y (CroMio)* (CaoAao) ™™
k=0 k
thus
20 = 21 py ¢ — Mo k mg—k
A2 = (1 - po) Cy1'o(z — 1) Z (CroA0)” (CaoAn)

2021 k=0 k
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20— 2 Jo 2L | me m, _
H1-p=Bzl sy Az T A A
~0-1 k=01=0 \ k i

ChCmo~*Cy T (M AR ™)

: p— ; (E.6)
LT (A AT
The third part is:
<1 1 - Mo - my I — 1
15 = B(1)=—=0(0.0.0,0) = [Xo()™ [\, (1™ =—(1 - )
-1 m m
=(1-p)=— [Cm'\'fo + O™ [Cu/\‘u + C'zv\'u] l
21
o —1 20 2| my nyy : Mo —
= (1~ P)—l~— > (Crorio)* (Caodao)™ " (E.7)
~l k=0 =0 k )

Now, adding E.5, E.6 and E.7 up, and then combining some terms, we have

.-11 + ."2 + A5
m [ mo | (Ciphio) (Caohao)™ ¥
= (1 = po) (20 = 1) C31'(= Z AE AT F
k=0 k “0 - 10712
20— 21) (2 < L[ mo my . mo—
+( - lz( — DI (Crora)* (CaoAgo) ™ ¥
<1 k=0 =0\ £ i

(Cridu) (Cadat)™ T M AT T (M A5 Y)
(20 = ModE MR ) [ - AR T ()]

29 (Z[ oo mo my
T ) 3>

k=0 =0 k I}

(CIO/\lO)k (CaoAag)™ "
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(Curn)’ (CZI/\‘Zl)ml—i .

- k ymo—kyi my—t?
~0 — ’\10/\20 /\‘ll/\'ll

Comparing the above equation with 3.68, we find that Q(zo. y0, 21, 1) = A1 + A2 + As.
This completes the proof that the solution satisfies the original functional equation, which

provides further proof for the correctness of our performance analysis.



Appendix F

Proof of Equivalence of Equations 3.32

and 3.42

In section 3.2.4 we have derived cquation 3.42 from 3.32, but we didn’t give strict proof
of that derivation. In this appendix, we will show that these two equations are equivalent
through induction.

The equivalence of the two equations for the first few values of & is straight forward
and will not be given here. In the next, we assume that these equations are equivalent for
order k, and we will show they will also be equivalent for oder (k + 1).

From 3.32 we have

Qk+l(07 Ov zlvyl)

k
= EWBik+ 1) + — Y€k = )Bulk + 1 - )Q,(0,0, 21, 01(k + 1 )))

<1 =)

k
2 &k —J)Bu(k + 1 -7)Q,(0,0,0,0) (D)

J=1

+

21-1
L

>
<
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From 3.42 we have

Qr+1(0,0, 21, 1)

koo
> £(i—h)B(k+1-h)Q4x(0,0,0.0)

=1 h=l

Ed
+

-1

= ) ¢(k+1-9)¢(i-1) B (k+1)+

~.
]
—

(F.2)
Next we will show F.1 and E.2 are equivalent.

Substituting j for k£ and substituting ¢,(k + 1 — j) for y; in 3.42 we have:

Q;(0,0, 2y, 1 (k+1-j))

~U—i=D)E(i=h)BE 1 (j—=h)Qx(0,0,0.0)
(F.3)

= Y p(i—)E(i-1) BEH () + 2

=1

Substituting F.3 in F.1 gives us:

Qk-{'—l(ovov Zl,!ll)

k)
= (k) By(k+1)+— 53w —DE(—L)E(k—j) By (k+1—j) BETI(j)

“1 j=li=l

-l

k
,_IZZZ ( — &= &k = ))EGE—h)By(k + 1~ ) By (j = h)Q4(0.0,0.0)
j=li=l h=1

noting that
B; (/ﬁ, + n)

Bi(k) = B.(n)

the above equation becomes:

Qk+l(0‘ 0? 21 yl)
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k
= £(k)By(k + 1) + }lzz 2 — G - Ve — j)Bulk + 1)
“l j=ti=1
- k j-1 1
43 1}: S o — i — )&k — J)EG — h)By(k + 1 — h)Q4(0.0,0,0)
j=li=1 h=1
l k
k- Blk-i-l—j)QJ(OOOO)
j=1

Exchanging the order of summations, we have

Qk+l(0' 07 2, !/l)

k k
= &(k)By(k + 1) ;ZZ (J— )& — DEk = J)Bi(k+1)
LA —1 Uyl
Z P —i— DEK = J)EG - h)By(k + 1 — h)Q4(0,0.0.0)
J=lh=t1=h
-1 k
> &k Bi(k +1-,)Q,(0,0.0,0)

J=1

lettingn = j — i, m =i — h, the above equation becomes:

