INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Teaching Assignment Planner (TAP)

Hui Ying

A Major Report
In
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

June 2002

©Hui Ying, 2002

i+l

:’l‘aboml Library gublnoﬂ%que na
uisitions and Acquisitions et
ibliographic Services services bibliographiques

395 Wellington Street 305, rus Wellington

Ouawa ON K1A ON4 O=awe ON K1A ON4

Canaca Canede Your fils Votre ndédrence

Ouwr s Nowe rédivance

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-72949-4

Abstract

Teaching Assignment Planner

Hui Ying

Each year, the Department of Computer Science at Concordia University needs to
assign instructors to about 200 courses. Each course requires an instructor and some
of the courses also require one or two coordinators. The instructors must be assigned
using various constraints. The Teaching Assignment Planner (TAP) program is
designed and implemented as computer software to assist the people involved to do
the teaching assignment work at Concordia University to fulfill the assignment task

easily.

To satisfy the purpose of helping the user do the assignment work, it is very important
to make this program very easy to use. A user-friendly interface and comprehensive
functionalities are the quality factors to a successful program. As a result, great
efforts are focused on them. The TAP program incorporates the Java technology and

MS-Access is used as storage database.

This report demonstrates the design and implementation of the TAP program and the

results of how to use this program is also provided as an important part. In addition,

the future work of this project is presented.

ii

Acknowledgements

First and foremost. I wish to express my sincere gratitude to my supervisor. Dr. Peter
Grogono. for all his enthusiastic support, and valuable guidance during the
development of the project. His encouragement and help enabled me to understand
this project and complete it. Without his kind support. nothing would have been

possible.

I also wish to thank to Dr. Ahmed Seffah, for his taking time to review my report and

provide valuable opinions. Also. I will thank to Graduate Program Secretary. Halina

for her great help.

Furthermore, [wish to take this opportunity to appreciate all my family members,
especially my parents, for their unconditional love and moral support. Without their

encouragement. I could not finish my graduate study including this project smoothly.

Finally, the unique gratefulness goes to my husband, Chunbo Yang, and I would like
to dedicate this project to him for his infinite love, sharing and always being there as
in need. Thanks to him for accompanying me during many days and nights of hard
working. Without his great patience and full support, it is impossible to complete this

project in such a short time.

v

Table of Contents

List of Figures viii
1. Introduction 1
1.1 About Teaching Assignment Planner (TAP) ..., 1
1.2 Choice of SOftWAreoooieierieeee ettt 1
1.3 Organization of the REPOrt..........ooimmmmiee e 1

2. Background and Project Overview 3
2.1 Motivation of TAP Program.........cccccecemcreniniimnnnenencennnneenesssseeseseinne 3
2.2 Teaching Assignment Planner Program.............ocoooeiimimonnninnnnecns 4
3. Software Requirements Analysis 7
3.1 Functional REQUIrEMENLSccoovimmmimiiniiiniieteeereesse et 7
3.1.1 USE CASES ...vvrenrerreereereenreeessteererectesenseseesessistessssessasasssssssnsnssssssensassansans 7
3.1.2 Use Case DIiagram..........ccceeveeimriniinnceneeenenenee s 12

3.2 Non-Functional REQUITEMENLScooomiiriiiirieeiteeie et 13
3.2.1 Usability REQUIFEMENLS.......c.covmrmrmiiinienirere et 13
322 Integration and Migration Requirementsoceeeeeceininccncicnnnnene. 14
323 Recovery and Robustness Requirements...........ccoeeveeeencnnicncnnnnenn. 14

4. System and User Interface Design 15
4.1 SyStem DESIZN ...eeueeinceciiienitee s 15
4.1.1 Design Rationale..........c.covovimieiiieininteneccnrceteet s 1S
4.1.2 System Architecture OVErVIEWoovveiuieinmicinecciiicccicncicnee 16
4.13 SUDSYSIEMS....ccvereeeceeerereccennceeseteseie e sttt 18

4.2 User Interface (UI) DESIGN......ccccccoiviuruiriniinirneerietrne et 21
4.2.1 Overview of the MVC Design Pattern........c.coveeveeeeeonecncncecnenne. 22
422 OVETVIEW Of JAVA ...eeveeeeeeteieecececrcnence et e sas s ene 23
423 TAP GUI DESIEN.....ccveencnieerreneneiritieenstsses st ssssescssessnans 26

S. Implementation 30
5.1 Presentation SUbSYSIEMcocceciriiinircneniiiiiiee e saesse et 30

5.1.1 Problems and Solutions..........c..coeeereceeceeemininiiiccicnceeeceaes 30
5.12 IMPIEMENLAtiONc.coviiirniciieecriirtcer et 36
5.2 Teaching Assignment Application Subsystemc.ccccooreiniincnnen, 39
5.2.1 Problems and SOIUtIONS...........cccoieeeeeiiieciinee e 39
522 IMPlemMENtation ..ottt 44
5.3 DB Handler SubSYStem.......cocevueviririeeiececiiinnnmeresses et s 48
5.3.1 OVEIVIEWceeieeeeeieececeteieeaestesaeessesesesssessessaesne st nesnessessensnnssanssansas 48
53.2 IMPlEMENLAtiON ..c.cuveriiiicniicccrene ettt 49
5.4 Database SubSYSteML.......c.ccoouieiirieriicientte s 53
54.1 Overview of MS-Access Databaseccccocooeveeeenieiniccnccieee 53
542 Overview Of JDBC ...ttt 53
543 IMplementation ... 54

6. Results 57
6.1 View the Assignment State..........ccooviieviirmirerieeeienrreeteeen et 58
6.1.1 View the Courses and SeCtions..........cccceeveerierineiinsmnrenneereenreneeen. 58
6.1.2 View the INSIFUCLOTScvieveeieeeeeeeeeeeeatesnre et et aeannees 61
6.2 Perform Teaching ASSIGNMEN!c.oouvuimieiriemeireieeetee st 62
6.2.1 Add a coordinating assignment t0 @ COUISEooverremereemnveneneannns 63
6.2.2 Delete a coordinating assignment t0 @ COUTSE........coererremrnrerenseenssenns 64
6.2.3 Add a teaching assignment t0 @ SECHONccoeveiemrireeteineecnecceecenens 65
624 Delete a teaching assignment t0 @ SECHOM......ccveveveeereeieririceeenrnens 66
6.2.5 Add a coordinating /teaching assignment to an instructor.................. 66
6.2.6 Delete a coordinating /teaching assignment to an instructor 67
6.3 Modify the Information Data...........oooeememrrimnccne 67
6.3.1 Add QCOUSE ..ottt e sa e 67
6.3.2 REMOVE @ COUTSE ...oneeererererreenceeeseceetesseesamissssseesssesnestessesnssasssssssenns 69
6.3.3 MOAIfY @ COUISEemnenrnirnicccecceriteiee e sttt st et 69
634 Add @ SECHOMN.eceveeeereecieerecreeeereeeeeecesrsessse s enensss s sseeae s sbnsseasanenes 70
6.3.5 REMOVE @ SECHOMNooeeeeneriieeeccecrenetesnneee e st st e s asanans 71
6.3.6 MOdIfY @ SECHOM ...ttt s 71

vi

6.3.7 AQd A1 INSUTUCIOT ..o eeceeeeeeeeeeeseeresessesseseesenssssnsasessasesssssosassasssssansssse

6.3.8 Remove an instructor

6.3.9 Modify an INStIUCLONoomimimmiiiieree st

6.4 View the SUMMAIYcoooriierriicerceccinicrcaereriee e stes e ss st eanes

7. Conclusion

..

7.1 Project SUMMATYcccooerimimeriniiiniiiiieeiese s e ettt sass
7.2 FUUIE WOTK oottt et et

References and Bibliographies

Appendix

8 Class INSIIUCLOT MOMEL......e oot ieeeeceevestsenn s ssesssesesesesesecneeeeesasnsosas
@ C1ASS [NISITUCLOT oeeeeeeereeeereeeisemeereeeseseseenasseessasasasssnssasnnassssssssaeeesesesssnnmesnssssnesas
0 1SS INSIUCIOT LISt ooeieieieeeeeeeereeeeeoeeeessessssessassssaseensasssesssresassosseeesessesessossnne

O ClasS DB HanAIEToeeeeeeeeeeieeeeeeeeeeteeereeeeesesssssssessssssasseoemeoresimssmsessnsssnsens

vii

List of Figures

FIgUIE 3-1: USE CASES ..ceenneeemmecrmcrccncristieniese it st sttt sttt s s 13
Figure 4-1: Overview of ArchiteCture...........c.ooeimrmmieeeneieeete e 17
Figure 4-2: TAP SubSYSIEIMSououimmiriieieeee ettt 19
Figure 4-3: MVC Pattermc..cocmmiiiiiieteee ettt et 22
Figure 4-4: Java Component SIFUCIUTEoveeeemreetiecmcnecnt ittt 24
Figure 4-5: Common Superclasses of Many of the Swing Components.................... 25
Figure 4-6: Main GUI --- displaying the course/section list..........ccoceeveurinicninnnnnnee. 27
Figure 4-7: Main GUI --- displaying the instructor list ..o 27
Figure 5-1: Tabbed Pane.......c.cooieee e 31
Figure 5-2: Progress Bar ... 36
Figure 5-3: Split WindOw ..ot 36
Figure 5-4: Class Diagram ---Main Panel.........occooeiioiiinciiis 37
Figure 5-5: Class Diagram --- Main Left Panel........ocooooeconnncini, 38
Figure 5-6: Class Diagram --- Main Right Panel.........ocovnnnnn, 39
Figure 5-7: Class COUISE......cuomimiiiiiinctereieesieee ettt s 40
Figure 5-8: Courses and SECLONSoevereieieeieieiecrec e 41
Figure 5-9: Data SIIUCIUTE ...ttt sttt 42
Figure 5-10: Class COUTSE........ouuimimiiriimirmeenieietec sttt 44
Figure 5-11: Class SECHOM ..ottt 44
Figure 5-12: Class INSLIUCIOT ..ottt 45
Figure 5-13: Class Teaching ASSIgNMENLoooomeiiieieeiicnnincciii e 45
Figure 5-14: Class CourseList ... 45
Figure 5-15: Class SeCtONLISt..........o.oommreieieieeeeeccec s 46
Figure 5-16: Class INStruCtorListovuvomemrienncee e 46
Figure 5-17: TALISE ..c.ooiiiiec ettt 46
Figure 5-18: TA Application Class Diagram........cocooeeencnnninniiiiciiens 47
Figure 5-19: DB Handler Subsystem ..o 48

viii

Figure 6-1: Main GUI ...ttt 57
Figure 6-2: View all the course and SECHONScooeeveeeiereiiieee e 58
Figure 6-3: View assigned courses and SECHONS............cccereermrrerrereimnrercieieseeeseennnnaes 59
Figure 6-4: Select @ SECHOM.c.cvuceeveeceinirce et 60
Figure 6-5: Select an inStIUCIOT.........cccceteieuiivneiiiiiec et ese e n et 62
Figure 6-6: Add a coordination assignment...........coccouevememrieimeenneieeneneeeseseneenes 63
Figure 6-7: Add a teaching assigNMmeNtccovveemieerieevenreneeieereee e 65
Figure 6-8: Add Course/SEctionccouemermimmiecieeree ittt 68
Figure 6-9: Add @ COUTSE.......couiiiieicrete ettt 68
Figure 6-10: Modify Course/SEeCtionccooevrreieieeiminereiestectees et 69
Figure 6-11: Modify course informationcceeeeieiminermenicneeeieeeeee e 70
Figure 6-12: Add @ SECHOMN.......cccouiviricniiitcee et 70
Figure 6-13: Modify @ SECHON.......cccuvmieiiieiee e 71
Figure 6-14: Remove the assignment first ..o 72
Figure 6-15: Add an inStIUCLON........c.coccviiiiiminireee ettt 73
Figure 6-16: Confirm to remove an inStIUCIOLc.cueuvruieieeneeeeeneteeeetnietnc e 73
Figure 6-17: Modify an inStruCtOr.........c.oomerimiiiniitieiee ettt 74
Figure 6-18: SUIMIMATYc.cccoiiirieiniiieeecieireere e eree e a st 75

ix

1. Introduction

1.1 About Teaching Assignment Planner (TAP)

Teaching Assignment Planner (TAP) is a program designed to assist the user
{secretary or other staffs) perform the task of teaching assignment. The program
allows the user to:

e View the current teaching assignment state

e Perform teaching assignment,

e Modify the information of courses and instructors

e View the summary statistics

1.2 Choice of Software

The software tools we choose to implement TAP are:
¢ Java programming language and Java Swing technology
e Borland JBuilder 4.0 as the development tool
e Windows 2000/ME as the development platform

e MS-Access for database management

1.3 Organization of the Report

First, we describe the background of developing the TAP program in the Chapter 2.

