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ABSTRACT

Diagnosis and Yield Analysis of a Complex
Interconnection Architecture

Bing Qiu

This thesis investigates problems associated with the integration of very large fault-
tolerant networks. The focus of the research is on the diagnosis and yield analysis of a
complex interconnection architecture. In this thesis, a closed form yield model that takes
into account constraints of an architecture has been proposed. It applies to architectures
that approximate global redundancy and for which the constraints translate into yield
losses. The impact of the constraints on yield can be evaluated by calculating the
probability of observing non-tolerable defect pattens and by subtracting these
probabilities from yield of arrays with global redundancy. It has been shown that most of
the yield losses come from a few patterns comprising small number of defects. According
to the characteristics of the analyzed architecture and the nature of defect distributions,
different yield models have been derived. With these models, the sensitivity of the yield of
the analyzed architecture to variations of the defect density has been investigated. This
thesis also proposes regression yield models that can be used to quickly predict the

redundancy needed for given array and cell sizes as part of a design flow.
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Chapter 1
Introduction

1.1 Introduction

Since the implementation of the first integrated circuits (ICs) in the mid 1960s, the IC
technologies have developed rapidly. Early small-scale integration (SSI) ICs contained
several logic gates amounting to tens of transistors. Then, medium-scale integration (MSI)
increased the range of integrated logic gates available to larger scale functions. In the era
of large-scale integration (LSI), much complex logic functions, such as those of the first
microprocessors, were packed into a single chip. The further improvement of CMOS
process technologies led to the advent of very large scale integration (VLSI) in the 1980s.
In this era, VLSI technologies could offer complete 64-bit microprocessors with cache
memory circuits and floating-point arithmetic units on a single piece of silicon. More than
a million transistors can be integrated in a chip with these technologies. Today, advanced
VLSI technologies, particularly deep-submicron technologies, can integrate almost one
billion transistors in a single chip. These state-of-the-art technologies make it possible to
implement all aspects of a system design on a single chip, referred to System-on-Chip
(SoC) circuits. SoC eliminates many off-chip driver circuits, the associated delay time and
power consumption. Furthermore, the availability of rich on-chip wiring may allow a
substantial increase in the data bandwidth between cores in the chip, thus improving the

performance.



Implementing a system on a single chip implies that the integration density of a chip
needs to increase greatly. Evidently there are two ways to achieve this target. One is to
reduce the transistor size, and the other is to increase the area of a single chip. The former
is the well-known feature size scaling technology, the dominant approach in the
semiconductor industry. With the advent of deep submicron VLSI technologies, the
feature size of a CMOS transistor has been scaled down to 0.10 um from 1.0 um of ten
years ago. Different from the feature size scaling, enlarging the area of a single chip to
increase the integration density of ICs is also very attractive to the semiconductor industry.
A fascinating technology to enlarge the chip area is Wafer Scale [ntegration (WSI). This
technology enables the fabrication of a single chip as large as the maximum wafer
diameter in commercial manufacturing. Since Sack and his colleagues first attempted to
implement an array comprising some simple logical circuits on a single wafer in 1964
[32], WSI technology has attracted the interest of the electronics industry and the
academic community for decades. A large number of issues associated with WSI have
been studied. The technological features to distinguish WSI from other integrated circuit
arts are associated with the management of the special problems of large substrates, such
as yield, interconnection, packaging and thermal dissipation. Among them, a very typical
feature is using fault tolerance techniques to lower the impact of manufacturing defects
and to increase the yield of WSI components [7].

Wafer scale integration emerges as a natural evolution from the device-oriented VLSI
chip technologies to system-oriented wafer-level technologies. Due to the limitation of the
VLSI technologies in the past years, the broad investigations of WSI issues have not led to

mass commercial wafer-scale production. With the advent of deep submicron VLSI
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technology, WSI is widely regarded as a technically feasible proposal for systems that
possess enough regularity and reconfigurability in their architectures. WSI technology
allows building a system with two orders of magnitude more active devices than VLSI
circuits, and it eliminates all intermediate levels of packaging or bonding. Compared with
systems implemented with VLSI circuit chips mounted on printed circuit boards, WSI
systems provide much more potential benefits such as significant speed improvement and
higher data communication bandwidth. Although WSI systems possess many attractive
potential advantages, there exist a number of practical problems associated with WSI
design and manufacturing. The problems can be classified as physical design problems
and electrical design problems [43]. For instance, in the physical design problems,
packaging is the most difficult problem facing WSI. A WSI package should provide the
mechanical support and hermetic sealing with a cavity size large enough to accommodate
an entire wafer. Moreover, a suitable packaging technology must take into account heat
dissipation and thermal expansion. The latter problem represents serious challenges when
packaging materials and the wafer material have differences in thermal expansion
coefficients. Among the electrical design problems, power supply distribution,
synchronization, signal integrity, extremely long interconnections, fault tolerance and the
yield of a WSI system, all pose unique challenges to the implementation of WSI

technology.

1.2 Motivation and objective

A system implemented with WSI can potentially provide multi-terabit switching and

rich data communication bandwidth between cores in the system. These potential benefits



address special circuit needs for ever-increasing speed and bandwidth in
telecommunication applications. For telecom routers, the demand for increased bandwidth
to process large amount of data requires growing performances. Chip-based router
architectures are already reaching their limits, and a superior technology is needed to
alleviate this bottleneck. To meet this requirement, a highly parallel router architecture
involving a large number of routing nodes was proposed by Richard S. Norman of
Hyperchip Inc. [27]-[29], and the related circuit structures have been designed to enable

WSI [1].
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Figurel.l A proposed architecture organized as a processing array of size 20 x20.

The proposed architecture, as shown in Figure 1.1, contains complex vertical and
horizontal interconnections running across a whole wafer. In a typical design, long wires
are driven at more than 100 MHz, and as many as 400 cells could be organized as an array
of size 20 by 20. When the architecture is implemented with WSI technology, it provides

extreme-performance computing at low costs. However, the targeted unusual scale of



integration results in new problems that are not encountered in conventional ICs. In a
nutshell, interconnection methods, electromagnetic compatibility, clocking and
synchronization, power distribution, packaging, reconfiguration and yield analysis,
testing, and thermal management need to be extensively studied.

The study in this thesis focuses on the yield analysis and modeling of the complex
interconnection architecture that supports fault tolerance. Several authors have explored
the design and analysis of fault-tolerant arrays [5][9][42]. Successful integration of these
structures using large area ICs requires careful diagnosis and yield analysis [5](40].
Predicting the yield is necessary in order to define the number of redundant elements that
must be added to the structure. Additionally, due to the interaction of sub-structures in this
structure, the smaller defects may cause unusual constraints that cause the circuits
unoperational even if fault tolerance schemes have been employed. As the structures
involves these unusual constraints that are not taken into account in conventional
reconfiguration strategies, existing yield models and reconfiguration strategies
[41(16][17](18][20][38][39](46] cannot be applied directly. They must be revised and
modified to take these constraints into account. Therefore, to determine the necessary
redundancy for a given scale of integration, and to estimate the impact of varying defect

densities, a yield model of this architecture needs to be developed.

1.3 Scope and organization of the thesis

In this thesis, a closed form yield model that takes into account constraints of the
considered complex interconnection architecture is proposed. The impacts of the

architectural constraints to yield are translated into yield losses. Yield losses are evaluated



by calculating the probability of observing non-tolerable defect patterns and by
subtracting these probabilities from the yield of the arrays with global redundancy. Based
on possible defect distributions in this architecture, corresponding yield models are
developed. With these models, the sensitivity of the yield of the architecture to variations
of the defect density is investigated. This thesis also proposes regression yield models that
can be used to quickly predict when more redundancy is needed for given array and cell
sizes.

This thesis is organized as follows. In chapter 2, the analysis of a complex
interconnection architecture and the reconfiguration techniques used in the related circuit
structure are presented. With the assumption of a random defect distribution, a yield
model of the considered architecture that captures its specific constraints is presented in
Chapter 3. A regression model that approximately predicts the yield of variable size arrays
subject to changing defect density is proposed in this chapter as well. In Chapter 4, yield
models of the architecture based on a clustered defect distribution are presented. Finally,
in Chapter 5, the results of these investigations are summarized, the contributions are

highlighted, and some directions for future study are suggested.



Chapter 2
Analysis of a Complex Interconnection
Architecture

2.1 Introduction to fault tolerance mechanisms

Fault tolerance is the capability of a system to maintain its normal performance in an
environment where faults occur. Applying fault tolerance techniques to the design of a
large-area integrated circuit is required not only to enhance yield, but also to ensure
reliability of a circuit. Especially for wafer-scale circuits, without fault tolerance, the yield
of the circuits would be almost zero [6]. Therefore, to increase the yield of large-area
circuits, on-chip fault tolerance is needed. Fault tolerance can be achieved by many
techniques [2]{11][13][14]. Among them, hardware redundancy and reconfiguration are of
primary interest in this research.

