INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600






Improving Compositional Verification through
Environment Synthesis and Syntactic Model
Reduction

Hong Peng

A Thesis
in
The Department
of

Electrical and Computer Engincering

Presented in Partial Fulfiliment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

September 2002

© Hong Peng, 2002



i+l

ional Lib il tionale
T
isitions and citions et
afthmop?\sc Services ::qrv‘:ees bibli:graphiques
395 Wi Street 395, rue Welington
Ottawe ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your lis Vowe réldrerce
Ouwr e Nowve réidrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-73359-9

Canadid



ABSTRACT

Improving Compositional Verification through Environment
Synthesis and Syntactic Model Reduction

Hong Peng, Ph. D.

Concordia University, 2002

With the increasing complexity of large scale Application-Specific Integrated
Circuit (ASIC) designs, simulation cannot cover all the corner cases in a reasonable
time frame. Formal verification is emerging as a supplementary approach to main-
stream simulation. Among various formal verification approaches, model checking is
a fully automatic approach to verify a finite state machine against its temporal spec-
ifications. [t has been successfully used in several industrial verification projects.
However, its application is limited by the size of the system to be verified due to
state space explosion. There are two main methods to tackle this problem: composi-
tional verification and model reduction. Compositional verification is to verify each
partition in the system separately and then derive the system specification from
the partial proofs. Model reduction is to reduce the size of the system such that
it can be handled by a model checking tool. In this thesis, we integrate these two
approaches to perform model checking.

[n a compositional verification, properties are only true under certain environ-
ments. One of the problems in the compositional reasoning approach is to generate
the environment assumption, i.e., stimulus for the module (partition) under verifi-
cation. In our approach, we provide the environment assumptions as temporal logic

formulas and then synthesize an executable hardware description language module

ii



from it. Compared with existing related work, the proposed environment has a
smaller state space, which is a key factor in compositional verification. The synthe-
sized modules are composed with the design block under verification and then fed
into a model checking tool.

However, in case the size of the composed module is still beyond the capability
of model checking, we use a novel syntactic model reduction algorithm, which ana-
Iyzes the source code and removes the redundant variables and values. The reduction
we propose in this thesis is based on the static analysis of control flow diagram of
the program. The values of state variables in the program are partitioned into active
values, and deactive values according to their dependency to the properties. The de-
active values then can be replaced by an abstract value, and thus the value domains
of the variables are much smaller than the original ones. Compared with existing
related work, the proposed approach is automatic and has better performance in
the reduction of datapath intensive designs.

In order to demonstrate the application of the proposed techniques, we veri-
fied an industrial size ATM (Asvnchronous Transfer Mode) switch fabric from Nortel

Networks which complexity is beyond the capability of plain model checking tools.

iv



To Huamin



ACKNOWLEDGEMENTS

[ have been very fortunate to have Dr. Sofiene Tahar as my supervisor. I
am deeply grateful for his strong support and encouragement through out my Ph.D
studies. His expertise and competent advice have shaped the character of my re-
search.

[t has been a great opportunity for me to work with Dr. Yassine Mokhtari.
[ am very indebted to him for his considerable time devoted to me through my re-
search work. [ benefited so much from his deep knowledge and insightful thoughts.
Without his invaluable guidance and help, I could not have completed this work.

[ also wish to express my gratitude to the examination committee members,
Dr. Al-Khalili, Dr. Khendek, Dr. Negulescu, and Dr. Seffah for reviewing my thesis
and giving me invaluable feedbacks.

[ would like to reserve my deepest thanks to my parents for their perpetual
love and encouragement, and to my wife for her sacrifice and patience. [ can never

thank them enough.

vi



TABLE OF CONTENTS

1 Introduction

1.1
1.2

1.3

1.4

Design Verification . . . . . . ... . ... ... ... ...
Formal Hardware Verification . . . . ... ... ... .. ... . ...
1.2.1 Theorem Proving . . . . . . ... ... ... ... ... ...
1.2.2  FSM based Verification . . . . ... .. ... ... ... ... .
1.2.3 Dealing with State Space Explosion . . . . . . .. .. ... ..
Related Work . . . . . . . .. ...
1.3.1 Tableau Construction and Environment Synthesis . . . . . . .
1.3.2 Model Reduction . . . . . . ...
1.3.3 Summary . . . .. ...
Outline of the Thesis . . . . . . .. ... ... ... ... ... ...

2 Model Checking: Preliminaries

2.1

2.2

2.3
2.4

System Modeling . . . . . .. ...
Temporal Logics . . . . . . . . . ...
221 CTL* . . . . . e
222 CTLandLTL ... ... ... ... ... ..........
223 ACTL . . . . . . .. e
224 Fairness . . .. ...
2.2.5 Temporal Logics and Relations . . . . ... ... ... ....
CTL Model Checking . . . . . . .. ... ... ... ... ... ....
Tableau Construction . . . . . . . ... .. ... ... L.

vil



I Environment Synthesis

3 Compositional Reasoning 39
3.1 Introduction . . . . . . ... 39
3.2 Assume-guarantee Reasoning. . . . . . ... ... ... ... .. ... 41
3.3 Environment Arrays . . . ... ... . ... ... ... ... 47

3.3.1 System Partitions . . . . . ... ... L. 48
3.3.2 The Circular Reasoning Rule . . . . . .. ... ... .. ... 32
3.4 Summary . ... ... 37

4 Reduced Tableau Construction 59
4.1 Introduction . . . . . . ..o 59
42 ACTL in Three-Valued Domain. . . . ... . . ... ... . . .... 61
43 Rewriting Formulas . . . . ... .. .. ... 000 63
4.4 Tableau Construction Procedure . . . . . . ... . ... ... ... .. 65
4.5 Reduced Tableau Properties . . . . . . .. .. .. ... .. ... ... 74
4.0 Summary . . ... 79

5 Verilog Synthesis 80
5.1 VISand Verilog . . . . . . ... .. ... ... . 80

5.1, VIS. . oo . 80
512 Verilogin VIS . . . ... .. .. ... ... 81
5.2 Verilog Synthesis Procedures . . . . . . ... . ... ... ... ... . 83
5.3 Applications . . . . . ... L 95
54 Summary . . .. ... 103

II Syntactic Model Reduction 105

6 Model Reduction 106
6.1 Cone of Influence Reduction . . . . . . ... ... ... .. ... ... 108



6.2 Symbolic Abstraction . . . . . . . ... L L. 110
6.3 Summary . . . . ... ... 115

7 Syntactic Model Reduction 116
7.1 Introduction . . . . . .. ... ... 116

7.2 System Models . . . .. .. .. ... ... ... 118
7.2.1 Abstract Program Syntax . . ... .. ... ... ... .... 118

1.2.2  Abstract Program Semantics . . . . . .. .. ... ... . ... 120

7.3 Data Dependency Reduction . . . . . ... ... ... . ... ... .. 124
7.4 Reachability Condition and State Transform . . . ... ... .. ... 128
7.5 Deactive Variables Reduction . . . .. ... ... ... ... . . ... 131
7.6 Applications . . . . ... 139
7.6.1 A Forwarding Table Lookup Processor . . . ... .. ... .. 139

7.6.2 The Bakery Coutroller . . . . . .. ... ... ... ... ... 144

763 The Arbiter . . . . . . . .. o 148

77 Summary . .. . ... e 152
III Case Study 153
8 Case Study on a Nortel ATM Switch Fabric 154
8.1 The 4x4 ATM Switch Fabric . . ... ... ... .......... 155
8.2 Modeling the Switch Fabric . . . .. ... ... .. ... ...... 159
8.3 Specifying Local Properties . . . . . ... ... ... ... ....... 160
8.3.1 Specifying the Ingress Local Properties . . . . .. ... .. .. 161

8.3.2 Specifying the Egress Local Properties . . . .. ... .. ... 165

8.4 Verification of the Switch Fabric . . . . . . . ... ... ... . . ... 166
8.5 Errors Discovered . . . . . ... 172
8.6 Summary . ... .. ... 176

ix



9 Conclusion and Future Work 177

A Examples of Synthesized Environments 181
Al Ingress Py ... ... . . . ... 181
A2 IngressPs ... ... . . . . ... ... 185

B The Satisfiability Problem 190

Bibliography 192



1.1

7.1

8.1
8.2

LIST OF TABLES

Simulation in Industry . . . . . .. .. ... ... L L. 3
Verification Results of Sample Propertiesin VIS . . . . .. ... ... 144
Verification Results of Sample Properties in VIS . . . . . ... ... 169
Verification Results of Sample Properties in FormalCheck . . . . . . . 170

xi



3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

LIST OF FIGURES

General VLSI Design Flow . . . . .. .. ... ... ... ... ...
General Verification Framework . . . . . . ... . ... ... ... ..
Verification Gap . . . . . . . . .. ... ...

Proposed Formal Verification Framework . . . . . .. ... ... ...

Computation Tree . . . . . . ... .. ... ... ... ...
Basic CTL Operators . . . . . . . . ... ... ... ... ......
Relationship between ACTL, CTL, LTL and CTL* . . . . . . . ..

Two-state Kripke structure . . . . . . . .. ... ... ... ......

Two Reactive Modules . . . . . . . ... ... .. .. .. .......
Property Decomposition . . . . .. .. .. ... ... ... ...
System under Verification and System Environment . . . .. . . . .
A Linear System . . . . . .. ...
New Partitions . . . . . . . . . . ... ...
A Circular System . . . . . .. ...

Verification of the Circular System . . . . ... . ... ... ... ...

Proposed Tableau for AFp . . . . . . . ... ... .. .. ... ....
Reduced Tableaufor AFp . . . . . .. .. ... ... ... ......
Comparison Results of Sample Formulas . . . . ... ... ... ...

Tableau of A(trueUp) v A(falseV-p) . . . .. ... . ... ... ..

Tableau Construction and Verilog Synthesis . . . . . ... ... ...

Verilog Synthesis Procedures . . . . . . . ... ... .. .. ......
Tableau of A(trueUp) v A(falseV-p) withIDs . . . . . .. .. ...
AClosed System . . . ... ... ... ... ...

Xii



55 The Arbiter . . . . . . . o i e e 99
6.1 Synchronous Modulo 8 Counter . . . . . ... ............. 109
6.2 Symbolic Abstraction . . . . . .. ... 110
6.3 Traffic Light Example . . . .. ... ... .. ............. 112
6.4 Abstracted COUDtEr . . « « v v v o b e e e e e e e 114
7.1 Program PanditsCFD . .. ... ... ... ............. 120
7.2 Kripke Structure of Example 7.2.1 . . . . . . .. ..o 123
73 ADFlipflop .. ... . 125
7.4 DDDof Example 7.2.1 . . . . . . .. oo 125
75 COIReduced DDD . . . . . . . . i i i 126
7.6 COI Reduced Program and its CFD and State Space .. ....... 127
77 AnRC/STExample . . . . ...« 130
7.8 Dependency Example 1. . . .. . ... ... 132
7.9 Dependency Example 2. . . . . . .« . o 133
7.10 Abstraction of Dead Variables . . . . . . ... ... ... oo 134
7.11 Abstraction of Partial Deactive Variables . . . . . ... .. ... ... 135
7.12 Abstraction of Active Variables . . . . . . .. .. ... .o 135
7.13 Reduced Program P and its Kripke structure . . . ... . ... ... 138
7.14 The Counter Program . . . . . . ..« . .« o 139
7.15 CFD of the Search Program . . . . . . . . . .« ..o 141
7.16 Dependency Diagram of the Search Program . . . . .... ... ... 142
7.17 COI Reduced Dependency Diagram of the Search Program . . . . . . 143
7.18 COI Reduced CFD of the Search Program . . ... ........ .. 143
8.1 Switching of (valid) ATM Cells By a 4x4 Switch Fabric . ... ... 155
82 Headerofan ATM Cell . . . . . . .. . v i oo 156
8.3 Format of the VPI/VCI Lookup-table . .. ... ........... 158
84 ATM Modules . . . . . . .« o v v it 160

xiil



8.5 Ingress Interface Timing . . . . . . . . . ... ... . ... ...... 160
8.6 Egress Interface Timing . . . . . . . . . ... ... ... .. ..... 161
8.7 Switch FabricIngress . . . . . ... .. ... ... 161
8.8 Detailed I[llustration of the Ingress . . . . .. . .. ... .. ... .. 162
89 Switch FabricEgress . . . . . .. ... ... ... ... ... 165
8.10 Blocked Switch Fabric Egress . . . . . . ... ... .. ........ 165

Xiv



LIST OF ACRONYMS

ASIC Application-Specific Integrated Circuit
ATM Asynchronous Transfer Mode

CFD Control Flow Diagram

CNF Conjunctive Normal Form

COI Cone Of Influence

CTL Computational Tree Logic

CTP Conformance Test Plan

DDD Data Dependency Diagram

DUT Device Under Test

FSM Finite State Machine

HDL Hardware Description Language

HOL Higher-Order Logic

P Intellectual Property

LHS Left Hand Side

LTL Linear Temporal Logic

PVS Prototype Verification System

RHS Right Hand Side

ROBDD Reduced Ordered Binary Decision Diagram
RTL Register Transfer Lever

SAT SATisfiability

SMV Symbolic Model Verifier

SoC System-on-a-Chip

VIS Verification Interacting with Synthesis
VLSI Very Large Scale Integration

Xv



Chapter 1

Introduction

1.1 Design Verification

Conventionally. a Very Large Scale Integration (VLSI) design flow goes through
several steps from an informal specification to the final physical layout of the chip
as illustrated in Figure 1.1 [9]. On the system level, general models are used to
do performance evaluation and examine the architectural trade-offs, for example,
the decision on which main functions of the chip have to be done in hardware and
which can be implemented in software. There are different ways to come to the
final physical layout of the chip, and to verify that each of these steps is done
correctly against the system model. Usually, the Register Transfer Lever (RTL)
implementation is done manually from the system level using Hardware Description
Languages (HDLs) such as Verilog or VHDL. Moreover, only a synthesizable subset
of these languages can be used in the RTL designs. Then the RTL implementation
written in the synthesizable code can be synthesized into gate level.

The verification of a VLSI design is to verifv that the implementation of a
circuit regardless if it is RTL design or gate-level design, satisfies its high level
specifications. This is the so called “functional verification” [9] and simulation is

the most often used method to perform the functional verification.



Design Verification

System Level

Manjual
9

[
Architecture(RTL)

Design Compiler

g
Gate level(netlist)

Figure 1.1: General VLSI Design Flow

To verify the proper functions of the RTL design in simulation, test-benches
have to be written. They generate test patterns (stimulus) for the Device Under
Test (DUT), and compare the output of the DUT (response) with the expected
response. The verification challenge is to determine the input patterns to supply to
the design, and the expected outputs of a properly working design. In a common

verification framework, as shown in Figure 1.2, a design group starts to implement

. Behavioral
RTL csxgn

Figure 1.2: General Verification Framework

the RTL design based on the specification, while verification groups start to develop
a behavioral model and a test suite. The latter has to cover all test cases given in
the Conformance Test Plan (CTP), if possible. The behavioral model is written in
a high level language (behavioral level), which can be developed much quicker than

the RTL model. The test suite generates test vectors for both models, and their

[\V]



outputs can be compared. The test-bench itself can be tested using the behavioral
model. Usually, the test suite as well as the behavioral model is developed using
standard HDLs, i.e., Verilog or VHDL.

However, because of the increasing complexity of Application-Specific Inte-
grated Circuits (ASICs) designs, in the above methodology, verification consumes
about 70% of the design effort. The number of verification engineers is usually twice
the number of RTL designers. When design projects are completed, the code that
implements the test-benches makes up to 80% of the total code volume [9]. Table
1.1 shows that in order to cover a reasonable test suite, a large amount of computing

resource is needed.

[ntel || “Billions of generated vectors take 27 days to run”
Sun “A test suite with 1500 tests needs 1 billion random simulation cycles”
Cyrix [l "170 CPUs running simulations continuously”

Kodak | “Hundreds of 3-4 hours RTL functional simulations”
Xerox | “Simulation runtime occupies 3+ weeks of a design cycle”
Ross || “125 million vector regression tests”

LSource: [nternational Technology Roadmap for Semiconductors (1999)

Table 1.1: Simulation in Industry

Given the amount of effort demanded by verification and the quality and quan-
tity of the code that must be produced, it is not surprising that in most of the
projects, verification rests squarely on the critical path of the project management.
The more testcases that need to be covered, the more time is going to be invested.
Nevertheless, the “verification gap” between the design productivity and the design
complexity is becoming larger and larger (Figure 1.3). In fact, this is also the reason

why verification is still the target of new tools and methodologies.



g 10,000,000 1

L 1,000,000

G —

g 100,000 58%/Yr. compound Verificaitpn Gap
@ 7|  complexity growth rate .
5 10,000

§ Looo

&

2 100 21%/Yr. compound

& 7 productivity growth rate

— 10

1981

1983
1985 —
1987
1989 -
1991
1993 —
1995
1997 -
1999 —
2001 —
2003
2005
2007
2009

Source: Semiconductor Industry Association. International Technology Roadmap
for Semiconductors: 1999 edition. Austin, Texas: Interantional SEMATECH., 1999

Figure 1.3: Verification Gap
1.2 Formal Hardware Verification

For the last two decades, formal verification approaches, as supplementary to the
simulation, have been proposed in the literature [38, 52, 49]. Formal verification
is the process of determining whether the designs of a given phase in the life cycle
fulfill a set of established requirements, using formal specification methods.

Formal specification methods include model oriented and algebraic methods.
Model oriented methods model the system using mathematical entities (e.g. sets),
like Z [26], Finite State Machine [22], Temporal Logic [22], Petri Nets [76], etc.
Algebraic methods specify an object class in terms of relationships between the
operations defined on that class, like process algebra {10]. Based on the system to
be specified, formal specification methods can also be classified into two categories,
sequential and concurrent methods. Some formal methods such as Z specify the
behavior of sequential system, using mathematical structures like sets, relations,
and functions to describe the states. The state transitions are given in terms of

pre- and post-conditions. Other methods like Temporal Logic specify the behavior



of concurrent systems. The behavior is defined in terms of sequences, trees, or
partial orders of events. Based on the above formal specifications, there are two
mainstream approaches, namely theorem proving and Finite State Machine (FSM)
based verification. From the latter group, model checking techniques, in particular
temporal CTL and LTL model checking', have established themselves as significant
means for design verification because of the breakthrough to verify large designs

automatically [22].

1.2.1 Theorem Proving

Theorem proving is a powerful verification technique. [t is argued that an interactive
and general purpose theorem prover could well meet industrial requirements and be
the unifying framework for various verification tasks of industrial designs 24, 52].
With theorem proving, an implementation and its specification are usually
expressed as higher-order or first-order logic formulas. Their relationship is regarded
as a theorem to be proven with the logic system using axioms and inference rules.
Designs can thus be represented at different abstraction levels rather than only
at the Boolean level. Therefore, it allows a hierarchical verification methodology,
which can effectively deal with the overall functionality of designs having complex
datapaths. However, theorem proving is basically an interactive process, i.e., users
are responsible for coming up with the proof of correctness. The requirement for
expertise is the major difficulty for applying theorem proving on industrial designs.
A theorem prover or a proof checker is a tool used to partially automate
the verification procedure or to check the manual proof process. There exist many
theorem proving systems, some of which are widely used in the hardware verification
community. Notable examples are HOL (Higher-Order Logic) [35], developed at

Cambridge University; and PVS (Prototype Verification System) [80], developed at

' The temporal logics CTL (Computation Tree Logic) and LTL (Linear Time Temporal Logic)
are explained in 2




SRI International Computer Science Laboratory.

1.2.2 FSM based Verification

Synchronous sequential designs can be modeled as Finite state Machines (FSMs).
An FSM is a state transition system including initial states and the transitions
between states. The basic method of FSM based verification is the exploration of
reachable states of the FSM, called reachability analysis. Starting with the initial
state as the present state, we compute the states reached in one transition. This
process is repeatedly applied until all the reachable states of the FSM have been
visited. There are two branches in this category: equivalence checking and model
checking.

Equivalence checking verifies that an implementation has the same outputs
as the specification has for all input sequences. A classical method for equivalence
checking is to model the implementation and the specification as FSMs, and to form
their product machine by placing the implementation and the specification side by
side and feeding them the same inputs, and then to check if the corresponding
outputs carry the same value in all reachable states.

In model checking [31], the implementation is represented as an FSM and the
specification as a set of properties expressed in temporal logic which can concisely
capture temporal relationships between states. Then, the validity of the properties
is checked by exploring the reachable state space of the implementation FSM. The
equivalence checking of two FSMs can be thought of as a special case of model check-
ing where the implementation to be checked is actually the product machine, and
the specification is an invariant that states the equality between the corresponding
observable signals.

Automation is the major advantage of the FSM-based verification. In general,
once an FSM is constructed. The verification algorithm can check its properties

by exploring the state space automatically. However, FSM-based methods have a



serious limitation, known as state space problem [21]. With the increasing number
of state components in a circuit, the state space grows exponentially, which is of-
ten the case when the circuit performs substantial data processing. This greatly
restricts the application of the approach. One successful technique to reduce the
state space explosion problem is known as the implicit state enumeration [61]. With
this technique, the transition and the output functions as well as the sets of states
generated during the reachability analysis are encoded by Reduced Ordered Binary
Decision Diagrams (ROBDDs) [12] which is a compact and canonical representation
of Boolean functions. The use of ROBDDs significantly enlarged the application of
the FSM-based verification [13].

For the moment, the maximuin state space size which can be handled in model
checking is about two to power several hundreds, namely a circuit less than one
thousand latches [22]. How to tackle this problem is still an active research field in
recent years.

Two well-known ROBDD-based verification tools are: SMV (Symbolic Model
Verifier) [61], a CTL model checker developed at Carnegie-Mellon University; and
VIS (Verification Interacting with Synthesis) [11], an integrated tool for CTL model
checking, simulation and synthesis of FSMs, developed at University of California

at Berkeley and University of Colorado at Boulder.

1.2.3 Dealing with State Space Explosion

Generally, there are two main methods to tackle the state space explosion problem:
compositional verification and model reduction. With compositional verification we
can verify each module in the system separately so as to avoid making the product
of the modules in the system, and then compose the local results into a global
property. A problem in this approach is that properties are only true under certain
environments. In order to make the compositional verification, we have to construct

the environment assumptions for the module under verification and guarantee that



the environment covers all possible stimuli. This is the so called environment problem
[63] in the compositional verification approach.

Furthermore, in today’s multi-million-gate ASIC designs, the size of one single
module usually is beyond the capability of a plain model checking tool. In this
case, the only way to perform model checking is to reduce the size of the module
while preserving the correctness of the properties. This is the so called model re-
duction approach. The problem is that existing model reduction approaches need
human interaction to guide the reduction. For larger systems, these human-involved
reduction methods are infeasible.

In this thesis, we pr:)pose two techniques to improve compositional model
checking, namely, environment synthesis and syntactic model reduction.

Using the environment synthesis, in the compositional verification, one can
construct a tableau? from a set of temporal properties and then synthesize the
Verilog HDL environment module from the tableau. Namely in the compositional
verification framework, one can specify the environment of the module under ver-
ification using temporal properties, then synthesize the formulas into executable
Verilog HDL modules. Thus, the synthesized program is guaranteed to cover all the
corner cases of the environment. A technique called reduced tabular construction is
used in the synthesis to make this guaranty sound.

Using the syntactic model reduction, one can reduce the size of the module
under verification (RTL implementation) automatically by traversing the syntactic
structure of the module while preserving the correctness of the specifications. The
whole approach is based on the value dependency analysis of the variables in the
module against the variables and values in the properties. Through out the analysis,
the redundant variables and values in the module with respect to the specification
are reduced. Thus, only the minimum core of the module with respect to the

specification is left.

2A tableau is a state transition structure.



We provide formal proofs for the soundness of the proposed environment syn-

thesis and syntactic model reduction approaches. The environment synthesis has

been implemented in Java. The implementation of syntactic model reduction in

C++ is in progress in the Hardware Verification Group of Concordia University.
prog p

A comprehensive use of the proposed verification technique is illustrated in

Figure 1.4 including following practical steps.

(4]

-1

Given an RTL design and global properties derived from the specification, if
the size of the RTL design, after the reduction, can be handled by the model
checking tool, then we will apply model checking directly, else we will do the

following compositional verification steps.
Partition the RTL design into blocks.
Obtain local properties with respect to each RTL block.

Derive the environment assumptions (ACTL formulas) with respect to each
RTL block, then synthesize the formulas into Verilog environment modules,

and compose the RTL block and the Verilog environment module.

In case the size of the composed module is beyond the capability of the model
checking tool, apply model reduction with respect to the local properties, and

get the reduced composed module.

Verify the reduced composed module against the corresponding local proper-

ties using model checking, respectively.

. Deduce the global properties from these local properties using compositional

reasoning rules.

For the verification framework proposed in Figure 1.4, we have chosen the

model checker VIS (Verification Interacting with Synthesis) [11] as our model check-

ing tool. This is motivated by the existence of a Verilog front-end such that we can

9



\_Smg_{

RTL design and derive

global properteis

Model checking of
RTL dest

n
against gﬁ)bal properties

Model checking of
reduced RTL design

against global properties

Figure 1.4: Proposed Formal Verification Framework

§1ze of reduced
design too large?