Then. Software Requirement Analysis is presented in Chapter 3. In this chapter, both
functional and non-functional requirements are discussed. In Chapter 4, the System
Design and User Interface Design are described. In Chapter 5. we describe the
problems and solutions of implementation of TAP program. Following, usability and
results illustrating how the TAP program is being used are also presented in Chapter

6. Finally, Chapter 7 describes the conclusion and future work of the TAP program.

[8S]

2. Background and Project Overview

2.1 Motivation of TAP Program

Each year. the Department of Computer Science at Concordia University needs to
assign instructors to about 200 courses. Each course requires an instructor and some

of the courses also require one or two coordinators. {TAPRO1]

An instructor must be assigned using various constraints. Some of the constraints are
easy to understand and simple to check. For example. an instructor cannot teach two
courses at the same time. Also, a course section can be assigned to only one

instructor.

But some other constraints are more complicated and must be carefully prioritized.
For example. an instructor who does not like teaching in the evening may want to
teach a graduate course, but the only available graduate courses are all scheduled in
the evening. Another example, instructor A doesn’t like to teach COMP248 and
wants to teach COMP471. Instructor B agrees to give up COMP471 but prefers
teaching COMP352 to COMP248. Consequently, we must find an open section of
COMP352 and another instructor for COMP248. Based on such complicated
constraints, we should consider them completely when performing the teaching

assignment.

It is a very tough task of doing the teaching assignment without any tool. The person
who needs to perform the teaching assignment should deal with not only the variable
courses and instructors’ information, but also all kinds of assignment constraints.
Besides, it would be difficult for the assigner to know what degree the teaching
assignment has been completed. He might probably omit a very important constraint
and finish an assignment which would incur conflict. For example. there is an
instructor who has already been assigned several course sections to teach. The
assigned assigns another section to the instructor. forgetting to check every possible
constraint. As a result. the assigned section has a time conflict with one of the

assigned sections before. Both are scheduled on the same time slot on the same day!

The motivation of the Teaching Assignment Planner (TAP) is to help the person
doing the teaching assignment simplify the task of the assignment. With the help of
this TAP program, the assigner would finish the task of teaching assignment very

efficiently and with accuracy. [TAPRO1]

2.2 Teaching Assignment Planner Program

Since the Teaching Assignment Planner (TAP) is aimed to help the person doing the
assignment simplify the task of the assignment, that is to say, help the user handle the
complicated assignment constraints at ease. The TAP program should be very easy to

learn, casy to use, and the program should be very robust in case of all kinds of

possible operations the user could perform which would lead to error.

The TAP program involved a 3-tier architecture and was implemented by using the
pure Java Language and Java Swing technology. The MS-Access served as the
database which stores all the information of the courses. instructors and the
assignments. The JDBC worked as the bridge interface between the Java application

and the storage database.

TAP has two major features:
e Cross Platform: TAP program is implemented by pure Java language in such
a way it runs on any platform;
o Heterogeneous Database: Since TAP incorporates the JDBC. it can access all
the JDBC-enabled databases. Therefore, The database migration will be very

easy.

Through TAP, the user can view the current teaching assignment state. The user is not
only able to know the instructor who has been assigned to a selected course/section,
but also he can know the list of courses and sections assigned to a certain instructor.
Obviously, checking whether a course/section has been assigned must be very

intuitive.

When the user does the assignments, the TAP also suggests the available assignment

candidates and can ensure that no conflict exists.

The user can also modify all the information about the courses. sections and

instructors. This makes the teaching assignment program very flexible.

Furthermore, TAP displays the summary of assignment at all times which provides an

immediate knowledge of how much of the task has been fulfilled.

3. Software Requirements Analysis

3.1 Functional Requirements

From the user perspective, TAP should provide the functionalities described in the

previous section. The user should be able to view the current assignment state,

perform the assignment and modify the database. In addition. the user should be able

to view the assignment summary.

3.1.1 Use Cases

Based on the functional requirements described above. the major use cases are:

View Courses/ Sections:

TAP displays the course/section list. When the user selects a section from the list.
he or she can find out all the detailed information about the selected section such
as the section name, scheduled time and so on. In case an instructor has been
assigned to this section, TAP will show the instructor’s name. Coordination is
treated as a special section in the list. When a coordination is selected, detailed
information such as course title and credits will be shown. The name of the
coordinator will also be displayed if it has been assigned. Actually, this case
contains three sub use cases according to whether the section has been assigned

an instructor:

o View all the sections

The user views both the assigned sections and the unassigned sections.
o View assigned sections

The user views the assigned sections only.
o View unassigned sections

The user views the unassigned sections only.

View Instructors:

TAP displays the instructor list. When the user selects an instructor from the list,
he can know all the detailed information about the selected instructor including
the fixed and the variable information. The fixed information includes such as the
name, assigned workload and experience while the variable one includes those
information such as actual workload and expected workload. If some courses or
sections have been assigned to this instructor, a list of assigned courses/sections
will be also displayed. According to whether the instructor’s actual workload has

reached his assigned workload, the following three sub use cases are also defined:

o View all the instructors
The user views both the instructors with complete workload and the
instructors with incomplete workload.

o View the instructors with complete workload

The user views the instructors with complete workload only.

o View the instructors with incomplete workload

The user views the instructors with incomplete workload only.

o Add Coordination Assignment:
There are two cases:

o The user selects an unassigned course which requires a coordinator from
the course list. Using the suggestible list of available instructor candidates
provide by TAP, the user then chooses one of the candidates and then
assigns the instructor to that course as its coordinator.

o The user firstly selects an instructor from the list. With the suggestible
available course candidates provided by the TAP program, the user
chooses one of the candidates and then assigns the course coordination to
the instructor’s coordinating load.

In both cases. the TAP should first check that no conflict exists before the
assignment and then recalculate the instructor’s actual workload and expected

workload after the assignment.

e Delete Coordination Assignment:
There are two cases:
o The user selects a course with a coordinator assigned to it, and then deletes
the coordinator.

o The user selects an instructor, and deletes one of the coordination

assignments from his working load.
In both cases, the TAP program should recalculate the instructor’s actual

workload and expected workload.

o Add Teaching Assignment:
There are two cases:

o The user selects an unassigned section from the section list. With the
suggested available instructor candidates list provide by TAP. the user
chooses one of the candidates and then assigns the instructor to the
selected section.

o The user firstly selects an instructor from the list. With the suggested
available section candidates provided by TAP, the user chooses one of the
candidates and then assigns the teaching section to the instructor’s
teaching load.

In both cases. the TAP should check that no conflict exists before the assignment

and then recalculate the instructor’s actual and expected workload after the

assignment.

e Delete Teaching Assignment:
There are two cases:

o The user selects a section with an instructor assigned to it, and then deletes

the instructor.

10

o The user selects an instructor, and deletes one of the teaching assignments
from his teaching load.
In both cases, TAP should recalculate the instructor’s actual and expected

workload.

Modify the Information Data:
The user can manage the database in the following several ways:
o Add acourse
o Modify a course
o Remove a course
o Add a section
o Modity a section
o Remove a section
o Add an instructor
o Modify an instructor
o Remove an instructor
TAP should provide a effective checking mechanism to ensure that conflict will

not occur when the user modifies the data.

View Assignment Summary:
TAP displays the summary data at all times so that the user can get a general

concept of how the assignment progresses whenever he needs. The summary data

11

includes the following information:
o The total number of the courses
o The total number of the coordinations
o The number of the coordinations with a coordinator assigned
o The total number of the sections
o The number of the sections with an instructor assigned
o The total number of the instructors

o The number of the instructors whose workload is complete

3.1.2 Use Case Diagram

The following use case diagram describes the major use cases presented above. The

diagram incorporates the UML notations: (See the next page)

12

View Courses/Sections

View nstructors

-Add Coordinator Assignment

Delete Coordinator Assignment

User

Add Teachng Assignment
Delete Teaching Assignment

Modify information Data

Figure 3-1: Use Cases

3.2 Non-Functional Requirements

3.2.1 Usability Requirements

TAP should be designed to be very easy for the user to learn how to use the program.

A good usability is important. TAP should have a user-friendly interface, fully
supporting mouse and keyboard input. The user should be able to sit and use the

program without reading the complicated help documents.

3.2.2 Integration and Migration Requirements

TAP should be required to integrate with the legacy system in the school and the
storage database may also be required to change correspondingly. For example, TAP
may be required to import database from the school system. It’s an important issue
that the TAP program should be designed to make it easy to integrate with other

system or migrate to other database.

3.2.3 Recovery and Robustness Requirements

In the event of disastrous accident on a computer, such as sudden loss of electrical
power and system crash, the TAP should not lose any information or data it is
processing. The system should maintain the integrity of the information at all times.
In addition, the user could perform all kind operations through the TAP program.
Some of the operations may lead to error and TAP program should be robust enough

to avoid the system to be crashed or accept an illegal assignment state.

14

4. System and User Interface Design

4.1 System Design

The Teaching Assignment Planner (TAP) program is a Java application which can run

on any platform. TAP uses the MS-Access database to store the information data.

4.1.1 Design Rationale

A well-designed architecture is the foundation for a changeable and extensible
system. There are some important issues that we have to consider during the

architecture design of this system.

e Usability
Since the user of TAP may have another background and have only basic
computer operation skills, a good user interface is essential. Since a good user
interface is often the result of many design iterations, the user interface of TAP
will tend to experience changes as the system evolves. Consequently. it is vital to
separate the user interface from the application logic so that changes in the user
interface can be done easily without too much impact on the application logic. In
order to allow new views to be easily connected to an existing domain layer, the
domain objects should not have direct knowledge of or be directly coupled to

views. Therefore, the MVC model is selected to fulfill these requirements. How

15

should be the Ul designed in an easy to use manner will be discussed in the Ul

design part (See Chapter 4.2).