The development of VLSI technology facilitates the physical replication of hardware
units that provide the hardware redundancy in digital systems. Such redundancy is usually
implemented by two approaches: the passive one and the active one. The passive approach
uses the concept of fault masking to hide occurrence of faults and to prevent the faults
from producing logical errors in a system. In a circuit with passive redundancy, the
hardware is totally or partially triplicated or multiplicated to perform a majority vote to
determine the output of the system. In other words, this approach achieves fault tolerance
by masking the faults rather than detecting them. The active approach, however, aims at

detecting the faults and reconfiguring the system in order to replace faulty modules with



spare modules. The major advantage of the active approach is that fault tolerance can be
achieved with less redundant hardware in a system. Due to the need to implement fault
detection and recovery mechanisms, the design of the system with active redundancy is
more complicated. Moreover, the recovery process may disrupt the normal operation of a
system.

When using active hardware redundancy in a system, a fault recovery mechanism is
important. Fault recovery is part of a reconfiguration process that eliminates faulty units
and restores the system to an operational state. Reconfiguration in VLSI systems has been
broadly explored and investigated [25][43], particularly for a fault-tolerant array structure
composed of a larger number of identical processing elements in a chip. Three specific
types of reconfigurations can be identified: fabrication-time reconfiguration, compile-time
reconfiguration and run-time reconfiguration. The key differences among them are the
time when the reconfiguration is performed and whether the reconfiguration is permanent,
as illustrated in the following.

(1)Fabrication-time reconfiguration is performed in a foundry, immediately after the

fabrication of a processing array. So the reconfiguration can be done only once.

(2)Compile-time reconfiguration is performed in the field after an array has been

operational for some period of time, and configuration is changeable.

(3)Run-time reconfiguration is used to achieve fault tolerance during the normal

operation of a processing array. The configuration can be changed as needed.
Besides these differences, these reconfiguration processes are similar. Firstly, faulty
processing elements are identified by test vectors. Then, a reconfiguration algorithm is

used to determine an interconnection pattern that is to be used to connect fault-free



elements. Finally, a fully functional array is formed. Recovery techniques used to
implement desired connections include physical repair techniques and electronic switch
techniques. With the former, the interconnections of the array are physically altered by
cutting or adding interconnections. This reconfiguration action is usually irreversible.
Whereas, with the latter, the reconfiguration is reversible.

In general, run-time reconfiguration is the most difficult process, and fabrication-time
reconfiguration may be the easiest. However, fabrication-time reconfiguration is not
suitable for field applications, due to its permanent reconfiguration decisions. Compared
with these two kinds of reconfigurations, the compile-time reconfiguration provides a
good compromise in many cases. This reconfiguration is reversible and the design is not
too complex, which makes it widely used in fault-tolerant arrays.

In the next section, a complex interconnection architecture using a compile-time

reconfiguration technique is analyzed and discussed.

2.2 Complex interconnection architecture

In this sub-section, a complex interconnection architecture with fault tolerance schemes
is investigated in order to undertake its subsequent yield analysis study. This architecture
is a highly parallel processing array architecture that is proposed by Richard S.Norman of
Hyperchip Inc. [27]-[29]. To make the related circuit structure of this architecture
implementable with WSI, the new constraints that are encountered in this unusual scale of
integration described in Chapter | are studied in our WSI project. Among these studies,

Zhongfang Jing concentrated on the study of the signal integrity [49], Claude Thibeault



[50] proposed a basic implementation of the fault-tolerant structure, Meng Lu and others

[47] implemented a demonstration chip to verify the concept of fault tolerance.
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Figure 2.1 Processing array of size K x L based on the architecture [27]-[29].

The architecture aims at implementing high speed computation for large data
processing problems. To increase its bandwidth and realize a high throughput, a unique
parallel interconnection structure is proposed. With this interconnection structure, each
processing element, referring to a cell in this thesis, owns two communication bundles in
each of horizontal and vertical directions. A cell can communicate with the other cells in
the same row or column through its bundles as shown in Figure 2.1. Consequently, the
considered architecture will possess a large number of horizontal and vertical
interconnections when it comprises hundreds of cells. In addition, since wires are
unidirectional and the structure must be completely regular, the number of the receivers
and transmitters of a cell is doubled. For example, a physical array of size K x L based on

this architecture has total 2K bundles in a row and 2L bundles in a column, and each cell
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has (K+L-2) receivers and 2 transmitters. Because each bundle contains multiple wires, the
number of interconnection wires across the array becomes very large. When the related
circuit structure is implemented with WSI, fault tolerance is essential to attain an

acceptable yield.

2.1.1 Overview of the fault-tolerant architecture

The purpose of fault tolerance in the architecture [27]-[29] is to enable forming a target
array of N by M out of a physical array of K by L, with N <K and M < L. A key point in
the fault tolerance design is to minimize critical areas, also called chip-killing areas.
Therefore, a reconfiguration logic connecting cells and bundles should be designed in such
way that none of the faults in those cells and bundles is critical to the construction of the
target arrays. Several different topologies of reconfiguration logic were taken into
consideration. Generally, with more connections available for reconfiguration, arrays with
increased robustness can be designed. But it should be noted that the larger number of the
connections, the larger the area overhead and possibly lower the performance. Finally, the
reconfiguration logic in this architecture was selected on the basis of an engineering trade-
off.

An in-depth discussion of the fault-tolerant structure is beyond the scope of this thesis.
We only describe the basic framework of the structure. In order to minimize the
interference between long interconnection lines, a transposed line structure is designed for
the interconnections of the array. Figure 2.2 presents the interconnection structure of such
array of size 3x3. In addition, the compile-time reconfiguration with the electronic
switching technique is used to reconfigure the system and to achieve fault tolerance when

defects are present. In order to reduce the complexity of the reconfiguration logic, fault
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detection can be implemented by a host computer. The obtained fault map is stored in an
external storage. Thus, the reconfiguration circuits are limited to the links that carry
reconfiguration signals to multiplexers. The setup of these multiplexers is implemented
through a fault-tolerant scan chain across each cell [47], which is based on a boundary

scan architecture JTAG [EEE1149.1) [30].
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Figure 2.2 Interconnection structure of a physical array of size 3x3 based on the
architecture [27]-[29].
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2.2.2 Configuration of the transmitter multiplexers of a cell

The configuration of the transmitter multiplexers of a cell should be designed to make

the cell not critical to the building of a target array, i.e., the cell can be replaced in case of

fault. According to this rule, the configuration of the multiplexers is designed to enable 5

cells, the cell in question and its four nearest neighbors, to send their signals through these

multiplexers. The configuration is shown in Figure 2.3. When a cell is defective, a good

neighboring cell can replace it by using its natural bundles through the corresponding

multiplexers. Moreover, when its multiplexers are defective, the cell can also send its

signals through the multiplexers of one of its neighboring cells.

Cell

Herizental

Cell

Cell

It

Cell

) rahy
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Figure 2.3 Configuration of the transmitter multiplexers of cells. In this diagram,
only the multiplexers in the vertical direction are illustrated. Similar
multiplexers are used in the horizontal direction.

In addition, it is clearly shown in Figure 2.4 that the configuration of a transmitter

multiplexer makes a bundle replaceable. Through the multiplexers, a cell may use the
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bundles originally owned by one of its four nearest neighboring when its natural bundles
are defective. Similar to that, when a defective cell is replaced with a good neighboring
cell, this good cell can send its signals through the bundles originally owned by the
defective cell. For other cells receiving these signals, the defects in the cell are not
perceptible. This provides a perfect replacement for defective cells. However, to
implement this scheme, the configuration of the receiver multiplexers of a cell needs to

possess the corresponding fault tolerance capability.

2.2.3 Configuration of the receiver multiplexers of a cell

In a K x L physical array that is used to form a logical array of N by M, each cell has
(L+K-2) receivers to receive signals from (K-1) horizontal bundles and (L-1) vertical
bundles. The physical array comprises (K-N) spare horizontal bundles and (L-M) spare
vertical bundles. If no defect is present in the array, each cell can broadcast to the others in
a physical row through its horizontal bundle. If a horizontal bundle is defective, the cell
originally owning this bundle may send its signals through a spare horizontal bundle of
one of its nearest neighboring cells. Other cells in the physical row must be capable of
receiving the signals from the spare bundle. Therefore, in the horizontal direction, the
configuration of the receiver multiplexers of each cell must be designed in such way that a
cell can receive signals through bundles in its natural row and those in its nearest
neighboring rows. The same is required in the vertical direction. A possible configuration
of the receiver multiplexers of a cell is illustrated in Figure 2.4. In this figure, a physical
array of 3x3 is taken as an example. From the figure, it is clear that each cell can
communicate with other cells through bundles in its natural row or its two nearest rows. It

can be noted that specific connections shown with thick lines, proposed by Meng Lu [47],
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make it possible for the cells to receive signals from their natural bundles. This
connections make bundle replacements more flexible. As a result, a defective bundle in a
row can be replaced by a good spare bundle either in one of its two nearest rows, or within
the same row. The former is called inter-bus replacement and the latter is called intra-bus

replacement. The same is true for a bundle in a column.
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Figure 2.4 Configuration of the receiver multiplexers of cells in a 3x3 physical
array. In this diagram, only the multiplexers in the vertical direction are
illustrated. Similar multiplexers are also used in the horizontal
direction.

