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Abstract

Classification of Magnetic Resonance (MR) images of the human brain into anatomi-
cally meaningful tissue labels is an important processing step in many research and clinical
studies in neurology. The medical imaging research community is presented with a wide
choice of classification algorithms from artificial intelligence and pattern recognition. This
thesis describes the development of a controlled test environment, where different classifi-
cation algorithms were implemented and their performance evaluated in a brain imaging

context.

Furthermore, a mechanism for automating supervised classification algorithms is pro-
posed through the use of a prior: knowledge of neuro-anatomy, presented in the form
of brain tissue probability maps. The results obtained through the automated methods

compared favorably to those obtained through human supervision.

The performance of five supervised (Artificial Neural Networks, Bayesian, k-Nearest
Neighbors, C4.5 decision tree, Minimum Distance) and two unsupervised (Hard C Means,
Fuzzy C Means) classification algorithms is compared under varying conditions of MR
imaging artifacts. The Artificial Neural Networks classifier was observed to be the best

overall performer.
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Résumé

La classification d’ images obtenues par Ientremise de I'Imagerie par Résonance
Magnétique (IRM) du cerveau humain est une étape importante en recherche de base
et clinique en neurologie. Une grande variété d’algorithmes de classification basés sur
I'intelligence artificielle et reconnaissance de forme sont offerts & la communauté scien-
tifique en imagerie médicale. Cette theése décrit le développement d’un environnement
controlé pour comparer la performance des différents algorithmes de classification dans

un contexte d’imagerie cérébrale.

Un mécanisme est proposé pour automatiser les algorithmes supervisés par |'utilisation
d’une connaissance a priori de I’anatomie cérébrale, sous forme de modsle de probabilité.
Les résultats obtenus avec ces méthodes automatisées se comparent favorablement a ceux

obtenus sous supervision humaine.

Les performances de cinq méthodes supervisées (Réseaux de Neurones Artificiels,
Bayesien, k-Plus-Proche Voisins, C4.5 Arbre de décision, and Distance Minimale) et de
deux méthodes non-supervisées (“Hard C Means”, “Fuzzy C Means”) sont comparées dans
des conditions de qualité d'images IRM variables. La méthode de Réseaux de Neurones

Artificiels s’est montrée la plus performante.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging technology that provides anatom-
ical, diagnostic and functional in vivo information about the human body in a non-invasive
manner. MRI has been useful in the field of neurology, especially in imaging the brain
and the spinal cord, where its unparalleled soft tissue contrast has been instrumental in
providing information about brain structure both in diagnosis and in a wide variety of

research and clinical studies.

1.1 What is tissue classification?

MR images of the brain are acquired in a three dimensional (3D) volumetric data set,
where each brain image volume is a stack of two dimensional (2D) slices, and each slice is
a set of picture elements or pixels (called voxels in 3D), of image intensities representing
underlying anatomy. The process by which an image is delineated into distinct regions
is known as segmentation, and the assignment of anatomically meaningful labels to
each region is known as classification. Often in MR image processing literature, these
terms have been used interchangeably. In this thesis, the term classification will mean
the process of assigning each voxel in a brain image volume to one of three major tissue

types in a healthy brain: gray matter (GM), white matter (WM), and cerebro-spinal fluid



(CSF). The latter is a fluid that surrounds the brain, and fills the ventricles, which are

cavities deep inside brain structures [Carpenter, 1985].

Although the cerebro-spinal fluid is not a tissue type, it is considered a constituent of
the brain. Normally, an image volume covering an entire head, contains more tissue types
than mentioned above. These include muscle, fat, skin, skull and other connective tissues.
Moreover, large areas in an image volume contain air, especially outside the head and in
the sinuses. Since air and the above mentioned tissue types fall outside the brain, they
are masked out in pre-processing stages that will be further described in coming chapters.

Figure 1.1 shows a sample MR image, with the corresponding classified image.

Figure 1.1: a) A sample MR image, b) corresponding classified MR image.

In the case where pathologic brains need to be considered, respective diseased tissues,
such as lesions and tumors, could be identified and added to the above tissue types. Since
this thesis will be dealing with only healthy brain volumes, the tissue types being consid-
ered will be limited to CSF, GM, and WM. Whenever voxels in the brain volume cannot

be assigned to any of the 3 mentioned classes, they will be labeled as the background



(BCK).

1.2 Importance of tissue classification

Classification of brain image volumes into their constituent tissue classes is a necessary
step in many brain-research areas. The calculation of specific tissue volume in particular,
and brain size in general, is part of basic and clinical neuroscience research. For example,

classification is used to:

Quantify brain atrophy, which is a reduction in gray matter volume in certain types

of patients; where it is necessary to calculate gray matter volume in the temporal
lobes, [Jack et al., 1988; Jack et al., 1990: Cendes et al., 1993; Lee et al., 1995;
Kabani et al., 1996].

e Help with the evaluation of certain diseases like Multiple Sclerosis [Kamber et al.,

1992; Kamber et al., 1995].
e Evaluate effects of drug therapy on lesion or tumor load [Cline et al., 1987].

e Build tissue (healthy or otherwise) probability maps [Evans et al., 1994; Kamber
et al., 1995].

e Generate phantoms for MRI and Positron Emission Tomography (PET) simulation

studies [Ma et al., 1993; Rousset et al., 1993; Kwan et al., 1996].

Classification is also an important pre-processing step in validating the registration of
multi-spectral and multi-modal brain volumes [Neelin et al., 1993]. For all these applica-

tions, it is vital that the classification process be accurate, reliable and reproducible.

The field of pattern recognition has provided the research community with numerous
classification algorithms. Most of these require user intervention (supervised classifiers),

while others function autonomously (unsupervised classifiers), each algorithm having its



respective advantages and disadvantages. The automation of the classification process
eliminates the need for user intervention, making it more reproducible. This thesis de-
scribes a mechanism for automating classification algorithms in a brain imaging context,
and quantitatively evaluates their comparative performance under varying conditions of

image degradation.

1.3 Issues facing tissue classification

There is a large amount of literature in the field of MR image classification and Chapter 3
provides an extensive literature review. However, it is important to mention that there
are a number of problems facing medical image processing in general and brain tissue
classification in particular. This thesis addresses some of the issues introduced below in

greater detail in the coming chapters.

1.3.1 Variable image intensities

MR imaging produces different levels of contrast when using different MR scanners or
the same MR scanner at different times, affecting the quality of the acquired images.
Intra-subject (within the same brain volume) intensity normalization is needed to obtain
consistent classification results across brain slices. Inter-subject (between different brain
volumes) intensity normalization is required when standardized intensity values need to

be used.

1.3.2 Subject or patient motion

MRI is a multi-spectral imaging technology (Section 2.3) that can provide images with
different contrasts of the same underlying anatomy, thereby increasing the discriminating
power of tissue classification algorithms. To obtain these multi-spectral images, subjects

are scanned with different imaging parameters. Motion artifacts are therefore introduced,



causing mis-alignment of images. In order to fully exploit the discriminating information

provided by the multi-spectral images, these motion artifacts need to be eliminated.

1.3.3 Image degradation due to noise

All current MR scanners have numerous deficiencies that affect image quality in a variety
of ways (Section 2.4). Noise in MR images results primarily from two sources: 1) due
to magnetic field inhomogeneities of the MR scanner and thermal fluctuations in the
electronic circuitry of the imaging hardware, and 2) imaging parameters like acquisition
time, total scan time and spatial resolution [Nishimura, 1993]. Chapter 2 discusses the

principles of MR imaging and the sources of image degradation.

1.3.4 Radio-Frequency (RF) inhomogeneity

Imperfections in the imaging hardware like the receiver and gradient coils (Section 2.2.2)
results in local variations in intensity of similar tissue types across different parts of the
brain. For example, white matter tissue appears much brighter in the anterior part of the
brain than it does in the posterior part. Since algorithms rely on intensity information to
classify unknown voxels, variations in intensity impede accurate classification as discussed

in greater detail in Section 2.4.2.

1.3.5 Partial volume effect

Owing to the finite resolution of the MR scanner, signals from different adjacent tissue
types are mixed together in a single voxel. This results in blurred boundaries between the
tissues, reducing the accuracy of the classification algorithms. For example, an algorithm
may incorrectly classify a voxel as gray matter, when in fact the signal intensities from
both cerebro-spinal fluid and white matter tissue types are mixed together to produce a

voxel intensity similar to that of gray matter.
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1.3.6 Neuro-anatomical variability

Classification algorithms need training samples, which are examples of a specific tissue’s
MRI intensity obtained from representative voxels in each tissue. Traditionally, these
training samples are provided manually by experts and are specific to individual brains.
Since it may be necessary to classify a large number of brain volumes, manual training
sample selection becomes a tedious and time consuming task. Because of neuro-anatomical
variability (caused by individuals having different sized and shaped brains), image inten-
sity and quality variations, automating this training becomes a difficult process. This
thesis describes a model-based approach to automate tissue classification, which takes

into consideration neuro-anatomical variability in a probabilistic sense (Chapter 4).

1.3.7 Manual classification

Numerous studies seek to establish statistical significance in testing certain hypotheses by
processing a very large number of brain volumes. Manual tissue classification by neuro-
anatomists is a tedious, difficult, time consuming, subjective and not very reproducible
task because of degradation in image quality. Furthermore, poor eye-hand coordina-
tion, fatigue and less than optimal man-machine interface (e.g. mouse-driven operation)
makes it impractical to resort to manual means to achieve accuracy, reliability and repro-
ducibility. This thesis describes the development of a completely automated classification

process that provides accurate, reliable and consistent results without the need for human

intervention.

1.3.8 Quantitative vs qualitative validation

In order to compare the performance of different classifiers, numerous researchers rely on
qualitative expert opinion as a validation mechanism. However, such visual assessment
lacks the objectivity of quantitative methods needed to perform critical assessment of

different algorithms. Validation methods will be discussed in greater detail in Chapter 3.



1.3.9 Wide choice of classification algorithms

Extensive pattern recognition and image processing literature exists in the field of medical
imaging in general, and in MR imaging in particular. As research advances are made,
more sophisticated algorithms become available, which raises the question of optimal
functionality (which one is better?). Chapter 3 presents a more detailed literature review
of current medical imaging research and describes the classifiers implemented in this thesis,

pointing to their strengths and weaknesses.

1.4 Objectives and scope of the thesis

Problem : Since there are numerous issues facing tissue classification and a wide choice
of classification algorithms, it is necessary to understand how the varying conditions of
some of the above mentioned MR imaging parameters affect the performance of different
classifiers: which parameters, and under what conditions, are least affected and perform
optimally, and which ones are most affected and perform less optimally. Moreover, the
need to classify a large number of brain volumes requires automation of the training

sample selection process, while ensuring results similar to those obtained through expert

manual training.

1.4.1 Objectives

The above requirements lead to the following specific objectives:
e Create a versatile evaluation environment (black box), where different classifiers can
be incorporated and interchanged easily.

e Create tissue probability maps to automate the training sample selection process

and provide a priori 3D spatial information to certain classifiers.



e create a controlled environment using an MRI simulator (Section 5.3.5), where sys-
tematic search can be conducted to investigate the issues facing tissue classification

(Section 1.3).

e Systematically compare the performance of the following classifiers: Minimum Dis-
tance, Bayesian, k-Nearest Neighbors, Artificial Neural Networks, C4.5 decision tree,

Hard C-Means and Fuzzy C-Means.

¢ Provide an answer to the question “which of the above mentioned classifiers performs
best?”

The scope of this thesis will be limited to the following constraints:

e Deal only with the principal tissue classes in a normal brain volume: gray matter,
white matter and cerebro-spinal fluid.

e Limit the MR search parameters to Noise and RF inhomogeneity

e Limit the search space of voxel resolution (partial volume) to slice thickness, i.e. all

2D images have the same pixel dimensions (181x217).

1.4.2 Desirable characteristics of the classification environment

e The training and classification method should be accurate, reproducible, reliable,

simple to use, and require no user-interaction.

e The method should be modular, where each section of the classification process can

be improved independently.

¢ The classification environment should be versatile enough to incorporate new clas-

sifiers with simplicity and ease.

¢ The method should operate in Standard Brain Space, where tissue probability maps

can be used to automate the classification process.



e The method should have an unbiased objective validation scheme to verify the clas-

sification results.

e The method should be general, allowing for the seamless inclusion of additional

features from other imaging modalities like PET and Computed Tomography (CT).

1.5 Thesis overview

Chapter 2 introduces the principles of Magnetic Resonance Imaging, and the sources of
MR image degradation (artifacts). Chapter 3 then presents the classifier methodologies
and surveys current literature about brain tissue segmentation from a large number of
researchers in this field, emphasizing and explaining the theoretical basis of classifiers
tested in this thesis. Brain tissue probability maps and the automation of training samples
selection are discussed in Chapter 4. Chapter 5 examines the issues of validating classified
MRI volumes. Chapter 6 describes the motivation and the creation of the Simulated
Brain Database. Experimental results and discussion are presented in Chapter 7. Finally,

concluding remarks and future work in this field are given in Chapter 8.



Chapter 2

Magnetic Resonance Imaging

2.1 Introduction

Since the discovery of X-rays by Roentgen in 1895, there have been significant devel-
opments in medical imaging technologies which permit the visualization of the interior
of the human body without the need for surgical intervention. Today, medical imaging
methodologies such as X-ray, Computed Tomography, Positron Emission Tomography,
and Magnetic Resonance Imaging provide images of the interior of human body from
both anatomical and metabolic perspectives. Because of its flexibility in measuring a
wide range of physical parameters, MRI has played an important role in imaging the
human body, especially the central nervous system, where its spatial resolution, supe-
rior soft tissue contrast and anatomical detail has placed it at the forefront of available
imaging modalities. This chapter will review the basic physics of MRI, emphasizing its
multi-spectral nature. Thereafter, it will briefly discuss sources of MR image quality
degradation (artifacts), and show sample MR images of different modalities that have

been used for this thesis.
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2.2 Principles of MRI

2.2.1 Basic theory

Atomic nuclei with an odd number of protons and /or neutrons possess nuclear momentum.
These charged nuclei, which in the MRI literature are referred to as spins, have small
magnetic moments. Magnetic resonance imaging involves the manipulation of these spins
under the influence of several different externally applied magnetic fields [Nishimura, 1993;

Philips, 1984].

Since biological tissues are rich in water, the hydrogen atom (in the water molecules)
with its single proton, is the body’s most abundant nuclide, and hence makes an excellent
candidate for MR imaging. In this section, the physical phenomenon upon which MRI is
based, will be briefly described. For more in depth discussion, other texts by [Nishimura,

1993; Sprawls, 1992; Plewes and Bishop, 1992; Allen, 1992| should be consulted.

In the absence of any external magnetic field, the hydrogen atoms are oriented ran-
domly with a net magnetic moment of zero magnitude (Figure 2.1a). When placed in a
strong 1.5 Tesla (Tesla = 10000 Gauss) static magnetic field, denoted By, two effects arise

immediately:

e Two groups of spins arise. The first group aligns itself in a parallel direction as the
static magnetic field By, and the second aligns itself in an anti-parallel direction.
The ratio between the first and second groups is temperature dependent, and after
equilibrium is reached, is usually 0.999993. The excess of nuclei in the first group
will produce a net magnetization, M, oriented in the same direction as the main

field (Figure 2.1b).

e The spins precess at a well-defined frequency called the Larmor Frequency w

(Figure 2.2) defined as:

11



(a) (b)
Figure 2.1: (a) Thermal equilibrium resulting in zero net magnetization, (b) Net magne-

tization resulting from the influence of a static field B,.

w = 7By (2.1)

where v, the gyro-magnetic ratio, is dependent on the tvpe of nuclei. For example, in a
1.0 Tesla magnetic field, hydrogen nuclei have a Larmor frequency of 42.6 MHz, and at

1.5 Tesla the Larmor frequency becomes 63.9 MHz.

An analogy can be made between the Larmor frequency of specific nuclei and identical
tuning forks. When a pair of identical tuning forks are placed side by side, and when the
first tuning fork is struck, the vibrations produced make the second fork vibrate at the
frequency of the first. Similarly, when a pulse of electro magnetic radiation at the Larmor
frequency (typically in the radio frequency range) is imparted to a collection of nuclei
in equilibrium in a strong magnetic field, they absorb this energy. Depending on the

orientation and the duration of the Radio Frequency (RF) pulse, the nuclei deviate from

12



Figure 2.2: Precession of nuclei at Larmor frequencies when excited out of equilibrium.

their equilibrium state (Figure 2.3a). As soon as the energy pulse stops, the nuclei start
to relax and reach their original equilibrium state, while emitting RF energy at the same
frequency that it was absorbed (Figure 2.3b). Measuring this signal at each specific
location in a regular pattern and reconstructing the data into an image is the principle

behind Magnetic Resonance Imaging, as detailed below.