P

Provide temporal logic
environment assumption.

i

Synthesize environment
assumptions into Verilo

:

Compose environment
code with RTL code

ize of composet
model too large?

Reduce the composed
mode!

Partition RTL design
into blocks

Model checking of
reduced RTL blocks
against local properties

l

Decompose the global
properties into local oneg

Compose the partial
proofs to global property

I

Model checking of
composed RTL blocks
against local properties

feed our design into the tool directly. Throughout the compositional verification,

the global properties are correct if and only if all the local properties are correct.

For now, in terms of verification, partitioning the RTL design, deriving environment

assumption formulas and local properties have to be done manually. After we have

the local properties and the corresponding environment assumptions, the following

verification steps, i.e., the environment synthesis, the model reduction. and model

checking are executed automatically. Another advantage of this framework is that

the compositional reasoning allows us to do block level verification in SoC/IP de-

signs since we can synthesize an executable module from the IP specifications and

replace the [P blocks by the synthesized modules.

We have applied the above verification framework on an ATM (Asynchronous

10




Transfer Mode) switch fabric from Nortel Networks [83] as a case study. Throughout
the verification, we discovered some errors in the design. In comparison, we did not
succeed in verifving the same switch fabric in FormalCheck [15] because of state

space explosion.

1.3 Related Work

1.3.1 Tableau Construction and Environment Synthesis

In [57, 36|, D. Long et al. proposed a tableau construction to cover all the possible
models of an ACTL? temporal formula. In their approach, states of tableau consist
of information about the labelling for the visible state components, plus information
about what should be held in successor states. The states of the tableau have the
form (f, E), where f is a labelling function that maps each clement in the state
components to all the possible values, and E is in the power-set of the clementary
formulas. The number of states in the tableau are 2 x 2¢, where A is the number of
visible state components and el is the number of elementary formulas. They proved
that this tableau is a maximal model of the formula, which covers all the behaviors
of the formula.

When striving for completeness, the size of tableau structures as defined in
[57, 36] is usually too large to be practical, and may be much larger than the state
space of the given implementation. This is because the state space of such a tableau
contains all combinations of subformulas of the specification formula. Such tableau
usually contains many redundant states, which can be removed while preserving the
tableau properties. If not removed, these states may introduce evidences, which are

not of interest.

3ACTL is a subset of the branching time temporal logic CTL restricted to universal path
quantification. Fore details, you may refer to Chapter 2.

11



Our tableau construction work is an extension of [46, 47] by Katz and Grum-
berg. In their work, they also proposed an idea of reduced tableau construction for
safety ACTL properties based on three-valued labelling for atomic propositions.
During the construction, each state contains exactly the set of formulas required
for satisfying the specification formula and the tableau is derived from the particle
tableau for LTL by replacing the use of X temporal operator by AX. Since the only
difference between LTL and ACTL is that the universal path quantifier always pre-
cedes temporal operators, so this change is sufficient. Since the reduced tableau is
based on the three value labelling, the definition of satisfaction and simulation pre-
order are changed accordingly. The reduced tableau for ACTL then has the same
properties as the one in [57, 36]. Generally, using the three value labelling, they
can derive a smaller tableau compared to the one in [57, 36]. However, they cannot
support the construction of liveness ACTL properties and they assume the input
ACTL formulas are concise which is not the case in the practice because engineers
may write ACTL formulas with much redundancy in it.

In [17, 31], E. M. Clarke et al. proposed a method of constructing concurrent
programs in which the synchronization skeleton of the program is automatically
synthesized from a high level branching time temporal logic specification. Decision
procedures were devised which given a formula of temporal logic f, will decide
whether f is satisfiable or unsatisfiable. If f is satisfiable, a finite model of f
is constructed. A tableau-based decision procedure for satisfiability of CTL [17]
formulas is used in this approach which has the same flavor as ours. The decision
procedure begins by building a tableau 7 which is a finite directed AND/OR node
network. Each node of the network is either an AND node or an OR node and
is labelled by a set of formulas. The AND node successors can be regarded as
embodying all of different ways in which the formula in the label can be satisfied.
The OR node successors are exactly the successors required to satisfy all the next

time formulas in the label. The intended meaning is that a node is considered as

12



a state in an appropriate structure, which satisfies the formula. However, in this
approach, the tableau is not the maximal model.

A. Arora et al. [7] used the same tableau construction approach for real-time
applications. Let f be a specification, expressed in CTL, for a concurrent program.
They proceed as follows. First apply the CTL decision procedure to f as in [17, 31].
If f is satisfiable, then the decision procedure yields a model M of f. M can be
viewed as the global state transition diagram of a fault-intolerant program P which
satisfies f. and P can be extracted from M. To extract a faulttolerant program
from M, they first transform M by adding to it transitions that model the failure
and subsequent recovery of processes. Failure of P; in (global) state s is modeled
by a fault transition from s to a new state. When all of the fault and recovery
transitions have been added to A/, the fault-tolerant program is extracted from A.
This proposed approach is an application of the tableau construction in [17, 31], so
the generated program P cannot cover the CTL specification.

In [70], C. S. Pasareanu et al. describe the adaptation and application of
assume-guarantee style model checking to reasoning about correctness properties
of software units written in Ada. Units are fundamentally open systems and must
be closed with a definition of environment that they will execute in. In particular,
they use LTL as a means of specifying assumptions about the environment. When
both the assumption and the guarantee are specified in LTL, one can simply check
the property “assumption implies guarantee” with a model checker like SPIN [42].
LTL assumptions can also be used to synthesize refined environments, in which case
the assumptions can be eliminated from the formula to be checked. The tableau
construction approach here is the same as that in SPIN for generating never claims
(43, 44]. The result tableau is a maximal model of the environment assumption
because every computation, which satisfies the assumption is a path in the tableau,
and that every finite path in the tableau is the prefix of some computation that satis-

fies the assumption. However, throughout the construction, only safety assumptions

13



are used such that every path in the tableau has to satisfy the formula. Another
disadvantage of this approach is that no tableau reduction techniques are consid-
ered during the construction. Consequentially, the size of the result tableau is not
optimal.

In (1], Y. Abarbanel et al. translate a subset of CTL properties into VHDL
process, which has sets of error states that can never be entered. They use this
VHDL process and the design under verification in a simulator to check if these
error states can be actually entered. Our approach synthesizes Verilog HDL as an
application of the reduced ACTL tableau construction, which will cover all the
behaviors of the corresponding properties and the tableaus are used in the model
checking to guarantee the satisfiability of the properties.

In [58]. M. Maidl proposes an ACTL tableau construction procedure in order
to prove the common fragment of ACTL and LTL. Since the purpose of this tableau
is not to reduce the size and hence rewriting techniques, dummy labelling, which we
used, are not addressed.

Besides the above tableau construction approaches, there are other LTL tableau
construction methods available in open literatures [59, 60, 81]. The tableau nodes
contain only temporal formulas and can be exponential in the size of the LTL for-
mula. On the contrary, we are working on the ACTL tableau construction, which
has different semantics. We also introduce three-value labelling for atomic proposi-

tions to reduce the tableau size and synthesize equivalent Verilog HDL code.

1.3.2 Model Reduction

Abstract interpretation [23] is a classic static program analysis approach. It has
been used intensively in formal verification and model reduction [20, 50, 79]. There
are four steps to apply abstract interpretation in model reduction: (1) find abstract
domains for the variables in the program with or without the aid of the property, (2)

translate the property to an abstract property according to the abstract domains, (3)

14



translate the operations in the program into abstract operations, and then change
the program into an abstract program, (4) perform formal verification based on
the abstract program and the abstract property, then deduce whether or not the
concrete program satisfies the concrete property.

The key step in the approach is to define the abstract domains. For example,
consider a property containing a proposition “r = 0", where r is an integer in
the implementation. Since an integer variable has infinitely many values, the state
space of the implementation potentially is infinite. However, to prove this specific
property, we actually do not need to know all the information about the integer
r, rather, we only need to know if r is zero or non-zero. In this case, we can put
the abstract domain of z as {neg, zero,pos} instead of the infinite values, where
neg means r is a negative number; zero means r is 0; pos means r is a positive
number. Since the value domain of r is changed, the corresponding operations on
r has to be changed as well. For example, the abstract operation of '+, "+4,
becomes zero 445 2670 = zero, pos +aps POs = Pos, Pos +as neg = {neg, zero, pos},
etc. We can find that non-determinism is introduced into the operation in the latter
case. This type of non-determinism over-approximates the concrete model, and is
the source of false-negative problems in the verification.

How to get the abstract domains is always a big problem in this approach.
In the current existing abstract interpretation based approaches [22], the abstract
domain is defined by the user. Namely, the user has to define, firstly the abstract
values of one variable; secondly, the mapping between the concrete values and the
abstract values. Once the abstract domain has been defined, the abstract operations
can be generated [8]. However, in some approaches, the abstract operations have to
be given by the user [20].

In practice, real systems are much more complicated than the above exam-
ple. For different data types, and different operator types, we have to define dif-

ferent kinds of abstract interpretations, for example, for integers signs, for integer

15



even/odd, for integer modulo-k, for sets, and so on [28]. Namely for one variable,
there are many abstract interpretation choices. So, it is important that these choices
do not conflict. For example, integer y is abstracted as {pos, zero, neg}, while integer
z is abstracted as {even, odd}. If there is an assignment y = z in the model, it would
be a conflicting abstract type, since it is not clear how to covert a {pos, zero, neg}
tvpe to a {even,odd} type. Although tools can help users select different abstract
interpretations during the verification {29], a lot of user interaction is involved. Once
a correct abstract mapping has been established, translating a concrete program to
an abstract program is not difficult. We can replace all the occurrences of the ab-
stracted variable by its abstract type. For example, the definition “int " can be
replaced by “{pos, zero, neg} z", and “z +y" by “plus_abs(z,y)”, and so on.

In our approach, although we analyze the value as well, we do not need to
define abstract domains. What we will do is to simply find all the redundant values
and use one typical value in the redundant value set instead of all the redundant
values. Our approach is, in some cases, not as efficient as abstract interpretation.
but we do not have the false-negative problem and the approach is automatic.

In [87], K. Yorav proposed ways to use the high level description (program
text) of a system in order to improve the model checking process by reduction.
The approaches are based on program static analysis, and analyze the control flow
graph of a program to reveal runtime information of the program, without actually
running it. The idea is to use static analysis to build a reduced Kripke structure for
the program. The reduced Kripke is equivalent to the original program behavior with
respect to CTL* without the next state operator. Two methods are presented and
compared which use static analysis to create reduced models for programs. The first
method, called “path reduction”, reduces according to control, and the second, called
“dead-variable reduction”, reduces according to data. Both methods automatically
create a reduced Kripke structure directly out of the syntax of the program (the

control flow graph), thus avoiding the need to create the full Kripke structure.

16



The path reduction method excludes possible interleaving between processes. In
the reduction, all the paths between two states containing variables of interest are
examined. All the states in the path that will not affect the variables of interest
are compressed in a single step. The dead-variable reduction excludes some of the
successors of a state in which the variables of interest are dead. Our proposed
approach has advantages over this approach because: (1) our abstract model is less
restrictive since in Yorav's approach the program is required to terminate while ours
does not, (2) because we use reflexive and transitive closure as the transitions in the
Kripke structure of the state space, the state space in our approach is inherently
smaller, (3) the reduction in Yorav's approach is simply to compress paths while we
do not limit our reduction on paths, so our approach has a better performance in
the reduction.

In [48], Miller and Katz proposed a path reduction approach to eliminate
invisible states from the model of a program, where invisible states are states for
which all the entering transitions cannot influence the specification. Their method
constructs the projected visible state space relative to a specification through a
data flow traversal that eliminates invisible states. The construction of the visible
state space requires a linear traversal of a model that is somewhat reduced from
the original model of the system, but is still larger than the reduced model which
is produced. The difference from our approach is that we produce the reduced
model from the syntactic model of the program and not from the Kripke structure
representing it. The syntactic model is significantly smaller since it expands only
the program counter and not the program variables, which are the source for the
enormous size of the semantic model.

In [67], K. S. Namjoshi et al. proposed a reduction approach which translates
a variable with large value domain, for example an integer, into a set of predi-
cates. These predicates are determined by the automated syntactic analysis of the

program under verification. The reduction result is a reduced program text, not

17



an explicit-state graph, namely this reduced program can be reduced further using
other explicit-state reduction methods. We propose a different approach from this
one by generating abstract domains instead of predicates.

Our reductions are also related to works like cone-of-influence reduction [55,
54]. However, our approach is an extension of these approaches because we ana-
lyze the dependency between the values of variables in addition to the dependency

between variables, thus the dependency relation is more accurate.

1.3.3 Summary

In light of the above related work review and discussions, we believe the contributions

of this thesis are twofold as follows:

1. We propose an environment synthesis method for compositional verification,
which constructs the environment of a module from temporal formulas via
reduced tableaus. Compared with existing related work, the size of this syn-
thesized environment is smaller, which is a key factor in order to make compo-
sitional verification. We also formally prove that the synthesized environment
covers all the models satisfying the environment temporal properties. Based
on this approach, we implemented a tool, which synthesizes the environment
assumptions in the compositional verification into Verilog HDL executable

programs.

o

We propose a model reduction approach, which is based on the syntactic and
semantic analysis of Verilog HDL programs. Compared with previously exist-
ing related work, the proposed approach is automatic and has better perfor-
mance on large datapath designs. On the other hand, since normally the size
of the source code is much less than that of its state space or other intermedi-
ate forms, this approach uses less resources with respect to the CPU time and

memory space throughout the reduction.

18



To illustrate the above approaches, we used an ATM (Asynchronous Transfer
Mode) switch fabric from Nortel Networks as a real case study. which size is beyond

the capability of current plain model checking tools.

1.4 Outline of the Thesis

The rest of the thesis is organized in four parts as follows. Part [ provides the
required theoretical background on model checking and temporal logics; Part II
deals with the tableau construction and environment synthesis approach; Part 11 is
dedicated to the proposed static model reduction; Part IV finally covers a detailled
case study on both approaches. More specifically:

In Chapter 2, we overview the model checking approach including system
models, temporal logics, and model checking procedures. We also highlight the
relations between the system models and temporal logics.

In Chapter 3, we review the existing compositional verification approaches,
especially assume-guarantee reasoning. Based on these approaches, we define the
compositional theorem with respect to systems with different signal dependencies.
The compositional theorem gives the conditions where a global property can be
decomposed into local properties.

In Chapter 4, we propose the reduced tableau construction method. It provides
the theoretical basis for the environment synthesis techniques.

In Chapter 5, we describe the environment synthesis approach where tempo-
ral logic formulas are synthesized into executable Verilog modules. These Verilog
modules are used as the environment assumptions in the compositional verification.

In Chapter 6, we review the existing model reduction approaches applied in
model checking including cone-of-influence, symbolic abstraction, etc.

In Chapter 7, we introduce the abstract program syntax and semantics; this

19



abstract program is the model of the design under verification. Based on this ab-
stract program model, we propose the syntactic model reduction methods. After
the reduction, we get a reduced program, which preserves the specifications. We
also apply the compositional verification techniques on a few benchmarks and a for-
warding table lookup processor, with emphasis on demonstrating the power of the
compositional verification framework.

In Chapter 8, we describe a case study based on an ATM switch fabric from
Nortel Networks and illustrate the modeling and verification of the fabric, respec-
tively.

In Chapter 9, we conclude the thesis and outline future research directions.

20



Chapter 2

Model Checking: Preliminaries

Model checking [31] is to check the correctness of a design (FSM)against a set of
general properties. The FSM is formally depicted by a state transition structure,
i.e., Kripke structure [51]. while the general properties are formally described by
temporal logic [30] formulas. The FSM satisfies the general properties if and only
if the Kripke structure satisfies the temporal logic formulas. Usually. in order to
improve the model checking efficiency, the Kripke structure is often illustrated by
binary decision diagrams [61]. This is the so-called symbolic model checking. In the
following sections, we will describe the above ideas in detail. Besides, we will review
the fairness and simulation relations. All these concepts provide the background of

our research in the sequel.

2.1 System Modeling

Modeling a system formally is the first step in order to verify it. In this thesis,
we are primarily concerned with synchronous hardware systems and their behaviors
over time. The first feature of such a system we want to capture is its states. Let
V" = {v,...,v,} be the set of system variables which range over a finite set D. A

valuation for V' is a function that associate a value in D with each variablevin V7. A

21



state is the valuation for 17 at a particular instant of time or a snapshot. In addition
to the state, we also need to know how the states change with respect to some
actions occurring in the system, which is given by a transition between the state
before the action and the state after the action. So, the behaviors of the system
can be described by the states and the change of the states, namely transitions.
Formally, a state transition graph by the name of Kripke structure [51] is used to

capture the behaviors.

Definition 2.1.1 [51] Let AP be a set of atomic propositions. A Kripke structure
KC over AP is a four tuple K = (S, I, 9, A) where

e S is the finite set of states.
o [ C S is the set of initial states.

e § C S x S is a transition relation that must be total, that is, for every state

s € S there is a state s' € S such that §(s,s"). Namely, s' is the next state of

S.

e \: S = 2% is g function that labels each state with the set of atomic propo-

sitions true in that state.

A computation of the above transition system is an infinite sequence of states,
where each state is obtained from the previous state by some transitions. This

intuition is captured by the path as defined below.

Remark 2.1.1 [22] A path in the structure K from a state s, is an infinite sequence
of states ™ = s¢S,52... such that for all i > 0, §(s;,5:41). We will use the notation

7™ for the suffiz of ™ which begins at s,, and T, for the i'h state in the path.

In order to avoid state space explosion problem, techniques are developed to

replace a large structure by a smaller structure, which satisfies the same properties.

22



More generally, given that the properties are in a logic £ (which will be introduced
in the next section), and a transition structure KC, we would like to find a smaller
structure K’ that satisfies exactly the same set of properties of the logic £ as K. In
order to accomplish this goal, we need a notion of equivalence between structures
that can be efficiently computed and guarantees that two structures satisfy the same
set of properties in £. Following, we review two relations between the structures:

bisimulation and simulation.

Definition 2.1.2 [69] Given two structures K = (S,1,4,A) and K' = (S, I'.¢', \')
with the same set of atomic proposition AP, a relation B C S x S’ is a bisimulation
relation between K and K' if and only if for all s and and s', if B(s,s') then the

following conditions hold.
o As) = MN(s)

e for every state s; such that §(s,sy), there is a state s| with the property that

0'(s', s1) and B(sy, s})

o for every state s\ such that 6(s',s}), there is a state s, with the property that

§(s, s1) and B(sy, s})

Two transition structure X and K’ are bisimulation equivalent, denoted K =
K', if there exists a bisimulation relation B such that for every initial state so € [
in K there is an initial state s5 € I’ in K’ such that B(sq, sg). In addition, for every
initial state sy € I’ in K' there is an initial state sy € [ in K such that B(so,sg).
Bisimulation guarantees that two structures have the same behaviors.

On the other hand, simulation relates a structure to an abstraction of another
structure. Because the abstraction can hide some of the details of the original struc-
ture, it might have a smaller set of atomic propositions. The simulation guarantees
that every behavior of a structure is also a behavior of its abstraction. However,

the abstraction might have behaviors that are not possible in the original structure.

23



For example, in an actual implementation, some events always occur within twenty
execution steps. But in an abstraction, this event may occur after any number of

execution steps.

Definition 2.1.3 [66] Given two structures KK = (S,[,d,A) and K' = (§',[',6', X)
with AP' C AP, a relation H C S x S’ is a simulation relation between K and K',

if and only if for all s and s', if H(s,s') then the following conditions hold.
e AMs)N AP = N(s)

o for every state s; such that d(s,s), there is a state s\ with the property that

d'(s',s1) and H(s,, s)

Transition structure X' simulates Transition structure IC, denoted by K < K,
if there exists a simulation relation H such that for every initial state so in KC there
is an initial state sg in K’ for which H(sg,s;). The simulation relation can also be
proven as a preorder relation[22], namely it is a reflexive and transitive relation.

The simulation is the relation to replace a large structure by a smaller struc-

ture, which satisfies the same temporal logic properties [22].

2.2 Temporal Logics

Formally, a property of a system can be defined as a set of behaviors, i.e., infinite
sequences of states, which represent the desired behaviors of the system. The prop-
erty usually is specified by temporal logic [30] formulas interpreted over the Kripke
transition structure in Section 2.1. Temporal logic uses atomic propositions and
boolean connectives such as conjunction (A), disjunction (V), and negation (-) to
build up complicated expressions describing the states and the transitions.
Generally, temporal logic is the formalism for describing sequences of transi-

tions between states in a system. In the temporal logics that we will consider, time is

24



not mentioned explicitly; instead, a temporal logic formula might specify that even-
tually some states are reached, or that an error state is never entered. Properties
like eventually or never are specified using special temporal operators. These oper-
ators can also be combined with boolean connectives. Here, we will introduce the

temporal logics which are used throughout the thesis: CTL*, CTL, and ACTL.

2.2.1 CTL*

Conceptually, CTL* (Computation Tree Logic *) formulas describe properties of
computation trees. The tree is formed by designating a state in a Kripke transition
structure as the initial state and then unwinding the structure into an infinite tree
with the designated state at the root, as shown in Figure 2.1. The computation tree

shows all of the possible executions starting from the initial state.

@ State Transition Graph

Unwind State Graph to Obtain Infinite Tree

Figure 2.1: Computation Tree

CTL* formulas are composed of path quantifiers and temporal operators. The

25



path quantifiers are used to describe the branching structure in the computation
tree. There are two such quantifiers A (“for all computation paths”) and E (“for
some computation paths”). These quantifiers are used in a particular state to specify
that all of the paths or some of the paths starting at the state have some property.
The temporal operators describe properties of a path through the tree. There are

five basic operators:

e X (“next time") requires that a property holds in the second state of the path.

F (“eventually or in the future”) asserts that a property will hold at some

states on the path.

e G (-always or globally™) specifies that a property holds at every state on the

path.

U (“until”) is used to combine two properties. It holds if there is a state on

the path where the second property holds, and at every preceding state on the

path, the first property holds.

V (“release”) is the global dual of U. It requires that the second property
hold along the path up to and including the first state where the first property

holds. However, the first property is not required to hold eventually.

Using the basic operators A and U, other operators can be defined as abbre-

viations, e.g.,

o Ef =-A-f.
e Ff =trueUf.
e Gf =-F-f.

* fVg=-(~fU~g).

26



Based on the path quantifiers and temporal operators, we can define state

formulas and path formulas as follows.

Definition 2.2.1 Let AP be the set of atomic propositions. There are two types of

formulas in CTL *: state formulas and path formulas, which are defined as follows.
e [fpe AP, then p is a state formula.

o [f f and g are state formulas, then —f and f V g are state formulas.

If f is a state formula, then f is also a path formula.

If f and g are path formulas, then —f | fvg, Xf, and fUg are path formulas.

If f is a path formula, then A(f) is a state formula.

If f is a state formula, the notation K, s = f means that f holds at state s in
the transition structure K. Similarly, if f is a path formula, KC, 7 = f means that
f holds along path = in transition structure K. When the transition structure K is
clear from context, we will usually omit it. The relation “[=" is defined inductively
as follows (assuming that p is an atomic proposition, f| and f, are state formulas

and g, and g, are path formulas):
e s =pifand only if p € L(s).

s = —fy if and only if s [~ f.

sEfHVfifand only if s|= fi or s |= fo.

s = A(gy) if and only if for all paths 7 starting with s, 7 =g, .

7k fiifand only if my = fi -

7 = gy if and only if 7 £~ g;.

27



e TE=g Vg ifand only if 7 =g, or 7 = ¢o.
e 7 = X(g,) if and only if 7! |= g1.

e 7 = (g1)U(g,) if and only if there exists a ¢ > 0 such that #* |= g, and for all

0<j<im =g.

e © = (91)V(g2) if and only if for every j > 0, if for every 0 < ¢ < j, 7 [~ g

then 77 | g,.

Example 2.2.1 A(FGp) vV AG(EFp) is a CTL* property meaning that p always

eventually occurs and then holds, or p always possibly occurs.

2.2.2 CTL and LTL

There are two sublogics of CTL*: one is branching time logic (CTL) and the other
is linear time logic (LTL). The distinction between the two is in how they handle
branching in the underlying computation tree. [n branching time temporal logic
the temporal operators quantify over the paths that are possible from a given state.
[n linear time temporal logic, operators are provided for describing events along a
single computation path.

CTL is one of the temporal logics used in model checking [17], and is a re-
stricted subset of CTL*, where each of the operators G, F, X, V, and U must
be immediately preceded by a path quantifier A or E. More precisely, CTL is the
subset of CTL* which is obtained if the following rule is used to specify the syntax

of path formulas.
e If f and g are state formulas, then X f, fUg are path formulas.

Linear Temporal Logic (LTL) [30], on the other hand, will consist of formulas
that have the form A f where f is a path formula in which the only state subformulas

permitted are atomic propositions. More precisely, an LTL path formula is either:

28



e If pe€ AP, then p is a path formula.

e If f and g are path formulas, then ~f, f A g, fve Xf,Ff, Gf, fUg, and

fVyg are path formulas.

