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ABSTRACT

An FPGA Implementation of RM-BTC Codec
using Log-MAP Algorithm

Qing Li

Due to their powerful error correcting capability and superior coding gain, Turbo
Codes are used in 3rd generation wireless and satellite communication systems. For these
applications, efficient implementation of Turbo Codes, i. €., development of codec provid-
ing high throughput with small chip area and low power consumption is of growing
importance.

In this thesis, Turbo Code using Reed-Muller code as its constitute code is imple-
mented in VHDL and logic synthesis is executed. The Max-Log-MAP algorithm is used
due to its significantly reduced complexity and negligible performance degradation from
MAP algorithm. The implementation of codec mainly focuses on achieving the smaller
chip area and lower power dissipation, and target to device Virtex-E FPGA. For this pur-
pose, the system and module level optimization of codec architecture is carefully consid-
ered through the parallelism and pipeline, interleaving technique, function unit sharing
and memory access. The quantization and finite accuracy are also discussed. The simula-
tion in RTL level on a wide variety of test vectors is done, and results show that the
encoder/decoder execute properly and correct functionality is realized. The synthesis
reports show that chip utilization is reasonable and more resource remains for future

improvement.

- iii -
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Chapter 1

Introduction

Increasing demand for information exchange is a characteristic of modern civiliza-
tion, and the distance can’t prevent people from communicating across the world. The past
ten years have seen rapid growth in mobile communication and this is expected to con-
tinue. The information transmission should be done in such a way that the received infor-
mation should be as close as possible to the transmitted information. Therefore, providing
a high speed data transfer, reliable and cost-effective data communication system has

drawn much attention in the past decades.

1.1 Introduction

Since digital techniques offer many benefits in technical implementation and eco-
nomic benefit, digital communication systems have become the main stream technology in
communication systems. A typical digital communication system is shown in Figure
1.1[3]. The original signal source feeds into source encoder which efficiently compresses
data with little or no redundancy; the binary output data stream from the source encoder,
called the information sequence, is passed to the channel encoder, which introduces some
controlled redundancy in binary information sequence. The added redundancy can be used

at the receiver to overcome the effects of noise and interference encountered in the trans-
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mission of the signal through the noisy channel. So the coded output from the channel
encoder provides the error detecting and correcting capability to the channel decoder at
the receiver end. The digital modulator maps the coded word into a set of waveforms that
are suitable for transmission over the channel, where the data is usually corrupted by
noise. At the receiving end, the demodulator processes the channel-corrupted waveforms
and following detector will make a hard or soft decision based on decoding algorithm
used. With the knowledge of the code used by the channel encoder, the channel decoder
processes the quantized/unquantized output from the detector and outputs the estimated
coded word whose errors have been detected and corrected. As a final step. source decoder

attempts to reconstruct the original information sequence generated by the source.

Info. source Source Channel

to
—  Encoder ™| Encoder [® modulator

v

Noise —p»-| channel

v

4— Demodulator

Info.sink}  Source Channel
- | Decoder [ Decoder

Figure 1.1 Typical digital communication block diagram

The frequency of errors occurring in the decoded sequence is a measure of reliable
information transfer. It is called bit error rate (BER). In general, it is related to the code
characteristics, modulation type, transmitter power and the method of demodulation and
decoding used, etc.. In this thesis, we focus on an algorithm and its implementation for

channel coding, which minimizes the error bits in the decoded sequence.
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The channel decoder can control errors in many ways[4]. For example, a bilateral
exchange, called automatic repeat request (ARQ), can minimize the amount of wasted
effort/bandwidth needed to control errors when both forward- and reverse-channel com-
munications are reliable. However, in many cases, the reliable reverse channel is unavail-
able, and the system cannot tolerate the delay imposed by an ARQ system. So the forward
error correction (FEC) is used mainly in protecting data against disturbance introduced by
the physical channel.

Forward error correction adds redundancy to the data stream at the transmitter end
so that the receiver can both detect and correct errors unilaterally. However, this requires
expanded bandwidth to transfer the coded sequence including the original information and
the error-correcting redundancy. Although increasing transmitted power and expanding
bandwidth can reduce the error rate sufficiently, many applications are strictly power-lim-
ited and bandwidth-limited. Therefore, what engineers consider is to find a powerful for-
ward error correcting coding scheme that balances the transmit power, bandwidth and data
reliability.

While channel coding provides protection to transmitted information, it is also
required to reduce the transmit power which is normally represented in terms of coding
gain. The coded system requires less signal-to-noise ratio (SNR) than uncoded system to
achieve the same bit error probability. This reduction expressed in decibel (dB) is called
coding gain. A large coding gain means less transmit power. Therefore, a powerful coding
scheme is to achieve as much coding gain as possible[3,5]. Nevertheless, the construction
and selection of the coding type depend on some constraints and requirements such as

channel environment, implementation complexity, as well as performance, speed and
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bandwidth, etc.. That’s why the development of error-correcting code (ECC) has been
continuously improving for half century since the concept was proposed by Claude E Sha-

non.

1.2 Review of Error Correcting Codes

Claude E Shannon laid the foundation for modern digital communication with his
ground breaking paper [6] in 1948. The two classical theorems in information theory are
the source coding theorem and the channel coding theorem. The source coding theorem
shows the smallest number of bits required to represent a given source without any loss;
the channel coding theorem shows the maximum theoretical data rate with ‘good’ data
code for reliable communications. The theorems show that if the data rate is less than the
channel capacity, reliable information transmission can be achieved if one chooses proper
encoding and decoding techniques.

There are two broad categories of codes used in communication system for error
control coding, block codes and convolutional codes. In block codes, a block of n digits
generated by the encoder in a particular time unit depends only on the block of & input
message digits within that time unit. The larger the block length n, the smaller the proba-
bility of decoding error. In convolutional codes, a block of n digits generated by the
encoder in a time unit depends not only on the block of k message digits within that time
unit, but also on the preceding (N-I) blocks of message digits. Due to the difference
between them, block codes are better suited for error detection and convolutional codes
are mainly used for error correction. Recent studies have shown that convolutional codes

perform as well or better than block codes in many error control applications[7-9].
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Bose-Chaudhuri-Hocquenghem (BCH) codes, discovered by Bose, Chaudhuri[69]
and Hocquenghem[70] in 1959, are among the most extensively used powerful error-cor-
recting cyclic codes known. The important sub-class of BCH codes. Reed Solomn codes
were proposed by Reed and Solomn in 1960{71]. It has a better performance at higher
SNR region and copes well with burst error, whereas convolutional codes outperforms the
Reed Solomn code at lower SNR region.

Burst errors often occur in storage media such as tapes and compact discs because of
defects. Aforementioned codes concentrate on codes capable of correcting random errors.
They are in general not efficient at correcting burst errors. In order to take advantages of
each code, some new type of codes are introduced in coding schemes such as Interleaved,
Product and Concatenated Codes. Because the large block lengths offer the small proba-
bility of decoding error, these codes are long block length codes that are derived from
short block codes.

An interleaved code can correct a single burst of length At or less if the original
code can correct a single burst of length T or less, where A is degree of interleaving and t
is burst of length. However, interleaving a code introduces delay (delayed interleaving)

because transmission cannot begin until all A code words have arrived.

A product code is an (N;N2,K,K;) code in which each code word forms an N; X N,
rectangular array such that each row is a code word from an (N,,K;) code C, and each col-

umn is a code word from an (N>, K;) code C». Product code is capable of correcting burst

errors of length T' or less, where T = max(NT,, N,T,) if C; and C, are capable of cor-
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recting bursts of length T, and t,. Product codes were proposed by Elias and they can be

extended to higher dimension.

Concatenated coding was introduced by Forney(2] as a practical technique for
implementing a code with a very long block length and a large error-correcting capability.
The principle is the application of two levels of coding, an inner and an outer code linked
by an interleaver. The inner encoder, channel and the inner decoder are viewed as a super
channel. The information is first encoded by outer encoder, for example Reed Solomn
encoder, and then the output from outer encoder is fed into the inner encoder, for example
convolutional encoder. The decoding process is in the reverse order: the received sequence
with errors is decoded by inner decoder with hard or soft decision algorithm and then
decoded by outer decoder to correct the residual errors.

Turbo codes, introduced by Berrou et al.[10], built from a particular concatenation
of two recursive systematic convolutional codes linked by nonuniform interleaving, is the
biggest breakthrough in recent error correction code [ECC] history[10,11]. For the AWGN
channel, turbo codes perform to within 0.7 dB of Shannon’s limit as opposed to 2 dB or
more for other state-of-the-art techniques of similar complexity. Since 1993, turbo codes
have become the hottest topic in ECC field. Soon after convolutional turbo codes (CTC)
was proposed by Berrou er al. in 1993[10], the concept of turbo codes was extended to
block turbo codes (BTC) in particular by Pyndiah et. al[12,13]. The difference between
CTC and BTC is the component code used. Convolutional codes are used as component
code in CTC whereas the block codes are used in BTC. Because of its excellent forward
error correction capability and superior coding gain, the utilization of turbo codes has

increased dramatically on AWGN channels, such as satellite, wireless and space commu-
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nications which require high performance at very low SNR. In Chapter 2, the details of
BTC will be discussed.

There are many decoding algorithms for different code constructions such as the
efficient iterative algorithm proposed by Berlekamp for BCH codes(8]; the Viterbi algo-
rithm for minimizing the probability of word error for convolutional codes[3]: the MAP
algorithm proposed by Bahl et. al for minimizing the symbol (or bit) error probability by
estimating the a posteriori probabilities of the states and transition of a Markov source
through a discrete memoryless channel[14]. In this thesis, we are interested in the trellis-
based MAP algorithm because the state transition and decoding process can be repre-
sented by a trellis diagram, and it is more efficient than other non-trellis algorithms.

Most algorithms can accept hard- or/and soft-input and perform hard- or/and soft-
decision decoding. In the hard decision decoding, the input of the decoder is quantized
into two levels: whereas in the soft decision, the input is quantized into more than two lev-
els. Multi-level quantization or the real channel information input makes soft-input decod-
ing to have more advantages over hard-input decoding due to more reliable information
being available. The additional information provided by the soft decision in most instances
can provide about 2 dB of additional coding gain and can significantly increase the useful-
ness of a particular code[1].

Based on the MAP algorithm in logarithmic domain[15,16], J. Hagenauer er al. gave
a detailed analysis and mathematical formula about the iterative decoding of both block
and convolutional turbo codes with MAP and its modified versions[17]. An alternative
coding scheme with Reed-Muller code as component code was presented in [5]. The two

papers [5, 17] are the basis of decoding algorithm used in this thesis.
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1.3 Objective of thesis

Although turbo codes have outstanding performance, they are computational com-
plex. Also there exists many technical difficulties in the implementation of a practical
turbo-coded system. The main objective of this thesis is to design the hardware architec-
ture and arithmetic function units of Reed-Muller block turbo codes (RM-BTC) Codec in
RTL model, and aim at the implementation using Field Programmable Gate Array
(FPGA), and produce a prototype. The second goal is to reduce the chip area as much as
possible. The actual decoding speed and chip area obtained through synthesizing and map-

ping to Xilinx FPGA are taken as a reference for future improvement.

1.4 Contribution

This thesis is an engineering-intensive design work based on an existing decoding
algorithm. It presents a practical implementation of a turbo-code codec on a Xilinx FPGA
chip. The main contributions contains:

o Investigation and modification of the decoding algorithms suitable for hardware

implementation.

« Behavioral simulation of the modified algorithm and quantization of variables.

* Hierarchical architecture design of codec and functional units and finite state
machine (FSM) for codec. Especially employing a single decoder for both hori-
zontal and vertical decoding for the sake of saving chip area without perfor-
mance degradation.

 Simulation and synthesis of proposed hardware implementation.

* Correct gate-level simulation of turbo encoder.
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1.5 Overview of thesis

The focus of this thesis is on the implementation of turbo-coded codec. It is orga-
nized as follows:

Chapter 2 provides an introduction to block turbo codes related to this thesis.
Besides the basic concepts of block turbo codes, the construction of Reed-Muller code and
its minimal trellis diagram using Massey algorithm are given. After discussion of the soft-
in-soft-out (SISO) decoder and parallel iterative decoding, trellis-based MAP algorithm
for linear BTC is presented.

Chapter 3 studies the modified algorithm to be implemented based on trellis-based
decoding. The Log-MAP and Max-Log-MAP as well as Lookup-table-based Log-MAP
algorithms are discussed in detail. Decomposition of each arithmetic functional unit for
forward recursion, backward recursion, branch probability as well as extrinsic information
calculation is provided. Finally, the iterative decoding procedures are given as a guideline
of FSM design.

Chapter 4 contains all aspects of design and implementation of RM-BTC codec.
First, the review of turbo code implementation in the past is given; some issues such as
quantization, fixed-point representation are also reviewed. Second, the aimed target imple-
mentation Xilinx Virtex-E FPGA architecture is provided. Finally, according to the modi-
fied algorithm and target device, the detailed designs of RM-BTC encoder and decoder are
given, which include the overall architecture, finite state machine and data path compo-

nents.

Chapter 5 covers the results of simulation and synthesis of the RM-BTC encoder

and decoder. A variety of test information blocks are sent to the encoder and the decoder
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output is compared with original information block under different SNRs. The hardware
mapping results are given for encoder and decoder, respectively.
Chapter 6 summarizes the work presented in this thesis, and discusses several ideas

for improving the current design in future work.

-10-



Chapter 2

Block turbo codes

In this chapter, we first discuss some basic concepts related to block turbo codes
[3,18], which are relevant to this thesis. Then Reed-Muller code used in this thesis is dis-
cussed. Minimal trellis construction and trellis-based decoding of RM-BTC are discussed

in detail.

2.1 Basics of block turbo codes

2.1.1 Linear block code

A block code C(n,k) consists of M = q“' code words of length n (k<n), whose ele-
ments are selected from an alphabet of q elements of GF(q). the ratio &/n is defined to be

the code rate which determines the amount of redundancy. Here we just consider the

binary block code, i.e. q=2. The 2k distinct code words are a subset of 2" binary sequence
of length n, which are selected to transmit k-bit blocks of information.

An (n,k) block code is linear if component-wise modulo-q sum operation of any
two code words is another code word. In our case, modulo-2 sum is used in obtaining

another code word. Viewing from linear algebra, an (n,k) linear block code is a k-dimen-

-1l -
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sional subspace of the n-dimensional space of all the binary n-tuples. We can construct the
linear block code with vector and matrix format.

The k-bir information vector M = (mgy, m;, mj,..., m;_;) would be encoded into
block codeword C of length n, C = (¢y ¢}, €3..-.,C5. 1), the linear operation performed in a
linear block encoder can be represented as

C =MxG (2.1
where G is called the generator matrix, with a set of k linearly independent binary
n-tuple as its row, arranged as a kK X n matrix.

Further, a linear systematic block code can be constructed when the generator
matrix G can be reduced to the following special “systematic” form by a sequence of ele-
mentary row operations and column permutations, G=[I;: P], where I is a k X k identity
matrix and P is a k x (n-k) matrix determining the parity check bits.

In the linear systematic block code, the first & bits of the codeword are identical to
the information bits to be transmitted. This enables direct extraction of information bits at
decoder from the codeword without attempting to recover information bits. As seen in the

following formula, code word C is made up of two part: the information bits m;and the

parity check bits p i

m; 0<i<k-1

c; =

k-1
> pim, k<i<n-1
j=0

This form simplifies the decoding operation later. However, the position of infor-

mation bits is not necessarily restricted to the first k bits of code words if the position of



hapter) Block turbo es

information bits can be obtained through systematic-like G matrix. We still treat this form

of code word as systematic-like code.

2.1.2 Block turbo codes

Today, concatenated coding schemes have proven to be attractive schemes for
obtaining high coding gain with moderate decoding complexity. They aim to achieve the
same performance as that of a single long and powerful error correcting code but with a
lower complexity when associating two or more less powerful error correcting codes.
Concatenated coding schemes can be divided into three categories: parallel, serial and
hybrid concatenated coding[28]. In practice, the first two schemes are widely used
because of the reasonable complexity of the decoders given a certain coding gain, espe-
cially the classic serial one with Reed-Solomn code as the outer code and convolutional
code as inner code. Because the hybrid code introduces a considerable amount of delay. it
is normally suitable for extremely high data rates where the resulting delay is tolerable.

Turbo codes exploit the similar idea of concatenated code to achieve a low error
rate with less decoding complexity than that required for a single code of the correspond-
ing performance. Turbo codes can be in form of two- or three-dimensional which consists
of concatenation of two or three component codes separated by interleavers. Two-dimen-
sional turbo codes normally consist of two elementary encoders, which construct turbo
encoder and two soft-in-soft-out (SISO) decoders, which construct turbo decoder and
interleaver/de-interleavers. According to how information bits are encoded and decoded,
there are three kinds of turbo codes: parallel, serial and hybrid turbo codes (PCCC, SCCC

and HCCC)[26]. Illustrated by some simulation results[26], SCCCs outperform PCCCs at

- 13-
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lower BER region but PCCCs has better performance at higher BER values. In what fol-
lows we take a two-dimensional turbo code to illustrate the basic concepts of parallel turbo

code. The parallel turbo encoder and decoder are shown in Figure2.1.

Info. bits
elemen parity 1
) encode?iy - coded sequence
: Mux [~
interleaver
[ .| clementary | party2 _
encoder 2

(a) Parallel turbo encoder

extrinsic info.

Interleaver Deinterleaver
_-[S150 Lsso
decoder —| Interleaver decoder

parity bits '_.

——-| Demux

info. bits

Deinterleaver —l

‘ <————| Hard decision
estimated info. bits

(b) Parallel turbo decoder

Figure 2.1 Block diagram of parallel turbo code

Although the term “turbo code” is used to refer to a wide variety of concatenated
coding schemes, its initial version is solely a parallel concatenation of convolutional codes
(PCCC) whose encoder is formed by parallel concatenation of two recursive systematic
convolutional codes jointed by an interleaver. In paralle! turbo encoder shown in Figure
2.1(a), two elementary encoders are connected in parallel by an interleaver. The informa-
tion bits and its interleaved sequence are input to elementary encoders 1 and 2, respec-
tively. Each encoder encodes the information bits and output the coded sequence

consisting of the information and parity check bits. The information bits for the encoder 2

S 14



Chapter) Block turbo codes

are not transmitted because it is same as that of the encoder 1. This is different from con-
ventional concatenated codes. Therefore, turbo encoder output is made up of three parts:
information bits, parity 1 and parity 2 bits, which will be transmitted over the physical
channel. One advantage of the parallel scheme is that the two encoders can work clock-
synchronously.

In the parallel turbo decoder shown in Figure 2.1(b), two soft-in-soft-out (SISO)
decoders linked by an interleaver realize the iterative decoding of the received sequence.
The soft output of the received information and parity 1 bits from the demodulator and
extrinsic information from the SISO decoder 2 as a priori value are taken as the inputs of
the SISO decoder 1; the soft output of the interleaved received information and parity 2
bits as well as interleaved extrinsic information from decoder 1 are taken as inputs to the
SISO decoder 2. Similarly, the extrinsic information generated by decoder 2 are deinter-
leaved and feedback to decoder 1 for next iterative decoding. After a presetting iterative
decoding process, the hard decision is made according to the sign of the deinterleaved soft

output of the decoder 2, and the magnitude of soft output is the reliability of this decision.

2.2 Reed-Muller turbo codes

The choice of the constituent code has a strong influence on the overall perfor-
mance of turbo codes. Long block length (interleaver size) yield remarkable performance;
however, in wireless applications, the block length is much smaller, on the order of a few
hundred bits or less. The advantage of using a block code is that the memory requirements
of the MAP decoding can be reduced significantly; also the decoding delay is set by the

length of the block and does not depend on the transmission rate.

-15-
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In our turbo code scheme, Reed-Muller codes are used as constituent code because
they have modular structure for constructing longer codes with shorter ones. Their trellis
can be easily constructed, further they can be decoded effectively with trellised-based
decoding algorithms. In this section, we first present some basics of the Reed-Muller
codes[19, 20], then discuss the construction of RM turbo codes. Finally the basics of RM

turbo decoding is followed.

2.2.1 RM turbo encoder

Reed-Muller codes are a class of linear codes over GF(2). They can be constructed

by procedures for constructing a generator matrix. For a binary r-th order RM , ., code

of length n = 2™ with 0 < r < m, there exists m 2™ -tuple vectors v; over GF(2), l Si<m.

in the following form:

0..0 1..1 0..0 1...1
, - [ — [ oy 3
"“ - . ) . ] ) ) LERY ] . [ ("" )
21—[ 2:—1 21-[ —_— 21-
. —i+l - |
that consists of 2™ '*' alternate all-zero and all-one 27 -tuples. Let

2= (ay, a,, ....a,) and b= (by, by, ...\b,) and the product of a and b is defined as

a-b = (@ -by,a,- by, ....a,-b,) (2.4)

For 1<i, <i,<...<i,<m,the product v; - v, -...-v, is said to have degree /.
1 2 { i i i =

we also denote 1 the all-one 2™-tuple, 1 = (1,1,...,]).
Now the generator matrix G of r-th order RM code, RM (r, m) of length 2™ is gen-

erated by the following set of vectors:

-16-
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EN
G(r.m) = {L v Ve e Vo Vi Ve Vo Vg e Vi " Vi - 2.5)
up —to- products —of —degree —r}
The RM(r, m) codes have the following parameters:

The code length n = 2™ and the dimension k of G matrix is

b= 14

For convenience, from now on in this thesis, RM(n, k) form is used instead of

RM

(rom)*
In an example of RM(16, 11) code, the 2-th RM code of length 16 is generated by

the following G matrix:

(V():l) _ -

', SRR ERRUEEEE

', 000000001 1111111

0000111100001 111

"2 00110011001100711

Vi 010101010101010°1

G =| vy, |=0000000000001111 (2.6)

RM(16,11) 3y

vav, 0000000000110011

- 0000000001010101

- 0000001100000011

23 0000010100000101

Y1vs 000100010001000 1]
Viva

The above matrix is not in “systematic” form, so the code generated is not system-
atic code. In order to simplify the encoding and decoding, G matrix can be reduced by row
operations and column permutations to a systematic-like form which clearly indicates the

position of information and parity bits. Because turbo codes are linear block codes, the

-17-
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encoding operation can be viewed as modulo-2 multiplication of information vectors with
the generator matrix.

In this thesis, two dimensional RM(32,26 )2 codes are used as constituent codes and
parallel concatenated scheme is adopted. Therefore, two elementary encoders in
Figure2.1(a) are instantiated with two RM(32,26) encoders. The information block and its
permuted version after block interleaver are encoded by two RM(32,26) encoders, namely
horizontal and vertical encoder corresponding to elementary encoder 1 and 2, respectively.
Because we only transmit the original information bits once, this turbo code has the fol-

lowing re-ordered pattern shown in Figure 2.2.

kl nl-ki
k2 u P L:
n2-k2 P
5

Figure 2.2 Re-ordered two dimensional RM turbo code
The horizontal encoder generates C, (n,k;) and vertical one generates C, (nz.kp)
linear systematic-like RM code, where n; and &; are code length and information length of

code C;, i = 1, 2. Horizontal parity bits P” and vertical parity bits P" are added by horizon-
tal and vertical RM encoder accordingly based on the information data u = k; X k; and its

interleaved version. This code has no parity bits on another parity part.

- 18-
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The Figure 2.3 has the ideal systematic form through re-ordering information and
parity bits. When decoding, we need to perform the inverse operation to obtain the original

code word order.

2.2.2 RM turbo decoder

Before discussing the RM turbo decoder, we first present some basics of the log-
likelihood algebra and SISO decoder as well as the iterative decoding principle[11,17].

Assume BPSK modulation and natural logarithm are used in the following discus-
sion. Let a binary random variable X be in GF(2) with elements {+1, -1}. The log-likeli-

Py(x=1)

m. which will be denoted as

hood ratio of x, Ly(x), is defined as Ly(x) = log

the soft value. When an (n,k) systematic code is transmitted over a Gaussian channel, the
log-likelihood ratio of bit x conditioned on the match filter output y is

Px(x =1|y)
“Py(x=-1]y)

o[ POlx= 1) P(x=1)
= loc(p(},]x: -1) p(_r=_[))

L(x|y) = lo

exp(—g(_v - a)z) 2.7
= log No + 100————P("T =1)
= ES 2 cP(I = —1)
exp(-m(.\’ +a’)
=L -y+L(x)

E
where L. = 4-a- —2 is called the reliability value of the channel, and a denotes
0

the fading amplitude whereas for Gaussian channel a = 1. The soft-output of the bit x,,

-19-
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L(%,) of the maximum a posteriori (MAP) decoder is defined as a posteriori log-likeli-

hood ratio of bit x;. conditioned on the received sequence $ as follow

L(x) = L(x[3)
Py(x = 119)
= log——oowvww—+
P =-113)
oo POl 1) Pixe=1)
*pOla=-1) P(x=-1)

L [pdrs D H pUix= 1) Plx = 1) (28)
S o\exE - L PO - Plye=-1)
_ o Pilu= D)

Lopixn=1) P(x,=1)
—— 1+
[ Il POyi|x= —I)J+

Og—T
i=li#j P(xk— l)

:P(.Vklx;F -1) °
= LC * yk + Le(x.k) + L('tk)

The above equation consists of three independent estimates for the log-likelihood

ratio of the information bit x: channel value L. -y, for all coded bits; the extrinsic infor-

mation L,(x,) obtained from all the other code bits in the code sequence except x; the a

priori value L(x,) which equals to zero for the first iteration under assumption of equally

likely information bits.

Soft-in-soft-out (SISO) decoder block diagram is shown in Figure2.3. The log-
likelihood input value L(x) feeds to SISO, which decodes received sequence y with MAP
algorithm or SOVA algorithm and outputs the log-likelihood ratio of a posteriori L(_€k)

and extrinsic values L,(%) for all information bits.

Iterative decoding scheme is an important feature of turbo codes. Turbo codes use

an iterative decoding algorithm where the BER performance improves after each iteration.
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a poriori values for L(x) . Le(x) extrinsic values for

all informationbis ———*  Soft-in/ = all information bits
Soft-out

channel vz}lues for | Decoder a posteriori values for

all code bits LC .y L(.;) all information bits

Figure 2.3 Soft-in-Soft-out decoder

In order to optimize the global decoding performance of two concatenated decoder, named
horizontal and vertical, the output extrinsic value of the vertical decoder is fedback to the
horizontal decoder for further efficient utilization as a diversity effect, and this extrinsic
information makes the horizontal decoder to obtain additional redundant information that
may significantly improve its performance. However, this performance improvement is
limited by the interleaver length and the code structure. The longer the interleaver, the
more coding gain can be obtained from increasing the number of iterations. For a given
interleaver length, the coding gain becomes negligible after a certain number of iterations.
Reference [5] proves that when the block interleaver was used, the coding gain is saturated
at 2nd, 4th and Sth iteration for RM(8,4)%, RM(16,11)* and RM(32.26)?, respectively.

The iterative feedback decoding scheme with two soft-in-soft-out decoders is

shown in Figure 2.4. Its decoding procedure is as follows.

feedback for next iteration

| |

| l I

o= d i L L'(x) - oo |

L(x) - Horizontal e(X) . Vertical L(%)
L] Soft-in/Soft-out | ;4 Soft-in/Soft-out | v ' Lk

Sy X L'(%) Decoder 2 L' L&) |
l Decoder coder 2 | atthe final
: | iteration

b et et e e e e e o e = — —— — o — — —— — — — —— —— o
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1. Assuming equally likely input information bits, so set the a priori Lh(x) to zero

at first iteration.

2. Decoding of horizontal code C” by using the corresponding L .+ y of informa-

tion part and horizontal parity check part. The horizontal extrinsic information Lf(i)of

C" on information bit x is:

L) = L) -L, - y-Lx)
2.9)

h, .
L (x)-L.-y

3.Set L'(x) = Lg(.%), i.e. the horizontal extrinsic information on information bit

x is fed to the vertical decoder as the a priori value for decoding vertical code C* while

using the corresponding L_.-y of the interleaved information part and vertical parity
check part. The vertical extrinsic information L:(.‘r) of code C" on information bit x is:

Li(3) = L&) - (L, y) - LA(%) (2.10)

4. Set Lh(.r) = L:(.%), i.e. the vertical extrinsic information bit x is fed back to

horizontal decoder as a priori value for decoding of horizontal code C" in the next itera-

tion.