2.2.2 Imaging hardware

Figure 2.4 shows the block diagram of an MR imaging system. It consists primarily of
a large super-conducting magnet (cooled to 4° Kelvin to eliminate electrical resistance},
which is used to impose a strong and uniform main magnetic field B,. Also, in order to

deliver RF energy pulses and measure the emitted signal, RF transmission and reception
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Figure2.3: (a) RF energy pulse tilting nuclei out of equilibrium, ( b) Tilted nuclei returning
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to equilibrium, emitting RF signals in the process.

coils are used, which in some cases are the same set of coils. After the coils transmit an
RF energy pulse by delivering voltage through the RF amplifiers, they switch to receiving
mode and act as antennae to measure the electro magnetic signal emitted by the nuclei

under study.

Since RF coils encompass the entire region of interest, it is not usually possible to
differentiate signals from different spatial locations. In order to spatially encode RF
signals, linear gradient fields in all three orthogonal axes G,, Gy, G are applied in addition
to the main magnetic field By, so that the frequency of the spins become a function
of location in z,y,z (remember Larmor frequency is dependent on the strength of the
main magnetic field as shown in Equation 2.1), thus continuous variations in the applied
field, generated by the z,y, z gradient fields, provide the necessary spatial encoding. The
gradient fields are created through a set of gradient coils and amplifiers. These subsystems

are connected to several computer systems that control events in the imaging sequence,
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Figure 2.4: Block diagram showing the main components of an MR imaging system.

acquire and process data and, finally, display results. Figure 2.5a shows a photo of an
MR scanner and its control console, and Figure 2.5b shows a patient being prepared for

a scan.

2.2.3 Equilibrium, excitation, and relaxation

At any time, the net magnetization vector M can be decomposed into two component
vectors, M. in the direction of the main magnetic field, also known as the longitudinal
component, and M, in the plane perpendicular to the main magnetic field, also known
as the transverse component (Figure 2.6). It is important to note that in an equilibrium
state, the magnetization vector M, has no transverse component M,,, and the magnitude

of M is the same as M, (Figure 2.7).

By delivering an RF pulse at the proper Larmor frequency, this magnetization vector
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(a) (b)
Figure 2.5: (a) Photograph of an MR scanner (b) Patient being prepared for a scan.

M can be tilted away from equilibrium. The degree of tilt depends on the intensity and
duration of the RF pulse. The spins are said to be excited out of their equilibrium state.
In effect, the transverse magnetization My, increases in magnitude, and starts precessing
around the main magnetic field By, while the longitudinal magnetization M, decreases in
magnitude. After the RF pulse stops, the excited nuclei return to their equilibrium state.
This process is known as relazation during which they emit electro-magnetic radiation,

which is the source of the MR signal, recorded through the RF receiver coils.

The longitudinal magnetization vector M. returns to its equilibrium state at an ex-
ponentially decreasing rate to assume its original value M. The time it takes to reach
equilibrium is known as the Longitudinal Relazation Time Ti, depicted in Figure 2.8. On
the other hand, the transverse magnetization vector M, decays exponentially due to in-
teractions among spins, to reach equilibrium value of zero in a much shorter time period.
The time it takes for M., to decay completely is known as the Transverse Relazation
Time T, depicted in Figure 2.9. The longitudinal and transverse relaxation times are

shown graphically in Figure 2.10. The values of these relaxation times T, and T, depend
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Figure 2.6: Diagram showing longitudinal (M) and transverse (M) vector components

of net magnetization vector M.

on molecular structures of the substances being imaged and their physical states (solid or
liquid). For example, T} in biological tissue ranges from 50 milliseconds to a few seconds;
it is shorter in liquids than in solids. 7, time is in the range of 40 milliseconds to one sec-
ond; it is much shorter in solids (microseconds) than in liquids (milliseconds). Therefore
different tissue components having distinct molecular structures and composition will, in
effect, have different relaxation times, thus making it possible to distinguish them using

MRI.

2.3 Multi-spectral nature of MRI

As mentioned earlier, to measure MR signals, nuclei are excited out of equilibrium through
a sequence of RF pulses of varying intensity and duration. As they return to their equi-
librium state, they emit an RF signal, which is the measured MR signal. This sequence

of events (equilibrium, excitation and measurement), is repeated several times to resolve
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Figure 2.7: Diagram showing no transverse component of net magnetization vector M in

magnetic equilibrium.

different parts of the brain volume and to increase the Signal to Noise Ratio (SNR) in the

presence of random noise.

Different types of RF pulses can tilt the magnetization vector M by different angles
and different directions. The degree of tilt depends on the duration of the RF pulse, and
can be set to any arbitrary value. For example, an RF pulse that tilts the magnetization
vector by 90 degrees is known as a 90° pulse. The interval at which a sequence of RF
pulses is repeated is known as the Repetition Time (TR), and the time at which MR
signals are measured relative to the start of the sequence is known the Echo Time (TE).
By using various tilt angles (commonly referred to as flip angles) in sequence at specific
TE and TR values, numerous pulse sequences can be designed to maximize the contrast
between different tissues. Figure 2.11 shows a schematic representation of TE and TR in

one such pulse sequence frequently used in MR imaging.

Since contrast between different tissues in an MR image is due to the difference in

their tissue specific parameters (like T} and T5), the relative “weight” of these parameters
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Figure 2.8: Diagram showing sequence of dotted vectors, representing stages of longitu-

dinal relaxation.

is controlled with different pulse sequences. These sequences will produce 7} — or T2—
weighted images, indicating that the tissue contrast in the image is mainly due to T}
or T, tissue parameters respectively, since signal intensity is rarely due to one tissue
parameter [McVeigh and Atalar, 1992]. This makes MR imaging multi-spectral in nature,
where several different gray-scale images, of the same underlying anatomy, are obtained

by different imaging sequences.

2.4 Sources of MR image degradation

All current MR imaging systems have shortcomings that result in image degradation in
one form or another. In this thesis, the three main sources of image degradation (artifacts)

will be considered: image noise, RF inhomogeneity and partial volume.
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Figure 2.9: Sequence of diagrams showing stages of transverse relaxation.
2.4.1 Image noise

The noise in MR images stems from several sources. One source is thermal fluctuations
in the electronic circuitry of the imaging hardware. It contributes to variations in the
signal being measured. Also, thermal activity within the tissue appearing as random RF
energy contributes to the signal of the body being imaged, thus producing variations in
voxel intensities. The main source of noise in MR is Gaussian distributed and additive
[Nishimura, 1993]. The constant presence of noise is one of the limitations on MR image

quality.

2.4.2 Radio-Frequency inhomogeneity

Owing to design imperfections in the RF coil, the pulses applied to excite the spins out
of their equilibrium may not be uniform across the entire field of view of the ob ject being
imaged. Non-uniformity also results from subject induced field variations [Simmons et al.,
1994]. These inhomogeneities ultimately result in variations of intensity of similar tissue
types across the field of view of the volume. Thus, a particular tissue appears brighter in
some locations and darker in others and this variation can be modeled as a slowly-varying
multiplicative field. Although slowly-varying intensity changes do not influence image

analysis by inspection, they may pose drawbacks on automated image analysis.
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Figure 2.10: Graphic representation of longitudinal and transverse relaxation. My is the

magnetization at equilibrium.
2.4.3 Partial volume effect

Image voxels represent discrete tissue samples that are being imaged by an MR system.
The size of the voxel determines the resolution of the MR image. The smaller the voxel,
the higher the resolution of the acquired image, thus providing greater anatomical detail
at a cost of longer acquisition time. There are practical limitations to the size of the
voxels that can be imaged in an MR system. Furthermore, owing to the mix of different
cellular densities at a microscopic level, the transition from gray matter to white matter

tissue types is smooth and gradual, rather than abrupt.

Partial volume refers to the situation where, depending on the size of the voxels, more
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Figure 2.11: Diagram showing flip angles, repetition time (TR), and echo time (TE) of a

typical MR imaging pulse sequence.

than one tissue type are mixed together in a single voxel, the intensity of which is a mix of
the different tissue types. [t is common practice in clinical settings to acquire image slices
ranging in thickness over several millimeters. Increasing slice thickness effectively increases
the voxel size (in one dimension), thus decreasing resolution and creating partial volume

effects. The extent of this partial volume is directly proportional to the slice thickness.

2.5 Sample images

In this thesis, three different MR imaging modalities will be used as multi-spectral features
in tissue classification. These are T)-weighted images, T>-weighted images and Proton
Density (PD) weighted images, which reflect the amount of nuclei present in the body
being imaged. All the images were acquired on a Philips Gyroscan ACS II scanner with

a 1.5 Tesla super-conducting magnet.

Figure 2.12a shows an example of T}-weighted image, where TE and TR values were
10 and 18 milliseconds respectively, and the flip angle was 30°. Figures 2.12b 2.12¢ are
examples of dual-echo (TE values of 35 and 120 milliseconds) PD- and T5-weighted images

respectively, acquired at a TR value of 3300 milliseconds and flip angle of 90°.
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(a) (b) (c)
Figure 2.12: (a) Sample T}-weighted image acquired at TE of 10ms, TR. of 18ms, and flip
angle of 30° (2) Sample P D-weighted image acquired at TE of 35ms, TR of 3300ms, and
Hip angle of 90° (3) Sample T5-weighted image acquired at TE of 120ms, TR of 3300ms,
and flip angle of 90°.

2.6 Concluding remarks

Understanding the basic physics of MR imaging, plays an Important role in appreciating
the fexibility it provides for producing multi-spectral images. This is especially true for
brain tissue classification, where new pulse sequences designed to produce different tissue
contrasts could be used to add to the feature dimensionality of the images being classified,
thus potentially augmenting the discriminating power of the classification algorithms to

detect healthy and pathological tissue types for basic and clinical research.
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Chapter 3

Review of Classifier Theory

3.1 Introduction

This chapter reviews some of the research carried out in MR image processing and pattern
recognition, giving a survey of different classification techniques used in MRI. Emphasis is
placed on classifiers implemented and tested in this thesis, explaining the general principle
and theory behind each one, followed by a literature survey of other work that relies on

these classifiers.

3.2 Literature survey

There is a large body of information already published in the area of image classification
in MRI, especially of the central nervous system. Considerable effort has been put in ex-
amining different classification techniques in normal and pathological cases, and extensive
comparative studies have been carried out by several researchers [Hall et al., 1992; Clarke
et al., 1992; Clarke et al., 1993; Clarke et al., 1995; Vaidyanathan et al., 1995]. Since it
is beyond the scope of this thesis to do an all encompassing survey of MR image classi-

fication techniques, the primary focus of this review chapter will be limited to classifiers
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implemented in this thesis. For a comprehensive coverage, the reader is referred to other

critical review papers [Zijdenbos and Dawant, 1994; Clarke et al., 1995].

In order to classify MR images, a certain number of “features” representing anatomy
have to be used. In most cases, voxel intensities have been considered to represent features
of underlying anatomy [Hall et al., 1992; Cline et al., 1990; Clarke et al., 1993; Taxt et al.,
1992; Gerig et al., 1992; Vannier et al., 1991]. Some others have calculated additional

features from voxel intensities, such as textures [Ehricke, 1990].

Since voxel intensities can come from a single image or from several images, MR image
features can be divided broadly into two groups: gray scale, also known as single contrast,
where a single gray scale image is used in the classification process, and multi-spectral,
where several different gray scale images of the same anatomy having different tissue
contrasts are considered. There are numerous studies that have used single gray scale
images for classification, and the techniques used are quite varied. The most intuitive and
simplest is intensity thresholding. In this method, a global threshold value is determined,
usually by interactive methods [Lim and Pfefferbaum, 1989], where voxels are assigned
to different classes based on their gray scale intensity. The advantage of this system is
that it provides an easy and fast method of classifying image data. However, to function
optimally, a global threshold value has to be determined that will hold across the whole

image volume.

Other single contrast methods include edge-detection, which involves a gradient oper-
ator that detects sharp changes in image intensity, denoting an anatomical boundary or
edge. Another technique is region growing, which involves planting a seed, often inter-
actively by an operator, in the image data, thereby grouping voxels of similar intensities
together in a region. The fundamental drawback that affects all of the above methods is
not only their operator dependency for optimum functionality, but the assumption of uni-
form tissue intensity distribution throughout the entire volume. Given that MR imaging
suffers from a number of artifacts (Section 2.4), like RF inhomogeneity, this assumption

is rarely valid.



As mentioned previously in Chapter 2, MR imaging is multi-spectral: numerous images
of varying contrast levels of the same anatomy are obtained by different pulse sequences.
These are modifiable acquisition parameters of the MR scanner that yield different fre-
quency images at each spatial location [Vannier et al., 1985; Vannier et al., 1987; Van-
nier et al., 1988; Vannier et al., 1991]. These frequencies can be grouped together in
D-dimensional feature vectors that can be used by pattern recognition methods to pro-
duce better classification results compared to those obtained from single gray scale images
[Bezdek et al., 1993: Hall et al., 1992; Just and Thelen, 1988; Vannier et al., 1985; Vannier
et al., 1987; Vannier et al., 1988; Vannier et al., 1991]. The D-dimensional feature vectors
yield a multi-dimensional measurement space called feature space. Since the features are
image intensities represented by real numbers, the feature space is R?, and classification
is accomplished by partitioning this feature space into distinct regions representing the

classes of interest. [Schalkoff, 1992].

The multi-dimensionality of MR images due to longitudinal and transverse relaxation
times and proton density provides tissue characterization that can be very helpful for the
classification of tissues. As new pulse sequences are developed, these can be added to the
already existing D features to yield better discriminating ability to tissue classification.
Different pulse sequences are also helpful in enhancing pathological cases [Taxt et al.,
1992]. Of course all this comes at a price, since adding more spectral signatures translates
into longer scanning time, thus causing more discomfort to the patient, or subject. In
addition, the possible head movement between scans results in mis-aligned data sets, more

noise and image artifacts.

Throughout the literature, great emphasis is placed in differentiating supervised and
unsupervised classification methods. Since supervised methods require operator inter-
vention for selecting a training set, they are considered less reproducible than unsupervised
methods, which do not involve operator intervention except at the final stages of labeling

clustered data. Both methods have been discussed extensively in the literature.
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3.3 Supervised classification methods

Supervised classifiers need to be supplied with a training set produced by an expert, who
selects training samples from image data sets. This training set takes the form of samples
on a voxel or region basis, chosen from the image, or outlines of clusters in scatter plots in
feature space. Scatter plots are multi-dimensional histograms, where each axis represents
an intensity feature. In multi-spectral imaging systems like MRI, a number of features
can be used to construct 2D or 3D scatter plots. F igure 3.1 shows such a scatter plot of

Ti-, T>- and PD-weighted images.

These scatter plots reveal the characteristic signatures of different tissues in feature
space. Clusters found in these plots help mark the decision boundaries that allow algo-
rithms to classify the multi-contrast image data. Scatter plots help evaluate the quality
of image data [Gerig et al., 1992]. Ideally, these clusters would be well-separated, and
classification would simply require the labeling of each cluster. In practice, however, they
overlap and the challenge of classifiers is to form proper decision boundaries in feature
space, by minimizing the number of overlapped voxels that are misclassified into the wrong

boundary or cluster.

MR imaging artifacts affect the distribution of clusters in feature space. As images
get noisier, clusters tend to spread out and overlap. RF inhomogeneity tends to elongate
clusters in feature space. Figure 3.2 shows three scatter plots based on simulated T3-
and T,-weighted MR images calculated over the entire volumes as histogram images,

demonstrating the effects of noise and RF inhomogeneity on clusters in feature space.