¢ Integration with Legacy Software System or Migration
Although the TAP program is currently an independent software, it is supposed to
be integrated with the legacy software system in the university to share data in the
future version. In so doing, the potentially involved database technology can be
very diverse. Therefore. the application logic tier should be decomposed into finer
layers so that the domain model is separate from the database interface. In this
way, the database interface can be changed to adapt to the changes in the database

while leaving the domain model unchanged.

¢ Robustness and Security
As mentioned in the analysis part (See Chapter 3), the user of the TAP program
may not a computer expert who will perform all kinds of operations through the
program. Some of the operations will probably incur the system error. We must
take into account how to make the TAP program robust and secure enough to

prevent the potential mistakes.

4.1.2 System Architecture Overview

TAP is a three-tier architecture. Figure 4-1 illustrates the architectural overview of

16

TAP program.

User Interface

Presentation Tier Package

e

Domain Objects
Package
Application Logic Tier

Database Interface
Package

Database

Storage Tier Package

Figure 4-1: Overview of Architecture

The User Interface package represents the presentation tier. The User Interface
package includes classes for the entire user interface, which enables the user to enter
new data and view data from the system. These classes are based on the Java Swing
package, which is a standard library in Java for writing user-interface applications.

This package cooperates with the Domain Objects package.

17

The application logic tier is composed of the Domain Objects package and Database
Interface package. The Domain Objects package includes the domain classes from
the analysis model such as Course, Section. Instructor, Assignment, etc. The Database
Interface package is based on the JDBC. which is a standard library in Java for

accessing to various popular commercial database systems.

The Database package represents the storage tier. This package supplies services to
the Database Interface package so that classes in the Domain Objects package can be

stored persistently.

4.1.3 Subsystems
In this part, we discuss TAP components in detail. According to the design rationale
and system architecture discussed before, naturally, there are four subsystems in the

TAP program. The four subsystems are listed as follows:

Presentation Subsystem

Teaching Assignment Subsystem

Database Handler Subsystem

Database Subsystem

The following Figure 4-2 describes these four subsystems of the TAP program:

18

> Loy

COENT 331 Secnon 4 88____Gosta Granne Adam Krryzak 3 AN .8 -
COENT3TT c A Anmed Seffah_3 1 (] T
ComP12 Coordinasonnt . BonOesa 2 8 v
. [COMP122 | Secton i4)00 H Ching Y Suen.3 11 &)
Presentation [cowe2 ‘Coorgnation fe__ Gipw Desal Clement Lam 3 (il 0
Subsystem “’"'"""""'"'"CQ‘!’?TL _ __Coombnatonsd — Ohrubaryos 4 14 .8
cowP2i8 ‘Secbon /4 SS Satwne Derjler Gosta Grahne 4 14 15 -
COMP248 _ — SectonidV_____Satune Berpler _ Gregary Butter 1" 3 _
oS
[COMP 248 Secuon 14 W Hon Fung U It 5
COMP248 \Sechon id 7 Hon Fung L Hownannes .58 g .
comr243 Secvonia N Jveamal 2 RN 3
ComP243 s.:mui Nancy Acemsan___ John McKay 4 12 ‘ X
Course Table Model lnstructor Table Model

\

TA Application
Subsystem’

DB Handler
Subsystem '

Database
Subsystem

..’

Figure 4-2: TAP Subsystems

19

4.1.3.1 Presentation Subsystem

The presentation subsystem provides a GUI to the user of the TAP program. Through
the interface, the user is able to perform all kinds of operations related to the teaching
assignment such as viewing the current assignment state, doing the teaching
assignment. modify the information data and so on. Anything changed in this

subsystem will not affect the other subsystems.

4.1.3.2 Teaching Assignment Application Subsystem

The TA application subsystem includes the domain classes such as Course. Course
List, Sections. Section List, Instructor. Instructor List, Teaching Assignment. TA List,
etc. The operations of these classes are completely defined. This subsystem works in
corporation with the presentation subsystem above itself and manages the information

data from the database subsystem through the DB handler subsystem.

4.1.33 DB Handler Subsystem

This subsystem takes the responsibility of database management serving as the
interface between the TA application subsystem and the database subsystem. The
database accessing is based on the JDBC, which is a standard library in Java for

accessing to various popular commercial database systems.

4.1.3.4 Database Subsystem

The TAP program incorporates the MS-Access database which supports various data
types for storage purpose. This subsystem stores Course table, Section table,
Instructor table and Teaching Assignment table which save course information.
section information, instructor information and information of assignment

respectively.

4.2 User Interface (UI) Design

Since the TAP program is designed for assisting purpose. the user interface (UI) of
the program plays the most important role. Ul mediates between the user and the TAP
program. It should be very intuitive and easy to use and the user should be able to sit
and learn to use it without consulting complicated help documents or tutorials. The Ul
helps users to understand system's functionalities, reflects the system model to them
and translates their intentions into appropriate system activity. A good UI helps the
user form a model, known as the user’s mental model, of how the application works.
This model forms the basis for future interactions with the system and enables users

to predict system performance.

The Teaching Assignment Planner program is based on Java technology. Its Ul is
created by Java Swing component. Since the Ul is designed independently and the

domain objects should not have direct knowledge of or be directly coupled with

views in the Ul part, MVC pattern is selected accomplish the this task.

4.2.1 Overview of the MVC Design Pattern

*‘MVC’ stands for Model-View-Controller. MVC consists of three kinds of objects.
The Model is the application data, the View is its screen presentation, and the
Controller defines the way the user interface reacts to user input. MVC decouples
views and models by establishing a subscribe/notify protocol between them. [DP94]
The following figure shows the communications among the Model. View and

Controller:

Figure 4-3: MVC Pattern

In the MVC paradigm the user input, the modeling of the external world, and the
visual feedback to the user are explicitly separated and handled by these three types

of object. each specialized for its task.

e The View manages the graphical and/or textual output to the portion of the

bitmapped display that is allocated to its application.

e The Controller interprets the mouse and keyboard inputs from the user.
commanding the model and/or the view to change as appropriate.

e Finally, the Model manages the behaviour and data of the application domain.
responds to requests for information about its state (usually from the view), and

responds to instructions to change state (usually from the controller). [MVC02]

Not surprisingly. several benefits will be achieved after the MVC pattern applied to
the UI design. We can present different views according to the need while keeping
the same model data exists in the application domain without redefining the object

classes. [MVC98]

4.2.2 Overview of Java

Java is an object-orient programming language developed by Sun Microsystems Inc.
Besides the OO features, Java provides cross platform capabilities. As with other
high-level computer languages, Java source compiles to low-level machine
instructions. In Java, these instructions are known as bytecodes. They are platform-
independent instructions, which interact with Java Virtual Machine (JVM). The JVM
is a separate program optimized for the specific platform on which the Java bytecodes

are executed.

The Java language provides a powerful addition to the tools that programmers have at

their disposal. Java makes programming easier because it is object-oriented and has

automatic garbage collection. In addition, because compiled Java code is architecture-
neutral, Java applications are ideal for a diverse environment like the Internet.

[JLO02]

The following figure briefly describes the Java component structure and shows how

Java can maintain platform independence:

Figure 4-4: Java Component Structure

4.2.2.1 Overview of Java Swing

The Swing package is part of the Java Foundation Classes (JFC) in the Java platform.
The JFC encompasses a group of features to help people build GUIs; Swing provides
all the components from buttons to split panes and tables. The classes that used to
create the GUI components are part of the Swing GUI component from package

javax.swing. These are newest GUI components of the Java 2 platform. Swing

components are written, manipulated and displayed completely in Java (so-called

pure Java components).

Inheritance Hierarchy of the Classes

The Figure 4-5 shows an inheritance hierarchy of the classes that define attributes and
behaviour that are common to most Swing components. Each class is displayed with
its fully qualified package name and class name. Much of each GUI component’s

functionality is derived from these classes.

Figure 4-5: Common Superclasses of Many of the Swing Components

Class JComponent is the superclass to most Swing components. This class defines the
set of methods that can be applied to an object of any subclass of any subclass of

JComponent.

Java Swing Component’s Features

Swing Component that is a subclass of JComponent has the following important

features:

e A pluggable look and feel that can be used to customize the look and feel when
the program executes on different platforms.

e Shortcut keys (called mnemonics) for direct access to GUI components through
the keyboard.

e Common event handling capabilities for cases where several GUI components
initiate the same actions in a program.

e Brief descriptions of a GUI component’s purpose (called frool tips) that are
displayed when the mouse cursor is positioned over the component for a short
time.

e Support for assistive technologies such as Braille screen readers for blind people.

e Support for user interface localization—customizing the user interface for display

in different languages and cultural conventions. [JSC02] [JHP99]

4.2.3 TAP GUI Design

The GUI design is really an important issue which decides whether the TAP program
is easy to use. Based on the usability requirements, the TAP GUI is designed in this

manner as shown in the following Figure 4-6 and Figure 4-7:

COENIJJ! Gosta Grahne

COENTIN s
comP127 T — 3
[COmMPY 22 >;
comP2as Brow Oesar 3
ComP 248 2
jcowe2ee “{§abine Bergrer

‘Sabine Bergler
1
}nm Fungu

e A

Savine Berger
Nw' AL ST AN

e St
A AT I

Sectonfd Y __ _HonFungl
T(Jom Granne

COMP5 261 Secton 14 XX

COMPS42Y __Sechonnae 1

ComPs5T1 SectoniecC CrngY s

COMPSSTT “Coormnaton 14 |
COMPSS31 Sectonr4B8__ Riing aergen
CoMPSSIY _ Cooranadonid T

[COMF5281 Sectoni4 CC

wrrmeent s

Hon Fung i
{Hovhannes Hannwsny

Figure 4-7: Main GUI --- displaying the instructor list

As shown from the above main GUI of the TAP program. there are three major parts

in the GUIL:

Basic Information Display Area

Both the basic information of courses/sections and instructors will be displayed in
the Basic Information Display Area. The user can switch the information by
choosing the corresponding tab. In case of displaying course/section information.
the information such as course title. credits and so on will be listed as a table.
While displaying the instructor information. the information such as name.
assigned workload and so on will also be listed as a table. The buttons set above

the information list are used by the user to modify the information data.

Teaching Assignment Area

When a to be assigned course/section or instructor is selected by the user, its
detailed information will be shown in the Teaching Assignment Area combined
with the assignment information. For example, when an instructor is selected, not
only his variable data like actual workload but also a list of his
teaching/coordinating load will be presented to the user. By pressing the *+ or *-°

button, the user can perform the teaching assignment here.

Summary Area

The summary statistics will be shown in this area, providing to the user a general

28

concept of how the assignment progress. The summary is displayed at all times

and varies immediately with the assignment performed.

In this TAP program, Java technology is used to form a component based GUI
design. Based on object-oriented technology and natively applied the MVC pattern.
Java Swing helps us design a GUI with more usability to achieve the goal of being

easy to learn and easy to use.

S. Implementation

5.1 Presentation Subsystem

The presentation subsystem should provide a GUI to the user as his working place.
Through the working palace, the user can perform the teaching assignment. The GUI
should be developed in an intuitive manner so that it will be very easy to use. The
problems encountered during the implementation period and their corresponding

solutions will be illustrated in the following part.

5.1.1 Problems and Solutions

e Problem A: Displaying huge amount of information in limited space
There is a lot of information that must be presented to the user of the TAP
program. The user needs to know both the courses/sections and the instructors,
combined with their fixed and variable information data. For example, the
information data of an instructor consists of name, assigned number of courses,
assigned workload and teaching experience. In addition, if the instructor has
already been assigned some workload, the teaching sections or coordinating

courses with the detailed information should also be listed.