5. After the last iteration, the soft output of turbo decoder on the information bit x

is:
L(%) = L, y+ L% +LU(%) @.11)
6. According to the sign of the soft output L(%), the hard decision is made to

obtain the estimated transmitted information bits.
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In this thesis, RM turbo decoder takes parallel concatenated form of turbo codes
shown in Figure 2.1(b). The component decoder uses SISO decoder with modified Log-
MAP algorithm based on the minimal trellis diagram. Interleaver will take block interleav-

ing techniques which is discussed in the next section.

2.2.3 Interleaver

Another key feature of turbo codes is the interleaver. It plays an important role in
achieving good performance of turbo codes. There are four major interleaving structures
widely used in conjunction with error-correcting schemes: block interleaver, convolutional
interleaver, random interleaver and code matched interleaver([18,28].

The interleaver in a turbo code scrambles the bits in each block of data before it
enters the second encoder, so that the inputs to the two encoders are not correlated. For the
burst error channel, this process spreads out the burst error. After correction of some of
errors in the first component decoder, some of the remaining errors become correctable in
the second decoder. Therefore, by de-coupling the inputs to the two encoders, the inter-
leaver provides a good codeword weight distribution, which improves the decoder perfor-
mance.

Turbo codes have a feedback path for extrinsic information to be used in the next
iteration, and iterative decoding algorithm is used. Therefore, the decoding performance
of turbo decoder depends on the structure and the size of the interleaver. For a given set of
component codes, the turbo code with a longer interleaver has a better performance. How-
ever, longer interleaver introduces long delays which are not desirable in low data rate.

That’s why turbo codes are particularly attractive to higher data rate application.
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A block interleaver formats the input sequence in a matrix of m X n, in which the
input sequence is written into matrix row-wise and read out column-wise. It is a simple
interieaving method with sound performance. For our RM-BTC, the delay of block inter-

leaver is fixed.

2.3 Minimal trellis construction of RM code

A trellis is a compact method of representing all of the q* codeword of a linear
code. A path from the root to a terminal node is referred to as a path through the trellis,

and each distinct codeword corresponds to a distinct path in the trellis. Thus the total num-
ber of paths in the trellis is N, = q*. It has been found that an arbitrary linear (n, &, d,y;;)

block code over GF(q), ¢ = 2, can be represented by its trellis diagram which contains N,

= n+/ columns and N < q'"i"{k'" ~kb states[21]. In RM (32. 26) block code, we have the

following state profile corresponding to 33 column:

State profile={0, 1,2, 3, 3,4,4,4,4,5,5,5.5,5,5.5,4,5,5,5,5.5,5,5. 4, 4.4,
4,3,3,2, 1,0}

where each number in parenthesis is the exponential value of base 2 at its own

position. Consequently, we may obtain the state number at each time instant. For instance,

at time instant 5, we have 2* = 16 states and at time 9 have 2° = 32 states.

Trellis structure determines the complexity of the trellis-based decoding for a lin-
ear block code. This can be expressed in terms of some quantities of the trellis such as the
logarithms of the maximum numbers of states and branches at any time index. The trellis

structure of block encoder is irregular in comparison to the trellis of a convolutional code

224
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the decoding complexity is equivalent to finding the minimal trellis diagram of a given
code. Among the many trellis representations of block code, a minimal trellis diagram of a
code C of length n is the one that has the minimal state numbers than in any other trellis
for C at the time index i, i = 0, I...., n. In this thesis, the Massey construction method is
used to construct the minimal trellis of the RM code because of its systematic property.

Some basic knowledge related to minimal trellis construction are presented below[22].
o Left index L(X)of X: Given a nonzero vector X = (x,, X, ..., X,)Over GF(q),
L(X) denotes the smallest integer i such that x;#0.
e Row-reduced echelon matrix: Given a k x n matrix G = [x;,;] over GF(q). Gis in
row-reduced echelon form if the rows X, X, ...,X, of G are such that
L(X,)<L(X,)<...<L(X}), and the k columns found at positions L(X,): i= I,

2,..., kin G are all of weight one.

In what follows we discuss Massey construction of minimal trellis. Let linear code

C (n,k) be constructed by row-reduced echelon generator matrix G{k,n]. The left indices of
its rows is denoted as Y, Y3, ---» Y4 - This implies that y,<y,<...<Yy, and thek posi-
tions Yy, Ya» ---» Y form the information bits for code C.

The Massey trellis T = (V, B, L) for code C is constructed by identifying the verti-
cesin V;attime iz i = 0, 1, 2,..., n. Let m be the largest integer such that y,, <. then V; is

defined as

V= {(C;y e € (Cps vonsey) = (g ooy 14, 0,...0)G } (2.12)
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By convention, V, = {0}and V, = {J} where & is the empty string.
The branch set of T is defined as follows in two cases:

* Inthe case i >y, , there is a branch b € B, from a vertex v€ V,_, to a vertex
v’ € V, if and only if there exists a codeword (c|, ¢, ...,c,) € C, such that

(€pCippr e Cp) =V @19
(Civpr-mn€p) =V B

the branch label is c;. In this case, there is exactly one branch beginning at v for
eachvertex ve V,_,.
* Inthecase i = y,,.thereis abranch b € B; from a vertex ve V,_, toa vertex

v/ € V, if and only if there exists a pair of codeword ¢ = (¢, ¢, ..., ¢,) and

¢ = (¢;’v¢5y...icy”) in Csuch that
(CpCiypr-onCp) =V
, , , 2.14)
(CipiremnCy) =V

and either ¢" = ¢ or B(c’—c) equals the m-th row of G for some constant

B € GF(q). The branch label is ¢, and the number of out-going branch for each

ve V,_, isq

In this thesis, RM(32,26) code is used as constituent code. According to Section
2.2.1, the generator matrix G of RM(32,26) is constructed, and modified to be a row-

reduced echelon form as follows.
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10000000000000010000000100010110
01000000000000010000000100010101
00100000000000010000000100010011
00010000000000010000000100010000
00001000000000010000000100000111
00000100000000010000000100000100
00000010000000010000000100000010
00000001000000010000000100000001
00000000100000010000000000010111
00000000010000010000000000010100
00000000001000010000000000010010
00000000000100010000000000010001
00000000000010010000000000000110 (2.15)
00000000000001010000000000000101
00000000000000110000000000000011
00000000000000001000000100010111
00000000000000000100000100010100
00000000000000000010000100010010
00000000000000000001000100010001
00000000000000000000100t00000110
00000000000000000000010100000101
00000000000000000000001100000011
00000000000000000000000010010110
00000000000000000000000001010101
000000000000000000000000001 10011

GRM(sz, 26) =

As indicated in Ggyy32,26). the information bit can be directly obtained in the posi-
tion of k; in which the weight is equal to one.

The RM(32,26) trellis diagram is too complex with 638 vertices (states) and 1180
branches to draw in this size paper. However, we can follow the state profile at each time
instant to get a simple illustrative drawing. Figure 4.7 in page 61 can be used as a refer-

ence.

2.4 Trellis-based MAP algorithm

Since the MAP algorithm for trellis codes was proposed by [14], there has been

many papers published concerning the MAP and its sub-optimum variants. Following

.27-
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[17], we discuss the MAP algorithm in detail in order to provide a guide for later modified
algorithm and implementation in this thesis.

It is well known that codeword of a linear binary (N,K) block code can be repre-
sented as the paths through a trellis of depth n with at most 2V-K states[17,21]. Also due to
the irregularity of the trellis of linear block code and the complexity of trellis of
RM(32,26) code, one section of a trellis diagram is shown in Figure 2.5 to facilitate the

description of the structure.

State index s State index s
States Sy I I States S
Wl[h a (S') O O . k
k-1 with B,(s5)
=+l O
o™ o [ELT]

Q
|
I
Figure 2.5 One section of trellis structure of block code

Let S, and S;._; denote the state set at times k and -/, the trellis states at times k-1
and k are indexed by s’ and s. The coded bit x;. at time & is the label of the branch linking

the states at times k-/ and k. The soft-output of MAP algorithm conditioned on informa-

tion sequence ¥ is

Y p(s s d)

p 1 v) .5)
L(%) = 1og('t"+°|‘_. = log 2= (2.16)
=) ° 3 pshsd)
(5.5)

x5 =-1
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The sums in the numerator and denominator of p(s', s, §) are taken over all exist-
ing transition from state s' to s labeled with the coded bit x; = +1 and x; = -1, respectively.

Under the memoryless channel assumption, the joint probability p(s', s, §) can be written

as

p(s',s,?) P(5'19j<k)'P(S’?k|s')'P(yj>k|5)
P(s', 9 <) - P(s|s) - pP(R| (5" $)) - P(F 5] ) (2.17)

= O _1(87) - Y (57, 5) - B(s)

Here §;  , denotes the part of the received sequence from bit O up to bit £-/, and
;5 corresponds to the sequence part from bit k+/ up to bit n-1. The o (s) and

B, _,(s"), namely forward recursion and backward recursion accordingly, of the MAP

algorithm are

a(s) = Y V(s 5) - o (5) (2.18)
<

Bio1(s) = Y ¥u(s" ) - By(s) (2.19)
S

In the above two equations, we assume that at time k=0 and k=n, ¢(0) = | and

B,(0) = 1. The branch transition probabilities y,(s’, s) between s’ and s for systematic
block code with statistically independent information bits are given

Yi(s',s) = P(s|s") - p(v|s's s) = p(xiiyy) (2.20)

with p(x.;y,)defined as

p(Vi| %) - Plxy) 1<k<K
X V) =
PLrY) P(e|xe) K+1<k<N
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Furthermore, the log-likelihood ratio associated with p(x,:y,) can be obtained by
defining following equation.

L -y, +L(xp) 1<k<K

LGy, = 222
(i) { L.y, K+1<ks<N (222

By omitting the common terms for all transition from time k-/ to &, the branch

transition probabilities can rewritten as

L(xgy,) - x/2
Y(ss) = el TR
{e[L: ‘¥t L(x)]-x/2 1<k<K 2.23)

Ly x/2 K+1<ksN

Finally, the soft-output of the trellis-based MAP algorithm for block code can be

written as

T o1 (5) Bels)

(5°.5)

~
~~
-
ol
S’
|

= L, ¥+ L(x,) +log 22— p
Y oy () Bi(s) (2.24)
(5.95)

x, = -1

L.y, +L(x)+L,(x)

The above Equation is the foundation of our design. We also look into the com-
plexity of the computing process. Because it is computation-intensive, it is impractical to
implement it using current techniques. Therefore, the simplified sub-optimal algorithm,
called Max-Log-MAP, and its implementation are derived from the above Log-MAP algo-

rithm.
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2.5 Summary

On the basis of linear block turbo code, the Reed-Muller turbo code used in this
thesis was discussed in detail. The construction of minimal trellis of RM code and trellis-
based MAP decoding algorithm were presented. The PCCC turbo code scheme used in
this thesis and iterative decoding approach as well as SISO decoder were explained in
detail. Taking complexity of MAP algorithm into account, we will discuss the alternative

decoding algorithms suitable for implementation in next chapter.
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Chapter 3

Algorithms for implementation

3.1 Introduction

In turbo decoding, two kinds of algorithms have been commonly used, the SOVA
and the MAP algorithm[19].

For estimating the states or the outputs of a Markov process observed in a memo-
rvless channel, the symbol-by-symbol maximum a posteriori (MAP) algorithm is optimal.
However, MAP algorithm is likely to be considered too complex to implement in practice:
basically because MAP decoding involves the non-linear function, and it requires a large
number of memories and operations for exponentiation and multiplication. Log-MAP
algorithm can be used to convert the multiplication into addition and to avoid exponential
function, Log-MAP is equivalent to MAP and has the same performance as the MAP algo-
rithm. The Log-MAP can be further simplified using Max-Log-MAP algorithm, which has
been derived for simplifying the representation of probabilities and for reducing the com-
putational complexity. It is sub-optimal compared to MAP but easy to implement without
significant performance degradation [23-26]. In the additive white Gaussian noise
(AWGN) channels, the Log-MAP is about 0.5 dB better than SOVA at low SNR

region[65]. In this Chapter, we first discuss Max-Log-MAP and Log-MAP algorithms fol-
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lowing [15,16,24], then a modified version of Max-Log-MAP with look-up table correc-

tion used in this thesis will be given.

3.2 Max-Log-MAP algorithm

In order to simplify the computation of Equation(2.24), to avoid the logarithmic

operation and multiplication in the numerator and denominator, logarithmic function of

forward recursion o, (s), backward recursion P,_,(s”) and transition probabilities
Y,(s’, 5) are used.
First we give the notation and definitions used in following Equations: subscript k

refers to the time instant k; s’ and s represent state or node at time instant A — 1 and &; §

and S represent the state set at time instant K~ | and k; K and N are turbo code informa-
tion bit lengths and coded word lengths, respectively.

From Equation(2.23) we obtain

[LC ° _Vk+ L(.t'k)] . .tk l <k< K
, L(x.,y)-x 2 -
logy,(s’,5) = ——%‘——‘E 1 [ v o (3.1
- ek K+1<k<N

In the logarithmic domain, the following approximation is used to simplify the
computation of ¢,(s) and B, _,(s”). Thatis

8 8- )
log(e '+e "+ ...+e ") =Max,, {1'2___,1}5[ (3.2)

where Max; (| 5. ,}8; can be calculated by successively computing (n-1) maxi-

mum function over only two values.
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Referring to Equation (3.2), we can obtain the logarithm of forward recursion

logoy(s) = logZch(S,’ 5) - 01 (s”)
&
= Maxg[logy(s’, s) +logay, _ (s")] (3.3)
L(x,, - X
= Maxs’[_(k—;k')—-k +logo, _ l(s'):l

with the initial condition logo;(0)= 0 attime k=0.
Similarly, the logarithm of backward recursion is obtained as follow
logB, _,(s")= zs)yk(s', $) - Be(s)
= Maxg[logy, (s, s) +logB(s)] (3.4)

L(xp i) -
Maxs[ﬁ%-")—t’-‘ +log Bk(s)]

with the initial condition logf,(0)= O attime k =n.

For the extrinsic information output, the approximate form is given as:

Y o 1(57) - Bls)
(5.9

X =
c*l

; 2 Cl.k_l(S')'Bk(S)
(5.5
3.9

x = -1

= Max g g [loga, _ (s") +1logB,(s)]

Le(.\’k) = 10

x =1

xk=—l

Consequently, we obtain the logarithm of soft-output of MAP algorithm in the

approximate form as follows:
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L(.%L.) = LC . yk + L(xk) + Le(.‘tk)
Z Otk_l(s') : Bk(s)
(5,5
= L -y +L(x;) +log &= !

2 ak_l(sl) : Bk(s)

(575)
x, = -1
, ) (3.6)
=L -y +Lx)+log Y o1 (s)-Bels)-log Y, e _1(s") - By(s)
(5.9) (5,5)

x =1 x, = -1
x =1
-Max s ¢ [logoy _ 1(s7) +logB,(s)]

x, =-1
Here, we have changed the exponentiation and multiplication into simple addition

and comparison operations. This makes the hardware implementation easy and feasible.

3.3 Max-Log-MAP algorithm with correction

As the approximation in Equation(3.2) is used for the computation of forward/
backward recursions and log-likelihood values of MAP, the performance of Max-Log-
MAP is sub-optimal and yields an inferior soft-output than MAP algorithm. It can be

improved by using the Jacobian algorithm.

5, 8, -5, -,
log(e '+e ) = Max(d,,06,) +log(l +e 19: =5l

= Max(8, 8,) + f (|3, - 8)))

: 3.7

where f (|8, - §,|) is a correction function which can be implemented by a look-
up-table. So the approximation Equation(3.6) can be computed exactly by recursively
using Equation(3.7) as given below.

] 3,. s
Assume ® = e '+...+e 'z e,
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log(eal s+ es")= log(® + es”)
Max(log®,d,) + f (|log® -3§,|) (3.8)
Max(8,8,)+ f(|8-5,|)

By applying Equation(3.7) to the calculation of o, (s) and B._1(s") as well as
L,(%,), the performance of Max-Log-MAP approaches that of MAP.

However, calculating the f c(|8 - 8n|) at each step sacrifices the low complexity of
Max-Log-MAP. Therefore, the f(|8 - 8,|) is normally stored in pre-computed table. In

[14,15], 8 compensation values for | - 8,| ranging between 0 and 5 is used.
In this thesis, according to our software simulation, 5 compensation values is used

for |5 -8,| ranging between 0 and 2. Considering the difference |5 -8,| and the charac-

teristics of logarithmic function, we have the following compensation range

0<[f,([8:-8,) = log(1+¢ > 1 <07
Because of the non-linear nature of the exponential function. the compensation
interval is divided unevenly. Simulation results of Figure 3.2 show that the performance of
the modified Max-Log-MAP is between Log-MAP and Max-Log-MAP at lower SNR

region. and approaches that of Log-MAP after 3 dB. Performance degradation 0.2 dB

from MAP is accepted.

Figure 3.1 illustrates the Log-MAP decoding flow chart diagram in our software/

hardware simulation.
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Figure 3.1 Log-MAP decoding flow chart diagram
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Comparison of MAP, MAX, MAX—corr and Log aigonthm for RM(32.26)2. reraticn=5
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Figure 3.2 Comparison of different algorithms on performance
for iteration=5, RM (32, 26)" code

3.4 Arithmetic units

In this section, we further analyze the relevant details of the calculation of branch
transition probabilities, forward/backward recursion. Some pre-processing operations also

are given to be the basis for successive metric computation.

3.4.1 Pre-processing model
From Equation 3.1 we can see that channel reliability value L, is needed for calcu-

lation of logy,(s’, s). For AWGN channel, L, = 40E /N,. It is related to channel fad-

‘, . .
ing amplitude. In two-dimensional code RM(n, k)", the total code rate is given by

Equation 3.9.
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n"—(n-k)

For AWGN channel, a = 1. Our design uses two RM (32, 26) as component code
so that n = 32 and k = 26. Corresponding to different SNR value ranging from 5 to 0.5 dB
steps of 0.5 dB, we obtain different L_ values according to Equation 3.10.

E,/N,
L .=4-R-10 " (3.10)

The other parameter needed for calculation of Equation 3.1 is L. - y. When the

decoder starts its operation, it receives the channel values that are output from the match
filter. For one transmitted block, all values of coded bits are fixed during decoding stage,

no matter how many iterations are used and in horizontal or vertical decoding stage.
Therefore, one multiplier is adopted at the interface buffers, and result L, - v are stored in

one RAM for the transition probabilities calculation. During horizontal and vertical

decoding stage. the RAM is accessed either directly or interleavingly.

3.4.2 Gamma calculation model

Depending on the transmitted bits between two states in trellis diagram, branch

transition probabilities have only two possible values for transmitting bit 0 or 1 in a fixed

time transition. In BPSK modulation, we have x, = 2v,—1, ¢t =0, 1,...,n -1, where

x, is the modulated bit and v, is the code bit. Consequently, x, has two values -1 and +1.

Refer to Equation 3.1, it's necessary to store only two values for a fixed time instant corre-
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sponding to branches labeling +1 or -1. As a result, two RAM memories each with 988

cells are needed in our design.

3.4.3 Alpha/Beta calculation model

According to the property of trellis diagram, there are two branches starting from
time k-1 and ending at time k corresponding to the transmitted information bit; but only
one branch corresponding to the parity check bit. So when applying the Log-MAP algo-
rithm to the calculation of alpha and beta of each state at time instant k, according to the
Equation 3.3 and 3.4, there are at most two items in the maximum comparison operation,

€.

aQ

logat(s) = log Y v, (s, 5) - aty _((s)
<

= Max([logy, (s, s) +loga, _ (s")], [logy,(s,’, s) + logay, _ l(52')])(3.1 1)

+log(1 + Bl y“')

lOgBk_ 1(5')= ZYL—(S'1 5)- Bk(s)
S

= Max([logy,(s’, s;) +logB.(s))], [logY,(s’, 5,) +logB,(s:)]) (3.12)

+log(1 + e_l'ta -'ve[)

where 5" and s’ are two independent states at time k— 1, and s, and s, attime
k,and
x, = [logy,(s, s) +loga, _(s,")]

[logy,(s,’, s) +loga, _1(s5")]

NG
]

[lOng(S', s+ 10gBk(Sl)]

XB

Yg = [logy,(s’, s4) +logf,(s,)]
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As we have obtained the state profile of RM(32, 26). the possibility of maximum
operation for calculating forward/backward recursion of each state can be analyzed
through the state profile present in Section 2.3. For those branches, not only corresponding

to information bits but also linking two time instants which have the same state index, and
all branches corresponding to parity check bits, i.e. state index at time k is one less than at

time k — |, maximum operation should be done in calculation of loga, (s) because there
are two branches ending at state s from s," and s,'. On the contrary, maximum operation

should be done for the calculation of logB, _,(s") for all branches corresponding to infor-

mation bits.
Following the above analysis of calculation of logct(s) and logB, _(s). we

may use two sets of “‘add-compare-correct” units which execute the function of the sum-

mation and comparison and correction.

3.4.4 Extrinsic information calculation model

Similarly, approximation formula is used in extrinsic information calculation.
When calculating the maximum value, we need exhaustively search all state-pairs for each

time transition. As shown in Equation 3.5, there are two groups of state transition corre-
spondingto x, = 1 and x, = -1, k = 1......32. This operation is a recursive process.
In our implementation, it is divided into two maximum operation which gives two maxi-
mum values among the branches labelled | and branches labelled -1. According to this

recursive requirement, two sets of add-compare-correct unit are used to exhaustively

search the final maximum values, and get the extrinsic output from the subtracter.
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Following the trellis diagram and state profile, there are totally 1180 branches

existing for all state transitions. However, in any next iteration, L, is not needed as a pri-
ori probabilities for all parity check bits. Therefore, only L, values of information bits are

calculated in the implementation.

3.4.5 Log-likelihood soft-output calculation model

Following Equation 3.6, after final iteration, the log-likelihood ratio of a posteriori
probabilities can be implemented by an adder and a comparator. The most significant bit
(MSB) of summation determines the estimated transmitted bits. If the MSB is greater than
zero, estimated transmitted bit is assumed to be 1; If the MSB is smaller than zero, esti-
mated transmitted bit is assumed to be 0. The amplitude of summation shows the reliabil-

ity of this judgement.

3.5 Summary

Based on the optimal MAP decoding algorithm, possible sub-optimal decoding
algorithms are discussed. Due to a better performance and less complexity of Log-MAP,
we selected it for hardware implementation. The software simulation block diagram and
performance comparison between optimal and sub-optimal algorithms are presented.
Decomposition of algorithms to functional units suitable for implementation also are
described. In next chapter, we will discuss further design issues and architecture of imple-

mentation related to these function units.
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Design and implementation of RM-BTC

Although turbo codes exhibit an excellent error-correcting performance, the practi-
cal implementation faces a lot of challenges relating to computational complexity, power
consumption and memory limitations as well as decoding speed etc.. Currently, most turbo
codes implementation focus on Viterbi and SOVA decoding algorithms and convolutional
code as constituent code, which have regular trellis structure which are relatively easy to
be implemented. However, for the block turbo codes and MAP algorithm introduced in
previous chapters, the irregular trellis diagram and more computation-intensive algorithm
makes it more difficult for practical implementation. Our motivation is to explore and
measure the performance of block turbo codes for satellite ATM as implemented by FPGA
while minimizing the chip area. The results of this will be a good foundation for further
improvement on decoding speed and power consumption.

In this chapter, we first review some works recently published by other researchers,
then the hardware platform Virtex-E FPGA used in this design is briefly introduced. Some
key issues of design and implementation are discussed in Section 3. Implementation of
the turbo encoder and decoder are given in Section 4, 5 and 6. Finally, the chapter sum-

mary section concludes the contents involved in this chapter.
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4.1 Review of turbo code implementation

Since turbo codes were introduced by C. Berrou in 1993, there has been a lot of
papers to discuss its hardware implementation. Because of the highly data dominated
MAP algorithm, most of papers pay attention to the sub-optimal algorithm--soft-output
Viterbi algorithm (SOVA). Meanwhile, due to the regular trellis diagram of convolutional
code, convolutional code is often selected as constituent code of turbo codes. In this sec-
tion, we trace back some implementations and issues of turbo codes no matter what con-
stituent code and decoding algorithm are used in those implementations[27~30, 34~57].

In [27]. a block turbo decoding scheme which allows variable block lengths is pre-
sented. In this paper, due to the quantization, a SNR losses of 0.5dB between floating point
simulation and hardware measurement under the same coding conditions is presented. The
method of SOVA decoding which obtains a maximum throughput of 14 Mbit/s is realized
in Altera FPGA. However, no measure of area was reported in this implementation.
Through reducing test patterns, methods described in [28,29] obtain a low complexity

scheme that use one decoder. It is reported that the coding gain degrades 0.7 dB at itera-

tion 4 with BCH(64,57,4)% code, where 4-bit quantization contributes 0.1 dB{28].
References[34-42] discuss the quantization and normalization of input data or/and
internal signals. Quantization of 3- to 6-bits for input and 5- to 9-bit for internal signals are
discussed. Common 4-bit input quantization are accepted and optimal bit-width of internal
signals is defined for each parameter. Among many normalization methods, modulo arith-
metic and subtracting technique are often used in practice.
References[¢3-53, 68] discuss some implementation methods both in hardware

and software of a turbo decoder with 1/2 or 1/3 rate RSC code or BCH block code. Decod-
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ing speed and required area or FPGA utilization vary significantly depending on different
realization. Authors of [44] take advantage of sliding window algorithms to reduce storage
requirement; Method described in [45] presents a turbo decoder that runs up to 356 Kbps
with 4 XC3100A FPGA chip for data processing and control units. Storage memories of
intermediate values are implemented by external memories. Yet another method [48, 49]
discuss the parallel and pipeline implementation, however, no area utilization is reported
even though up to 3.5 Mbps decoding speed is obtained under certain conditions. Authors
of [50] give a realization of turbo decoder on DSP chip that achieved at throughput 16.8
Kbps on a 40 MIPS version of Analog Devices ADSP-2181.

Architecture experiments have shown that up to 50-80% of area cost in (applica-
tion specific) architectures is due to memory unit. So in [55,56] attention is given to mem-
ory reduction. Three methods of reducing the whole block processing, over sliding
window and on halfway structure are presented.

In order to overcome the complexity of MAP algorithm, [57~67] presents some

simplified sub-optimal proposal and VLSI architecture.

4.2 Hardware choices and FPGA

There are some hardware choices for mapping the algorithm to circuits. For the
time being, DSPs, ASICs and reconfigurable architecture devices are commonly used to
implement FEC (Forward Error Correction) techniques. The general-purpose digital sig-
nal processors (DSPs) are characterized by their flexibility and low cost, they are able to
offer a wide variety of applications and perform a variety of computations and logic tasks.

However, their general flexibility result in inefficient and lack of performance in specific

-45-



hapterd Design and implementation of RAM-BT

applications. On the other hand, fully custom design application-specific-integrated-cir-
cuits (ASICs) execute the specific task, and offer designer excellent performance includ-
ing maximum speed, minimum chip area and power consumption, but inflexibility and the
demands for a faster time to market in some cases make this alternative unattractive, espe-
cially for the research purpose, long development cycle of ASIC is not suitable for proto-
typing. As a balance, FPGAs are suitable for FEC because they have efficient parallel
architectures and are reconfigurable. This parallel reconfigurable architectures suits partic-
ularly pipeline design, which corresponds to the parallel architecture of MAP algorithms.
Meanwhile, the performance of FPGAs are approaching that of ASICs and FEC cores for
FPGA implementation are inexpensive. Therefore, the advantages of field programmable
gate array (FPGA) makes it an ideal solution for our design.

Field programmable gate array was introduced in the mid-1980’s as a single-pur-
pose technology with no function beyond processing digital logic[32]. Its initial role was
to be used as “glue logic™ to interconnect more complex system components. Today. this
adaptable technology has virtually revolutionized the fields of computation and digital
logic due to their increased gate density and computational ability.

According to the reprogrammability, there are mainly three kinds of FPGAs:
SRAM-baséd, antifuse-based and EPROM/EEPROM-ba'sed FPGA.. Since static random
access memory (SRAM) FPGAs are easily reprogrammable through fast in-circuit recon-
figuration, they are most ideal medium for prototyping the digital designs and has become
more popular in practical applications.