With these multiplexers, a reconfiguration strategy is needed to implement the

reconfiguration of the architecture when defects are present.

15



2.3 Reconfiguration strategies of the fault-tolerant structure

In this sub-section, because the yield of forming a target array relies heavily on the
adopted strategies, the reconfiguration strategies used in the fault-tolerant structure are
presented and analyzed. Two commonly used concepts in the theoretical analysis of the
reconfiguration of processing arrays are first explained. These two concepts are physical
array and logical array [21]. A physical array is an array that maps directly on the physical
implementation and whose cells may be contaminated by manufacturing defects. A cell of
a physical array is denoted by P(x,y), where x and y indicate the column and row position
of the cell in the physical array, respectively. A logical array represents the desired array
structure specified by the intended application as seen from external system parts. A cell in
a logical array is denoted by L(x.,y), where x and y indicate the logical column and row
position of the cell in the desired array. In order to maximize the probability of a desired

logical array being mapped to a physical array, reconfiguration strategies are needed.

2.3.1 Basic reconfiguration strategies

Using a reconfiguration strategy to map a logical array into a physical array aims at
isolating, confining and overcoming defects in a physical array. The applications of
reconfiguration strategies depend on constraints related to an architecture [8][9]. Because
of the features of the fault-tolerant structure described in section 2.2, several basic
reconfiguration strategies can be used. They are cell-stealing and cell-shifting, bundle-
stealing and bundle-shifting, column or row exclusion strategy [25]. Some examples are

presented below to illustrate applications of these strategies.
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Figure 2.5 Example of using the cell-stealing strategy to construct a logical array
of 2x3 out of a physical array of 3x3.

The cell-stealing strategy forms a logical array by replacing a defective cell with one of
its nearest neighbors spare cells. Figure 2.5 shows such an example in which a logical
array of 2x3 is formed out of a physical array of 3x3. Evidently a logical array of 2x3 can
be directly constructed from the physical array of 3x3 if there is no defect in all cells. For
instance, the logical cells L(i,j) (i=0,1 and j=0,1) of the logical array can be mapped
directly into the physical cells P(i,j) (i=0,1 and j=0,1). When the physical cell P(1,1) is
defective, a good spare cell in other row needs to be reconfigured to build a logical array.
In this case, a good spare physical cell P(1,2) is stolen from the second row to form the
logical array. Finally, the logical array is constructed by replacing the defective cell P(1,1)
with the spare good cell P(1,2).

The cell-shifting strategy is to form a logical array by replacing a defective cell with a
good spare cell that is not in its nearest neighboring position. Figure 2.6 shows the

procedure of using the cell-shifting strategy to form a logical array of 2x2 from a physical

17



array of 3x2. When the cell P(0,0) is defective, the good spare cell P(2,0) is used to replace
the defective one by shifting a cell one position at a time. Then, the logical array is

obtained with L(0,0) being mapped to P(1,0) and L(1,0) to P(2,0).
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Figure 2.6 Example of using the cell-shifting strategy to construct a logical array
of 2x2 out of a physical array of 3x2.

Similar to the cell-stealing strategy, the bundle-stealing strategy is to construct a logical
array by replacing one defective bundle with one good spare bundle that is in a nearest
neighbor position. Also the bundle-shifting strategy replaces a defective bundle with a
good spare bundle that is not in its nearest neighbor position. Similar to the operation of
cells, this replacement needs to be operated one position at a time as well.

The column or row exclusion strategy consists in eliminating a suitable set of columns
or rows containing defective cells from a physical array to form a desired logical array. In
this case, a number of good cells can be eliminated by the reconfiguration process. The set
to be excluded should be carefully chosen to lower the cost. It is also a common practice to
use good cells in the eliminated columns or rows as a pool of spare cells exploited through
a cell shifting strategy. Figure 2.7 shows that a logical array of 2x2 is constructed from a

physical array of 3x2 by excluding a column containing defective cells. In this case, the
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position of spare cells is not specified. Because there are two defective cells in the second
column, this column is excluded. Then, the logical 2x2 array is built with the physical

cells in the first column and the third column.
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Figure 2.7 Example of using the column or row exclusion strategy to construct a
logical array of 2x2 from a physical array of 3x2.

2.3.2 Reconfiguration of the cells in the fault-tolerant structure

In the fault-tolerant structure shown in the section 2.2, a cell can communicate with
other cells in the same physical row or column through its natural bundles and other
bundles of its four nearest neighbors as well. Accordingly, the cell-stealing and cell-
shifting strategies can be accomplished by controlling the multiplexers of receivers and
transmitters if the corresponding bundles are not defective.

Without loss of generality, Figure 2.8 shows an example of forming a logical array of
3x2 from a physical array of 3x3 with the cell-stealing strategy in the fault-tolerant

structure. In this case, it is assumed that all spare cells are in the third row and bundles are
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not defective. When the cell P(1,1) is defective, the good spare cell P(1,2) needs to be used
to replace the defective one. Through reconfiguring the transmitter multiplexers of the cell
P(1,1), its horizontal and vertical bundles can be used as the data channels of cell P(1,2).
The cell P(1,2) can also receive signals from cells P(1,0) and P (0,1) by reconfiguring the
multiplexers of its receivers. After reconfiguration, the targeted logical array is formed

with logical cell L(1,1) being mapped into the physical cell P(1,2).
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Figure 2.8 Using the cell-stealing strategy to construct a 3x2 logical array from
3x3 physical array based on the architecture in [271-[29]. The thick
lines illustrate the final reconfiguration.



The use of the cell-shifting strategy is shown in Figure 2.9 and Figure 2.10 with two
example of building a 2x2 logical array from a 3x3 physical array. In these examples, it is
assumed that no bundle is defective and the spare cells are in the third column and the

third row. There are two possible approaches to realize this reconfiguration.
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Figure 2.9  Using the perfect replacement with the cell-shifting strategy to build a
2x2 logical array from 3x3 physical array.

The first is using the natural bundles of defective cells as shown in Figure 2.9. Because

two bundles of the defective cell P(0,0) are finally owned by cell P(1,0), the defective cell



P(0.0) is perfectly replaced by left shifting the spare cell P(2,0). The perfect replacement

free.
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Figure 2.10 Using the imperfect replacement with cell-shifting strategy to construct
a 2x2 logical array from a 3x3 physical array.

The second is that the bundles of defective cells are not be used. Figure 2.10 shows

how this cell-shifting strategy can form a logical array of 2x2 out of a physical array of

3x3. In this case, the natural horizontal bundles of the defective cell P(0,0) are not used



when the good spare cell P(2,0) is left shifted. Because the spare cell and the defective
cell are in the same physical row, the spare cell can communicate with the others in the

same physical row with its original bundles.

2.3.3 Reconfiguration of the bundles in the fault-tolerant structure

The process of reconfiguring bundles in this structure is similar to that of cells.
However, two kinds of bundle replacement methods somewhat different from cell
replacement methods exist. They are intra-bus replacement and inter-bus replacement. The
former replaces a defective bundle with a spare one in the same physical row and the latter
operates in a different physical row. The operation of the intra-bus replacement is shown
in Figure 2.11. In this case, the defective bundle is originally owned by the physical cell
P(0,0) and the spare bundle is originally owned by the spare cell P(2,0). After
reconfiguration, the cell P(0,0) owns the bundles originally belonging to the cell P(L,0),
and the cell P(1,0) owns the spare bundle. Then, an intra-bus replacement operation is

accomplished.
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Figure 2.11 Intra-bus replacement in the fault-tolerant structure.

Figure 2.12 shows the inter-bus replacement operation. In this case, the bundle
replacement is operated between three different physical rows. Through shifting the
bundles one position at a time, the cell P(0,0) uses the bundle in the second row and the
cell P(0,1) uses the bundle in the third row. Finally, a logical array of size of 2x2 is

constructed.
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Figure 2.12 Inter-bus replacement in the fault-tolerant structure.

2.4 Summary

In this chapter, some fault tolerance mechanisms and a fault-tolerant architecture with
complex interconnections have been described. A detailed analysis of the fault-tolerant

configuration of this architecture and the basic reconfiguration strategies have been

presented as well.



The architecture is a highly parallel processing array architecture that involves a large
number of routing nodes. To enhance the yield, the reconfiguration logic is designed to
enable the replacement of a defective cell with any of its nearest neighbor cells, as well as
the replacement of the inter-bus or intra-bus bundles. Also, the structure can repair defects
by repeatedly shifting spare cells and bundles one position at a time when building a

logical array. As a first approximation, the structure can provide a global redundancy.