In general, supervised classification methods can be categorized into statistical (para-
metric, non-parametric), decision-tree (rule-based), neural, and genetic. In this thesis,

the performance of the following supervised methods has been compared:

e Minimum Distance (MD)

e Bayesian (BAYES)

27



; Scatter Plot Scatter Plot
: ' . 1 v v v -
BCK - BCK -
CSF - CSF -
GM- a2 - - -GM-- o
WM = WM =
o { g :
0.8 1 0.4 06 0.8
T1
(a) (b)
1 ?catter PIC’} 3D scatter piot
(o)
o

(c) (d)
Figure 3.1: Scatter plots from (a) T}, = T, (b) T, — PD and (c) T, — PD weighted images

and (d) T\ — T; — PD weighted images. The dense clusters represent the different tissue

types in the image. Note that ideally these clusters would not overlap.
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(b) (c)

Figure 3.2: Histogram images based on simulated T}-weighted (abscissa) and T,-weighted

(ordinate) MR images containing (a) Normal levels of noise (3%) and RF inhomogeneity
(20%), (b) increased level of noise (9%) (c) increased levels of RF inhomogeneity (50%).
Note the position and size of the clusters in each histogram. (Sections 2.4.1 and 2.4.2 dis-

cuss the issues surrounding different levels of noise and RF inhomogeneity, respectively).

e k Nearest-Neighbor (kNN)
e C4.5 Decision Tree (C4.5)

e Artificial Neural Nets (ANN)

The following subsections explain the theory of each classifier used in this thesis.
In order to help understand the mathematical formalism, it is necessary to establish
a common set of symbols and definitions used in the description of the classifiers. The

features of an image voxel is represented by a D-dimensional feature vector in R2 , denoted

by x:

X = (.’C[,Ig,...,l‘D) (3'1)
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where each of the zy is the kth feature of the voxel sample (k=1,---,D), and R? is the

space of D-tuples of real numbers.

The training set comprises of V voxel samples, where each sample belongs to one of

c classes, denoted by C; (j = 1,---,¢). Furthermore, each class has Nj; training samples
such that:
N=>N; (3.2)
j=t

Let fi; denote the class prototype, also known as sample mean or cluster centroid for

each class Cj, calculated as follows:

Nj
fi=<d% VY, (3-3)

where x; the ith sample of class C;.

Let d denote a Euclidean “distance” measure in R?, between two vectors v; and Uk

defined as:

d(&. %) = /(B — T)4(F - ) (3.4)

t stands for transposed vector. The distance d satisfies the following three conditions:

d(’if“ ﬁk) > 0
d(T;,5x) = 0&U;=10; (3.5)
d({)‘n {"’k) = d(ﬁkv ’L-;l)

The Euclidean distance d, is often called a measure of dissimilarity between two sam-

ples: d(x;, xx), or between a sample and a class centroid: d(x;, ).
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3.3.1 Minimum Distance classifier

The Minimum Distance (MD) classifier, also called "Nearest Prototype’ [Duda and Hart,
1973; Bezdek, 1981] is based on distance measurements in feature space, from unknown
samples to class prototypes. These prototypes are estimated from a given set of training
samples according to Equation 3.3. The MD classifier decides on class membership of an

unknown sample x based on the following relation:

x € Cj & d(x, fij) = lI:Snkiélc{d(x, ir)} (3.6)

The Minimum Distance classifier is a simple and efficient classifier that has been used
by numerous researchers [Vannier et al., 1985; Vannier et al., 1987; Vannier et al., 1988;
Vannier et al., 1991; Kamber et al., 1992; Kamber et al., 1995] as baseline classifier against
which others have been compared. The disadvantage of this classifier is the fact that it is
not sensitive to inter-class variances of the training samples. Furthermore, the Euclidean
distance tends to favor hyper-spherical shaped clusters in feature space, which may not
be sufficient to discriminate properly certain non-linearities found in data being classified,
especially if the data contains severe artifacts that tend to disrupt the distribution of

clusters in feature space.

3.3.2 Bayesian classifier

The Bayesian classifier (BAYES), also called Maximum Likelihood classifier
[Duda and Hart, 1973; Schowengerdt, 1983; James, 1985] is based on the supposition
that the distribution of each tissue type in the brain is multivariate Gaussian, represented

by p(x), the probability density function defined as:

_ 1
p(x) - (27-‘-)0/2 | » |1/2

expl— (x — £S5 (x - )] (3.7)
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where /i is the centroid, and ¥ is the D-by-D covariance matriz for each class.

In order to estimate the probability density function p(x), the centroid and the co-
variance matrix need to be evaluated for each class C;. Equation 3.3 is used to calculate

the class centroid [}, and >_; is calculated according to the following equation:

N;
(xi — fij) (% — f3;)" (3.8)
; (N 1) ; 4 4
Thereafter, given an unknown sample x, it is assigned to class C; if the a posteriori
J
probability of P(C; | x) > P(C; | x), Vizj, that is, we maximize P(C; | x) over
C,...,C.. By Bayves’ theorem:

p(x | Cj)P(C))

P(C; Ix) = P

(3.9)

since p(x) is present as a fixed amount for all classes, maximizing P(C; | x) entails

p(x | C;)P(C;), which is equivalent to maximizing:

log p(x | Cj) + log P(C;) (3.10)

Since the probability densities are assumed to be multivariate Gaussian, p(x | Cj) ~
N (i;, Z;), then from Equation 3.7 the following discriminant function can be evaluated

for each class [Duda and Hart, 1973]:
1 vt - D, 1
9i(x) = —5(x = ;)'T7 ' (x — ;) — - log 27 — 5 log | Z; | +log P(C;) (3.11)
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The term %log 27 can be dropped from the above equation for the purpose of eval-
uating Equation 3.10. Usually, the probabilities P(C;) are considered to be equal for all
classes, and hence eliminated from above equation. However, if a priori information about

class distribution is available (Chapter 4), this information can be used in Equation 3.11.

The Bayesian classifier has been used extensively by a very large number of researchers
[Vannier et al., 1985; Vannier et al., 1987; Vannier et al., 1988; Cline et al., 1990; Gutfin-
ger et al., 1991; Vannier et al.,, 1991; Clarke et al., 1992; Gerig et al., 1992: Kam-
ber et al., 1992; Clarke et al., 1993; Kamber et al., 1995]. It makes use of inter-class
variances in the training samples and has the added advantage of making use of a pri-

ort probabilities, if available. Furthermore, it is based on the Mahalanobis distance,

day(x, i) = \/(x — ;) ;7 (x — [ij), (see Equation 3.11). Unlike Euclidean distance, it
tends to favor hyper-ellipsoid shaped clusters in feature space. Compared to the Minimum
Distance classifier, this tends to make the Bayesian classifier well suited to handle certain
artifacts like RF inhomogeneity, which elongates cluster in feature space. However, this
in itself also may not be sufficient to discriminate properly certain non-linearities found
in data being classified. Moreover, the Bayesian classifier assumes that tissue distribution
is multivariate Gaussian, which some researchers [Clarke et al., 1993] state that is not the

case for MR data.

3.3.3  k Nearest-Neighbor classifier

Parametric classification methods such as MD and BAYES, function under the assumption
that tissue class distributions follow some statistical model, characterized by a number
of parameters (for instance, a multivariate Gaussian distribution is characterized by cal-
culating the mean and variance of tissue intensities). This assumption is not necessarily
true for tissue classes in MRI, and as a result this type of classifier can perform sub-
optimally [Bezdek et al., 1993]. Studies have shown that parametric classifiers are the
least stable among several different classification methods [Clarke et al., 1993]. The k-

Nearest Neighbor (kNN) classifier does not assume any underlying parametric distribution
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of data [Kulkarni, 1994]. The kNN algorithm is the following:

e Step 1: Choose a set X containing m training samples, X = (xi,...,Xy).

e Step 2: Choose 1 < k£ < m, the number of nearest neighbors, for which the algorithm

will be executed.

e Step 3: Choose a distance measure, usually Euclidean (Equation 3.4), between pairs

of D-dimensional feature vectors.

e Step 4: For each unknown sample x, calculate and rank order of distances d(x, x;)

where d is the distance measure chosen in step 3:

d Sdp<---<dp <dp1 < < dm Vs (3.12)

e Step 5: If the majority of dy,d», .. ., d; belong to class Cj, then assign x to class Cj.

® Step 6: In case of a tie, calculate the sum of distances in each tied class, and assign

X to the class with the minimum sum.

Researchers [Cline et al., 1991; Gutfinger et al., 1991; Clarke et al., 1992; Clarke et al.,
1993] have reported favorable results with the kNN classifier. The major disadvantage of
kNN is the fact that, in order to properly estimate the tissue density functionals, a large
number of training samples have to be chosen which dramatically increases the time it

takes to classify the data.

3.3.4 C4.5 Decision tree classifier

The C4.5 classifier generates a decision tree from a set of training samples based on the
principle of divide and conquer. If ... then ..., rules that can be generated from decision

trees provide insight concerning the nature of data being classified.
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Tests at each node of the tree divide the training set into at least two subsets in a
non-trivial fashion. Thereafter, continuing this principle recursively at each node, until

all the training set samples end up in leaf nodes which represent the different classes.

Consider a training set G with samples belonging to c classes. The construction of the

decision tree proceeds as follows [Quinlan, 1993; Quinlan, 1996]:

e If G contains samples all belonging to class Cj, then the tree is a leaf node with

class C;.

o If G contains no classes, then the tree is also a leaf node, but to associate this leaf

node to a class, the information has to come from a source other than G.

e If G contains two or more classes. a test has to be chosen on a single attribute
that will yield one or more mutually exclusive outcomes, thereby partitioning G
into several subsets (G1,Gs,---,G,), based on the outcome of the test. At this
point, the decision tree will be a node from which a number of branches will emerge

corresponding to the outcome of the test.

The information available to construct the test at a node is the distribution of classes in
G at that particular node. Therefore, one of the most crucial aspects of any decision tree
classifier is the proper selection of the attribute to be tested. Since there may be several
attributes available for testing at each test node, a measure of evaluating test appropri-
ateness is necessary to determine the most discriminating aspect of the test function, that

will ultimately subdivide the training samples at the given test node.

ID3, which is a decision tree classifier developed by Quinlan [Quinlan, 1986], has made

use of an entropy function defined as follows [Quinlan, 1993; Quinlan, 1996]:

info(G) =~ fre%rﬂ x log, <%’}’—G)) bits (3.13)
=1
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where freq(Cj, G) is the number of samples in G that belong to class C;, and |G| is the

number of samples in G.

Let us assume that a test T on a given attribute results in splitting G into q subsets.

The information provided by this test is the weighted sum of the subsets:

infor(G) = i % x info(G;) (3.14)

gain(G.T) = info(G) — infor(G) (3.15)

In these equations, gain indicates the information gained by dividing G according to test
T, and infor(G) is the average information required to identify the class of a sample in

G. We select that attribute for testing which maximizes gain(G, T)

The gain criterion has been criticized to favor tests that results in large number of
subsets ¢ [Quinlan, 1993]. The C4.5 classifier addresses this problem by normalizing this
apparent gain due to large number of subsets q. This modification is accomplished by

defining two terms split and gain ratio:

IGil |Gl
split(G,T) = Z IGI (IGI) (3.16)
gain ratio(T') = gain(G, T)/split(G, T) (3.17)

where split describes the potential information gained by splitting G into ¢ subsets, and
gain ratio tells how useful that split is. However, when it comes to constructing tests
involving continuous attributes, several researchers have reported superior results to that
of C4.5 [Auer et al., 1995; Dougherty et al., 1995]. This has led to two recent modifications

by Quinlan to rectify a weakness in C4.5, which prompted a newer version (Release 8)
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that has demonstrated superior results [Quinlan, 1996]. The first modification involves
accounting for increased cost associated with the test on continuous attributes, and is
carried out as follows: Assume a particular continuous attribute 4 has the sorted values
(01,02, --,0,). There are only (r — 1) possible splits on A, thus (r — 1) thresholds of A.
This requires log,(r — 1) additional bits of information, the value of the gain(G,T) has

to be adjusted accordingly :

gain(G. T} = info(G) — infor(G) — log,(r — 1)/|G| (3.18)

So a test on continuous attributes with numerous outcomes (large values of q) will
be less likely to have a maximum value of the splitting criterion, among possible tests,
thereby less likely of being selected. The second modification involves Equation 3.17.
Usually the information obtained from the gain ratio is used to select an appropriate
threshold value in order to maximize discrimination among continuous attributes. Given
the modification above, the value of the split in Equation 3.17 will vary as a function of
the threshold. Quinlan thinks that this is an unnecessary complication, and hence chooses

to use the value of the threshold itself, rather than the split ratio, to maximize the gain.

The advantage a decision tree classifier is that insight can be gained in analyzing the
way the tree classifies the data. Hence a set of if ... then ... rules can be constructed that
can help understand the nature of data being classified. The disadvantage of this method,
on the other hand, becomes evident when the number of training samples increases. It
usually results in huge decision trees that are difficult to interpret and decipher, and
thus have to be pruned in order to reduce them to manageable sizes. Depending on the
efficiency of the pruning algorithms [Quinlan, 1993], these costly operations may take a

long time with no apparent gain in discriminating power.



3.3.5 Artificial Neural Network classifier

Artificial Neural Networks (ANNs) are parallel information processing systems that are
derived from mathematical abstractions of the human nervous system. ANN'’s comprise
interconnected processors called neurodes [Caudill and Butler, 1992]. There are numerous
kinds of neural networks (Hopfield, Kohonen, Hamming, Carpenter, Layered) [Lippmann,
1987] of which the most widely used architecture is the layered neural network. Figure 3.3
shows a diagram depicting an ANN with an input layer, two hidden layers (this number

can vary depending on the architecture designed) and out output layer.

INPUT LAYER FIRST HIDDEN LAYER SECOND HIDDEN LAYER OUTPUT LAYER

Figure 3.3: Diagram showing the architecture of a layered Artificial Neural Network.

To train a layered network, an error back-propagation (BP) algorithm is used, which
minimizes a gradient descent function while training samples are presented to the network,
samples for which the desired output is known. Thereafter a set of weights on the neurode

connections are adjusted to produce the proper output. The BP-ANN algorithm is as

follows:

e Step 1: Choose a learning rate 0 < 8 < 1, momentum rate 0 < o < 1 and stopping
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criterion e.

e Step 2: Initialize the set of weights w;; on the neurode connection to small random

values.

e Step 3: Present a training sample’s D-dimensional input feature vector x;,, where

the desired target output vector is xc,,.

e Step 4: Calculate the actual output vector xc,;, of the network for input vector X;,,

using the following sigmoid logistic function:

1
XCobs = T4 otam) (3.19)
e Step 5: Starting at the output nodes, recursively adjust the weights by:
Awyy = BEjxc; + aAwl] (3.20)

where Aw;; is change in the weight from hidden node i, or from the input node 7,

XC; is the input to this neurode in this connection, and E; is an error term for node

J such that:

EJPY = XCar ~ XCops for an output layer (3.21)

. tput .
E-;ndden = XChidden (1 — XChidden) X3 wi; E5* 7™ for hidden layer

where s is the number of neurodes in the hidden layer, and the superscripts “output”

and “hidden” indicate the layer to which the neurode belongs.

e Step 6: If E; < e for the output node, stop; otherwise goto to step 3.
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Artificial neural nets have been extensively used in brain image classification by several
researchers [Hall et al., 1992; Clarke et al., 1992; Clarke et al., 1993; Ozkan et al., 1993;
Zijdenbos et al., 1993]. Their main advantage is their tremendous adaptability to non-
linearities that may be present in image data. On the other hand, it is difficult to gain
insight in the “reasoning” encoded in a trained ANN, because the discriminating power of
the algorithm is represented as a set of weights associated with the connections between
neurodes. Also, depending the size of the training samples and the complexity of the

network, training time can be considerable.

3.4 Unsupervised classification methods

In unsupervised classification methods, the entire image data is represented as a set X,

comprising of n D-dimensional feature vectors denoted by X = {x1,---.%n}.

Unsupervised learning, also called clustering, involves the assignment of hard {0,1} or
fuzzy [0,1] cluster labels « to data elements in .X. The partitioning of X into c-partitions
indicating class membership, is represented by a (¢ x n) matrix U = [u;| satisfying the

following conditions [Bezdek et al., 1993]:

0<uyg <1 Vg,
0<¥i ux<n V; (3.22)
imuk =1 Vg

The following are examples of different U matrices; a (¢ x n) generic matrix U, a
2-by-3 hard-partitioned matrix U}, and a 3-by-3 fuzzy-partitioned matrix U,, where each

column represents hard or fuzzy membership of each feature vector to each cluster.
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Uiy --. Uy ... Ujg

U’O = Uiy .- Uk ... Uin (323)
Uep .. Uk --- Uen J
1 00
U= (3.24)
0 11
1.00 0.25 0.15
U= | 000 0.15 0.10 (3.25)

0.00 0.65 0.75

The entire image volume is classified using clustering algorithms, since unsupervised
methods do not rely on training sets. It is however necessary to specify ¢, the number of
clusters (tissue classes) to search for. Once determined, they require human intervention in
order to label clusters with the appropriate tissue classes, since the clustering mechanisms

have no way to tell what cluster should belong to what specific tissue class.