Digital design with reconfigurable architectures is often a daunting task because

good designs demand sound design practices as well as an intimate understanding of both
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the design tools and the target devices. To optimize the use of programmable logic
devices, in the next section, we present the structure and some features of Xilinx Virtex-E

family FPGA which is used in our implementation.

4.2.1 Virtex-E FPGA architecture

Evolving from Virtex, the Virtex-E FPGA family delivers a high-speed and high-
capacity programmable logic solution by optimizing the new architecture for place-and-
route efficiency and exploiting an aggressive 6-layer metal 0.18um CMOS process, which
results in smaller dice, faster speed and lower power consumption[33]. The current func-
tionality of SRAM-based FPGAs is configured to logic elements and interconnect
resources through the values stored in static memory cells: function change can be
achieved by reloading configuration values into SRAM cells. Some main features related
to our design are listed below:

« Densities range from 58 Kb to 4 Mb system gates;

« 130 MHz internal performance (four LUT levels);

o Up to 804 singled-ended L/Os or 344 differential /O pairs for an aggregate band-

width of > 100 Gb/s;

¢ True Dual-Port™ BlockRAM capability;

« Up to 832 Kb of synchronous internal block RAM;

¢ Clock multiply and Divide;

o Dedicated carry logic for high-speed arithmetic;

* Dedicated multiplier support;

o SRAM-based in-System configuration, unlimited re-programmability;
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Virtex-E Architecture overview is shown in Figure 4.1. There are three main parts
with two major configurable elements: configurable logic blocks (CLBs), input/output
blocks (IOBs) and programmable routing matrix (GRM). CLBs are the functional ele-
ments for constructing the user logic; [OBs provide the interface between the package pins

on the chip and the CLBs signal lines; the GRM provides the interconnection route

between CLBs and IOBs.
PLLDLL DLUOLL
Versafting
F 3 3|43 4
ARHHHEHHH HHBE:
VersaRing
wouy joLuoLL

Figure 4.1 Virtex-E architecture overview(33]

The basic building block of the Virtex-E CLB is the logic cell (LC). An LC con-
tains a 4-input function generator, carry logic and a storage element. Each Virtex-E CLB
includes four LCs organized in two similar slices as shown in Figure 4.2. The detailed sin-
gle Virtex-E slice is illustrated in Figure 4.3.

As shown in Figure 4.2, the function generators are implemented as 4-input look-
up tables (LUTs). Each LUT also can be used as a 16 x I-bit synchronous RAM; two
LUTs within one slice can create a 16 x 2-bit or 32 x 1-bit synchronous RAM, ora 16 x 1-
bit dual-port synchronous RAM. Through combining the function generator outputs by
multiplexers in slice, CLB can implement any 5- or 6-input function, 4:1 or 8:1 multi-

plexer or selected functions of up to 19 inputs.
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Figure 4.3 A detailed view of Virtex-E slice[33]

Adder and multiplier implementation depend on the FPGA architecture. The Vir-

tex-E CLB supports two separate dedicated and fast carry chains as well as dedicated
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AND gate, which provide fast arithmetic capability for high-speed arithmetic functions,
and improve the efficiency of multiplier implementation. Another important feature of
Virtex-E FPGAs is that it incorporates large block SelectRAM memories. Each of them is
fully synchronous dual-port 4096-bit RAM. This feature offers a complement for built-in
memories.

In the next section, some basic arithmetic function cores used in our design will be

given.

4.2.2 Arithmetic function cores

As mentioned in the last section, FPGA architecture efficiently influence the
implementation of adder/subtracter and multiplier. To accelerate and condense arithmetic
functions. Virtex-E FPGAs incorporate dedicated carry chains and AND gate for adder
and multiplier implementation. The advantages of these carry chains are that they are
faster than most other fast-carry schemes and using them eliminates the need to use the
FPGA’s look-up table. Hence, the availability of these components optimizes both speed
and size parameters critical to implementation.

Xilinx Coregen library provides a wide variety of standard functional core which
are applied in different fields. In our decoding algorithm, many large bit-width adders/sub-
tracters are used. Meanwhile, because there are a lot of intermediate results that should be
stored for recursive calculation, a large amount of memory is also used. In order to benefit
from the standard library, adder/subtracter, multiplier and memory (RAM and ROM) cores
are employed in the design. For detail information of these cores about interface and tim-

ing refer to help sheet of Xilinx Coregen library.
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4.3 Design issues

The actual implementation of turbo encoder/decoder involves works from algo-
rithm mapping to circuits. The optimal finite accuracy representation not only obtains the
required decoding performance but also reduces the hardware cost in the design. The sys-
tem and functional module level optimization can simplify the circuit structure, and the
data and the resources that is common in decoders hence reduce the memory requirement.
Some design issues are discussed in this section and the conclusion will be taken as speci-

fication parameters for implementation.

4.3.1 Quantization and finite accuracy

For implementation, the quantization of the variables and their fixed point repre-
sentation is a necessary step. When mapping an algorithm onto an actual architecture.
quantization and fixed point representation have major influence on performance, area and
energy consumption. The normal practice is to quantize the received sequence and send
these values to decoder. While few levels of quantization minimizes the cost of A/D con-
verter and also the number of bits that are required to represent each quantization level[l],
it also introduces some noise to the system. If fixed-point arithmetic is employed, then a
degradation in the BER performance of the turbo decoding algorithm is inevitable. There-
fore, optimal word lengths of variables must be determined that optimizes the perfor-
mance and reduces hardware costs.

The quantization of received signals is simulated for different bit-widths by soft-
ware. For BPSK and an AWGN channel, the received values are spread with a Gaussian

distribution around the transmitted symbols {-1,1}. More than 99% of the received values
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are located in the range of -4 to 4. In the simulation, the continuos signal within the range
(Viow» Vhign) is mapped into integer numbers between (2!, 2711y, where n is the num-
ber of bits of quantizer{35]. The quantization is realized by dividing the range region into

2" evenly spaced zones, which are numbered with integer number. The zone width is

A= (Vign- View)”2", and the zone boundaries are at
{00, Vigy # 872, o0y Vi + (2m=DA/2, ooy Vi =38/2, 0}, m = 1,.., 2"\,

Figure 4.4 shows simulation result for RM (32, 26)2 turbo code. The 4-bit and 5-bit quan-
tization have good performance which is close to infinite accuracy. Simulation in Figure
4.5 shows the results of 4-bit quantization for different channel SNR values. The results
are insensitive to choice of SNR in higher SNR value. So 4-bit quantization is accepted in

this design as a good trade-off between decoding performance and hardware cost.

, Companson of different bit quantization for moditied Log-MAP algonthm
10 T T T T

-8 MAP aigonthm

-6~ Modified Log algonthm
—e— Quantzation with 3-bit
-~ Quantization with 4-bit
-e- Quantzation with S-bit &

10°

BER-bit error rate
o
L

S

-
o
T

10

10

-8 L —_ L s
2 3 4 S 6
Eb/NO dB

Figure 4.4 Different bit quantization effects on performance |
for modified Log-MAP algorithm, iteration=5, RM(32, 26) code
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Comparison of quantization at ditferent SNR value
10 T 5 T — T T

-8~ MAP algonthm
-9~ Madified Log aiganthm |1
—s— SNR=5d8

BER-Dbit error rate

- L 1 :

wnl

Eb/NO aB

Figure 4.5 4-bit quantization on different SNR values ,
for modified Log-MAP algorithm, iteration=5, RM(32, 26)" code

For all internal signals, a combination of theoretical analysis and algorithm simula-
tion is used to determine the bit-widths of parameters. When the input is 4-bit, the internal
values of forward and backward recursion calculation never exceeded a range that is repre-
sented by 17-bit width in the worse case; likewise, the values of branch metric and extrin-

sic information is within 12-bit width; and the channel reliability values is represented by

8-bit width.

4.3.2 Data- and hardware-sharing

Log-MAP algorithm is a computation-intensive decoding method. Although its
recursive search for survival trellis path improves the decoding accuracy, it also generates
a great amount of intermediate results that has to be stored for successive computation. If

storage memory for each codeword is configured repeatedly, the required memory has an
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exponential growth along with the increase of block size. This is unacceptable for imple-
mentation of large block size turbo codes. However, an important feature of iterative
decoding is that its first and second decoding stage is at different time period even though
they do the same operation on a specific data block. These characteristics suggest that we
may share some hardware units and calculation results to save chip area and reduce calcu-
lation time in the design.

As analyzed in Chapter 3, the channel value for all transition in one block are the
same for both decoders; only the order of data sequence is interleaved. So the data-sharing
leads to a common-sharing structure of channel value memory in two decoders. Because
all channel values are ready after pre-processing units, it is no longer needed to re-calcu-
late them for each coming horizontal and vertical decoding, no matter how many iteration
is required. This reduces channel value memory to half of that needed for two SISO struc-
tures.

A main design strategy is to employ one SISO decoder to execute two stages of
decoding according to inherent property of iterative turbo decoding. The arithmetic func-
tion units are reused in horizontal and vertical decoding. Meanwhile, because the calcula-
tion of forward and backward recursion is executed one by one codeword, the sizes of
internal storage memory for forward and backward recursion calculation hence are deter-
mined by the node (state) number of minimal trellis diagram of RM (32, 26) . Because the
forward and backward recursion values of one codeword are no longer needed for other

words, the memory location can therefore be reused for each codeword operation within a

specific block. As a result, the memories are shared in different time within and between
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horizontal and vertical decoding. This measure significantly decreases the memory size
for internal results of forward and backward recursion.

Likewise, extrinsic information of horizontal and vertical stage also uses the same
storage memory. Since the extrinsic information of each bit is generated and located in a
fixed address of memory, we can access them by interleaving way in both decoding stages.

From above discussion, it shows that how sharing of arithmetic function units and
memory units reduce to half the hardware circuits; consequently, chip area is reduced con-

siderably.

4.3.3 Parallelism and pipeline

In the Log-MAP algorithm, many computations are repetitive and parallel. They
include the computations of branch transition and forward/backward recursion as well as

extrinsic information. From Equation 3.1 to 3.5, we know that for each bit of one code-

word, we need to calculate logy, (s, s) then logct,(s) and log B,;_(s") and finally the
L,(x,). All computations can be divided into three relatively independent parts in terms

of processing time. For the block turbo code, in order to decrease the overhead of decod-
ing one codeword by one, a specific block will be treated as a whole body, and the calcula-
tion of branch transition logy (s, s)of each bit in the specific block is done in pipeline.
Because one SISO decoder instead of two decoders is used to perform all the iterations

including horizontal and vertical decoding, one set of memory for storing intermediate

results of forward and backward recursion must be also reused in horizontal and vertical
decoding stage. This leads to separate calculation of logct,(s) and logB, _,(s") for indi-

vidual codeword and further pipeline operation within one codeword. Similarly, the opera-
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tions on L,(x,) is in parallel for branch labelled +1 and -1. Especially for logc,(s)and

logB, _,(s') calculation, besides the pipeline process for both of them, they are imple-

mented in parallel by following their property. After all branch transition are obtained,

loga,(s)and logB, _,(s") can be calculated at same time from both directions of trellis,

forwardly and backwardly. The benefit of this parallel computation is a reduced decoding
time at an acceptable cost of duplicating the recursion calculation unit.
Horizontal and vertical decoding run with the same decoding procedures at differ-

ent stages with interleaved data block. Except the results of logy,(s', s) are the same for

both of them, the other intermediate results are restricted in one stage and no longer
needed for another stage. As a result, the hardware resource can be reused and, conse-
quently, horizontal and vertical decoding are multiplexed on the same physical hardware
circuits. This results in a factor of 2 decrease in turbo decoder circuits at a negligible cost
of increasing the size of the control unit. Because of reduction of decoding circuits, the
used memories are also reduced to half as compared to the traditional approach.The details
of memory configuration is given in Section 4.6.

In conclusion, module level optimization assigns the algorithm into three parts
which will be executed in parallel and pipeline. Meantime, system level optimization
replaces two SISO structure with one SISO scheme. Both measures not only increase the

decoding speed but also reduce the chip area for circuits layout.

4.3.4 Iteration stop criterion

Feedback loop is an important feature of turbo decoding algorithms. In turbo

decoders, the first decoder uses only a fraction of the available redundant information.
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Through the feedback loop with interleaver, most of redundant information supplied by
second decoder can be used to improve the performance of turbo decoding[11]. This is the
principle of iterative decoding and the term turbo-code is given for this feedback decoder.

Although increasing the number of iterations has a considerable effect on the per-
formance, the coding gain has a diminishing returns along with the increase of the number
of iteration. Most of the gain in iterative decoding is achieved by the first several itera-
tions, and there is no more improvement of coding gain for the later successive iterations.
The reason for this saturation limit is that the extrinsic information L-values will become
more and more correlated due to same information being used indirectly. In order to avoid
unnecessary computations and reduce the decoding delay, normally there are two ways to
terminate the iterative decoding process, cross entropy criterion stop and systematic cyclic
redundancy checking. This two ways effectively stop the iteration process with very little

performance degradation[17,18].

Following Usa's simulation[5], we have the performance with different iterations

on an AWGN channel of RM (32, 26)2 turbo code, which will be implemented in the the-
sis. Simulation results show that for this code length, the coding gain will be saturated at
the Sth iterations and no more improvement after 5 iterations is achieved. Consequently,

we use § iterations as a reference of iteration input design with negligible performance

degradation.

4.3.5 (De)-Interleaving technique

As discussed in Section 2.2.3, both interleaver size and structure effectively influ-

ence the code performance. When component code was determined, one may choose dif-
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ferent interleaver size and a particular interleaver structure which might perform better. In
our design, the block interleaver is selected and the size is determined to be 26 X 26 due to
the property of component RM(32,26) code.

According to iterative decoding principle, the extrinsic information of one decoder
module is (de)interleaved and is used as an a priori values in the next decoder module.
Normally, there are two buffer memories for storage of these value in traditional two SISO
decoder approach.

In our interleaving technique, because only one SISO decoder is used to decode
horizontally and vertically, only one memory for extrinsic information is used. This mem-
ory acts as interleaver and deinterleaver at different times through interleaved access
mode. For instance, during horizontal decoding, memory is read out in normal order as
input signal sequence, and extrinsic information is written back at the same order to corre-
spond to original position of memory; during vertical decoding, extrinsic information is
read out in interleaved order, and also written back at interleaved order. This accessing
method always ensure that extrinsic information of each information bit is stored exactly

in a fixed cell of memory. The mapping relationship between bit and memory address is

fixed for known RM (32, 26)2turbo code which uses block interleaver, so look-up-table
addressing of the internal memory is used in the design. This interleaving technique
reduces the buffer memory and simplify the circuits. Because the fixed mapping relation-
ship enables implementation of address generator of extrinsic information memory by

look-up table, we can efficiently take advantage of BlockRAM of FPGA. Meantime, the

combinational circuit of address generator is avoided.
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4.4 Turbo encoder implementation

Our turbo encoder uses parallel turbo encoder scheme as shown in Figure 2.1(a).
Since RM(32, 26) code is a systematic-like code, following this characteristic, the infor-
mation bits are apparent and only parity bits need to be calculated, and enccder 1 and 2
can run on the same information block at the same time based on our interleaving tech-
nique. The transmission order of one coded block output from encoder is set as informa-
tion bits followed by parity bits 1 then parity bits 2.

In this section, details of turbo encoder are given for /O interface, finite state

machine and data path.

4.4.1 Interface input/output

The preliminary specification of turbo encoder is shown in Figure 4.6, which
defines the pin names and /O signals. Table 4.1 describes the pin name and bit-width of
each signal.

Even though we have defined the output as “codeword”, it actually is not an indi-
vidual codeword. It should be understood as one coded block sequence in form of infor-
mation bits + parity bits 1 + parity bits 2, where information bits is completely the same as

the input information sequence.

CLK codeword —e
Reset

Start
info. bit

| ]

Figure 4.6 1/O Interface of turbo encoder
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Table 4.1: Input/Output interface definition of turbo encoder

Pin name /0 Bits Description
CLK input 1 Information bit encoding clock
Reset input 1 Encoder reset signal
Start input 1 Encoder start receiving and encoding
infobit input 1 information bits be encoded
codeword output 1 codeword after encoding

4.4.2 Generator matrix and trellis

From Equation 2.15, we have systematic-like generator matrix Gpyy(32, 26y Which

clearly indicates the positions of information bits. Although the generator matrix is quite
large for RM(32. 26) code, we only need to calculate parity bits of each codeword to gen-
erate the complete codeword. This not only saves calculation time but also limits the
required memory size. As shown in Table 4.2, only 6 cells of generator memory are
needed to store the generator vectors corresponding to parity bits. During encoding pro-
cess, information bits of each horizontal and vertical codeword separately multiply with
every vector of generator memory, and then modulo-2 addition is used to obtain the
respective parity bit.

Corresponding to generator matrix Ggy 33 26 the butterfly-like trellis diagram of

RM(32, 26) code is shown in Figure 4.7. Because its complexity, which contains 638
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nodes and 1180 branches connecting node pair, we just give here the simplified illustrative

diagram.

e Gmm——y emEEm .. m  u—— .- - —— -

e

Figure 4.7 The illustrative trellis diagram of RM(32,26) code

Table 4.2: Generator memory address and cell content

Cell Memory Cell content
No. address (Hex)
1 000 0007FFF
2 001 03F80FF
3 010 1C78FOF
4 ol 2D9B333
5 100 36ADS55
6 101 3B4E996
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4.4.3 Finite state machine

The finite state machine (FSM) of turbo encoder is shown in Figure 4.8. Starting
from state “idle”, when signal start = ‘1’ information sequence shift into serial-in-serial-
output register; when one information block is ready, state change to “encode” to encode
the codeword one by one. After 26 codewords are finished, the generated parity bits stored
in shift register 2 and 3 will shift out in state “shift-out”. Then state returns to “shift” to

receive new information block and new encoding process starts.

countup<675

reset = ‘0’
or

. ne
start = 0" jump<25

count<987

Figure 4.8 Finite state machine of turbo encoder

4.4.4 Encoder data path

For parallel turbo encoder, two elementary encoders are connected in parallel by
an interleaver. They both work on the information bits and its interleaved version respec-
tively. As discussed in Section 4.3.2, only parity bits need be calculated for both encoders
and information bits can be passed through directly. For block interleaver, the input
sequence is written into the matrix row-wise and read out column-wise. In order to inter-

leavingly access 26 information bits of one code word at same time, the input buffer is
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input information sequence

'

Shift register 1
serial-in-serial-out

Multiplier Multiplier
' v
Addition Addition
' '
Shift register 2 Shift register 3
(siso) (siso)
I_' Y rJ

Multiplexer

v

Coded information sequnece

Figure 4.9 Datapath of turbo encoder
made of serial-in-serial-out shift register. When one block information bits is ready in
shifter register 1, horizontal and vertical elementary encoder start to encode in both direc-
tion at same time. The encoding process is executed by boolean multiplier and modulo-2
adder. After the calculated parity bits of each codeword are ready, they shifted into shift
register 2 and 3 separately for horizontal and vertical codeword. All shift registers are first-
in-first-out (FIFO) and encoding starts from first-in sequence. When all parity bits for all
horizontal and vertical code words are obtained, the total coded sequence of one block
information are located in shift register 1, 2 and 3, which are accordingly the information
part, horizontal parity bits part and vertical parity bits part. Finally, the three parts men-

tioned shift out through the multiplexer as output of turbo encoder one by one.
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The size of shift register 1 is determined by code information length of one block.

For RM(32, 26)2 turbo code, this is 26 x 26 bits. The size of shift register 2 and 3 is the

same and equal to 26 X 6 bits.

4.5 Turbo decoder implementation

As a general rule, the more powerful a code, the more difficult the decoder. Like-
wise, turbo decoder design is more complex than turbo encoder. In this section, the com-
ponent function units and finite state machine of turbo decoder are given in detail.
Following the property of modified Log-MAP algorithm, the total data path structure is
shown in Figure 4.10, which is divided into four independent calculation modules con-
nected by intermediate memories. The individual module is discussed in the order of data

flow.

4.5.1 Interface input/output

All input and output ports of turbo decoder are defined in Table 4.3 and illustrated
in Figure 4.11. According to the specification, turbo decoder will take 4-bit quantized out-
put from demodulator as a channel input. The channel SNR will be treated as presetting
values which could be chosen in compliance with the actual estimated result. In this
design, the presetting SNR ranges from 0.5 dB to 5 dB in steps of 0.5 dB. As a research
model, the iteration number of decoding also can be selected from input port. Because one
SISO decoder is used to perform both stage decoding in all iterations, the input must be

odd number between 1 to 15 corresponding to iteration 1 to 8. This range is selected based
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on the iteration stop criterion, which has shown that the coding gain is saturated at 5th iter-

ation for RM(32, 26)° turbo code.

Since the transmitted sequence in the channel is continuous, two buffer memories
are used before the decoder module. Buffer memories work on different clock signal from
decoder module for a smooth switching between them. CLKO for buffer memories is the
same with channel transmission rate, and CLK1 for decoding procedure is determined by

decoding speed.
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Figure 4.10 Datapath architecture of Log-MAP turbo decoder
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Figure 4.11 I/O Interface of turbo decoder

——=} CLKO Deco_done f——
———— | CLKI Infobit| ———
——= | Reset
- Start
T’ SNR
—7— | Iter-number
4 .
- Yg-1n

Table 4.3: Input/Output interface definition of turbo decoder

-

Pin name /O | Bits Description
CLKO input 1 Data transmission channel clock
CLKl1 input 1 Decoder data decoding clock
Reset input | Decoder reset signal
Start input l Decoder start receiving and decoding
iter-number | input 4 | Presetting iteration number of decoding (1. 3.
5...., 15)
0001: one time iteration;
0011: two time iteration;
1111: eight time iteration (Max. iteration
number)
SNR input | 4 Presetting signal-to-noise values (E,/Ng)
1010 : 5.0 dB, 1001 : 4.5dB, 1000 : 4.0 dB,
Ol11:3.5dB,0110:3.0dB, 0101 :2.5dB,
0100:2.0dB,0011:1.5dB,0010: 1.0dB,
0001:0.5dB
Yi-in input 4 Decoder quantized input from demodulator
Deco-done | output [ 1 One block decoding finish signal
infobit output | 1 estimated transmitted information bit
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4.5.2 Finite state machine

The finite state machine of turbo decoder is an important function unit in the
design. The advantage of present design is the optimal FSM approach. Because the decod-
ing operation on each codeword is the same, and received channel values of one codeword
or block are fixed for all iterations, we can calculate all branch metrics at one state. Fur-
ther, the soft-output log-likelihood ratio of SISO also can be computed in one state after
all extrinsic information of one block are ready. Consequently, the state assignment is
shown in Figure 4.12: starting from state “IDLE", the pre-processing of channel values
and computation of branch metrics of one transmitted packages (block) are finished in
state “GAMMA"; in the following state “ALPHABETA” and “LEUNIT", the forward/
backward recursion values and extrinsic information of one codeword are computed one
codeword by one codeword; when all horizontal and vertical extrinsic information outputs
are ready through 26 “ALPHABETA-to-LEUNIT-to-ALPHABETA" recycle, the final
soft-output log-likelihood ratios of one block are obtained in state “LLR", in which the
hard decision of estimated transmitted sequence is made.

In state “GAMMA", treating one block as a whole body saves the overhead of

switching over codeword one by one. Because the forward/backward recursion

logot,(s)and logB, _ ,(s") of one codeword are no longer needed for others, their storage
memories can be reused by others after computation of extrinsic information L,(x,) has

finished. Further more, since the computation of extrinsic information L,(x;)is closely

connected to forward/backward recursion values, computing one codeword by one code-

word significantly saves a great amount of internal memory of intermediate results with a
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minor cost of control circuit. That’s the reason why we have combined the state “ALPHA-
BETA” and “LEUNIT” into one loop.

Due to the current extrinsic information output that is used as a priori value in the
next decoding process, and depending on the presetting iteration number, state “LEUNIT”

will change to “GAMMA?” for computation of a new logy,(s', s). This leads to a new

decoding stage namely horizontal or vertical decoding. After presetting iteration number,
hard decisions are made based on the horizontal and vertical extrinsic information and
return to state “IDLE™ to wait for the next transmitted package whenever it is ready.
Within all states, the computation is designed to execute in pipeline manner to
increase the throughput. In addition, the address generator of the address memory is com-

bined into the FSM unit.

count1<989 if iter.=0

reset =0
or or
start = ‘0’ countl<677 if iter.>=1 count2<638
( ‘) count]>=989 if iter.=0
or o < )
IDLE buf_full="1" GAMMA countl>=677 if iter>=1 %

" count3=546&code26=25
L_ _/\ & iter.=preset value
countd<675 count3<546
&

codel6<25

Figure 4.12 Finite state machine of turbo decoder
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4.5.3 Pre-processing component

The pre-processing unit is realized by a 8-bit x 4-bit multiplier in state
“GAMMA". According to the chosen Ey/N input, the corresponding channel reliability
value L. multiplied by the quantized input yj_at first horizontal decoding stage and the

results is stored in the intermediate memory Mem-Lcyk for later computation. In the fol-

lowing decoding stages, we no longer calculate these products and just directly read them
out from memory for computation of logy,(s', s) . The L, values corresponding to differ-
ent SNR are listed in Table 4.4 and stored in read only memory Mem-Lc. Column “L; in

binary” gives the binary representation with 3 bits of fraction. When SNR of channel is

determined, decoder will choose the respective Lc value.

Table 4.4: Lc values for Ey/Nj at rate R=0.684

Ey/Ng (dB) L. L. in binary
5.0 8.652 01000101
4.5 7.711 00111110
4.0 6.873 00110111
35 6.125 00110001
3.0 5.459 00101100
25 4.865 00100111
2.0 4.336 00100011
1.5 3.865 00011111
1.0 3.444 00011100
0.5 3.070 00011001
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4.5.4 Gamma unit

Figure 4.13 is the data path of branch metric computation. The binary arithmetic
function addition, multiplication and division are implemented by the adder, two’s com-
plementer and shift operation accordingly. Gamma unit reads in both the extrinsic infor-

mation of previous decoding stage and channel signal from internal memories Mem-Le
and Mem-Lcyk, and outputs two type of logy,(s', s) from state §' to S with branch label-

ling +1 and -1. Meantime, the intermediate results, the sum from the adder, is output

directly to the decoding stage and is used in the computation of final log-likelihood ratio.

mem-Le
mem-lcyk

'V

adder

I___

shift register

\__‘

twa's compliment

mem-gammal
mem-gammaf)
mem-leykle

Figure 4.13 Datapath of branch metric calculation

4.5.5. Alpha/Beta unit

In the computation of forward and backward recursion, the operation is the same
for both of them except that each starts from both terminals of the trellis diagram. There-

fore, the data path for them is duplicated and they only have different data input as shown
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in Figure 4.14. Following arithmetic model given in Chapter 3, all loga,(s) and
log Bk_ 1 (s") for each node (state) are recursively calculated from first node at the starting

time instant to the last one. This computation is exhaustive for all branches finally con-
verging to a node.

From the property of trellis diagram for one codeword, there are at most two
branches ending at one node no matter what the transition is caused by the information bit
or the parity bit. So two adders are designed to calculate the summation of previous for-
ward/backward recursion and branch metrics, and to operate in parallel. This will maxi-
mize the throughput. According to the modified Log-MAP algorithm discussed in Chapter
3, the correct values for approximate formula are stored and compensated by a look-up
table. This reduces the implementation complexity significantly. The correction values

stored in Table 4.5 are also applied to the computation of extrinsic information.

Table 4.5: Look-up table for correction term

IDifl <0.0625| 0.5 1.0 1.5 2.0

v
)
(o]

In(1+¢"Difly 0.625 05 [0375 | 025 | 0.125 0

The multiplexer select signals are generated by FSM. They choose the right sum
according to the number of branch converging to one node, which decides if the correction
operation is needed or not.

The Alpha/Beta unit reads in data from memories Mem-alpha0, Mem-alphal and

Mem-beta0 and Mem-betal and writes the results back to them.
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Figure 4.14 Datapath of forward/backward recursion calculation

4.5.6 Extrinsic information unit

The Equation 3.5 requires the exhaustive comparison of the sum of loga, _(s")

and logP,(s) of all node pairs connected by branch labelled +1 or -1. So the computation

is implemented in parallel for branches labelled +1 and -1. When all branches at a time
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instant are computed, the subtractor gives the output of extrinsic information of the trans-

mitted bit at this time.

for x,= | branches for x,= -1 branches
< <
= = - - e <
2 3 2 ] 2 S
s 3 - v £ 3®
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2] 3] =2 2 o o
E E E E E E
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Figure 4.15 Datapath of extrinsic information calculation
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The data path of the extrinsic information calculation is shown in Figure 4.15. The

circuits labelled +1 and -1 branch are the same. Likewise, the multiplexer select signals

are generated by FSM according to the trellis diagram of RM(32, 26).