Chapter 3

Yield Modeling of a Complex
Interconnection Architecture

3.1 Introduction to yield analysis and yield models

3.1.1 Defects and faults

The profitability of IC manufacturing depends heavily on the fabrication yield, which
is defined as the fraction of the manufactured circuits that are good. Due to various
manufacturing defects, 100% yield is impossible. Manufacturing defects, referring
primarily to failures appearing during a production process and affecting the yield, can be
classified into gross defects and random defects [35]. Gross defects are caused by
manufacturing imperfections that result from the process being completely out of
acceptable bound. They destroy a whole wafer or large parts of a wafer having no
operational chip. Gross defects can usually not be recovered through fault tolerance
techniques. Random defects are due to localized imperfections that occur during
processing. Examples of random defects include missing contact windows, misaligned
gates, and missing devices. Random defects are characterized as spot defects that are
localized and randomly distributed over the whole wafer.

Both types of defects can contribute to yield losses. However, gross defects can be
minimized and almost eliminated in mature and well-controlled manufacturing lines [20].
Comparatively, it is much more difficult to control spot defects in production lines.

Consequently, the yield losses due to spot defects are much higher than those due to gross
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defects. This is especially true for large area integrated circuits, since the occurrence of
gross defects is almost independent of the chip size and the expected number of spot
defects increases with the chip area [20]. Therefore, spot defects are of greater
significance when yield enhancement is taken into account. In this thesis, only spot defects
are taken into consideration in the yield analysis.

Not all spot defects result in circuit faults. A fault in a digital circuit is a logical
difference between the behavior of a good and a bad circuit. Whether or not a defect will
cause a fault depends on its location, its size, the layout and the density of the circuit. Only
those defects that actually affect the circuit operation are called faults and are the ones
causing yield losses [40]. Thus, for the purpose of yield estimation, the distribution of

faults rather than that of defects is of interest.

3.1.2 Review of basic yield models

To model the yield for a circuit, some analytical probability functions that describe the
expected spatial distribution of defects that cause faults are needed. From this point
defects and faults will be used interchangeably to refer to defects that cause faults and
impact on yield. Moreover, the yield models with respect to a certain defect distribution
for the circuits that use fault tolerance techniques differ from those for the circuits that do
not. In this sub-section, the yield models of a circuit without fault tolerance scheme is
discussed.

The yield of a circuit without fault tolerance schemes can be evaluated with the
probability of no defect occurring in the whole circuit area. If x denotes the number of

defects in the circuit, the yield, Y cyir, 1S given by

Ycircuu' = P(x= 0) (31)



Where, P(x) is a probability distribution function of defects.
The earliest probability distribution function used to predict the yield of ICs was
derived from the random Poisson model. Using that model, the probability of a circuit

having x defects is given as follows.

_ e\

P(x) = o (3.2)

Here, A is the expected number of defects in the circuit.
When there is no defect in a circuit, the yield is obtained by substituting x=0 into (3.2).

Then, (3.1) becomes,

= e—)‘= e—DA 3.3)

Where, D is the defect density of the circuit and A is its critical area, with A = DA.

For small area circuits, the Poisson model works reasonably well. However, when the
sizes of circuits grow, using the Poisson model to predict yields becomes increasingly
inappropriate, because it tends to underestimate the yield of larger circuits [19][24][37].
Several approaches have been proposed to modify the Poisson model to reflect clustered
yields. Among them, B.T.Murphy [23] assumed the defect density D is a random variable

and proposed the following yield equation.

Ycircuil = J‘(a)oe—DAf(D)dD (34)

Here, f(D) is a normalized probability distribution function of the defect density D.

Based on (3.4), using the gamma distribution for f(D), Stapper [33] proposed the

probability distribution function presented in (3.5). This is the well-known negative



Binomial distribution, which leads to a corresponding yield model, the negative Binomial

model given in (3.6).
X
P(x) = C(x+ oc)()»/ic)+ - (3.5)
x'T(o)(1+A)
-
Ycircuit = (1 + %) (3.6)

where o is referred to the clustering parameter, a property of the IC manufacturing
process.

With (3.6), the Poisson model and the other yield models proposed in [41] can also be
evaluated by selecting an appropriate clustering parameter o.. When o is low, the defects
tend to be more clustered [33]. Conversely, when o is high, the shape of the gamma
distribution approaches that of the Poisson distribution, and the defects tend to be
randomly distributed.

In fact, because the random defect distribution does not reflect the phenomenon of
clustering defects in ICs, it can lead to predicting low yields in many cases. Stapper and
his colleagues [40] investigated yield modeling issues extensively throughout the 1980s.
They came to the important conclusion that the yield of large chips such as
microprocessors and application specific integrated circuits (ASICs) is not only a function
of the chip area, but also is related to features of different manufacturing processes. The
introduction of the defect clustering parameter in the negative Binomial model can reflect
the chip-to-chip variations in defect densities.

The negative Binomial yield model is found to be satisfactory for the yield prediction

of a circuit without fault tolerance schemes. However, if the circuit uses fault tolerance
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schemes in the form of redundant components, the evaluation of its yield requires a more

elaborate statistical model.

3.1.3 Yield modeling for circuits with redundant structures

A well-known method to tolerate faults and defects in an integrated circuit is adding
redundancy in the circuit. Its yield can be evaluated by calculating the probability that it
contains enough defect-free basic blocks for proper operation. To compute the probability,
a detailed statistical model is needed. This model should provide information about the
distribution of defects over partial areas of the circuit, and possible correlations among
defects in different sub-areas. Several authors have explored and developed yield models
for circuits with redundancy [17][18][26][34][44]. Developing an accurate yield model
needs a great deal of insight regarding the structure of a circuit and the fault tolerance
schemes used in this circuit.

A general yield formula was proposed based on the Poisson model (3.1), and its
derivative, the compound Poisson model [17][26]. In this approach, it is assumed that a
circuit is composed of N identical sub-circuits, called modules in the literature, including
R spare modules. The circuit can function correctly when it contains at least N-R defect-
free modules. Therefore, the yield equation of the circuit is derived by calculating the
probability of M out of N modules being defect-free, where M 2 N — R. This expression
assumes that defects in any module are distributed according to the Poisson distribution,
and that modules are statistically independent of each other. In that case, the yield formula

is given by

AV
r=3Y (;‘V/,)(e-w),w(l,e-,\o)‘v-u 3.7)

M=N-R
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Where, A(cmz) is the area of a module and D(cm'z) is the defect density of a module.
This formula corresponds to an idealization. Indeed, in practice, circuits rarely consist

entirely of identical modules. A more general case is that a circuit is composed of multiple

types of modules, each with its own redundancy. In that case, the yield equation of the

circuit composed of n types of modules can be derived. Let N; denote the number of type i
modules, out of which R; are spares. In this case, the yield is given by the following

equation.

N N. N -
l i n N -AD, Ny-M,
e )

Y- ¥y .y . % (M‘)(e"‘l”l)“'(l_

- - v 1
M =N ~R M;=N,-R, M, =N -R

N -M

., —=A; i —A.DAN.-M. -A,D, - n n
(M:)(e ) l) (l—e A'D’)Nl M'...(”NI:)(e )(l—e A"D”) (3.8)

Here, M; is the number of defect-free type i modules, A; is the area of type i modules, and
D; is the defect density of type i modules.

Equations (3.7) and (3.8) show a general method to develop the yield model of a chip
with redundancy. Although the Poisson distribution used in both equations does not match
actual defect and fault data very well, it provides an easy way to calculate the yield with an
approximation that indicates the yield trend. Moreover, these equations were deduced by
using an ideal model that does not take into account the interaction of different modules
even though such interaction often exists. For example, when a module is defective, it can
affect other modules, and make a circuit dysfunctional. Therefore, even if there are
available spare modules, specific combinations of defective modules can also make a

circuit operate incorrectly. To model the yield for a complex interconnection architecture,



we need to take into account not only several kinds of modules in the structure, but also

some specific combinations of them.

3.2 Yield modeling for a complex interconnection architecture

3.2.1 Constraints-based yield model

The architecture proposed in [27]-[29] is mainly composed of four parts as described in
Chapter 2: identical cells, vertical and horizontal interconnection bundles between cells,
and reconfiguration logic. The reconfiguration of the structure is implemented through a
scan chain across all cells, which is based on the boundary scan architecture (JTAG[27]).
These parts and the scan chain have different effects on the yield of the structure, and the
impact of these effects on the yield can be estimated respectively with a simple yield
model (3.6). The results of the computation of the yield of those parts are illustrated in
Table 3.1 and 3.2. In this numerical analysis, an array of 20x20 based on [27]-[29] is used,
and the parameters used are obtained from the proposed WSI architecture and the fault-
tolerant demonstration chip that is presented in [47]. In the demonstration chip, the scan
chain was designed without fault tolerance. Consequently, the scan chain may become the

only critical circuit in this chip, i.e., any fault of the scan chain cannot be tolerated.

33



Table 3.1 Yield of a bundle, a cell, and the reconfiguration logic belonging to one
cell. The data is obtained from a WSI demonstration chip designed and
fabricated as part of a Hyperchip R&D projects. In this chip, each bundle
comprises 4 wires. Random defect density Dy=1963 m> and the
clustering parameter =5 were used from ITRS[12]. The yield of a 20x20
array, with an area 1.04x102 cm?, without fault tolerance is 2.94x10™.