The size of display area on the computer screen is limited and how to arrange

showing the huge amount of information reasonably must be taken into account

30

seriously. The user should get the information very directly and the information
data should be organized a very clear and intuitive manner. It should not be
designed in such a way that the user may get lost when he is try to find the
information data he requires. And an over fancy style which could confuse the

user should also be avoided.

Solution:

Due to the limited space of the displaying area, we should make good use of it for
showing so much information. A Tabbed pane will meet this purpose and the
courses/sections and the instructors” information will show in the same place.
Upon the user’s selection by clicking the tab. the selected one will be the current

active content displaying to the user.

S [g Bachons “’_ws:'w—r .

COEN733! Section /4 B8_ Gosla Grahne)
COENT733t Coordination 12 <
COMP122 Coordination J1 ;
COMP122 Section 54 XX s
[COMP248 Coordination /4 Bipin Desal e
jcomP248 Coordination /4 . =
COMP248 Section /4 SS Sabine Bergler -
COMP248 Section /4 V Sabine Bergler b
COMP248 Secton 14 W =
COMP248 Section /4 Z Hon Fung Li +
COMP249 Secton J4 NN "
COMP249 Section /4 PP Nancy Acemian "
[COMP249 ISection/4 Q - I
COoMP249 |Sectian sa R Sabine Bergler <
COMP249 Sectton /4 T Nancy Acemian :
COMP335 Section /4 XX

COMP335 Section /4 Y Hon Fung Li

COMP442 Section /4 XX Gaosta Grahne

COMP5261 Section /4 XX

COMP5421 __[sectonsaBB _ |PeterGrogono

comP5421 Section /4 E

COMP5511 Section /4 CC Cching Y Suen

COMPSS511_ [Coordinabon/4 . .

COMP5531 Section /4 B8 Rilling, Juergen &
COMP5531 Coordination /4 A
COMP6281 Section 74 CC Lian Tao L=l

YT Qy o P T O R
AT m‘!‘v‘ﬂ“—‘ e wﬁl X' M&&"?&é‘r

Figure 5-1: Tabbed Pane

31

Problem B: Sharing the same data model

In the case of showing the information data, considered for the purpose of
convenient use, these information data should be classified into different
categories like All, Complete and Incompiete according to the instructor’s
workload. The information in these three categories comes from the same data
source. In order to avoid the redundant design, how to sharing the same data

source becomes important.

Solution:
Recalling the MVC pattern we described in Chapter 4.2.1, it will help us solve the

problem of displaying information data.

The principal advantage of the MVC pattern is to decouple the objects (Model) in
the application domain from the Views and Controllers. As a result, the objects in
the application domain will have no direct knowledge of how the presentation
views are controlled. The other feature of MVC pattern is that one model may
have multiple views. Based on these benefits, the MVC is naturally applied in the

TAP program to solve the problem described above.

In the case of displaying the instructors’ information into three different
categories, the displayed information data actually comes from the same data

objects. In other words, showing the information data into three categories can be

treated as three different Views and the data objects play the role of Model in
MVC pattern. The three different views share the same model and the model

doesn’t care how many views exist and how these views are controlled.

Applying the MVC pattern, the TAP program will provide the desired view on

request from the user.

Problem C: Input data validation and integration checking

The TAP program has some requirements for the input data. For example. it
requires the course code like “COMP’ to be a four-letter string while the course
number like “6411” to be a three or four digital letter string. Also, it requires the

user input the complete information without interruption.

The user may input the wrong format data when he is doing some information
modification work. Some mistakes are minor which will leave the whole program
peaceful while other could be very awful which will deliver incorrect information
to the TAP database. When the user input the information data, for example, the
user wants to add an instructor, the user may leave some required information

blank. It will probably affect the future assignment.

33

Solution:
In order to avoid incurring such error to the TAP program. we provide an input
data validation and integration check mechanism to ensure the system stability

and robustness.

Whenever the user inputs the data through the keyboard. for example, the user is
trying to make some modification to a course’s detailed information. the TAP
program will check the data format to see whether the input data are acceptable
before writing them back to the database. Also, the TAP program will not enable
the “OK’ button available unless the user input all the required information data.
With its help, the error caused by the user’s incorrect input will be reduced to a

low level.

Problem D: Suggest the assignment candidates

For the convenience of the user. the TAP will suggest a list of candidates when
doing the teaching assignment. But the candidates must have different
availabilities which means some candidates will be more likely to be assigned to
selected task than some others due to their respective conditions. The TAP should
be somewhat intelligent to implement this idea. How should TAP arrange these
candidates and give the user a very clear knowledge of different levels of

availabilities?

34

Solution:
When a suggested candidates list pops to the user, these candidates will be
grouped into four different availability levels. Each of the groups is set to four

different colours standing for their availabilities respectively.

According to the conventional colour meanings considered from the usability
perspective. the TAP program incorporates such a colour scheme: Green stands
for perfect availability; Blue means that the candidate has the minor condition
problem: Yellow means that the candidate has the major condition problem such
as a too heavy workload; And Red stands for that the candidate has a critical
problem waming the user not to choose this candidate. This will be further

illustrated in the Chapter 6.

Problem E: Displaying the summary
The user needs to know some summary statistics at all times when he is doing the
assignment. It should be better present this summary information in a concise and

direct manner of what percent the assignment task has been completed.

Solution:
Instead of listing the boring statistics, the progress bars are used to present an

intuitive knowledge to the user of how much assignment work he has finished.

Figure 5-2: Progress Bar

5.1.2 Implementation

The GUI of the TAP program is presented in the form of split windows. It is

implemented by the Java Swing Split Panel component.

Sei: Counder

i i C|QRCOMPAd? | saxx

3 . ‘Jjcomresti 14
[Anmea Seffan 13 1 0 _ _gjcowres vy
Biom Desar __ 2] WU JCOENII MeB
ChingY Suen i3 1)] fcompeart ax
Clement Lam i3 1" 10 | 9
Dhrubapyoh Goswami 14 14 o | a2z
GregoryButter _ 13 o 10 3 N | BTy
MonFungu T T T T a8 [flfeevect
Hovhannes Harutyuny ;2 . . B (1 Expezience: %
L) william Atwood 2. I I)Mi,_” ______R)comr2as comp249 comPES5IL st
Donnmckay 4 R .8 . Bl comprs3s i
Lata |
LmnTao
Nancy Acemian
Peter 9
Riling, Juergen
Sabine Bergler
Terry F ancolt
Thomas fevens

Figure 5-3: Split Window

36

From the above figure. we can see that the left part of the main split window is the
display area where the basic information of courses/sections and instructors are listed.

The tabbed pane is also embedded to switch between the different information lists.

The right part of the main split window forms another split window in the vertical
style. The top part is the teaching assignment area where the user performs the
assignment work. It displays the further detailed information of a selected

course/section or instructor.

The bottom part of this sub split window is the summary area showing the teaching

assignment summary statistics.

The entire TAP GUI is implemented using the Java Swing components. The

following class diagram shows the classed used to implement the TAP main GUL

JTabbedPane . JPanel JSplitPane

_BasePanel

) MainL;nP;nel MainRightPanel

Figure 5-4: Class Diagram ---Main Panel

37

From this diagram, we can see that the class Main panel consists of the MainLeft and
MainRight panel. Both the Main panel and the MainRight panel inherit from the class
JsplitPane and the MainLeft panel inherits from the class JTabbedPane. The class

diagrams of the main left panel and main right panel are also gives as follows:

JP anel

_MainLefPanel

-
t

CoursePanel JTabbedP ane instructorP anel

_CourseTabPanel “InstructorTabP anel

Figure 5-5: Class Diagram --- Main Left Panel

38

' JScroliPane

JPanel
 MainRightPanel _
SummaryPane! AssignPanel
—
AssignControlBar TAListPanel _AssignScroiView

Figure 5-6: Class Diagram --- Main Right Panel

5.2 Teaching Assignment Application Subsystem

The TA application subsystem is the most important part of the TAP program. All the

required functionalities are implemented in this subsystem. It’s the soul of the whole

TAP program.

5.2.1 Problems and Solutions

e Problem A: Courses and Sections
In Department of Computer Science of Concordia University, a number of

courses are offered and a course usually comes with several different sections.

39

Each section has its own scheduled lecture time and requires an instructor
respectively. Some of the courses require one or two coordinators assigned to

them.

When the TAP user views the basic information of the courses, he also hopes to
view their sections at the same time. Meanwhile. whether a course requires a
coordinator should also be presented. How to deal with the course information

combined with their sections in a concise and clear style becomes relevant.

Solution:

In the Course class. the sections are defined as the class member of it. The
member Section is actually a list containing a list of sections. Here we treat the
course coordination as a special section. If the course requires a coordinator. it

exists as a special section in the section list.

Course
&Code : String
&Number : String
& Title : String
&Credits : Float
&ListSection : Sectiontist
& TALinks : Vector

Figure 5-7: Class Course

As a result, from the GUI, the courses/sections information is organized in such a

40

way as presented in the following figure:

COEN7331 Section /4 BB Gasta Grahne
COEN7331 Coordination §2

COMP122 Coordination /1

COMP122 Section /4 XX

COMP248 Coordination /4 Bipin Desai
COMP248 Coordination /4

COMP248 Section /4 SS Sabine Bergler
COMP248 Section/4 v Sabine Bergler
COMP?248 Section/4' W

COMP248 Seclion/4 Z Hon Fung Li
COMP249 Section /4 NN

COMP 249 Section /4 PP Nancy Acemian
COMP249 Section /4 Q

COMP?249 Section/4 R Sabine Bergler
COMP249 Section/4 T Nancy Acemian
COMP335 Section /4 XX

COMP335 Section/4 Y Hon Fung Li
COMP442 Section /4 XX Gosta Grahne

Problem B: Organization of the Data Structure

Figure 5-8: Courses and Sections

A good program cannot be with out a good data structure. A good data structure

can not only make the coding structure clear and easy to understand, but also it

will help to make it easy to implement the required functionalities. Further

important, it will make it quite flexible for future modification of the TAP

program without much difficulty.

41

Solution:
The major data structure of the TAP program is organized in such a way

described in the following figure and we will make the further illustration in the

following part:
COMP248 Coordination |[@—P Bipin Desai
COMP249 HAA :><: / Gosta Grahne
COMP335 /4 BB H.F.Li
n MM /
COMP445 Peter Grogono
AN e
2N e
Course List Section List TA List Instructor List

Figure 5-9: Data Structure

There are four lists in the TAP data structure. They are Course List, Section List,

Instructor List and Teaching Assignment List.

The Course List contains a list of courses. Each course stores a pointer pointing to
the sections which belong to the course. From the above the figure, the course
COMP6511 has a pointer pointing to the sections */2 MM’, /2 NN” and */2 XX’

respectively.

42

The Section List consists of several sections which belong to a common course.
The coordination is stores as a special type section here. The section has the
pointer pointing to its parent course and pointing to the related teaching

assignment.

The Instructor List is made of instructors. Actually, the list is implemented by
using Java Vectors and each instructor is stored as an object in the vector. The

instructor has the pointer pointing to the related teaching assignment.

The Teaching Assignment List consists of a list of assignment information. As
described in the above figure, we can see that for each teaching assignment, it
stores both the pointer pointing to the section and the pointer pointing to the
instructor. In addition, the teaching assignment has the pointer pointing to the

related course directly. This pointer is not shown in the Figure 5-9.