LTL has different expressive power as CTL. For example, the CTL formula
that is equivalent to LTL formula A(FGp) does not exist. This formula expresses
the property that along every path, there are some states from which p will hold
forever. Likewise, there is no LTL formula that is equivalent to the CTL formula
AG(EFp) meaning that there always eventually exists a p. The disjunction of these
two formulas A(FGp) v AG(EFp) is a CTL* formula that is not expressible in
either LTL or CTL.

Here, in this thesis, we will focus on CTL and its sublogics, where the seman-
tics of the operators are the same as that in CTL*. In CTL, each of the CTL
operators can also be expressed in terms of three operators EX, EG, and EU. For

example:

o AXf = -EX(~f)

AGf = -EF(~f)

AFf = ~EG(~/)

EFf = E(trueUy)

A(fiUfy) = SE(=f2U~fi A= fo) A -EG~f,

A(fiVfr) = SE(=fiU-f,)

E(fiVfy) = -A(=/iU~f,)

The four operators that are used most widely are illustrated in Figure 2.2.

Each computation tree has the state s, as its root.

29



O O

P P

K.SO hEFf K'SO ‘:AFf

o ®
« e
A A

X.sq EEGf K.so FAGS

Figure 2.2: Basic CTL Operators

2.2.3 ACTL

ACTL [36] is a subset of CTL, where only universal path quantifier, namely only
A is allowed.

The set of well-formed universal computation tree logic (ACTL) are con-
structed from a set of atomic propositions AP which represent properties of indi-
vidual states, the standard boolean operators, the temporal operators X, U and V,
and the universal path quantifier A.

Similarly, we introduce additional temporal operators as abbreviations: AG f;
is defined as A(false V), which means f; always holds, and AF f, is defined

as A(true Uf)), which means f; eventually holds. In the following sections, if it

30



does not lead to confusion, we may use fiAUf, or fiAV f, instead of A(fiUf,) or
A(fiVf,), respectively.

All ACTL formulas belong to CTL but the reverse does not hold (syntacti-
callv). The syntax of CTL requires that the temporal operators X, F, G, U and V
are immediately preceded by a path quantifier E or A. If this restriction is dropped,
then the more expressive branching temporal logic CTL* is obtained. [t contains
for example A(F fi A Gf,) formula which is not an CTL formula. The relationship
among ACTL, CTL, LTL and CTL* is depicted in Figure 2.3.

AG(EF q)

AlpUql AF(AGp)

Figure 2.3: Relationship between ACTL, CTL, LTL and CTL*

2.2.4 Fairness

Another issue we need to consider is fairness in the context of temporal logics. In
many cases, we are only interested in the correctness along fair computation paths.
For example, if we are verifying an arbiter, we may wish to consider only those
executions in which the arbiter does not ignore one of its request inputs forever.
Alternatively, we may want to consider communication protocols that operate over
reliable channels, which have the property that no message is ever continuously
transmitted but never received. We call this fairness constraint. A fairness con-

straint is an arbitrary set of states, which satisfy certain constraints. A fair path in

31



the transition structure with respect to fairness constraints must contain an element

of each fairness constraint infinitely often. Formally,

Definition 2.2.2 A fair Kripke structure is a 5 tuple K = (S, [, 6, \, F), where
e S, 1,4, and ) are defined as before;

o F C 2% is a set of fairness constraints (often called generalized Bichi accep-

tance conditions).

Let # = sg,s;,... be a path in K. The notation inf(7) denotes the set of

states that occur infinitely many in 7. Namely
inf(r) = {s|s = s, for infinitely many i}

We say that 7 is a fair path if and only if for every F, € F, inf(r) NF, #0.
The semantics of the temporal logics with respect to a fair Kripke structure is
very similar to their semantics with respect to an ordinary Kripke structure, except

that all path quantifiers only range over fair paths.

2.2.5 Temporal Logics and Relations

The relationships between the temporal logics and the relations between transition

structures, i.e., bisimulation and simulation, are concluded by the following two

theorems.

Theorem 2.2.1 [22] If K = K' then for every CTL* formula f, K' = f if and
only if K = f.

Theorem 2.2.2 [22] Suppose K < K'. Then for every ACTL formula f, K' = f
implies K = f.

32



In order to tackle state space explosion, a smaller structure, which can preserve
temporal logic properties of a larger structure is used. The most often used relation
between these two structures is the preorder (simulation) relation (<). The preorder
relation preserves the ACTL properties. Namely, if H is a preorder (<) relation
between K and K', and f is an ACTL formula, then £  f < K' |= f. Another
often used relation is the equivalence (&) relation, namely if B is an equivalence

relation between K and K', and f is a CTL* formula, then L | f & K' | f.

2.3 CTL Model Checking

We have seen that CTL model checking is an automatic formal verification ap-
proach to check CTL formulas with respect to the Kripke transition structure. Its
significance comes from the great ease of use of fully algorithmic methods, as well
as from the fact that many synchronization and communication systems can be
modeled as finite state machines. Finite state machines then can be modeled by
transition structures where each state has a bounded description, and hence can be
characterized by a fixed number of Boolean atomic propositions. In the CTL model
checking [18], the correctness of a finite state machine is verified with respect to a
desired behavior by checking whether a labeled transition structure that models the
machine satisfies an CTL formula that specifies this behavior.

Given a transition structure M = (S,/,4,\) that represents a finite-state
concurrent system and an CTL formula f expressing some desired specification,
model checking is to find the set of all states in S that satisfy f: {s € S|M,s = f}.
The system satisfies the specification provided that all of the initial states [ are in
the set.

The model checking process can be described as follows. Assume that we
want to determine which states in S satisfy the CTL formula f. The algorithm will

operate by labeling each state s with the set label(s) of subformulas of f which are

33



true in s. Initially, label(s) is just A(s). The algorithm then goes through a series
of stages. During the i* stage, subformulas with ¢ — 1 nested CTL operators are
processed. When a subformula is processed, it is added to the labeling of each state
in which it is true. Once the algorithm terminates, we will have that M, s | f if
and only if f € label(s).

Recall that any CTL formula can be expressed in terms of -, vV, EX EU and
EG. Thus, for the intermediate stages of the algorithm it is sufficient to be able
to handle six cases, depending on whether f is atomic or has one of the following
forms: =f. iV o, EXf,E[fiUf2], or EGf.

For formulas of the form —f, we label those states that are not labelled by f.
For f, V f,, we label any state that is labelled either by f, or by f,. For EXf, we
label every state that has some successor labelled by f.

To handle formulas of the form g = E[fiUf,], we first find all states that
are labelled with f,. We then work backwards using the converse of the transition
relation ¢ and find all states that can be reached by a path in which each state is
labelled with f,. All such states should be labelled with g.

The case in which ¢ = EGf is slightly more complicated. [t is based on
the decomposition of the graph into nontrivial strongly connected components. A
strongly connected component C is a maximal subgraph such that every node in
C along a directed path entirely contained within C. C is nontrivial if and only if
either it has more than one node or it contains one node with a self-loop.

In order to handle an arbitrary CTL formula f, the state-labelling algorithm
is applied to the subformula of f, starting with the shortest, most deeply nested,
and work outward to include all of f. By proceeding in this manner we guarantee
that whenever we process a subformula of f, all its subformulas have already been
processed. Each pass of the above process takes time O(|S| + |4]) and since f has at

most | f| different subformulas, the entire algorithm requires time O(| f] x (|S]+14]))

34



From the complexity, we can find that model checking suffers from the so-
called state space explosion problem. In a concurrent setting, the system under
consideration is typically the parallel composition of many modules. As a result,
the size of the state space of the system (|S| + |d]) is the product of the sizes of
the state spaces of the participating modules. This gives rise to state spaces of
exceedingly large sizes, which makes linear time algorithms impractical.

Symbolic model checking is to check CTL properties by representing Kripke
structure using Reduced Ordered Binary Decision Diagrams (ROBDDs) [12]. Con-

sider the two states structure shown in Figure 2.4. In this case there are two state

sl s2

Figure 2.4: Two-state Kripke structure

variables, a and b. We introduce two additional state variables, a’ and b' to encode
successor states. Thus, we will represent the transition from state s; to s, by the

conjunction
(anbAa A-b)
The Boolean formula for the entire transition relation is given by
(aAbAd A-b)V(aA-bAd A=)V (aA-bAd AY)

There are three disjuncts in the formula because the Kripke structure has three
transitions. This formula is now converted to an ROBDD to obtain a concise rep-
resentation for the transition relation.

The symbolic model checking procedure Check [61] takes the CTL formula
to be checked as its argument and returns an ROBDD that represents exactly those

states of the system that satisfy the formula. Of course, the output of Check depends

35



on the ROBDD representation of the transition relation of the system being checked.
The procedure is defined inductively over the structure of CTL formulas. For
example, if f is an atomic proposition a, then Check(f) is the ROBDD representing
the set of states satisfving a; formulas of the form EX f is handled by the procedure
Check(EXf) = CheckE X(Check(f)), where formula EXf is true in a state if the

state has a successor in which f is true, etc.

2.4 Tableau Construction

Tableau construction [17. 59, 57, 36, 46, 22] is a procedure to translate a temporal
logic formula f into an FSM T;. If T; covers all the behaviors of formula f, then
we call 7y the maximal model of f. namely for every structure A/. the tableau is

required to satisfy
MEfIfFMXT;

where < is the simulation relation in Section 2.1. This is the key property of the
tableau construction.

As we mentioned in Section 1.2, in the compositional verification, properties
only can be true under certain environment assumptions. [t is our obligation to
describe such environment assumptions in the compositional verification such that

informally, we can reason as follows:

1. if the real environment satisfies the environment assumptions ¢ which is tem-

poral logic formulas; and

2. one module of a system under verification satisfies property ¥ under environ-

ment assumptions ¢

3. then the system satisfies property .

36



This is the so called assume-guarantee reasoning {56]. In step 2, we have to trans-
late environment assumptions ¢ into an FSM, i.e., T, because we cannot directly
compose logic formulas ¢ with an FSM module. In order to make the reasoning
sound, it is required that 7, cannot miss any behavior contained in ¢, namely 7,
is the maximal model of . Note that, not all the results of tableau construction
approaches are maximal models. Here in this thesis, we only consider the maximal

model of the tableau.

37



Part 1

Environment Synthesis

38



Chapter 3

Compositional Reasoning

In this chapter, we will introduce more technical details of the existing compositional
verification approaches [73], especially, the assume-guarantee reasoning, which is the
foundation of our research. Throughout the illustration, we propose a system par-
titioning method using arrays. Besides, we propose the reasoning rules for systems
with different signal dependencies, such as circular reasoning for systems with cir-

cular signal feedbacks. We also formally prove the soundness of our reasoning rules.

3.1 Introduction

Many finite state systems are composed of multiple modules running in parallel.
The specifications for such systems can often be decomposed into properties that
describe the behavior of small parts of the system. An obvious strategy is to check
each of the local properties using only the part of the system that it describes. If we
can deduce that the system satisfies each local property, and that the conjunction
of the local properties implies the overall specification, then we can conclude that
the complete system satisfies this specification as well.

This means that we separate the specification of a system into properties of its

components and verify the properties of the components separately. This of course

39



leaves us the obligation of proving that the component specifications in turn imply
the specification of the entire system. This is called compositional verification [57].

[n the simplest case, imagine we have a system composed of two modules A
and Aly, which communicate with each other over a channel or channels, and also

communicate with their environment (Figure 3.1)

Ml M1

Figure 3.1: Two Reactive Modules

We denote this system M || Mo, for the parallel composition of A, and As.
Given component specifications ¢y, for module Al and ,y, for module M,, we

would like to reason according to the following schema:

My F= PYan

My | oar,
Par, P, F ¢
Mif[ M =

There are a number of difficulties involved in developing a verifier that can
support this style of reasoning. First, since it is often the case that the local property
is only true under certain environment conditions, we need to be able to make
assumptions about the environment of the component when doing the verification.
These assumptions, which represent requirements on other components, must also be
checked in order to complete the verification. This is called the environment problem
(63]. In addition, we must provide a method for checking that the conjunction of
certain local properties implies a given specification. Assume-guarantee reasoning
is one of the most important solutions in this regard.

In the assume-guarantee reasoning case [57, 36, 6, 21, 62, 4, 39, 64, 41, 65,
6, 40], the environment is expressed by an assumption that module Af; makes on

module A/, using a temporal formula 1,r,. These assumptions can be used when

40



checking that Al satisfies its specification @,y , and must, of course, be discharged

relative to Af,. To do this, a reasoning rule is used such as the following:

My = ¥ar,
M || Yar, = ou
AL ” M, }= P

where Ay || ¥ar, means M, || M with M |= ¢ny,. Here, the environment problem

is just deferred but not solved because we have to show M, = ¥, without any
environment.

In the following, we will introduce the assume-guarantee approach, and then

we discuss the problematic to deal with.

3.2 Assume-guarantee Reasoning

In [57], D. E. Long and O. Grumberg have shown that given a CTL formula ¢, there
is no efficient algorithm! to develop a fully general system of inference rules that will
handle arbitrary temporal properties. In this case, the decomposed specifications
cannot be proved to imply overall specification. It is a big disadvantage of this
approach.

Although no mechanical proof was given, we can image the reason. First, it is
generally not possible to decompose a formula into subformnulas, check the subfor-
mulas, and combine the results. For example, consider checking EX(a = 1)V EX(«
= 0) on a Moore machine where « is an input ranging over {0,1}. Obviously, the
formula as a whole will be true regardless of what the environment does. However,
EX(a = 1) is certainly not true for all environments, nor is EX(a = 0). Thus,
determining whether the two subformulas are true in all environments does not help

us solve the overall problem.

'Here, efficient algorithm means this algorithm is exponential in input state variables, but
polynomial in states and transition relations etc., because we cannot find an algorithm with a run
time sub-exponential with respect to input state variables.

41



Second, because of the complexity of models under verification, we sometimes
cannot just look at immediate successors when evaluating temporal formulas. Con-
sider the Moore machine in Figure 3.2 [57], where we try to determine whether
EXEXb = 1 is true for all systems containing the Moore machine shown in the
figure. In standard CTL model checking, we would use the truth value for EXb =
1 at the two successors of the initial states to determine whether EXEXb = 1 was
true at the initial state. For this example, there are environments that make EXb
= 1 false at the left successor and others that make the formula false at the right
successor. However, the overall formula is in fact true in all environments. This is
because no environment can distinguish between the two successors based on their
labelling. Hence, if the environment supplies the input a = | to the left successor,
b = 1 becomes true in the next state. If it supplies only a = 0, then it must also
supply a = 0 to the right successor, and this will again lead to a state where b is

true. Thus we cannot just look at immediate successors when evaluating temporal

operators.

Figure 3.2: Property Decomposition

Because of the above reasons, generally, it is widely accepted that a temporal

logic without E-path quantifiers, namely, ACTL, should be used instead of CTL

42



in the compositional verification.

The assume-guarantee style of the compositional verification was first advo-
cated in the context of temporal logic by Pnueli [77]. In Pnueli’s system, triples of
the form ()M (¢) are used. The most common reading of such a triple is “if the
environment of Al satisfies ¢, then Al in this environment satisfies ¥ A typical

chain of reasoning would be as follows:

()M (p)
(p)M'(¥)
(MM (V)

Here, we are asserting that:

1. If M satisfies ¢ and

[AV)

. [f the environment of M’ satisfies o, then M’ satisfies v;
3. Then the composition of M and M’ will satisfy .

The advantage of doing the verification in this manner is that, first, we never
have to examine the composite state space of M|[Al’. Instead, we check o using
just M, and then check ¢ using only M’ and the (hopefully simple) assumption .
Second, this kind of chain reasoning gives us the possibility of doing hierarchical
verification. The disadvantage is that the user must determiine an appropriate .
Knowledge of how the system should behave plus feedback from an automatic ver-
ifier makes this feasible in practice. More generally, we may use multiple levels of
assumptions and guarantees when doing verification. That is, once we have proved
a guarantee, we may use that guarantee as an assumption in later stages. Because
of this, a somewhat more precise reading of ()M (1) would be “if the system sat-
isfies ¢ and contains M, then the system also satisfies ¥)”. This is because ¢ may
in fact be something that is derived based on earlier assumptions about M, and
may reflect these assumptions. Also, ¥ may describe the combination of Al and its
environment, instead of just A. Of course, in order to avoid erroneous conclusions,
all chains of deduction, i.e, signal dependencies, must be well founded, i.e., the base

assumptions must themselves be proved without any assumptions, like () M{p). As

43



we already mentioned in last section, it is hard to prove a formula of a component
without specific environment if we use a full set of CTL. An efficient solution might
be again ACTL.

However, the key issue in assume-guarantee reasoning is to establish the truth
of a triple (¢) M'(¥). An elegant way to obtain a system with the above properties is
to provide a preorder relation < on the finite state models that captures the notion
of “more behaviors” and to use a logic whose semantics relate to the preorder. The
preorder should preserve satisfaction of formulas of the logic, i.e., if a formula is true
for a model. it should also be true for any model which is smaller in the preorder,

namely,
(My S MY A M, | o implies M = ¢

Another requirement for the reasoning is that composition should preserve the pre-

order. That is,
(M, X M) A (M 2 M) implies (M, ||My) < (M]]|AL)

In additional, following condition is needed in the assume-guarantee reasoning.
Namely, for all formulas ¢ with respect to M there exists a process T () called
tableau of ¢, such that M <X T(y) if and only if M = ¢ .

In such a framework, the soundness of the assume-guarantee reasoning

()M ()
(9) M (V)
() ML || My (Y)

can be proved as [57]:

(1) QAM(p) = My 2 T(p);

(2) AL < M, because the preorder is reflexive;
(3) MallMy X MG||T (0);

(4) (L) Ma() = Maf|T () X T(¥);

44



(5) M,||M; < T(¢') because the preorder is transitive;

(6) ()Ml AL w) O

In [36], a notion of “simulation relation <" between state transition systems
is introduced as the preorder. We could in fact view this preorder relation as the
basic relationship between an implementation and a specification. Af; < M, means
“M, refines AL or “Al; simulates M,” or “M, abstracts A,”.

Because of the transitivity of <, we would get hierarchical verification essen-
tially for free. For example, if A < M’ (“M' can simulate A™), and if we want to
know whether A/ < A", then it would be enough to check that Al" < Af”. Here, A’
would represent a specification of Al that is used to prove a higher level specification
M". The simulation relation will also interact with composition in a nice way: if
M <A, then we will have M||M" < AL'||M". This type of property allows us to
replace an implementation by its specification in a composition.

Another key point in this assume-guarantee reasoning is that any ACTL for-
mula i has a mazimal model T (¢) which includes all the behaviors of ¥. T(¢) can
be obtained by a tableau construction procedure. This tableau construction maps a
formula ¢ to an associated state transition system T (¢) which is called the tableau
of the formula. The standard model checking algorithm is used at one level, then we
construct tableaus for the specification formulas and use them as implementations
at the next level.

[n the above framework, the classic assume-guarantee reasoning can be defined

M < T(p)
M'||T () X T(¥)
MM < T(¥)

As a final note, this reasoning will actually be working with structures rather
than Moore machines. This is mainly because formulas do not have notions of inputs

and outputs, so the tableau construction will most naturally produce structures. In

45



addition, structures can serve as “intermediate language” for representing other,
more complex types of models.

Following, we use an example to illustrate the above approach [57]. Let the
structures for two circuits be denoted by M and M’. We use AG(r =0 - AXq = 0)
as an assumption on AM’, and then prove the desired property AG(p =0V q = 0))
by combining this assumption with M:

OAM{(AG(r =0 - AXq = 0))

(AG(r =0— AXq =0)) M(AG(p =0V q =0))
QMM (AG(p =0V q=0))

Checking (JAM'(AG(r = 0 - AXq = 0)) will be done with the standard model

checking techniques. However, in order to check
(AG(r=0- AXq=0)M(AG(p =0V q=0))

we need to construct the tableau for AG(r = 0 - AXq = 0) and compose it with
M. The states of the tableau will have valuations for r and g, plus information about
the elementary formulas (For details, see [57]). After constructing the tableau and

performing the model checking, we find that
(AG(r =0—-> AXq=0))M{(AG(p=0Vvq=0))
does hold. We hence conclude
OM|IM(AG(p =0V q =0))

In above discussion, we illustrated a number of advantages of the assume-
guarantee reasoning. However, it does have some disadvantages.

CTL cannot be handled efficiently in current compositional verification in-
cluding the assume-guarantee reasoning. ACTL has to be used instead of CTL.
In practice, there are actually some cases which cannot be expressed by ACTL,
such as AGEF-y. In addition, as we know before, the reason of this problem is

the so-called environment problem, namely we have to prove a tautology of a .

46



Actually, every component will be working under a specific environment. It seems
unnecessary to prove a tautology of a temporal logical formula . So, can we only
prove that ¢ holds under a specific environment? In the assume-guarantee context,
this question can be translated to “can we use assumptions at the very first stage
of the reasoning?”

Following, we will describe a circular reasoning, which can avoid the environ-
ment problem as in [6, 64, 63, 40]. Briefly, we can express the circular reasoning
as:

AML||AM = AL

MM, — M!
MMy — MM

Here, we assume that module A/, satisfies A to prove that A[ satisfies M|, and vice
versa. Generally, this apparent circularity is not sound. However, this circularity
can be broken by induction over time. That is, let the notation A/ 17 stand for
V(t < 71).M or “M holds up to time t = 7". We can soundly reason as follows, by
induction on 7:

Mt = My 1T

My 7= M, 17
Ve (M, A M)

In the base case, when 7 = 0, note that A, 177! is a tautology. Hence, we have
M, 19, and thus Af, 19, M5 1!, M, 1! and so on. By reasoning inductively, we use

each module's specification as the environment of the other and avoid circularity.

3.3 Environment Arrays

Many finite state systems are composed of multiple processes running in parallel.
An obvious strategy is to check each of the local properties using only the part of the

system that it describes. This means that we divide the system and its specification

47



into partitions, and sub-specifications (properties) of the partitions and verify the
properties of the partitions separately.
Assume P; and P, are two partitions of a system. According to the assume

guarantee rules, we would like to reason according to the following schema:

P = Up,
Pl ” wpz ’= ©P,
P P2 E wp,

The environment of partition P, is expressed by an assumption that process P,
makes on process P, using a temporal formula ¥p,. This assumption is used when
checking that P, satisfies its specification ¢p,, and must, of course, be discharged
relative to P,.

A problem is involved in the above reasoning because the above reasoning rule
is not sound in a general system. For example, in the above reasoning rule, we prove
partition P, using partition P, as the assumptions. However, it is often the case
that we may prove partition P, using partition P; as the assumptions. This obvious
circular reasoning wili make the verification fail. In this case, either we cannot
separate partition P, and P,, namely if there are circular interface signals between
two partitions, then we have to put P, and P, as one entity in the verification,
or, we have to put some constrains on the reasoning rules to handle the circular
cases. [n this chapter, we will present how we separate the system, and make the

compositional verification.

3.3.1 System Partitions

In this section, we develop a model for the system under verification. The global
picture of the system is shown in Figure 3.3. We will define the structure of the

system under verification in Definition 3.3.1.

Definition 3.3.1 Let Q be a system composed of n partitions P; (i € [L : n]). An

abstract environment array Eq is an (n + 1) x (n + 1) array defined as follows,

48



;. | system

under
/ \:’enﬁcatlon

Py

system environment

Figure 3.3: System under Verification and System Environment

/ @ Ee[ Ee'l Een \
Ele E“ Ey) Eln
EQ _ E‘Ze E‘.’l E22 E‘.’n
En-ye Ewn-n1 En-na2 - Em-in
K Ene Eul En'l ce- Enn }

where Ey; (i,j € [1 : n]) stands for a specification of all interface behaviors from par-
tition P, to P,. E,, stands for the interface behaviors from the systern environment
to P,. E,. stands for the interface behaviors from P; to the system environment. If

there are no signals from partition P; to partition P;, E;; is denoted with Q.

E;; is a set of ACTL formulas which capture the behaviors of the input
signals of partition P;, and these signals are from partition P;. E., and E;, are
sets of ACTL formulas which capture the behaviors of the input/output signals of

partition P;, and these signals are from/to the system environment.

Definition 3.3.2 The inputs of partition P;, E!, is a set of ACTL formulas which
equals to the union of all the entries of one column in the i*" column in the abstract

environment array, namely E.; U Ey; U Ey; U ... U Ey;.

49



Definition 3.3.3 The outputs of partition P,, EC, is a set of ACTL formulas
which equals to the union of the entries in column 2 to column n + 1 of i*" row in

the abstract environment array, namely £, UEsU ... U E},.

A natural partition of the system is that one module is a partition. In this
sense, the compositional verification becomes modular verification where each mod-
ule is verified separately.

As we know, we have two solutions to tackle the circular reasoning. One is to
improve the system partition method; the other is to improve the reasoning rules.

In the first solution regard, we require that there are no circular signals between two

partitions, which we call it linear system.

Definition 3.3.4 A system Q is linear if in its abstract environment array, either
E, =0orE,=0 for all i < j, where i,j € [l : n|, namely the entries below or

above the main diagonal are all O except E;, and E,,.