4.5.7 LLR unit

LLR unit performs the computation of log-likelihood ratio when all iterations are
completed. It reads in the data from memories Mem-lcykle and Mem-Le and makes a hard
decision according to the sign of sum of both inputs. Its output is the estimated transmitted

bits of turbo decoder. LLR unit data path is shown in Figure 4.16.

«—|mem-le
o | mem-leykle

adder

‘

comparator
>or<Q?

po—1

estimated
info. bits

Figure 4.16 Datapath of log-likelihood ratio calculation

4.6 Memory architecture

The size of memories required depend on the interleaver size, word length of data
input and intermediate results, and number of trellis states.
In order to take advantage of BlockRAM of FPGA, all of receiver buffer, memo-

ries for intermediate results and memories of address table utilize standard memory core
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of Xilinx Coregen library. In total 21 groups of memories are used in turbo encoder and
decoder. Details are given below and summarized in Table 4.6.

In turbo encoder, one 6 x 26-bit single-port ROM is used to store the generator
matrix vectors.

A large amount of single- or dual-port RAM or ROM are used in turbo decoder
from receiver buffer to internal memories. Two single-port RAMs Mem-yk are used for

receiver buffer, whose size is determined by the transmitted package and bit width of the

quantized input. For RM (32, 26)2turbo code, it is 988 x 4-bit. The ROM Mem-Lc stores
the channel reliability values used in pre-processing unit. The RAM Mem-Le stores the
extrinsic information outputs of every decoding stage and is refreshed in horizontal and
vertical decoding. Because only the extrinsic information of information bits are used in
next iteration, the size of Mem-Le is 676 x 12-bit. Most of the used memories are for inter-
mediate results of branch metrics and forward/backward recursion values. All of them are
dual-port RAM. Mem-gammal, Mem-alphaland Mem-betal are used for branch labelled

+1 and Mem-gamma0, Mem-alpha0 and Mem-beta0 for labelled -1. According to node

number of trellis diagram of RM(32,26), the memory size for each loga,(s) and

logP, _(s") is 638 x 17-bit. Especially, RAM Mem-Icykle saves the summation of chan-

nel data values and extrinsic information in the last vertical decoding to avoid the repeti-
tive calculation in the stage of computing the soft-output of decoder. By this way not only
we reduce the decoding delay, but also we eliminate an additional adder circuit. Viewed
from total decoding flow of turbo decoder, Mem_lcykle saves the extrinsic information

output of last horizontal decoding too. This is important for one
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SISO decoder and one memory Mem-Le architecture. Because Mem-Le keeps the storage
of extrinsic values in horizontal and vertical decoding by overwriting, after last vertical
decoding. we don’t have the previous horizontal extrinsic values Le. Hence, the contents

of memory Mem-Icykle can be used directly for addition with last vertical extrinsic infor-
mation L, in the computation of soft-output LLR.

Among all memories used, there are 8 memories dedicated for storing the address
tables which are used to indirectly access the internal memories of the intermediate values.
The counters for state change also are used to generate addresses for these memories in

each corresponding decoding stage. Their size information is given in Table 4.6.

4.7 Summary

This chapter presents the detail of RM-BTC design and implementation. For fast
prototyping, reconfigurable FPGA chip is selected to map the implementation. Besides the
turbo encoder implementation, important design issues and hierarchical architecture of
decoder are described. Simulation results of quantization are presented and data path
design is given. Due to the use of one SISO decoder, data and hardware sharing scheme is
designed that minimizes the chip area. In order to increase decoding speed and through-
put, all operations are designed with parallelism and pipeline principles. Specific inter-
leaver access technique was used to eliminate the demand for interleaver buffer.
Meanwhile, details on finite state machine, data path and interface port of turbo encoder

and decoder are also given in this chapter.
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Chapter 5

Simulation and synthesis

This chapter will present the results of implementation of turbo encoder and
decoder on FPGA. All component parts of turbo encoder and decoder are written in
VHDL language and logically synthesized to map to Xilinx FPGA. Test model and simu-
lation environment are described. The functional simulation results at the RTL level and
logic synthesis reports of turbo encoder and decoder are presented in Section 2 and 3.
Since this is a preliminary hardware implementation, we have paid more attention on cor-
rect functionality of turbo encoder and decoder implemented and on chip area minimiza-

tion. The timing reports also are given as reference for future improvement.

5.1 Test model

The designed turbo encoder and decoder are separately simulated for correct func-
tionality and timing before a combination test is executed. Figure 5.1 shows the block dia-
gram of the combination test model.

The signal generator offers the input information sequence using both fix and ran-
dom input data patterns, which are sent to turbo encoder for encoding and meanwhile

written into a file for later bit error comparison. The encoded information sequences after

turbo encoder is corrupted by addition of white noise N(0, 67) during transmission in
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Gaussian channel, which will input to turbo decoder. The estimated transmitted codeword
sequences output from turbo decoder are stored in another file. This file will be used in the
last comparator that will give bit error rate between transferred information sequence and

the estimated transmitted information sequence.

transferred estimated
Seed sequence Whi“I noise sequence
ee
i BER
l_.nput Signal L‘ Turbo |—e(3—e {Quantization Turbo [
generator encoder AWGN decoder Comparator —

channel r

Figure 5.1 Block diagram of test model

All simulations are executed on Sun ultral0 workstation with Solaris 2.5.7 operat-
ing system. When implemented by VHDL-87, some arithmetic cores of Xilinx library are
used to reduce area. Functional simulation is done with Synopsys VHDL system simulator
(VSS): Logic synthesis is through Synopsys design compiler and design analyzer; and
Place and Route uses Xilinx Design Manager (Xilinx Alliance M3.1i) targeting to device

XCV1000EFGI1156-6.

5.2 Simulation

We will denote the fixed test pattern fix(0,V) and random test pattern ran(0°, 1Y)

where i means number of bit ‘0’ and j number of bit ‘1’ in one test block.

Although turbo encoder is simpler than turbo decoder, some test pauemns are

applied to turbo encoder to test its correct functionality independently. The test patterns of
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ﬁt[(013,113)(113,013)]13 and ran(0339.l337), mn(0347‘1329)' ran(0318.1358), ra"(0311'1365)
are applied to turbo encoder. Partial outputs of them from turbo encoder are verified by
manual calculation. For simplicity, further tests of turbo encoder would be combined with
decoder.

Here we give the clock cycles required to encode one block of information bits.

clock cycles _
S lock = 676 +6x26

Where 676 is for shifting information bits into encoder buffer, 6 is the encoding

cycles of one codeword and 26 is the codeword number of one block.

Test of turbo decoder is done combining with encoder under two cases of without
and with additional noise. The test patterns of encoder listed above are also applied to the
turbo decoder. The outputs of these patterns from the encoder are entered to the decoder
after 4-bit quantization. For the cases of without additional noise, all estimated outputs of
turbo decoder are completely correct, i.e. we obtain the same output as the input patterns
of turbo encoder; For case with additional noise, the correct rate or BER of turbo decoder

depends on the signal-to-noise ratio of transferred sequences. Here are some random test
patterns with additional noise: ran(035 713! 9), ran(0345 133 ), ran(0342.1334) with SNR =1
dB; ran(0330.l346), ran(0338.1338), ran(0342,l334) with SNR = 1.5 dB; ran(0308,l368).
ran(0328,1348), ran(0326,l350) with SNR= 2 dB. In what follows we present an average
BER obtained from a few of blocks under different SNR values.

From 0.5 dB to 2.0 dB of SNR, average bit error rate per block size is in compli-

ance with the one that we obtained from the software simulation. For higher SNR region
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from 2.5 to 5.0 dB, because the block size is small, the reported error is zero, so we
assume that the BER/block is zero for all of them. The BER/block versus SNR is listed in
Table 5.1. The simulation results show that the present implementation of turbo encoder

and decoder are working properly and reach expected performance.

Table 5.1: BER/Block versus SNR values

SNR (dB) BER/Block
0.5 0.106509
1.0 0.0865385
1.5 0.0173815
2.0 0.00702675

25~50 0.00000

The number of cycles required to perform one block decoding is a function of the
block size and iteration times. Computation performance in term of clock cycles per block
can be determined by the following formula:

For the 1st iteration including horizontal and vertical decoding,

clock_cycles _ g90 4 678 + (639 + 547) x 26 x 2
block

where 990 and 678 is clock cycles required in calculation of branch transition in
horizontal and vertical decoding, respectively. The 639 and 547 is clock cycles required in
calculation of forward/backward recursion and extrinsic information. The 26 is the num-
ber of codeword in one block, and the 2 represents both horizontal and vertical decoding

stage within one iteration.
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For the 2nd and up iterations, every iteration will contribute more cycles to the

above formula. Thus the total cycles required from 2nd iteration and up is

clock cycles _ s . .
ik - [678 + (639 + 547) x 26] x 2 X (iteration — 1)

We have found that decoding process for one block size involves clock cycles

which increase proportionally with codeword length (or block size) and iteration number.

5.3 Synthesis and comparison

Both implementation of turbo encoder and decoder are logic synthesized and
mapped to Xilinx XCVI000EFG1156-6 FPGA chip. As we mentioned in the previous
chapter, Virtex-E FPGA is selected due to its high gate density and fast clock. Table 5.2
and 5.3 list the mapping reports from Place and Route tool.

Normally, utilization of FPGA is defined as the number of logic blocks used for
actual realization of the design. It is recommended not to use the device up to its maxi-
mum capacity as it would impair the routability of the design. From Table 5.2 and Table
5.3. we can see that both implementation of turbo encoder and decoder occupy only a
small area of the chip, 8% and 21% of total slices. This not only makes place and route
easy but also saves a lot of chip area for future design improvement. In order to increase
the decoding throughput, multiple decoders often are arranged to work in parallel. So
accommodating multiple decoders in one chip is very important in codec design. The
unused chip area is enough to hold another two decoders.

Regarding timing statistics, post-layout timing reports from Place and Route tool

has shown that the turbo encoder can work at the maximum frequency of 47.594 MHz
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(21.011 ns) and decoder at the maximum frequency 22.404 MHz (44.634 ns). These two

parameters are

Table 5.2: Design summary of turbo encoder

Number of Slices

1079 out of 12,288 (8%)

Number of Slice Registers

1076 out of 24,576 (4%)

Number of 4-input LUTSs 1091 out of 24,576 (4%)

Number of Block RAMs 1 out of 96 (1%)

Number of bonded I0Bs 5 out of 660 (1%)
Total equivalent gate count 31,766

for design

Table 5.3: Design summary of turbo decoder

Number of Slices

2642 out of 12,288 (21%)

Number of Silce Registers

451 out of 24,576 (1%)

Number of 4-input LUTs

3736 out of 24,576 (15%)

Number of Block RAMs 58 out of 96 (60%)
Number of bonded [OBs 18 out of 660 (2%)
Total equivalent gate count 988,531

for design

obtained under no timing constraints. These values would have been higher if timing con-

straint are used. According to these two clock frequencies, we may calculate a preliminary

transmission rate of the encoder and the decoder.

For encoding, one block size before decoding equals 676 bits. So, we have the fol-

lowing value:

where 832 is the encoding cycles needed for one block.

Transmission rate =

832 x 21.011
= 38.67Mbps
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For decoding. we assume that iterative decoding is preset to 5 iteration for one
block size which is 988 bits after encoding. The total required clock cycles is 315452
deduced from equation of clock cycles per block. Hence the transmission rate of data

entering turbo decoder is

988
315452 x 44.634

70.171Kbps

Transmission rate =

Because of the recursive calculation of each node and iteration, decoding proce-
dure for one block of information bits takes many clock cycles, which decreases the
decoding speed considerable. The bigger the block size, the more the clock cycles
required.

Although there are some reported implementations of turbo decoder in the litera-
ture, it is difficult to compare one design with another because of different algorithms,
component codes, implementation architecture, target devices, etc., and often not all of the
performance parameters are available for comparison. Here we give one realization imple-

mented by Xilinx Virtex FPGA([68] as a reference to our implementation.

Table 5.4: Comparison between implementations

Reference[44] Present design
convolutional code block code
Implementation rate 1/3 to 1/7 rate 0.684
Log-MAP Log-MAP
normalization Non-normalization
chip XC3190A-5(1 piece) XCVI1000E-6(1 piece)
XC3142A-5(2 piece) less than 30% used
XC3130A-5s(2 piece)
clock frequency 10MHz 22.404MHz
decoding speed v(number of memory)=4 70.171Kbivs
356.8Kbit/s
v=2, 624.7Kbit/s
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From Table 5.4 we can see that our implementation outperforms reference[44] in
clock frequency. However, comparing with convolutional turbo code, the decoding speed
of our implementations is slower than that of reference [44]. This is determined by the dif-
ferent property of convolutional and block code. For the convolutional turbo code, it has
regular trellis structure and fixed state number. But for block turbo codes, their state and
column number of trellis diagram is proportional to code length and redundancy bit

length.

5.4 Summary

In the chapter the simulation scheme and environment for the implemented turbo
encoder and decoder are introduced. Through a wide variety of test patterns, we have
shown that the implementation of RM-BTC is functionality correct and have similar per-
formance of bit error rate with software model in magnitude. Synthesis report also have
shown that the chip area is reasonable. However, the throughput of decoder is lower than

prevailing commercial standard.
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Conclusion

6.1 Summary

In this thesis, FPGA implementation of Reed-Muller block turbo encoder and
decoder is presented, and its correct functionality is proven by simulation.

Based on knowledge of the linear block code, Reed-Muller block code is con-
structed with row-reduced echelon generator matrix. Trellis structure determines the com-
plexity of trellis-based decoding for a linear block code. The minimal trellis diagram of
Reed-Muller code is constructed by Massey method and is built on row-reduced echelon
generator matrix. To take advantage of efficient trellis-based decoding method, trellis-
based MAP algorithm for linear block code is introduced. Meantime, iterative decoding
and parallel RM turbo code scheme are also illustrated.

For reducing the complexity of MAP decoding algorithm, sub-optimal Max-Log-
MAP and Log-MAP algorithms are discussed so as to avoid the complex operations such
as exponential and logarithmic computations. Compensation by correction value of Log-
MAP is realized with look-up table and simulation result on performance comparison
between different algorithms is given. For the sake of implementation, decomposition of

Log-MAP algorithm to functional units is discussed.
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The hardware implementation of RM-BTC encoder and decoder is the main con-
tribution of this thesis. Instead of cascading elementary decoders to iterate the decoding
procedures, a specific SISO decoder structure is proposed to perform iterative decoding.
This data- and hardware-sharing scheme significantly reduced the required chip area with-
out any performance degradation and has proven to be a very efficient and a low-complex-
ity implementation. At the same time, parallelism and pipeline design of turbo encoder
and decoder has increased the throughput of encoder and decoder.

Simulation of RTL level model of turbo encoder and decoder has shown the cor-
rect functionality of the proposed implementation, and synthesis results show that required
chip area is small.

From proposed implementation, the following conclusions are obtained.

* Sub-optimal Log-MAP decoding algorithm is a good trade-off between less
complexity hardware implementation and better decoding performance. Less
than 0.5 dB coding gain degraded from MAP algorithm is observed.

¢ The small chip area implementation can be achieved through improved one SISO
decoder structure and data reuse. Double receiver buffer smooth out the decod-
ing process.

o The remaining chip area of FPGA is a big potential advantage for future

improvement of RM-BTC codec.

6.2 Practical limitation and solutions

Although many simplifications (measures) have been incorporated in our design,

the decoding delay is still large so that the transmission rate is not practical compared with
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available commercial systems. We have the following practical limitations: for block turbo
codes, when the code length and the number of redundancy bits are long. exhaustive cal-
culation of forward and backward recursion of every node and branch transition probabil-
ity of each branch will cost a lot of time and require a large amount of memory; Log-MAP
decoding algorithm has better decoding performance but still is computation intensive
which results in the lower data transmission rate; Further more, interleaving process
makes the decoding operation serial and the high iteration number also exacerbate this
decoding delay. So it is necessary to make modifications to the algorithm and the design in
order to increase the throughput.

An alternative is the duplication of the functional units of forward/backward recur-
sion and branch metric and decoder. This will increase the decoding throughput due to
parallel decoding. If the newest implementation technology is used. the system clock fre-
quency is further increased.

New design could be implemented by full custom application-specific integrated
circuit (ASIC). Normalization of forward/backward recursion and extrinsic information
should be done. Other modification may add to optimize the design of adders and multipli-
ers.

Another way to increase the throughput could be done by optimizing the search of
the trellis diagram. For the time being, MAP decoding algorithm that goes through all the
nodes and the branches of trellis diagram during decoding takes long calculation time and
introduces a big delay. More research is required on the possibility of reducing the compu-
tation node number which just searches part of nodes according to the priority of previous

calculation. This should significantly shorten the decoding time.
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To reduce power consumption, a great amount of power can be saved by shutting
down a portion of inactive decoding stage. Alternatively, finding another architecture for
the encoder buffer instead of register-chain used may reduce power consumption further
because it is power hungary.

Of all possible alternatives, for the enhancement of the bit rate, selecting a differ-

ent algorithm or code will has the greatest impact on the performance of proposed system.
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Appendix A Synthesis Reports

Turbo encoder mapping report

Xilinx Mapping Report File for Design 'Synopsys_edif’
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

Design Information

Command Line : map -p xcv1000e-6-fg1156 -0 map.ncd -detail encoder_c.ngd
encoder_c.pcf

Target Device : xv1000e

Target Package : fgl1156

Target Speed : -6

Mapper Version : virtexe -- D.27

Mapped Date : Mon Apr 1 14:17:41 2002

Design Summary

Number of errors: 0
Number of warnings: 11

Number of Slices: 1.079 out of 12,288 8%
Number of Slices containing
unrelated logic: Ooutof 1.079 0%
Total Number Slice Registers: 1.076 out of 24.576 4%
Number used as Flip Flops: 1,024
Number used as Latches: 52
Total Number 4 input LUTs:  1.091 out of 24.576 4%
Number used as LUTs: 1.069
Number used as a route-thru: 22
Number of bonded IOBs: Soutof 660 1%
Number of Block RAMs: loutof 96 1%

Total equivalent gate count for design: 31,766
Additional JTAG gate count for [OBs: 240

Turbo encoder logic level timing summary

Xilinx TRACE, Version D.27
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

trce map.ncd encoder_c.pcf -a -v 1 -skew -0 map.twr -xml map_trce.xml

Design file: map.ncd

Physical constraint file: encoder_c.pcf

Device,speed: xcv1000e,-6 (PRELIMINARY 1.60 2001-05-08)
Report level: verbose report, limited to 1 item per constraint

Timing summary:
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Timing errors: 0 Score: 0
Constraints cover 26136 paths, 0 nets, and 6215 connections (92.3% coverage)

Design statistics:
Minimum period: 11.039ns (Maximum frequency: 90.588MHz)
Maximum combinational path delay: 4.22Ins
Minimum input arrival time before clock: 2.046ns
Maximum output required time before clock: 13.804ns

Analysis completed Mon Apr 1 14:18:50 2002

Turbo encoder post layout timing summary

Xilinx TRACE, Version D.27
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

trce encoder_c.ncd encoder_c.pef -a -v 3 -skew -0 encoder_c.twr -xml
encoder_c_trce.xml

Design file: encoder_c.ncd

Physical constraint file: encoder_c.pcf

Device.speed: xcv1000e.-6 (PRELIMINARY 1.60 2001-05-08)
Report level: verbose report

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 26136 paths, 0 nets. and 6215 connections (92.3% coverage)

Design statistics:
Minimum period: 21.01 Ins (Maximum frequency: 47.594MHz)
Maximum combinational path delay: 11.933ns
Minimum input arrival time before clock: 3.724ns
Maximum output required time before clock: 18.718ns

Analysis completed Mon Apr 1 14:20:51 2002

Turbo decoder mapping report

Xilinx Mapping Report File for Design 'Synopsys_edif
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

Design Information

Command Line : map -p xcv1000e-6-fg1156 -o map.ncd decoder.ngd decoder.pcf
Target Device : xv1000e

Target Package : fg1156

Target Speed :-6
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Mapper Version : virtexe -- D.27
Mapped Date : Tue Apr 2 23:07:33 2002

Design Summary

Number of errors: 0
Number of warnings: 133

Number of Slices: 2,642 out of 12,288 21%
Number of Slices containing
unrelated logic: Ooutof 2,642 0%
Total Number Slice Registers: 451 out 0f 24,576 1%
Number used as Flip Flops: 447
Number used as Latches: 4
Total Number 4 input LUTs: 3,736 out of 24,576 15%
Number used as LUTs: 3,070
Number used as a route-thru: 666
Number of bonded 10Bs: 18 outof 660 2%
Number of Block RAMs: S8 outof 96 60%
Number of RPM macros: 4

Total equivalent gate count for design: 988,531
Additional JTAG gate count for [OBs: 864

Turbo decoder logic level timing summary

Xilinx TRACE, Version D.27
Copyright (c) 1995-2000 Xilinx. Inc. All rights reserved.

trce map.ncd decoder.pcf -v | -0 map.twr -xml map_trce.xml

Design file: map.ncd

Physical constraint file: decoder.pcf

Device.speed: xcv1000e.-6 (PRELIMINARY 1.60 2001-05-08)
Report level: verbose report. limited to | item per constraint

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 96616809 paths, 4988 nets, and 13096 connections (100.0%
coverage)

Design statistics:
Minimum period: 26.146ns (Maximum frequency: 38.247MHz)
Maximum net delay: 0.879ns

Analysis completed Fri Jun 28 13:42:50 2002

Turbo decoder post layout timing summary

Xilinx TRACE, Version D.27
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
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trce decoder.ncd decoder.pef -e 3 -0 decoder.twr -xml decoder_trce.xml

Design file: decoder.ncd

Physical constraint file: decoder.pcf

Device,speed: xcv1000e,-6 (PRELIMINARY .60 2001-05-08)
Report level: error report

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 96616809 paths, 5687 nets, and 13096 connections (100.0%
coverage)

Design statistics:
Minimum period: 44.634ns (Maximum frequency: 22.404MHz)
Maximum net delay: 13.468ns

Analysis completed Fri Jun 28 13:50:51 2002
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Appendix B Turbo encoder VHDL source codes

File name: encoder_c.vhd
purpose: main program of turbo encoder

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity encoder_c is

generic (
bitwidth : integer := 26: -- RM(32.26) codeword information length:
buffersize : integer = 676 -- RM(32.26) input buffer size for test
paritysize : integer := 156);

port (
input : in std_logic; -- input: received sequence info.bit:

reset : in std_logic: --initiate signal for state and register Q:
clk :in std_logic:
start : in std_logic:
codeword : out std_logic); -- coded word output;
end encoder_c:

architecture rtl of encoder_c is

type statetype is (idle.receive,encode.shift_out);
signal state : statetype: -- initial state is waiting

component reg_gen3226
port {
addr : in std_logic_vector(2 downto 0); -- memory addressing
clk :in std_logic;
dout : out std_logic_vector(25 downto 0)); -- matrix vector output
end component;

signal g : std_logic_vector(bitwidth-1 downto 0); --codeword generator metrix vector:

signal Q : std_logic_vector(buffersize-1 downto 0): --buffer length vector:

signal mux_out_H,mux_out_V.m_out_H.m_out_V : std_logic_vector(bitwidth-1 downto 0); --multiplier
output

signal xor_out_H,xor_out_V : std_logic_vector(bitwidth-1 downto [); --XOR gate output;

signal paritybit_H : std_logic_vector(paritysize-1 downto 0); -- Hori. coded Par. bits length vector;

signal paritybit_V : std_logic_vector(paritysize-1 downto 0); -- Ver. coded Par. bits length vector;

signal R_shift, encoding,shifting_out : std_logic: --FSM output signals;

signal encol: std_logic;

signal addr : std_logic_vector(2 downto 0); --addr signal of codeword generator-metrix memory

signal jump,jump_delay : std_logic_vector(+ downto 0); --counting signal of codeword number;

signal countup, count : std_logic_vector(9 downto 0);

signal QHO,QH1,QH2,QH3,QH4,QH5.QH6,QH7,QHS,QH9 : std_logic_vector(25 downto 0y

signal QH10,QH11,QH12,QH13,QH14,QHI5,QH16.QH17,QHI18,QHI9 : std_logic_vector(25 downto 0):

signal QH20,QH21,QH22,QH23,QH24,QH25 : std_logic_vector(25 downto 0);
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signal QVO0, QV1, QV2. QV3, QV4,QV5, QV6.QV7, QV8. QV9: STD_LOGIC_VECTOR(25 downto
0y,

signal QV10, QV11,QVi2, QV13,QV14,QV15 QVI6. QVI7,QVI8: STD_LOGIC_VECTOR(25
downto 0):

signal QV19, QV20, QV21. QV22,QV23.QV24,QV25: STD_LOGIC_VECTOR(2S downto 0);

signal Sel : std_logic_vector(4 downto 0);

begin

QHO <= Q(25 downto 0);
QHI <= Q(51 downto 26);
QH2 <= Q(77 downto 52);
QH3 <= Q(103 downto 78);
QH4 <= Q(129 downto 104);
QHS5 <= Q(155 downto 130);
QH6 <= Q(181 downto 156);
QH7 <= Q(207 downto 182);
QHS <= Q(233 downto 208).
QH9 <= Q(259 downto 234).
QH10 <= Q(285 downto 260);
QHII <= Q(311 downto 286).
QH12 <= Q(337 downto 312);
QHI13 <= Q(363 downto 338);
QH14 <= Q(389 downto 364);
QH15 <= Q(415 downto 390);
QHI16 <= Q(441 downto 416).
QH17 <= Q(467 downto 442);
QH18 <= Q(493 downto 468);
QH19 <= Q(519 downto 494).
QH20 <= Q(545 downto 520);
QH21 <= Q(571 downto 546);
QH22 <= Q(597 downto 572);
QH23 <= Q(623 downto 598);
QH24 <= Q(649 downto 624);
QH25 <= Q(675 downto 650):

QV0<=
Q(630)&Q(624)&Q(598)&Q(572)&Q( 546)&Q(520)&Q(494)&Q(468)&Q(442)&Q(41 6)%&Q(390)&Q(364
)&Q(338)&Q(312)&Q(286)&Q(260)& Q(234)&Q(208)&Q(182)&Q( 156)&Q(130)&Q(104)&Q(78)&Q(52
)&Q(26)&Q(0);

QVli«=
Q(651)&Q(625)&Q(599)&Q(573)&Q(547)&Q(521 )&Q(495)&Q(469)&Q(443)&Q(417)&Q(391 )&Q(365
)&Q(339)&Q(313)&Q(287)&Q(261)&Q(235)&Q(209)&Q( 183)&Q(157)&Q(131)&Qt 105)&Q(79)&Q(53
)&QRT&Q(1);

QV2«=
Q(652)&Q(626)&Q(600)&Q(574)&Q(548 18&Q(522)&Q(496)&Q(470)&Q(444)&Q(41 8)&Q(392)&Q(366
)&Q(340)&Q(3 14)&Q(288)&Q(262)&Q(236)&Q(210)&Q( 184)&Q(158)&Q(132)&Q(106)&Q(80)&Q(54
)&Q(28)&Q(2);

QV3 <=
Q(633)&Q(627)&Q(601 1&Q(575)&Q(549)&Q(523)&Q(497)&Q(47 1 )&Q(445)&Q(419)&Q(393)&Q(367
)&Q(341)&Q(315)&Q(289)&Q(263)&Q(237)&Q21 )& Q( 185)&Q(159)&Q(133)&Q(107)&Q(8! )&Q(55
)&Q(29)&Q(3):

QVd <=
Q(654)&Q(628)&Q(602)&Q(S76)&Q(550)&Q(524)&Q(498)&Q(472)&Q(446)&Q(420)&Q(394)&Q( 368

-103-



ndix urbho en rV ource codes

)&Q(342)&Q(316)&Q(290)&Q(264)&Q(238)&Q(212)&Q( 186)&Q(160)&Q(134)&Q(108)&Q(82)&Q(56
)&Q(30)&Q(4);