Recc_ml?guation Bundle Cell Sc:m chain
logic in a cell within a cell
CriticalArea | | [x10™% 4.3x10° 2.5x10! 4.0x10*
(cm?)
DoA 2.16x10° | 8.44x10* | 491x 107 | 7.85x107
Yieid 0.999978 0.999156 0952314 0.999922
Table 3.2 Yield of a bundle, a cell. and the reconfiguration logic belonging to one

cell. The data is obtained from the proposed WSI architecture in
Hyperchip R&D projects. In this case, each bundle comprises 40 wires.

Random defect density Dy=1963 m™ and the clustering parameter o=35
were used from ITRS[12]. The yield of a 20x20 array with an area
2.56x10% cm? is 6.06x107%.

logeimacen | Bunde Cell i a el
Critical Area | 7 8x10-2 9.6x10 2.5x10°! 1.4x1073
(cm?)
DoA 5.50x10> | 1.88x102 | 4.91x 10 | 2.75x107
Yield 0.994522 | 0981366 | 0.952314 | 0.999725

From Table 3.1 and 3.2, it is seen that the yield of the reconfiguration logic of a cell is
much higher than that of a cell or a bundle because of its relatively small area. Thus, the
yield loss contributed by the reconfiguration logic is not significant. Furthermore,
available design techniques can make potentially critical signals robust to the presence of
defects [3][15][31]. Applying such techniques to the low complexity reconfiguration logic

can make its yield much closer to 1 than computed in Table 3.1 and 3.2. The small
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resulting yield reduction, due to defects in the simple robust reconfiguration logic
described in Chapter 2, can be accounted for by a multiplying factor close to 1 that would
derate the yield. Accordingly, in the yield analysis of this structure, the assumption of
reconfiguration logic being defect-free is reasonable. From Table 3.1, it is clear, that the
yield loss contributed by the scan chain in the demonstration chip is insignificant and the
effect of the scan chain on the yield can also be expressed as a multiplying factor close to
1. But when a scan chain without fault tolerance schemes is used in the proposed WSI
architecture, with each part of the scan chain within a cell assumed statistically
independent, the yield of the scan chain across 400 cells is equal to 0.8958. When the scan
chain is designed with fault tolerance [47], it is no longer critical to the structure and the
yield loss contributed by the scan chain can be incorporated into that of cells. Form the
above analysis, it is concluded that, in the yield modeling, cells, vertical bundles and
horizontal bundles are the main concern. In addition, it is also implicitly assumed that
existing robust methods of dealing with defects in critical signals are applied, such that
normal spot-defects almost always lead to unusable cells or bundles, and do not invalidate
the test and reconfiguration mechanisms. With the assumption of fault-free reconfiguration
logic, a simplified diagram of the fault-tolerant structure is used to illustrate our model.

Figure 3.1 shows a simplified diagram for a typical 8x8 array.
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Figure 3.1  Simplified diagram of a 8 by 8 physical array based on the architecture in
[(27]-[29].

—3 Horizontal bundle

Vertical bundle

In this figure, a horizontal rectangle represents a horizontal bundle and a vertical
rectangle represents a vertical bundle, while the squares represent cells. Each cell owns
one bundle in the horizontal direction and another one in the vertical direction, and can
communicate with the other cells in the same column or row through its bundles. To
simplify the diagram, the connections between bundles and cells are not shown. The
objective with this fault-tolerant architecture is to form a logical array sized N by M out of
a physical array of size K by L with N <K and M < L. With the reconfiguration logic, a
physical cell in the physical array can replace any of its nearest neighbors. When a cell
broadcasts to other cells of a physical row, it can do so by using bundles from its natural
row or from nearby spare bundles. The same is true for vertical bundles. It may appear that
this architecture can only repair defects by shifting cells by one or a few positions, but by
repeatedly shifting cells and bundles one position at a time, a spare at one corner of the

array can be used to replace a defect at the other comner of the array, when building a
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logical array that is arranged to use only good cells and bundles. As a first approximation,
the structure provides global redundancy. It does so successfully when defects are sparse,
which is the case when the probability of individual cell and bundle being defective is low.
However, practical implementations are limited by the number of reconfiguration wires.
Several different topologies of the reconfiguration multiplexers were considered.
Generally, with more reconfiguration wires, we can design arrays with an increased
robustness. In a configuration that is based on an engineering trade-off, the array has
constraints. Some distributions of defective bundles and defective cells prevent
construction of an adequate logical array. An example of this kind of patterns is illustrated
in Figure 3.2. In this example, a logical array of 3 by 3 intends to be built from a physical
4 by 3 array. The physical array contains 3 spare cells, 3 spare vertical bundles and 3 spare
horizontal bundles. However, when three cells (C1 to C3) and three horizontal bundles
(HB1 to HB3) are defective as shown in Figure 3.2, the position of three defective
horizontal bundles prevents the usage of the good cell, C0. Thus, only 8 good cells instead
of 9 ones are available, and the logical array cannot be formed. Therefore, this kind of
defective cells and bundles cannot be tolerated. In this thesis, this kind of distributions that

cannot be tolerated are referred as non-tolerable patterns.
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Figure 3.2 Pattern preventing the construction of a logical array size of 3 by 3 out of a
physical array of 4x3. The symbol “X" stands for defective cell or bundle, and

*‘A” for available cells

P(forming a logical array of K by L}

The construction fails

Levell P{Fc<=Sc} P{Fc>Sc}
l The construction fails
Level2 P {Pm<=Sms | Fe<=Sc} P{Fas>Sms | Fc<=Sc}
1 The construction fails
Level3 P{Fva<=Sva|Fc<=Sc and P{Fva>Svs|Fc<=Sc and
ove Func=Sun } Fun<=Sup }
Yield with global redundancy
l The construction fails
Leveld P{having patterns that P{having patterns that
can be tolerated } cannot be tolerated }
Yield of the structure Yield losses contributed by

non-tolerable patterns

Figure 3.3  Flow chart of the probability of forming a logical array. F; is the number of
defective cells, Fyyg is the number of defective horizontal bundle, Fyp is the
number of defective vertical bundle, S, is the number of spare cells, Syg is the
number of spare vertical bundles, and Syp is the number of spare horizontal

bundles.

Generally, there are several possibilities that prevent the construction of a logical array.
According to the cause that prevents the construction of a logical array, they are classified

as two major types. First, when there are not enough spares to replace the defects in the
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structure, the construction fails. In other word, the structure must simultaneously contain
enough spare cells, spare horizontal bundles and spare vertical bundles to tolerate the
respective defects. Second, non-tolerable patterns occur in the structure. Figure 3.3 shows
the probability of the events of forming a logical array. From this figure, it is known that
the yield of the architecture can be evaluated with the probability of having tolerable
patterns in the structure and it can be expressed as in (3.9).

Yeuo = Yetovar = Yioss (3.9)
where Y yp is the true yield of the structure, Ygiobal is the yield of the structure with
global redundancy, which would be observed if the structure had no constraint, and Yy
is the probability to have non-tolerable defect patterns. In addition, the number of
defective cells and bundles must be smaller than the respective number of spare cells and

bundles.

Based on Equation (3.8), an analytical expression of Ygqp is presented in (3.10). This
expression assumes that defects in cells, vertical bundles and horizontal bundles are
statistically independent, and that they comply with the binomial distribution.

Sc Sve  Sus
Q.-F F, Qug-F F Qup-F F
Ytobar = 2 Z Z (fc (fZZ)(‘ﬁ:B Geett) + Wmvpep Oy 0 Bevgp Pogg 10 vy 8 (3.10)
Fc=°FVB=0FHB=o
In (3.10), y. is the yield of a cell, y,s is the yield of a horizontal bundle, and y.s is the
yield of a vertical bundle. Q. is the total number of cells, Qyjp is the total number of
vertical bundles, and Qyp is the total number of horizontal bundles. F, is the number of

defective cells, Fyg is the number of defective horizontal bundle, and Fyjp is the number of

defective vertical bundle. S, is the number of spare cells, Syg is the number of spare

39



vertical bundles, and Sy is the number of spare horizontal bundles. In this case, Y ., Yus

and y.; can be expressed by the negative Binomial yield model (3.6) or the Poisson yield

model (3.3). Using the negative Binomial yield model, they are given as:

Yeetl = (l + D;Ac)-“ (3.11)
Yop = (1+3”:_£)*‘ (3.12)
L (3.13)

The equation of Y}, is expressed as:

Yipes = Y (Yyrp), (3.14)

Where, (Yr); is the yield loss contributed by the i'™ non-tolerable pattern of the structure.
An analytical expression for (Y\r); is attained from (3.10) by replacing the binomial

coefficient (Q‘) with NTCcen, (Q"‘*) with NTCvs and (g”") with NTCus. The expression of
HB

F Fyg

c

(Yy); is given by:

Sc Sve  Sus Q.-F. F
Yuredi= 3 Y 3 (NTCupd(NTCya)(NTCoo)(Veer) (U= Yeen)
Fc=0FVB=0FHB=0
Qup-F F Cug-Fus F
Ove) P =ye) " (Yua) (1=Yug) (3.15)

Here, NTC.u is the number of non-tolerable patterns when F defective cells are

distributed over the physical array, NTCvs is the number of non-tolerable patterns when

Fyg defective vertical bundles are distributed over the array, and NTCus is the number of

non-tolerable patterns when Fyg defective horizontal bundles are distributed over the

array.
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From (3.15), it is clear that the non-tolerable patterns resulting in significant yield

losses need to be identified in order to evaluate the yield loss.