A linear system means that all the interface signals are in the same direction
with respect to the index order of the partitions. In such a system, if there exist

signals from E, to E,, then no signal exists from E; to E; via direct or indirect

connections.
S3
P Paf1 %3
inputs from outputs to

the system environment  the system environment

Figure 3.4: A Linear System

Example 3.3.1 The system Q shown in Figure 3.4 contains three modules My, M,

and M. Each module is corresponding to a partition. Namely M, to Py, M to Ps,

50



and Mj to P3. This system is a linear system because all the entries E;j, i,j € [1 : 3]

and ¢ > j, equal to 0. The corresponding abstract environment array is:

0O E, 0 0
EQ _ 0 0 ElZ El3
0 0 0 Ey

E3e 0 0 (0

where, E\s, Ea3, and E\3 are the specifications of the interface signals Sy, S,,
and Sj, respectively. E., and Es,. are the specifications of of the input/output signals

[ and O, respectively.

Usually, when we make a one-to-one mapping between the modules and the
partitions in the system, the requirement in Definition 3.3.4 often cannot be satisfied.
For example, in a hand-shaking protocol, there always exists a pair of signals, which
are circular between two modules, namely, signals “req” from module ¢ to module j
and signals “ack” from module j to module i, or vice versa. In this case, both E|
and Ej; are not empty which violates Definition 3.3.4.

However, we can always find a mapping between the partitions and the modules
in the system so that the abstract environment array satisfies Definition 3.3.4. For
example, if a system, which is similar to that in Example 3.3.1, contains five modules
where there are circular signals among A, My, and M;. Partition P, may actually
be a set of modules as shown in Figure 3.5. In this case, the mapping between the

partitions and the modules in the system becomes:
e A is mapped to P,.
e M,, My, and M5 are mapped to P,.

e A3 is mapped to P;.

51



P, P3
I o
Inputs from Outputs to
the system environment the system environment

Figure 3.5: New Partitions

Thus, partitions Py, P,, and P are linear, so at least we can consider the system as
a linear system at the partition level. However, regarding the partition with circular
connected modules, we have to develop a circular reasoning approach to tackle this

problem.

3.3.2 The Circular Reasoning Rule

In practice, what we want to verify is that the system has proper response with
respect to the stimulus of the system environment, namely partition P; has expected
response E,, if the stimulus of P; given by the system environment is £,,. Moreover,
via tableau construction, E;, can be transformed into a finite state machine (for
detail, see next chapter). In this way, P; which is a finite state machine, will be in
the same context as that of £}, so we can use “||” to compose E;; and P,.

In a linear system, the compositional verification can be done naturally (The-

orem 3.3.1).

Theorem 3.3.1 Let 2 be a linear system composed of n partitions P; (i € [1 : n}),
i.e., Q = |I?=1Pi,' Zf

L.Vje(l:n~1,(PE) = E?;

2. Pol|lEL = Ene;

[4)]
(8]



then, Q = E,. under the system environment stimulus E.;, where = can be any

logic implications.

Proor:
Since Q is a linear system, the entries in the corresponding abstract environment

array below or above the main diagonal are all @ except E,. and E;.

Case 1: If the entries above the main diagonal are all @ except E,, and E.,.

In this case, partition P, has no inputs except the inputs from the system environ-
ment E,,, namely E! = E,,. Because E., does not need additional assumptions,
according to the assume-guarantee reasoning rule and the second condition in the

theorem, Q = E,. under the stimulus E,,.

Case 2: If the entries below the main diagonal are all @ except E;, and E.,.
In this case, partition P, has no inputs except the inputs from the system environ-
ment E,,, namely Ef = E,;. The only inputs of P, are from P, and the system

environment, so, according to the assume-guarantee reasoning rule:

El|P, = E?
Ej|P||EP = EP
E{||P\||P2 = EY

Since the only inputs of P; are from Py, P,, and the system environment, we can
prove E!||P\||P2||Ps = ES. Keep using the similar reason rules, eventually we can
prove E!_||Pi||Paf| ... Pn-1 = E?_,. Together with the second condition in the
theorem, we can conclude that Q = E,. under the system environment stimulus

E... [

According to this theorem, in a linear system, if each partition in the system
composed with its environments has correct outputs, then the whole system can

guarantee the correct behaviors.

33



However, as we know it is not always possible that the system under verification
is a linear system. Although we can make coarse partitions instead of the module-
to-partition one-to-one partitions, in the worst case, there is only one partition in
the system, namely the system itself. In this case, the compositional verification of
linear systems makes no sense. We therefore have to improve the reasoning rules to
handle this situation.

In this case, we use instead induction over time [64] and propose the Theorem
3.3.2 to verify a non-linear system (75, 74]. Since in this case, module Af; has always
one-to-one correspondence with partition P;, we need not distinguish A, and P, any

more.

Theorem 3.3.2 Let Q be a non-linear system composed of n modules M, (i € [1 :

n)), i.e., Q= ||~ M if
1. ¥j € [1:n], M, 1°= (EQ||Ene) 1%
2. Vje[l:n),(AGIE]) 1= EQ 1%
3. (Mi||E}) 1= Ene 1%

then, ¥,.(Q = E,.) under the system environment stimulus E,,.

Here, p 17 stands for V(¢ < 7).p or “p holds up to time t = 77".

PROOF:

1. According to the condition (1), every module has correct outputs at time O,
namely the reset values of the modules are the expected values and E,, also has
the expected initial values at time 0.

2. According to the condition (2), every module which has correct inputs at time 0
will have expected outputs £ at time 1. At time 1, since the environment E! of

module Al is ready, module A, has expected E,. at time 1 (the condition (3)).

24



3. Again, according to the condition (2), since the environments of each module are
ready at time 1, those modules will have expected outputs EJO at time 2 and
module Af, has expected E,, at time 2 as well.

4. Keep using the induction over time, we can know that for anytime from now till

future, the system has expected outputs Ey..

In this theorem, because there are feedback signals between modules in the
system, we request each module must have at least one unit time delay between the
its inputs and its circular feedback signals so that we can reason as following. Given
correct inputs at time ¢ — 1, each module in the system has correct outputs at time
t and the system is correct at time 0, we can conclude that the system guarantee

the correct behaviors.

M,

al| |b

I[nputs from [ M 0) Outputs to
the system environment = 1 ~ the system environment

Figure 3.6: A Circular System

Example 3.3.2 The system Q shown in Figure 3.6 is a synchronized circuit model
which contains two modules M, and M,. There ezist circular feedback signals be-
tween them, i.e. a and b. [ and O are the input ‘output from/to the system environ-
ment. We would like to verify that 2 has an ezpected output O if the environment
stimulus is [. §) obviously is not a linear system. We have to use Theorem 3.3.2 to
verify it.

The verification is illustrated in Figure 3.7 as follows. At time 0, we check all
the reset status to see if the output O 1° is satisfied.

If module M, can guarantee a 1' under the environment of [ 1° and b1°, and

M, can guarantee b ! under the environment of a 1°, we can conclude that O t! is

35



satisfied.

If module M, can guarantee a 1? under the environment of [ 1! and b 1!, and
M, can guarantee b 12 under the environment of a 1!, we can conclude that O 12 is
satisfied.

So on and so forth, we can conclude that for anytime the output is ezpected.

-1 =Tt M ... N DU
t=1 i — M M,
bt ! at!
0
_0 m‘\M[ ol Mol
- 1 T po
time bt a

Figure 3.7: Verification of the Circular System

Actually, in practice, it is the most significant portion of the overall design
cycle: starting with the definition of high-level specifications during design capture;
moving on to verify those specifications via verification; and continuing by parti-
tioning a design, decomposing it into functional blocks and smaller subsystems, and
verifying each of them. Further partitioning is carried out until the descriptive level
is suitable for synthesis. Some design management tools, such as SUMMIT [82], can
help us achieve this. Using this tool, engineers can capture the design graphically

in a hierarchical way and provide synthesis inputs partition by partition.

56



3.4 Summary

In this chapter, we reviewed the assume-guarantee compositional reasoning ap-
proach, as reported in the literature, and introduced the notion of environment
array to capture the reasoning rules. Next, let’s consider the following classical
assume-guarantee reasoning [36] (where M,[|M; means the parallel composition of
module M, and My; M, E ©ar, means that the module A/, satisfies the ACTL
specification ar,; (¥ar,, M) = ¢ means model A, satisfies formula 2 under the

environment described by @yy, ):

AL l= PAn
(‘P’A\![v A['Z) F 1'%
M| A Ep

We propose to replace (oar,, A2) by the composition of the synthesized Verilog
module of the tableau of ¢,;, and module AL, and the composed system then can
be fed into a model checker like VIS.

Since the compositional verification of full CTL is an NP-hard problem [57],
a widely accepted way to automate the assume-guarantee compositional verification
had been proposed by [36] using a simulation preorder and ACTL whose semantics
is consistent with the simulation preorder. The simulation preorder on finite state
machines captures the notion of more behaviors and preserves satisfaction of ACTL
formulas. Based on the close relation between the satisfaction and the preorder, we
can verify M | ¢ by checking the relation A/ < ¢. In practice, we use classical
model checking for verifving A |= ¢ if ¢ is given by a formula, and M < gifpisa
tableau. Consequently, the efficiency of checking the preorder depends on the size
of the tableau.

Based on these compositional verification approaches, we discussed how to
make the compositional verification using the abstract environment array. There
are two ways to do the verification. One is to partition the system under verification

into a linear system so that we soundly verify the system according to the partitions

o7



step by step. However, if the partition is still too large for verification, and we
cannot divide this partition further more because of some circular feedback signals,
we can turn to the induction over time reasoning to verify this partition. Using the
induction, we verify the reset status of the model and the induction steps.

A problem we intentionally avoid in this chapter is that the system under
verification is a finite state machine, but the entries in the abstract environment
array are a set of formulas. When we use the “||” or “=" operators, we have to
guarantee that the operands must be in the same context. We will discuss this

problem in the next chapter.

58



Chapter 4

Reduced Tableau Construction

4.1 Introduction

The complexities for different assume-guarantee reasoning styles with LTL (Linear
Time Logic) or CTL (Computational Tree Logic) as the environment assumptions
are explored in [53] [84]. Generally speaking, using LTL and CTL as assumptions
are both computation hard. The selection is a trade-off depending on the applica-
tions. In our approach, we use ACTL (A-Computational Tree Logic). a subset of
CTL, to capture the assumptions because (1) the environment assumptious can be
used as guarantees in the next verification stage so that hierarchical verification is
possible, since both assumptions and guarantees are in ACTL, (2) the expressive-
ness of ACTL is different from LTL, as in the case of the well known expression
AFAGp. The theoretical analysis described in [53] and [84] shows that the com-
plexity of using ACTL or LTL as the assumptions in the compositional verification
is PSPACE-complete and EXPSPACE-complete, respectively. The tableau size is
a key factor affecting the verification efficiency. This motivated us to look into the
construction of tableau in an optimized way.

Another practical problem we have in the compositional verification of the

previous chapter is that the system under verification is a finite state machine, but

99



the entries in the abstract environment array are a set of ACTL formulas. When
we use “||” to compose M with E;; (Chapter 3), we have to guarantee that the
operands must be in the same format, namely E;; has to be in the form of transition
structures.

Here, in this chapter, we will show how to transform ACTL formulas into
transition structures using reduced tableau construction techniques.

The tableau construction aims (if possible) to construct the model of a given
formula . Namely, given a formula ¢, the tableau construction of ¢ builds a Kripke
structure KC consisting of states labelled by atomic propositions derived from  and
transitions between states, such that every model of ¢ is represented as an infinite
path in K.

Consider the formula AFp, i.e., for all computation paths. p eventually holds.
Intuitively, the tableau is going to represent all those behaviors that are consistent
with the formula. Thus, a first guess of the tableau might be the structure shown in
Figure 4.1 where the initial states are represented as double circles and each state
is labelled with its label (first line), and the generalized Biichi fair sets to which it
belongs (second line). The idea is that starting from one initial state, we should
eventually reach a state having p true. The transitions from there are completely

unconstrained.

RN TN
! X
~
- —

Figure 4.1: Proposed Tableau for AFp

As is often the case with tableaus for temporal logics, e.g., [36, 60], a state
of the tableau consists of a set of formulas that are supposed to hold along all

paths leaving the state. Therefore we propose to define a reduced tableau of ACTL

60



formulas consisting of less states and transitions but accepting precisely the models
of the formulas. Here, the formulas in the states are interpreted over a three-valued
domain. Thus, a state may include a formula or its negation. or none of them. If
the latter occurs, it reflects a don’t care situation, and we call this state a dummy
state.

Consider the previous example where we collapsed two states to get one state
with a don’t care value as shown in Figure 4.2. Thus, we have a reduced tableau.

Once we have the reduced tableau, we then can synthesize it into Verilog code .

Figure 4.2: Reduced Tableau for AFp

Next, we give a tableau construction for ACTL formulas (for a similar con-
struction for LTL see [60]). We have proved that the tableau of an ACTL formula
is a maximal model for the formula under the simulation relation (<). Thus, the
structure of the tableau generated by the construction can be used as an assumption,
by composing the structure with a desired system before applyving model checking.

Discharging the assumption is simply done by either model checking or by < relation.

4.2 ACTL in Three-Valued Domain

ACTL formulas here are interpreted over fair Kripke structures called tableau with
fairness constraints over the three value domains. Below, we give the semantics of
ACTL formulas relative to a Kripke structure K (Definition 2.2.2). In addition, we
use 7 to denote a sequence of states sgs; ... and use 7 to denote the i-th state of

7 (counting from 0). A Kripke state will be interpreted over three-valued domain,

'A subset of Verilog HDL acceptable by VIS [11]

61



i.c., a formula, the negation of the formula, and a don’t care value 0. Consequently,

we will adapt the definition of the satisfaction relation |= defined as follows:

Definition 4.2.1 The relation s |= ¢ (read: ¢ holds at s) is inductively defined as

follows:
e sk=pifand only if pe€ A(s) er A(s) =0

s -p if and only if =p € A(s) or A(s) =0

sEoAY ifand only if s|E and s E v.

sEeVYifand onlyif sl= ¢ orskEy.

s = AXy if and only if for every fair path 7 starting at the state s, ™' = ¢.

s = A(p U ¢) if and only if for every fair path w starting at the state s, there

ezists i > 0 such that * = ¥ and © | > holds for j < i.

s |E A(p V ) if and only if for every path = starting at the state s, and every

J>0.if forevery 0 < i< j,w [ then 7w | p.
We say that K satisfies a formula ¢, written K = o if for every s € [, s = .

Additional temporal operators are introduced as abbreviations: AGy is defined as

A(falseVy) and AFyp is defined as A(trueUy).

Definition 4.2.2 Let K = {S,[,8,\, F} and K' = {S", I',§', X', F'} be two struc-
tures. The composition of K and K', denoted K||K', is the structure K" = {S", I", 6", \", F"}

given as follows

e S" is the set of pairs (s,s') € S x S’ for which \(s,p) = N'(s',p') with respect
to all p and p' in AP U AP’ or one of A(s) and \(s') is 0.

o I"is(IxI')NS".



o 8"((5:.5}). (s}, })) if and only if §(si,s,) and (s}, s)).

e )'((s,8"),p) = A(s,p) for all p in AP. N'((s,5'),p') = N(s',p') for all p' in
AP N'(s,s') =0 if X(s) or N(s') is 0.

o F'is {((f xSYNS)f e FrU{((f x S)nS")|f' € F'}.
Finally, we will adapt the simulation relation to the three-value domain.

Definition 4.2.3 Let K and K' be two fair Kripke structures over the same set of
atomic propositions AP. A relation R C S x §' is a simulation relation from K to

K' if and only if the following conditions hold for all (s,s') € R:
o A(5) = A(s") where eventually \(s') = 0.

e for every initial state sy € [, there is an initial state s € I' such that (sq. s3) €

R.
o for all (s,s') € R. A(s) = N(s') or N(s') =0 and
Vt[(s,t) € 0 = 3[(s". ) ed A (L) e R]
We say that K' simulates K (denoted by K < K') if there ezists a simulation
relation R from K to K'.

Moreover, if there is a simulation preorder from K to K', then K||K" < K'[| K"
and K < KJ||K. Finally, it is well known that if £ < K' then for every ACTL
formula @, K' | ¢ implies K | p.

4.3 Rewriting Formulas

Rewriting is the first step towards an efficient tableau construction. It is considered
an easy and effective way to minimize the tableau [32, 81]. Rewriting consists of a set

of rules applied recursively to an ACTL formula in positive normal form (i.e., the

63



negation is applied only on atomic propositions), reducing the number of temporal
operators and/or connectives. Although there are no dedicated ACTL rewriting
rules available in the open literature, we can still derive the rules based on well-
known identities. One possible way is to deploy similar LTL rewriting rules, which
can be found, e.g., in [60]. However, we cannot refer to the LTL rewriting rules
by simply padding the path quantifier by for-all-path quantifier A. For example, in
ACTL, AGAFpVAGAFg is different from AGAF(pVq), while this is not the case
in LTL. The application of a rewrite rule consists of replacing in the (sub)formula
the left hand side with the right hand side which has in principle less temporal
operators and/or connectives.

A set of rewriting rules that we have proved sound and implemented in our
tool is given below. Our implementation also provides the ability to renew or add

new rewriting rules in its internal rewriting database.

Sample Rewriting Rules

AGAG p=AGp

AFAF p=AFp

p AU (p AU q) = (p AU g)

pAV (p AV q) = (p AV q)

(p AU q) AU q=(p AU g)

AX pAAX ¢=AX (pAg)
AGpAAG ¢=AG (pAgq)

(p AUr)A (g AUr)=(pAg) AU r

The application of the rewriting rules can reduce the size of the formula if only
the presentation form the formula is not the positive normal form. In some cases
when the formula is written by a non-experienced person, the rewriting rules are
especially useful since there may be lots of redundant information in the original

formula.

64



4.4 Tableau Construction Procedure

The translation of ACTL formulas into tableaus is accomplished by the application
of tableau rules, which decompose a formula ¢ into particles. A particle of a formula
© is a set of formulas which represents the information about what needs to hold in
the current and the next states. It identifies a (possible) state of a Kripke structure.
The atomic propositions in the set define the label of the state and the formulas
starting with AX operator, determine the transitions out of the state as well as the
acceptance conditions. The expansion process is applied to the AX part of each
state until no new obligations are produced. The tnitial states are identified with
particles that are derived immediately from the original formula.

The process of expansion does not guarantee that eventuality is fulfilled. This
happens because it is possible to propagate forever the fulfilling of U-formulas. For
example, the formula o = A (uUv) can be fulfilled by fulfilling ¢ and by promising
to fulfill ¢ later by fulfilling AXA (pUv). Conscquently, an additional condition
is necessary to identify those paths along which ¢ holds. In order to identify these
paths, we define generalized Biichi acceptance conditions, namely a set of states
which will be visited infinitely often.

Next, we will introduce some useful definitions for the algorithm, and one

example is used through out the illustration.

Definition 4.4.1 The set of sub-formulas of p, denoted by SUB (y), is defined

inductively as follows:
e If o = true, then suB (true) is {0}.
o Ifo=pory=-p, wherep € AP, then suB (p) = {p} and suB (-p) = {-p}.
o Ifo=p1Apy or o=V, then SUB (p) = {p}U SUB (p1)U SUB (¢2).

o Ifo=AXyp, then suB (p) = { AXp}U SUB (¢).

65



o Ifp = A(pUp,) thensus (p) = {A(v1Uy2), AXA(pUp,) }U SUB (p1)U SUB
(p2).

o Ifo = A(p1Vya) thensuB (¢) = {A(»1 Vp2), AXA(p V) JU SUB (1)U SUB

(2)-

We classify some of the temporal formulas into a-formula and B-formula. A
formula is an a formula if it can be viewed as a conjunctive formula a = a; Aag; A
formula is a 3 formula if it can be viewed as a disconjunctive formula 3 = 3, V 3,.
If a formula ¢ €SUB () is an a-formula, we define k£(¢) = {¥, ¥} where k(¥) is
the set of the conjunctive part of this formula and ¥, = a4, 3 = ay. If a formula
¥ €SUB (¢) is a g-formula, we define k;(y) and k2(¥), where k (¢¥) and k,(y) are

the left and right operands of the disconjunction, as follows:

Lif ¢ = ¢ V ¢, then ki (¥) = {1} and ko (V) = {2}

(3]

Difu = A(L{’[Ul,,/,"z), then L[(l,/)) = {(,/}3} and kz((f)) = {L’)[,AXA(I,’J[UL//))}
Jifv= A((,/‘IV'L/)z). then /»[(w) = {l,['[. 1,92} and kz(l,/’)) = {(ZIZYAXA(L/)[Vlﬁz)}

The intended meaning of this classification is semantics. An a-formula o,
which is a conjunction, holds at the tableau state s if and only if a; and a,, denoted
by k(p), also hold at s. A g-formula ¢, which is a disjunction, holds at the tableau
state s if and only if either k() or ka(¢) hold at s. A formula that involves no
modalities or has main connective AX is both a and 3 and is called an elementary

formula. All other formulas are non-elementary formulas.
Definition 4.4.2 A set of formulas P is a particle over ¢ if:
1. P CsuB ().
2. If py A p, = false, then {p,,p} € P.

3. For every a-formula ¢ € SUB(yp), k(¢) C P holds.

66



4. For every 3-formula v €sSUB (y), we distinguish two cases:

(a) If ¥ = V o then either k\(v) C P or ky(¢) C P.

(b) If v = A(PUtn) or v = A1 Vi), then ¢ € P if and only if either
ki(¢) € P or ka(y) C P.

In the calculation of the particles, since we decompose a or 3 formulas till
no obligation is generated, namely there is at least one elementary formula in each
particie. Either it is the formula without modalities, or it is the formula beginning
with AX. The formulas without modalities need to hold in the current state, and
the formulas beginning with AX modality illustrate what needs to hold in the next

state.

Example 4.4.1 P, in the following is a particle of the formula ¢ : A(trueUp) Vv
A(falseV-p). P, actually illustrates one possibility to satisfy ©, namely the sec-
ond part of the p, p, : A(falseV-p) is true. o, is true if and only if p is
not true at the current state and p, is true at the next state along any paths.

Py = {A(falseV-p). AXA(falseV-p), ~p}

Till now, we have obtained all the information in a formula. Therefore, we can
define a cover of a formula meaning that it will cover all the behaviors of a formula
either in the current or in the next state. A cover is a set of particles. Each particle
is considered as a state label in the corresponding Kripke structure of the formula.
For example, COVER (p) = {{p}}, where p is a propositional formula in the atomic
propositions (APs), meaning that in order to satisfy formula p, the current state
label (particle) has to be {p}.

During the formula decomposition, we merge two covers by the union operator
“U”. As a matter of fact, it is not always the case that the union on two particles

makes sense because they arc not compatible?, for example, {p} U {-p} has no

2Two particles p and T are compatible if Vpep.qerP A q # false

67



semantic meaning since a state satisfying both p and —p does not exist. In this case,

we use a “JOIN” operator to exclude this case. Namely,
SIOINT = {pUr:p€ S,T€T,pand r are compatible}
for any two elements of a particle pand 7in S and 7.

Definition 4.4.3 A cover of the formula o, denoted by COVER (y), returns a set

of particles and is defined as follows:

e coVER (p) = {{p}}.

e COVER (—p) = {{-p}}.

e COVER (i A 1) =COVER (i) JOIN COVER (v).
® COVER (p V v) =COVER (1)U COVER (V).

e COVER (AXp) = {{AXu}}

e COVER (A(nUv)) = [{{A(Uv)}} JOIN COVER ()] U [{{A(nUv)}} JOIN
COVER ()], where ¢ and ¢ are formulas in ki (A(pUv)) and k(A(pUv)),

respectively.

e COVER (A(pVv)) = [{{A(pVv)}} JOIN COVER (p)] U [{{A(VV)}} JOIN
COVER (v)], where ¢ and ¥ are formulas in ki (A(pVv)) and ky(A(uVV)),

respectively.

The generalization of a cover of set A of formulas is the Join of each cover of the

formula, i.e., COVER (A) =JOIN,, ;COVER (p)

Example 4.4.2 The cover of the formula ¢ : A(trueUp)VvA(falseV-p) are shown

as follows:

68



P {A(trueUp), p}
Py {A(trueUp), AXA(trueUp)}

Py = {A(falseV-p), AXA(falseV-p), -p}
P, Py, and P; have enclosed all the possibilities to satisfy o, namely formula o is

covered by Py, P,, and P;.

The cover of a formula is a set of particles, and each element in the cover is
considered as a state in the corresponding Kripke structure of the formula. The
cover itself is enough to present the behavior of the formula. However, because
the transitions in the Kripke structure should be total, namely every state has to
have a successor, next, we consider the process of computing the particles that are

successors of the given particle P.

Definition 4.4.4 A formula o is an implied successor of a particle P if AX(p) €
P. The set of implied successors of P denoted by imps (P) is iMps (P) = {y :
AX(p) € P}

Definition 4.4.5 Let P be a particle, and the successors P be succ (P)

e if a particle P is not realizable or does not include any formula of the form

AX(y) then succ (P) is a dummy state.

e else succ (P) is equal to COVER (IMPS (P)).