Two well known clustering algorithms are described in this thesis : Hard C-Means
(HCM), also known as k-Means [Duda and Hart, 1973; Hartigan, 1975; Bezdek, 1981]
and Fuzzy C-Means (FCM) [Bezdek, 1981]. These methods, as well as most unsupervised
methods, make use of a criterion or objective function that tells the quality of clusters of
image data in feature space, and which is typically minimized in an iterative fashion. The
HCM and FCM criterion functions are described next, followed by a common algorithm

used in their respective minimizations.
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3.4.1 Hard C-Means classifier

A commonly used objective function is the sum-of-squared-errors function [Duda and

Hart, 1973] defined as:

n [+4

JU V) =3 upd(x — v;)? (3.26)
k=1 1i=1
where
Ph=1 WikXk .
Vi= ———, Vi 3.27
2 k=1 Uik ( )
here d is the Euclidean distance as defined in Equation 34,V = (vy,---,v.) is the vector

representing cluster centroids, and U is the hard partition of .X into c-partitions. (U, V")

may minimize .J; if:

L, d(xx —vi) <d(xx—v;), j=1,---.¢, j#i
(X ) (X — Vi), J c J#ZVi,k. (3.28)

Ui =
0, otherwise

HCM will produce a matrix U of hard clusters where each feature vector receives a unique
cluster membership. It is considered as a multi-pass Minimum Distance classifier with the
advantage of requiring no user input to train the algorithm: however, it does require user
input to decide on the number of clusters, and assign different clusters to various tissue
classes. A few researchers [Gutfinger et al., 1991} have used HCM in classifying MR brain
images. One of the main disadvantages of this, and other unsupervised methods is the
very long processing time, and when classifying 3D image volumes, the large computer

memory requirements.
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3.4.2 Fuzzy C-Means classifier

For the FCM clustering algorithm, the objective function defined in Equation 3.26 can be
generalized as follows [Bezdek et al., 1993):

n [+4

Tn(U, V) =30 (i) ™d(xx — v;)? (3.29)
k=1 1i=1
where
= T ()™ (3.30)

t z;::l(uik)m ’

and m € [1,00], V and v; are the same as in HCM, defined earlier. Similarly (U, V) is

the fuzzy partition of X that may minimize J,, for m > 1 if:

| & dalxe — vi) =T ;
Ul = [j=l (m) J N \4 N k (331)
where
di(xp — v;) = \/(x,c — Vi)t (xe — vy) (3.32)

A is any positive definite matrix. FCM produces a matrix U of fuzzy clusters where each
data element will receive a fuzzy class membership over the c-partitions. Note that the
cluster centroids v; in case of FCM should not be confused with ti (Equation 3.3) as they

are evaluated differently.

The following algorithm describes both FCM and HCM classifiers, appropriate differ-

ences are indicated in the processing steps:
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e Step 1: Let the set X represent the entire image data set containing n samples,

X= {X1,X2,"',xn}.

e Step 2: Choose the number of classes c, the error term € > 0, the number of iterations
W, the distance measure d. For FCM, additionally choose weighting exponent m

and positive definite D-by-D matrix A.

e Step 3: Initialize the first matrix U randomly to satisfy the conditions of Equa-

tion 3.4, such that uy; € {0,1} (HCM), or uy € [0,1] (FCM).

e Step 4: Calculate initial cluster centroids {vi,0}, using Equation 3.27 (HCM) or
Equation 3.30 (FCM), fori =1,...,c.

Step 5: For l =1,..., W do iteratively.

a. Compute {u;,} with Equation 3.28 (HCM) or Equation 3.31 (FCM), for k =

1,...,n.

b. Compute E; = || Ui — Uy || = /S5, Tpo (wikg — wiey—1)?
c. If By < e stop; Otherwise calculate {v;,[} using Equation 3.27 (HCM) or
Equation 3.30 (FCM);

Researchers [Hall et al., 1992; Clarke et al., 1992; Clarke et al., 1993] have used FCM
in MR image classification. Like HCM, thc advantage of FCM is that it is an auto-
mated classification method, and it has got the added advantage of assigning fuzzy class
membership. However, besides suffering from the same disadvantages of HCM cluster-
ing algorithm, because of its fuzzy nature, it has larger time and memory requirements.
Another disadvantage of FCM is the fact that it has a tendency of favoring solutions of
equal cluster populations. In order to compensate for this shortcoming, Bensaid [Bensaid
et al., 1996] proposed a semi-supervised Fuzzy C-Means algorithm (SFCM), that relies on
operator supplied sample training points to guide the initial cluster centroids in the right

direction. This method has demonstrated promising result, and is tested in this thesis.
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3.5 Concluding remarks

This chapter has reviewed the MR image classification literature. It has introduced the
theoretical aspect of the classification algorithms tested in this thesis, while discussing the
advantages and disadvantages of each one. The next chapter will introduce the concept of

tissue probability maps, as a mechanism of automatic supervised classification algorithms.
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Chapter 4

Brain Tissue Probability Maps

4.1 Introduction

In order to classify a brain volume using supervised methods, a particular classification
algorithm needs to be trained on a set of voxel (or regional) samples from that volume
(Chapter 3). The training set is created manually by experts who pick voxels or draw
regions in a brain image volume from areas representative of the different tissue types to

be classified by the algorithm.

However, it has been observed that experts are likely to choose samples that are sure
to belong to a particular class, ignoring parts of the image volume where image quality
degradation, such as partial volume effects (Section 2.4.3), is intense. This leads the
algorithm to train only on the most certain voxel intensities, resulting in inconsistencies
and poor classification. Furthermore, depending on the number of brain volumes to be
classified, manual selection of training samples becomes a very tedious task with poor
reproducibility. A mechanism that automates the training sample selection process in a

robust and reproducible fashion is therefore highly desirable.
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4.2 Stereotaxic space

The concept of stereotaxic space, developed by Talairach and Tournoux [Talairach
et al., 1967; Talairach and Tournoux, 1988], defines a standard anatomically-based frame
of reference, where brains of different sizes and shapes can be directly compared after
removal of size and orientation differences. This external anatomical reference stems
from the need to predict the positions of anatomical structures within the human brain
while performing neuro-surgical procedures like inserting electrodes deep in the brain. By
using a standardized proportional coordinate system, brain volumes transformed into this
coordinate space, can be compared on a voxel-by-voxel basis. Each voxel has an associated
“world coordinate,” expressed as its Cartesian distance in mm from the stereotaxic origin.
Figure 4.1 shows digitized sample slices of Talairach’s stereotaxic brain atlas in three
orthogonal views. The brain mapping research community has adopted this stereotaxic
space as a common 3D coordinate system for mapping physiological, anatomical and
functional information across many subjects [Fox et al., 1985; Evans et al., 1992b; Fox

et al., 1994].

Stereotaxic brain space was considered by Kamber et al. [Kamber et al., 1992; Kamber
et al., 1995] as a basis for creating 3D stereotaxic tissue probability maps used for providing
a posteriori probabilities for white matter lesion classifications. Since white matter lesions
predominantly occur in white matter, the white matter tissue probability map was used
to disallow the detection of lesions at unlikely locations. The use of stereotaxic space
is adopted in this thesis to serve as the basis for building new, higher resolution tissue
probability maps, where each stereotaxic voxel provides geometric information that can

be utilized as follows:

e Automatically select training samples representing various tissue types in a particu-
lar brain volume that has been transformed into stereotaxic space, therefore making

it robust, reliable, and more importantly, reproducible.

e Provide a prioriand a posteriori probability information to classifiers (Section 3.3.2).
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e Impose a 3D spatial constraint on brain classification, in addition to intensity con-

straints that are provided by the gray-scale levels of different MR image sequences.

Figure 4.1: Sample images from (a) transverse, (b) coronal and (c) sagittal slice views of

the Talairach atlas demonstrating stereotaxic space.

4.3 Tissue probability maps

All supervised classification methods found in the literature relv on operator intervention
in selecting training samples. Because of this operator dependency, supervised methods
are not considered to be very reproducible. Therefore, several researchers [Gutfinger
et al., 1991; Gerig et al., 1992; Clarke et al., 1993; Bensaid et al., 1996] have adopted

unsupervised methods.

Stereotaxic space makes it possible to consider the concept of Tissue Probability Maps
(TPMs), which are tissue specific probability values denoting the level of certainty with
which a particular voxel in 3D stereotaxic space belongs to one of the tissue classes

(CSF, GM and WM). Such maps can be used in the selection of training samples for
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classifying new MR image data sets, thus creating a mechanism for automating supervised

classification algorithms.

4.3.1 The use of tissue probability maps in automating training

sample selection

The original tissue probability maps created by Kamber et al. [Kamber et al., 1992;
Kamber et al., 1995] (Figure 4.2) denote the probability (0% - 100%) with which each
voxel in stereotaxic space belongs to any of the CSF : GM and WM tissue classes. Looking
at individual probability maps in Figure 4.2, which are themselves image volumes, one
sees images of varying intensity. The brighter a particular location, the more probable it

is to belong to that specific tissue class.

The automatic selection of training samples proceeds by choosing a particular proba-
bility threshold (say 90%). Thereafter, the tissue probability maps are used to generate
a list of all the stereotaxic voxel coordinates in a brain volume meeting the above men-
tioned probability threshold. From this list (which could exceed several thousand voxels
- depending on the probability threshold and the resolution of the maps), a predeter-
mined number of coordinates are chosen at fixed or random intervals as representative
populations for each tissue type. For example, suppose a particular probability threshold
resulted in generating 100,000 white matter voxels. A subset of 25 training voxels can be
obtained by sub-sampling the large training set at regular intervals (step size is fixed at
4000) or at random intervals (step size is a random number between 1 and 4000). This

sub-sampling method has the following advantages:
e The entire brain from the base to the top is traversed, ensuring proper sub-sampling
of training voxels across the whole brain.

¢ Fixed intervals generate unique training sets, while random intervals generate varied
training sets. This can be useful if one is interested in establishing statistical signif-

icance through the use of numerous similar training sets, generated by the same set
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of parameters (see Section 8.2).

Two parameters control the automatic generation of training samples from a given
set of tissue probability maps. (a) the threshold at which probabilistic voxel positions
are generated, and (b) the number of voxels chosen from the total complement in (a).
By varying these two parameters, many training sample sets can be obtained. Table 4.1
shows a sample list of six such coordinates (two per class), and the tissue classes to which
they belong. These coordinates are 3D voxel positions in millimeters from the Anterior

Commissure, defined as the origin in the stereotaxic atlas.

Once intensity values for each of the 3D voxel samples are obtained, intensity ranges
for each tissue type can be determined. This list can be used as a training sample set,
indicating the most probable locations in stereotaxic space of specific tissue types. The
coordinate list for these voxels can be used on any brain volume that has been transformed
into stereotaxic space, thus eliminating the need to choose training samples for each brain

volume individually.

In this thesis, the term training set refers to a list of labeled 3D probabilistic coor-
dinates (Table 4.1) for each tissue type in stereotaxic space, as opposed to the MR image
intensities at specific voxel locations which depend on the subject and the acquisition pa-
rameters. This method has the advantage of training the classifier on intensities extracted
from probabilistic locations specific to individual brain volumes, independent of the res-

olution, intensity and neuro-anatomical variations across many volumes (Section 1.3).

4.3.2 Rationale for creating new TPMs

The tissue probability maps created by Kamber et al. [Kamber et al., 1992; Kamber

et al., 1995] have certain shortcomings, namely:

e They were based on only 12 healthy volunteers.
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Stereotaxic coordinates || Class
X Y Z label
—9.38 | —40.08 | —4.5 | CSF
268 | —4524| —1.5 |CSF
20.10 | —-3234{ -2251 GM
-0.67 | —-69.32| -21 || GM
2144 | -32.34| 405 | WM
—-15.41 | —2.23 39 WM

Table 4.1: An example of a training set; a list of stereotaxic coordinates and their respec-
tive tissue classes. Stereotaxic coordinates refer to millimetric coordinates relative to the
Anterior Commissure which is the origin of stereotaxic space. Voxel coordinates on the

other hand, are indices into the image volume of a given voxel.

e The brain volume of each volunteer was acquired at 2mm slice thickness, using an

older Philips Gyroscan MR scanner at the Montréal Neurological Institute (MNI).

and T>-weighted imaging sequences.

manually [Evans et al., 1992a].

Figure 4.2 shows sample slices from three tissue probability maps created by Kamber
et al. [Kamber et al., 1992; Kamber et al., 1995]. Although these maps have certain

deficiencies, they provide the basis for creating new tissue probability maps with the

following advantages:

e The new TPMs are based on 53 healthy volunteers, reflecting greater statistical

power.

The classification from which the TPMs were derived are based only on 7}-weighted

The transformation of individual brain volumes into stereotaxic space was done

Only one classification algorithm (Bayesian) was used to construct the TPMs.




(b) (c)
Figure 4.2: a) Cerebro-spinal fluid, b) gray matter and c) white tissue probability maps
created by Kamber et al.

e The brain volume of each volunteer was acquired at 1mm slice thickness, using a
recently installed Philips Gyroscan ACS II 1.5 T MR scanner (also at the MNI),

which gives higher resolution and better quality images.

e The classification of the individual volumes for the new TPMs are based on PD-
weighted as well as on T)-weighted and T)-weighted imaging sequences, to produce

better classification.

e Transformation into stereotaxic space is done using an automated method, thus

assuring consistency [Collins et al., 1994].

e Three separate algorithms, MD, ANN, and C4.5 (Chapter 3) were used to exam-
ine similarities and differences in the resulting tissue probability maps among the

different algorithms.

The following subsections describe the steps taken to create the new tissue probability

maps that resulted in superior spatial resolution and neuro-anatomical accuracy.
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4.3.3 Pre-processing of data
Data Acquisition

The International Consortium for Brain Mapping (ICBM) is a collaboration between
McGill University in Montréal, The University of California, Los Angeles, and The Uni-
versity of Texas Health Science Center, San Antonio, to produce a probabilistic map
of human neuro-anatomy using MRI [Mazziotta et al., 1995]. The ICBM provided the
MRI brain scans from 53 normal volunteers (31 males and 22 females with mean age of
23.6 years) to construct the new TPM. The MR scans were carried out on a Philips Gy-
roscan ACS II scanner with a 1.5 Tesla super-conducting magnet using gradient echo 73-
weighted, (TE=10ms; TR=18ms; flip angle=30°), and a double spin echo (TE=35,120ms;
TR=3300ms; flip angle=90°) for the PD- and T,-weighted images acquired at 1mm

isotropic resolution.

Intra-subject registration and stereotaxic transformation

Since two separate sequences were used to obtain the above scans (T, T,/ PD), subject
movement between scans can cause considerable mis-alignment of images. Therefore, the
images obtained from the two sequences were first registered to each other to eliminate any
such mis-alignment and then transformed into stereotaxic space, both procedures using a
method developed at the MNI by Collins [Collins et al., 1994]. This automated method
uses a nine parameter (3 translations, 3 rotations and 3 scaling) transformation process
to convert brain volumes from their original space into stereotaxic space. Figure 4.3
demonstrates the effects of transformation of brain images from their original (native
or scanner) space into stereotaxic space. Figure 4.3a shows an MR image volume in 3
orthogonal views in scanner space, and Figure 4.3b shows the same image volume after
being transformed into stereotaxic space (cross-hairs in all images are situated at the

Anterior Commissure - the origin of stereotaxic space).
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Vo,
ERA

(a) (b)

Figure 4.3: Three orthogonal views demonstrating the effects of stereotaxic transforma-

tion. (a) Scanner (native) space (b) Stereotaxic space (c) Digitized stereotaxic atlas
super-imposed. Cross-hairs in each image denote the position of the Anterior Commis-

sure, which is the origin of stereotaxic space.
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RF correction

The volumes were corrected for RF inhomogeneity by the method described in Sec-

tion 6.3.4.

4.3.4 Post-processing of data
Training, classification and averaging

The original TPMs were used to automatically generate a training set that contained
30 sample voxels extracted at 100% probability threshold for each tissue class. The
training set was then used to train and classify each of the 53 ICBM brain volumes by
3 different methods of classification: ANN, MD and C4.5. F ifty three individual tissue
maps from the resulting classifications were averaged to form the new tissue probability
maps. Figures 4.4, 4.5 and 4.6 show the tissue probability maps for CSF, GM and WM
classes respectively, created by the three separate methods. The rationale for using three
different methods was to determine whether each of the three methods produced similar
or different results, and at the same to time find out which of the three method conveyed
the most accurate neuro-anatomical information. The choice of algorithms was simply
dictated by their availability (implementation) at the time this experiment was carried

out.