QV5 <=
Q(655)&Q(629)&Q(603)&Q(STN&Q(551)&Q(525)&Q(499)&Q(473)&Q(447)&Q(42 1)&Q(395)&Q(369
)&Q(343)&Q(317)&Q(29 N&Q(265)&Q(239)&Q(213)&Q(187)&Q(161)&Q(135)&Q(109)&Q(83)&Q(57
)&QEB1&Q(S):

QV6 <=
Q(656)&Q(630)&Q(604)&Q(578)&Q(552)&Q(526)&Q(500)&Q(474)&Q(448)&Q(422)&Q(396)&Q(370
)&Q(344)&Q(318)&Q(292)&Q(266)&Q(240)&Q(214)&Q( 188)&Q(162)&Q(136)&Q(! 10)&Q(84)&Q(58
)&Q(32)&Q(6);

QV7 <=
Q(657)&Q(631)&Q(605)&Q(579)&Q(553)&Q(527)&Q(501 )&Q(475)&Q(449)&Q(423)&Q(397)&Q(371
)&Q(345)&Q(319)&Q(293)&Q(267)&Q(241)&Q(215)&Q(189)&Q(163)&Q( 137)&Q(111)&Q(85)&Q(59
)&Q(33)&Q(7);

QV8 <=
Q(658)&Q(632)&Q(606)&Q(580)&Q(554)&Q(528)&Q(SO?.)&Q(476)&Q(450)&Q(424)&Q(398)&Q(372
)&Q(346)&Q(320)&Q(294)&Q(268)&Q(242)&Q(216)&Q(190)&Q(164)&Q(138)&Q(1 12)&Q(86)&Q(60
)&Q(3H&Q(8);

QV9 <=
Q(659)&Q(633)&Q607)&Q(581)&Q(555)&Q(529)&Q(503)&Q(477)&Q(451 1&Q(425)&Q(399)&Q(373
1&QBITI&Q(321)&Q(295)&Q(269)&Q(243)&Q(21 T)&Q(191)&Q(165)&Q(1 39)&Q(113)&Q(87)&Q(61
)&Q(35)&Q(9):

QVIid<=
Q(660)&Q(634)&Q(608)&Q(582)&Q(556)&Q(530)&Q(504)&Q(478)&Q(452)&Q(JZG)&Q(400)&Q(374
)&Q(348)&Q(322)&Q(296)&Q(270)&Q(24-H) & Q(218)&Q(192)&Q(166)&Q( 140)&Q(1 14)&Q(88)&Q(62
)&Q(36)&Q(10);

QVlil <=
Q(661)&Q(635)&Q(609)&Q(583)&Q(557)&Q(53 1)&Q(505 )&Q(479)&Q(453)&Q(427)&Q(401)&Q(375
)&Q(349)&Q(323)&Q(297)&Q(271)&Q(245)&Q(219)&Q(193)&Q(167)&Q( 141)&Q(115)&Q(89)&Q(63
Y&Q3N)&Q(IL);

QVI2<=
Q(662)&Q(636)&Q(610)&Q(584)&Q(558 )&Q(532)&Q(506)&Q(480)&Q(454)&Q(428)&Q(402)&Q(376
)&Q(350)&Q(324)&Q(298)&Q(272)&Q(246)&Q(220)&Q(194)&Q(168)&Q( 142)&Q(116)&Q(90)&Q(64
)&Q(38)&Q(12);

QVlid<«=
Q(663)&Q(637)&Q(611)&Q(585)&Q(559)&Q(533)&Q(507)&Q(481 )&Q(455)&Q(429)&Q(403)&Q(377
)&Q(351)&Q(325)&Q(299)&Q(273)&Q(247)&Q(221)&Q(195)&Q(169)&Q(143 1&Q(11T)&QI91)&Q(65
)&Q(39)&Q(13);

QVid<=
Q(664)&Q(638)&Q(612)&Q(586)&Q(560)&Q(534)&Q( 508)&Q(482)&Q(456)&Q(430)&Q(404)&Q(378
)&Q(352)&Q(326)&Q(300)&Q(274)&Q(248)&Q(222)&Q(196)&Q(170)&Q( 144)&Q(118)&Q(92)&Q(66
)&Q(40)&Q(14);

QVIiS«=
Q(663)&Q(639)&Q(613)&Q(587)&Q(561 )&Q(535)&Q(509)&Q(483)&Q(457)&Q(431 )&Q(405)&Q(379
)&Q(353)&Q(327)&Q(301)&Q(275)&Q(249)&Q(223)&Q( 197)&Q(171)&Q(145)&Q(119)&Q(93)&Q(67
)&QEH1H&Q(15);

QVli6<=
Q(666)&Q(640)&Q(614)&Q(588)&Q(562)&Q(536)&Q(5 10)&Q(484)&Q(458)&Q(432)&Q(406)&Q(380
)&Q(354)&Q(328)&Q(302)&Q(276)&Q(250)&Q(224)&Q(198)& Q( 172)&Q(146)&Q(120)&Q(94)&Q(68
1&Q(42)&Q(16);

QVl17<«=
Q(667)&Q(641)&Q(615)&Q(589)&Q(563)&Q(537)&Q(511 )&Q(485)&Q(459)&Q(433)&Q(407)&Q(381
)&Q(355)8Q(329)&Q(303)&Q(277)&Q(251)&Q(225)&Q(199)&Q( 173)&Q(147)&Q(121)&Q(95)&Q(69
)&Q(43)&Q(17);
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QVi8<«=
Q(668)&Q(642)&Q(616)&Q(590)&Q(564)&Q(538)&Q(512)&Q(486)&Q(460)&Q(434)&Q(408)&Q(382
)&Q(356)&Q(330)&Q(304)&Q(278)&Q(252)&Q(226)&Q(200)&Q(174)&Q(148)&Q(122)&Q(96)&Q(70
)&Q(4H&Q(18);

QVI19<=
Q(669)&Q(643)&Q(61T)&Q(591)&Q(565)&Q(539)&Q(513)&Q(487)&Q(461)&Q(435)&Q(409)&Q(383
)&Q(357)&Q(331)&Q(305)&Q(279)&Q(253)&Q(227)&Q(201)&Q(175)&Q(149)&Q(123)&Q(97)&Q(71
)&Q(45)&Q(19);

QV20<=
Q(670)&Q(644)&Q(618)&Q(592)&Q(566)&Q(540)&Q(514)&Q(488)&Q(462)&Q(436)&Q(4 10)&Q(384
)&Q(358)&Q(332)&Q(306)&Q(280)&Q(254)&Q(228)&Q(202)&Q(176)&Q(150)&Q( 124)&Q(98)&Q(72
)&Q(46)&Q(20);

QV2i =
Q(671)&Q(645)&Q(619)&Q(593)&Q(S67)&Q(541)&Q(515)&Q(489)&Q(463)&Q(437)&Q(411 1&Q(385
)&Q(359)&Q(333)&Q(307)&Q(281)&Q(255)&Q(229)&Q(203)&Q(1 7T)&Q(151)&Q(] 25)&Q(99)&Q(73
)&QEN&Q(21):

QV22«=
Q(672)&Q(646)&Q(620)&Q(594)&Q(568)&Q(542)&Q(516)&Q(490)&Q(464)&Q(438)&Q(41 2)&Q(386
)&Q(360)&Q(334)&Q(308)&Q(282)&Q(256)&Q(230)&Q(204)&Q(178)&Q(152)&Q( 126)&Q(100)&Q(7
4)&Q(48)&Q(22);

QV23<=
Q(673)&Q(647)&Q(621)&Q(595)&Q(569)&Q(543)&Q(5 1 N&Q(49 )& Q(465)&Q(439)&Q(+ 13)&Q(387
)&Q(361)&Q(335)&Q(309)&Q(283)&Q(257)&Q(231)&Q(205)&Q(179)&Q(153)&Q( 12N&Q(101&Q(7
5)&Q(49)&Q(23):

QV2«i<=
Q(674)&Q(648)&Q(622)&Q(596)&Q(570)&Q(54-H)&Q(5 18)&Q(492)&Q(466)&Q(+40)&Q(+14)&Q(388
1&Q(362)&Q(336)&Q(310)&Q(284)&Q(258)&Q(232)8&Q(206)&Q( 180)&Q(154H)&Q 128)&Q(102)&Q(7
6)&Q(50)&Q(24):

QVl5<=
Q(675)&Q(649)&Q(623)&Q(597)&Q(571)&Q(545)&Q(5 19)&Q(493)&Q(467)&Q(+41)&Q(415)&Q(389
)&Q(363)&Q(337)&Q(3 1 &Q(285)&Q(259)&Q(233)&Q(207)&Q(181)&Q( 155)&Q(129)&Q(103)&Q(7
N&QSH&Q(2S):

--Finite state machine for encoder3226
FSM: process(clk,reset.start)
begin
if reset="0" or start="0" then --low level active:
state <= idle;
elsif clk’event and clk="1" then
case state is
when idle => if start = '1" then
state <= receive;
else
state <= idle:
end if;

when receive => if countup < 101010001 1" then --shift number=675;
state <= receive;
else
state <= encode;
end if;

when encode => if jump < "11001" then -- codeword number<25;
state <= encode;
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elsif jump="11001" and addr="101" then
state <= shift_out;
end if;

when shift_out => if count < "1111011011" then -- coded word shift
—out<987="1111011011";
state <= shift_out;
else
state <= receive;
end if;

when others => null;
end case;
end if;
end process:

R_shift <="1" when state = receive else '0’;
encoding <= "1" when state = encode else '0’;
shifting_out <= '1" when state = shift_out else '0’;

--input buffer RIGHT shift process, used for HORIZONTAL and VERTICAL ENCODING-----------
process(clk.reset)

begin
if reset="0" then
Q <= (others=>"0"); --asynchronous clear register of input sequence:

elsif clk'event and clk="1" then
if R_shift="1" or (shifting_out="1" and count <"1010100100")then --shift enable *10101001007=676;
Q(buffersize-1) <= input;
for i in buffersize-1 downto | loop

Qri-1) <= Qi) --R-shift register one bit/clock rise-edge;
end loop: --i
end if:
end if:

end process.

----- shifting number counter process
numl: process (clk. reset)
begin -- process count
if reset = '0’ then -- asynchronous reset (active low)
countup <= (others => '0’);
elsif clk’event and clk = '1” then - rising clock edge
if R_shift="1" then
if countup < "101010001 1" then  --shift number<675:
countup <= countup + 1;
else
countup <= (others =>"0’);
end if;
end if;
end if;
end process numl;

—-Generate address of G metrix for both HORIZONTAL and VERTICAL ENCODING---------
process(clk reset)
begin
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if reset =0’ then --initiate address value
addr <= "000";
elsif clk’event and clk="1" then
if encoding="1" then
if addr < "101" then --G’ addr< §;
addr <= addr+1;
else
addr <="000";
end if;
end if;
end if;
end process;

-—--counting the switching number for each codeword encoding---------—--—---—
num2: process (clk, reset)
begin -- process num2
if reset = '0’ then -- asynchronous reset (active low)
jump <= (others =>'0");
elsif clk’event and clk ="I" then -- rising clock edge
if addr = "101" then

if jump < "11001" then -- codeword switching number j < 25;
jump <=jump + I;
else
jump <= (others =>'0");
end if;
end if;
end if:

end process num2;

-- purpose: delay jump signal to synchronize with G output
process (clk. reset)
begin -- process
if reset = *0’ then -- asynchronous reset (active low)
jump_delay <= (others=>"0");
elsif clk'event and clk = '1" then -- rising clock edge
jump_delay <= jump;
end if:
end process:

genmatrix : reg_gen3226 port map (
addr => addr,
clk =>clk,
dout=>g); --26(word width)x6(word number)
--generator matrix;

mux_H: process
(jump_delay,QHO,QH1,QH2.QH3.QH4.QH5.QH6,QH7.QH8,QHI.QH 10.QH11,QH12.QH13.QHI14.QHI5
.QH16,QH17,QH18,QH19,QH20,QH21,QH22.QH23,QH24.QH25)
begin -- process mux_H
case jump_delay is
when "00000" => mux_out_H <= QHO;
when "00001" => mux_out_H <= QHI;
when "00010" => mux_out_H <= QH2;
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when "00011" => mux_out_H <= QH3;
when "00100” => mux_out_H <= QH4;
when "00101” => mux_out_H <= QHS;
when "00110" => mux_out_H <= QH6;
when "00111" => mux_out_H <= QH7;
when "01000" => mux_out_H <= QHS;
when "01001" => mux_out_H <= QH9;
when "01010" => mux_out_H <= QHI10;
when "01011" => mux_out_H <= QH11;
when "01100" => mux_out_H <= QH12;
when "01101" => mux_out_H <= QH13;
when "01110" => mux_out_H <= QHI14;
when "01111" => mux_out_H <= QHI1S5;
when "10000" => mux_out_H <= QHI16;
when "10001" => mux_out_H <= QH17;
when "10010" => mux_out_H <= QH]18;
when "10011" => mux_out_H <= QH19;
when "10100" => mux_out_H <= QH20;
when "10101" => mux_out_H <= QH2I;
when "10110" => mux_out_H <= QH22:
when "10111" => mux_out_H <= QH23;
when "11000" => mux_out_H <= QH24;
when "11001" => mux_out_H <= QH2S;
when others => null;
end case:
end process mux_H;

mux_V: process (jump_delay.QVO0, QV1, QV2. QV3, QV4, QVS5, QV6, QV7,.QV8. QV9.QVI10. QVIL.
QVI12,QVI3,QVI4, QVIS. QVI6. QVIT7,QVIS.QV19, QV20.QV2I, QV22. QV23.QV24, QV25)
begin -- process mux_V
case jump_delay is
when "00000" => mux_out_V <= QVO0;
when "00001" => mux_out_V <= QVI;
when "00010" => mux_out_V <= QV2;
when "00011" => mux_out_V <=QV3;
when "00100" => mux_out_V <= QV4;
when "00101" => mux_out_V <= QVS;
when "00110" => mux_out_V <= QV6;
when "00111" => mux_out_V <=QV7;
when "01000" => mux_out_V <= QVS;
when "01001" => mux_out_V <= QV9;
when "01010" => mux_out_V <= QV10;
when "01011" => mux_out_V <= QVl11;
when "01100" => mux_out_V <= QV12;
when "01101" => mux_out_V <= QV13;
when "01110" => mux_out_V <= QV14;
when "01111" => mux_out_V <= QV1S5;
when "10000" => mux_out_V <= QV16;
when "10001" => mux_out_V <= QV17,
when "10010" => mux_out_V <=QV18;
when "10011" => mux_out_V <= QV19;
when "10100" => mux_out_V <= QV20;
when "10101" => mux_out_V <= QV2l;
when "10110" => mux_out_V <= QV22;
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when "10111" => mux_out_V <= QV23;
when "11000" => mux_out_V <= QV24;
when "11001" => mux_out_V <= QV25;
when others => null;
end case:
end process mux_V;

--control signal delay process
delay1: process (clk, reset)
begin -- process delay

if reset =0’ then -- asynchronous reset (active low)
encol <="0";
elsif clk’eventand clk = '1' then - rising clock edge
encol <= encoding;
end if;
end process delayl;

HORIZONTAL ENCODING process
m_out_H <= mux_out_H and g:
loopl: foriin O to 24 generate
bitl: if i=0 generate
xor_out_H(i+1) <= m_out_H(1) xor m_out_H(i+1);
end generate bitl;
other: if /=0 generate
xor_out_H(i+1) <= m_out_H(i+1) xor xor_out_H(i);
end generate other:
end generate loopl;

--output parity bits buffer for HORIZONTAL ENCODING

process(clk.reset)
begin
if reset =°0" then --active low:

paritybit_H <= (others => '0");
elsif clk’event and clk="1" then
if encol =1 or (shifting_out ="1" and count < "1101000000" and count>="1010100100") then --just
shift 156 times
paritybit_H(paritysize-1)<=xor_out_H(bitwidth-1);
for i in paritysize-1 downto 1 loop
paritybit_H(i-1) <= paritybit_H(i);
end loop; --i
end if;
end if;
end process;

----------------- VERTICAL ENCODING process
m_out_V <= mux_out_V and g:
loop2: fori in O to 24 generate
bitl: if i=0 generate
xor_out_V(i+1) <= m_out_V(i) xor m_out_V(i+1);
end generate bitl;
other: if /=0 generate
xor_out_V(i+1) <= m_out_V(i+1) xor xor_out_V(i);
end generate other;
end generate loop2;
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--output parity bits buffer for VERTICAL ENCODING
process(clk.reset)
begin
if reset = "0’ then --active low;
paritybit_V <= (others =>"0’);
elsif clk’event and clk="1" then
ifencol ='1" or (shifting_out ="1" and count >= "1101000000" and count < "1111011100") then
--just shift 156 times
paritybit_V(paritysize-1)<=xor_out_V(bitwidth-1);
for i in paritysize-1 downto 1 loop
paritybit_V(i-1) <= paritybit_V(i);
end loop; — i
end if;
end if;
end process;

-- output coded codeword serially
process (clk. reset)
begin -- process
if reset =0’ then -- asynchronous reset (active low)
count <= (others=>'0");
elsif clk’event and clk = '1” then -- rising clock edge
if shifting_out ="1" then
ifcount<"1111011011" then
count <= count + 1;
else
count <= (others=>"0");
end if;
end if;
end if;
end process;

codeword <= Q(0) when count < "1010100100" else -- <676
paritybit_H(0) when count>=" 1010100100" and count<” 1101000000 else -- 676<= count< 832
paritybit_V(0) when count>="1101000000" and count<"[11 1011100" else -- <988
0
end rl;

File name : encoder_c_cfg.vhd
Purpose: configure file of encoder_c.vhd

library Xilinxcorelib;
use Xilinxcorelib.all;

configuration cfg_encoder_c of encoder_c is

for rtl
for all : reg_gen3226
use configuration work.cfg_reg_gen3226;
end for;
end for;
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end cfg_encoder_c:

File name: reg_gen3226.vhd
Purpose: parity vectors of generator matrix. ROM memory generated by Coregen.

library ieee;
use ieee.std_logic_1164.all;

entity reg_gen3226 is

port (
addr : in std_logic_vector(2 downto 0); -- memory addressing

clk :in std_logic;
dout : out std_logic_vector(25 downto 0)); -- matrix vector output

end reg_gen3226;
architecture rtl of reg_gen3226 is
component gen3226
port (
addr: IN std_logic_VECTOR(2 downto 0);
clk : IN std_logic:
dout: OUT std_logic_VECTOR(25 downto 0));
end component;

begin --rtl

gen_matrix: gen3226

port map (
addr => addr.
clk => clk.

dout => dout);

end rtl;

File name: reg_gen3226_cfg.vhd
Purpose: configure file of reg_gen3226_cfg.vhd

Library XilinxCoreLib;
use XilinxCoreLib.all;

configuration cfg_reg_gen3226 of reg_gen3226 is
for rtl
-- synopsys translate_off
for all : gen3226 use entity XilinxCoreLib.blkmemsp_v3_2(behavioral)
generic map(
c_has_en=>0,
c_has_din => 0,
c_has_limit_data_pitch =>0,
c_has_sinit=>0,
c_limit_data_pitch => 8,
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c_width => 26,
c_sinit_value => "0",
c_addr_width => 3,
c_has_rfd => 0,
c_has_we => 0,
c_depth => 6,
c_write_mode => 0,
c_pipe_stages => 0,
c_has_nd =>0,
c_default_data =>"0",
c_has_default_data => 0,
c_mem_init_file => "gen3226.mif",
c_reg_inputs => 0,
c_enable_rlocs => 0,
c_has_rdy => 0);

end for;

-- synopsys translate_on

end for;
end cfg_reg_gen3226;
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Appendix C Turbo decoder VHDL source codes

File name: decoder.vhd
Purpose: turbo decoder main program

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity decoder is

port (
clk0 :in std_logic;
clkl  :in std_logic:
reset  :in std_logic:
start  :in std_logic: -- starting signal of decoding:
SNR :in std_logic_vector(3 downto 0): -- presetting SNR value;

iter_number: in std_logic_vector(3 downto 0): -- presetting iteration number of decoding:
yk_in  :in std_logic_vector(3 downto 0); -- 4-bit quantitive input to decoder from channel;

deco_done : out std_logic: -- one block decoding finishing signal;
infobit : out std_logic): -- estimated info. code output:
end decoder:

architecture rtl of decoder is

component memyktop -- buffer component
port (

addr : IN std_logic_VECTOR(9 downto 0):
clk :INstd_logic:
yk_in : IN std_logic_VECT OR(3 downto 0);
yk_out: OUT std_logic_VECTOR(3 downto 0);
we :INstd_logic).

end component;

component memictop --
port (
clk :in std_logic:
addr : in std_logic_vector(3 downto 0);
Lc :outstd_iogic_vector(7 downto 0));
end component;

component Icykunit -- multiplier component
port (
Lc :in std_logic_vector(7 downto 0);
yk :in std_logic_vector(3 downto Q);
Lcyk : out std_logic_vector(1 1 downto 0);
end component;

component memletop
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port (

addra : [IN std_logic_VECTOR(9 downto 0); -- A port for reading out;
addrb : IN std_logic_vector(9 downto 0): -- B port for writing in;

clka : IN std_logic;

clkb : IN std_logic;

Le_in : IN std_logic_VECTOR(11 downto 0);

web : IN std_logic;

Le_out : OUT std_logic_VECTOR(11 downto 0));

end component;

component memlicyktop
port (
addr :in std_logic_VECTOR(9 downto 0);
clk  :in std_logic;
we :in std_logic;
leyk_in : in std_togic_VECTOR(11 downto 0);
lcyk_out: out std_logic_VECTOR(11 downto 0));
end component;

component gamma -- gamma calculation component
port (

levk_out : in std_logic_vector(11 downto 0);
le_out :in std_logic_vector(11 downto 0):
addrl :in std_logic_vector(9 downto 0); -- addr for judge of Prity bit.
sum :out std_logic_vector(12 downto 0); -- for LLR in final decision;
gammal : out std_logic_vector(11 downto 0); -- corresponding to Xk=1;
gamma0 : out std_logic_vector(11 downto 0)); -- corresponding to Xk=-1.

end component;

component memlcykletop -- component for storing Leyk+Le
port (
addr : in std_logic_vector(9 downto 0);
clk :in std_logic:
din :in std_logic_vector(12 downto 0);
dout : out std_logic_vector(12 downto 0);
we :in std_logic);
end component;

component memloggammatop
port (

addra: IN std_logic_VECTOR(9 downto 0):
addrb: IN std_logic_VECTOR(9 downto 0);
clka : IN std_logic:
clkb : IN std_logic;
dina : IN std_logic_VECTOR(11 downto 0);
douta: OUT std_logic_VECTOR(11 downto 0);
doutb: OUT std_logic_VECTOR(11 downto 0);
wea : IN std_logic);

end component;

component memalphabetatop -- A port for reading out, B for writing in

port (
addra : in std_logic_vector(9 downto 0);
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addrb : in std_logic_vector(9 downto 0);
clka :in std_logic:
clkb :in std_logic;
dinb :in std_logic_vector(16 downto 0);
douta : out std_logic_vector(16 downto 0);
doutb : out std_logic_vector(16 downto 0);
web :in std_logic);

end component;

component alphabeta -- alpahbeta unit component
port (
logalpha_inl :in std_logic_vector(16 downto 0);
logalpha_in0 :in std_logic_vector(16 downto 0);
loggammaO_in! : in std_logic_vector(11 downto 0);
loggammaO_in0 : in std_logic_vector(11 downto 0);
logbeta_inl :in std_logic_vector(16 downto 0);
logbeta_in0 :in std_logic_vector(16 downto 0);
loggammal_inl : in std_logic_vector(11 downto 0);
loggammal _in0 : in std_logic_vector(11 downto 0);

mux3sel  :in std_logic;
muxdsel :in std_logic;
mux3sel :in std_logic;
mux6sel  :in std_logic;
clk :in std_logic:
reset :in std_logic:

logalpha_out : out std_logic_vector(16 downto 0);
logbeta_out : out std_logic_vector(16 downto 0)):
end component;

component leunit -- Leunit component
port (
logalpha0 :in std_logic_vector(16 downto 0);
logalphal :in std_logic_vector(16 downto 0);
logbeta0 :in std_logic_vector(16 downto 0);
logbetal :in std_logic_vector(16 downto 0);
ctk :in std_logic:
reset :in std_logic;
mux0_lsel :in std_logic:
mux4_Ssel :in std_logic:
leunit_out : out std_logic_vector(16 dowato 0));
end component;

component LLR _unit -- harddecision LLR_unit component
port (
le_h :in std_logic_vector(12 downto 0):
le_v :in std_logic_vector(l1 downto 0):
infobit : out std_logic);
end component;

component FSM_buf -- FSM and memory address generator component
port (
start :in std_logic;
reset : in std_logic;
clk0 : in std_logic: -- channel clock
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clkl : in std_logic; -- decoder clock
iter_number : in std_logic_vector(3 downto 0):
SNR : in std_logic_vector(3 downto 0): -- presetting SNR value;
buffer_sel : out std_logic;

deco_done : out std_logic; -- one block decoding finishing signal:
mux3sel : out std_logic:

mux4se! : out std_logic;

muxSsel : out std_logic;

mux6sel : out std_logic;

muxQ_lsel : out std_logic;

mux4_5Ssel : out std_logic;

we_memyk! : out std_logic;

we_memyk2 : out std_logic;

we_memlcyk : out std_logic;

web_memle : out std_logic;

we_memicykle : out std_logic;

wea_memgamma : out std_logic;
web_memalphabeta : out std_logic;

Le_in_sel : out std_logic;

addr_memyk1 - out std_logic_vector(9 downto 0);
addr_memyk2 - out std_logic_vector(9 downto 0);
addr_memlc - out std_logic_vector(3 downto 0):
addra_memle : out std_logic_vector(9 downto 0):
addrb_memle : out std_logic_vector(9 downto 0):
addr_memlcyk - out std_logic_vector(9 downto 0);

addr_memlcykle  : outstd_logic_vector(9 downto 0):
addra_memgamma  : out std_logic_vector(9 downto 0): -- memgamma reading out addr. A port for
alpha;
addrb_memgamma  : out std_logic_vector(9 downto 0); -- memgamma reading out addr. B port for
beta ;
addrb_memalphabeta : out std_logic_vector(9 downto 0); -- memalpha and membeta write back addr.
addra_memalpha0 :out std_logic_vector(9 downto 0. -- memalpha0 read out addr.
addra_memalphal :out std_logic_vector(9 downto 0); -- memalphal read out addr.
addra_membeta0  : out std_logic_vector(9 downto 0): -- membeta0 read out addr.
addra_membetal - out std_logic_vector(9 downto 0)); -- membeta0 read out addr.
end component;

signal memyk1_out.memyk2_out,yk_out : std_logic_vector(3 downto 0);

signal lc_out : std_logic_vector(7 downto 0);

signal Leykunit_Out : std_logic_vector(11 downto 1)K

signal memlcyk_out : std_logic_vector(11 downto 0);

signal le_in, le_out : std_logic_vector(11 downto 0);

signal gamma0, gammal : std_logic_vector(11 downto 0):

signal memgamma0_douta.memgamma0_doutb,memgamma 1_douta.memgammal_doutb :
std_logic_vector(l | downto 0);

signal addra_memgamma.addrb_memgamma: std_logic_vector(9 downto 0);

signal addrb_memalphabeta : std_logic_vector(9 downto 0);

signal addra_memalpha0,addra_memalphal ,addra_membeta0,addra_membetal : std_logic_vector(9
downto 0);

signal memalphal_dinb : std_logic_vector( 16 downto 0);

signal memalpha0_douta.memalpha0_doutb, memalphal_douta: std_logic_vector( 16 downto 0);

signal membetal_dinb : std_logic_vector(16 downto 0);

signal membeta0_douta,membeta0_doutb,membetal_douta, membetai_doutb: std_logic_vector(16 -
downto 0);
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signal alpha0_in,beta0_in.betal_in : std_logic_vector(16 downto 0):

signal addr_memic : std_logic_vector(3 downto 0);

signal addr_memyk!. addr_memyk2 : std_logic_vector(9 downto 0):

signal addra_memle, addrb_memle : std_logic_vector(9 downto 0):

signal addr_memlcyk : std_logic_vector(9 downto 0);

signal addr_memlcykle : std_logic_vector(9 downto 0);

signal we_memyk1.we_memykl.we_memlcyk.web_memle.we_mcmlcykle. web_memalphabeta,
wea_memgamma : std_logic;

signal mux3sel, muxdsel, muxSsel, mux6sel : std_logic;

signal mux0_lsel, mux4_Ssel : std_logic;

signal Le_in_sel : std_logic;

signal leunit_out : std_logic_vector(16 downto 0);

signal sum,memlcykle_out : std_logic_vector(12 downto 0)%

signal buffer_sel : std_logic;

signal clk_memyk!, clk_memyk2 : std_logic;

begin -- rt]

machine : FSM_buf port map (
start => start,
reset => reset,
clk0 => clk0,
clkl =>clkl.
iter_number => iter_number,
SNR => SNR,
buffer_sel => buffer_sel,
deco_done => deco_done,
mux3sel => mux3sel,
mux-$sel => mux-sel.
mux5Ssel => muxSsel,
muxbsel => mux6sel.
mux0_1lsel => mux0_lsel,
mux4_Ssel => mux4_Ssel,
we_memyk | =>we_memykl.
we_memyk2 => we_memyk2,
we_memlcyk => we_memlcyk,
web_memie => web_memle,
we_memlcykle => we_memlcykle,
wea_memgamma => wea_memgamma.
web_memalphabeta => web_memalphabeta.
Le_in_sel => Le_in_sel,
addr_memykl => addr_memykl,
addr_memyk2 => addr_memyk2,
addr_memlc => addr_memilc,
addra_memle => addra_memle,
addrb_memle => addrb_memle,
addr_memlcyk => addr_memlcyk,

addr_memlcykle =>addr_memicykle,
addra_memgamma  => addra_memgamma,
addrb_memgamma  => addrb_memgamma,
addrb_memalphabeta => addrb_memalphabeta,
addra_memalpha0 => addra_memalpha0,
addra_memalphal => addra_memalphal,
addra_membeta0  => addra_membeta0.
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addra_membetal  => addra_membetal);

clk_memyk| <= clkO when buffer_sel="1" else clk1;
clk_memyk2 <= clkl when buffer_sel="1" else clkO:

memorylc : memictop port map (
addr => addr_memic,
ctk =>clkl,
Lc =>lc_out);

memyk! : memyktop port map (
addr => addr_memyki,
clk =>clk_memykl,
yk_in =>yk_in,
yk_out => memykI_out,
we =>we_memykl);

memyk? : memyktop port map (
addr => addr_memyk2.
clk  =>clk_memyk2,
yk_in =>yk_in,
yk_out => memyk2_out.
we =>we_memyk2):

yk_out <= memyk2_out when buffer_sel="1"else memykl_out: -- select buffer output:

multiplier : Icykunit port map (
Lc =>lc_out,

yk =>yk_out,

Lcyk => Icykunit_out);

memorylcyk : memlcyktop port map (
addr =>addr_memlcyk,
clk  =>clki,
leyk_in => lcykunit_out,
lcyk_out => memlcyk_out,
we  =>we_memlicyk);

memoryle : memletop port map (
addra => addra_memle,
addrb => addrb_memle,
clka =>clkl,
clkb =>clkl,
Le_in =>le_in,
Le_out => le_out.
web => web_memle);