The reason why we calculate the cover of the implied successors again is that
IMPS (P) is a new set of formulas which may not contain any elementary formulas.
For example, IMPS (AX ) = ¢, where ¢ is not an elementary formula. In this case,
we have to calculate the particles of i to see that regarding this specific formula ¢,
what has to be hold in the current state and what has to be hold in the next state.

In fact not all particles have successors. For example, the particle {AX(p), AX(-p)}

has no successors because any successor of this particle must contain both p and

69



-p which is not a particle. A particle P is called realizable if there exits a Kripke
structure K and a state s such that for each formula ¢ € P, we have K, s | .
Consequently, only realizable particles can participate in fulfilling paths and

can have meaningful successors.

Remark 4.4.1 If a particle P is not realizable or does not include any formula of
the form AX(yp) then the successor of a state with label P is a dummy state. The
latter means the state reached has no commitments to satisfy any of the formulas.

Thus, it may be the start of any possible paths. The dummy state is the successor

of itself.

Acceptance conditions have to be added to the tableau for each formula ¢ €suB
(¢) that promise to fulfill another formula. Namely, we cannot have an eventuality
AXA(pUr) where r is never fulfilled, where a formula ¢ €suB () is said to promise

the formula r if ¢ has the form A(pUr), formally,
Definition 4.4.6 Let P be a particle over y = A(pUr). P fulfills v that promise r
if:

e P doesn't imply ¢ or

o P implyr.

Remark 4.4.2 Let S be the states of final tableau, the set of acceptance states can

be erpressed as
(S— covER (AXA(pUr)))U COVER (r)

The above definition presents a fact that once a particle constrains a formula
1 promising r, it must contain a r to fulfill the eventuality, namely ¥* — r. The
states in the Kripke structure satisfies such a condition are called acceptance states.
Regarding each eventuality in the formula, there is a set of corresponding acceptance

states, and we use an integer number to identify these sets of acceptance states.

70



Example 4.4.3 Regarding formula ¢ : A(trueUp)V A(falseV—p), the eventuality
is A(trueUp). The acceptance states of the corresponding Kripke structure should
be either the states contain label p, or the states do not contain the eventuality

A(trueUp) at all.

Given the above definitions, we describe an iterative algorithm that produces
the reduced tableau, which is a Kripke structure X = (S, [,9d, A, F) of an ACTL

formula in Algorithm 1.

Algorithm 1 tableau(9)

[ :=COVER (9¢);
S:=1
d:=0;
Mark all particles in S as unprocessed
for each unprocessed particle P such that P € S do
S’ :=succ (P).
for each unprocessed particle @ such that Q@ € S’ do
if @ is not a subset of any particle in S then
Add Q to S.
Mark @ as unprocessed.
end if
Add (P,Q) to 9.
MP):=Pn{p:pe AP}UPN{-p:pe AP}.
end for
Mark P as processed.
if P promise r as A(pUr) then
Add (S- coveERr (AXA(pUr)))U COVER (p) to accept state F;.
end if
end for

In order to illustrate the size of the reduced tableau, we implemented a reduced
tableau construction tool in Java. Using this tool, we generated the tableaus of the
following formulas (see below) [81]. For comparison, we also generated tableaus
used in the compositional verification approach proposed in [57]. The results are
demonstrated in Figure 4.3 based on the number of tableau nodes against that of

elementary formulas. From the figure, we can find that our the reduced tableau size

71



is always smaller.

AFp, AXp

AGp,AF(pAgq)

A(pU q), A(pW q)

A(pU A(qU r), AG A(pU q)

AF A(pU AG g)

AG (AF pAAF gq)

AF pA AF —p

AFAG pVv AFAGq

A(pU (A AGr))

AG (qVv AGAFp)

AG (rv AGAF-p) v AGpV AGr
AX(A(A(A(pUq)Wr))UA (pWr))

A((AXg A r)WAX(A(A(sUp)Wr)UA(sWr)))
AG(qVv AGAFp) AN AG(rv AGAF-p) v AGqV AGr
AG(qVv AFAGp) A AG(r v AFAG-p) vV AGq V AGr
AG(qAFAGp) A AG(rv AFAG-p)) vV AGpV AGr
AG(gAGAFp) A AG(r v AGAF-p)) v AGpV AGr

Example 4.4.4 After applying Algorithm 1, the tableau of formula A(trueUp) v
A(falseV-p) is shown in Figure 4.4. The states marked by 0 are Fy. The state
without any label except the acceptance state mark is the dummy state. The double
circle states are the initial states. The AX-formula labels in a state means in order
to satisfy the formula what has to hold in the next state. The no-modalities-formula
labels in a state means what needs to hold in the current state in order to satisfy the

formula .

72



70 T— T T
Before Reduction [14]
~—- After Reduction

5

#Tableau Nodes
8
T
1

o 1 1
2 3 4 S 6
# Elementary Formulas

Figure 4.3: Comparison Results of Sample Formulas

Altrue U p), AXA(mue Up))) ) @ Vo). AXAlfalse V@a

A(true U p), p
0
©:

Figure 4.4: Tableau of A(trueUp) v A(falseV-p)

73



4.5 Reduced Tableau Properties

Our goal is to build a reduced fair Kripke structure K(y) (tableau) that satisfies the

formula o, and has the following tableau properties:
¢ K(¢) v
e for a structure M, M = ¢ iff M < K(yp).

This is demonstrated by the following lemmas and theorem [72].

Lemma 4.5.1 If M < M’ and ¢ is a formula on M’, then M' | o implies
ME g

First. a dummy state simulates any states. When s is a non-dummy state, it is
enough to show that if ' = ¢ and s < &, then s = . We proceed by induction on

the structure of formulas.

e For true, the proof is trivial since s and s’ share the same propositional value.

e For atomic formula p and its negation, the result is obvious because when
s Epand s < ¢, s E p. For conjunctions and disjunctions, it follows

immediately from the induction hypothesis.

e Consider a formula of the form A(oUv). Let 7 = sps;52... be a path from
s = sp. we want to show that this path satisfies pU. Since s < &', there is a
path m' = sjs)sy... from s’ = sj that corresponds to #. For each i, s; < s].
Hence by the induction hypothesis, s} | ¢ implies s; = ¢, and similarly
for 7. If # does not satisfy U, then this implies that 7' does not satisfy
@Uy either. Hence s’ = A(¢U%), a contradiction. Thus we conclude that
s = A(pUy). The same deduction applies to A(pV)).

e Consider the cases for AXp. Let sy be a successor of s, we want to show
this state satisfies @. Since there is a state s, such that s < s’, and by the

assumption s’ = ¢, Hence, s = ¢. [

74



Lemma 4.5.2 Let s be a state of K(p). For all subformulas 1 of o, if A(s) is in

COVER (v), then s = .

We proceed by induction on the structure of the subformula.

e For true, we have COVER (true) = {@}, which generates a dummy state and

dummy state satisfies any formula, so s ECOVER (true) iff s |= true.

e For a subformula of the form p, we have cover (p) = {{p}}. According to
the assumption, A(s) is in {{p}}. By choosing A(s) = {p}. According to the
definition of =, s = p.

e For the negation of an atomic formula, just note that the above two cases are

iff, and cach state has to be compatible.

e For formula x A ¢, COVER (x A ) =COVER (x) JOIN COVER (¢) = {pUT:
p €ECOVER (x), 7 €ECOVER (¥),p and 7 are compatible }. Since p and 7 are
compatible, let s be a state and A(s) = pU . Let s, be another state and
A(s1) = p. By induction hypothesis, s; = x. Because A(s;) C A(s), so s E \.

Same reason, s = 0. So, s E x AU

e For formula x V ¢/, COVER (x V ) =COVER (x)U COVER (¢). if A(s) ECOVER
(x)U COVER (¥), then A(s) either in COVER (x) or in COVER (¢/). By induc-

tion hypothesis, s = x V ¢.

e For AXy, we have coOvER (AXy) = {{AXy}}. Let s be a state and
A(s) = {AXy}. The label of the successor of s, A(s'), can be calculated
by A(s') esucc ({AXy}) =cover (mmps ({AXy}) =cover ({¢}). By
induction hypothesis, s’ = %. According to the definition of |=, s = AXy.

o For a subformula of the form A(xVy), cover (A(xV¥)) = [{{A(xVv)}} JoIN
COVER ({x, ¥ })] U [{{A(xV¥)}} JoIN covER ({1, AXA(xV¥))]. Assuming
s is any state, we distinguish two cases. Case 1: if A(s) € {{A(xV¥)}} J0IN

75



COVER ({x, ¥}), then for any path = starting from s, by induction hypothesis,
! | ¢. So, s E A(xVv); Case 2: if A(s) € {{A(xVv)}} JOIN COVER
({v, AXA(xVv)), since succ (AXA(xVv)) = {A(xV¥)}, s has two suc-
cessors, i.e., state of case 1 and 2. In the case of case 1, we have already
proved s = A(xV¢). In the case of case 2, because COVER ({9}) in A(s),
by induction hypothesis, s |= 1. So, for any path 7 starting from s, ! | v.

Namely, s = A(xV¥) as well. [

Corollary 4.5.1 Let s be a state of K(p). For all subformulas ¢ of ¢, if A(s) are
in COVER (¥), then K(yp) = .

This can be derived easily from Lemma 4.5.2. If s is an initial state of the tableau,

then A(s) ECOVER (¢2). Hence s = 2. and so K() = . U
Lemma 4.5.3 If M < K(p), then M = ¢, where K(y) ts the tableau of p.

Since by assumption, M < K(y), then according to Lemnma 4.5.1, if K(p) satisfies a
formula o, then M satisfies the same formula as well. So, in order to prove M |= p,
we need to prove K(p) k= . As a matter of fact, this is the conclusion of Corollary

4.5.1. Hence, we can deduce that M | £ as well. g

Lemma 4.5.3 concludes one direction of our goal. Now we want to prove that if
M' | ¢, then M’ < K(p). This will be done by constructing an explicit simulation
relation between M’ and K(y). The idea will be to take a state s’ of M’, look at
its labelling and use this to construct a unique state of K(y) that can simulate s'.

First, we define what will be the simulation relation.

Lemma 4.5.4 Let M = K(p), and let M’ be another structure. DefineC on S'x S
iff the following conditions hold.

e For subformulap, s' l=p iff p € A(s) or A(s) = 0.
e For every AXv in the particle of p, AXY € A(s) iff ' = AXy.

76



Then s' C s implies that for every subformula or elementary formula v of p, s' ¢

implies \(s) ECOVER ().

By induction on the structure of formulas, in this proof, the base cases are the

atomic subformulas and the elementary subformulas.
e For true, s’ |= true iff s ECOVER (true).

e For a subformula p, in the case of dummy state, the proof is trivial since @ is
in anyv set and the dummy state satisfies any formula. Otherwise, we get that

s'Epiff pin A(s') iff p in A(s) iff A(s) ECOVER (¥).

e For a negated atomic subformula, the result follows from the facts that ecach

state has to be compatible and that the above two cases are iffs.

o if s’ satisfies a formula AXy. then by definition of C, AXy € A(s), and
A(s) ecoveRr (AXY) iff AXy € A(s).

e For a subformula such as xy A ¢, we get that s’ must satisfy x and . By
the induction hypothesis, A(s) €COVER (x) and A(s) €COVER (¢). Hence
A(s) ECOVER (x)N COVER (¢'), and s €ECOVER (x A ¢).. Subformulas of the

form x V ¢ are handled in a similar manner.

e Consider a subformula of the form A(x V). If s’ is not the start of some path,
then s’ = AXfalse, so AXfalse € A(s), and hence A(s) €COVER (A(xVV)).
Assume s’ is the start of a path. If s = A(x V), then we first have that s’ =
¢. By induction hypothesis, A(s) ECOVER (¢). Also, either s’ = x, or every
successor of s’ must satisfy A(xVy). In the former case, A(s) €ECOVER ().
In the latter, s" must satisfy AXA(xV). This is an elementary formula, and
hence by the induction hypothesis, A(s) €COVER (AXA(xV¢)). Similarity
in the case of A(xUv). All together, we have A(s) €COVER (A(xVv)) [

Lemma 4.5.5 The relation C given above is a simulation relation.

77



Assume s' C s. By definition, s’ = p iff p € A(s) or A(s) = 0. in the case
of 0, according to the tableau construction procedure, since the self-loop on the
dummy state can simulate any path and satisfy any formula, the conclusion is trivial,
Now, considering the non-dummy case, suppose that =’ = sgs}sj... from s’ = s
in M'. We will construct a path = from s = so in M that corresponds to 7'.
Assume that we have constructed states up to s, so far, and that we know s] C s;.
Let AXvyg,... . AX¢n_; be the formulas that s] satisfies. Then s;,, must satisfy
Vo, - .. . U'm-1. Now, observe that each state of M’ is related to a unique state of M
by C. Let s,4, be the state related to s,,, in this manner. By the previous lemma,
A(5,41) ECOVER (¥g),...,A(Si41) ECOVER (¥m-1). Since s; C s;, we know that
formulas AXy, are the only formulas for which AXy, € s;. Thus, we found s;4,
which is a successor of s,, extends the sequence and s}, C s,;;. Now we just have
to show that this sequence satisfies the acceptance conditions.

Assume that it does not. Then looking at the acceptance conditions for the tableau,
for formula AXA(xUw), we see that there must be some states s in the acceptance
conditions which are not in (S— coverR (AXA(xU¢)))U COVER (¥). So, s &
(S— coveErR (AXA(xUy)) implies that AXA(xUy) € A(s). By definition of C,
s' E AXA(yUvy). However, since s €COVER (¥), then by the previous lemma, we
have s’ & . But we have s' = AXA(xUv). This implies that 7’ must not be a

path, a contradiction. []
Lemma 4.5.6 if M' | o, then M' X K(y), where K(p) is the tableau of .

If M' = ¢, then every initial state s’ of M’ satisfies ¢». Recall the simulation
relation C. defined above pairs every such s’ with a unique state s of the tableau.
Now, lemma 4.5.4 implies that s is in COVER (¢), and s is an initial state. Since C
is a simulation relation, we conclude that s’ can be simulated by an initial state of

the tableau. Hence M < K(p). U

Theorem 4.5.1 for a structure M, M [ ¢ if M 2 K(p), where K(p) is the

78



tableau of .
The theorem includes two directions, which are proved as follows.

e By assumption M =< K(y), according to Lemma 4.5.3, we can deduce M = ¢

e By assumption M’ |= ¢, according to Lemma 4.5.6, we can deduce M' < K(y)

From the above two points, the theorem is sound. d

4.6 Summary

In this chapter. We proposed a reduced tableau of ACTL formulas, which consists
of less states and transitions but accepts precisely the models of the formulas. A
formula ¢ is first simplified by rewriting, then the tableau is constructed by decom-
posing 7 into particles which cover all the models satisfying the models of p using
atomic propositions and the AX formulas. The fairness constraints are also defined
by sets of states in the tableau, which will be visited infinitely often. As is often the
case with tableaus for temporal logics, e.g., [36, 60], a state of the tableau consists
of a set of formulas that are supposed to hold along all paths leaving the state.
Unlike typical tableaus, however, the formulas in the states of the reduced tableau
are interpreted over a three-valued domain, i.e., positive, negative, and don’t care.
Thus, a state may include a formula or its negation, or none of them. If the latter
occurs, it reflects a don’t-care situation, i.c., the formula may be either true or false
in the state. We also prove that the reduced tableau is the maximal model of the
corresponding formula, namely it covers all the models satisfying the formula. In
the next chapter, we will show how to synthesize the reduced tableau into Verilog

HDL modules.



Chapter 5

Verilog Synthesis

Based on the reduced tableau. we implemented an assume-guarantee reasoning ap-
proach based on the VIS model checker [11]. The implementation is made possi-
ble by synthesizing the tableau into Verilog code automatically. An overview of
the proposed approach is depicted in Figure 5.1. The flow is implemented in Java
HotSpot(TM) Client VM 1.3.0 on SUN Solaris OS. In this chapter, we will illustrate

how to synthesize the reduced tableau into Verilog HDL programs.

ACTL _| Rewnting |  Tableau | | Verilog | _Venlog
formula formulas construction synthesis module

Figure 5.1: Tableau Construction and Verilog Synthesis

5.1 VIS and Verilog

5.1.1 VIS

VIS [11] is a formal verification and synthesis tool for finite-state hardware sys-
tems, developed at University of California at Berkeley and University of Colorado

at Boulder. It is based on the temporal logic model checking approach, where the

80



properties to be checked are expressed as formulas in CTL, and the system is ex-
pressed as a finite state system. The formulas are checked against the finite state
system to see if they are satisfied.

VIS has two design-input languages: Verilog HDL and BLIF-MV. Verilog is a
widely used digital design language. The Verilog used in VIS is a subset of the com-
mercial Verilog, which we will give a brief introduction in Section 5.1.2. BLIF-MV
is a logic intermediate format designed at UC Berkeley. The relationship between
a behavioral description language like Verilog and a machine description language
like BLIF-MV is similar to that between a high-level programming language and
an assembly language. VIS has a stand-alone compiler from Verilog to BLIF-MV
called VL2MV, which extracts a set of interacting FSMs that preserves the behavior
of the Verilog program. Through the interacting FSMs, VIS performs CTL model
checking. If model checking fails, VIS reports the failure with a counter-example.

The fairness constrains are handled by a modification of CTL, called fair
CTL. Fair CTL is characterized by the introduction of fairness constraints, which
are sets of states expressed by means of CTL formulas, each giving a Biichi fairness

condition.

5.1.2 Verilog in VIS

A Verilog specification [68] consists of one or more modules. The top level module
specifies a closed system containing both test data and hardware models. Com-
ponent modules normally have input and output ports. Events on the input ports
cause changes on the outputs. Events can be either changes in the values of wire
variables (i.e., combinational variables) or in the values of reg variables (i.e., regis-
ter variables), or can be explicitly generated abstract events (i.e., non-deterministic
values). Modules can represent pieces of hardware ranging from simple gates to com-
plete systems (e.g., microprocessors), and they can be specified either behaviorally

or structurally, or by a combination of the two. A behavioral specification defines

81



the behavior of a module using programming language constructs. A structural
specification expresses a module as a hierarchical interconnection of submodules.
The components at the bottom of the hierarchy are either primitives or are specified
behaviorally.

The internal form of Verilog in VIS is BLIF-MV. Basic constructs of BLIF-MV
are module declarations/instantiations, input-output relational tables which allow
descriptions of non-determinism, symbolic wires, and latches. In BLIF-MV, sym-
bolic latches are implicitly controlled by a global clock. This clock does not need to
be a real wire in the hardware sense. All symbolic latches transit instantaneously to
the next state indicated by the relevant transition tables. At each clock cycle, each
table continuously updates its outputs according to the inputs it sees until conver-
gence is reached. In the very beginning of the next cycle, all latches simultaneously
update their present state outputs according to their next state inputs. Then again
tables update their outputs accordingly.

VL2MV extracts a set of interacting FSMs that preserve the behavior of the
source Verilog program defined in terms of simulated results. Allocation of hard-
ware gates to operators in Verilog (resource binding) is based on the assumption of
unlimited resources, where resources are all possible gates expressible in one table in
BLIF-MV. No scheduling and optimization are performed, so the extracted FSMs
are not guaranteed to be optimal (for area, speed, and so on).

A design in a synthesizable subset of Verilog consists of a set of modules (either
hardware or software). The first module encountered is regarded as the root module.
All modules run in parallel and communicate with each other through a set of chan-
nels (set of wire variables declared in the modules to which these channels belong).
[t is assumed that communication through channels is instantaneous. Within each
module, values on channels can be accessed through a set of ports, which can be
either wires or registers. Through wire ports, a module can input and output from

and to channels instantaneously, while through register ports it takes one time unit.

82



A wire port has no storage element associated with it, while a register port has one
storage element associated with it.

A Verilog module contains declarations, module instantiations, continuous as-
signments and procedural blocks. Continuous assignments begin with the keyword
assign and are always active; they can be thought of as combinational blocks. Pro-
cedural blocks are referred to as always statements; statements within a procedural
block are executed sequentially.

Module instances, continuous assignments, and procedural blocks within a
module run concurrently. Execution of each continuous assignment, basic block in a
procedural block and module instance is assumed to be atomic within each instant.
[f there is more than one procedural block in the same module, and outputs of one
are inputs to another, the simulated result may depend on how expressions from

different blocks are interleaved by the simulator.

5.2 Verilog Synthesis Procedures

In the tableau construction, we obtain a tableau from an ACTL formula, which
covers all the behaviors that satisfy the formula. In this section, we will present how
to synthesis the tableau into a Verilog module.

According to the syntax [68] of Verilog, we use the procedures in Figure 5.2.

In order to distinguish the states in the tableau, for each state in the tableau,
we allocate an ID to each of them. For example, allocate Sy to state { A(falseV-p),
AXA(falseV-p), -p} as shown in Figure 5.3. For the transitions in the tableau, we
also allocate an ID to it. For example, allocate S,_NEXT to the transition going
out of S;. However, there exist many transitions going out of one state. In this case,
these transitions share one ID. For example, the IDs of the transitions from S} to
S, and form S to S, are both S; NEXT (Figure 5.3).

In order to obtain the proposition labels in each state in the tableau, we define

83



Synthesize variable
declaration

!

Synthesize wire
connections

!

Synthesize initializaticﬂ

!

Synthesize sequential

blocks
}

Synthesize fairness
constraints

Figure 5.2: Verilog Synthesis Procedures

comp(yp) as the set of atomic components in the formula.

A(trueUp) v A(falseV-p), then comp(yp) = {p}.

with modalities.

When constructing the Verilog module, since the ACTL formulas with modal-
ities are not acceptable in Verilog, we must label cach state in the tableau explicitly

by the components in comp(y). In the following, we distinguish three cases.

. In astate, if there are propositions without modalities, we put the propositions

as the label of state S; and remove the other propositions with modalities.

. In a state, if every proposition has modalities, we put the negation of all the

atomic propositions as the label of the state, and remove all the propositions

. If a state is the dummy state, we set all the components in comp(p) as the

non-deterministic true or false.

Example 5.2.1 The label of the states in the tableau of A(trueUp)V A(falseV-p)

shown in Figure 5.3 are as follows.

e comp(A(trueUp) v A(falseV-p)) = {p}.

84

For example, if ¢ is



In state Sy, every sub-formula has modalities. So, —p is the label of this state.
o The label of state S, is set to —p, since —p s in the label of this state.

The label of state S, is set to p, since p is in the label of this state.

Since state Sy is a dummy state, we put all the components in comp(y) as

non-deterministic variables, namely p ts set as a non-deterministic true or

false.
o < st N
(true U p). AXA(true U ; SO_NEXT A(false R ~p). A)(()A(falsc R ~p). -p /'- SI_NEXT

SO_NEXT

S2

A(true U p), p

0

S2_NEXT

S3_NEXT

Figure 5.3: Tableau of A(trueUp) Vv A(falseV-p) with [Ds

Till now, we have has enough information to construct the Verilog module of

the tableau of an ACTL formula ¢.

Synthesize Variable Declaration Since an ACTL formula ¢ is to describe the
behaviors of the components in comp(), in the simplest case, we set the outputs of
the synthesized Verilog module as the components in comp(y), namely the synthe-
sized program is to emulate the behaviors of .

comp(y) is obtained from the ACTL formula ¢ iteratively. The procedure
can be outlined as follows. (1) if the formula is bi-nary, namely has two operands,

both the operands are scheduled to be variables in the Verilog behavior module; (2)

85



if the formula is uni-nary, namely has one operand, the operand is scheduled to be
a variable. (3) if the formula is an atomic proposition, then this atomic proposition
is a variable. The above procedure is iterated until all the atomic propositions are

obtained.

Example 5.2.2 Given a formula ¢ : AG(p A AF(q)), the procedure to obtain

comp(y) ts as follows.

o Since AG(p A AF(q)) is an uni-nary formula, (p A AF(q)) is scheduled to be

in comp().

Since (p A AF(q)) ts a bi-nary formula, both p and AF(q) are scheduled to be

in comp(y).
e Since p is an atomic proposition, p is in comp(yp).

e Since AF(q) is an uni-nary formula, q is scheduled to be comp(p).

Since q is an atomic proposition, q ts in comp().

From the above procedure, we know that comp(y) = {p,q}. The synthesized program

is to be claimed as

module <module_name> (p, q);

output p,q;

All the states in the tableau are coded according to their [Ds. For example,
Sp is coded as '0’, S; is coded as 'l’, and so on. The encoded states are declared
as a register vector, STATE. The size of the register vector is determined by the
number of the states in the tableau. Namely, the size of the register vector equals to
[log,(the number of the states)]. For example, if there are 7 states in the tableau,

we need 3-bit to contain the IDs of the states, so the STATE is declared as

reg [2:0] STATE;

86



Synthesize the Wire Connection Transitions in the tableau are declared as
wire connections according to their IDs. For example, S, _VEXT is declared as
SINEXT.W, S, NEXT is declared as So_NEXT_W, and so on. The size of the
wire connections is the same as that of the STATE because the next transition can
be anyvone of the states. So, if the size of the STATE is n, then the wire connections

are declared as n as well, i.e.,

wire [n-1:0] S_i_NEXT_W;

In a similar way, the wire connection of the initial states is declared as
wire [n-1:0] S_INIT_W;

S INIT W may be connected to a random-number-generator, so that we obtain
the non-deterministic initial states according to the tableau.