Expert neuro-anatomical examination

A neuro-anatomist (NK) at the McConnell Brain Imaging Center carefully examined
each of the tissue probability maps produced by the three different methods. Overall,
she observed that the maps were very similar except for very few differences in the basal
ganglia, gray matter structures deep inside the brain, which the ANN algorithm seemed to
have portrayed best. Also, there were some differences among the methods outside of the

brain, but these differences are not important, as they are masked out in post processing



stages. She concluded that the probability maps produced by the ANN method were
the most representative of normal neuro-anatomy. Based on these recommendations,
the brain tissue probability maps created by ANN were used in subsequent experiments.
Figure 4.7 demonstrates the differences between the first and second generation tissue
probability maps. Notice that the superior resolution of the new TPMs results in greater

neuro-anatomical detail.

(2) (b) (c)
Figure 4.4: Cerebro-spinal fluid tissue probability map created by (a) ANN, (b) MD and
(c) C4.5 algorithms.

4.4 Concluding remarks

A mechanism of automating the training sample selection process for supervised classi-
fication algorithms has been discussed. Previously constructed tissue probability maps
were used to build new TPMs that were based on 53 individuals and three different clas-
sification methods. The resulting maps were found to have superior spatial resolution.
They were examined for neuro-anatomical accuracy by an expert, who chose the tissue

probability maps created by the ANN algorithm to be the most accurate. Chapter 7 dis-

36



(a) (b) (c)
Figure 4.5: Gray matter tissue probability map created by (a) ANN, (b) MD and (c) C4.5

algorithms.

cusses the experiments carried out to establish the usefulness of these tissue probability

maps in automating the training of supervised classification algorithms.
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(a) (b)

Figure 4.6: White matter tissue probability map created by (a) ANN, (b) MD and (c)
C4.5 algorithms.
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(a) (b)

Figure 4.7: Sample image slices for comparative view from (a) first generation (b) second

generation cerebro-spinal fluid, gray matter and white matter tissue probability maps.
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Chapter 5

Classifier Validation Methodologies
in MRI

9.1 Introduction

Tissue classification is used to obtain quantitative measures of morphological parameters
like brain volume or lesion load, diagnosis of disease and assessment of response to therapy.
This chapter describes the experiments and analysis used to assess the reliability and

accuracy of the various classifiers described in Chapter 3.

5.2 Similarity measures

In order to rate the performance of a particular classifier, operating under different sets of
parameters, it is necessary to compare the resulting classification against a known truth,
a gold standard, which is a labeled volume (i.e. each voxel having a label to indicate
tissue type membership). The challenge is to establish a suitable coefficient of agreement
between the standard and a particular classification. This coefficient will serve as a relative

measure of performance for that specific classification.
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There has been extensive research conducted in diagnostic and radiological circles in
measuring agreement between two experts on categorical data. This is especially the case
in psychiatry, where several indices have been devised to rate the agreement (or disagree-
ment) among psychiatrists in assessing specific conditions of mental patients [Cohen, 1960;
Cohen, 1968; Fleiss, 1975; Bartko and Carpenter, 1976; Hubert, 1977; Williams, 1987;
Bartko, 1991]. Some of these studies have performed comparative analysis of different
techniques focusing on the validity of these measures of similarity in various fields from
psychiatry [Bartko and Carpenter, 1976; Bartko, 1991], to remote sensing applications in
geological surveys [Rosenfield and Fitzpatrick-Lins, 1986].

The type of data classified brain volumes fall into, can be considered either dichoto-
mous, belonging or not belonging to a particular class, say some form of lesion (+,—), or

polychotomous, belonging to one of several classes, (CSF, GM, WM, ...).

Comparison of a classified volume against a gold standard can be viewed as measuring
agreement between two raters or judges, where one of them (the gold standard) is consid-
ered correct. In order to measure agreement between the gold standard and a particular
classified volume on dichotomous data, their assessment of each voxel is presented in a
tabulated format like that of Table 5.1, where agreement between the volumes is repre-
sented by cells a and d, and disagreement by cells b and ¢ on the presence or absence (+,
—) of a trait. Some researchers consider a as the number of True Positives (TP) and d
as True Negatives (TN), whereas b denotes the number of False Negatives (FN) and c as

False Positives (FP)[Williams, 1987].

In the case where polychotomous data is considered, Table 5.1 could be easily extended
to contain as many classes as necessary. In Table 5.2, N samples of data (representing
an entire volume) are placed into any of T classes designated by C, ..., Cr, where each
cell n;; indicates a count that the gold standard places a sample in the i** class and
the particular classification places the same sample in the J** class. Agreement between
the classified volume and the gold standard is represented by the left-to-right diagonal,

cells n;;, (1 < ¢ < T). The two tables described above are considered to be classification
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Classification
Gold Standard | + — | Row totals
+ a b a+b
- c d c+d
Column totals | a+c b+d N

Table 5.1: Sample dichotomous confusion matrix

Classification
Gold Standard | C; Cr | Row totals
C, Ny Ny mr Nys
Cy Nap  TNga nar Noy
Cr nry, nra nrr nrs
Column totals | ny; n nir | ney (= N)

Table 5.2: Sample polychotomous confusion matrix
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Classification
Gold Standard | C, |C, ... Cr|Row totals
C, a b a+b
Cy
c d c+d
Cr
Column totals | a + ¢ b+d N

Table 5.3: Sample polychotomous confusion matrix, collapsed on class C;.

error matrices, or confusion matrices, from which similarity measures can be calculated to
indicate degrees of agreement or disagreement between two volumes. Any polychotomous
confusion matrix (Table 5.2) can easily be represented as a set of T dichotomous confusion
matrices (Table 5.1) by collapsing the matrix on each class of interest. For example, to
collapse a polychotomous matrix on a particular class C; the elements of the respective

dichotomous matrix can be calculated as follows:

a = ny;

b = n;.—a

C = ny—a

d = N-(a+b+c) (5.1)

Thereafter, coefficients of agreement for each individual class can be calculated from
the respective collapsed dichotomous matrix for that particular class. Table 5.3 shows a

polychotomous matrix collapsed on class C,
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5.2.1 Traditional measures of similarity

Bartko [Bartko and Carpenter, 1976] defines reliability as the consistency with which a
given trait is measured, and validity as the extent by which an index measures a trait.
He provides an extensive critique of the frequent misuse of numerous measures of similar-
ity such as percent agreement, chi-square, product moment correlation, and rank order
correlation. Numerous other measure like Yule's Y [Yule, 1912] have also been consid-
ered. Of the above, percent agreement, P,, deserves particular attention, since it has
been used extensively in the literature to designate classification accuracy [Rosenfield and

Fitzpatrick-Lins, 1986; Bartko and Carpenter, 1976]. It is defined as follows:

T
Py = Zn,—i/N V; (5.2)
=1

Williams [Williams, 1987] also defines Accuracy as a function of percent agreement

(distributed over two terms called Specificity and Sensitivity), defined as follows:

Sensitivity = TP/S (5.3)

Specificity = TN/H (5.4)
TP+TN

A —_— .9

ccuracy S (5.5)

where S = TP+ FN and H = FP + TN. Note that Accuracy can also be represented

by the following expression:

Accuracy = (Sensitivity) (S S ) + (Speci ficity) (S -lE-[H) (5.6)

+H
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Looking closely at Equation 5.5, one can see that it is the same as Equation 5.2,
since the term TP + TN is the same as a + d, which is the sum of left to right diagonals
represented as 3_._, n;; and the term S+H is the same as V. Intuitively, percent agreement
gives the illusion of being a proper measure of similarity. However, it gives inflated
confidence levels since it does not consider that there could be some agreement due to
chance alone. A more sophisticated measure of agreement that is chance-corrected, and
can function as interclass correlation coefficient [Fleiss, 1975; Bartko and Carpenter, 1976,

is considered in Section 5.2.2.

5.2.2 Kappa

Cohen [Cohen, 1960] has developed a coefficient of agreement called kappa, which is
a chance-corrected percent agreement with a statistical base [Bartko, 1991]. Kappa is

defined as:

P, - P,
=2 _° 5.7
"T1-B (5.7)
where P, is defined in equation. 5.2 and
T
PC = Z TLi+TL+i/lV (5.8)

i=1

P, is the proportion of samples agreed to by the two raters, and P, is the proportion
of agreement due to chance, where n;, are the row totals and n,; the column totals for
each class (table 5.2). k = 1 is obtained whenever there is perfect agreement between the
two raters. kK = 0 indicates that agreement is due to chance alone. x between 0 and 1
reflects agreement greater than chance, whereas negative values indicate agreement less

than chance. It should be noted that all disagreements in kappa are treated equally. If it is
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necessary that certain disagreements be treated more serious than others, Cohen [Cohen,
1968] has also developed Weighted Kappa, a similarity measure that takes into consider-
ation the seriousness of disagreement. In this thesis, all disagreements were considered of

equal weight.

Fleiss [Fleiss, 1975] gives a critical review of a dozen or so measures of similarity,
emphasizing the need for chance correction to be incorporated into such measures. He
also points out that no index of agreement is informative by itself, and any index should
be expressed in terms of agreement greater or less than chance alone. He concludes that
kappa is one similarity measure that is justifiable as chance-corrected: it also serves as an

interclass correlation coefficient.

Most coefficients of agreement take into consideration the entire confusion matrix
and give a single value denoting similarity. However, sometimes it is necessary to have
measures of similarity that concern each class by itself, or combine specific classes together.
For example, one might be interested in obtaining classifier accuracy for cerebro-spinal
fluid (one particular class), or brain parenchyma, where gray matter and white matter
are combined into a single class. It might be necessary for a particular class be excluded
from the calculation of coefficient of agreement (like background). Bishop [Bishop et al.,
1975] derived a method where the numerator and denominator of overall kappa can be
calculated by summing respective numerators and denominators from classes of interest

in a confusion matrix defined as follows:

. _ Nni—mning

i = 5.9
Nngy —niny; (59)

Above, K; is the the maximum likelihood estimate of the conditional agreement be-
tween observers for a given category. In this manner, kappa per class or per several
classes, can be calculated. Rosenfield [Rosenfield and Fitzpatrick-Lins, 1986] used kappa
in the field of remote sensing applications in geological surveys, noting that kappa could

be used as a measure of accuracy as a whole or on a per category basis. He concluded
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Class Label Classification
Gold Standard 0 1 2 3 | Row totals
0 49172 0 0 0 49172
1 0 37141 16146 434 53721
2 0 179 31986 8869 41034
3 0 3590 13986 34882 52458
Column totals | 49172 40910 62118 44185| 196385

Table 5.4: A Sample confusion matrix

Measures of Agreement
Class | Kappa(x) Collapsed(k) Sensitivity Error S peci ficity Accuracy
0 1.000 1.000 1.000 0.000 1.000 1.000
1 0.610 0.718 0.691 0.309 0.974 0.896
2 0.678 0.492 0.780 0.221 0.806 0.801
3 0.568 0.632 0.665 0.335 0.935 0.863
Total 0.708 0.708 0.780 0.220 nfa n/a

Table 5.5: Various measures of similarity based on Table 5.4

that kappa should be adopted by the remote sensing community as a measure of accuracy

for thematic classification.

5.2.3 An example

Table 5.4 represents a sample confusion matrix obtained from an actual comparison of
a classified volume with a gold standard, and Table 5.5 shows a variety of similarity indices
calculated, based on results presented in Table 5.4. It is interesting to note that Accuracy
(last column) reports inflated values compared to kappa (first column) and Collapsed

(second column, calculated by collapsing the polychotomous matrix into a dichotomous



Class Label Classification
Gold Standard 0 1 2 3 | Row totals
0 12220 12144 12136 12443 48943
1 12265 12347 12258 12272 49142
2 12212 12222 12504 12113 49051
3 12372 12359 12247 12271 49249
Column totals | 49069 49072 49145 49099 | 196385

Table 5.6: A Sample confusion matrix from random image volumes.

one, Equation 5.1) for individual classes.

In order to understand the importance of chance correction in a similarity measure,
two randomly generated volumes were created using a random number generator. The
resulting confusion matrix is given in Table 5.6, and the calculated similarity measures
in Table 5.7. Accuracy gives high similarity values even though the data are completely
random volumes. Kappa, taking into consideration chance correction, reports almost zero.
Note that in Tables 5.5 and 5.7, column Total values for specificity and sensitivity are not

applicable (indicated by n/a), as they are per class indices.

Given these results, and the recommendations from several critical reviews [Rosenfield
and Fitzpatrick-Lins, 1986; Fleiss, 1975; Bartko and Carpenter, 1976], kappa was adopted
as the measure of similarity between particular classifications and the gold standard in

experiments conducted for this thesis.

5.3 Validation methods

As mentioned previously, validation of brain tissue classification is a critical step in assess-
ing the performance of different classifiers under varying conditions of MR imaging. And

since MR imaging, like many other medical imaging modalities, is an in vivo study, vali-
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Measures of Agreement
Class | Kappa(k) Collapsed(k) Sensitivity Error Specif ity  Accuracy
0 —0.000 —0.000 0.250 0.750 0.750 0.625
1 0.002 0.002 0.251 0.749 0.751 0.626
2 0.006 0.006 0.255 0.745 0.751 0.627
3 -0.001 —0.001 0.249 0.751 0.750 0.624
Total 0.002 0.002 0.251 0.749 n/a n/a

Table 5.7: Various measures of similarity based on Table 5.6

dation becomes even more challenging. Numerous techniques have been used by several
researchers, each having its own advantages and disadvantages. This section will briefly
describe and comment on some of the various techniques of validation found in MR image

segmentation literature [Zijdenbos and Dawant, 1994: Clarke et al., 1995].

5.3.1 Validation using physical phantoms

Several researchers have used physical phantoms, which are cylindrical structures with
compartments of known volumes, sometimes roughly shaped like human brains, containing
different paramagnetic substances to imitate various tissue relaxation parameters [Cline

et al., 1991; Gerig et al., 1992: Jackson et al., 1993; Mitchell et al., 1994].

Physical phantoms, though convenient to use, have several disadvantages. The spatial
tissue distribution in the brain, with its high geometric complexity, makes the construction
of such compartmentalized physical phantoms very difficult, if not impossible. Therefore
multiple class distribution and partial volume cannot be easily represented. Furthermore,
when simulating pathology, compartments constructed to reflect tumors or lesions, are
simplistic in shape and over-estimated in volume, owing to practical construction limi-
tations. Moreover, physical phantoms when placed in an MR scanner affect the main

magnetic field differently than human subjects do, and consequently induce different RF
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non-uniformities. Owing to these drawbacks, physical phantoms with their simplistic na-
ture of construction, are of limited use in validating the performance of classifiers when

confronted with the complexities and intricacies of human brains.

5.3.2 Validation using gross anatomy and histo-pathology

Another validation method could potentially involve correlation of classified MR images
with histo-pathological or post-mortem gross anatomical examinations. Some researchers
[Taxt et al., 1992] have resorted to histo-pathology of surgically removed tumors to val-
idate classifier performance on MR images acquired prior to the excision. Even though
these methods might seem appropriate for volume measurement, they cannot confirm
shape and location of regions of interest. They are limited to pathological tissues that
are marked for excision during surgery. Besides being labor intensive, logistic difficul-
ties of post-mortem analysis such as feasibility and proper excision, make this method of

validation highly impractical, especially when considering healthy tissues.

5.3.3 Validation using manual labeling

One of the most intuitive gold standards is expert opinion, where an expert outlines
regions of interest or classifies an entire MR image manually. The resulting image is
considered to be the gold standard against which automated methods are compared.
Several researchers [Vannier et al., 1991; Gerig et al., 1992; Zijdenbos et al., 1994] have
relied on experts to validate classification. However, this method has potential problems.
Studies of inter-operator variability, have demonstrated that sufficient variation (as much
as 40% in some cases [Zijdenbos et al., 1994]), makes the determination of a gold standard
difficult. One can consider the computer’s classification as vet another expert opinion.
Thereafter, one can resort to correlation studies to see if there is sufficient agreement
among the experts, and to what extent does the computer’s interpretation agree with

the human experts. This method of validation is acceptable, provided that a sufficient
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number of expert opinions are polled to establish a statistically significant result. This
labor-intensive validation method is difficult to implement for large numbers of data sets

and with an adequate number of experts.

9.3.4 Validation using test sets

Traditionally in pattern recognition problems, in order to validate the performance of
classifiers, there are usually test sets (disjoint from training sets) in addition to the training
sets, where the correct class of data to be classified is known prior to classification. Such

tests can be used to validate the performance of the classifier.

In brain imaging, the test and the training sets have to be provided manually by
an expert, who selects image voxels that belong to particular classes. Even though this
method is fairly straight forward, it suffers from the same subjectivity problems as vali-
dation using manual labeling, since only voxels or regions of typical intensities are usually

chosen, excluding partial volume cases. This leads to the test set being underrepresented.