3.2.2 Non-tolerable patterns in an array of designated size

Finding all significant non-tolerable basic patterns proved difficult but tractable. It
requires a great deal of insight regarding the operation of the fault-tolerant structure. Our
study is focused on analyzing an array of physical size (N+1)x¥, out of which a NxN
logical array is targeted. The significant patterns that cannot be tolerated can be found

through studying the limits of the interconnection structure.

3.2.2.1 Non-tolerable patterns in an array with fault-free bundles.

In this subsection, the non-tolerable patterns are studied from a simple case with the
assumption that bundles are defect-free in an array. The conclusion obtained from these
non-tolerable patterns can be extended to the case where defects can be distributed to the
whole structure. From the previous analysis, it is known that the yield loss depends on the
distribution and the number of non-tolerable patterns in the structure. Thus, the study of
non-tolerable patterns is concentrated on these issues.

After a detailed analysis of the operation and the constraints of the fault-tolerant
structure, thirteen kinds of important non-tolerable patterns are identified. For brevity,
only the pattern that contributes most yield loss is illustrated here and others are explained
in Appendix B. Figure 3.4 shows this pattern corresponding to the case where six cells
(C1-C6) in the corner of an array are defective. In this case, because a spare cell can be
shifted only one position at a time, the position of this pattern composed of defective cells
(C1-C6) prevents two defective cells C1 and C2 from being replaced by good spare cells.

Moreover, because of the limit of the number of spare columns in the physical array of
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(N+1)XN, only one column can be excluded to form the targeted logical array of NxN with
the row or column exclusion strategy described in Chapter 2. Consequently, there must be
a logical column that cannot be formed because of the lack of enough good cells. Figure
3.5 shows one typical example of unsuccessful construction of the logical array. In this
example, the first physical column is excluded and its cells are used as spares. With this
pattern, the defective cell C2 cannot be replaced. As a result, the second physical column

can not be mapped as a logical column.

g Non-tolerant pattern

I

Legend:

_— Good cell

|
| S—

v | . i ]
E R . X Defective cell

Figure 3.4  Non-tolerable pattern composed of the least number of defective cells in an
array without defective bundles.
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Figure 3.5  Six defective cells in a corner prevent the construction of a logical array of
NxN. The arrow shows the direction of cell-shifting.
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The total number of this kind of non-tolerable patterns can be computed with the

equation NTC,_, =( _6). Although this total number contains some

HAN+ 1N,
1)( F.-6
intersections with every two to 4 corner cell combinations, these intersections contain very

few patterns and they are neglected.

The probability of a non-tolerable pattern occurring in the structure can be calculated

with (3.16) which is based on (3.7) with ( Z) replaced by NTC,,;.

Se
Yore, = X N TCoatea™ = you) (3.16)
Fe=0

Using (3.16) and (3.11), the numerical results of the yield losses contributed by thirteen
kinds of non-tolerable patterns are obtained and they are shown in Table 3.3. From Table
3.3, it is clear that the yield losses contributed by the first five kinds of patterns constitute
most of the yield losses due to non-tolerable cell patterns, and that most of the patterns
that contribute significant yield losses are distributed in the corner or edge of the physical

array. This shows the fact that yield losses contributed by those patterns with large number

of defects decrease very rapidly; thus, they become neglectable.
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Table 3.3 Yield losses contributed by thirteen kinds of significant non-tolerable
patterns in the construction of a logical array of NxN from a physical array
of (N+1)xN. The results are obtained with the area of a cell 25 mm®, random
defect density Dy=1963 m™2, the clustering parameter a=>5, and the yield of
a cell is 0.95.

Pattern Number of Yield Loss Relative Cumulative Ratio

Number defective cells Contribution
l 6 1.44x10°° 96.9612% 96.9612%
2 7 3.59x10°!! 2.4173% 99.3785%
4 8 8.18x10°'2 0.5508% 99.9293%
3 8 8.61x10°13 0.0579% 99.9872%
5 9 1.77x10713 0.0119% 99.9991%
6 10 7.64x10°'3 5.1448x10° 99.99999%
7 10 4.03x10°1° 2.7138x10° 99.99999%
8 12 1.28x10° 8.6195x10°° 99.99999%
9 12 1.28x10°17 8.6195x10° 99.99999%
10 12 1.08x107"7 7.2727x10°° 99.99999%
11 13 9.11x10°" 6.134x10°10 99.99999%
12 15 7.87x10%2 5.2997x10°"3 99.99999%
13 18 4.46x10°%7 3.0034x10°'8 100%
Sum 1.48513x10°

3.2.2.2 Non-tolerable patterns with defective bundles and cells.

From the above study, it is shown that the most significant non-tolerable patterns
should be those comprising small number of defective cells and bundles. Because the
smallest number of defects in the non-tolerable patterns without defective bundles is six as
shown in Table 3.3, the search for non-tolerable patterns in the array with defects can be

focused on those comprising less than or equal to six defects. Two kinds of significant



patterns in accordance with the above condition were found and are discussed in the
following. It is noted that all symbols used in the following discussion are illustrated in
Appendix A.

(1) Pattern 1: corresponding to the case where two vertical bundles in the same row are

defective.

Figure 3.6 shows this kind of non-tolerable patterns in a phycial array of (N+1)xN.
This pattern does not prevent a physical cell from being used but it prevents the
construction of a logical array. In the following paragraph, the reason why this pattern can

not be tolerated is discussed.

N+1

Good vertical
bundle

10000000 00 00
100080 108000 o e
100000000 00 00

Defective
vertical bundle

Figure 3.6  Non-tolerable Pattern 1 in a phycial array of (N+1)xN

Without loss of generality, two defective bundles are assumed as a vertical bundle
VB(i|,j.i|.j) ith the status of vertical bundle SVB(iy,j)=1, and VB(i2.j.i2.j) with the status
SVB(iy,j)=1, where i, #i,. To form a logical array of N by N from a physical array of
(N+1) by N, VB(i},j.ij.j) and VB(ia,j.iz.j) should be replaced with two good spare bundles.
Because each row contains only one spare vertical bundle, one of these two defective

vertical bundles must be replaced by a good spare bundle from another row. It is assumed
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that VB(i,,j.i5.j) is replaced with a good spare vertical bundle in the k™ row, VB(i3,k,i3.k)
with SVB(i3,k)=0. According to the features of the fault-tolerant structure, if this

replacement were accomplished, two vertical bundles in the same physical row would be

owned by two cells in the logical column that contains the phycial cell P(i5,j). Without loss
of generality, these two cells are the physical cell P(i5,k-1) mapped with the logical cell
L(i,k-1) and the physical cell P(i;,k) mapped with the logical cell L(i5,k). Then, P(i5.k-1)
owns the vertical bundle VB(i,k,i5,k-1), and P(i5,k) owns the vertical bundle VB(i,-
1,k,ip,k). Figure 3.7 illustrates this replacement. Consequently, the vertical receivers of the
physical cell P(i5,h) mapped with L(iy,h) must accept signals from two cells, P(i.k-1)
with L(i,,k-1) and P(i,,k) with L(ip.,k). Thus, the two vertical receiver multiplexers of the
cell P(ip,h) become C_R(k-1)_V(ip.h.ir.,k) and C_R(k)_V(iz,h,ir-1.k). It shows that this
cell needs to communicate with other cells in the same logical column through two

vertical bundles in the k™ physical row. However, due to the limitation of the number of
reconfiguration wires, a cell can only receive signals from vertical bundles located in
different physical rows after the reconfiguration. This kind of constraints in the fault-
tolerant structure is referred as a rule of not allowed replacements, the receiver source
exclusive rule [47], described in Appendix A. Therefore, This kind of configuration is

impossible and this kind of patterns cannot be tolerated.
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The analytical expression for the total number of Pattern 1 is presented as follows:

Total = NTC,_,, xNTCygxNTCpyp 3.17)
Here,
Q
NTC,,, = (F ) 0<F, <5, (3.18)
N g
NTCyg = (?V")—(F”’)(Nm D 2<F <8y, (3.19)
va 1Z:]
NTC,yp = (gﬂs), 0 Fpyp<Sps (3.20)
HB.

The definitions of the variables in above equations are the same as those in (3.10).
Equation (3.18) indicates the number of defective cells in Pattern 1, and it implies that the
defective cells of this pattern may be distributed anywhere in the physical array. Equation
(3.19) is composed of two terms. The first one gives the number of patterns of Fy;

defective vertical bundles over a complete array, and the second one is the number of
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tolerable patterns of Fy; defective vertical bundles distributed over the array. The second

term represents the number of patterns where Fyp defective bundles are distributed on 2

. . . Nygy -
to Syg rows with only one defective bundles in each row. Thus, ( F‘”’) is the number of
VB

different selections of Fyg rows out of Nyg rows since there is at most one defective

vertical bundle in any of the Ny rows. The component (¥, + 1)"* represents the number

of combination over Fyg rows since there are (Nyg+l) possible places for a defective
vertical bundle. Equation(3.20) shows that the defective horizontal bundles of this pattern
can be distributed anywhere of the array.