However, VIS does not allow multi-output non-deterministic constants. Namely
it allows a random statement like z = $ND (0,1,2,3) where  is a 2-bit boolean vari-
able and SN D is the random-generator instruction, but does not allow the random
statement like £ = $ND(0,1,2) because internally VIS split the 2-bit variable into
two l-bit non-deterministic variables which will lead to the possibility of r = 3.
However, such a situation comes up naturally when we want the initial states to
be state 0, 1, and 2 but not 3. A solution around this case is to declare a tempo-
rary variable and then merge the unused non-deterministic numbers with another
non-deterministic value like the following.
assign S_INIT_W_TMP = $ND(0,1,2,3);//$
assign S_INIT_W = (S_INIT_W_TMP == 3) ? 2 : S_INIT_W_TMP;
where SINIT_W TMP is the temporary variable. The value 3 is merged with 2
and the new non-deterministic value set {0, 1, 2} is assigned to non-deterministic ini-
tial state variable S_JINIT_WW which indicates what the initial states are. However,
when there is only one initial state in the tableau, we do not need S_INIT W _TAMP,

but declare S_INIT_I directly as the initial state.

87



Since the initial states may be any state in the state space, in order to improve
the efficiency of the generation and to make the above temporary variable setting
easy, we sort the initial state [Ds. The temporary variable setting procedure is
updated as follows: (1) the IDs of initial states are bubble-sorted; (2) set initAMark
as one of the initial states; (3) set a counter i which starts from 0 and ends with the
minimum number which is the power of 2 and greater than maximum ID among the
initial states; (4) scan the sorted initial-state-ID-list, if an integer number ¢ is not in

the IDs of the initial states, then / is merged on-the-fly with respect to initMark.

Example 5.2.3 Given the initial states are S3 by the ID of 3, S by the ID of 6,
Sy by the ID of 2, and S5 by the ID of 5, the temporary variable setting procedure is

shown as follows.
e Sort the IDs of the initial states from 3,6,2,5 to 2,3,5,6.
e Set initMark as one initial state, for example 3.

e Since the minimum number which is the power of 2 and greater than 6 is 8§,

we set t as an integer from 0 to 8.

e Scanning the sorted next state IDs, 0 and 1 are unused random numbers,
so we put ((SANITW TMP = 0) Vv (SANITW.TMP = 1)). Then 2
and 3 are used random numbers. However, 4 is an unused random number,
and so are 7 and 8. We increase the unused number list on-the-fly and get
(SINITW.TMP=0)V (SINITW.TMP =1)V(SANITW_TMP =
) V(SANIT W TMP =7) Vv (SANIT2. W _TMP =8)). This list is to be
merged with respect to the initMark, 3.

The initial state structure is then declared as follows.

assign S_INIT_W_TMP = §ND(0,1,2,3,5,6,7,8);//%
assigm S_INIT_W = ((S_INIT_W_TMP = 0) || (S_INIT_W_TMP = 1) ||

88



4) || (S_INIT_W_TMP = 7) ||
8)) 7 3 : S_INIT_W_TMP;

(S_INIT_W_TMP

(S_INIT_W_TMP

The transitions in the tableau are handled in a similar way. If the next state
of state S, is state S, then the wire connection S 2_NEXT _IV is assigned value '3’
as
assign S_2_NEXT_W = 3;
Moreover, if transition S,V EXT_I1" has non-deterministic next states, we will de-
clare non-deterministic values by a temporary variable S;_ NEXT_ IV _TMP and
then merge the unused values in the declaration of S;_ VEXT _IV. For example,
if the next state of state S; is Sy, S| and S, then the next state transitions are
declared as follows.
assign S_i_NEXT_W_TMP = $ND(0,1,2,3);//%
assigm S_i_NEXT_W = (S_i_NEXT_W_TMP == 3) ? 2 : S_i_NEXT_W_TMP;

Synthesize the Initialization Block The next step is to generate the initial
blocks of the program. In Verilog, actually there is no initialization phase. Every-
thing is initialized to 'x’, and the initial blocks are identical to elways blocks. except
that they execute only once, whereas always blocks execute forever, as if they were
stuck in an infinite loop. Whether or not the initial blocks will be executed first
depends on the simulation or verification tool. Some tools choose to execute the ini-
tial blocks first. However, most of the tools first execute blocks in the same order as
thev are specified in the file. But subsequent execution order is not so deterministic.
In VIS, the initial blocks are alway the first one to be executed, thus the statements
in the initial blocks are used to construct the initial conditions in the state space.
When we specify the initial states, we need to specify first the initial states
among the states in the tableau, second the positive atomic propositions and nega-
tive atomic propositions in the initial states, namely which atomic proposition equals

to true and which equals to false.

89



Since we have specified the non-deterministic initial wire connections S INIT I},

so in the initial block we can simply declare the initial states as
initial STATE = S_INIT_W;
Thus, the initial states are determined by the wire connection S INIT W . If there
are more than one value in S_IN/IT_ IV, the initial states are non-deterministic.
However, if there is only one initial state in the tableau, we need not bother ourselves
to use SINIT W and SINIT W _TAMP. We can directly assign the initial state
to the STATE variable in the initial block.

Since there are three kinds of states in the tableau, i.c., the state with atomic
proposition labels (normal state), the state without any atomic proposition labels
(null state), and the state with dummy labels (dummy state), in the generation of
the positive/negative atomic propositions, we have to distinguish these cases. In the
null state, the label is implicitly the negation of all the atomic propositions, namely
if the atomic proposition is p in the formula, the label of the null state is -p. In
the dummy state, the label is non-deterministically either the atomic propositions
or the negation of the propositions. In the above example, the label of the dummy
state is non-deterministic p or —p.

The procedure to obtain the labels of the initial states has two steps. The first
is to get the atomic propositions, which equal to true in the initial states; the second
step is to get the atomic propositions, which equal to false in the initial states.

The procedure to get the positive atomic propositions of the initial block is
as follows. (1) if there is a null set in the initial states of the tableau, the positive
atomic proposition set is empty since all the negative atomic propositions will be
in the initial states, so it is impossible for the initial states contain any positive
atomic propositions; (2) all the labels in the initial states perform intersection with
comp(yp), and the result is the positive atomic propositions in the initial block in

the program.
Example 5.2.4 Given comp(p) = {p,q,r,5,t} , where p is the ACTL formula and

90



the labels of the initial states are states Sy = {p,r} and S| = {p, s, t}, the procedure

to get the positive atomic propositions of the initial block is as follows.

o The label of So = {p,r} intersects with comp(yp) = {p,q,r, s.t}. The result is
{p.r}.
o The label of S\ = {p, s, t} intersects with the result of the previous step {p,r}.
The result is {p}.
o Since all the initial states are processed, the positive atomic propositions of the
initial block is {p}.
Consequently, the proposition is declared in the initial block as follows.
initial p = 1{;
The procedure to get the negative atomic propositions of the initial block
is as follows. (1) establish a set ~comp(y) which contains the negations of the
variables in comp(y), where o is the ACTL formula; (2) all the labels in the initial

states perform intersection with —~comp(p), and the result is the negative atomic

propositions in the initial block in the program.

Example 5.2.5 Given comp(v) = {p.q,r,s,t} , where o is the ACTL formula
and the labels of the initial states are states Sy = {-p,r} and S; = {-p, —s,t}, the

procedure to get the positive atomnic propositions of the initial block is as follows.
o ~comp(y) equals to {-p, ~q, -r, s, 2t}

o The label of So = {-p,r} intersects with {—p, ~q, —-r, ~s, ~t}. The result is
{-p}.

e The label of Sy = {-p, ~s,t} intersects with the result of the previous step

{-p}. The result is {-p}.

91



e Since all the initial states are processed. the negative atomic propositions of

the initial block is {-p}.

Consequently, the proposition is declared in the initial block as follows.

initial p = 0;

Synthesize the Sequential Block The sequential behavior of the tableau is
described by a sequential block in Verilog, which is an always block and uses the
case statement to branch the transitions with respect to the variable STATE. Every
state in the tableau is a case branch in the block. The value of the variables in
comp(y) are specified in each corresponding state (case branch). There are three
kinds of states in the tableau, the normal state, the null state, and the dummy state.
[n the normal state, the value of the components in comp(y) are set according to
the labels of the state. In the null state, they are set to 0. In the dummy state, they
are set to non-deterministically 0 or 1. Because the always block in VIS does not
allow non-deterministic declarations, we put the non-deterministic declarations of

the components in comp(y) in the combinational part as a wire variable and declare

as follows.
assign p_NDW = $ND(O, 1);//$

where p is one of the components in comp(y) and p_NDW is its corresponding wire
variable in the combinational part.

Since we have set the next state transitions in the combination part, we can
use the results directly. For example, we can set the next state transition of state

S'_)a.S

assign STATE = S_2_NEXT_W;

Example 5.2.6 In a tableau, comp(yp) = {p,q} the nezt state of Sy s Sy, ..., Sn.

The label of Sp is {p, ~q}. S\ is a null state. S5 is a dummy state. These states are

captured by the follounng always block.

92



always begin

end

case (STATE)

0: begin // state SO

p =1; // p is true in this state.
q = 0; // q is false in this state.
STATE = SO_NEXT_W; //the next state is SO_NEXT_W which
//is preset to 1,...n.
end
1: begin // state Si
p = 0; // this is a null state.
q=0;
STATE = S1_NEXT_W; //the next state is S1_NEXT_W which

//is preset in the combinational part

5: begin // state S§

p_NDW; // this is a dummy state

p
q = q_NDW;
STATE = S5_NEXT_W; //the next state is SS5_NEXT_W which

//is preset in the combinational part

......

Synthesize the Fairness Constrains It is often necessary to introduce some no-

tion of fairness. For example, if the system allocates a shared resource among several

users, only those paths along which no user keeps the resource forever should be con-

sidered. In VIS, fairness constrains are sets of states expressed by means of CTL

93



formulas, each giving a fairness condition which is satisfied infinitely often along a
fair path, namely Biichi fairness constrains. An example of a fairness condition is
p, that restricts the system to only those paths where p is asserted infinitely often.

Here, we will generate the fairness constrain file which is going to be used as
the input of VIS during the verification. The file contains a set of formulas, where
each of them has to be asserted infinitely often.

The fairness constraints are specified by the acceptance-state-marks in the
tableau. A state in the tableau marked by ¢ means that this state is an acceptance
state of the i*" generalized Biichi fairness set. At least one acceptance state in each
fairness set has to be asserted infinitely often.

The procedure to generate the fairness constraint is as follows. (1) scan the
tableau and get the ID of the state which is in the i** fairness set; (2) repeat the
first step until all the IDs of the states in each fairness set are generated; (3) all the
[Ds in each fairness set are or-ed as a formula and this formula is put in the fairness
constraint file of VIS. So, if there are n fairness sets, there will be n formulas in the

fairness constraint file.

Example 5.2.7 [n a tableau with states Sy, Sy, and S, the acceptance marks in
So are {0,2}; the acceptance marks in Sy are {0}; the acceptance marks in S, are

{0,1,2}. The formulas in the fairness constrain file are obtained as follows.

e The states in the Oth fairness set are Sy, S|, and S3. So, the formula s

((STATE =50)V (STATE = S.1) V (STATE = §2)).
o The state in the 1th fairness set is S;. So, the formula is (STATE = S22).

o The states in the 2th fairness set are Sy, and Sy. So, the formula is ((STATE =
S0)V (STATE = 5.2)).

The fairness constrain file in VIS thus is specified as

((STATE = S_0) || (STATE = S_1) || (STATE = S_2));

94



(STATE
((STATE

S_2);
S_0){l (STATE = S_2));

5.3 Applications

[n this section, we will demonstrate the applications of the environment syvnthesis
approaches. Assuming we want to prove properties of a module M under a certain
environment env. Module env captures the input signals of A{. A property ¢ usually
describes the corresponding behaviors of the output signals under the stimulus of

the input signals as shown in Figure 5.4.

env M ;
a a,
z Z,

Figure 5.4: A Closed System

Generally, module A is written in some hardware description language such
as Verilog or VHDL. In order to verify M, there are at least two requirements upon
module env. First, env should be in the same language as that of A. Secondly, env
has to be an accurate and complete representation of the real environment, not a
simple case.

In our verification approach, the stimulus is captured by ACTL formulas and
the formulas are translated into a finite state machine (tableau) through the tableau
construction. In this approach, the second requirement is implicitly satisfied since
the tableau includes all the behaviors of the formulas.

In order to satisfy the first requirement, we have to translate the tableau into

the same language of the module under verification. Here, we will synthesis the

95



tableau into a Verilog module. We know that this Verilog module is only used in
the verification of module A, but not a part of the final implementation. Therefore,
we can take advantages of the full range of the Verilog language to construct the
module, but need not care whether or not this module can be synthesized into a
lower level, for example gate level. Namely, even if module A is an RTL level
implementation, we still can construct a behavior level Verilog environment module

for verification purposes.

Example 5.3.1 Given the tableau of ¢ = A(trueUp) Vv A(falseV-p) as shown
in Figure 5.3, mechanically we procedure below the synthesized Verilog code, where
states 0, 1,2,3 are the states Sy, Sy, Sa, S3, respectively. The line numbers are added
manually for illustration purposes in this erample. The synthesis including the
tableau construction takes 2 seconds CPU time on a SUN Ultra 5. In the Verilog
code, the Lines 0 to 5 are cornments. The initial states are declared under “[ni-
tialization”, which are state 0, 1,2 non-deterministically (Line 15). The next state
transitions of the states in the tableau are set under “Combinational part” (Lines 20
to 25). Lines 27 to 47 represent the “Sequential part”. Each state in the tableau s
a case branch in the always block. In each state, the component in p is set a value

according to the label in the tableau.

LO: //‘define TRUE 1
L1: //‘define FALSE 0
L2: //‘define SO 0
L3: //‘define S1 1
L4: //‘define S2 2
LS: //‘define S3 3
L6: module tableau(p);
L7: output p;

L8: //Variable declaration

96



L9: reg p;

L10: wire pND_W;

L11: reg [1:0] STATE;

L12: wire ([1:0] S_INIT_W_TMP, S_INIT_W, SO_NEXT_W,
S1_NEXT_W, S2_NEXT_W, S3_NEXT_W;

L13: //Initialiazation

L14: assign S_INIT_W_TMP = $ND(O, 1, 2, 3);//$

L15: assign S_INIT_W = ((S_INIT_W_TMP == 3)) ? 2 : S_INIT_W_TMP;

L16: initial begin

L17: STATE = S_INIT_W;

L18: end // Initial

L19: //Combinational part

L20: assign S2_NEXT_W = 3;

\
w

L21: assign S3_NEXT_W =

L22: assign S1_NEXT_W = 1;

L23: wire [1:0] SO_NEXT_W_TMP;

L24: assign SO_NEXT_W_TMP = $ND (0,1,2,3);//$

L25: assign SO_NEXT_W = ((SO_NEXT_W_TMP == 1) |[| (SO_NEXT_W_TMP == 3))
? 2 : SO_NEXT_W_TMP;

L26: assign pND_W = $ND(0, 1);//$

L27: //Sequential part

L28: always begin

L29: case (STATE)

L30: 0: begin

L31: p=20;

L32: STATE = SO_NEXT_W;
L33: end

L34: 1: begin

97



L35: = 0;

L36: STATE = S1_NEXT_W;
L37: end

L38: 2: begin

L39: p=1;

L40: STATE = S2_NEXT_W;
L41: end

L42: 3: begin

L43: p = pND_W;

L44: STATE = S3_NEXT_W;
L45: end

L46: endcase // case (STATE)

L47: end // always begin
L48: endmodule // tableau

The synthesized fairness constraint is shown as follows.

(tableau.STATE = 1

"
N

|| tableau.STATE

L}
w

{| tableau.STATE
);

There is only one set of fairness constraint in the tableau which includes three accep-
tance states, S|, S, and S;. So, there is only one formula in the file which includes

three or-ed states.

Example 5.3.2 We use here a benchmark ezample of an arbiter from the VIS pack-
age. There are three entities in the system: clients, controllers, and an arbiter as
shown in Figure 5.5. The client sends a req signal to the controller to request ser-

vices. The arbiter will decide if the controller should give services to the client. If

98



Arbiter

Controller A Controller B
req/ack req/ack
Client A Client B

Figure 5.5: The Arbiter

the controller gets the permission, it will return an ack signal to the client. Now, the
property is if the client sends the req signal and the arbiter gives the permission. the
controller will acknowledge the req signal of the client. We will prove the property

in our compositional verification framework by the following steps:
1. Assume that the client sends the req signal and the arbiter gives the permaission.

2. Construct the tableau of the above assumption.
3. Synthesize the tableau into the Verilog behavior module.

4. Compose the environment module and the controller module, and verify the

acknowledge signal will eventually come true.
5. Discharge the assumptions on the client and the arbiter, respectively.

Regarding the first step, we use two ACTL formulas instead of the informal
assumptions. One is AFAG(req = 1); the other is AF(select = 1), where select =
1 means that the arbiter gives the permission.

The above two formulas can be synthesized into Verilog modules. These mod-

ules can be composed with the controller module and construct a verification system

as follows:
module verif_system();

99



environmentl environmentl_instance (req);
environment? environment2_instance (select);
controller controller_instance (req, select, ack);

endmodule // verif_system

where, req and select are the outputs of environmentl and environment?2, respec-
tively.

Then, this verif_system module can be put into a model checking tool to verify
that ack will eventually come true, namely AF(ack = 1). The property is verified
in VIS. The vertfication CPU time is 0.7 second on a SUN ultra 5 workstation, and

the memory in use is 383 KB.

The synthesized Verilog modules of the two assumptions are as follows.

module environmentl(req);

output regq;

//Variable declaration

reg req;

wire reqND_W;

reg [0:0] STATE;

wire [0:0] S_INIT_W_TMP, S_INIT_W, SO_NEXT_W, S1_NEXT_W;

//Initialiazation

assign S_INIT_W = $ND(0, 1);
initial begin

STATE = S_INIT_W;
end // Initial

100



//Combinational part

assign S1_NEXT_W = $ND(O, 1);//$
assign SO_NEXT_W = O;

assign reqND_W = $ND(0, 1);//

//Sequential part
always begin
case (STATE)
1: begin
req = 0;
STATE = S1_NEXT_W;
end
0: begin
req= 1;
STATE = SO_NEXT_W;
end
endcase // case (STATE)
end // always begin

endmodule // environment

module environment2(is_selected);

output is_selected;

//Variable declaration
reg is_selected;
wire is_selectedND_W;

reg [1:0] STATE;

101



wire [1:0] S_INIT_W_TMP, S_INIT_W, SO_NEXT_W, S1_NEXT_W, S2_NEXT_W;

//Initialiazation

assign S_INIT_W_TMP = $ND(O, 1, 2, 3);//$

assign S_INIT_W = ((S_INIT_W_TMP == 2) || (S_INIT_W_TMP == 3))
? 1 : S_INIT_W_TMP;

initial begin
STATE = S_INIT_W;

end // Initial

//Combinational part

wire [1:0] S1_NEXT_W_TMP;

assign Si1_NEXT_W_TMP = $ND (0, 1, 2, 3);//$

((S1_NEXT_W_TMP == 2) || (S1_NEXT_W_TMP == 3))

assign S1_NEXT_W
? 1 : S1_NEXT_W_TMP;

assign SO_NEXT_W 2;

assign S2_NEXT_W
assign is_selectedND_W = $ND(O, 1);//$

2;

//Sequential part
always begin
case (STATE)
1: begin
is_selected = 0;
STATE = S1_NEXT_W;
end

0: begin

102



is_selected= 1;
STATE = SO_NEXT_W,;
end

2: begin
is_selected = is_selectedND_W;
STATE = S2_NEXT_W;
end

endcase // case (STATE)

end // always begin

endmodule // environment

The verification script of the controller module is as follows:

read_verilog verif_system.v

init

read_fairness environment.fair

time

mc -1 -d 1 -f a.out arbiter.ctl

time

print_bdd_stats

where verif _system.v is the source file; environment. fair is the fairness constrain
file for the environment since there is an eventual subformula in the environment;

arbiter.ctl is the file containing the above three properties.

5.4 Summary

In this chapter, we illustrated how to synthesize the reduced tableau into Verilog
behavioral level HDL module through a conventional encoding of finite state ma-
chine and by taking the advantages from VIS-Verilog specific features such as non-

deterministic assignments. The synthesized Verilog module then can be composed

103



with a design under verification as the environment. The whole procedure is imple-

mented in Java 1.3.0 on SUN Solaris 5.7.

104



Part 11

Syntactic Model Reduction

105



Chapter 6

Model Reduction

In spite of the impressive progress in the development of model checking, state
space explosion is still a major problem. It is generally recognized that the only
way to scale up model checking to industry designs is the modularization and the
model reduction. In the sense of modularization, a system is decomposed into
many modules. The properties of the system are deduced by verifying the modules
separately as we mentioned in the previous chapters. However, in the million-gate
era, even the size of one module can easily break the model checking limit.

Beyond compositional approaches, model reduction is the most important
technique for relieving the state explosion problem. Model reduction is a general
approach (23, 20] which reduces a concrete system (M) under verification to a more
abstract and smaller one (M'). Both systems A and A’ are connected by an abstrac-
tion relation which is safe with respect to a given property ¢, namely it preserves
the property. This means if the property holds for the abstract system, it holds for
the concrete one as well. More formally, the property ¢ is either weakly preserved
if M' = o = M = ¢, or strongly preserved if M' = ¢ = M | ¢. It should be
intuitively clear that the more weakly the property is preserved, the more reduction

can be achieved.

106



Generally, in industry, one module may contain both control and a big dat-
apath [50]. Hopefully, in practice, the size of the control structure is not large so
that model checking can handle it using the ROBDD presentation. However, in
the verification of the datapath, because of the large quantity of memory elements,
model checking leads to state space explosion in the verification. In this case, we
have to reduce the model to avoid the construction of the whole state space that
might be too large to be fit into memory.

There are two ideas on reducing the model. One is to separate the datapath
from the control logic. Generally, using the ROBDD based representation. the
control unit can be verified [86, 16, 34, 2, 14, 85]. The concrete datapath elements are
verified separately. In this framework, we have to deal with the feedbacks between
the control units and the datapaths. The above approaches are very efficient but
ad-hoc because they cannot handle general properties.

The other idea is to derive a reduced model from the concrete module with
the control unit and the datapath part being together, and guarantee that the small
reduced model preserves the properties of the original module 23, 57, 20, 55, 21, 54,
5, 3, 87, 67, 22, 19]. In this framework, obviously, we do not need to consider the
feedbacks between the control unit and the datapath. Thus, using model checking,
we can possibly verify a real industry design with complex control logic and big
datapaths.

In the following, we illustrate the model reduction methods with combined
control and datapaths, which include the cone of influence reduction [55] (or prop-
erty localization [54]) and symbolic data abstraction [21, 20, 57, 19]. These methods

are widely used in the model checking tools, such as FormalCheck, SMV, etc.

107



6.1 Cone of Influence Reduction

We have defined the Kripke structure in Section 2.1 which is used as a formal model
of FSMs. Here, we refine the definition to adapt the circuit designs in practice.
Let V' = {vy,...,vn} be the set of variables of a given circuit. This circuit

can be described by a Kripke structure M = (5, 1,4, A), where

e S ={0,1}" is the set of all valuations of V.

e [ C S is the initial states.

e d = A" [vl = fi(V)], for each v; € V', where f; is a boolean function.
e A(s) = {vils(v;) = 1 for 1 < i < n} are the label functions.

Suppose we want to verify a specification ¢, where V' C 1" is the set of
variables that are of interest with ¢. We would like to reduce the original model Af
with respect to the specification ¢, namely we will abstract away all the variables and
transitions which are not of interest with the specification o (property localization).
However, because of the internal transitions in Af, the values of variables in " might
depend on values of variables not in V. Therefore, we define a cone of influence C
of 17 and use C in order to reduce the original model Af.

The cone of influence C = {v,,... , vk} of V" is the minimal set of variables

such that
e \"CC
e if for some v; € C, its f; depends on vj, then v; € C.

C is created by removing all the transitions whose left hand side variables do
not appear in C. Since C is the subset of the variables of structure A/ (implemen-
tation) and includes all the variables of interest with the variables in specification
, it is an abstraction of the variables in M. We thus can construct a new reduced

structure M = (§, I8, X) base on the cone of influence C = {vy,... , v}, where

108



e S= {0, 1}* is the set of all valuations of {vy, ..., v}

o= {((fl, ,(ch there is a state (dy, ... ,d,) € S such that JI = JI/\.../\H; =
de}.
o 8= ALl = L0
o A(3) = {v|S(v;) =1for 1 <i <k}
Let B is a relation between A and 3, one can prove that B is a equivalence
relation [22]. Hence, a direct consequence is that B preserves the CTL#* properties

(22]. Namely, let f be a CTL+ property with atomic propositions in C, M k= f if
and only if M E f.

vl \; :

v0

Figure 6.1: Synchronous Modulo 8 Counter

Consider an synchronous modulo 8 counter example as shown in Figure 6.1,
where

vy = W

(1 B 0

V=1 ®

vy = (vg Avy) @ vy

109



Clearly, if V' = {vg} then C = {v,}, since f; does not depend on any variable
other than vo. If V' = {v,} then C = {wg, v}, since f, depends on both of the
variables, but v; ¢ C because no variable in C depends on v,. Finally, if V' = {v,}

then C is the set of all the variables. In this case, the reduction is not working.