5.3.5 Validation using digital phantoms and MR simulators

Computer simulations in numerous research fields have been extremely helpful in modeling
the behavior of systems under study and the parameters under which they operate. MR
imaging research has been no exception. MR simulators have played a key role in pulse

sequence research, modeling of noise, and study of RF inhomogeneity.

The output of MR simulators makes an excellent candidate for classification vali-
dation, where robustness of a particular classifier can be tested by first corrupting the
simulated image with noise, RF inhomogeneity, and degrade resolution. Also, pathology
can be introduced in a systematic fashion to simulate tumors, lesions, trauma, etc. In
this manner, one source of uncertainty can be introduced at a time, and the resulting
classification uncertainty can be related tb the source in a quantifiable manner. The sim-

ulation process starts from a master digital phantom (MDP), which is a labeled brain
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image volume indicating “truth,” where each voxel is pre-classified to belong to different
tissue types to reflect proper neuroanatomy. Regardless of any errors in the classification
process, the results are taken as correct by definition from that point on. Various forms
of image degradation can then be added to simulate the effects of the scanner during
data acquisition, but this truth remains constant. The disadvantage of this system is the
fact that some subtle non-linearities found in MR imaging systems, such as gradient field

inhomogeneities cannot simply be abstracted mathematically [Peterson et al., 1993].

It is important to note that the use of simulated and real MR image volumes is
necessary but not sufficient condition to validate classification. This is because in the
case of MR simulation, the resulting simulated images are somewhat simplistic. However,
classification of simulated images can be compared against a gold standard. In the case
of real MR volumes, they truly represent a real world condition, but they lack a gold

standard against which, their resulting classifications could be compared.

5.4 Concluding remarks

After reviewing numerous similarity measures, while assessing their strengths and weak-
nesses, kappa was the preferred similarity index. Furthermore, several validation method-
ologies have been described, each having advantages and disadvantages. Most methods
suffer from bias and variability, some arc invasive in nature. In the absence of a true gold
standard, MR simulators with their flexibility, sophistication, and ease of use, are favored
over other, more complicated, labor-intensive methods of validation. The following chap-
ter discusses the motivation and the development of a Simulated Brain Database to be

used in the validation process.

72



Chapter 6

Simulated Brain Database

6.1 Introduction

This chapter explains the motivation behind the creation of a Simulated Brain Database
(SBD) that was used to carry out the validation experiments designed to meet the objec-

tives listed in Chapter 1.

6.2 Motivation

As discussed in Section 5.3.5, MR simulators are used to create simulated brain images
that include various aspects of MR imaging, such as noise, RF inhomogeneity and slice
thickness (Chapter 2). By varying specific MR imaging parameters, a set of brain images
can be simulated, thus creating an image database. This database can be used to test
medical image processing and pattern recognition algorithms ranging from classification
to RF correction, all in a controlled environment. For example, by varying parameters
that control RF inhomogeneity, a range of simulated MR images containing different levels
of RF inhomogeneity can be created. Since the source of all the simulations is a single

digital phantom (which is a labeled brain volume representing the gold standard), one can
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establish the sensitivity of any particular classification algorithm with respect to levels of
RF inhomogeneity in an MR image, classifier accuracy can be determined as a function
of RF inhomogeneity. In this fashion, by testing several classifiers, one can tell which

classifier is more resistant or susceptible to varying levels of RF inhomogeneity.

6.3 Creation of the database

Prior to the construction of the database, it is necessary to establish the baseline condi-

tions of the varying MR imaging parameters that can be adjusted as follows:

e Estimate normal levels of noise, inherently present in MR images
e Estimate typical RF inhomogeneities for different imaging sequences

e Establish different levels of slice thicknesses that are part of clinical and research

imaging protocols

6.3.1 The MR simulator

The MR simulator [Kwan et al., 1996] used in this thesis performs a discrete-event sim-
ulation of MR signal production. It is composed of two modules; signal production, and
image production. The signal production is accomplished by the simulation of different
pulse-sequence effects on tissue magnetization state (Chapter 2). The results of the signal
production are used by the image production module to generate the simulated MRI im-
age volume. A fuzzy digital phantom (Section 6.3.2), indicating the spatial probabilistic
distribution of tissue types, is used to calculate the signal intensities at each voxel position
to produce the simulation. Depending on the specified sampling resolution, partial vol-
ume effects are subsequently evaluated. Signal reception is modeled through the use of an
RF-coil model, which takes into consideration the effects of noise and RF inhomogeneities,

according to specified imaging parameters.
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6.3.2 Construction of the fuzzy digital phantom

In order to simulate MR images, the MR simulator [Kwan et al., 1996] needs a fuzzy digital
phanton that serves as the standard from which different MR, images of varying conditions
can be simulated. This fuzzy phantom is a probabilistic labeled brain image volume, where
each voxel value is the probability of its belonging to different tissue types. In order
to create such a phantom, a healthy volunteer was scanned 27 times using T)-weighted
imaging sequence. All the individual MR volumes were transformed into stereotaxic space
(Section 4.2) to make them suitable for comparison and averaging. The transformed
volumes comprised 181 slices of 217 x 181 voxels, each having a size of Imm3. The 27
T)-weighted volumes were co-registered in 3D [Collins et al., 1994] and intensity averaged
into a single volume to increase the signal to noise ratio. Superior neuro-anatomical detail

was visible in the resulting average volume.

Figure 6.1a is a transverse slice, demonstrating the quality of the MR images obtained
by averaging 27 volumes from the same subject. Compared to Figure 6.1b, which is one
of the 27 volumes, it exhibits superior neuro-anatomical detail that can be classified easily

to capture the complex structure of the human brain.

From this average volume, and with the help of the neuro-anatomist at the MNI, a
carefully selected training set was chosen as a starting point representing four classes;
background, cerebro-spinal fluid, gray matter, white matter. Then the average MR vol-
ume was classified using fuzzy Minimum Distance algorithm into the above mentioned four
classes. It is important to note that any classifier giving fuzzy class membership could
have been used. The reason fuzzy Minimum Distance algorithm was chosen because qual-
itatively, the resulting fuzzy volumes (representing each class) had less sharp boundaries
between different tissue types. Furthermore, visually it looked more realistic. As dis-
cussed in Section 5.3.3, it should be noted that errors resulting from mis-classification
of the MDP do not matter, since they are considered by the simulator to be correct by

definition.

The resulting classified volume was carefully analyzed by the neuro-anatomist, who
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(a) (b)
Figure 6.1: (a) An image slice from the average of 27 T}-weighted image volumes, demon-
strating superior signal to noise ratio. (b) an image slice from a single Tj-weighted image

volume.

corrected the numerous areas that the algorithm mis-classified. Subsequently, the follow-
ing six tissue types; fat, muscle, skin, skull, glial matter (a structure around the ventricles)

and connective tissue were manually added to the above mentioned corrected volume.

This volume served as the digital phantom that had correct neuro-anatomical rep-
resentation (the gold standard) from which all MRI simulations were generated. The
advantage of using fuzzy, rather than discrete digital phantom, is the fact that each voxel
has anatomical partial volume information, represented in terms of probabilistic values for
each tissue type. This is because at a microscopic level, the transition from one tissue type
into another in the brain, is not sharp, but happens progressively. For example, a particu-
lar voxel might be 70% GM and 30% WM and 0% CSF. Figure 6.2 shows transverse slices
from this fuzzy digital phantom, for each of CSF, GM and WM classes. Figure 6.3 shows
how the fuzzy phantoms (like the ones in Figure 6.2) representing the ten tissue classes,

can be combined into a discrete digital phantom suitable for classification comparison.
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This is accomplished by assigning each voxel to the most probable tissue class from the

fuzzy volumes.

Figure 6.2: Transverse image slices of fuzzy (a) CSF, (b) GM and (c) WM phantoms.

Figure 6.4 shows a real and a simulated MR image and F igure 6.5 shows MR simula-

tions of Tj-, T>- and PD-weighted image volumes.

6.3.3 Estimation of normal noise levels

As mentioned in Chapter 2, noise from a variety of sources is present in MR images. In
order to create a series of simulations of varying noise levels, it is necessary to estimate
the normal levels of noise present in MR images for a particular scanner. Within the
simulator, definition of signal-to-noise (SNR) ratio is given by the following relation

[Nishimura, 1993]:

signal amplitude
standard deviation of noise

SNR = (6.1)

(a4



Figure 6.3: Discrete version of the digital phantom, produced by combining several fuzzy

phantoms.

Signal amplitude is represented by voxel intensities of the brightest tissue class, which
for T)-weighted images is the white matter tissue, and for T5- and PD-weighted images

it is cerebro-spinal fluid.

MR image volumes from five healthy volunteers obtained using the Philips Gyroscan
ACS-2 scanner at the MNI, were examined to estimate the level of noise present in typical
scans. This was done by calculating the mean intensity of the brightest tissue class for
respective Ti-, T5- and PD-weighted imaging sequences and the standard deviation of
the voxel intensities in the background, by taking sample voxels in respective regions of
interest (Equation 6.1). The resulting noise levels ranged between 2 to 4%. Therefore 3%

was taken to be the level of noise normally present in MR images at the MNI.

Since MR scanners are constantly being improved, there exists a huge population of
MR scanners with wide ranging conditions depending on age, sophistication and field

strength. In the simulated brain database, noise levels were 0%, 1%, 3% (normal noise),
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(a) (b)
Figure 6.4: (a) A real MR image and (b) a simulated MR image. Note that the simulated
image has no Choroid Plexus in the lower ventricles (a structure responsible for producing
CSF, pointed to by arrows in the first image). This is because in the digital phantom,

this structure was misclassified as CSF.

5%, 7%, and 9%. With the present MR scanners, 9% noise is considered to be VEry noisy.
Figure 6.6 shows T)-weighted MR simulations with 3 levels of noise, demonstrating the

resulting image degradations.

6.3.4 Estimation of typical RF inhomogeneities

RF inhomogeneity introduces a slowly-varying intensity non-uniformity over the whole
image. In order to estimate RF inhomogeneities present in different MR images, it is
necessary to apply an RF correction method to each set of images, in order to estimate
typical RF field variations. Since RF inhomogeneities are pulse-sequence-and-subject de-
pendent, a triplet set of T}-, T»- and P D-weighted image volumes of the healthy volunteer

(who supplied the 27 T;-weighted image volumes) were obtained. A spline curve-fitting
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(a) ()

Figure 6.5: Sample simulated (a) T}-weighted, (b) Tp-weighted and (b) PD-weighted

images using the phantom of Figure 6.2, with normal levels of noise and RF inhomogeneity.

method was used to correct for RF inhomogeneities, where 500 reference points per tis-
sue class were chosen, spanning the entire image volume. Afterwards, a thin-plate spline
surface was fitted to the intensity values of these reference points [Dawant et al., 1993].
This fitted thin-plate spline was subsequently used to correct the volumes for RF inhomo-
geneities. Figure 6.7 shows sample fields obtained for each of 7}-, T»- and PD-weighted

image volumes, using the above mentioned RF correction method.

The RF fields are represented as magnitude images, ranging in values centered around
1.0, where the minimum and the maximum of these magnitude images signify the level of
inhomogeneity. For example, an RF field might have magnitude values ranging between
0.8 and 1.2, signifying a 40% change in intensity values across an image volume. In
establishing normal levels of RF inhomogeneity, MR images from 12 different MR scanners
across North America were corrected for RF inhomogeneities. These images were obtained
as part of the AutoImmune project; a drug trial study for Multiple Sclerosis, taking place
at the MNI. The probability densities of the resulting RF fields were plotted as a function
of field strength (Figure 6.8). Figure 6.9 shows horizontal and vertical intensity profiles
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(2) (b) (c)
Figure 6.6: Sample simulated T}-weighted images with (a) 0%, (b) 3% and (c) 9% noise.

across the fields obtained in Figure 6.7. It can be seen that the majority of RF field
variations were between 0.9 and 1.1, signifying 20% variation in intensity. Therefore 20%

was determined to represent the magnitude of normal RF inhomogeneity.

In order to vary the severity of the RF inhomogeneity, one can adjust the field minimum
and the maximum, while preserving the shape of the fields and their probability densities,
to obtain desired variations. In creating the simulated brain database, six different levels
of RF were considered: 0% , 10%, 20% (normal RF), 30%, 40% and 50%. Figure 6.10
shows two T}-weighted images with no RF and 50% RF inhomogeneity. Notice the level

of intensity variations found across the upper and lower right corner of the second image.

6.3.5 Selection of slice thicknesses

Slice thickness selection is normally established by clinical and research protocols that
dictate time constraints and the resolution at which a particular study is to be carried
out. Typically, the slice thickness of MR. scans for clinical purposes ranges between 3-5

millimeters. On the other hand, research protocols, requiring higher resolution, usually
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(a) (b) (c)
Figure 6.7: Sample RF inhomogeneity fields generated by correcting (a) T;-weighted,
(b) T>-weighted and (c) PD-weighted image volumes using a method described in Sec-
tion 6.3.4.
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Figure 6.8: RF field strengths as a function of probability density from 12 different MR

scanners.

acquire images at lmm slice thickness. As slice thickness increases, partial volume be-
comes a significant factor, where adjacent tissue types are grouped together into a single

voxel. In order to study the effects of partial volume of the MR scanner, the SBD con-
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(a) (b) (c)
Figure 6.9: RF inhomogeneity field intensity profiles of (a) Ti-weighted, (b) T-weighted
and (c) PD-weighted image volumes of Figure 6.7.

tains images of lmm, 3mm and 5mm slice thicknesses. Figure 6.11 shows T}-weighted
MR simulations with 1mm, 3mm and 5mm slice thicknesses, demonstrating the effects of

partial volume.

6.3.6 Creation of the database

Having established the baseline values of noise and RF inhomogeneities, and the range
over which these parameters will vary, it is helpful to put into perspective the different
permutations of image parameters. There are 3 imaging sequences (T1-, T»- and PD-
weighted), 6 levels of noise, 6 levels of RF inhomogeneity, and 3 slice thicknesses (1mm,
3mm, 5Smm). Together, the combinations yielded potentially 324 different image volumes,
requiring considerable storage, processing and analysis (each volume occupies more than

14MB of disk space for a total of 4.5GB of storage).

In order to avoid the combinatorial explosion of imaging parameters in a meaningful

way, a systematic approach had to be followed to limit the variations in the noise, RF
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(a) (b)
Figure 6.10: Sample simulated images with (a) no RF and (b) 50% RF inhomogeneity.
Note the intensity variations in the white matter of the second image, as compared to the

first.

inhomogeneity and slice thickness. The essence of the MR simulation experiments was to
study the impact of different parameters of MR imaging on brain tissue classification. To
do that, one parameter was systematically varied, while keeping all others constant. For
example, noise levels and slice thickness should be kept to typical normal values, when
studying the effects of RF inhomogeneity on different classifiers. The database was gen-
erated such that the six levels of noise were created at normal levels of RF inhomogeneity
and slice thickness. Furthermore, six levels of RF inhomogeneity were created at normal
levels of noise and slice thickness. Finally three slice thicknesses were generated at nor-
mal levels of noise and RF inhomogeneity. Since three imaging sequences (T1, T2, PD)
were considered in all combination, there were 39 image volumes. These were far fewer
image volumes as compared to 324 combinations. These, however, could be managed in

a realistic fashion.
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Figure 6.11: Sample simulated T}-weighted images with (a) 1mm, (b) 3mm and (c) 5Smm
slice thickness. Note the level of blurring between GM and WM class borders as the slice

thickness is increased.

6.4 Concluding remarks

This chapter has discussed the motivation and the creation of the simulated brain database
in order to provide a controlled environment for measuring the effects of MR imaging pa-
rameters on image processing and pattern recognition algorithms. For the purpose of this
thesis, such a database was invaluable in providing a systematic means of studying effects
of noise, RF inhomogeneity and slice thickness on various tissue classification algorithms

(Chapter 3), as well as for testing the automation of training sample selection (Chapter 4).



Chapter 7

Experimental Results

7.1 Introduction

This chapter describes the experiments carried out to establish the usefulness of the
tissue probability maps in automating the training set selection process, and to compares
the performance of five supervised and two unsupervised classification algorithms under

varying MR imaging conditions.

7.2 Rationale and design of the experiments

The experimental program was designed to determine the feasibility of automating super-
vised classifications by means of tissue probability maps, and compare their performance
(alongside that of experts) under varying conditions of MR imaging. These goals lead to

the following specific questions:

e How similar are automatically generated training sets to those manually chosen by

experts?

86



e How sensitive is each individual classifier to manually and automatically generated

training sets under normal conditions of MR imaging?

* How do the classification results obtained by using automatically generated training

sets compare to those obtained from manually chosen ones?

e How do increased levels of noise, RF inhomogeneity and slice thickness affect the

performance of each classifier?

e Which classifiers are most sensitive to each of the above conditions? Which one

functions best overall ?