Implemented in the format of list, it will be very convenient to perform adding
and deleting operations. Since the lists are implemented by using Java Vectors. it
will also be very easy to locate a specified object in the list. Because of the fact
that the teaching assignment only stores the pointers pointing the related
course/sections and instructors, it will be easy and flexible to implement any

assignment.

43

5.2.2 Implementation

5.2.2.1 Major Classes

The major classes in the TAP program are listed as follows:

e Course

Course

&Code : String

& Number : String

& Title : String

&Credits : Float
&lListSection : SectionList
&TALinks : Vector

Figure 5-10: Class Course

e Section

Section

& Session : String
&Code : String
&Days : String
&Start : Time
&Finish : Time
&course : Course
& TALinks : Vector:

Figure 5-11: Class Section

44

e Instructor

Instructor
&Name : String
QAssigned number of Course : Integer
&Assigned workload : Integer
& Experience : String
&Actual workload : integer
@pActual number of courses : Integer
&Actual coordination : integer
QTALinks : Vector

Figure 5-12: Class Instructor

e Teaching Assignment

Teaching Assignment
&course : Course
&ysection : Section

&instructor : Instructor
&TALinks : Vector

Figure 5-13: Class Teaching Assignment

e Course List

7 hCo;useLirsvt 7
&LoadingSQL : String
&db : DBHandler

®oad()
®joadSections()
®addCourse()
®modifyCourse()

Figure 5-14: Class CourseList

45

Section List

Instructor List

TA List

SectionList
&LoadingSQL : String
&db : DBHandler
@pcourse : Course

®oad()
®3ddSection()
®modifySection()

Figure 5-15: Class SectionList

instructortist
&LoadingSQL : String
&db : DBHandler

®joad()
®addinstructor()
OmodifyInstructor()
Sremovwelnstructor()

Figure 5-16: Class InstructorList

TAList

&yLoadingSQL : String
&db : DBHandler

®load()
®addTA()
SremoveTA()

Figure 5-17: TAList

46

5.2.2.2 Class Diagram

" Courselist
——_ TALst
0..'
Course 0.° Instructorlist
i e TeachingAssignment o
0.‘1 V - - o."
_Sectionlist Instructor
1 TALinks S
0.
Section 1 1

Figure 5-18: TA Application Class Diagram

From this above class diagram, we can obtain the knowledge of the relationships
among these classes in the application logic domain. The Course List consists of
several courses and the same cases are applied to the Section List, the Instructor List
and the TA List. Each of the lists is responsible for administrating its own elemental

data with the help of the DB handler subsystem.

In addition, class Course, class Section and the class Instructor are all have a TA

Links, which is made up of several related Teaching Assignment assigned to them.

47

5.3 DB Handler Subsystem

The DB handler subsystem serves as the interface between the teaching assignment
application subsystem and the database in the bottom. From the following figure, we

can see how all the lists work through the DB handler to manipulate their data.

5.3.1 Overview

Database

Figure 5-19: DB Handler Subsystem

All the operations performed on the data in the TA application must be through the
DB handler. The DB handler provides all the necessary interfaces when the TA

application retrieves the data from the database, modifies the data and writes back the

data to the database.

48

5.3.2 Implementation

The DB handler subsystem provides a SQL interface to the course list. section list.
instructor list and teaching assignment list. As a result, each of the lists is able to
manipulate its own data through this SQL interface such as adding the data.

modifying the data. removing data and so on.

One thing to be noticed is that whenever there is any change to those lists data. the
change should be immediately reflected in the storage database. Thus the data in the
database is always synchronized with the lists data and the database therefore keeps

the latest data of the most recent teaching assignment state.

s DB Handler Class

DBHandler

SexecuteQuery() .
QexecuteUpdate()
Qciose()

®inalize()

Figure 5-20: Class DBHandler

Let's take the instructor list in the TAP program for an example, through which we
can illustrate the implementation of the DB handler subsystem and make clear the
working mechanism of the DB handler. There is a DBHandler class which provides a

public function named *executeQuery’.

49

e public ResultSet executeQuery (String sQuery) {

}

This function will be invoked by the instructor list to load the data from the database

and initiate the list.

e public boolean executeUpdate (String query) {

}

This function will be invoked by the instructor list to manipulate the instructor data

such as adding, modifying or removing an instructor.

There is an InstructorList class standing for the instructor list. There are four major
functions provided in this class which form the principal manipulations to the
instructors. They are function ‘load’. ‘addInstructor’. modifylnstructor’ and

‘removelnstructor’.

e Load data to the instructor list
When the TAP program starts, the InstructorList should be responsible to initiate
its data. It will invoke the ‘excuteQuery’ function in its own “load’ function to
load the data from the database to the instructor list.
String sLoadingSQL = "select * from Instructor order by Name";

public void load () {

ResultSet rs = db.executeQuery (sLoadingSQL);

e Add an instructor to the list
In case of adding an instructor to the list, The InstructorList will first execute the
"executeUpdate” function in its own “addInstructor’ function in order to add this

data to the database. Then it will add the instructor object to the instructor list.

public boolean addInstructor (Instructor newlInstructor) {
/linsert to db
String sinsertSQL = null;

sinsertSQL ="...... "

//add to InstructorList

this.addElement (newlnstructor);

51

Modify an instructor
When modifying an instructor. in the function “modifylnstructor’. the
InstructorList executes the “executeUpdate’ function to update the data in the

database.

public boolean modifyInstructor (Instructor newlInstructor) {
/lupdate DB

return db.executeUpdate(sUpdateSQL):

Remove an instructor
When an instructor will be removed. the *executeUpdate” function will be also
invoked and the instructor data will be removed from the database before
removing the instructor object from the instructor list.
public void removelnstructor (Instructor instructor) {
//update DB

if (db.executeUpdate(sDelSQL)){

this.remove(instructor);

52

5.4 Database Subsystem

In the TAP program. the MS-Access database is selected for storage purpose. It is one

of the most popular commercial databases. It provides the JDBC driver to support the

Java Program.

S.4.1 Overview of MS-Access Database

MS-Access is a database product developed by Microsoft. Using Microsoft Access.
you can manage all your information from a single database file. Within the file,
divide your data into separate storage containers called tables: view. add. and update
table data by using online forms; find and retrieve just the data you want by using
queries: and analyze or print data in a specific layout by using reports. MS-Access
allows users to view, update, or analyze the database's data from the Internet or an

intranet by creating data access pages. [MAHO00]

5.4.2 Overview of JDBC

JDBC technology is an API that lets user access virtually any tabular data source
from the Java programming language. It provides cross-DBMS connectivity to a wide
range of SQL databases, and it also provides access to other tabular data sources, such
as spreadsheets or flat files. The JDBC API allows developers to take advantage of

Y

the Java platform's ‘Write Once, Run Anywhere ™:- capabilities for industrial

strength, cross-platform applications that require access to enterprise data. JDBC

53

driver is the interface between Java and various DBMS. It converts program (and
typically SQL) requests to a form needed by a particular database. With a JDBC
technology-enabled driver. a developer can easily connect all corporate data even in a
heterogeneous environment. So using the Java programming language in conjunction
with JDBC provides a truly portable solution to writing database applications.

[JDBCO02]

5.4.3 Implementation

There are four tables in the TAP program. They are Course Table, Section Table,
Instructor Table and Teaching Assignment Table. Each of them will be described
below. And all of description will contain the table name. table fields and the data

type of each of the fields.

e Course Table

Table Course (
Index AutoNumber
Code Text (6)
Number Text (6)
Title Text (80)
Credits Number
)

Index: The table index

Code: A four-letter string like ‘COMP, ENCS’

54

Number: A three or four-digit string like *248,5421°
Title: The name of the course like ‘Artificial Intelligence’

Credits: A number in the range 0 to S like 1.5, 3.0.4.75°

Section Table

Table Section (
Index AutoNumber
CourseDBIndex Number
Session Text (2)
Code Text (15)
Days Text (7)
Start Date/Time
Finish Date/Time
)

Index: The table index

CourseDBIndex: The Course table index of the section’s parent course
Session: A single digit indicating the term like *1,2,3.4

Code: A one or two-letter string like “A, XX’

Days: One or two days which the section is scheduled like *“T. WF’
Start: The start time of the lecture like *10:15°

Finish: The finish time of the lecture like *20:45’

Instructor Table

Table Instructor (

55

Index AutoNumber
Name Text (255)
NumberofCourses Number
AssignedWorkload Number
Experience Memo

)
Index: The table index
Name: A string of characters like *Peter Grogono’
NumberofCourses: The number of courses that the instructor should teach
AssignedWorkload: The number of "points” for the instructor's workload

Experience: The coordinating or teaching experience of the instructor

Teaching Assignment Table
Table Teaching Assignment (

Index AutoNumber
InstructorDBIndex Number
CourseDBIndex Number
SectionDBIndex Number

Index: The table index
Instructor DBIndex: The Instructor table index of the instructor
CourseDBIndex: The Course table index of the section’s parent course

SectionDBIndex: The Section table index of the section

56

6. Results

In this chapter, we will discuss the implementation results of the TAP program and
we will focus on the usability of the TAP program and illustrate how to use this

program. Some screen shots are also provided to assist to make the issue clear.

The aim of the TAP program is to help the user fulfill the task of the teaching
assignment without much difficulty. Through the TAF program. the user can view the
current assignment state, perform teaching assignment. modify information data. view

the summary statistics and so on.

After the user starting the TAP program, the main GUI will be presented to the user

like the following figure:

COENTI3Y ~

COENTIt

cowP122

COomMP122 _

COMP248

COMP248 I

COMP248 e

COmP248

cowP48 _ _ Sectonidwy - o -
cowpzes” ___ lsecsonieZ o Fung Lt
comp49 Secton it NN

COwP249 5 V;S«no_c[u L Nancy Acermian
COMP249 ~ _ SecsoniQ
ComP248 “Secton 14 R Sabine Bergier
COMP249 Sechon /4 T Nancy Acemean
CoWPITs __ seaons L
|come 335 "Secon 18 Y Won Fung Ui
COMP442 iSechon 4 XX Gosta Grahne
CowPaei _ _ Secomjt . __
COMPSEY .Secton 14 BB Peter Grogona
[COMPS4Y Secdon i E

cowpss1t Secboni4CC_ chingy Suen
COMPS5511 .Coordmnaton /4

COMPS531 ‘Section 14 B8 _Rutng, Juergen
COouPSs . Gooranabani
[COmPE28t iSection 14 CC Loan Tag

% T

Cosicorgin OMRRIND 3 e TS

Figure 6-1: Main GUI

57

Based on this main GUI. the user can perform his assignment work such as viewing
the current assignment state. performing teaching assignment, modifying information

data and viewing the summary.

6.1 View the Assignment State

6.1.1 View the Courses and Sections
As shown from the main GUI. the left part of the split window is used to display the
basic information. The user can view the courses with their sections. If a course

requires the coordinator, it is listed as a special section.