Qk+l(01 01 4 yl)

k k-2
= €0)Bulk + 1) + - X X ()i = DEGk ~n =Bk +1)
1=l n=0
7 — 1 g itk
T Y Y el —m—h = 1k = j)E(m) Bi(k + 1 = h)Qa(0,0,0,0)
1 j=th=1 m=0
k
Y ek - Bl + L= 1)Q,(0.0,0.0 (E2)
ij=1
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From the definition of ¢ (k) in 3.43 we have

k-1 r-1 re-1—-tb &k
o) =3 > - > 1l ,(,, E(rno =T — 1)
ri=0r;=0 r,=0 n=1<
expanding the product
1 k—=1ry- Fe-1—1 1
)= Z Z - Y —mmblro == DE(r =y = 1) €l = e = 1)
~“l ri=0r,=0 re=0 3|

here, we assume that if the upper limit is less than zero then the summation is equal to [

instead of zero.

1 5= r -1
p(k) = ;Z E(k—1-r) ZO ZO (,) 6 —ra = 1) € — e = 1)
1=0 r2= re= <
therefore
1 k-1
=.—Z E(k =1 —r)p(r) (F.5)

From this result, we have

ck+1-14)= ka—z—n o(n)

<1 n=0

~h
E(j —h—1-=m)p(m)

1742
m=i 3

o - -
~“l m=0

substituting the above results into F.4

Qk-f-l(ov Oa 21, yl)

k

=E(k)By(k+1) + %Z‘F(" +1-0Ei—1)



APPENDIX F. PROOF OF EQUIVALENCE OF EQUATIONS 3.32 AND 3.42 141

Jj-1

+zl; 1 > ) p(j — R)E(k = j)é(m)Bi(k + 1 - h)Qx(0,0,0,0)
“l  j=lh=1
-~ k
+ IZf(k—j)Bl(k-i-l—j)Q,(O,O,O,O)

«1

J=1

combining the terms, we finally have that

Qk+l(0y 0, z1, yl)

i Y (k=DE(i=h) By (k+1-h)Qx(0.0.0,0)

1=1 h=tl

-1

k+1
=Y p(k+1-0)E(-1)Bi(k+1)+
=1

Thus that equations 3.42 and 3.32 are equivalent for oder (k + 1). This completes the

introduction.



Appendix G

Determining Busy Period Distribution

from First Principles

In section 3.2.1, we have determined the expression for busy period of the high-priority

queue (see equation 3.24) as

k
pe(0 Z £(j — 1)pe-,(0) (G.1)

where £(j — 1) is the probability of that the busy period of high-priority queue is j — 1
slots, and pi(0) is the probability of that the high-priority queue is empty at the end of slot
k. In this appendix, we will show this equation is correct by some examples.

In the next, we will compute the first few values of £(j). From equation G.1, we have

= 30 — Dpesy(0) = pe(0) = £(0)po(0) = £(0)

p2(0) = }_€(J = )p2-;(0) = £(0)p1(0) + £(1)po(0) = £(0)p1(0) + £(1)

142
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p3(0) =Y €3 — 1)pe—,(0)

j=1

= §(0)p2(0) + &(1)p1(0) + £(2)po(0) = £(0)p2(0) + £(1)p1(0) +£(2)

Therefore

The expression for p(0) has been determined in [18], which is given by:

kot . — ] —
1{ ¢ mok — j — 1
pe(0) = 8™+ 5 - ’ mo(k=t)ab™ (L—ag—3,) 35k 77t k> 1

=m0t | -1

where it assumes that the high-priority queue is initially empty and all sources arc in the
Of f state; also it assumes that a On source generates one packet during a slot. With
these results, it is easy for us to compute the probability distribution of busy period for the
high-priority queue.

Assuming that mg = 4, ag = 0.75, 3y = 0.97, we have first few values of £(j) as:
£(0) = 0.88529281, £(1) = 0.02-19891596, £(2) = 0.0178987364 (G.2)

Also, we can use an alternative method to compute the probability distribution of busy
period by first principles. Let us define P,(k)= Probability that the high-priority sources

generate ¢ packets during k'th slot, and assuming that an On source generates only one
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packet during a slot, then we have:
§(0) = Po(1) = 55
§(1) = P(1)Po(2
my

L= 30)35" | [(1 - ao)35°]

£(2) = P(1)P(2) Fo(3) + Pa(1) Po(2

m
= 0 (]. —/3 Bmo t ﬂ()ximo l 1—00)/36”0_1]
1
( g \ o -1 my mg —2 1
+ (L= 30)a | (1= ay) (1~ J0) 52| [(1 = ag)o~]
! :
( Mo \ 2 mo-2 2 ymp—2 m
+ (L= B0)235m 72| [(1 = o) 3572 3
2
[\ 2 )

Again assuming that mg = 4, ag = 0.75. 3y = 0.97, we have first few values of £(;) as

£(0) = 0.8853, £(1) = 0.025, £(2) = 0.018 (G.3)

Comparing the result of G.3 with G.2, we find that they are equal to each other. This

provides further proof that equation 3.24 is correct.