¢ Does the highest ranking algorithm based on simulated MR data sets perform as

well when classifying real MR data sets?

7.3 Methods

The following sections describe the experimental methods employed in carrying out the

experiments designed to answer the questions posed in the previous section.

7.3.1 Brain volume data sets

All classifications were carried out using three features (triplets); T)-, T- and PD-
weighted image volumes. Chapter 6 described the creation of the simulated brain database
that provided the brain volumes of varying conditions of MR imaging. Five separate sets
of brain images were used to conduct the experiments described in this chapter. These

were:

1- A triplet set of simulated normal brain volumes.

2- Six simulated brain volume triplet sets with varying levels of noise, (Section 6.3.3).
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3- Six simulated brain volume triplet sets with varying levels of RF inhomogeneity,

(Section 2.4.2).
4— Three simulated brain volume triplet sets with varying slice thicknesses (Section 6.3.5).

5— A single triplet set of a real brain.

7.3.2 Training sets

In this chapter, the term trainer, denotes either a human expert or an automated method
of choosing a set of training samples. Several such sets were obtained through human and

automatic trainers as follows:

Manually selected training sets

In order to obtain manual training samples, human operators with neuro-anatomical
knowledge used interactive tools to view a particular brain volume, and choose a set
of voxels from various tissue classes. Three operators (Ezpert 1, Ezpert 2, Ezpert 3),
volunteered their services. Six manually selected training sets containing 25 and 50 sam-
ple voxels from each tissue type were obtained from the simulated normal T)-weighted
brain image volume. The experts preferred T;-weighted images because of good contrast

between gray and white matter tissues.

Automatically generated training sets

Chapter 4 described the creation of the brain tissue probability maps. Five probability
thresholds (100%, 90%, 80%, 70%, 60%), were chosen to automatically generate ten
training sets, also containing 25 and 50 training samples, by the sub-sampling method

explained in Section 4.3.1.
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7.3.3 Index of performance

Classification performance was determined by the index of agreement Kappa, measured
between individual classifications and the MDP from which the simulations were gener-
ated. Kappa values (Section 5.2.2) were calculated over all tissue classes, spanning the
entire brain volume, but excluding areas outside the brain. The kappa values obtained in

the following experiments were interpreted in a relative setting.

7.3.4 Classification parameters
Artificial neural nets

The learning rate and momentum of a neural network affects the rate at which it conver-
gences in training. The momentum prevents the network from stopping at a local mini-
mum in its gradient decent [Caudill and Butler, 1992]. The number of hidden neurodes
in the network should be large enough to form decision boundaries necessary to classify
the different tissue types. However, choosing a very large number of hidden neurodes
might be counter-productive, as the weight distribution cannot be estimated reliably with
a given set of training samples [Lippmann, 1987]. Learning and topological parameters of
the ANNs in MR image classification has been studied by Ozkan [Ozkan et al., 1993]. He
showed no significant variation in the performance of the ANN classifier, as the number
of hidden neurodes increased beyond four. Furthermore, he concluded that the nature of
the problem of classifying MR data permitted the use of unitary learning rate, and the
momentum was found to be important only when the learning rate was small. In that
respect, the ANN topology used in this thesis was as follows: three neurodes at the input
layer (corresponding to the 3 features; T}-, T»- and P D-weighted image volumes), one
hidden layer containing 10 neurodes, and an output layer of 4 neurodes (corresponding
to the 4 classes of interest; BCK, CSF, GM, WM). The maximum number of training
iterations was set to 500, the learning rate was 0.8 and the momentum was 0.3. The delta

error rate for convergence was set to 107°.

89



C4.5 Decision tree

For the C4.5 classifier, training involved the generation and pruning of 20 decision trees,

and choosing the tree with the best error rate to classify the brain volume.

k-Nearest Neighbors

In the &-NN classifier, & is usually set to a small odd fraction of the number of training
samples to avoid ties [Duda and Hart, 1973; Clarke et al., 1993]. The larger the value
of k, the better estimation of of a posterior: probability of a given class, at a very high
computational demand. The number of nearest neighbors for the kNN classifier was set

to 5.

7.3.5 Unsupervised classifiers

Initial experiments showed that the performance of the unsupervised classification algo-
rithms (HCM and FCM) was unsatisfactory when the only information presented to the
algorithms (in addition to the data sets) was the number of tissue types to classify. In
order to improve the classification performance, a method presented by Bensaid [Bensaid
et al., 1996] was implemented. This was a semi-supervised method, where trainer supplied
samples were used to guide the initial cluster centroids in the right direction. When a
training set was used in this manner, dramatic improvements of classification performance
were observed for both HCM and FCM algorithms. Therefore, subsequent testing of these

unsupervised algorithms were done using such training sets.

7.3.6 Validation based on real MR data sets

Section 5.3 described some of the difficulties associated in doing quantitative appraisal of
the classification performance in real data sets. These difficulties were especially evident

when results from real MR volumes needed to be validated (in the absence of the gold

90



standard). Ideally, sufficient expert opinion is needed to establishing a mean (and vari-
ance) of performance ranking of all classifiers by several experts (Section 5.3.3). Given
the labor-intensive nature of this task, the experts were reluctant to appraise the perfor-
mance of classifiers on a large number real brain volumes, since each real MR volume had
seven classified volumes corresponding to each algorithm. However, they volunteered to
appraise classifier performance on a single real data set. Therefore, a real brain volume
(from the ICBM data set) was classified by all seven algorithms using automatically gen-
erated training sets. This was to determine whether the best ranking classifier tested on
the simulated data sets, performed equally well on real brain volumes. The classification
results of the real MR volume were verified qualitatively by the three experts, each of

whom spent considerable time analyzing the performance of the results.

7.3.7 Computational machinery

All the software tools necessary for the experiments were written in the C/C++ pro-
gramming language, exceeding 40,000 lines of code. The code for the C4.5 classifier
was obtained from Morgan Kaufman Publishing [Quinlan, 1993] and incorporated in the
main classification tool, the “black box” (Figure 7.1). The ANN classifier was part of
an interactive medical image analysis environment called MIDAS, written at Vanderbilt
University [Zijdenbos et al., 1994; Zijdenbos and Dawant, 1994]. The ANN classifier was
extracted from MIDAS and incorporated into the classification “black box”. The rest of
the algorithms (except BAYES) were developed by the author at the McConnell Brain

Imaging Center.

All the experiments were conducted on a cluster of twelve Silicon Graphics Computer
Systems (11 workstations and a multi-processor compute server) with varying CPU power
(36 - 175 MHz). Table 7.1 shows average CPU time in minutes for different classifiers
and training sets, calculated over all the workstations. Due to the long classification time
required by the unsupervised classifiers, only training sets containing 50 samples were

used.
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Figure 7.1: A flow diagram showing the classification process.

ANN | BAYES |C4.5| kNN | MD | HCM | FCM
Samples(25) || 4.16 6.38 3.56 | 140.10 | 4.16 { n/a n/a
Samples(50) || 4.32 8.01 3.73 | 250.18 | 4.32 | 239.97 | 424.16

Table 7.1: Average CPU time in minutes for different classifiers and training sets.

7.4 Experiments and results

The following experiments were conducted to evaluate the usefulness of the brain tissue
probability maps in automatically generating training sets, and to test performance of

several training sets (manual and automated), under normal and varying conditions of

MR imaging.

7.4.1 Usefulness of TPM in generating training sets

The training sets obtained from all the trainers (human and automated), were used to

calculate the mean and the standard deviation of voxel intensities for each of the tissue
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Samples(25) | Samples(50)
Trainer Mean | S.D. | Mean | S.D.

Ezpert 1 | 233.74{ 33.30 | 232.56 | 35.52
Ezpert 2 | 220.00 | 22.55 | 223.98 | 30.10
Ezpert 3 | 204.98 | 60.27 | 210.78 | 52.23

AvgEzxpert || 219.58 | 42.92 | 222.44 | 41.12

Auto 100 | 231.81| 33.15 | 227.52 | 26.97
Auto 90 | 220.00 | 31.21 | 226.44 | 47.44
Auto 80 |[239.95| 78.11 | 227.95 | 59.46
Auto 70 | 280.53 | 103.46 | 267.87 | 99.52
Auto 60 | 277.74 | 120.66 | 262.61 | 95.18

Table 7.2: Mean and standard deviation of voxel intensities of CSF tissue class for a T)-
weighted brain volume, calculated from training samples of several automatic and human

trainers.

types CSF, GM and WM from the T|-weighted normal simulated brain volume. Any of the
T)-, T>- and PD-weighted image volumes could have been used, the reason for choosing
T-weighted images was because they showed the most contrast between the three tissue
types. The automated methods were named after their threshold values (Auto 100,. . .,
Auto 60). Tables 7.2 to 7.4 list the mean and standard deviation of intensity values
for CSF, GM and WM tissue classes calculated from the above mentioned training sets.

AvgExpert refers to the average obtained from all human trainers.

The results presented in Tables 7.2 to 7.4, show that the mean intensities and the
standard deviations of all tissue types were fairly constant for 25 and 50 sample training
sets across all three experts, except for Expert 3 who had a slightly larger standard de-
viation for the CSF tissue class. On the other hand, in automatically generated training

sets, the standard deviation of the tissue intensities increased dramatically as the prob-
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Samples(25) | Samples(50)
Trainer Mean | S.D. | Mean | S.D.

Ezpert 1 |[533.15 32.67 | 534.76 | 34.00
Ezpert 2 | 541.31 | 34.05 | 542.81 | 33.82
Ezxpert 3 |[542.17| 34.89 | 542.59 | 38.03

AvgEzpert || 538.87 | 33.67 |540.05 | 35.30

Auto 100 || 513.19 | 33.68 | 519.41 ] 35.11
Auto 90 | 505.89 | 75.53 | 508.36 | 59.93
Auto 80 [ 497.95| 117.01 | 506.97 | 94.33
Auto 70 || 513.19 ] 75.99 |511.90 | 75.11
Auto 60 | 520.49 | 114.05 | 534.44 | 112.33

Table 7.3: Mean and standard deviation of voxel intensities of GM tissue class for a T-
weighted brain volume, calculated from training samples of several automatic and human

trainers.
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Samples(25) | Samples(50)
Trainer Mean | S.D. | Mean | S.D.

Ezpert1 | 720.52)49.43 | 721.43| 43.38
Ezpert 2 | 727.61|34.77 | 726.86 | 35.30
Ezpert 3 | 717.95|22.87 { 718.38 | 29.82

AvgEzpert || 720.74 | 39.31 | 720.34 | 37.03

Auto 100 | 740.27 | 28.07 | 742.42 | 26.64
Auto 90 742.20 | 22.54 | 735.87 | 25.54
Auto 80 723.96 | 47.01 | 724.28 | 43.16
Auto 70 723.96 | 57.66 | 721.70 | 50.44
Auto 60 687.04 | 86.15 | 663.54 | 120.86

Table 7.4: Mean and standard deviation of voxel intensities of WM tissue class for a T\-
weighted brain volume, calculated from training samples of several automatic and human

trainers.
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Classifier || Samples | Expertl | E zpert2 | Expert3 | AvgEzpert | Auto100 | Auto90
ANN 25 0.907 0.895 0.860 0.887 0.905 0.860
50 0.901 0.907 0.866 0.891 0.903 0.905
BAYES 25 0.890 0.908 0.895 0.898 0.897 0.803
30 0.900 0.901 0.889 0.897 0.885 0.854
C4.5 25 0.773 0.77 0.801 0.784 0.833 0.702
50 0.868 0.866 0.801 0.845 0.872 0.773
kNN 25 0.845 0.828 0.850 0.841 0.848 0.857
50 0.846 0.835 0.857 0.846 0.863 0.865
MD 25 0.802 0.799 0.822 0.807 0.806 0.832
50 0.802 0.803 0.824 0.810 0.812 0.830

Table 7.5: Kappa values obtained for the supervised classifiers for five trainers at 25 and
50 samples under normal MR imaging conditions (noise level = 3%. RF inhomogeneity

= 20%, slice thickness = 1mm).

ability threshold was reduced, even though the mean tissue intensities were somewhat
uniform. Furthermore, the CSF tissue class intensities were over estimated in comparison
to the experts as the threshold dropped below 80%. This was expected because of nor-
mal neuro-anatomical variability: as the tissue probability threshold was reduced, voxels
from adjacent tissue classes were mixed in, thus changing the mean and increasing the
variance of the class intensities. Since the standard deviations increased dramatically for
probability thresholds lower than 90%, especially for CSF and GM tissue classes, Auto 80,

Auto 70 and Auto 60 trainers were discarded from subsequent experimentation.

7.4.2 Sensitivity of the classifiers to different training sets

In order to determine how sensitive each of the five supervised classification algorithms

were to manually and automatically selected training sets, the following experiment was
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carried out.

Of the sixteen training sets (3 human and 5 automatic trainers having chosen two
sets each) described in Section 7.3.2, ten were chosen from five trainers (3 humans, 2
automated). These sets were used to train and classify the simulated normal brain volume
with the five supervised methods. Table 7.5 shows the tabulated kappa values of each of

the five classifiers, under normal MR imaging conditions for simulated data sets.

For most classifiers, the AvgEzpert and the Auto 100 trainers did not demonstrate any
noticeable difference in performance, as the number of training samples increased from
25 to 50 samples, except for the C4.5 classifier, where training sets with larger number of
samples were preferred. For the Auto 90 trainer, increasing the sample size from 25 to 50
voxels showed improvement in performance for the ANN, Bayesian and C4.5 classifiers.
This was possibly due to the fact that as the probability threshold was reduced to 90%,
the resulting training samples were more varied, and a larger number of samples were
needed to establish proper decision boundaries. Some classifiers, like the MD, showed no
noticeable improvement to an increase in the number of training samples, while others like
C4.5 did. In general, increasing the training set size only gave marginally different overall
results. Hence, in order to reduce the dimensionality of the search space (type of classifier,
noise, RF inhomogeneity, slice thickness, different trainers, ... ). only 50-sample sets were
included in subsequent experiments. Also, Table 7.5 indicates that the automatic trainers
yielded results no worse than those obtained with human trainers. Hence, only automated

trainers were used for all subsequent experiments.

7.4.3 Classifier performance under varying conditions of MR
imaging
To demonstrate classifier performance as a function of noise, RF inhomogeneity and slice

thickness, the following experiments were conducted. The five training sets were used to

train the seven algorithms and classify the brain image volumes in the simulated brain



database. The database had six varying levels of noise and RF inhomogeneity and three
different slice thicknesses (Section 6.3). In subsequent graphs, kappa values of the clas-
sifiers, trained on sets supplied by human trainers, were averaged (labeled AvgEzpert) in

order to compare the automated trainers to average human trainer.

Varying levels of noise

Figure 7.2 demonstrates the performance (kappa values) of each of the supervised algo-
rithms, and Figure 7.3 for the unsupervised algorithms as a function of increased levels
of noise. As expected, increasing noise levels reduces classifier performance. However,
among all the classifiers, the ANN classifier (and to some extent the BAYES classifier)
was the least affected by noise. In contrast, the MD classifier was the most affected. In
most classifiers (except for BAYES). the automated trainer Auto 100 compared favorably
to the average human trainer on all levels of noise. The Auto 90 trainer did worse than
the rest of the trainers for C4.5 classifier, as the performance fluctuated. It was not clear

why the MD and kNN classifiers preferred the Auto 90 trainer over Auto 100.

Varying levels of RF inhomogeneity .

Figure 7.4 demonstrates the performance of each of the supervised algorithms, and Fig-
ure 7.5 for the unsupervised algorithms as a function of increased levels of RF inhomo-
geneity. The ANN and BAYES classifiers were the least affected by RF inhomogeneity,
whereas the MD classifier was the most affected. The Auto 100 trainer in general, did
slightly better than AvgEzpert on all levels of RF inhomogeneity for kNN, MD and C4.5
classifiers, and most levels for the ANN classifier. As before, it was also not clear why the

MD and kNN classifiers preferred the Auto 90 trainer over Auto 100.
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Figure 7.2: Performance of the supervised classifiers, using manual and automated train-

ing sets of 50 samples, on T}-, T»- and P D-weighted image volumes, under varying con-

dition of noise (RF inhomogeneity = 20%, slice thickness = lmm).
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Figure 7.3: Performance of the unsupervised classifiers, using automated training sets of
50 samples, on T}-, T>- and P D-weighted image volumes, under varying condition of noise

(RF inhomogeneity = 20%, slice thickness = lmm).