6.2 Symbolic Abstraction

Symbolic abstraction is based on the observation that the specification of systems
that includes datapaths usually involves fairly simple relationships among the data
values in the system. The abstraction is usually specified by giving a mapping
between the actual data values in the system and a small set of abstract data values.
By extending the mapping to states and transitions, it is possible to produce an

r

abstract version of the system under consideration as shown in Figure 6.2. We

Figure 6.2: Symbolic Abstraction

would like to verify model M satisfying specification ¢. Since M is too large to fit
into a model checking tool, we can design a mapping function h and apply h on
both M and ¢ to get Al, and ¢,. M, is an abstract version of M and often much
smaller than the actual model, and as a result, it is usually much simpler to verify
properties at the abstract level.

The idea of the abstraction is to merge together all states in the Kripke struc-
ture that have the same labelling of abstract level atomic propositions. Suppose

that we have a structure M whose definition is the same as the one given in last

110



section. In order to construct the reduced structure, we first change the labelling
of the original structure. This is done by choosing an abstraction domain A and
a mapping h from D to A. This determines a set of abstract atomic propositions
AP. We now obtain a new structure A/’ that is identical to A except that the label
function labels each state with a set of abstract atomic propositions from AP. The
structure M’ can be collapsed into a reduced structure M, = (S,, I, d,, ;) defined

as follows:

o S, = {L(s)|s € S}. Thus, the set of states in the reduced structure is the set

of all labelling of states of A[.
e s, € [, if and only if there exists s such that s, = A(s) and s € [.
o AP, = AP.

0-(sr, t,) if and only if there exist s and t such that s, = A(s), ¢, = A(¢), and

5(s,t).

Each s, is just a set of atomic propositions, so A.(s;) = s,.

M, is an abstract version of the Kripke structure of the original model. Each
abstract state represents a set of concrete states that are merged together during
the collapsing process. Note that by using this technique it is possible to determine
whether formulas over the abstract atomic propositions AP are true in M. In
practice, AP is chosen by the user so that it is possible to express the properties
of Al that needs to be checked. The main difficulty is that building A, requires
constructing Af. When it is impossible to build M directly, one uses an implicit
representation of M in terms of the formulas I and é. Instead of constructing A,
M, is derived from these formulas [20]. One can also prove M =< M, [57]. Since the
ACTL property is preserved in this relation, so we can verify ACTL properties

under this framework.

111



For example, Figure 6.3 illustrates the abstraction procedure for a simple traf-
fic light controller. The original model has one variable color that can take on values

from the set D = {red, yellow, green}. lts states are labelled with atomic propo-

(e

Oniginal Structure M

©
B

Structure M’ Structure M,

Figure 6.3: Traffic Light Example

sitions ‘color = red', color = yellow’, and 'color = green’, which we abbreviate in
the figure by red, yellow, and 'green’, respectively. The structure Af is obtained by
choosing an abstract set of values 4 = {stop, go} and a mapping function h defined

by:
h(red) = stop, h(yellow) = stop, h(green) = go
The set of abstract atomic propositions is given by

AP = {'color = stop',’ color = go'}, where color is the abstract variable of “color”

112



In the figure we use stop and go to abbreviate these atomic propositions. The
reduced structure A, results from merging together those states of M with the
same labelling of abstract atomic propositions.

Generally, when we make such an abstraction, we have to find a smaller model,
which can contain the behaviors of the concrete one. In this case, false negative
becomes a key problem in the verification. Suppose we are given a module M and a
property 2, the abstracted version of M is A Usually, A = o implies M = ¢, but
M ¥ ¢ does not implies M = ¢, namely the counter-example from the abstraction
module M is spurious. This is the so-called false negative problem. How to solve
this problem is now an active research topic [25, 78, 19]. Here, we will introduce the
counter-example guided abstraction refinement in [19)].

[n this approach, an algorithm is provided to determine whether an abstract
counter-example is spurious. If the counter-example is not spurious, it is reported
to the user and the verification is stopped. If the counter-example is spurious.
the abstraction function must be refined to eliminate it. In the approach. one can
identify the shortest prefix of the abstract counter-example that does not correspond
to an actual trace in the concrete model. The last abstract state in this prefix is
split into less abstract states so that the spurious counter-example is eliminated.
Thus, a more refined abstraction function is obtained. Note that there may be
many ways of splitting the abstract state; each determines a different refinement
of the abstraction function. It is desirable to obtain the coarsest refinement, which
eliminates the counter-example because this corresponds to the smallest abstract
model that is suitable for verification. The approach is complete for the fragment
of ACTL* which has counter-examples that are either paths or loops, i.c., it is
guaranteed to either find a valid counter-example or prove that the system satisfies
the desired property. In principle, the framework can be extended to all of ACTL*.

Consider a program with only one variable with domain D = {1,...,12}.

113



Assume that the abstraction function b maps £ € D to |[(z — 1)/3] + 1. There
are four abstract states corresponding to the equivalence classes {1,2, 3}, {4,5,6},
{7.8,9}, and {10, 11,12}. We call these abstract states 1, 2, 3, 3. The transitions
between states in the concrete model are indicated by the arrows in Figure 6.4,

where black dots denote non-reachable states. Suppose that we obtain an abstract

A A A A
L 2 3 4
= -3 03 -0
10 o ® ®
] 4 7 ) 10
20 \g\k 8. \ “.
30 Og MOy AV

Figure 6.4: Abstracted Counter

o~ o~

counter-example T =< 1,2,3.4>. Itis easy to see that T is spurious, and state 3
is the failure state because state 7 is unreachable in the concrete model, but in the
abstract model, it is reachable. In order to eliminate this spurious counter-example,

we can partition the concrete states into three types.

o The dead-end state 9 is reachable, but there are no outgoing transitions to the

next state in the counter-example.

o The bad state 7 is not reachable but outgoing transitions cause the spurious

counter-example. The spurious counter-example is caused by the bad state.

o The irrelevant state 8 is neither reachable nor bad.

The goal of the refinement framework is to refine the abstract states so that the
dead-end states and bad states do not belong to the same abstract state. Then the
spurious counter-example will be eliminated. Obviously, throughout the refinement,

the size of the abstract model is becoming larger and the granularity is finer.

114



6.3 Summary

In this chapter, we overviewed two existing model reduction techniques, which are
the foundation of our proposed syntactic model reduction approach, namely cone
of influence and symbolic data abstraction. These techniques are based on different
formalisms and each has its own advantages. For example, cone of influence can
be done automatically but suffers from state space explosion, while symbolic data
abstraction is more efficient but not automatic. Our goal in the next chapter is to
propose a reduction method, which is efficient in typical applications and can be

made automatic.

115



Chapter 7

Syntactic Model Reduction

7.1 Introduction

Cone of influence (COI) reduction decreases the size of the concrete system by
focusing on the variables of the concrete system that are referred to in the property
and eliminating variables that do not influence the variables of interest against the
properties [35]. In this way, the property satisfaction is preserved, but the size of
the model that needs to be verified is smaller. However, sometimes, there are still
lots of redundant information in the COI reduced model. We can easily find a case
in practice where a variable 4 depends on a variable B, but the value of variable
B does not affect the value of variable A. For example in a two-input AND gate,
if one of the inputs is set to zero, then no matter what value the other input takes,
the output of the gate is always at zero.

Based on the above observation, we will give a refined dependency definition
by examining the values of the variables that influence the truth of the property.

In the proposed approach, a system under verification is considered as a pro-
gram for which abstract syntax and semantics are defined. The approach analyzes its
syntactic structure, i.e., the control flow diegram of the programs [33]. Throughout

the analysis, the dependencies of the state variables in the program are extracted.

116



Then. using a SAT solver, SATO [88] (Appendix B), we can partition the values of
state variables in the program into active values, and deactive values according to
their dependency to the properties. The deactive values then can be replaced by a
typical abstract value, and thus the value domains of the variables are much smaller
than the original ones. Accordingly, we can have a reduced program with respect
to the abstracted variables. As we will see, after the above procedures are done, the
state space of the reduced program is smaller than that of the original one, while
the correctness of the properties is preserved. The proposed approach has the same
flavor as the static analysis approaches such as symbolic data abstraction [20] or ab-
stract interpretation [23]. However. we do not have to define the abstract domains.
Throughout the analysis, we show that the approach is efficient in reducing the size
of the datapath of a system with finite value domains. Because the reduction is
based on the analysis of the control flow diagram, which is a canonical form of the
program, it can be automated.

In order to achieve our goal. i.e., determining the active and deactive values,
we will use two semantic functions adapted from [33]. Namely, the reachability con-
dition RC; , associated with every path 7 of the Control Flow Diagram (CFD), is
a boolean condition under which this path is traversed. The state transformation
function ST, computes the values of the program variables at the end of the path,
provided that this path is traversed. These functions are obtained by backward in-
duction over paths of the control flow diagram of the program. A problem to deploy
this approach in practice is on how to solve RC, and get the true value assignment.
Computing all the combinations of variables and their domains would be expo-
nential. However, SAT [37] solvers are good at finding such variable assignments.

Namely, we can use a SAT solver to compute RC, [T1].

117



7.2 System Models

In this chapter, we model the various designs under verification by an abstract
program including the syntax and the semantics. Generally, what we want to model
is a reactive system, which reacts to the stimulus by changing the value of the
variables in the program. The reaction of the system is continuous starting from
an initial condition. For simplicity, we only define two types of statements of the
program. One is assignment; the other is test. Using these two statements, we can
simulate most of the cases in the computation.

The semantics of the program is defined by the Kripke structure [51] (Section
2.1), where each state is an execution result of the statements in the program. The
transition between two states is the reflexive and transitive closure of two consecutive
statements in the execution. Intuitively, assuming there is a clock signal in the
program and all the statements are executed in each clock cycle, one can consider
that a state is the valuations of all the variables in the program, which are sampled
at one edge of the clock.

In the following, we define the syntax and the semantics respectively.

7.2.1 Abstract Program Syntax
Definition 7.2.1 An abstract program P is specified by a tuple (V,I,S), where

o V" = {u,..., v} is a finite, non-empty set of variables. Fach variable v;,

i € [1 : n], has an associated finite domain of values, dom(v;).
o [(V7) is the initial condition, specified as assignments on V.

e S is a set of statements which are partitioned into the assignment statements

S, and the test statements S,.

Given a program P = (V) I, S), the control flow diagram (CFD) of this program

is defined as follows.

118



Definition 7.2.2 A Control flow diagram (CFD) of a program P = (V,I,S) is a
directed diagram (N, E, L.) where

o N is a finite set of nodes labelled by the program counter locations.
e EC N x N is a finite set of edges.

o L, is the edge labelling function L, : (E — S) such that for every node n in
the diagram either n is of out-degree 1 and the edge leaving n is labelled with
assignment statement(s) or n is of out-degree 2 and the edges leaving n are

labelled with test statement S, and —S,.

There are three special nodes in a CFD, i.e., Init, €, and w. These nodes are

part of the program syntax, where

e [nit € N is the entry point of the program and marks the initialization block

of the program, which has no predecessor.
e ¢ € N is the beginning of the code. The edge to ¢ is marked by [(17).

e w € N, marks the end of the program text, where the code between ¢ and w

is in a forever loop.

In the test statement, “if B then proc; else procy” or “while B then proc,”,
the true action domain of the test is the set of statements in proc;, which will be
executed when the test is true, and denoted by ADg+. The false action domain of
the test is the set of statements in proc,, which will be executed when the test is
false, and denoted by ADg-.

The CFD of program P is actually its graphic presentation. So, P can be

translated into C F D(P) according to the definitions or vice versa.

Example 7.2.1 To illustrate our purpose, we have chosen a small program P. In

Figure 7.1, we give P and its CFD. In program P, the value domains of the variables,

119



i,J, and k, are {0,1,2,3}, respectively. The initial condition is i = j = k = 07,
which is the starting point of program P. There are two kinds of statements in P,
assignment and test. The statements between ¢ and w are in a forever loop, namely
when statement Ly is finished, statement € will start again automatically. In the
CFD, nodes are marked by the program counter locations (€, Lo, Ly, Ly, w) and edges
are marked by the statements in the program. Since the code between € and w is in

a forever loop, the edge from w to € is a “forever” transition.

// Variable declaration
i, j, k: {0,1,2,3};

i=(+Dmodd

Init: i=20;
j=0;
k = 0;
epsilon: 1= (i + 1) mod 4; j=G+1)modd
LO: j=( + 1) mod 4;
L1: if (1 == 3)
L2: k =1,;
omega:

omega

Figure 7.1: Program P and its CFD

7.2.2 Abstract Program Semantics

Let @ = {v|,...,vx} be a vector of variables taking their values in a universe
Uvp={dom{v}, ... ,dom{vi}}. Semantically, we refer to the valuation of the vari-
ables v =e,... ,vx = ek, where e; € dom(v;), as a state o, and these variables v,

120



are often referred to as state variables. We use the notation of[v;] to denote the value
of state variable v; in state o. Similarly, for an expression = (over state variables in
the domain of state o), we use ofz] to denote the value of z in the state g. The
special brackets '[’ and ']’ emphasize the fact that the entity enclosed between them
( v; or z in the above cases) is of a syntactic nature.

The initial condition I(V') serves as the entry point of the program just like
the reset value of a circuit, where the computation starts. In the initial condition,
all the variables have to be initialized, however, this is not an essential restriction.

The assignment statement is denoted by S,, where an assignment v} = T(73)
is represented as a function T from U,, into Uy. In the simple case, v; = T(73).
In the above assignment statement, 7y = T(73) can be multiple assignment, where
the current value of the expression T(73) can be assigned to the variable v; simulta-
neously for all i. For example, (z, ;) = (x| + 1, 2| + z5) assigns to z; the successor
of its value and to z, the sum of the old value of z, and z,. However, two as-
signment statements, “77 = T(73); 73 = T'(73)", are sequential, namely statement
73 = T'(7]) can be executed only after statement v} = T(73). For example, two
assignment statements, “r, = r; + 1; 12 = | + Iy", I is assigned the successor of
its value and r, the sum of the new value of r, and z,.

The test statement is denoted by S., where a test statement, “if(B(7))” or
“while(B(7))", is represented as a function B from Uy into {true,false}. The
test statement is a positive test in a state o when o[ B(7?)] = true, or a necgative
test when o[B(7’)] = false. The computation branches according to the value of
the test function.

The semantics of program P is defined in terms of configurations. A config-
uration of a program is a pair ¢ = {0, A). The state o is a visible component and
assigns values to program variables. The counter location A is a hidden component
and its value corresponds to a current statement to be executed.

Next, we define the particular transition relation “—” for configurations.

121



Definition 7.2.3 Let ¢ = (0,) and ¢ = (¢’, X'} be two configurations. We write
¢ — ¢ if and only if the following hold.

e [f A is the Init node, then X' =€ and ¢’ = ¢.

e [f A is the w node, then X' =€ and o' = 0.

o If \ is an assignment S, : Ty = T(3), where v and T3 are two vectors and

T is a function from Ug into Uy, then X' = suc(A) and o’'[v]] = o[T(93)],

where suc(A\) means the successor of A in a CFD.

o If \ is a test statement S, : if(B(?)) or while(B(7)), then o' = o, and
either X' = suc*(\), in the case o[B(?)] is true or X' = suc™(A) in the
case o[~ B(7)] s true, where suc*(A\) and suc™(\) means the true or false

successor of X in a CFD, respectively.

We will use “—*" to denote the reflezive transitive closure of “—".

Generally, “—" is the transition from one statement to the next statement
in the execution. However, “—*" is the transition after n continuous statements.
During these n steps, the execution may either include arbitrary number of steps of

—, or do nothing (n = 0).

Definition 7.2.4 The semantics of the program P = (V, I, S) is a Kripke structure
K(P) = (%, (00, Init), —, L), where

e ¥ is a set of configurations, where & = {(o',¢€) : (0,€) —=* (0, €)} U {(00,¢€) :

(o0, Init) — {0g,¢€)}-
e (09, Init) € T is an initial configuration such that o[I(V)] is true.
e — is a transition relation defined in Definition 7.2.3.

e a labelling function L : (£,24P) associates a non-empty set of atomic proposi-

tions (AP) with a configuration c € L.

122



Example 7.2.2 The Kripke structure of the program in Ezample 7.2.1 is shown in
Figure 7.2. The double circle s the initial state where the labels of the initial states
are dectded by the initial assignments. Here, since in the Kripke structure, the value
of A is always €, we omit € in the label of the configurations, namely < (0,0,0),\ >
becomes (0,0,0). In this example, the initial condition is 4 = j = k = 07, so the
initial state is ‘i = j = k = 0". The labels of the other states are decided by the
valuation of the variables in the program when program counter is €. For example, if
the current state is “t = j = 1,k =07, according to the program, statement L, will
not be erecuted because the test condition does not hold, so k keeps at 0. However, in
this case, statement € and Ly are erecuted, the consequential results are “i = j =27,

When the execution gets to w, the valuation of the variables are “i = j =2.k=0".

So. the nezt state of 1= j=1,k=0"1s “=j=2,k=0".

ij. k

Srerere-oee

Figure 7.2: Kripke Structure of Example 7.2.1

123



7.3 Data Dependency Reduction

Data dependency defines the relationship between two state variables. If one variable
affects the values of another variable during the computation, we call these two
variables dependent. Generally, in the statements of a program, there are two types
of dependency. One is the statement with direct data dependency; the other is that
with indirect data dependency. Direct data dependency means that the value of onc

variable will directly affect the value of the other variable.

Definition 7.3.1 Direct data dependency is the data dependency in the assignment

statement Sa : vl = T(13), where T directly depends on 3.

For example, in the assignment statement “z = y + 1”7, the value of the RHS
(Right Hand Side) variable y will affect the value of LHS (Left Hand Side) variable
z directly.

Indirect data dependency means that the value of one variable will affect the

value of the other variable via another variable.

Definition 7.3.2 Indirect data dependency is the data dependency in the test state-
ments, “if(B(7))” or “while(B(7’))". Variables in 7 indirectly affects the LHS

variables in ‘4D5¢+ and ‘4D5¢"

For example, in the “i f(z) then w = y+1 else w = y—1" statement, the value
of z will affect the value of the LHS variable w indirectly via variable y. Another
example from hardware, such as a D flip-flop as shown in Figure 7.3, the relation
between D and @ is the direct dependency, and the relation between Clr and @Q is
the indirect dependency.

A Data Dependency Diagram (DDD) of program P is a directed diagram which
records the dependency between the variables in the program. The data dependency

diagram is defined as follows:

124



D D Q
flip-
flop

T

Clr

Figure 7.3: A D Flip-flop

Definition 7.3.3 The data dependency diagram of a program (V| [,S) is repre-
sented as a directed graph (D, Ly, X), where

o D is the set of nodes.
e Ly is a one-to-one function Ly : (D,V) which labels each node by a variable.

o X C Dx D is the set of transitions between the nodes to mark the dependency
via directions, (d,,d,) € X if and only if there is a direct dependency between
v; and vj, i.e., v, = T(v,), or there is an indirect dependency between v, and
vj, i.e., v; in B(7)) and v, in the LHS of ADSf or ADS‘-. Namely v, is either
RHS of S, or in B(?); v, is either LHS of S, or LHS in ADg+ or ADS;

with respect to B( 7).

Example 7.3.1 (DDD of the search program) In Ezemple 7.2.1, the DDD of
the program is shown in Figure 7.4, where only i affects k. Because i is in the test

condition of statement Ly and k is the LHS of L, this is an indirect dependency.

CD

Figure 7.4: DDD of Example 7.2.1

125



Since in each verification run, a property is always a partial specification, and
not all the state variables in the implementation are involved in the verification, we
can prune those unnecessary state variables in verification. Thus, the system to be
verified will be smaller in terms of the number of state variables. This is exactly the
idea of cone of influence reduction (35, 22|. Here, the cone C is created by removing
all the variables where the nodes marked by these variables cannot reach the nodes
marked by the variables of interest in DDD. Since C is the subset of the variables
1" of a model and includes all the variables of interest against specification ¢, it is

an abstraction of the variables in the model.

Theorem 7.3.1 [20] Let f be ¢ CTL * formula with atomic proposition in C, and
M is the concrete model, A is the COI reduced model. Then

MiEfelEf

Figure 7.5: COI Reduced DDD

Example 7.3.2 (COI reduced DDD and CFD) In Erample 7.2.1, assuming
we want to prove a property of variable k, the DDD of the COI reduced program
is shown in Figure 7.5, where only i affects k and j is removed because the node
marked by j cannot reach the node marked by k via a path in the diagram.

The reduced program is shown in the left of Figure 7.6 and the corresponding
CFD is shown in the middle. The state space of the program after the COI reduction

1s shown in the right.

126



// Variable declaration
i, k : {0,1,2,3};

Init: 1i=20;
k = 0;
epsilon: i = (i + 1) mod 4;

L1: if (i == 3)
L2: k=1,
omega:

e e e o
-

Figure 7.6: COI Reduced Program and its CFD and State Space



7.4 Reachability Condition and State Transform

[n this section, we introduce two notations used in the following reduction approach,
i.e., reachability condition and state transformation. These two notations are ob-
tained from the CFD.

For a sequence of nodes in the CFD, N; Bt Nipy B B Nitk, where
k > 1. we say this is a finite path in the diagram. We use the notation ezpr{v « e]
for the expression that every occurrence of v in expr is replaced by the value e. For
example, “r + y[r « L.y « 1] = 2" means that = and y are replaced by constant
I respectively, and the result of the expression is 2. By convention, true[v « €| =

true and false[v « ¢| = false.

Definition 7.4.1 [33] Let T be a finite path in the CFD.

e Reachability condition guarantees that the control will traverse . [t is denoted

by RC.(7), where T is the variable vector of interest.

e State transformation is the final state of T obtained if control indeed traverses

T with 7. It is denoted by ST,(7).

RC.(7) and ST,(7") are obtained by backward induction over 7 as follows.
Let 7 = N LI E—k—il Ni be a finite path in the CFD of length k£ + 1, for
some natural number k. We first define RC™( %) and ST™(7’), the corresponding
characteristics of the suffix V,, Emgt E"—i' Ny of 7, by induction on m going down

from & to 0.

e Induction basis
RC*(?) = true, STH(?) = 7
In other words, being at the end of 7 to traverse 7 implies an identically true

reachability condition and an identity state transformation.

128



e [nduction assumptions

Suppose that RC™*! (%) and ST™ () have already been defined for 0 <

m<k

o [nduction step

We define RC™(7) and ST™(7) according to the statements at edge E,,.
— Initialization: RC (7)) = (RCT () [T « [(V)], ST™(7) = ST P) [P «
I(17)]. Thus, the initial statement is captured by an assignment of new

value to the variables.
- Assignment: RC™(?) = (RC™Y(P))[P « T(V)], ST™(?) = ST™Y(?)[T «

T(V)]. Thus. the effect of an assignment is captured by substitution.

— Positive test: RC™(7) = (RC™Y(?))AB(7?), ST™(7) = ST (7).

Thus a test does not change the state and remembers the condition.

~ Negative test: RC™( ) = (RC™Y(P))A-B(7), ST™(?) = ST™*(?).

This is similar to the positive test case.
Finally, we define RC.(7) = RC(?), and ST, (7) = ST 7).

Example 7.4.1 Consider the program in Erample 7.2.1. If we set T as a path

Init = € = Ly — L, - w, the reachability condition and the state transformation

are as follows.
e RCY(i,j, k) = true, ST(i, j, k) = (i, ], k).
o RCH(i,j,k) = true A (i # 3) = (i #3), ST (i, j,k) = (i, , k).

® RCI(i,j,k) = (i #3)j « G+ 1)] = (i #3), STL(i,5,k) = (i,5,k)j «
(J+ D=0, +1,k).

® RC:(i,j k) = (i #3)[i « (i +1)] = (6 #3), ST(i,j, k) = (i,j + 1, k)[(i <
(+ D)) =0G+1,7+1,k).

129



e RCIM (i j k) = (i # 3)[i « 0,j « 0,k « 0] = true, ST/™(i,j k) =
(1.7 + LK)i < 0,j « 0,k « 0] = (1,1,0).

From the above induction, we know RC,(i,j,k) = true and ST.(i, j,k) =
(1,1,0) which means that node w can be reached from node Init by path Init —
€ = Lo = L, - w and after the traverse the valuations of the variables are (1, 1,0),

respectively.

// Variable declaration
int x;
Bool y,z;

// Initialization

Init: X =1;
y=1;
z=1;

epsilon: if (y <= x)

LO: y=y+z
else

L1: X =x + 2z;
endif

omega:

omega

Figure 7.7: An RC/ST Example

Example 7.4.2 Consider the program in the left of Figure 7.7. The CFD of this

program is shown in the right.