— A port for reading out;
-- B port for writing in;

ga : gamma port map ( - log-gamma calculation unit;

leyk_out => memicyk_out,

le_out =>le_out,

addrl => addra_memle, -- address value for judging jump
-- during calculation of log-gamma;

sum  => sum,

gamma0 => gammaO0,
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gammal => gammal);

memorvicykle : memlcykletop port map (
addr => addr_memicykle,
clk =>clkl,
din =>sum,
dout => memilcykle_out,
we =>we_memlicykle);

memgamma0 : memloggammatop port map ( -- for xk=-1, gamma state:A write

-- in; alphabeta state: A and B port
- read out for alpha and beta calculation;

addra => addra_memgamma,

addrb => addrb_memgamma.

clka =>clkl,

clkb =>clkl,

dina => gamma0,

douta => memgammaQ_douta,

doutb => memgamma0_doutb,

wea => wea_memgamma);

memgammal : memloggammatop port map ( -- for xk=1, gamma state:A write

-- in; alphabeta state: A and B port
-- read out for alpha and beta calculation:

addra => addra_memgamma,

addrb => addrb_memgamma.

clka =>clkl,

clkb =>clkl,

dina =>gammal,

douta => memgammal_douta.

doutb => memgammal_doutb,

wea => weld_memgamma);

--B port of memalpha0 and memalphal are same for both write in with same address and data.
memalpha0 : memalphabetatop port map ( -- for xk=-1

addra => addra_memalpha0,

addrb => addrb_memalphabeta,

clka =>clkl,

ctkb =>clkl,
dinb => memalphal_dinb, -- write in atport B
douta => memalpha0O_douta, -- read out at port A for xk=-1

doutb => memalphaQ_doutb,
web => web_memalphabeta);

memalphal : memalphabetatop port map ( -- for xk=1
addra => addra_memalphal,
addrb => addrb_memalphabeta,

clka =>clkl,

clkb =>clkl,

dinb => memalphal_dinb, -- write in at port B

douta => memalphal_douta, -- read out at port A for xk=1

doutb => open,
web => web_memalphabeta);
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--B port of memabeta0 and membetal are same for both write in with same
--address and data. So memabeta0_wea and membetal _wea ="0".
membeta0 : memalphabetatop port map ( -- for xk=-1

addra => addra_membeta0,
addrb => addrb_memalphabeta,

clka =>clkl,

clkb =>clkl,

dinb => membetal_dinb, -- write in at port B

douta => membeta0_douta, -- read out at port A for xk=-1

doutb => membeta0_doutb,
web => web_memalphabeta);

membetal : memalphabetatop port map ( -- for xk=1
addra => addra_membetal,
addrb => addrb_memalphabeta,

clka =>clk!,

clkb =>clkli,

dinb => membetal_dinb, -- write in at port B

douta => membetal_douta, -- read out at port A for xk=1

doutb => membetal_doutb.
web => web_memalphabeta);

process (addrb_memalphabeta.memalpha0_douta,
memalphaO_doutb.membeml_doum.membeml_doutb.membetaO_douta.mcmbctaO_doutb)
begin -- solve the data hazards by forwading value
if addrb_memalphabeta="0000000010" then
alpha0_in <= memalpha0O_doutb:
betal_in <= membetal_doutb;
else
alpha0_in <= memalpha0O_douta:
betal_in <= membetal_douta;
end if;

if addrb_memalphabeta="1001111011" then -- 635="1001111011"
betaO_in <= membeta0_doutb;
else
beta0_in <= membetaQ_douta:
end if;
end process;

alfa_beta : alphabeta port map (
logalpha_inl => memalphal_douta.--alphal_in,--memalphal_douta,
logalpha_in0 => alphaO_in, --memalpha0_douta,avoiding write/read conflict:
loggamma0_inl => memgamma0_douta,
loggamma0_in0 => memgamma0_doutb,
logbeta_inl => betal_in,--membetal_douta,
logbeta_in0 => betaO_in,--membeta0_douta,
loggammal_in! => memgammal_douta,
loggammal_in0 => memgammal_doutb,

mux3sel  => mux3sel,
muxdsel  => muxdsel,
mux3Ssel  => muxSsel,
muxbsel  => mux6sel,
clk =>clkl,



reset => reset,
logalpha_out => memalphal_dinb.
logbeta_out => membetal_dinb);

le : leunit port map (
logalpha0 => memalphaQ_douta,
logalphal => memalphal_douta,
logbeta0 => membeta0_douta,
logbetal => membetal_douta,
clk => clkl,
reset  =>reset,
muxO_Isel => mux0_1sel,
mux4_Ssel => mux4_Ssel,
leunit_out => leunit_out);

memleinput: process (leunit_out,Le_in_sel) - for clear memle to ZERO
-- whenver receive new block.

begin -- process memleinput
if Le_in_sel ='0’ then

le_in <= leunit_out(16)&leunit_out(10 downto 0);

else
le_in <= (others =>"0");
end if;
end process memleinput;

Ilr : LLR_unit port map (
le_h => memlcvkle_out.
le_v =>le_out,
infobit => infobit);

end rtl;

endix
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File name: decoder_cfg.vhd
Purpose: configure file of decoder.vhd

library xilinxcorelib:
use xilinxcorelib.all;

configuration cfg_decoder of decoder is

for rl
for all : memyktop
use configuration work.cfg_memyktop;
end for;

for all : memlctop
use configuration work.cfg_memlctop;
end for;

for all : Icykunit
use configuration work.cfg_lcykunit;
end for;



endix urho

for all : memletop
use configuration work.cfg_memletop:
end for:

for all : memlcyktop
use configuration work.cfg_memicyktop;
end for;

for all : gamma
use configuration work.cfg_gamma;
end for;

for all : memlcykietop
use configuration work.cfg_memicykletop;
end for;

for all : memloggammatop
use configuration work.cfg_memloggammatop:
end for;

for all : memalphabetatop
use configuration work.cfg_memalphabetatop:
end for;

for all : alphabeta
use entity work.alphabeta(rtl);
end for;

for all : leunit
use entity work.leunit(rtl)
end for;

for all : LLR _unit
use entity work.LLR_unit(rtl);
end for;

for all : FSM_buf
use configuration work.cfg_FSM_buf;
end for;

end for;
end cfg_decoder;

oder V,
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File name: lcykunit.vhd
Purpose: pre-processing multiplication of Lc and Yk

library ieee:
use ieee.std_logic_1164.all;

--unit for multiplication of Ic and yk.lc's format is in sign+X XXX+ XXX(8 bit),
--yk is in sign+xxx(4 bit)

entity lcykunit is
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port (
Ic :in std_logic_vector(7 downto 0);
yk :in std_logic_vector(3 downto 0);
leyk : out std_logic_vector(11 downto 0));

end Icykunit;
architecture rtl of Icykunit is

component multilcyktop
port (
Lc :in std_logic_vector(7 downto 0);
yk :in std_logic_vector(3 downto 0);
Lcyk : out std_logic_vector(11 downto 0));
end component;

begin - il
multi : multilcyktop port map (
Lc =>1Ic,
yk =>yk.
Lcyk => leyk);

end rtl;

File name: Icykunit_cfg.vhd
Purpose: configure file of Icykunit.vhd

library xilinxcorelib;
use xilinxcorelib.all;

configuration cfg_Icykunit of lcykunit is

for rtl
for all : multilcyktop
use configuration work.cfg_multilcyktop:
end for;
end for;

end cfg_lcykunit;

File name: gamma.vhd
Purpose: branch transition calculation unit

library ieee;
use ieee.std_logic_l1164.all:
use ieee.std_logic_unsigned.all:

--unit for gamma calculation, le_out from memle in sign+XXXXXXXX+.XXX(12 bits), lcyk_out from
--memlcyk in sign+XXXXXXXX+.XXX(12 bits);outputis in 13 bit(sign+ XXXXXXXXX.XXX)
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entity gamma is

port (
Icyk_out : in std_logic_vector(11 downto 0):
le_out :in std_logic_vector(11 downto 0);
addrl :in std_logic_vector(9 downto 0);
sum :out std_logic_vector(12 downto 0); -- for LLR unit in final decision;
gammal : outstd_logic_vector(11 downto 0); -- corresponding to Xk=1;
gamma0 : out std_logic_vector(11 downto 0)); - corresponding to Xk=-1;

end gamma;
architecture rtl of gamma is

component addergammatop
port (
A : in std_logic_VECTOR(11 downto 0);
B : in std_logic_VECTOR(11 downto 0);
S : outstd_logic_VECTOR(12 downto 0)):
end component;

signal adder_out : std_logic_vector(12 downto 0); --13 bits format "sign+XXXXXXXXX+.XXX"

begin --rtl

add : addergammatop port map (

A =>le_out,
B =>lcyk_out.
S => adder_out);
sum <= adder_out; -- directly for LLR unit:

prl: process (addrl, adder_out. lcyk_out)
variable mux_out : std_logic_vector(11 downto 0);
begin -- process prl
if addrl < "1010100100" then  -- 676="1010100100"
mux_out := adder_out(12 downto 1); --shift right one bit. 172 function;

else
mux_out := lcyk_out(1 1)&Icyk_out(11 downto 1); --halflcyk: --sign extend to 11 bits width:
end if:

gammal <= mux_out;
gamma0 <= ("111111 111111" xor mux_out) + 1; --two's complement;

end process prl;

end rtl;

File name: gamma_cfg.vhd
Purpose: configure file of gamma.vhd

library XilinxCoreLib;
use XilinxCoreLib.all;
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configuration cfg_gamma of gamma is
for rtl
for all : addergammatop
use configuration work.cfg_addergammatop:
end for;

end for;

end cfg_gamma;

File name: alphabeta.vhd
Purpose: forward and backward recursion calculation unit

library icee:
use ieee.std_logic_1164.all:
use jeee.std_logic_signed.all:

entity alphabeta is

port (
logalpha_inl :in std_logic_vector(16 downto 0). -- memalphal-A port;
logalpha_in0 : in std_logic_vector(16 downto 0): -- memalpha0-A port;
logbeta_inl :in std_logic_vector(16 downto 0). -- membetal-A port:
logbeta_in0 :in std_logic_vector(16 downto 0); -- membeta0-A port;
loggammaO_inl : in std_togic_vector(11 downto 0): -- memgamma0-A port.for alpha part:
loggamma0_in0 : in std_togic_vector(11 downto 0); -- memgamma0-B port:for beta part
loggammal_inl : in std_logic_vector(11 downto 0): -- memgammali-A port.for alpha part
loggammal_in0 : in std_logic_vector(11 downto 0); -- memgammal-B port:for beta part

mux3sel  :in std_logic:
muxdsel :in std_logic:
muxSsel :in std_logic;
mux6sel :in std_logic:
clk :in std_logic:
reset :in std_logic:

logalpha_out : out std_logic_vector(16 downto 0);
logbeta_out : out std_logic_vector(16 downto 0));

end alphabeta;
architecture rtl of alphabeta is

signal mux1_out,mux2_out,mux3_out,mux4_out,mux5_out.mux6_out : std_logic_vector(16 downto 0);

signal Dif_a, Dif_b : std_logic_vector(16 downto 0);

signal Reg!, Reg2, Reg3, Reg4, Reg_difa, Reg_difb : std_logic_vector(16 downto 0):-- pipeline registers;

signal Reg_reset : std_logic;

signal adder!_out,adder2_out,adder3_out,adder4_out,adder5_out.adder6_out : std_logic_vector(16
downto 0);

signal corvalue_a, corvalue_b : std_logic_vector(4 downto 0);

begin -- ntl
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add1_4: process
(logalpha_in 1.loggammaO_in1 logalpha_in0.loggamma0_in0.logbeta_in1.logbeta_in0,loggammal_inl.log
gammal_in0)
begin
adder!_out <= logalpha_inl + loggammal _inl;
adder2_out <= logalpha_in0 + loggammaO_inl;
adder3_out <= logbeta_inl + loggammal_in0;
adderd_out <= logbeta_in0 + loggammaO_ir0;
end process add1_4;

mux3_4: process (mux3sel, mux4sel, adder1_out, adder2_out, adder3_out, adder4_out)
begin -- process mux3
if mux3sel ='l' then
mux3_out <= adderl_out;
else
mux3_out <= adder2_out;
end if;

if muxdsel =1’ then
mux4_out <= adder3_out;
else
mux4_out <= adderd_out;
end if;
end process mux3_4;

comp_max_sub: process (adderl_out. adder2_out. adder3_out. adder<_out)
begin -- process comp_max_sub
if adder!_out >= adder2_out then
mux!_out <= adder!_out:
Dif_a <= adderl_out - adder2_out:
else
mux | _out <= adder2_out;
Dif_a <= adder2_out - adderi_out;
end if:

if adder3_out >= adder4_out then
mux2_out <= adder3_out;
Dif_b <= adder3_out - adder4_out;
else
mux2_out <= adder4_out;
Dif_b <= adder4_out - adder3_out;
end if;
end process comp_max_sub;

reset_delay: process (clk. reset)
begin -- process reset_delay
if reset ='0’ then -- asynchronous reset (active low)
Reg_reset <="0";
elsif clk'event and clk = ‘1’ then -- rising clock edge
Reg_reset <= reset;
end if;
end process reset_delay;



pipelinel: process (clk. Reg_reset)
begin -- process pipelinel
if Reg_reset = '0' then -- asynchronous reset (active low)
Regl <= (others =>'0";
Reg3 <= (others => '0');
Reg_difa <= (others =>'0');

Reg2 <= (others =>'0");
Regd <= (others =>'0");
Reg_difb <= (others =>'0');
elsif clk'event and clk = 'I' then -- rising clock edge
Regl <= mux!_out;
Reg3 <= mux3_out;
Reg_difa <= Dif_a:

Reg2 <= mux2_out:
Regd <= mux4_out:
Reg_difb <= Dif_b:
end if;
end process pipelinel;

correction: process (Reg_difa, Reg_difb)
begin -- process compl
if Reg_difa >= "00000000000000000" and Reg_difa <= "00000000000000100" then --
O=<Reg_difa<=0.5:
corvalue_a <= "00101"; --0.625
elsif Reg_difa > "00000000000000100" and Reg_difa <= "00000000000100000" then --
0.5<Reg_difa<=4.0.
corvalue_a <= "00100"; --0.5
elsif Reg_difa > "00000000000100000" and Reg_difa <= 0000000000 1000000" then --
4.0<Reg_difa<=8.0;
corvalue_a <= "00011"; --0.375
elsif Reg_difa > "00000000001000000" and Reg_difa <= "00000000001 100000" then  --
8.0<Reg_difac=12;
corvalue_a <= "00010"; -0.25
elsif Reg_difa > "00000000001100000" and Reg_difa <= "00000000010000000" then --
12<Reg_difa<=16:

corvalue_a <= "00001"; --0.125

else -- 16 <=Reg_difa;
corvalue_a <= "00000"; -0.0

end if;

if Reg_difb >= "00000000000000000" and Reg_difb <= "00000000000000100" then --
O=<Reg_difb<=0.5;
corvalue_b <= "00101"; --0.625
elsif Reg_difb > "00000000000000100" and Reg_difb <= "00000000000100000" then --
0.5<Reg_difb<=4.0:
corvalue_b <= "00100"; -0.3
elsif Reg_difb > "00000000000100000" and Reg_difb <= "00000000001000000" then --
4.0<Reg_difb<=8.0;
corvalue_b <= "00011"; - 0.375
elsif Reg_difb > "00000000001000000" and Reg_difb <= "00000000001 100000" then  --
8.0<Reg_difb<=12;
corvaluc_b <= "00010"; --0.25

es
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elsif Reg_difb > "00000000001100000" and Reg_difb <= "00000000010000000" then --
[2<Reg_difb<=16;

corvalue_b <="00001"; -0.125

else -- 16 <=Reg_difb;
corvalue_b <= "00000"; --0.0

end if;

end process correction;

add5_6: process (Regl, Reg2, corvalue_a, corvalue_b)
begin -- process add2

adder5_out <= Regl + corvalue_a;

adder6_out <= Reg2 + corvalue_b;
end process add5_6;

mux5_6: process (Reg3,Regd.adder5_out,adder6_out,muxSsel.mux6sel)
begin -- process mux5
if muxSsel ='1" then
mux3_out <= adder5_out;
else
mux3_out <= Reg3;
end if;

if mux6sel ='1' then
mux6_out <= adder6_out:
else
mux6_out <= Regd;
end if;
end process mux5_6:

logalpha_out <= mux5_out:
logbeta_out <= mux6_out:

end rtl;

File name: leunit.vhd
Purpose: extrinsic information calculation unit

library ieee;
use ieee.std_logic_l164.all;
use ieee.std_logic_signed.all;

--No0.0.2.4 corresponds to branch lable xk=-1; No.1,3.5 to xk=1;
entity leunit is

port (

logalpha0 :in std_logic_vector(16 downto 0);
logalphal :in std_logic_vector(16 downto 0);
logbetaQ :in std_logic_vector(16 downto 0);
logbetal :in std_logic_vector(16 downto 0);
clk :in std_logic;

reset :in std_logic;

muxQ_lsel :in std_logic;
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mux4_Ssel :in std_logic:
leunit_out : out std_logic_vector(16 downto 0));

end leunit;
architecture rt! of leunit is
signal corvalue0, corvalue! : std_logic_vector(4 downto 0);

signal adderQO_out, adderi_out, adder2_out, adder3_out : std_logic_vector(17 downto 0);

signal muxO_out, mux1_out, mux2_out, mux3_out, mux4_out, mux5_out : std_logic_vector(17 downto
0):

signal Reg0, Regl, Dif0, Difl : std_logic_vector(17 downto 0); _ .

signal Reg_pipe0, Reg_pipel, Reg_pipe2, Reg_pipe3 : std_logic_vector(17 downto 0);--pipeline register
group;

begin - trl

addO_1: process (logalpha0, logalphal, logbeta0, logbetal)
begin -- process add

adder0_out <= logalpha0O(16)&logalpha0 + logbetaO:
adder!_out <= logalphal(16)&logalphal + logbetal;

end process add0_1;

mux0_1: process (adderQ_out. adder!_out. adder2_out. adder3_out, mux0_Isel)
begin -- process muxl
if mux0_Isel ="I" then
mux0_out <= adder0_out;
mux]_out <= adderl _out;
else
mux0_out <= adder2_out;
mux|_out <= adder3_out;
end if;
end process mux0_l;

Reg0_1: process (clk, reset) -- actually it's pipeline 1;
begin -- process Reg0_1
if reset =0’ then -- asynchronous reset (active low)

Reg0 <= (others =>'0");
Regl <= (others =>'0");
elsif clk'event and clk ='l"then -- rising clock edge
Reg0 <= mux0_out;
Regl <= muxl1_out;
end if;
end process RegO_l;

comp_max_sub: process (Reg0, Regl, adder0_out, adder! _out)
begin -- process comp_max
if Reg0 >= adder0_out then
mux2_out <= Reg0;
Dif0 <= Reg0 - adder0O_out;
else
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mux2_out <= adder0_out;
Dif0 <= adder0_out - Reg0;
end if;

if Regl >=adder!_out then
mux3_out <= Regl;
Difl <= Regl - adderl_out;
else
mux3_out <= adderl_out;
Difl <= adderl_out - Regl;
end if;
end process comp_max_sub;

comp?2_3: process (Dif0, Difl) -- 18 bits width
begin -- process comp2_3
if DifO >= "000000000000000000" and Dif0 <= "000000000000000100" then -- 0=<Dif0<=0.5:

corvalue0Q <= "00101"; --0.625

elsif Dif0 > "000000000000000100" and Dif0 <= "000000000000100000" then --0.5<Dif0<=4.0;
corvalue0 <= "00100"; --0.5

elsif Dif0 > "000000000000100000™ and Dif0 <= "000000000001000000" then --4.0<Dif0<=8.0:
corvalueQ <="00011"; --0.375

elsif Dif0 > "000000000001000000" and Dif0 <= "000000000001100000" then --8.0<DifO<=12;
corvalue0 <= "00010"; --0.25

elsif Dif0 > "000000000001 100000" and Dif0 <= 0000000000 1 0000000 then --12<Dif0<=16:
corvalue0 <= "00001"; --0.125

else -- 16 <=Dif0:
corvalue0 <= "00000"; --0.0

end if;

if Dif1 >= "000000000000000000" and Difl <= "000000000000000100" then -- 0=<Difl<=0.5;

corvaluel <="00101"; --0.625

elsif Difl > "000000000000000100" and Difl <= "000000000000100000" then --0.5<Dif1<=4.0:
corvaluel <="00100"; --0.5

elsif Dif1 > "000000000000100000" and Difl <= "00000000000 1000000" then --4.0<Dif1<=8.0:
corvaluel <="00011"; --0.375

elsif Difl > "000000000001000000" and Difl <= "000000000001100000" then --8.0<Difl<=12:
corvaluel <= "00010"; -0.25

elsif Dif1 > "000000000001 100000” and Dif! <= "000000000010000000" then --12<Difl<=16;
corvaluel <= "00001"; -0.125

else -- 16 <=Difl;
corvaluel <= "00000"; - 00

end if;

end process comp2_3;

add2_3: process (mux2_out, mux3_out, corvalue0, corvaluel)
begin -- process add2_3

adder2_out <= mux2_out + corvalue0;

adder3_out <= mux3_out + corvaluel;
end process add2_3;

pipeline: process (clk, reset)

begin -- process pipeline
if reset = '0' then -- asynchronous reset (active low)
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Reg_pipe0 <= (others =>'0');
Reg_pipel <= (others =>'0'):
Reg_pipe2 <= (others =>'0’);
Reg_pipe3 <= (others => '0');

elsif clk'event and clk =1’ then -- rising clock edge
Reg_pipe0 <= Reg0;
Reg_pipel <= Regl;
Reg_pipe2 <= adder2_out;
Reg_pipe3 <= adder3_out;

end if;

end process pipeline;

mux4_5: process (Reg_pipe0. Reg_pipel, Reg_pipe2. Reg _pipe3, mux4_Ssel)
begin -- process mux4_5
if mux4_5sel =1’ then
mux4_out <= Reg_pipe0:
mux5_out <= Reg_pipel;
else
muxd_out <= Reg_pipe2:
mux5_out <= Reg_pipe3;
end if;
end process mux4_S5:
sub: process (mux<_out, mux5_out)
variable diff : std_logic_vector(17 downto 0);

begin -- process sub

diff ;= mux5_out - mux4_out;
leunit_out <= diff( 17)&diff(15 downto 0);

end process sub:

end rtl;

€S

File name: LLR_unit.vhd
Purpose: log-likelihood soft-out calculation and hard decision unit

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

--le_h is the sum of Lc*yk+Le for the horizontal decoding in the last iteration;
--le_v is the extrisinc value of vertical decoding in the last iteration;

entity LLR _unit is
port (
le_h :in std_logic_vector(12 downto 0); -- from memilcykle_out
le_v :in std_logic_vector(11 downto 0);

infobit : out std_logic);

end LLR_unit;
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architecture rtl of LLR_unit is
signal sum : std_logic_vector(13 downto 0):
begin - rtl
sum <= le_h(12)&le_h +le_v;
harddecision: process (sum)

begin -- process harddecision
if sum(13) ='0" then

infobit <="1";
else

infobit <="0";
end if;

end process harddecision:

end rtl;

File name: FSM_buf.vhd
Purpose: finite state machine of turbo decoder. and address generator for intermediate memory

library ieee:
use ieee.std_logic_116<.all;
use ieee.std_logic_unsigned.all;

entity FSM_buf is

port (
start : in std_logic:
reset :in std_logic:--:=0";
clkO - in std_logic: -- transmitted rate clock
clkl : in std_logic: -- decoding clock
iter_number - in std_logic_vector(3 downto 0);--:="0001"; -- iteration=S5;
SNR  in std_logic_vector(3 downto 0);--:="0001"; -- presetting SNR value;
deco_done - out std_logic; -- one block decoding finishing signal:
buffer_sel - out std_logic: -- buffer! and 2 selective signal
mux3sel - out std_logic;
muxdsel : out std_logic;
mux3Ssel : out std_logic;
mux6se! - out std_logic;
mux0_lsel : out std_logic;
mux4_5Ssel - out std_logic;
we_memyk1l : out std_logic;
we_memyk2 : out std_logic;
we_memlcyk : out std_logic;
web_memle : out std_logic;
we_memlcykle : out std_logic;
wea_memgamma : out std_logic;
web_memalphabeta  : out std_logic;
Le_in_sel - out std_logic; -- Le input value (Le value and Zero)selection signal
addr_memyk! - out std_logic_vector(9 downto 0); -- bufferl addr.
addr_memyk2 - out std_logic_vector(9 downto 0); -- buffer2 addr.
addr_memlc : out std_logic_vector(3 downto 0);
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addra_memle : out std_logic_vector(9 downto 0); -- memle reading_ out addr.
addrb_memle : out std_logic_vector(9 downto 0): -- memle writing_ in addr.
addr_memlcyk : out std_logic_vector(9 downto 0);

addr_memicykle : out std_logic_vector(9 downto 0);

addra_memgamma : out std_logic_vector(9 downto 0); -- memgamma reading out addr. A port for
alpha;

addrb_memgamma  : out std_logic_vector(9 downto 0); -- memgamma reading out addr. B port for
beta ;

addrb_memalphabeta : out std_logic_vector(9 downto 0); -- memalpha and membeta write back addr.

addra_memalpha0 : out std_logic_vector(9 downto 0); -- memalpha0 read out addr.