(2) Pattern 2: corresponding to the case where three cells in a corner and one vertical
bundle in the first row are defective.

Figure 3.8 shows a typical example of this kind of non-tolerable patterns. Generally,
this patterns prevents a physical cell from being used and a logical array from being

constituted. The fact that Pattern 2 cannot be tolerated is analytically proven as follows.

N+1

—dJ ./.c3a =3

E0E 008000 [
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Figure 3.8  Non-tolerable Pattern 2 in a physical array of (N+1) x ¥

In Figure3.8, vertical bundle VB(0,0,0,0) and horizontal bundle HB(0,0,0,0) cannot be

used in the physical array, because three cells P(0,0) and P(1,0) and P(0,1) are defective
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simultaneously. There are only two possibilities of forming a logical array of size NxN
from a physical array of (N+1)xN. One is that the first column containing two defective
cells P(0,0) and P(0,1) is used as a spare column as shown in Figure 3.9. The other is to
use the good vertical bundle VB(1,0,1,0) as a spare one to replace the defective vertical
bundle VB(i,0.i,0) as shown in Figure 3.10. These two possibilities are discussed as the
following. First, for the case one, the first column is treated as a spare column, and one
good spare vertical bundle located in a physical row other than the first physical row must
be used to replace the defective one. Unfortunately, this kind of construction proves

impossible for the reason that has been explained in the analysis of Pattern 1.

N+l
spare column the ith column

o .3 &3 3 /|3 =3

15 0E 00 e 00 0

Pt0,0) P(L,0) P(Ne1,0)

4 |3

E 0803 - 10 00

P(O0, 1}

o /3 3

1580100 - 000 00

RS ] 00 (0w
100000 - 00 00 000

10 0000 - 0™ oy ol

Figure 3.9  The first possibility of forming a logical array of NxN from a physical array of
(N+1)xN with the existence of non-tolerable Pattern 2. This case is actually
not allowed in the reconfiguration of the fault-tolerant structure. The arrow
with virtual line indicates the cell shifting direction, and the arrow with real
line indicates which bundle a cell owns after reconfiguration.

Then, for the case two, the first logical column would be built as shown in Figure 3.10.

In this configuration, the physical cells P(0,2) and P(1,2) are selected to be in the same
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logical column. Because of constraints of the fault-tolerant structure, referred to the
receiver connectivity rule [47] presented in Appendix A, P(0,2) and P(1,2) cannot
communicate with each other if they use their natural vertical bundles. Thus, either
VB(0,2,0,2) should be changed to VB(0,2,1,2) and VB(1,2,1,2) to VB(1,2,0,2). This is
illustrated with solid arrows in Figure 3.10. Alternately VB(0,2,0,2) should be changed to
VB(0,2,1,2) and VB(0,1,0,1) to VB(0,1,0,2) as illustrated with virtual arrows in Figure
3.10. Evidently, the other cells in this logical column will receive signals from two vertical
bundles of the same physical row: either VB(0,2,1,2) and VB(1,2,0,2), or VB(0,1,0,2) and
VB(l,1,1,1). Similar to the analysis for Pattern 1, it is impossible and this case will violate
the receiver source exclusive rule described in Appendix A. Therefore, Pattern 2 cannot be
tolerated in this fault-tolerant structure. It is also shown that Pattern 2 is the non-tolerable
pattern comprising the smallest number of defective cells and defective bundles at the

same time (the details are presented in Appendix C).
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Figure 3.10 The second possibility of forming a NxN logical array out of a (N+1)xV
physical array with the presence of non-tolerable Pattern 2. The case is
actually not allowed in the reconfiguration of the fault-tolerant structure.
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To summarize, Pattern 2 cannot be tolerated in forming a logical array of NxN out of a
physical array of (N+1)xN. In addition, it is the one that comprises the smallest number of
defective cells and defective bundles simultaneously. Equations (3.21)-(3.23) present the

analytical expressions that allow calculating the total number of Pattern 2.

Q-
NTC““=(I)(F:_33), 3I<F.<S, (3.21)
N Nyg—1 Fyg=1
NTCyg =( VB)(FVB_l)(NVB+l) e 1S Fyp<Syg (3.22)
l vB
NTCHB=(g:Z), 0SFup<Syg (3.23)

In (3.21), (‘l‘) indicates that there is a total of 4 different distributions of these three

defective cells to any of the 4 corners of the physical array, and (g‘:g) the number of

different distributions of the remaining (F 6—3) defective cells over the remaining
(Q.—3) positions in the physical array. Equation (3.22) gives the number of Pattern 2

associated with defective vertical bundles. In this expression, (N["B) is the number of

e o Nyg -1
possibilities to select one out of Nyg positions in the top row and ('F"B 1) the number of
Ve~

possibilities to select (Fyz-1) rows out of the remaining (Nyg-1) rows for the remaining

(Fyg-1) vertical bundles such that there is at most one defective vertical bundle in each
row. This makes Pattern 1 and Pattern 2 disjoint. The term (¥y,z+ 1)"**~! indicates that

each row of the total (Fyz— 1) rows has (Nyz+1) ways to distribute a defective vertical

bundle. As for (3.23), 2u8) is the number of different ways to select Fy; out of Qpp It
FHB y
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should be mentioned that the number calculated by Equation(3.21) contains some
intersection with combinations of cells in two to four corners. Because these intersections
contain very few patterns associated with large number of defects (thus much lower
probability of occurrence), they are neglected.

Because Pattern 1 and Pattern 2 comprise the smallest number of defective cells and
bundles, the yield losses contributed by these two kinds of defect patterns are the most
significant. Their impact on the yield of the structure can be evaluated with (3.15) and
(3.17)-(3.23). A numerical analysis has been done using the data presented in Table 3.1
and 3.2. The size of the logical array is 20x20 out of a physical array of 21x20. The first
analysis is with data in Table 3.1 and then with data in Table 3.2. Figure 3.11 and 3.12
show the characteristics of the yield loss versus variation of the defect density. It is
observed that the yield loss curves reach a maximum and then fall down when the defect
density increases. It can be explained as follows. If the defect density is low, an increase of
the defect density increases the probability to observe a modest number of defects and the
yield losses increase. As the defect density gets large, the distribution shift towards larger
defect patterns that exhaust the available number of spares and the yield decreases due to
factors other than the non-tolerable patterns. Generally, the yield losses contributed by

these two patterns are much smaller.
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Figure 3.11 Yield loss contributed by the most significant non-tolerated pattern. The
relevant data is from Table 3.1.
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Figure 3.12  Yield loss contributed by the second most significant non-tolerable pattern.
The relevant data is from Table 3.1.

With (3.10)-(3.13), the yield of a structure assuming a global redundancy was
evaluated, and the results are shown in Figure 3.13. The comparison between the yield
losses and yield of the structure assuming global redundancy is shown in Figure 3.14.
These figures show that the yield losses contributed by the two most significant defect

patterns is small enough to be neglected in practice. Thus, equation (3.9) becomes:
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Ychip = 1 global (3’24)
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Figure 3.13  Yield of the structure with global redundancy.
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Figure 3.14 Comparison between Y, and Ygigpay “YNTPL™ represents the yield loss

contributed by Pattern | and “YNTP2" represents the yield loss by Pattern 2,
“Yield” represents for Y cp;p. The relevant data is from Table 3.1.

When a bundle contains many more wires, the area of a bundle increases and then the
yield losses due to bundles also increases. Thus, the yield losses contributed by those two

most significant non-tolerable patterns may rise to become significant. In the case of a
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WSI architecture described in Table 3.2, a bundle is composed of 40 wires and its area

increases to 9.6x10 cm’ for a physical array of 20x20. The yield losses increase as
shown in Figure 3.15 and Figure 3.16. From Figure 3.15, it is observed that the yield loss
contributed by Pattern 1 increases greatly and it becomes significant. Fortunately, in this
fault-tolerant structure, the number of defects in the smallest non-tolerable pattern rapidly
grows with the addition of one spare row and one spare column in a physical array to form
a logical array of NxN. Consequently, those two most significant non-tolerable patterns in
the physical array of (N+1)xV, Patternl and Pattern 2, can be tolerated in a physical array
of (N+1)x(N+1). Evidently smallest non-tolerable patterns will comprise more defects
than 2. It has been shown that the yield losses contributed by non-tolerable patterns that
comprise large number of defects are insignificant and can be neglected in the yield
evaluation. Therefore, when the area of a bundle increases due to increased bandwidth, in
order to obtain an acceptable yield of forming a logical array of NxN, a physical array size
with more redundancy is needed. Under this condition, with non-tolerable patterns being
under control, the yield model of this structure can also be approximated by the yield

formula of the structure assuming global redundancy.
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Figure 3.15  Yield loss by the first most significant non-tolerable pattern when a bundle
comprises 40 wires. The relevant data is from Table 3.2.
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Figure 3.16  Yield loss by the second most significant non-tolerable pattern when a bundle
comprises 40 wires. The relevant data is from Table 3.2.