If we set T as a path ¢ — Ly — w, the reachability condition and the state

transformation are as follows.
e RC{(z,y,z) = true, ST¢(x,y,2) = (z,y,2)

e RCY(z,y,2) = truely « (y + z)] = true, ST®(z,y,2) = (z,y,2)[y « (v +

Z)] = (l‘,y-*—Z,Z)

130



® RCY(z,y,2) = true A (y < z) = (y < 1), STS(z,9,2) = (z,y + 2, 2)

From the above induction, we know RC,(z,y,2) = (y < z) and ST, (z,y,2) =
(r,y+2,2z). The actual values of RC,(z,y,z) and ST,(zx.y, z) depend on the present
values of z, y, and z at node €. In the computation right after the initializationz = 1,

y=1and z =1, RC/(z,y, z) = true and ST, (z,y,2) = (1,2,1).

7.5 Deactive Variables Reduction

As we mentioned, even after COI reduction, the reduced model still has some re-
dundant information, which will create a redundant state space. In the context of
model checking, this redundancy means much more CPU time and memory usage
in the verification. In this section, we give a refined dependency definition of the
COI approach. In the following, we consider whether or not the change of the value
of a variable v; will lead to a change of the value of another variable v,. If so, then
variable v, is indeed depending on variable v;. For example, v; is the variable in a
property. [If the value change of v, will alter the value of v}, then variable v, will
definitely affect the truth of the property, else even v; and v; are dependent with
respect to the COI dependency, v, is a redundant variable according to the property.

The basic approach to deploy the above idea is to partition the value domain
of the variables in the program. In the following, we will partition the value domain
into active values and deactive values. The active values are those values, which will
affect the variables of interest, while the deactive values do not affect the variables.
The partition is based on the analysis of the two notations of control flow diagram
(CFD), i.e, reachability condition RC and state transform ST.

Now, we are able to define our partition of value domains. We consider first
the key nodes, which are nodes of the CFD that directly influence the specification.
Next, we compute the reachability condition and state transformation function of

the path starting from a node in the CFD and ending at a key node.

131



Definition 7.5.1 Let v be the variable of interest in the property, n be a node in
the CFD and e be the outgoing edge of n. We say that n is a key node if and only
if Le(e) = v =T(7).

For example, if ¢ is the variable of interest, then a node n in the CFD with
the outgoing edge labelled by i = T(7) is the key node. In the keynode, the
value of 7 is to be changed, so the correctness of the properties of i will be affected.
However, i is not the only variable in the program which can affect the correctness
of the properties, because the variables may affect the correctness of the properties
indirectly by affecting the value of z.

In the program, a variable j may affect variables i if there is a path such that
the CFD node marked by the label of i is reachable from the node marked by the
label of j. For example, there are two continues assignment statements in program

P as shown in the left of Figure 7.8. The CFD of the program is on the right of

Li1: j =3 +1;
L2: 1 = j +1;

Figure 7.8: Dependency Example 1

the figure. The value change of j will affect the value of ¢ since the CFD node L, is
reachable from L, via the path “L; — L,”. On the other hand, consider the piece
of program in the left of Figure 7.9, where the corresponding CFD is shown in the
right of the figure. The CFD node L; is only reachable from L; when j > 10, which

means that all the values of j less than 10 cannot affect the value of ¢ in this piece

132



L1: j =3 +1;
L2: if (j > 10)
L3: 1= 3 +1;

Figure 7.9: Dependency Example 2

of code. Moreover, we can consider that only the values of j greater than 10 will
affect the properties where i is the variable of interest, so we will keep this partition
of value in the program, i.e., active values, and abstract the value of j less than 10,

i.e., deactive values.

Definition 7.5.2 Let v be a variable among the dependency list of interest variables,
e the value of v and T be a path leading to a key node.
We say that the value e is active if and only if RC,[v « €] is true or ST,(v) = e.

Similarity, we say that the value e is deactive if and only if RC,[v « €| is false.

To use above definition in the practice, a problem is on how to find all the true value
assignments for the reachability condition. Since SAT solvers are good at finding
variable assignments which make the CNF (Canonical Normal Form) propositional
formula true, we can use a SAT solver, here SATO [88], to get all the values satisfying
formula RC.[v < €] = true, which are the active values with respect to the RC.
However, since SAT-solvers expect their input to be a propositional formula in the

CNF form, we still need to convert the reachability condition into CNF. Besides,

133



when we do the conversion, since SATO does pure literal simplification [89], we have
to keep a literal and its opposite in the CNF. Generally and during computations, a
variable v may have both active and deactive values with respect to the key nodes.
Hence, the domain values of v, i.e., dom(v), is partitioned into disjoint subsets
ACTIVE (v), eventually empty, of active values and DEACTIVE (v), eventually empty,

of deactive values, where

o if ACTIVE (v) = @, then v is a dead variable and DEACTIVE (v) = {e}. where

e € dom(v) and e is a typical value of dom(v).

o if ACTIVE (v) # 0 and DEACTIVE (v) # 0, then v is a partial dead variable

and DEACTIVE (v) = {e}, where e is a typical value of DEACTIVE (v).

e if DEACTIVE (v) = @, then v is a live variable and ACTIVE (v) = dom(v).

dead variable abstracted dead variable

O : avalue of dead variable

Figure 7.10: Abstraction of Dead Variables

From the above analysis, the variables of a program is partitioned into subsets
with respect to the variable of interest, i.e., a set of live variables, that of dead
variables, and that of partial dead variables. Every value of the active variables will
affect the value of the variable of interest while that of the deactive variables cannot.
In model checking, the variable of interest is the variable in the property. The value
of dead variables cannot affect the correctness of the property. Consequently we can

abstract these values and preserve the correctness of the property. This abstraction

134



is shown in Figure 7.10, where all the values in a dead variable are mapped into a
single value. This single value can be any value in the domain of the dead variable.

In the case of partial dead variables, the active values are kept while the
deactive values are abstracted as shown in Figure 7.11, where the active values are
kept while the deactive values are mapped into a single value. This single value can

be any value among the deactive values.

partial dead variable abstracted partial dead variable

O : deactive value of partial dead variable

@ : active value of partial dead variable

Figure 7.11: Abstraction of Partial Deactive Variables

In the case of live variables, all the values are kept as shown in Figure 7.12.

In this case, no reduction is achieved.

live variable abstracted live variable

@ : value of live variable

Figure 7.12: Abstraction of Active Variables

Given the above reduction rules, we can obtain a reduced program from the

original program as follows.

135



Definition 7.5.3 P = (V,[,S) is a program. The reduced program P = (‘A, I, §)
oV =Vis a finite, non-empty set of variables. For eachv, € v, dom(v;) =ACTIVE

(vi)U DEACTIVE (v;).

o I(V') is equal to I(V')[e; «-DEACTIVE (v;)] for each v, such that e; ACTIVE
(v)-

e S is obtained as follows: (1) if B(7) or while B(T) statements are obtained
like the initial condition. (2) An abstract assignment statement 3’: is defined

non-deterministically by v; =ACTIVE (v;)U DEACTIVE (v;).

In the above reduced program, the variables in the program have new domains,
i.c., ACTIVE (v;)U DEACTIVE (v;). Since DEACTIVE (v;) is actually the reduced set
of deactive values, the abstract domain of v; obviously is smaller than its original
domain. Accordingly, because some values are missed from the program, the initial
condition, assignment and test statement have to be revised as well. For the assign-
ment statement, the new value of LHS variables is non-deterministically its active
values and the typical deactive value. For test statement, if there is a deactive value
in the test condition, then this value is replaced by the typical deactive value.

In the following, we will prove that the Kripke structure of the reduced program

IC(P) simulates the original Kripke structure C(P) so that the reduction preserves

ACTL properties.
Definition 7.5.4 Let B C £ x & be the relation defined as follows:

((Cl,... aen))(gl)--' 1€n)) € B
=4

((&; = e;) A (€; €EACTIVE (v;))) V ((€: # €i) A (€; EDEACTIVE (v;)))

Theorem 7.5.1 B is a simulation relation between the models K(P) and K(ﬁ),
namely IC(P) < K:(ﬁ)

136



PROOF:
1. For the initial configuration ¢ € ¥ there exist an initial ¢ € $. Since the

abstract initial condition may differ only on deactive values, it follows trivially that

(Co, 80) (S B

2. Let ¢; = ¢, be a transition in K(P). We show that there is a transition ¢, — ¢,
such that (c;, &) € B, where (¢i,¢;) € B. If the corresponding statement of A, is
an assignment, since the abstract assignment statement is nondeterministic, there is
always a transition from ¢; — ¢; and (c2,¢2) € B as required. For the if and while
abstract statements, we update only inside their body the deactive values. Hence

there is also a transition from ¢, — ¢, and (c2, ;) € B as required.

3. By using steps 1 and 2, we can conclude that B is a simulation relation between
K(P) and K(P). O
Finally, since the reduced program simulates the original program, according

to Theorem 7.5.2, the ACTL properties are preserved.

Theorem 7.5.2 [20] Suppose M < M', where M and M' are two models. Then
for every ACTL formula o, M Ep=>MEy

Example 7.5.1 (How the reduction works) Considering the program P of Ez-
ample 7.2.1, we want to verify a property about variable k. We can first apply COI
reduction to find that variable j is irrelevant and thus can be removed. We will apply
our approach based on the COI reduced program.

In the CFD, node L, is the key node since the statement k = 1 changes the
value of k. Consider the value 0 of i. i is 0 at node €. Through the backward
reachability analysis from key node L, to €, we find that RC_,;, =1 = 3”. According
to Definition 3 and using SATO, RC._,1,[i < 0] = “0 = 3" which is false. So, the

value 0 of i is a deactive value. In a similar way, we find that values 1 and 2 do not

137



L. The value 3 of i is active since L, is

satisfy RC, so 1 and 2 are deactive values
reachable in path €, L\, Ly (RCe_,[i « 3] = true) while ST._,.,(i) = 3. Hence, we
can use abstract value domain {2, 3} instead of its concrete value domain {0, 1,2, 3}.
Using the same approach, the abstract value domain of variable k is {0, 1}.

In Figure 7.13, the reduced program P of P is shown on the left side, where
“ND” means nondeterministic assignment. In the middle, the state space of the

program P after COI reduction has 7 states. On the right side, the reduced state

space of P has three states.

// Variable declaration

i, k
i - {2’3}; <®’ ‘@)
k : {0,1}; 0> ~ 20
// Initialization Ca0D . - Cao
Init: i=2;
k = 0; 3D -3
epsilon: i = ND(2,3); CoiD -2
L1: if (i == 3)
L2: k=1; 1D ) =
omega: <ID - 2D
original state space reduced
state space with abstract variables state space

Figure 7.13: Reduced Program P and its Kripke structure

Example 7.5.2 (Reduction of the counter) Consider the program in the left of
Figure 7.14. The property to verify isy > 0. The CFD of the program is shown in
the right of the Figure.

In the CFD, the key node is L| because the outgoing edge is labelled by j = i.
Since the RC to the key node must contain a condition ‘¢ > 10007, the key node is
unreachable from {¢, Lo} with respect to the value {1,...,999} of i, So, {1,...,999}

are the deactive values of i, yet the value 1000 of i is an active value since from path

! In practice, we input the corresponding two bits propositional formula of i = 3 to SATO, SATO
outputs that in order to satisfy the formula, both bits of i have to be 1.

138



{€, L\, w}, the key node is reachable with respect to the value 1000 of i:. Hence, the
abstract domain of i is {0,1000}. However, in this ezample, the domain of variable

j cannot be reduced since L, is reachable with respect to any value of j.

// Variable declaration
{0..10000} i, j;

// Initialization
Init: i=20;

j=0

epsilon: while (i < 1000) begin

LO: i = 1i+1;

endwhile
L1: j =1,
omega:

Figure 7.14: The Counter Program

7.6 Applications

7.6.1 A Forwarding Table Lookup Processor

With the expansion of communication networks, fast and intelligent routers are
required. Usually, these routers perform multiple lookups per packet into potentially
large tables. For instance, the router of an ATM switch fabric [83] translates the
incoming identifier (8-bit Itern_In1) into the destination identifier according to the
routing table Lookup Table [83]. Only those [tem_Inl inputs which can find a
match (Match_Found = 1) in the routing table can be switched. Here, we consider
a simplified version of the original program and illustrate the application of our

method.

139



//module name

module search;

//Variables declaration

reg [7 : 0] Lookup_Table [9 : 0];
reg Match_Found;

integer i, Error_Count;

reg [7:0] Item_ini;
//Initialization
Init:

initialization i=0; Match_Found = 0; Error_Count = 0;

epsilon: while (i <= 9) begin

LO: if (Lookup_Table[il[7:0] == Item_In1) begin
L1: Match_Found = 1;
L2: i=9;
endif
L3: 1= 1i+1;
endwhile
L4: if ('Match_Found)
LS: Error_Count = Error_Count + 1;
else
L6: Error_Count = Error_Count - 1;
endif

omega:

In the above program, if a match is found, the flag Match_Found is set. If after

searching the whole table, no match can be found, the error counter (Error_Count)

140



increments by one, else Error_Count decreases by one. The table totally has 10
items {00,01,...,09}, and the length of each item is 16-bit. Each statement in the
program is labelled by a program counter such as gy, {; and so on, where I'nit labels
the initial statements, € labels the beginning of the code, and w labels the end of

the code. The CFD of the search program is shown in Figure 7.15.

1=0;
Match_Found =0
Error_Count =0
Lookup_Table={00, 01...., 09}

Lookup_Table[i](7:0] = ltem_[nl 0 = Match_Found

1=1+1

Mawch_Found = 1

Lookup_Table[i}(7:0] '= ltem_Inl Error_Count = Error_Count - 1 Error_Couant = Error_Count + |

Figure 7.15: CFD of the Search Program

We want to prove that “the input [tem_in = 02 can find a match in the table
such that Match_Found = 1". The correspondent properties are o, : AF(([tem_nl =
2) A (Match_Found = 1)) and ¢, : AG((-({tem_Inl = 2)) — (Match_Found =
0)) meaning that (/tem_Inl = 2) eventually can find the match and the others can-
not. These properties could not be verified on the original model due to state space
explosion during the verification in VIS [11] on a SUN Enterprise server with 6GB

memory after more than 10 hours running. Hence, we have to reduce the model

141



before we can make model checking. First, using COI, we want to remove any vari-
ables which are not affecting the variable of interest, i.e., Match_Found. We do not
need to consider [tem_Inl since it is an input.

The DDD of the search program is shown in Figure 7.16. Through the analysis

Figure 7.16: Dependency Diagram of the Search Program

of the data dependency diagram of the search program, we can find that variable
Match_Found depends on variables Lookup_Table, Item_Inl, and i, but not on
Error Count. Consequently, we can simply remove variables Error Count in the
verification of the property, and preserve the soundness and completeness of the
property. The corresponding reduced data dependency diagram of the reduced pro-
gram is shown in Figure 7.17. The control flow diagram of the search program after
the COI reduction is shown in Figure 7.18.

Although we can remove Error_ Count in the above, however, we cannot re-
move Lookup Table which Match_Found depends on. In this case, we will do the
following reduction.

The key node in the CFD is node L, because the variable of interest Match_Found
is changed in the incoming edge of this node. The value {00,01,03,...,09} of

Lookup_Table[7 : 0] are deactive because we cannot find a path which leads to

142



Figure 7.17: COI Reduced Dependency Diagram of the Search Program

i=0;
Match_Found =0
Error_Count =0

Lookup_Table={00, 01...., 09}

Lookup_Table[i}[7:0] == Item_Inl

t=1+1

Match_Found = 1 Lookup_Table[i}{7:0] != Item_Inl

Figure 7.18: COI Reduced CFD of the Search Program

143



L, and ST,_,,(Lookup Table[7 : 0]) = 00,01,03,...,09 for at least one node n
in the path. The value {02} of Lookup-Table[7 : 0] is active since L is reach-
able in path €, Lo, Ly, L, with ST,_,(Lookup Table[7 : 0]) = 02. Consequently,
variable Lookup Table[7 : 0] is an abstract variable, where the active value set
ACTIVE (Lookup Table[7 : 0]) = {02} and the typical deactive value DEACTIVE
(Lookup Table[7 : 0]) = 03. So, we can use Lookup Table[7 : 0] = {02,03} instead
of {00,01,03,...,09}. After such a reduction, we removed 8 items from the table,
and get a reduced program. This reduced program can finish model checking in
VIS on the same machine (SUN Enterprise with 6GB memory). The experimental
results are shown in Table 7.1, where the verification could not be completed on the
concrete model (actually, the concrete model has 1024 items), but succeeded on the
reduced model. The table shows the statistic results of CPU time (in seconds) and

memory usage (in bytes) of VIS verification on the reduced model, and that of SAT

solver on RC,, respectively.

Reduced RC,
Model Computation
Verif. | Verif. | SAT | SAT
Prop. || CPU | Mem | CPU | Mem
V1 11.3 | 8.54M | 0.02 | 83.53K
9 11.6 { 88.51M | 0.02 | 83.53K

Table 7.1: Verification Results of Sample Properties in VIS

7.6.2 The Bakery Controller

Following is the Verilog code of the bakery controller [11] 2.

module bakery_process ;

//Variable declaration

2The program has been revised to fit our syntax defined in Section 7.2.1.

144



{ L1, L2, L3, L4, LS, L6, L7, L8, L9 } loc;
{0, 1, 2, 3} i, j;
{0, 1, 2, 3} numberi, numberj;

{0, 1} choosingj;

//Initialization
Init:
pc=L1; j=0;
numberi = 0;
numberj = 0;

choosingj = 0;

epsilon:

if (permit) begin
case (pc)
L1: begin pc=L2; end
L2: begin pc=L3; end
L3: begin pc=L4;end
L4: begin j=0; pc=L5; end
L5: begin if (j<2) pc=L6; else pc=L9; end
L6: begin if (choosingj==1) pc=L6; else pc=L7; end
L7: begin
if ((numberj!=0) &&
(number j<numberi || (numberj==numberi && j<i)))
pc=L7;
else

pc=L8;

145



end
L8: begin j=j+1; pc=L5; end
L9: begin pc = $ND(L1, L9); end//$
endcase
end

omega:
The reachable states of this program are as follows.

Reachability analysis results:
FSM depth = 14

reachable states = 448

The property we want to verify is AG((pc = L1) — (pc = L9)). In this
case, among the values of pc, only L1, and L9 are active. The other values are
deactive. so we will use L2 as the typical value of the deactive values. Now, the
abstract domain of pc becomes { L1, L2, L9}. Using the same approach, the abstract
domain of j is {1,2,3}, where {1} is the typical deactive value and {2,3} are the
active values. Since there are no assignment statements of numberi, numberj, and
choosingj, these variables can be treated as wired variables in order not to generate
states. Because there are 6 case branches with deactive values in the condition, we
use non-deterministic variable (NDTran) to make the branch, namely the branches
from L2 to L3, L4, L5, L6, L7, and L8, respectively, are nondeterministic decided

by NDTran. The new reduced program is as follows.

module bakery_process;
//Variable declaration

{Lt, L2, L9 } loc;

{1, 2, 3+ j;

{0, 1, 2, 3} numberi, numberj;

{0, 1} choosingj;

146



//Initialization
Init:
pc=L1; j=0;
numberi = 0;
numberj = 0;

choosingj = 0;

wire [1:0] NDTran;
assign NDTran = $ND(0,1,2,3,4,5);//$

epsilon:
if (permit) begin
case (pc)
L1l: begin pc=L2; end
L2: begin
case (NDTran)
0: pc = L2;
1: j =0; pc = L2;
2: if (j<2) pc=L2; else pc=L9;
end
3: if (choosingj==1) pc=L2;
4: if ((numberj!=0) &%
(number j<numberi || (numberj==numberi && j<i)))
pc=L2;
5: j=$ND(1,2,3); pc=L2; //$
endcase

L9: begin pc = $ND(L1, L9); end//$

147



endcase
end

omega:

The reachable states of the reduced program are as follows, which is only half

the size of the original one.

Reachability analysis results:
FSM depth = 6

reachable states = 224

Through out the reduction, we can find that we have to examine the values
of the variables one by one. Hence, it is required that the domain of the variables
be finite. Moreover, to calculate whether a key node is reachable, we need to know
exactly the truth or falsity value of the conditions in each branch in the program.
Namely, assuming we are calculating whether or not the key node is reachable from
the nodes with value e of variable j being active. Consider a test statement “if(j <
t)" in the program. We need to know the true value of this test when j = e. Hence,
we have to examine n possible cases, where n is the size of the domain of variable :.
Consequently, in order to check each value of variable j, at this test statement, we
need to consider Size(dom(j)) x Size(dom(i)) possible cases which is exponential.
In this case, to solve this problem, either we put an environment constraint on ¢, for
example, set 7 to be e;, where ¢; is an element in dom(t), or we need a more efficient

solution.

7.6.3 The Arbiter

Following is the Verilog code of the arbiter controller[11}>.

module arbiter-controller;

3The program has been revised to fit our syntax defined in Section 7.2.1.

148



//Variable declaration
{A, B, C, X} reg sel, id;
reg ack, pass_token;
{IDLE, READY, BUSY } reg
reg is_selected;
//Initialization

Init:

state = IDLE;

ack = 0;

pass_token = 1;

id = A;

epsilon:

state;

is_selected = (sel == id);

case(state)
IDLE:
% if (is_selected)
if (req)
begin
% state = READY;
pass_token = 0;
end
else

pass_token

[}
—
-

else
pass_token = 0;

READY:

149



begin
state = BUSY;
ack = 1;
end
BUSY:
if ('req)
begin
state = IDLE;

% ack = 0;

pass_token = 1;
end
endcase

omega:

The reachable states of the above model are shown as follows.

Reachability analysis results:
FSM depth = 3

reachable states = 36

What we want to prove is that if arbiter controller A receives a request regq,
then it will eventually acknowledge this request by sending ack, i.e., AG((req =
1) = AF(ack =1)).

The latches in the program are
e {A B,C, X} reg sel,id;
e reg ack, pass_token;

o {IDLE,READY, BUSY} reg state;

150



e reg is_selected,;

The variables of interest are req and ack. From the program, we see that the
property does not depend on variable “pass_token”, so this variable can be removed.
Among the values of “sel”, “A” is the active value, and “B.C, X" are the deactive
alues. Consequently, we can use “{4, B} reg sel” instead of “{A, B,C, X'} reg sel”.
The value of “state” are all active values, so we have to keep them. The reduced

data becomes

e {A. B} reg sel;

reg ack;

{IDLE,READY, BUSY'} reg state;

e reg is_selected,

The reachable states of the corresponding reduced program are shown as fol-

lows.

Reachability analysis results:
FSM depth = 3

reachable states = 10

Since the code between € and w are in a forever loop, the path from a node
with value e to the key node may contain many cycles of the loop. In the above
example, the value READY of variable state is set at statement state = READY .
The path from this statement to the key node contains at least two cycles, i.e.,
“state = READY" > ... = “W’'— %" — ... = “Keynode”. In the worst case,
to check if key nodes are not reachable from another node in the CFD, we have
to check all the paths between the node and the key nodes using the conditions in

Definition 7.5.2.

151



7.7 Summary

[n this chapter, we proposed an automatic model reduction approach. The approach
uses syntactic analysis and generates a smaller program compared to the original
one. It preserves the properties to be verified since the concrete model is simulated
by the abstracted model with respect to the properties. While generally applicable,
this model reduction approach can be used in compositional verification when the
size of a single module of a large system is beyond the capability of model checking.
Such an application is displayed in the next case study chapter.

In our approach, the reduction is applied on the syntactic analysis of the
program source code. Compared to the on-the-fly explicit state space reduction
during the generation of the state space, source code reduction can be combined
with other model checking or reduction tools to improve its reduction efficiency even
more because the reduced program can be fed into other reduction tools. Moreover,
since the size of the source code is usually much less than that of its state space
or other intermediate forms, this reduction approach uses less resources (CPU time
and memory space). However, in the worst case, the procedure examining the value
domain of the variables is exponential with respect to the size of variables in the
reachability condition (RC) because it has to traverse all the possible values of the
variables in RC. A SAT solver is used to find the true value assignment throughout
the reduction. The complexity of the reduction depends on that of the CFD traverse

and the SAT solver.



Part 111

Case Study

153



Chapter 8

Case Study on a Nortel ATM
Switch Fabric

In the previous chapters, we learned that state space explosion is the biggest problem
in the model checking applications. We also learned that there are two approaches to
solve these problems: compositional verification and model reduction. However, in
the compositional verification, we have to construct the environment of the modules
under verification (environment problem); in the model reduction, lots of human
intervention makes the application of model reduction difficult. In order to tackle
these problems, we proposed practical compositional verification techniques, namely
the environment synthesis and the syntactic model reduction. In this chapter, to
illustrate our approach, we used an industrial size ATM (Asynchronous Transfer
Mode) switch fabric from Nortel Networks [83] as a real case study. Using these
techniques, we succeed in verifying the switch fabric whose size is beyond the capa-
bility of current plain model checking tools. Throughout the verification, we provide
the environment assumptions as temporal logic formulas in ACTL and then synthe-
size the formulas into Verilog modules. We then compose this environment module
with the RTL block under verification and fed it into a model checking tool (here

VIS [11]). However, in case the size of the composed module is still beyond the

154



















































































































