addra_memalphal : out std_logic_vector(9 downto 0); -- memalphal read out addr.

addra_membeta0 : out std_logic_vector(9 downto 0); -- membeta0 read out addr.

addra_membetal  : out std_logic_vector(9 downto 0)); -- membeta0 read out addr.

end FSM_buf;

architecture il of FSM_buf is

-- interleave accessing address table of memle and memlcyk in Vertical decoding in Gamma state:
component addrmemletop -- addr. table for memle and memlcyk access in vertical decoding:
port (
addr : in std_logic_vector(9 downto 0);
clk :in std_logic;
dout : out std_logic_vector(9 downto 0));
end component;

-- Following 4 address memories for memalpha~membeta access in ALPHABETA state-----
component addrmemalphaOtop -- addr. table for accessing memalpha0 in alphabeta state:
port (
addr : in std_logic_vector(9 downto 0);
clk :in std_logic;
dout : out std_logic_vector(9 downto 0));
end component;

component addrmemalphaltop -- addr. table for accessing memalphal in alphabeta state;
port (
addr : in std_logic_vector(9 downto 0);
clk :in std_logic;
dout : out std_logic_vector(9 downto 0));
end component;

component addrmembetaOtop -- addr. table for accessing membeta0 in alphabeta state:
port (
addr : in std_logic_vector(9 downto 0):
clk :in std_logic;
dout : out std_logic_vector(9 downto 0));
end component;

component addrmembetaltop -- addr. table for accessing membetal in alphabeta state;
port (
addr : in std_logic_vector(9 downto 0);
clk :in std_logic;
dout : out std_logic_vector(9 downto 0));
end component;
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-----following 3 memories for memalpha~membeta access in Le-unit state---------------
component addralphaOltop --addr. table for accessing memalpha0l in leunit state;
port (
addr: IN std_logic_VECTOR(9 downto 0);
clk : IN std_logic;
dout; OUT std_logic_VECTOR(9 downto 0));
end component;

component addrbetaOtop —addr. table for accessing membeta0 in leunit state;
port (
addr: IN std_logic_VECTOR(9 downto 0);
clk : IN std_logic;
dout: OUT std_logic_VECTOR(9 downto 0));
end component;

component addrbetaltop --addr. table for accessing membetal in leunit state;
port (
addr: IN std_logic_VECTOR(9 downto 0);
clk : IN std_logic;
dout: OUT std_logic_VECTOR(9 downto 0));
end component;

component multiplierltop
port (
a:in std_logic_vector(4 downto 0);
o : out std_logic_vector(9 downto 0)):
end component;

component multiplier2top
port (
a:in std_logic_vector(4 downto 0):
o : out std_logic_vector(7 downto 0));
end component;

type statetype is (idle. gamma, alphabeta, leunit, LLR); --define state type and signal;
signal state : statetype.

signal iter_count : std_logic_vector(3 downto 0);

signal we,we0,we l,we_memlcykleQ,we_memlcyklel : std_logic;

signal we2,we2_1,we!l_pipe, we2_pipe.we_memlc_leunit,we_memle_LLR : std_logic:
signal upcount0, upcountl, upcount2, upcount3, upcountd : std_logic:

signal count0,countl, count2, count3, count4 : std_logic_vector(9 downto 0);

signal addrmem, addr.addr0,addr2, addr2_pipe, addr2_pipel : std_lcgic_vector(9 downto 0);
signal addrl, addr1_pipe,addr!_pipe0,addri_pipel : std_logic_vector(9 downto 0);

signal addrO_delay. addrl_delay : std_logic_vector(9 downto 0);

signal X, addrmemle_V : std_logic_vector(9 downto 0);

signal addr_gamma_in, addra_gamma_out, addrb_gamma_out : std_logic_vector(9 downto 0);
signal premux3sel.premuxd4sel premux5sel premux6sel : std_logic:

signal premux0_1sel.premux4_Ssel, pipe0,pipei. pipe2 : std_logic;

signal code26 : std_logic_vector(4 downto 0);

signal muxpipeO!1 : std_logic:

signal we3, we3_pipe0,we3_pipel, we3_pipe2 : std_logic;
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signal preaddr_memle_leunit,addr3, addr3_pipe0.addr3_pipel.addr3_pipe2.addr3_pipe3 :
std_logic_vector(9 downto 0);

signal addr_memle_g, addr_memle_leunit.addr_memle_clear.addr4 : std_logic_vector(9 downto 0):

signal alphaOaddr, alphaladdr, betaOaddr,betaladdr : std_logic_vector(9 downto 0).

signal mux5Ssel_pipe, mux6sel_pipe : std_logic:

signal addressmem : std_logic_vector(9 downto 0);

signal alphaOladdr_leunit,beta0addr_leunit,betaladdr_leunit : std_logic_vector(9 downto 0);

signal p1 : std_logic_vector(9 downto 0);

signal p2 : std_logic_vector(7 downto 0);

signal buffer!_on : std_logic;

signal shift, buf_full : std_logic;

begin —rtl

clock <= start and clkl; -- avoiding initial ‘X’ value of memory;

--process of bufferl and buffer2 switch control
process (clkO, reset)
begin -- process
if reset = '0’ then -- asynchronous reset (active low)
shift<="0';
elsif clkO'event and clkO = '1' then -- rising clock edge
if start="1" then
shift<="1";
else
shift<="0";
end if:
end if;
end process:

process (clk0. reset) -- receive channel signal 988bit(one package)
begin -- process
if reset = ‘0" then -- asynchronous reset (active low)
countQ <= (others=>0");
buf_full <="0";
elsif clkO'event and clkO = 'I' then -- rising clock edge
if shift="1" then
if countO<"1111011011" then  -- count0=987
countO<=count0+1;

buf_full <="0";
else
countO<=(others=>'0');
buf_full <="1"; -- one buffer fill full;
end if;
end if;
end if;
end process.
process (clk0, reset) -- bufferl and buffer2 switch over control;
begin -- process
if reset = '0' then -- asynchronous reset (active low)

bufferi_on<="1";
elsif clkO'event and cIk0 = '1' then -- rising clock edge
if countO="1111011011" then  -- count0=987
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buffer]_on<=not bufferl_on: -- buffer]_on="1"=>active.buffer2 unactive:
end if;
end if;
end process;

buffer_sel <= bufferl_on;

process(buffer]_on,count0,addr1,start)
begin -- process
if bufferl_on="1' then -- bufferl work;
addr_memyk1 <= count0;
we_memyk| <= start;
else
addr_memyk! <= addrl;
we_memyk! <="0";
end if;
end process;

process(buffer! _on,count0.addrl,start)
begin
if bufferi_on="1" then -- buffer2 work;
addr_memyk2 <= addrl.
we_memyk2 <="0":
else
addr_memyk?2 <= count0:
we_memyk2 <= start;
end if;
end process;
--buffer switch control process finish

--finite state machine process

--considering about the influence of pipeline. count extra cycles (lentency) for state change:

FSM: process (clkl, reset, start)
begin -- process FSM
if reset = ‘0’ or start = ‘0" then -- asynchronous reset (active low)
state <= idle;
elsif ctk I'event and clk1 ="1" then -- rising clock edge
case state is

when idle => if buf_full="1' then -- bufferl_on="1" then
state <= gamma;
else
state <= idle;
end if;,

when gamma => if iter_count = "0000" then -- from Dec#2 on(iter_count=
-- 1),alphabeta unit just
-- recalculate info. bit
-- part(lc*yk + Le)
if countl <"1111011101" then -- addr =989="1111011101";
state <= gamma;
else
state <= alphabeta;
end if;
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else -- iter_count>=1 and up on;
if countl < "1010100101" then -- addr=677="1010100101"
state <= gamma;
else
state <= alphabeta;
end if;
end if;

when alphabeta => if count2 < "1001111110" then -- 638="10011111 10"( 637 to 638 due
-- to memory access response delay;
state <= alphabeta;
else
state <= leunit;
end if;
when leunit => if count3 < "1000100010" and code26 < "11001" then -- 546="1000100010";
state <= leunit;
elsif count3 = "1000100010" and code26 < "11001" then --0~25bit
state <= alphabeta;
elsif count3 = "1000100010" and code26 = "11001" and iter_count < iter_number then --
0-25code
state <= gamma;
elsif count3 = "1000100010" and code26 = "11001" and iter_count = iter_number then
state <= LLR;
end if;
when LLR => if countd < "1010100100" then -- 676 info bits="1010100100"
state <= LLR;
else
state <= idle; -- receive new info block:
end if;
when others => null;
end case;
end if;
end process FSM:

deco_done <="'1' when state = idle else '0"; -- one block decoding finish:
upcountl <="'1" when state = gamma else '0'; -- state counter starting signal;
upcount2 <=1’ when state = alphabeta else '0';

upcount3 <=1’ when state = leunit else '0";

upcountd <=1’ when state = LLR else '0’;

Le_in_sel <='1" when state = LLR else '0’;

-- purpose: choose different Lc value corresponding to different SNR value;

-- type : combinational

-- inputs : SNR

-- outputs: addr_memlc

SNR _ratio: process (SNR)

begin -- process SNR_ratio

case SNR is -- SNR format "XXX.X" dB

when "1010" => addr_memlc <= "0000"; -- 5dB
when "1001" => addr_memlc <= "0001"; -- 4.5dB
when "1000" => addr_memlc <= "0010"; -- 4dB
when "0111"” => addr_memlc <= "0011";
when "0110" => addr_memic <= "0100";
when "0101" => addr_memlc <= "0101";
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when "0100" => addr_memlc <= "0110";
when "0011" => addr_memlc <= "0111";
when "0010" => addr_memlc <= "1000";
when "0001" => addr_memlc <= "1001"; -- 0.5dB
when others => null;
end case;
end process SNR_ratio;

-- iter_count counter:
- purpose: count iter_count number for decoding(2 iter_count = one horizontal and vertical decoding)
- type :sequential
- inputs : clkl, reset,
- outputs: iter_count
iter: process (clkl, reset)
begin -- process iter
if reset = '0’ then -- asynchronous reset (active low)
iter_count <= (others => "0");
elsif clkl'event and clkl ='1" then -- rising clock edge
if count3 = "1000100010" and code26 = "11001" then -- one time decoding finished. change to next
interleave
-- decoding phase. 546="1000100010";
if iter_count < iter_number then
iter_count <= iter_count + 1;
else
iter_count <= (others => '0');
end if;
end if;
end if;
end process iter;

--counter for state "gamma”
cl: process (clkl. reset)
begin -- process ci

if reset ='0’ then -- asynchronous reset (active low)
count!l <= (others =>'0’);
elsif clkl'event and clk! = ‘1" then -- rising clock edge
if iter_count = "0000" then
if upcountl ="1" then --increase address of mem_yk for state "gamma”™;
if countl <"1111011101" then --used uplimit address is 987; 989="1111011101"
countl <=countl + 1;
else
countl <= (others =>'0°); --"0000000000";
end if;
end if;
else
if upcountl ="1" then -- 2nd iter_count and up on
if countl < "1010100101" then -- 677="1010100101";
countl <=countl + I:
else
countl <= (others =>'0"); --"0000000000";
end if;
end if;
end if;
end if;
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end process c1:

--address generator and write control for gamma part

addr0 <= count! when countl < "1010100100" else (others =>'0'); -- 676="1010100100";
addr] <= countl when countl < "1111011100" else (others =>'0'); -- 988="1111011100";

- 676="1010100100";-- 988="1111011100";
we0 <= '1' when countl < "1010100100" and upcount! ='1' and upcount2 =0’ and upcount3 ='0" else '0";
wel <="'1' when countl < "1111011100" and upcount! ='1' and upcount2 =0’ and upcount3 =0’ else '0’;

process (clkl, reset) -- addr0 and addr! delay one cycle;
begin -- process
if reset = '0" then -- asynchronous reset (active low)

addr0_delay <= (others =>'0');
addr1_delay <= (others =>'0');
elsif clkl'event and clkl ='1" then -- rising clock edge
addr0_delay <= addr0;
addr1_delay <= addrl;
end if;
end process:

addrmemle_lcyk : addrmemletop port map (
addr => addr0,
clk =>clock,
dout => addrmemle_V); -- memle, memlcyk addr. in Vertical INTERLEAVE decoding:

process (iter_count, addr0_delay, addr1_delay. addrmemle_V)
begin -- process
if iter_count = "0000" then
addr_memle_g <= addr0_delay;
addr_memlcyk <= addrl_delay: --
elsif iter_count="0010" or iter_count="0100" or iter_count="0110" or iter_count="1000" or
iter_count="1010" or iter_count= "1100" or iter_count="1110" then
addr_memle_g <= addr0_delay:
addr_memlcyk <= addr0_delay;  -- from iteration=2 on, just calculate
-- 676 info bits's gamma value;
else
addr_memle_g <= addrmemle_V;
addr_memlcyk <= addrmemle_V;
end if;
end process;

process (iter_count, we0, wel)
begin -- process
if iter_count = "0000" then
we <= wel;
else
we <= we0;
end if;
end process;

delay1: process (clkl, reset) --1st stage of pipeline
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begin -- process delay!
if reset ='0’ then -- asynchronous reset (active low)
addr1_pipe <= (others =>'0"); -- addr1(0 to 987)

we_memicyk <='0";
wel_pipe <="0";
elsif clkl'event and clk1 ="1" then -- rising clock edge
if iter_count = "0000" then
addr1_pipe <= addrl; -- transfer to next stage of pipeline;

we_memlcyk <= wel; - just read memlcyk for lc*yk value
-- after 1st half iter_count;
else
addrl_pipe <= addr0;

we_memlcyk <="0";
end if;

wel_pipe <= we: -- transfer to next stage of pipeline;

end if;
end process delayl;

delay2: process (clk1, reset) -- 2nd stage of pipeline
begin -- process delay2
if reset = '0’ then -- asynchronous reset (active low)
addr_gamma_in <= (others =>"0");
wea_memgamma <= '0";
elsif clkl'event and clkl ='1" then -- rising clock edge

addr_gamma_in <= addrl_pipe:  -- mem-loggamma write back address:
wea_memgamma <= wel_pipe:
end if;

end process delay2;

--for mem_lcykle write in at gamma state and read out at LLR state
process (clkl, reset)
begin -- process
if reset = ‘0’ then -- asynchronous reset (active low)
we_memlcykle0Q <="0";
elsif clkl'event and clkl =1’ then -- rising clock edge
we_memlcykle0 <= we0;
end if;
end process;

process (clkl, reset)
begin -- process
if reset = '0' then -- asynchronous reset (active low)
addr1_pipel <= (others =>'0');
we_memlcyklel <="0";
elsif clkl'event and clk1 ='1" then -- rising clock edge
addrl_pipel <= addrmemle_V;
we_memlcyklel <= we_memlcykleQ;
end if;
end process;
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process (state.addrl_pipel.addrd,iter_number.iter_count)
begin -- process
if state = gamma then
if iter_count = iter_number then
addr_memlcykle <= addr1_pipel; -- mem-lcykle write in address(GAMMA state):
else
addr_memicykle <= (others =>'0");
end if;
elsif state = LLR then
addr_memicykle <= addr4; -- mem-lcykle read out address(LLR state);
else
addr_memlcykle <= (others => '0');
end if;
end process;

process (iter_count, we_memlcyklel,iter_number)
begin -- process
if iter_count = iter_number then --iter_count = "0000" then --
we_memlcykle <= we_memlicyklel;
else
we_memlcykle <='0";
end if;
end process.

------------------ alphabeta unit
c2: process (clkl, reset)
begin -- process count2

if reset =0’ then -- asynchronous reset (active low)
count? <= (others => '0');
elsif clkl'event and clk1 ='1' then -- rising clock edge
if upcount2 ="1" then
if count2 < "1001111110" then -- 638="100[111110";
count2 <= count2 + [;
else
count2 <= (others =>'0');
end if;
end if;
end if;
end process c2;

we2 <='1' when count2 < "1001111100" and upcount! = '0' and upcount2 = 1" and upcount3 =0’ else '0’;

addr? <= count?2 when count2 < "1001111101" else (others =>'0"); -- 636="1001111100";

addrmem <= count2 when count2 < "1001111100" else (others =>'0"); --addrmem(0 to 635) means 636
nodes;

addralphaO : addrmemalphaOtop port map (
addr => addrmem,
clk => clock,--clkl,
dout => alphaOaddr); -- memalphaO read-out address;

addralphal : addrmemalphaltop port map (
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addr => addrmem,
clk => clock.--clkl,
dout => alphaladdr); -- memalphal read-out address:

addrbeta0 : addrmembetaOtop port map (
addr => addrmem,
clk => clock,--clkl,
dout => beta0Oaddr); -- membetaQ read-out address;

addrbetal : addrmembetaltop port map (
addr => addrmem,
clk => clock,--clkl,
dout => betaladdr); -- membetal read-out address:

multiplierl : multiplierltop port map (
a=> code26,
o=>pl); -- multiplieri: 26*code26

multiplier2 : multiplier2top port map (
a => codel6,
o=>pl) -- multiplier2: 6*code26

addrgamma: process (addr2, pl, p2.iter_count)
variable B : std_logic_vector(9 downto 0);
begin -- process addrgamma

if iter_count="0000" or iter_count="0010" or iter_count="0100" or iter_count="0110" or
iter_count="1000" or iter_count="1010" or iter_count="1100" or iter_count="1110" then -- horizontal

decoding;
B:="1010100100" + p2. --"1010100100"=676:
else
B:="1101000000" + p2; --"1101000000"=832:
end if:

-- for each time k.only one gamma value for all node accordingly:
-- addr2 means counting clock cycle number:
if addr2 <= "0000000010" then - k=
addra_gamma_out <=pl;
addrb_gamma_out <= B + "101";
elsif "0000000010" < addr2 and addr2 <= "0000000110" then -- k=1
addra_gamma_out <= pl +"00001";
addrb_gamma_out <= B + "100";
elsif "00000001 10" < addr2 and addr2 <= "0000001110" then -- k=2
addra_gamma_out <= pl + "00010";
addrb_gamma_out <= B + "011";
elsif "0000001110" < addr2 and addr2 <= "0000010110" then -- k=3
addra_gamma_out <= pl + "00011";
addrb_gamma_out <=pl + "11001™;
elsif "00000101 10" < addr2 and addr2 <= "0000100110" then -- k=4
addra_gamma_out <=pl + "00100";
addrb_gamma_out <= B + "010";
elsif "00001001 10" < addr2 and addr2 <= "0000110110" then -- k=5
addra_gamma_out <= pl +"00101";
addrb_gamma_out <= pl + "11000";
elsif "00001101 10" < addr2 and addr2 <= "0001000110" then -- k=6
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addra_gamma_out <=p1l + "00110™;
addrb_gamma_out <=pl + "10111";

elsif "00010001 10" < addr2 and addr2 <= "0001010110" then
addra_gamma_out <=pl +"00111";
addrb_gamma_out <= p1 + "10110";

elsif "0001010110" < addr2 and addr2 <= "0001110110" then
addra_gamma_out <= p1 + "01000";
addrb_gamma_out <= B + "001";

elsif "0001110110" < addr2 and addr2 <= "0010010110" then
addra_gamma_out <=pl + "01001";
addrb_gamma_out <= pl + "10101";

elsif "0010010110" < addr2 and addr2 <= "0010110110" then
addra_gamma_out <=p1 + "01010";
addrb_gamma_out <= pl + "10100";

elsif "0010110110" < addr2 and addr2 <= "0011010110" then
addra_gamma_out <=pl + "01011";
addrb_gamma_out <=p1 + "10011";

elsif "0011010110" < addr2 and addr2 <= "0011110110" then
addra_gamma_out <= p1l + "01100";
addrb_gamma_out <= p1 + "10010";

elsif "0011110110” < addr2 and addr2 <= "0100010110" then
addra_gamma_out <=p1l +"01101";
addrb_gamma_out <= pl + "10001";

elsif "0100010110" < addr2 and addr2 <= "0100110110" then
addra_gamma_out <= pl +"01110";
addrb_gamma_out <= pl + "10000";

elsif "0100110110" < addr2 and addr2 <= "0101000110" then
addra_gamma_out <= B:
addrb_gamma_out <=pl + "0I111";

elsif "0101000110" < addr2 and addr2 <= "0101100110" then
addra_gamma_out <=pl +"01111";
addrb_gamma_out <= B;

elsif "0101100110" < addr2 and addr2 <= "0110000110" then
addra_gamma_out <= pl + "10000";
addrb_gamma_out <= pl + "01110%;

elsif "0110000110" < addr2 and addr2 <= "0110100110" then
addra_gamma_out <=pl + "10001";
addrb_gamma_out <=pl + "01101";

elsif "0110100110" < addr2 and addr2 <= "01110001 10" then
addra_gamma_out <= pl + "10010";
addrb_gamma_out <= pl + "01100";

elsif "0111000110" < addr2 and addr2 <= "0111100110" then
addra_gamma_out <=pl +"10011";
addrb_gamma_out <= pi + "01011";

elsif "0111100110" < addr2 and addr2 <= "10000001 10" then
addra_gamma_out <=pl + "10100";
addrb_gamma_out <= pl + "01010";

elsif "1000000110" < addr2 and addr2 <= "1000100110" then
addra_gamma_out <=p1 + "10101";
addrb_gamma_out <= pl + "01001";

elsif "1000100110" < addr2 and addr2 <= "1000110110" then
addra_gamma_out <= B + "001";
addrb_gamma_out <= p1 + "01000";

elsif "1000110110" < addr2 and addr2 <= "1001000110" then
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addra_gamma_out <= pl + "10110";
addrb_gamma_out <= p1 + "00111";

elsif "1001000110" < addr2 and addr2 <= "1001010110" then -- k=2
addra_gamma_out <=pl +"10111";
addrb_gamma_out <= pl + "00110";

elsif "1001010110" < addr2 and addr2 <= "1001100110" then -- k=26
addra_gamma_out <= pl + "11000;
addrb_gamma_out <= pl + "00101";

elsif "1001100110" < addr2 and addr2 <="1001101110" then -- k=27
addra_gamma_out <= B + "010";
addrb_gamma_out <= pl + "00100";

elsif "1001101110” < addr2 and addr2 <= "1001110110" then -- k=28
addra_gamma_out <= pl + "11001";
addrb_gamma_out <= p1 + "00011";

elsif "1001110110" < addr2 and addr2 <= "1001111010" then -- k=29
addra_gamma_out <= B + "011";
addrb_gamma_out <= pl + "00010";

elsif "1001111010" < addr2 and addr2 <= "1001111100" then -- k=30
addra_gamma_out <= B + "100";
addrb_gamma_out <= p1 + "00001";

else
addra_gamma_out <= (others =>'0');--pl:
addrb_gamma_out <= (others => '0'):--p1;

end if;

end process addrgamma;

-- purpose: determine branch number and label according to address value:
process (alphaOaddr.alphaladdr.beta0addr.betaladdr)
begin -- process
if alphaOaddr /= "1001111101" then --/=637="1001111101";means one branch;
premux3sel <='0";
else
premux3sel <="1";
end if;
if alphaOaddr /= "1001111101" and alphaladdr /="1001111101" then
premuxSsel <="1";
else
premuxSsel <='0":
end if;

if betaOaddr /= "1001111101" then
premuxdsel <="0';

else
premux4sel <="1";

end if;

if betaOaddr /= "1001111101" and betaladdr /= "1001111101" then
premuxésel <="1";

else
premux6sel <="0";

end if;

end process;

process (clkl, reset) -- one more delay due to slow memory
-~ access response;
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begin -- process
if reset = '0’ then
wel_| <=0

-- asynchronous reset (active low)

mux3sel <="'0";
muxdsel <='0";

muxSsel_pipe <='0";
mux6sel_pipe <="0";

elsif clkl'event and clk! ='1' then -- rising clock edge
wel_1 <= we2;

mux3sel <= premux3sel;
mux4sel <= premux4sel;

mux5sel_pipe <= premux5sel;
muxésel_pipe <= premux6sel;
end if;
end process;

delay3: process (clkl, reset)
begin -- process delay3
if reset ='0" then
we2_pipe <='0;
mux3sel <=0
mux6sel <= '0;
addr2_pipe <= (others => 0');
elsif clk'event and clk! ='1" then -- rising clock edge
wel_pipe <= wel_l;
mux3sel <=muxSsel_pipe:
mux6sel <=mux6sel_pipe:
addr2_pipe <= addr2:
end if;
end process delay3;

-- asynchronous reset (active low)

delay4: process (clkl, reset)
begin -- process delay4
if reset ='0" then -- asynchronous reset (active low)
web_memalphabeta <= '0’;
addrb_memalphabeta <= (others =>'0’);
elsif clk1'event and clkl = '1' then -- rising clock edge
web_memalphabeta <= we2_pipe;
addrb_memalphabeta <= addr2_pipe; -- for test of address;
end if;
end process delay4;

process (state,addr_gamma_in.addra_gamma_out.addrb_gamma_out)
begin -- memgamma addr. selection
if state=gamma then
addra_memgamma <= addr_gamma_in;
elsif state=alphabeta then
addra_memgamma <= addra_gamma_out;
addrb_memgamma <= addrb_gamma_out;
else
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addra_memgamma <= (others=>0');
addrb_memgamma <= (others=>'0);
end if;
end process;