COEN7331 Section /4 BB Gosta Grahne a|
JCOENT7331 Coordination 12 -
COMP122 Coordination /1 =
CoMP122 Section 14 XX £
COMP248 Coardination /4 Bipin Desai 24
COMP248 Coordination /4 i
COMP248 Section /4 SS Satine Bergler &
COMP248 Section 4V Sabine Bergler 1
COMP248 Section /4 W 1
COMP248 Section /4 Z Hon Fung L g
COMP243 Section /4 NN R 4
COMP249 Section /4 PP Nancy Acemian 2%
COMP249 Section /4 Q g
COMP249 Section /4 R Sabine Bergler &
COMP249 Section /4 T Nancy Acemian L3
COMP335 Section /4 XX &t
COMP335 Section 14 Y Hon Fung L =
COMP442 Section /4 XX Gosta Grahne Fs
COMP5261 Section /4 XX Wi
COMP5421 Section /4 BB Peter Grogono 2
COMP5421 Section /4 E 3
COMPS5511 Section /4 CC Cching Y Suen i
COMP5511 Coordination /4 =
COMP5531 Section /4 BB Rilling, Juergen o3
COMP5531 Coordination /4 jﬁ
COMP5281 Section /4 CC Loan Tao @
p— e

58

Figure 6-2: View all the course and sections

Information about the courses and the sections are displayed in a list. Each course
comes with its course code and number, section and instructor if it has been assigned.
The coordination has been arranged as a special section in the section column. It also

lists its coordinator in the instructor column if it has been assigned.

We notice that there are three tabs at the bottom part labelled “All’, “Assigned” and
*Unassigned” respectively. By clicking the different tabs, the user also can view the
courses and sections classified into “Assigned” and “Unassigned™ categories
according to whether the course or the section has been assigned. Below is the list of

assigned courses and sections with the coordinators or the instructors™ name.

% lon 2 whw it it s
TR

"'.;‘E o
b T N

TR
adal 3 :

W e s i | s (T T oy
SCOUrSE | BNUCHOR b S

COEN7331 Section /4 8B Gosta Grahne

COMP248 Coordination /4 Bipin Desat

COMP248 Section /4 58 Sabine Bergler
COMP248 Section /4 vV Sabine Bergler

COMP248 Section /4 Z Hon Fung Lt

COMP249 Section /4 PP Nancy Acemian

COMP243 Section /4 R Sabine Bergler

COMP249 Section /4 T Nancy Acemian .
COMP335 Section /4 Y Hon Fung L

COMP442 Section /4 XX Gosta Grahne

ICOMP5421 Section /4 BB Peter Grogono

COMPS5511 Section 4 CC Ching Y. Suen

COMP5531 Section /4 BB e Rilung, Juergen =
COMP6281 Section /4 CC Loan Tac

COMPGE411 Section /4 AA Peter Grogono

COMP6461 Section /4 BB IJ. William Atwood

COMPG471 Section /4 X Gosta Grahne

COMPBS511 Section /4 XX Gasta Grahne

COMPBES11 Section /4 YY Gosta Grahne
fELECSBM] Section uc i Mancy Acemia

FEd

Figure 6-3: View assigned courses and sections

59

In addition, when a section is selected. the assignment information about which will
be shown to the user in the top-right part of the split window along with the detailed

information of the selected section.

I . yflcompsazs yags iPeter Gro
COEN7331 iSecton /14 BB :0gsta Orahne & ¢ %
COEN7331 Coordinaton 12 I <] % ALE'3 SR
CoMP122 ‘Coordinaton /1 ! 3 ..‘,-ﬁs— I STl e T
COMP122 Section /4 XX [z ST tan
COMP248 Coordination /4 Bipin Desat Ey e 3
COMP248 'Coordinaton /4 ; b2 a5 3¢ £
COMPZ48 _ __ _ __ Secvon/4SS ‘Sabine Bergler e M5 P
coMP248 Secdon /4 V ‘Sabine Bergter 1| | 2t e i s
COMP248 Sechon I§ W ! TV Ijfobject Oriented Programming !
COMP248 Sechon /4 Z Hon Fung L - Credits: 4.0 Days: H---- 'y
COMP249 Sechan /4 NN : HAllTine: 17:45:00 -- 20:15:00
COMP249 ‘Section /4 PP Nancy Acemtan o ke
COMP249 ‘Secban /4 Q : B
COMP249 Secton /4 R Sabine Bergler H
COMP249 SecionsaT Nancy Acemian L
COMP335 Secdon 74 XX . &)

COMP335 ‘Sechon /8 Y Hon Fung U 5

COMP442 ‘Section 14 XX ‘Gosta Grahne L€

COMP5261 Sechon /4 XX ! A

COMP5421 ‘Sechan /4 E i

COMP5511 Section/4 CC .Ching Y Suen

COMP5511 ,Coorgination /4 !

COMP5531 -Section /4 88 ___Riling_Juergen ;B
COMP5531 -Caor s : SRAY
CoMP6281 ‘Sechon 14 CC ‘Lenn Tao 3 § 2
- oy T T e s s - > o
2a [resigned] Unassignad)) 23 R R A TSR R S HIEIENED) :
Concandio Unierslly = 20 530 PSSOl B o S et i e T SR BRI e B e i AR

Figure 6-4: Select a section

For example, in the left list, the section /4 BB of the course COMP 5421 is selected,
the assignment information of it will be displayed in the teaching assignment area if it
has an instructor assigned. Here Dr. Peter Grogono has been assigned to this section

and his name is displayed in this assignment information. Below the assignment

60

information, the detailed information of the selected section is also shown including
the course title ‘Object Oriented Programming’, credits ‘4.0, the section’s scheduled

days ‘M----* which indicates Monday and time * 17:45—20:15".

6.1.2 View the Instructors

Very similar to view the courses and sections, the TAP program also allows the user
to view the instructors’ information. The user can switch between the course and
instructor information by clicking the corresponding tab. The two tabs are located on
top of the information list as presented in the Figure 6-4. The basic information
including the instructor’s name, assigned number of courses. assigned workload and

actual workload will be shown to the user.

Also, there are three tabs at the bottom part labelled ‘All’. “Complete’ and
‘Incomplete’ respectively. By clicking the different tabs. the user also can view the
instructors classified into “Complete™ and “Incomplete™ categories according to

whether the instructor’s actual workload has reach his assigned workload.
In case of an instructor is selected, his assignment information will be shown to the
user in the teaching assignment area with the detailed information of the selected

instructor.

As shown in the following Figure 6-5, in the left list, Instructor Gregory Butler is

61

selected. his assignment information is displayed in the teaching assignment area
Here Butler has two teaching load: COMP6471 /4BB and COMP691S /4CC.Below
the assignment information, the detailed information of Butler is also shown

including his expected workload and experience.

.......

Agamikzzak 3
Anmed Seffah
BowDesa 2 & . 5
Ching Y Suen 3 i1 3 1
ClementLam 3 11 0 i 5
Dhrubapyeb Goswame 4 114 1] ; e
Gosta Grahne 4 1 '
llbrpecr. Vorkload: § =
Hon Fung L 3 i 6 iJ|Fxpecience: ;
Howvnannes Haruyuny 2 s () 'J{CONP33S COMPA471 COMPEILS :
) Witam Awood 2 8 " a = =
[John McKay 0 1 0 hd
Lata Narayanan 3 i G i P
Lmn Tao i 8 e T
Nancy Acermian 2 8 9 ;
Peter Gragons 3 1 3
Rilling, Juergen 3 i) 3 I
Sabine Bergler 2 8 g
Terry Fancoft 3 Al 0
[Thomas Fevens 3 Ry)
tljpn 0 Buw 2 8 .5
[wojciech Jawors| 2 g

Figure 6-5: Select an instructor

6.2 Perform Teaching Assignment

After all the assignments, whether it is adding or deleting assignment. the TAP will

recalculate the related instructor’s actual workload and expected workload.

6.2.1 Add a coordinating assignment to a course

The user selects an unassigned course, pressing the ‘+’ button in the teaching
assignment area, and then a list of suggested instructors will be shown to the user
before assignment. The suggestion list will be sorted by the instructors’ availabilities

level from high to low presented in different colours as shown in the following figure:

R DA N e SRy | ks S e 2, Epecl Wond0ad S5 E3tA%

ClementLam.=
jGregoryButler . -
Hon Fung L} :

Hovhannes

1. Waliam Alwood =~ . -
eterGrogong - - - s
Y [

iech Jaworsid

ik et St i s TR
He /She has no experience of teaching this course.

Actual Uorkload: 3
Assinged Workload: 11

A e P 5

ey e e ca e]

Figure 6-6: Add a coordination assignment

63

As mentioned in the previous chapter. this colour scheme is incorporated here to help

the user know whether the candidate is suitable. The colours stand for the following

meaning:

e Green indicates that the instructor is perfect to assign with experience.

e Blue indicates that the instructor’s actual workload will be over his assigned
workload.

e VYellow indicates everything is OK for this instructor but without the course in his
experience or his actual workload will be over16 points (high limit).

e Red indicates that the course has more than one coordinators. coordinator
candidate is the same person as the assigned coordinators. (In this case, TAP
doesn't allow the course to be assigned to him and the “Assign’ button is

disabled.)

We can see from the above GUI, when the user select one of the candidates, the TAP
program will tell the current working load of the candidate and the reason why he

cannot or unsuitable for assigning.

6.2.2 Delete a coordinating assignment to a course

If the user selects one of the coordination assignment from the TA list and then press
the *- button, the TAP program will ask the user whether he really wants to delete

this assignment. Once confirmed, the TAP program will remove this assignment.

64

6.2.3 Add a teaching assignment to a section

The user selects an unassigned section. pressing the “+’ button in the teaching
assignment area, and then a list of suggested instructors will pop to the user before
assignment. The suggestion list will be sorted by the instructors’ availabilities level

from high to low presented in different colours as presented in the following figure:

His/Her workload will exceed the workload limictation.

Actual UWorkload: 1S
Assinged Workload: 14

Inarrucriane S Secrianti<l
T4 arr

Figure 6-7: Add a teaching assignment

The colours stand for the following meaning;:

65

e Green indicates that the instructor is perfect to assign;

e Blue indicates that the instructor's actual workload will be over his assigned
workload or the instructor’s actual courses will be over his assigned courses. or
the instructor has no experience for this course teaching;

e Yellow indicates the instructor’s actual workload will be over 16 points (high
limit);

o Red indicates that the instructor has time conflict with his assigned jobs. (In this
case, TAP doesn’t allow the section to be assigned to him and the *Assign” button

is disabled.)

6.2.4 Delete a teaching assignment to a section
If the user selects one of the teaching assignment from the TA list and then press the
- button, the TAP program will ask the user whether he really wants to delete this

assignment. Once confirmed, the TAP program will remove this assignment.

6.2.5 Add a coordinating /teaching assignment to an instructor

The user selects an instructor, pressing the *+’ button in the teaching assignment area,
and then a list of suggested courses/sections will pop to the user before assignment. If
it’s a coordinating assignment. the colours stand for the same meaning as the
coordinating assignment to a course as mentioned above. If it’s a teaching

assignment, the colours stand for the same meaning as the teaching assignment to a

66

section as mentioned above.

6.2.6 Delete a coordinating /teaching assignment to an instructor

The user selects one of the working load of an instructor either coordination or
teaching from the TA list in the teaching assignment area. and press the “-* button. the
TAP program will make sure whether the user wants to delete the assignment. Once
confirmed by the user. the TAP then remove the assignment from this instructor’s

working load.

6.3 Modify the Information Data

The user can modify either the information of courses/sections or the information of
instructor through the TAP program. It can be achieved by pressing the “+". "-* and

‘Modify’ buttons located above the information list.