Varying slice thicknesses

When classifying brain volumes having 3mm or 5mm slice thickness, experts choose train-
ing samples from respective volumes, since the only information available for the expert
are the images themselves. So the experts were asked to choose training samples from
brain volumes simulated at 3mm and 5mm slice thicknesses. In general, they expressed
that as slice thickness became larger, it became more difficult to choose training samples
with confidence. This was expected, since partial volume effect mixed intensity signals
of neighboring tissues into single voxels, thus producing blurred voxel intensities. As for
the automatic trainers, the same training sets generated earlier were used. Figure 7.6
demonstrates the performance of each of the supervised algorithms, and Figure 7.7 for
the unsupervised algorithms as a function of increased slice thicknesses. Overall, the
Auto 100 and Auto 90 trainers did no worse or better than AvgEzpert in all classifiers
except for the C4.5 classifier, where the Auto 90 trainer , as before, showed performance
Huctuations. For the kNN classifier, the Auto 90 trainer performed marginally better than

AvgEzpert. The Auto 100 trainer performed slightly better for the BAYES classifier.
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Figure 7.4: Performance of the supervised classifiers, using manual and automated train-
ing sets of 50 samples, on T\-, T>- and P D-weighted image volumes, under varying con-

dition of RF inhomogeneity (noise level = 3%, slice thickness = lmm).
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Figure 7.5: Performance of the unsupervised classifiers, using automated training sets of
90 samples, on T)-, T>- and PD-weighted image volumes, under varying condition of RF
inhomogeneity (noise level = 3%, slice thickness = 1mm). Note the change in the origin

of the ordinate.

7.4.4 Result of real MR volumes

In order to evaluate the performance of the classifiers on a real MR data set, each expert
was presented with the seven classified versions of the real data in a blind test, and asked
to rate the volumes from best to worst. As mentioned in Section 7.3.6, it was difficult for
the experts to do a quantitative assessment of the results obtained. Each had a different
interpretation as to what parts of the brain were misclassified by various classifiers. They
stated that some algorithms (BAYES and C4.5) overestimated gray matter tissue in the
anterior part of the brain and underestimate it in the posterior part, whereas others
(MD and C4.5) overestimated white matter tissue in the periphery. Even though there
were disagreements among the experts, as to the relative ranking of all the classifiers,
when asked which classified volume among the seven, best represented the underlying

neuro-anatomy of the real MR volume, they all chose the ANN-classified volume.
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Figure 7.6: Performance of the supervised classifiers, using manual and automated train-
ing sets of 50 samples. on T}-, T»- and P D-weighted image volumes, under 1mm, 3mm,

and Smm slice thicknesses (noise level = 3%, RF inhomogeneity = 20%).
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Figure 7.7: Performance of the unsupervised classifiers, using automated training sets of
90 samples, on Ti-, T5- and PD-weighted image volumes, under 1mm, 3mm, and 5mm
slice thicknesses (noise level = 3%, RF inhomogeneity = 20%). Note the change in the

origin of the ordinate.

7.5 Discussion

Experiments were carried out to determine the performance of five supervised and two
unsupervised classification algorithms, using manually and automatically generated train-
ing sets. Figures 7.9, 7.10 and 7.11 show the performance of all classifiers as a function
of increased levels of noise, RF inhomogeneity and slice thickness respectively, using the
Auto 100 trainer. Figure 7.8 shows a single image slice from the simulated T1-weighted
image volume, the digital phantom, and the results produced from each of the individ-
ual algorithms. Furthermore, the Auto 100 trainer was also used to classify a real MR
brain data set, using all seven classifiers. Analyzing the results obtained, the following

conclusions were drawn:

1- The brain tissue probability maps were used successfully in automatically gener-
ating training sets, thus eliminating the need for manual interaction with the use
of supervised classification algorithms. Overall, the automatic trainers (especially

Auto 100) produced slightly more accurate results than their human counterparts.

104



2—

The ANN classifier was the best overall performer, being the most resistant to
noise and slice thickness and almost unaffected by RF inhomogeneity. Due to com-
plex and parallel nature of the ANN classifier, one cannot simply gain insight in
its reasoning by analyzing weight distribution on inter-connected neurodes. Omne
“hopes” that the network develop expertise necessary to capture patterns that it
had trained on [Schalkoff, 1992]. Two layer ANNs form unbounded convex polyg-
onal decision boundaries in feature space [Lippmann, 1987]. This might be one
possible explanation to the superior performance of the ANN classifier in discrimi-
nating non-linearities found in MR data. The BAYES classifier was the next best
algorithm, where its relative immunity to RF inhomogeneity (which elongates clus-
ters in feature space) may be due to the insensitivity of the Mahalanobis distance

to exaggerated hyper-ellipsoid clusters.

Of the supervised algorithms, the MD classifier performed the worst, and was most
influenced by the MR imaging artifacts. This was expected. As noise and RF
inhomogeneity levels increased, clusters in feature space got more diffused and elon-
gated (Section 3.3), and the Euclidean Distance measure of the MD classifier favored

hyper-spherical clusters.

The C4.5 classifier showed fluctuating results to automatically generated training
sets, especially at 90% probability threshold. It was not entirely clear why this was

the case.

In the absence of noise (and at normal levels of RF inhomogeneity and slice thick-
ness), the BAYES and Cd4.5 classifiers did worse than the rest. This was possibly
due to their inability to establish some variance that would allow them to operate

optimally.

Unsupervised methods showed dramatic improvements when initial clustering was
guided through the use of training sets. No difference was observed between Auto 100
and Auto 90 trainers. The FCM algorithm performed better than Hard C Means

algorithm, but both performed worse that the supervised classifiers.
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7- The C4.5 classifier was the fastest, while the FCM classifier the slowest.

8- Training sets containing 50 samples performed a little better than 25 sample set for

most classifiers.

9- The human experts stated that the result produced on real MR brain volume by

the ANN classifier was the best among all classifiers.

7.6 Concluding remarks

A method for automating the training samples selection process was proposed, and its
usefulness tested. It was determined that brain tissue probability maps can successfully
be used to automate supervised classification algorithms. F urthermore, the performance
of seven classifiers (5 supervised and 2 unsupervised) were tested under varying condition
of MR imaging. The Artificial Neural Nets classifier was the best classifier under all
conditions of MR imaging for both simulated and real data. The next chapter summarizes
the work produced by this thesis, pointing to areas that could potentially be improved in

the future.

106



Figure 7.8: Sample images from (a) digital phantom (b) T}-weighted simulated MR im-
age; classified using (c) kNN (d) ANN (e) BAYES (f) C4.5 (g) MD (h) FCM (i) HCM
classification algorithms on T-, T5- and P D-weighted image volumes, under normal MR

imaging conditions (noise level = 3%, RF inhomogeneity = 20%, slice thickness = lmm).
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Comparative performance of classifiers across Noise levels
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Figure 7.9: Performance of the all classifiers using an automatic trainer at 100% proba-
bility threshold, 50 training samples, on T}-, T»- and P D-weighted image volumes, under

varying conditions of noise (RF inhomogeneity = 20%, slice thickness = lmm).
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Comparative performance of classifiers across RF inhomogeneity
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Figure 7.10: Performance of the all classifiers using an automatic trainer at 100% proba-
bility threshold, 50 training samples, on Tj-, T5- and PD-weighted image volumes, under

varying conditions of RF inhomogeneity (noise level = 3%, slice thickness = 1lmm).
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Comparative performance of classifiers across Slice thickness
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Figure 7.11: Performance of the all classifiers using an automatic trainer at 100% proba-
bility threshold, 50 training samples, on T}-, T- and PD-weighted image volumes, under
three slice thicknesses, lmm, 3mm and 5mm (noise level = 3%, RF inhomogeneity =

20%).
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Chapter 8

Conclusion and Future Work

8.1 Conclusions
The main objectives of this thesis, as listed in Section 1.4 were the following:

1- Develop a controlled test environment, where different classification algorithms can

be implemented easily and their performance tested in a brain imaging context.

2- Provide a mechanism for automating supervised classification algorithms through
the use of brain tissue probability maps. These maps provide a priori knowledge
of neuro-anatomy. where training samples are extracted from probabilistic brain

locations, eliminating the need for user intervention.

3- Test the performance of five supervised (Artificial Neural Networks, Bayesian. k -
Nearest Neighbors, C4.5 decision tree, Minimum Distance) and two unsupervised
(Hard C-Means, Fuzzy C-Means) classification algorithms under varying conditions

of MR imaging.

The classification “black box” was designed to be versatile enough to allow algorithms

to be included with ease and simplicity. The use of the digital phantom and the MR simu-
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lator [Kwan et al., 1996] was instrumental in creating the Simulated Brain Database where

the impact of MR imaging artifacts were studied in a carefully controlled environment.

The brain tissue probability maps were used successfully to generate training sets, thus
automating the supervised classification process. Results obtained through automated

trainers were comparable to those obtained through human trainers.

The performance of five supervised (Artificial Neural Networks, Bayesian, k-Nearest
Neighbors, C4.5 decision tree, Minimum Distance) and two unsupervised (Hard C-Means,
Fuzzy C-Means) classification algorithms was compared under varying conditions of MR
imaging artifacts. The Artificial Neural Networks classifier gave the best overall results.
It proved to be the most resistant to noise and partial volume effect, and almost not
affected by RF inhomogeneity. Its performance was also the best in a real MR image

volume. In contrast the worst performer was the Hard C Means unsupervised classifier.

8.2 Future work

One of the main objectives of this thesis has been the automation of the training set
selection process. Although the experimental results obtained through automatic trainers
were favorable, the results were based on only a few training sets. Further work should
be done to establish statistical significance through the use of numerous training sets
containing the same or varied number of training samples. Section 4.3.1 described a
mechanism of obtaining different realizations of similar training sets, containing the same

number of samples by having random sub-sampling intervals.

Because of inherent neuro-anatomical variability, and depending on the probability
threshold chosen to select training samples from the tissue probability maps, the training
set may include a few samples that do not fall within the intensity profile of the tissue
class the classifier is training on. These samples might in turn confuse the classifier, as
they are considered to be false positives training samples. Fuzzy algorithms can be used

to associate certainties with classification results. This in turn, can be helpful in two
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respects:

e Fuzzy classifications can be used to eliminate false positive training samples, making
sure that the samples obtained with the aid of tissue probability maps produce

proper tissue intensities.

e Fuzzy class certainties can be used to reveal distribution of different tissue types in

a single voxel to characterize partial volume effect.

The elimination of false positive training samples could be accomplished by initially
generating a training set with a large number of samples, then performing a fuzzy classi-
fication on this training set. The resulting fuzzy class certainties could be used to reject
samples that did not produce a particular level of certainty at particular voxel positions.
Afterward, the “cleaned” training set could be used to train and classify the original data

set.

In the human brain, tissue types do not have the same density across the entire
brain. For example, gray matter tissue is dense in some parts of the brain, while sparse in
others, the relative intensity of the tissue depending on density. Researchers are sometimes
interested in classifying only small sections of the brain. It may be possible to limit the
search space of tissue probability maps in generating training samples to small regions of
interest. This could improve classification results, since tissue intensities specific to those
areas of interest could train the algorithm better. Moreover, RF inhomogeneity, being a

smoothly varying field, has less of an impact on localized tissue.

In addition to multi-spectral MRI, Positron Emission Tomography (PET) images could
be incorporated to increase the dimensionality of the feature space of brain images being
classified. PET simulators [Ma et al., 1993] have been successfully used to study the effects
of partial volume on quantification of brain metabolism [Rousset et al., 1993]. Simulated
PET images could be used in conjunction with simulated MR images to determine whether

PET improves the discriminating power of classification algorithms.
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Recently, genetic algorithms [Goldberg, 1989] have been developed that follow evo-
lutionary trends in producing the fittest discriminating function that classify data best.

The use of these algorithms may improve on results obtained in this thesis.

8.3 Concluding remarks

Artificial intelligence [Rich and Knight, 1991; Shinghal, 1992] and machine learning
[Michalski, 1983] are rapidly developing areas of computer science and technology, where
principles of signal and image processing [Schowengerdt, 1983: Schalkoff, 1989], pattern
recognition [Duda and Hart, 1973; James, 1985; Schalkoff, 1992} and computer graph-
ics [Foley et al., 1990], are being used as components of sophisticated medical systems
ranging from radiological analysis of diagnostic images to image-guided neuro-surgery.
As research advances are made in artificial intelligence, more sophisticated algorithms
will become available, continuously raising the issue of optimal functionality. This the-
sis has presented a method to automate the brain tissue classification process, which in
many respects is a precursor to numerous other research and clinical studies in neurology.
It has also developed an environment where future classification algorithms in artificial

intelligence and machine learning can be readily tested in a brain imaging context.
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Abbreviations and Glossary

Acquisition: The process of measuring a signal and storing it into an image file.

Anterior Commisure: A structure deep in the brain defined as the origin in the stereo-

taxic atlas.
ANN: Artificial Neural Netorks.
BP: Back Propagation.
Cerebro-Spinal Fluid (CSF): A fluid that fills the ventricles.
Classification: The process of assigned meaningful labels to different brain tissue types.

Computerized Tomography (CT): An imaging modality utilizing X-rays (ionizing

radiation) to acquire multi-slice anatomical images of the body.

Digital Phantom: A labeled brain volume where each voxel is assigned to any of the

normal tissue types CSF, GM, or WM., used for validation.

Echo Time (TE): The time at which MR signals are measured, after the delivery of an

RF pulse.
FCM: Fuzzy C-Means.

Gray Matter (GM): A type of tissue found in the brain this is predominantly made of

neuronal dendrites.
HCM: Hard C-Means.

ICBM: International Consortium for Brain Mapping.



kNN: k Nearest-Neighbor.

Longitudinal Relaxation: Tissue specific time constant (T1) characterized by the rate
at which the longitudinal magnetization vector returns to equilibrium after an RF

pulse.

Magnetic Resonance Imaging (MRI): Measuring the electro-magnetic energy emit-

ted by nuclei in response to Radio Frequency pulses, reconstructed into an image.
MDP: Master Digital Phantom.
MD: Minimum Distance.
MNI: Montréal Neurological Institute.

Multi-spectral: The condition denoting the nature of MR data, where underlying anatomy
of the imaged organ is represented by multi-contrast images of varying characteris-

tics.

Neuro-anatomical variability: The condition represented by individuals having dif-

ferent sized and shaped brains.

Noise: Variation of the signal measuring capability of the imaging hardware due to Brow-

nian motion of electrons in the circuitry.

Partial Volume: Whenever signals from more than one tissue type a mixed into a single

voxel.

Physical Phantom: A compartmentalized construction, filled with paramagnetic sub-

stances to resemble tissue characteristics of a real brain, used for validation.

Positron Emission Tomography (PET): An imaging modality that measures the ex-
tent of biochemical reactions taking place in the body, such as measuring glucose or

oxygen consumption, or blood flow.

PD-weighted images: The image acquired mostly due to Proton Density.
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RF Inhomogeneity: A variation in intensity of similar tissue types, due to magnetic

pulse variations.

Radio Frequency (RF) Pulse: Electro-magnetic radiation imparted to a collection of

nuclei in magnetic equilibrium.
Repetition Time (TR): The rate at which a sequence of RF pulses is repeated.
Scatter Plots: Multi-dimensional histogram.

Segmentation: The process of delineation of MR images into distinct anatomical re-

gions.
SNR: Signal-to-Noise Ratio.

Similarity Measure: A index indicating the extent of agreement between a classified

volume and the gold standard.

Simulated brain database (SBD): A collection of simulated MR brain volumes with

varying conditions of MR artifacts, used for validation.
Spins: The momentum of atomic nuclei with an odd number of protons and neutrons.

Stereotaxic Space: A standard anatomically-based frame of reference, where different
sized and shaped brains can be transformed into and meaningfully compared on a

voxel-by-voxel basis.

Supervised Classification: A type of classifier, where the algorithm is trained on spec-

imen of known classes, to later classify specimen of unknown classes.

Ti-weighted images: The image acquired mostly due to longitudinal relaxation time,

T1.
T)-weighted images: The image acquired mostly due to transverse relaxation time, T2.

TPM: Tissue Probability Maps.



Training set: A set of voxels representing characteristic tissue intensities on which su-

pervised classifiers train.

Transverse Relaxation: Tissue specific time constant (T2), characterized by the rate

at which the transverse magnetization vector returns to equilibrium after an RF

pulse.

Unsupervised Classification: A type of classifier, where the algorithm requires no

training.

Validation: The process of verifying if a particular classification algorithm performed

acceptably.
Ventricles: Cavities inside deep brain structures.
Voxel: A 3D pixel.

White Matter (WM): A type of tissue found in the brain that is predominantly made

of neuronal axons.
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