-==em—-——leunit unit
c3: process (clkl, reset)
begin -- process count
if reset =0’ then -- asynchronous reset (active low)
count3 <= (others =>'0");
elsif clkl'event and clkl ='1" then -- rising clock edge
if upcount3 = '1'and code26 < "11010" then
if count3 < "1000100010" then — count3<546=(total branch 543 + 3 letency);
count3 <= count3 + 1; -- 546="1000100010";
else
count3 <= (others =>'0');
end if;
end if;
end if;
end process ¢3;

codenum: process (clkl, reset) -- codeword counter
begin -- process count
if reset = '0’ then -- asynchronous reset (active low)
codel6 <= (others =>'0');
elsif clkl'event and clkl ='1"then -- rising clock edge
if count3 = "1000100010" then

if code26 < "11001" then -- codenumber<26; sign+value
code6 <= codel6 + 1;
else
code6 <= "00000";
end if;
end if;
end if;

end process codenum;

we3 <='l" when count3 < "1000100000" and upcount3 = 1" else '0";
addressmem <= count3 when count3 < "1000011111" else (others =>'0"); --543="1000011111";

alphaO1 : addralpha0ltop port map (
addr => addressmem,
clk => clock,--clkl,
dout => alphaOladdr_leunit); -- memalpha0 and memalphal read-out address:

leunitbeta0 : addrbetaOtop port map (
addr => addressmem,
clk => clock.--ctkl,
dout => betaOaddr_leunit); -- membeta0 read-out address;

leunitbetal : addrbetaltop port map (

addr => addressmem,

clk =>clock,--clkl,

dout => betaladdr_leunit); -- membetal read-out address;
-- above 3 memalpha and membeta storing address table
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process (count3,p1,codel6.iter_count) -- generate mem_le write back address addr3
begin -- process

if iter_count="0000" or iter_count="0010" or iter_count="0100" or iter_count="0110" or
iter_count="1000" or iter_count="1010" or iter_count="1100" or iter_count="1110" then -- horizontal
decoding

if count3 = "0000000000" then --=0
addr3 <= pl:

elsif count3 > "0000000000" and count3 <= "0000000010" then -- <=2;
addr3 <= p1+ "00001";

elsif count3 > "0000000010" and count3 <= "00000001 10" then -- <=6;
addr3 <= p1+ "00010";

elsif count3 > "00000001 10" and count3 <= "0000001110" then -- <=14,
addr3 <= pi+ "00011";

elsif count3 > "0000001 110" and count3 <= "0000010110" then -- <=22:
addr3 <= pl+ "00100";

elsif count3 > "00000101 10" and count3 <= "0000100110" then -- <=38:
addr3 <= pl+ "00101";

elsif count3 > "00001001 10" and count3 <= "0000110110" then -- <=54:
addr3 <= pl+ "00110";

elsif count3 > "0000110110" and count3 <= "0001000110" then -- <=70:
addr3 <= pl+ "00111";

elsif count3 > "00010001 10" and count3 <= "0001010110" then -- <=86:
addr3 <= p1+ "01000";

elsif count3 > "0001010110" and count3 <= "0001110110" then -- <=!18:
addr3 <= pl+ "01001";

elsif count3 > "0001110110" and count3 <= "0010010110" then -- <=150:
addr3 <= pl+ "01010";

elsif count3 > "00100101 10" and count3 <= "0010110110" then -- <=182:
addr3 <=pl+ "01011™

elsif count3 > "00101101 10" and count3 <= "0011010110" then -- <=214;
addr3 <= pl+ "01100":

elsif count3 > "0011010110" and count3 <= "0011110110" then -- <=246;
addr3 <=pl+ "01101";

elsif count3 > "0011110110" and count3 <= "0100010110" then -- <=278;
addr3 <=pl+ "01110™;

elsif count3 > "01000101 10" and count3 <= "0100100110" then -- <=294;
addr3 <=pl+ "OL111";

elsif count3 > "0100100110” and count3 <= "0101000110" then -- <=326;
addr3 <= pl+ "10000";

elsif count3 > "0101000110" and count3 <= "0101100110" then -- <=338;
addr3 <= p1+ "10001";

elsif count3 > "0101100110" and count3 <= "0110000110" then  --<=390;
addr3 <= pl+ "10010";

elsif count3 > "0110000110" and count3 <= "0110100110" then -- <=422;
addr3 <= pl+ "10011";

elsif count3 > "01101001 10" and count3 <= "01110001 10" then -- <=454;
addr3 <= pl+ "10100™;

elsif count3 > 01110001 10" and count3 <= "0111100110" then -- <=486;
addr3 <=pl+ "10101";

elsif count3 > "0111100110" and count3 <= "0111110110" then -- <=502;
addr3 <=pl + "10110";
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elsif count3 > "0t 11110110" and count3 <= "1000000110" then -- <=518;

addr3 <= pl+ "10111";

elsif count3 > "10000001 10" and count3 <= "1000010110" then -- <=534;

addr3 <=pl + "11000";

else -->534;
addr3 <= pi+ "11001";

end if;

else

if count3 = "0000000000" then --=0
addr3 <= "00000" &code26;

elsif count3 > "0000000000" and count3 <= "0000000010" then -- <=2,
addr3 <= "0000011010" + code26;

elsif count3 > "0000000010" and count3 <= "0000000110" then -- <=6;
addr3 <= "0000110100" + code26; --"11010" * "00010" + codel6;

elsif count3 > "00000001 10" and count3 <= "0000001110" then -- <=14;
addr3 <= "0001001110" + code26; --"11010" * "00011" + codel6:

elsif count3 > "0000001 110" and count3 <= "0000010110" then -- <=22;
addr3 <= "0001101000" + codel6; --"11010" * "00100" + codel6:

elsif count3 > 00000101 10" and count3 <= "0000100110" then -- <=38:
addr3 <= "0010000010" + code26; --"11010" * "00101" + codel6:

elsif count3 > "00001001 10" and count3 <= "0000110110" then -- <=54;
addr3 <= "0010011100" + code26; --"11010" * "00L1 10" + code26:

elsif count3 > "0000110110” and count3 <= "0001000110" then -- <=70;
addr3 <= "0010110110" + code26; --"11010" * "00111" + codel6:

elsif count3 > "0001000110" and count3 <= "0001010110" then -- <=86;
addr3 <= "0011010000" + code26; --"11010" * "01000" + codel6:

elsif count3 > "0001010110" and count3 <= "0001110110" then -- <=118:
addr3 <= "0011101010" + code26: --"11010" * "01001" + codel6:

elsif count3 > "0001110110" and count3 <= "0010010110" then -- <=150;
addr3 <= "0100000100" + code26; --"11010" * “01010" + codel6:

elsif count3 > "0010010110" and count3 <= "0010110110" then -- <=182;
addr3 <= "0100011110" + code26: --"11010" * "01011" + codel6:

elsif count3 > "0010110110" and count3 <= "0011010110" then -- <=214;
addr3 <= "0100111000" + code26: --"11010" * "01100" + codel6;

elsif count3 > "0011010110" and count3 <= "0011110110" then -- <=246;
addr3 <= "0101010010" + code26; --"11010" * "01101" + codel6;

elsif count3 > "0011110110" and count3 <= "0100010110" then -- <=278;
addr3 <= "0101101100" + code26; --"11010" * "01110" + code26:

elsif count3 > "0100010110" and count3 <= "0100100110" then -- <=294;
addr3 <= "0110000110" + code26; --"11010" * "01111" + code26:

elsif count3 > "0100100110" and count3 <= "0101000110" then -- <=326;
addr3 <= "0110100000" + code26; --"11010" * "10000" + code6;

elsif count3 > 01010001 10" and count3 <= "0101100110" then -- <=358;
addr3 <= "0110111010" + code26; --"11010" * "10001" + code26;

elsif count3 > "0101100110" and count3 <= "0110000110" then  --<=390;
addr3 <= "0111010100" + code26; --"11010" * "10010" + code26;

elsif count3 > "01100001 10" and count3 <= "0110100110" then -- <=422;
addr3 <= "0111101110" + code26; --"11010" * "10011" + code26;

elsif count3 > "0110100110" and count3 <= "0111000110" then -- <=454;
addr3 <= "1000001000" + code26; --"11010" * "10100" + code26;

elsif count3 > "0111000110" and count3 <= "0111100110" then -- <=486;
addr3 <= "1000100010" + code26; --"11010" * "10101" + code26;

elsif count3 > "0111100110" and count3 <= "0111110110" then -- <=502;
addr3 <="1000111100" + code26; --"11010" * "10110" + code6;
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elsif count3 > "0111110110" and count3 <= "10000001 10" then -- <=518;
addr3 <= "1001010110" + code26; --"11010" * "10111" + code26:

elsif count3 > 10000001 10" and count3 <= "1000010110" then -- <=534;
addr3 <="1001110000" + code26; --"11010" * "11000" + codel6;

else ->534,
addr3 <= "1010001010" + code26; --"11010" * "11001" + code26;
end if;
end if;

end process;

process (count3)
begin -- process
if count3 /= "0000000000" then - 2 and over 2 branches;
premux4_Ssel <="0’;
else
premux4_Ssel <="1"; -- only one branch;
end if;

if (count3="0000000000" or count3="0000000001" or count3="0000000011" or count3="00000001 11")
or (count3="0000001111" or count3="00000101 11" or count3="0000100111" or
count3="0000110111™)
or (count3="00010001 11" or count3="0001010111" or count3="0001 L 101 11" or
count3="0010010111™)
or (count3="00101101 11" or count3="0011010111" or count3="0011110111" or
count3="0100010111™)
or (count3="0100100111" or count3="0101000111" or count3="0101100111" or count3="0110000111"
or count3="0110100111")
or (count3="0111000111" or count3="0111100111" or count3="0{11110111" or count3="1000000111"
or count3="1000010111") then
premux0_lsel <="I"; -- beginning cycle of each bit.select
-- adder0 and adder! output;
else
premux0_lsel <="0";
end if;
end process;

process (clk1, reset) -- one more delay due to memory access delay;
begin -- process
if reset ='0’ then -- asynchronous reset (active low)
muxpipe0l <="0’;
pipe0 <="0";
addr3_pipeQ <= (others =>'0');
we3_pipe0 <='0"

elsif clkl'event and clkl ='1' then -- rising clock edge
muxpipe0l <= premux0_lIsel;
pipe0 <= premux4_5Ssel;
addr3_pipeQ <= addr3;
we3_pipe0 <= we3;

end if;
end process;

delay5: process (clk1, reset)
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begin -- process delay5
if reset ='0' then -- asynchronous reset (active low)
pipel <='0;
we3_pipel <="0';
addr3_pipe2 <= (others =>"0');
mux0_lsel <='0;
elsif clkl'event and clkl =1’ then -- rising clock edge
pipel <= pipe0;
we3_pipel <= we3_pipe0;
addr3_pipe? <= addr3_pipe0;
mux0_1sel <= muxpipeOl;
end if;
end process delayS5;

delay6: process (clkl, reset)
begin -- process delay?2
if reset ="0’ then -- asynchronous reset (active low)
pipe <=0}
we3_pipe2 <='0';
addr3_pipe3 <= (others =>'0');
elsif clkl'event and clk1l =1’ then -- rising clock edge
pipe2 <= pipel;
we3_pipe2 <= we3_pipel:
addr3_pipe3 <= addr3_pipel:
end if;
end process delay6;

delay7: process (clkl, reset)
begin -- process delay7
if reset =0’ then -- asynchronous reset (active low)
mux4_Ssel <='0";
we_memle_leunit <='0";
addr_memle_leunit <= (others =>'0');
elsif ctk1'event and clk]l =1 then -- rising clock edge
mux4_5sel <= pipe2;
we_memle_leunit <= we3_pipe2;
addr_memle_leunit <= addr3_pipe3:
end if;
end process delay7;

readalphabeta: process (state.alphaOaddr.alphaladdr,beta0addr,betal addr,
alphaOladdr_leunit.bemOaddr_lcunit.bemIaddr_leunit)
begin -- read mem_alphabeta address selection according to different state;
if state = alphabeta then
addra_memalpha0 <= alphaQaddr;
addra_memalphal <= alphaladdr;
addra_membeta0 <= betaOaddr;
addra_membetal <= betaladdr;
elsif state = leunit then
addra_memalpha0 <= alphaOladdr_leunit;
addra_memalphal <= alphaOladdr_leunit;
addra_membeta0 <= beta0addr_leunit;
addra_membetal <= betaladdr_leunit;
else
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addra_memalphaO <= (others =>'0’);
addra_memalphal <= (others =>'0');
addra_membeta0 <= (others =>'0');
addra_membetal <= (others =>'0');
end if;
end process readalphabeta:

writememle: process (state,we_memle_LLR,we_memle_leunit)
begin -- process writememle
if state = leunit then
web_memle <= we_memle_leunit;  -- write back the new Le values;
elsif state = LLR then
web_memle <= we_memle_LLR; -- clear the old block’s Le value;
else
web_memle <= "0';
end if;
end process writememle:

addrmemle: process (state, addr_memle_g. addr_memle_leunit, addr4,addr_memle_clear)
begin -- process addrmemle
if state=gamma then
addra_memle <= addr_memle_g:
elsif state=LLR then
addra_memle <= addr4;
else
addra_memle <= (others =>'0');
end if;

if state= leunit then
addrb_memle <= addr_memle_leunit;
elsif state=LLR then
addrb_memle <= addr_memle_clear:
else
addrb_memle <= (others =>'0);
end if;
end process addrmemle:

--for LLR_hard decision unit
c4: process (clk1, reset)
begin -- process c4
if reset ='0’ then -- asynchronous reset (active low)
count4 <= (others =>'0');
we_memle_LLR <="0";
elsif clkl'event and clkl ='1" then -- rising clock edge
if upcount4 = 'I" then
if count4 < *1010100100" then -- 676="1010100100"
countd <= countd + 1;
else
countd <= (others =>'0');
end if;

we_memle_LLR <="1";

else
we_memle_LLR <="0";
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end if:
end if;
end process c4,;
addrd <= count4 when countd < "1010100100" else (others=>'0');
process (clkl, reset) — address delay one cycle for clearing
begin -- process
if reset =0’ then -- asynchronous reset (active low)
addr_memle_clear <= (others=>0');
elsif clk!'event and clkl =1’ then -- rising clock edge
addr_memle_clear <= addr4;
end if;
end process;

end rtl;

urpo
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File name: FSM_buf_cfg.vhd
Purpose: configure file of FSM_buf.vhd

library ieee:
use ieee.std_logic_l164.all;

configuration cfg_FSM_buf of FSM_buf is

for rt!
for all : addrmemletop
use configuration work.cfg_addrmemletop;
end for;

for all : addrmemalphaCtop
use configuration work.cfg_addrmemalphaOtop:
end for:

for all : addrmemalphaltop
use configuration work.cfg_addrmemalphaltop:
end for:

for all : addrmembetaOtop
use configuration work.cfg_addrmembetaOtop;
end for;

for all : addrmembetaltop
use configuration work.cfg_addrmembetaltop:
end for;

for all : addralphaOltop
use configuration work.cfg_addralpha0itop;
end for;

for all : addrbetaGtop
use configuration work.cfg_addrbetaOtop;
end for;
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for all : addrbetaltop
use configuration work.cfg_addrbetaitop:
end for;

for all : multiplierItop
use configuration work.cfg_multiplieritop:
end for;

for all : multiplier2top
use configuration work.cfg_multiplier2top:
end for;

end for;
end cfg_FSM_buf;

File name: memyktop.vhd and memyktop_cfg.vhd
Purpose: receiver buffer generated by memory core and configure file

library iece:
use iece.std_logic_1164.all;

--As the buffer of received sequence yk(have been quantized), size is 4 bits width. 988 deepth for one block:

entity memyktop is
port (

addr : IN std_logic_VECTOR(9 downto 0):
cik :IN std_logic:
yk_in : IN std_logic_VECTOR(3 downto 0):
yk_out: OUT std_logic_VECTOR(3 downto 0):
we  IN std_logic):

end memyktop:

architecture rtl of memyktop is

component mem_yk

port (
addr: IN std_logic_VECTOR(9 downto 0);
clk: IN std_logic:
din: IN std_logic_VECTOR(3 downto 0);
dout: OUT std_logic_VECTOR(3 downto 0);
we: IN std_logic):

end component;

begin --rtl

myk: mem_vk
port map (
addr => addr,
clk => clk,
din => yk_in,
dout => yk_out,
we => we);
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end rtl;

library XilinxCoreLib;
use XilinxCoreLib.all;

configuration cfg_memyktop of memyktop is
for rtl
-- synopsys translate_off

for all : mem_yk use entity XilinxCoreLib.blkmemsp_v3_2(behavioral)
generic map(
c_has_en=>0.
c_has_din=>1,
c¢_has_limit_data_pitch => 0,
c_has_sinit => 0,
c_limit_data_pitch => 8,
c_width => 4,
¢_sinit_value => "0",
c_addr_width => 10,
c_has_rfd => 0,
c_has_we =>1,
c_depth => 988.
c_write_mode => 0.
c_pipe_stages => 0.
c_has_nd => 0,
c_default_data => "0",
c_has_default_data => 1,
c_mem_init_file => "mif_file_16_1",
c_reg_inputs => 0.
c_enable_rlocs => 0.
c_has_rdy => 0);
end for;
-- synopsys translate_on

end for;
end cfg_memyktop;

File name: memictop.vhd and memlctop_cfg.vhd
Purpose: storage memory of channel reliability value, and configure file

library ieee;
use ieee.std_logic_1 164.all;

--mem_lc store 10 Lc values corresponding to SNR 5.0db downto 0.5db steps of 0.5
--db; size is 8 bit wodth(3 bits fraction part), 10 deepth;

entity memictop is

port (
clk :in std_logic:
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addr : in std_logic_vector(3 downto 0);
Lc :outstd_logic_vector(7 downto 0));

end memlctop;
architecture rtl of memlctop is

component mem_[c
port (
addr: IN std_logic_VECTOR(3 downto 0);
clk: IN std_logic;
dout: OUT std_logic_VECTOR(7 downto 0));
end component;

begin - rtl
memlc: mem_lc port map (
addr => addr,
clk => clk.

dout => Lc);

end rtl;

Library XilinxCoreLib:
use XilinxCoreLib.all;

configuration cfg_memilctop of memictop is
for rtl
-- synopsys translate_off

for all : mem_lc use entity XilinxCoreLib.blkmemsp_v3_2(behavioral)
generic map(

c¢_has_en =>0,
c_has_din =>0,
c_has_limit_data_pitch =>0,
c_has_sinit => 0,
c_limit_data_pitch => 8,
c_width =>8§,
c_sinit_value => "0",
c_addr_width => 4,
c_has_rfd => 0,
c_has_we =>0,
c_depth => 10,
c_write_mode => 0,
c_pipe_stages => 0,
c_has_nd => 0,
c_default_data => "0",
c_has_default_data => 0,
c_mem_init_file => "mem_lc.mif”,
c_reg_inputs => 0,
c_enable_rlocs => 0,
c_has_rdy => 0);

end for;
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-- synopsys translate_on

end for:
end cfg_memlictop;

File name: memletop.vhd and memletop_cfg.vhd
Purpose: storage memory of extrinsic information

library ieee;
use ieee.std_logic_1164.all;

--only info. bits need Le extrinsic value to calculate the log-gamma,so only
—-need 26 mem-cell to save the Le for each codeword(32,26); totally for 26
--codewords of one block size, need 26x26 mem-cells which are 12 bit width
--with 3-bit fraction part;

entity memletop is

port (

addra : IN std_logic_vector(9 downto 0);
addrb : IN std_logic_vector(9 downto 0);
clka : IN std_logic:

clkb : IN std_logic:

Le_in : IN std_logic_vector(!! downto 0);
web @ IN std_logic:

Le_out : OUT std_logic_vector(l1 downto 0));

end memletop:

architecture rtl of memletop is
component mem_le
port (
addra: IN std_logic_VECTOR(9 downto 0);
addrb: IN std_logic_VECTOR(9 downto 0);
clka: IN std_logic;
clkb: IN std_logic:
dinb: IN std_logic_VECTOR(11 downto 0):
douta: OUT std_logic_VECTOR(1 | downto 0);
web: IN std_logic);
end component;

begin --rtl
memle: mem_le
port map (

addra => addra,
addrb => addrb,
clka =>clka.
clkb => clkb,
dinb => Le_in,
douta => Le_out,
web => web);
end rtl;
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Library XilinxCoreLib;
use XilinxCoreLib.all:

configuration cfg_memietop of memletop is

for rtl
-- synopsys translate_off

for all : mem_le use entity XilinxCoreLib.blkmemdp_v3_2(behavioral)
generic map(
c_depth_b => 676,
c_depth_a => 676,
c_has_rdyb => 0,
c_has_rdya =>0,
c_has_web=>1,
c_has_wea =>0,
c_sinitb_value => "000",
c_has_doutb => 0.
c_has_douta=>1,
c_has_limit_data_pitch => 0,
c_sinita_value => "000",
c_limit_data_pitch => 18.
c_width_b=> 12,
c_width_a => 12,
c_write_modeb => 0,
¢_write_modea => 0.
¢_addra_width => 10,
c_has_ndb => 0.
c_has_nda =>0,
c_has_dinb=> 1,
c_has_dina => 0,
c_pipe_stages_b => 0.
c_pipe_stages_a => 0,
c_has_rfdb => 0.
c_has_rfda => 0.
c_has_enb =>0.
c_has_ena =>0,
c_reg_inputsb => 0,
c_reg_inputsa => 0,
c_default_data => "000",
c_has_default_data => 1,
c_mem_init_file => "mif_file_16_1",
c_has_sinitb => 0,
c_has_sinita => 0,
c_enable_rlocs => 0,
c_addrb_width => 10);
end for;

-- synopsys translate_on

end for;
end cfg_memletop;

- 157 -



ndix urh rVi urce Co

File name: memlcyktop.vhd and memlcyktop_cfg.vhd
Purpose: internal memory of Lc*Yk

library ieee;
use iece.std_logic_1164.all;

--Memory for multiplier result. -21.11<lcyk<21.11, need 8 bits width. for one block.need 988 deepth cells;
--yk is quantitive result with 4-bits from(1000 to 0111)(-8 to 7).s0 lcyk's width expands to 12bit with 3 bit
fraction part.

entity memilcyktop is

port (
addr:  IN std_logic_VECTOR(9 downto 0);
clk:  IN std_logic;
Icyk_in: IN std_logic_VECTOR(11 downto 0).
leyk_out: OUT std_logic_VECTOR(11 downto 0);
we: IN std_logic);

end memlcyktop:
architecture rtl of memlcyktop is

component mem_lcyk
port (
addr: IN std_logic_VECTOR(9 downto 0);
clk: IN std_logic:
din: IN std_logic_VECTOR(!1 downto 0).
dout: OUT std_logic_VECTOR(! downto 0):
we: IN std_logic);

end component:

begin --rtl

memlcyk : mem_lcyk
port map (
addr => addr.
clk =>clk.
din => Icyk_in,
dout => Icyk_out.
we => we);
end rtl;

Library XilinxCoreLib;
use XilinxCoreLib.all;

configuration cfg_memicyktop of memicyktop is
for rtl
-- synopsys translate_off

for all : mem_lcyk use entity XilinxCoreLib.blkmemsp_v3_2(behavioral)
generic map(
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c_has_en =>0,
c_has_din=>1,
c_has_limit_data_pitch => 0,
c_has_sinit => 0,
¢_limit_data_pitch => 8§,
c_width => 12,
c_sinit_value => "0",
c_addr_width => 10,
c_has_rfd => 0,
c_has_we => 1,
c_depth => 988,
c_write_mode => 0,
c_pipe_stages => 0,
c_has_nd =>0,
c_default_data => "0",
c_has_default_data=> 1,
c_mem_init_file => "mif_file_16_1",
c_reg_inputs => 0,
c_enable_rlocs => 0,
¢_has_rdy =>0);

end for:

-- synopsys translate_on

end for;
end cfg_memlcyktop:

File name: memlcykle.vhd and memlcykle_cfg.vhd
Purpose: Internal memory of Lc*Yk+Le

library iece:
use ieee.std_logic_1164.all;

--store the adder output in the Ist half decoding(horizontal) of last iteration;
entity memlcykletop is

port (
addr : in std_logic_vector(9 dowanto 0);
clk :in std_logic;
din :in std_logic_vector(12 downto 0);
dout : out std_logic_vector(12 downto 0);
we :in std_logic);

end memlicykletop;
architecture rtl of memlcykletop is
component mem_lcykle
port (
addr: IN std_logic_VECTOR(9 downto 0);

clk : IN std_logic;
din : IN std_logic_VECTOR(12 downto 0);
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dout: OUT std_logic_VECTOR(12 downto 0);
we :IN std_logic);
end component;

begin -- rtl

memlcykle : mem_Icykle port map (
addr => addr,
clk =>clk,
din =>din,
dout => dout,
we =>we),

library xilinxcorelib;
use xilinxcorelib.all;

configuration cfg_memicykletop of memlcykletop is

for rtl
-- synopsys translate_off

for all : mem_lcykle use entity XilinxCoreLib.blkmemsp_v3_2(behavioral)
generic map(

c_has_en=>0,
c_has_din=>1,
c¢_has_limit_data_pitch => 0,
¢_has_sinit => 0,
¢_limit_darta_pitch => 8,
c_width => 13,
c_sinit_value => "0",
c_addr_width => 10,
¢_has_rfd => 0,
c_has_we =>1,
c_depth => 676,
c_write_mode => 0,
c_pipe_stages => 0.
c_has_nd =>0,
c_default_data => "0",
c_has_default_data=> 1,
c_mem_init_file => "mif_file_16_1",
c_reg_inputs => 0,
c_enable_rlocs => 0,
c_has_rdy => 0);

end for;

-- synopsys translate_on

end for;
end cfg_memlcykletop;

File name: memloggammatop.vhd and memloggammatop_cfg.vhd
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Prpose: storage memory of branch transition values

library ieee;
use ieee.std_logic_1164.all;

--Memory for saving log-gamma value corresponding to Xk=1, 12 bits width, 988deepth for one info. block:
entity memloggammatop is

port (
addra: IN std_logic_VECTOR(9 downto 0);
addrb: IN std_logic_VECTOR(9 downto 0);
clka : IN std_logic;
clkb : IN std_logic;
dina : IN std_logic_VECTOR(11 downto 0);
douta: OUT std_logic_VECTOR(11 downto 0),
doutb: OUT std_logic_VECTOR(11 downto 0);
wea : IN std_logic);

end memloggammatop:
architecture rtl of memloggammatop is

component mem_loggamma
port (
addra: IN std_logic_VECTOR(9 downto 0):
addrb: IN std_logic_VECTOR(9 downto 0):
clka: IN std_logic;
clkb: IN std_logic;
dina: IN std_logic_VECTOR(11 downto 0):
douta: OUT std_logic_VECTOR(11 dowato 0):
doutb: OUT std_logic_VECTOR(11 downto 0):
wea: IN std_logic);

end component;

begin --rtl

memloga: mem_loggamma
port map (
addra => addra,
addrb => addrb,
clka => clka.
clkb => clkb,
dina => dina,
douta => douta,
doutb => doutb,
wea => wea);
end rtl;

library XilinxCoreLib;
use XilinxCoreLib.all;

configuration cfg_memloggammatop of memloggammatop is
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for rtl
-- synopsys translate_off

for all : mem_loggamma use entity XilinxCoreLib.blkmemdp_v3_2(behavioral)
generic map(

c_depth_b => 988,
c_depth_a => 988,
c_has_rdyb =>0,
c_has_rdya=>0,
c_has_web =>0,
c_has_wea=>1,
c_sinitb_value => "000",
c_has_doutb => 1,
c_has_douta=> 1.
c_has_limit_data_pitch => 0,
c_sinita_value => "000",
c_limit_data_pitch => 18,
c_width_b=> 12,
c_width_a=> 12,
c_write_modeb => 0,
c_write_modea => 0,
c_addra_width => 10,
c_has_ndb=>0,
c¢_has_nda=>0,
¢_has_dinb =>0,
c_has_dina=> 1.
c_pipe_stages_b =>0,
c_pipe_stages_a=>0,
c¢_has_rfdb=>0,
¢_has_rfda=>0,
c¢_has_enb =>0,
c_has_ena=>0,
c_reg_inputsb => 0,
c_reg_inputsa => 0,
c_default_data => "000",
c_has_default_data => 1,
c_mem_init_file => "mif_file_16_1",
c_has_sinitb => 0,
c_has_sinita =>0,
c_enable_rlocs => 0,
c_addrb_width => 10);

end for;

-- synopsys translate_on
end for;
end cfg_memloggammatop:

File name: memalphabetatop.vhd and memalphabetatop_cfg.vhd
Purpose: storage memory of forward/backward recursion

library ieee:
use ieee.std_logic_1164.all;



endix uri oder Vi ource codes

--according to state complexity profile. total node=638 for all time instant.we never use log_alpha value at --
-k=32, so memory deepth is designed 637 cells for one codeword decoding. in order to read and write -------
-within one clock cycle,use Dual-port memory: in order to judge one or two branches. add one cell addressd
---637 with zero content.So the total deepth is 638(0 to 637)

entity memalphabetatop is

port (
addra : in std_logic_vector(9 downto 0);
addrb : in std_logic_vector(9 downto 0);
clka :in std_logic;
clkb :in std_logic;
dinb :in std_logic_vector(16 downto 0);
douta : out std_logic_vector(16 downto 0);
doutb : out std_logic_vector(16 downto 0);
web :in std_logic);

end memalphabetatop;
architecture rtl of memalphabetatop is

component mem_alphabeta
port (
addra : IN std_logic_VECTOR(9 downto 0);
addrb : IN std_logic_VECTOR(9 downto 0);
clka : IN std_logic;
ctkb : IN std_logic;
dinb : IN std_logic_VECTOR(16 downto 0):
douta : OUT std_logic_VECTOR(16 downto 0):
doutb : cut std_logic_vector(16 downto 0):
web : N std_logic);

end component;

begin -- rtl
memalphabeta : mem_alphabeta port map (

addra => addra,
addrb => addrb,

clka => clka.
clkb => clkb,
dinb => dinb,

douta => douta,
doutb => doutb,
web => web);

end rtl;

library xilinxcorelib;
use xilinxcorelib.all;

configuration cfg_memalphabetatop of memalphabetatop is

forrtl
-- synopsys translate_off
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for all : mem_alphabeta use entity XilinxCoreLib.blkmemdp_v3_2(behavioral)
generic map(

c_depth_b => 638,
c_depth_a => 638,
c_has_rdyb =>0.
¢_has_rdya=>0,
c_has_web=>1,
c_has_wea=>0,
c_sinitb_value => "00000",
c_has_doutb => 1,
¢_has_douta => |,
¢_has_limit_data_pitch => 0,
c_sinita_value => "00000",
c_limit_data_pitch => 18,
c_width_b=>17,
c_width_a=> 17,
c_write_modeb => 0,
c_write_modea => 0,
c_addra_width=> 10,
c_has_ndb=>0,
¢_has_nda =>0,
c_has_dinb=> 1,
¢_has_dina =>0,
c_pipe_stages_b=>0,
c_pipe_stages_a =>0,
¢_has_rfdb =>0,
c_has_rfda=>0,
c_has_enb =>0,
c_has_ena =>0,
c_reg_inputsb => 0,
c_reg_inputsa => 0,
c_default_data => "00000",
c_has_default_data=> 1,
c_mem_init_file => "mif_file_16_1",
c_has_sinitb => 0,
¢_has_sinita => 0.
c_enable_rlocs => 0,
c_addrb_width => 10);

end for;

-- synopsys translate_on
end for;
end cfg_memalphabetatop;
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