6.3.1 Add a course
Pressing the ‘+’ button on top of the display area, a GUI of adding a course/section

will be shown as the Figure 6-8:

67

Add Course/Section
O] %MW’Q‘*K:@&_:’Tﬂm G s b PR AP TR
RPN Db s ek ML £ IFAeR L A3 RUET Ry DI AT L ARG

COEN7331 Protocol DeSIQn anq Valldatlon

Figure 6-8: Add Course/Section

Pressing the *‘Add” button in the course panel. the following GUI will be displayed:

Add Cousse

Figure 6-9: Add a course

Provided with the above GUI, the GUI can fill the information data which will be

checked by the TAP program for its validation and then press the *OK’ button to

68

submit, or press the ‘Cancel” button to cancel what has been filled.

6.3.2 Remove a course

The course without sections will not be shown in the course/section list and it only

exists in the database. so we don’t need to remove such course without any section.

6.3.3 Modify a course

Select a course from the list, pressing the “Modify" button, the following GUI will be

shown. Here for example. we select the course COMP 248:

Modity Course/Section
prrory Ty

Figure 6-10: Modify Course/Section

69

Pressing the ‘Modify” button in the course panel above. the following GUI will be

displayed. And the user can modify the course information.

Modity | ourse

Figure 6-11: Modify course information

6.3.4 Add a section
Similarly, press the "+ button above the information list. the following GUI will be

provided to add a section to some course:

Figure 6-12: Add a section

70

For example, if the user wants to add a section to the course COMP 249, he should
select this course from the combo box in the course panel first. After that. in the
section panel, the user can fill the information of the section to be added. If it is

coordination, just check the ‘Coordination’ checkbox.

6.3.5 Remove a section

Select a section from the list. then press the ‘-* button, the TAP will confirm to the
user whether the section should be removed. In case of that the section has been
assigned the instructor. the TAP program will also remind the user that the

assignment related to this section will be removed too.

6.3.6 Modify a section

The following figure is the GUI used to modify the information of a section:

Modity [ourse/Secthion

DOARE S SRS

Figure 6-13: Modify a section

71

Suppose the user wants to modify the section /4 XX of COMP 335, he needs to select
this section from the information list and press the ‘Modify * button. Then the above
GUI will be shown to the user. Working with this GUI, modification can be

performed here.

We should pay attention to the case in which the section has been assigned with an
instructor. Since the change of the section’s information such as scheduled time will
lead to conflict with the instructor’s existing working load, the TAP will force the

user to remove the assignment before modifying the information.

Figure 6-14: Remove the assignment first

6.3.7 Add an instructor

Clicking the ‘Instructor * tab to switch to the instructors list. If the user wants to add
an instructor, he needs to press the *+’ button to see the following GUI to perform the

adding.

72

i gt

v LSt
¥ o

Figure 6-15: Add an instructor

6.3.8 Remove an instructor

To remove an instructor. the user has to select the instructor from the list and then

press the °-” button.

1 hong A gnment Faoner

Figure 6-16: Confirm to remove an instructor

6.3.9 Modify an instructor

In order to modify the information of an instructor, the user should select the

73

instructor from the list and press the ‘Modify’ button above the list. The following

GUI will be displayed to the user to modify information.

Modity Instiuctor Information

T

Figure 6-17: Modify an instructor

6.4 View the Summary

The TAP program will present a summary on the right-bottom part of the split
window at all times in the format of progressing bar which makes the statistics very
intuitive. The summary gives the user an overall knowledge of how much of the

assignment task has been finished.

The summary statistics includes the following data:
e The total number of courses

e The total number of coordinations

74

The number of the coordinations which has been assigned
The total number of sections

The number of the sections which has been assigned

The total number of instructors

The number of instructors who has reach his assigned workload

Figure 6-18: Summary

75

7. Conclusion

7.1 Project Summary

The Teaching Assignment Planner (TAP) is a Java application we developed to assist
the staff doing the assignment work to fulfill the assignment task with ease. TAP is a
3-tier architecture which separates the user interface from the TA application logic
part and accesses the database through the DB handler. With the help of the TAP
program, the user can view the current assignment state, perform assignment and
modify information. The user can also view the assignment summary at all times

while the TAP program is running.

As an aid purpose program. TAP should help the user complete the assignment work
without many extra work such as spending a lot of time learning how to use the
program. Therefore, the usability of the program is considered to be a very important

quality factor when developing this project.

The GUI of the TAP program is presented in a very concise and intuitive manner
which makes it possible that the user is able to sit and use. It incorporates as few
menu items and windows as possible in order to let the user feel simple and relaxed.

Thus avoid the user being confused with the complicated Ul manner and getting lost.

76

7.2 Future Work

There are some future work that have to be done in order to improve the usability and

performance of the TAP program, including:

Generate Reports

TAP should generate the report for the print out purpose. It should generate a
report of instructors and their workloads. sorted alphabetically by instructors’
names. Besides. this TAP should also be able to generate a report of courses and
sections. The report will include the coordinator assigned to each course and the

instructor assigned to each section. with blanks if no assignment has been made.

Import Database from Student Information System (SIS)

Currently, MS-Access is used. In near future, when the TAP program is applied
for practical use, it will be required to load all the necessary information from the
Student Information System (SIS) in Concordia University. Since the JDBC
technology has already been used in the TAP program. this extension work will
be easily implemented because JDBC provides cross-DBMS connectivity to a
wide range of SQL databases, and it also provides access to other tabular data

sources, such as spreadsheets or flat files.

Generate an Initial Assignment State

The TAP program will always load the latest teaching assignment status

77

information from the Database whenever it starts. From the very beginning, the
TAP program will only provide the user a blank state without any assignment has
been made if there is no teaching assignment data exists in the database. We
expect the future TAP program to be somewhat intelligent so that it can generate
an initial assignment state based on the basic conditions embedded in the code or
the rules defined by the user. For example. based on the basic assignment
constrains and the teaching/coordination experience of each instructor. TAP will
automatically assign a to be assigned course/section to a certain instructor.
Provided with such an initial assignment. the user is able to adjust it according to

the actual need.

78

References and Bibliographies

[TAPRO1] Peter Grogono, Teaching Assignment Planner Requirements, August
2001, pp.1

[DP94] Erich Gamma. Richard Helm. Ralph Johnson. John Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software, Addison
Wesley. August 1994, pp.4-5.

[MVC02] MVTC, http://minnow.cc.gatech.edw/squeak/1767. May 2002, pp. 1.

[MVC98] Todd Sundsted. How-To Java, MVC Meets Swing, April 1998. pp. 1-2.
[JLOO2]) The Java ™ Language: An Overview,

http://java.sun.com/docs/overviews/java/java-overview-1.htmli, 2002.

[JHP99] Paul J. Deitel and Harvey M. Deitel. Java How to Program (3™
Edition), Prentice Hall, August 18, 1999, pp. 557-560.
[JSC02] Java ™ FOUNDATION CLASSES (JFC),

http://java.sun.com/products/jfc/#components, 2002.

[MAHO00] Microsoft Access Help, Databases: What they are and how they work,
2000, pp.1-8

[JDBCO2} JDBC ™ Data Access API, http://java.sun.com/products/jdbe, 2002.

[UML99] Grady Booch, James Rumbaugh and Ivar Jacobson, The Unified

Modeling Language User Guide, © 1999 Addison Wesley.

79

Appendix

The source code of the following four classes are presented:

Instructor Model

Instructor

Instructor List

DB Handler

Here we take the instructor for example to illustrate the problems. And the very

similar cases are applied to the course, section and the teaching assignment.

80

o Class Instructor Model

package cstap;

import javax.swing.JTable;
import javax.swing.JScrollPane;
import javax.swing.JPanel;
import javax.swing.JFrame;
import java.awt.*;

import java.awt.event.*;
import javax.swing.table.*;
import java.util.Vector;
import java.sqgl.*;

import java.lang.Integer;
/t&

* Title:

* Description:
* Copyright:

* Company:

* Qauthor Hul YING
* @version 1.0

Copyright (c)

Teaching Assignment Planner

2001
Concordia University

public class InstructorModel extends AbstractTableModel implements

TableSelectionInterface{

private static final String[] columnNames = {//"Index",
"Name",
"NumberOfCourses”,
"AssignedWorkload”,
// "Experience",
"Actual Workload”
// "Expected
Workload"”,
// "Actual
Coordinations",
// "Actual Courses"
bi
private Vector vShowList = null;
private int tmType;
public final static int ALL = 0;
public final static int COMPLETE = 1;
public final static int INCOMPLETE = 2;

81

public InstructorModel (InstructorlList listInstructor, int iType)
this.tmType = iType;
refreshList (listInstructor);

}

public void refreshList (InstructcrList newList)({

switch(tmType) {

case 0O: // All instructors
vShowList = newList;
break;
case 1: // Complete instructors
vShowList = new Vector{newList.size());
for (int i=0; i<newList.size(); i++)} {

Instructor tmpInstructor =
(Instructor)newlList.elementAt(i);
if (tmplnstructor.isComplete()) {
vShowList.addElement (tmplnstructor);
}
}

break;

case 2: // Incomplete instructors
vShowList = new Vector(newList.size());
for (int i=0; i<newList.size(); 1++) {
Instructor tmplInstructor =
(Instructor)newList.elementAt (i);
if (‘tmplnstructor.isComplete()) {
vShowList.addElement (tmplnstructer);
}
}

break;
}

this.fireTableStructureChanged();

public int getColumnCount () {
return columnNames.length;

}

public String getColumnName (int col) {
return columnNames([col];
}

public int getRowCount () |
return (vShowList '= null?vShowList.size():0};

}

public TableRowObjectInterface getRowObject (int row){
if (row == -1 || row >= vShowList.size{)) return null;

82

return ((TableRowObjectInterface)vShowlList.get (row)};
}

public Object getValueAt{int row, int col) |

TableRowObjectInterface rowCbject =

= getRowCbject (row);
if (rowObject != null){

return rowObject.get (col);
lelse(

return "";

}

83

o Class Instructor

package cstap;

import java.util.Vector;

* Title:

* Description:
* Copyright:

* Company:

* @author Hui YING
* @version 1.0

v/

Copyright

(c)
Concordia University

Teaching Assignment Planner

2001

public class Instructor implements TableRowObjectinterfacef

int iDBIndex;
String sName =nul
int i1NoOfCourses;

private
private
private
private
private
private
private
private

int iActualWorklo

private Vector vTALinks
int
int
int
int
int
int
int
int
int

tinal
final
final
final
final
final
final
final
final

static
static
static
static
static
static
static
static
static

public
public
public
public
public
public
public
public
public

Instructor(){
iDBIndex -1;

public
this.
}

public Instructor(int
AssignedWorkload, String
this.iDBIndex
this.sName
this.iNoOfCourses
this.iAssignedWorkload
this.sExperience

1;

ad

int iAcutalNoOfCourse
int iActualCoordination

int iAssignedWorkload;
String sExperience =null;

0;

0;
=O;

new Vector{):

DBINDEX

NAME

NOOFCOURSE
ASSIGNEDWORKLOAD
EXPERIENCE
ACTUALWORKLOAD
EXPECTEDWORKLOAD
ACTUALCOORDINATIONS

SN s WwNH O

TR TR TR TR TR Y

]

~J

ACTUALCOURSES= 8;

DBIndex, String Name, int
Experience) {

NoOfCourses, int

DBIndex;
Name;

= NoOfCourses;

AssignedWorkload;
(Experience==null?"":Experience);

84

}

public void addTALink(TeachingAssignment TALink) {
vTALinks.addElement (TALink);
if (TALink.getSection().isCoordination()) {
iActualWorkload += 1;
iActualCoordination++;
lelse{
iActualWorkload += 3;
iAcutalNoOfCourse++;

}

public void removeTALink(TeachingAssignment TALink) {
vTALinks.remove (TALink);
if (TALink.getSection().isCoordination()){

iActualWorkload -= 1;

iActualCoordination--;
lelse(

iActualWorkload -= 3;

iAcutalNoOfCourse--;

}

public Vector getAllTALinks()({
return vTALinks;

}

/ih

* used by Instructor Model

*/

public String get(int Col){
String sRet = null;

switch(Col) {

case 0: //NAME:
sRet = new String(this.sName);
break;

case 1l: //NOOFCOURSE
sRet = String.valueOf(this.iNoOfCourses);
break;

case 2: //ASSIGNEDWORKLOAD
sRet = String.valueOf{this.iAssignedWorkload):
break;

case 3: //ACTUALWORKLOAD
sRet = String.valueOf({this.iActualWorkload);
break;

default:
sRet = "";

}

return sRet;

85

public void setDBIndex(int iDBIndex) {
this.ibDBIndex = iDBIndex;
}

public int getDBIndex(){
return this.iDBIndex;

}

//implementation of TableRowObjectInterface
public int getCourseDBIndex () {

return -1;
}

public boolean isDuplication{int iDBIndex, String sName) {
return this.iDBIndex !'= iDBIndex &&
this.sName.equalsIgnoreCase (sName) ;
}

public String getTASelectionTableString(int col){
String sRet = "";
switch(col) {
case O:
sRet = this.getInstructorName();
break;
case 1:
// sRet = this.getExperiencel();
sRet = String.valueOf (iAssignedWorkload - iActualWorkload):
break;
}

return sRet;
}

public String getInstructorName () {
return this.sName;
}

public void setInstructorName (String sName) {
this.sName = sName;

}

public int getObjectType ()} {
return TableRowCbjectInterface.INSTRUCTOR;

}

public boolean isAssigned() {
return false;//isComplete(}:

}

public boolean isComplete() {
return (iActualWorkload >= iAssignedWorkload):;

}

public void setExperience(String sExperience) {
this.sExperience = sExperience;

86

}

public String getExperience() {
return this.sExperience;

}

/**
* invoked by instructor model to get the value of actual workload
*/

public int getActualWorkload() {
return this.iActualWorkload;

}

public void setAssignedWorkload(int iWorkload) {
this.iAssignedWorkload = iWorkload;
}

public int getAssignedWorkload() {
return this.iAssignedWorkload;

}

public void setAssignedNoOfCourse(int iNoOfCourses){
this.iNoOfCourses = iNoOfCourses;
}

public int getAssignedNoCfCourse{) {
return this.iNoOfCourses;

}

public int getActualNoOfCourse () {
return this.iAcutalNoOfCourse;

}

public String getTAInfo()(
String sInfo = "Expect Workload: "+
String.valueOf (iAssignedWorkload -
iActualWorkload) +
ll\n" +
"Experience: \n"+
sExperience +
"\n";

return sInfo;
}

public String getAllInfo{(){

String sAllInfo = "Actual Workload: " +
String.valueOf (this.iActualWorkload) +
"\n" +

"Assinged Workload: " +
String.valueOf (this.iAssignedWorkload) +
l'\n\n";

87

String sCoordination = "Coordination: --
"+String.valueOf (this.iActualCoordination)+" Course(s)\n";
String sSection = "Instruction: --
"+String.valueOf (this.iAcutalNoOfCourse)+" Section{s)\n";

//add coordination/section info
for(int i=0;i<this.vTALinks.size();i++){

TeachingAssignment ta = {(TeachingAssignment)vTALinks.get(i};
Section section = ta.getSection();
if (section.isCoordination())}{

sCoordination += section.getCourse().getFullCode(}+": "+
section.getCourse().getTitle()+"\n";
lelse(
sSection += section.getCourse{).getFullCode(}+": "+
section.getCourse().getTitle(})+"\nSection:
"4
+ " "

section.getTitle () *

secticn.getTimelInfo(}.trim()+"\n\n";

}

if (this.iActualCoordination >0) sAlllInfo += sCoordination -r
"\n\n";
if (this.iAcutalNoOfCourse > 0) sAllinfo += sSection ;

return sAllInfo;

88

e Class Instructor List

package cstap;

import java.util.Vector;
import java.sql.ResultSet;
import java.sql.SQLException;

/#0
* Title: Teaching Assignment Planner
* Description:
¢ Copyright: Copyright (c) 2001
+* Company: Concordia University
* QRauthor Hui YING
* @version 1.0
c/

public class InstructorList extends Vector|
private static final String sLoadingSQL = "select * from

Instructor order by Name";

private int iTotallnstructor

private int iCompletelnstructor

private DBHandler db null;

public InstructorList (DBHandler
this.db db;
}

public void load() {

ResultSet rs
try{

//Get all the rows.

while (rs.next()) {

db.executeQu

//get columns in DB,
not from 0!

int DBIndex

String Name

int NoOfCourses
rs.getInt (Instructor .NOOFCOURSE+1

int AssignedWorkload

0;
o.

’

db) |

ery(sLoadingSQL) ;

in ResultSet the first column is 1

rs.getInt {Instructor.DBINDEX+1)
rs.getString(Instructor .NAME+1)

’
’

)z

rs.getInt (Instructor .ASSIGNEDWORKLOAD+1) ;

String Experience

rs.getString(Instructor.EXPERIENCE+1);

//int ActualWorkload

0;//rs.getlInt (Instructor.ACTUALWORKLOAD+1) ;

Instructor newlnstructor

new

89

Instructor (DBIndex, Name, NoOfCourses,

AssignedWorkload,Experience);//,ActualWorkload);
this.addElement (newInstructor);
}
}catch (SQLException e){
System.err.println(e.getMessage()};
}
}

public boolean addInstructor{Instructor newlnstructor){
boolean bRet = false;

//insert to db
String sInsertSQL = null;

sInsertSQL = "INSERT INTO InstRuctor{[(Name],
NumberofCourses, AssignedWorkload,Experience)” +
" VALUES ('" +
newlnstructor.getinstructorName(} + "',"
String.valueOf (rewlnstructor.getAssignedNoOfCourse()) + ",

String.valueOf (newInstructor.getAssignedWorkload(})) + ",
+ newlnstructor.getExperience()

"l)";
// System.err.println(sInsertSQL);

if (db.executeUpdate(sInsertSQL)) {
//get back DBlIndex
String sSQL = "SELECT MAX(Index) from Instructor ";
ResultSet rs = db.executeQuery(sSQL);

if (rs == null) return false;

try(
rs.next();
newlnstructor.setDBIindex(rs.getlInt(1l));

//add to InstructorList
this.addElement (newInstructor);

bRet = true;
}catch (SQLException e){
System.err.println{e.getMessage());
}
}

return bRet;

}

public boolean modifyInstructor(Instructor newlnstructor){
//update DB
String sUpdateSQL = "UPDATE Instructor SET " +

90

” [Name] = L +

newInstructor.getInstructorName(} + "', " +
" NumberofCourses = " +
String.valueOf (newInstructor.getAssignedNoOfCcourse(})) + ", " +
" AssignedWcrkload = " +
String.valueOf (newInstructor.getAssignedWorkload(}}) + "," +
" Experience = '" +

LU) +

newlnstructor.getExperience() +
" WHERE Index = " +

String.valueOf (newInstructor.getDBIndex ()}’

// System.err.println(sUpdateSQL);
return db.executeUpdate (sUpdateSQL);

}

public void removelnstructor(Instructor instructor) {

//update DB
String sDelSQL = "DELETE * FROM Instructor WHERE Index = " +

String.valueOf (instructor.getDBIndex{)};

if (db.executeUpdate({sDelSQL}} {
this.remove(instructor);

}

public boolean hasDuplication{int iDBIndex, String sName){
for{int 1i=0;i<size();i++){
Instructor inst = {Instructor)get(i);
if (inst.isDuplication(iDBIndex, sName)) return true;

}

return false;
}

/ﬁ*tﬁittbtiﬁ&t'ﬁtﬁﬁbﬁ*ﬁ"tihﬁﬁtﬁt&btft'iﬁtﬁtbitttttttt&i&*f*'tﬁﬁﬁ

* for initialize TA Links

*t**fﬁt*tttﬁ*tk*tﬁ&'*ttiiﬁbtﬁtithttttf*ﬁﬁitt*tﬁtttti*ttbk#&bﬁit/
public Instructor getlnstructorByDBIndex(int InstructorDBIndex) {
for (int 1=0;i<this.size();i++){
Instructor tmpl = (Instructor)get{i);
if (tmpI.getDBIndex()==InstructorDBIndex) {

return tmpl;

t
}

return null;

/i*iki**ﬁ**#tr*k*i*-’r*i**ifi*****b*tt*ﬁﬁ**iﬁﬁ*&**bttii**ti**itﬁ&iﬁﬁ&i

* Caculate Summary Information

*****i*'****kﬁ**i**‘rtt***it******ﬁ***t**i*t*i*ﬁ**t*ﬁ***i*iii&i**it*/

public int getAssingedInstructorNo () {
iCompletelnstructor = 0;

91

for (int i=0;i<this.size();i++){

Instructor instructor = {Instructor)get(i);

if {(instructor.isComplete()) iCompletelnstructor++;
}

return this.iCompletelnstructor;

}

public int getTotallInstructorNo() {
return this.size(};

}

e Class DB Handler

package cstap;

/&t

* Title: Teaching Assignment Planner
* Description:

* Copyright: Copyright (c) 2001

* Company: Concordia University

+* @author Huli YING

* @version 1.0

*/
import java.lang.*;
import java.util.Vector;
import ijava.sgl.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.table.*;
import java.util.Hashtable;

public class DBHandler ({

Connection conn;

Statement stmt;

ResultSet rs;
ResultSetMetaData metaData;

public DBHandler () |

String driverClass="sun.jdbc.odbc.JdbcOdbcDriver”;
String url="jdbc:odbc:TAPDB";

String username="admin";

String password="admin";

try f
Class.forName (driverClass});
conn=DriverManager.getConnection(url,username, password);
stmt = conn.createStatement();

}
catch (Exception ex)

{
System.err.println{"Cannot get connection " +

ex.getMessage ()):

t

93

public boolean executeUpdate(String query) {
boolean bRet = false;

if (conn==null || stmt==null) {
System.err.println("There is no database to excute the
query."):
return bRet;

}

try |
int iRet =stmt.executeUpdate(query):;
if (iRet>0) bRet = true;

}catch(SQLException ex) (
System.err.println(ex);
}

return bRet;

}

public ResultSet executeQuery(String sQuery}) {
ResultSet rs = null;

if (conn==nuil |} stmt==null) {

System.err.println{"There is no database to excute the
query.");

return null;

}

try {
rs = stmt.executeQuery{sQuerv);
}catch{SQLException ex) {
System.err.println(ex);

}

return rs;

}

public void close() throws SQLException {
System.out.println("Closing db connection”);
rs.close();
stmt.close();
conn.close();

}

protected void finalize() throws Throwable ({
close():
super.finalize();

94