Non-Tolerable Pattern 2

3.3 Defect density impact on forming a logical array

From the previous results, the sensitivity of the yield to variations of the defect density

in the fault-tolerant structure can be evaluated with (3.10). Let us consider the problem of
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building logical arrays of size 20x20 from physical arrays of 21x20, 21x21 and 22x22.
Figure 3.16 shows the yield of arrays of various sizes.

It is observed in Figure 3.17 that the yield curves shift right when the fraction of the
array used as spares increases. It is also clear from these results that, for a given fraction of
redundancy, below some defect density threshold, the array is very robust to variations of

the defect density, however, beyond that threshold, the array yield degrades rapidly.
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Figure 3.17 Yield of forming a logical array of 20x20 from physical arrays of 21x20,
21x21, and 22x22.

3.4 Yield model regression
In order to have a quick evaluation of the yield of large arrays, a simple regression
model is developed. It can be used to predict the defect density threshold where the yield

of a large array degrades.
The yield was computed with the expressions presented earlier for arrays of various

size and redundancy ratio. It was found that, for arrays of different sizes but equivalent
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redundancy ratio, the yield curves tend to cross around the point where the probability is

equalto 1 - ¢! as shown in Figure 3.18.
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Figure 3.18 Cross points for arrays of different sizes with equivalent redundancy ratio. 7/
40 for a physical array with 40 cells including 7 spares, 6/64 array for one
with 64 cells including 6 spare.The other arrays of different sizes have the
same redundancy ratio as 7/40 and 6/64 respectively.

Table 3.4  Numerical value of the pivot points of physical arrays of
different sizes with redundancy ratio equal to 0.1

Spifac))'f Ng?:gs()f Dipivar(cm™) Yield
30 3 040550453 | et

40 4 0.40494685 | |l
50 5 040479842 | |l

60 6 040465372 | |l
70 7 040447338 | |l

100 10 0.40394883 | |-l

430 43 0.40650498 | ¢!

600 60 040793823 | |’

700 70 040861149 | |l
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The numerical results of the points where the probability is equal 1 — ¢! are presented

in Table 3.4. These resuits show that the numerical values of the defect density of different

arrays are very close at the point where the probability is equal to l—e_l . As an
approximation, the point can be thought as a pivot point.

By the method of least square in numerical mathematics [10], a regression model is
developed to predict this pivot point and the slope of the yield curve in that region. The
details of the derivation are presented in Appendix D. These parameters would be useful to
assess the suitability of a fault tolerant array design as a function of array size, expected

defect density and redundancy ratio. The defect density, D(r), where the probability is

equalto 1 - ¢! , and the slope at the pivot point, S(r,m), can be approximated by:
D(r) = -0.0208 +4.3111r (3.25)

08 +(0.0130 -0.0337r)m (3.26)

S(r,m) = 0.3166r
Where r is the redundancy ratio of the physical array of K by L, and m is the number of
cells in the physical array, m=KxL. S(r,m) is an absolute value in (3.26).

Figure 3.19 compares the yields predicted by the regression models with those
computed with the complete model (3.10). It is observed that there is a good agreement
between the results computed with these two models. Thus, this regression model can be
used for quick yield prediction as part of a design flow. In particular, it can help identify

arrays likely to produce poor yield or those that are excessively sensitive to defect density

variations.
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Figure 3.19 Comparison of the regression model and the complete yield model. 420 array
stands for a physical array of 21x20, 441 array for one of 21x21. 484 array for
one of 22x22, 6/125 for one with 125 cells including 6 spares, 6/64 array for
one with 64 cells including 6 spares, and 7/40 for one with 40 cells including
7 spares. The solid lines are obtained from the complete yield model and the
dotted lines from the regression model

3.5 Summary

In this chapter, a method of developing a closed form yield model taking into account
constraints of a fault-tolerant architecture has been presented. The impact of such
constraints on the yield is evaluated by computing the probability of observing non-
tolerable defect patterns and by subtracting these probabilities from yield of the
architecture with global redundancy.

Non-tolerable patterns can be found by a detailed analysis of a fault-tolerant structure.
It is shown that most of the yield losses come from a few patterns comprising small
number of defects. [t becomes clear that many complex patterns with large number of
defects cannot be tolerated, but the yield losses due to patterns comprising large number of

defects decreases very rapidly with the increase of the number of defects, and they can
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become insignificant. Thus, even though finding all non-tolerable patterns is intractable,
we only need to find the set of small defect patterns that cannot be tolerated. Neglecting
the yield losses due to large patterns leads to overestimating the yield, but in practice, the
error is quite small. Approximately, the yield of the fault-tolerant architecture can be
approximated by the yield of the structure with global redundancy.

In this chapter, using the yield model of the structure assuming global redundancy, the
sensitivity of the yield to variations of the defect density in a fault-tolerant architecture has
been investigated. The analyzed array is fairly robust because the yield loss is never found
to be very significant in the region of interest where replaceable modules have a high
enough individual yield. A relatively sharp threshold in the yield versus defect density
relationship has been observed. When the level of redundancy is not suitably adjusted, the
yield rapidly degrades.

A regression yield model is also proposed in this chapter. Using a simple regression
analysis, a simplified yield model can accurately predict the slope and the pivot point of
true yield curves. These parameters, which act as a function of array size, expected defect
density and redundancy ratio, are useful to assess the suitability of the design of a fault-
tolerant array. With the regression yield models, it can be predicted when more

redundancy is needed for given defect density, and array and cell sizes.
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Chapter 4
Analysis of the effects of clustered defects
on yield

4.1 Introduction to yield models when defects are clustered

Using a Poisson model may lead to a underestimation of the yield because defects tend
to cluster while the Poisson distribution assumes not clustering [35]-[38]. Defects
clustering make it possible for certain areas of a wafer to have fewer defects than expected
with a random distribution. Figure 4.1 shows how defects clustering can increase the yield.
In this case, two wafers have the same number of defects, but the wafer at the bottom has a
higher yield because of the defects being clustered. This example illustrates clustered
defects may lead to a higher yield. To account for this phenomenon, other statistical
models must be applied to develop yield models. As presented in chapter 3, the negative
binomial distribution is commonly used to take into account clustered defects. When
modeling the yield for a chip without redundancy, the negative binomial model derived
from this statistical distribution can be used to predict the yield. However, for a chip with
redundancy, some non-trivial combinatorial statistical models need to be employed to
develop yield models taking clustered defects into consideration. Several approaches
taking clustered defect distributions into account have been proposed
[18][19][20][38][45]. The way of dealing with the correlation of defect locations is crucial

in modeling the yield for a fault-tolerant structure.
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(i)Non-clustered defects, ¥=0.5

(ii)Clustered defects, ¥=0.7

Figure 4.1 Effect of clustered defects on a conventional chip yield (from [17])).

One approach deriving yield models with clustered defect distributions is based on two
combinatorial statistics, Maxwell-Boltzman and Bose-Einstein combinatorial statistics.
For a circuit with only one kind of sub-circuits, called modules, the yield of the circuit can

be expressed as follows:

Y ircuir = ZQ(m)E(n, m) 4.1)
m

Here, n is the number of total modules in the circuit, Q(m) is the number of different
selections of m modules out of n such that these m modules are defective but the circuit is
still functional, and E(n,m) is the probability of the event where only and exactly these m
modules have defects. Because defects are clustered, each defective module may have
more than one defect. Thus, E(n,m) can be written as the following:

E(n,m) = Y P{x}me “4.2)
x=0
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where P{x} is the probability of having x defects in the circuit, and P,,, is the probability
that these x defects are distributed over m modules in such way that each module has at
least one defect. According to the negative Binomial distribution described in Chapter 3,

P{x} is given as follows.

_Tx+o) /o)

Plxh = (@) (1 +A/c)%*~ @)

where o is a clustering parameter, A is the average number of defects in the circuit, x is the
number of defects in the circuit, I'(x) is the Gamma function.

To derive the expression of P, two assumptions about the defects were made. The

first is that the defects are distinguishable. With Maxwell-Boltzman combinatorial

statistics, P,,, is given in (4.4). The details of the derivation is presented in Appendix E.

[k S (m)1ken- k)x]

Pim = k=0 x=>m (4.4)

nx

In the second assumption, defects are considered undistinguishable. In this case, Py,

can be derived with Bose-Einstein combinatorial statistics. A detailed derivation is also

found in Appendix E. The expression for P, with Bose-Einstein statistics is,

()
Pem = U _ s 4.5)

When the circuit uses global redundancy, Q(m) = (r’:z) and (4.1) is rewritten as

follows:
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Y ircuie = 2(,’,’,) ;, P{x}P,, (4.6)

m x=0
In (4.6), as the defects are assumed to be independent of each other, Maxwell-Boltzman
combinatorial statistics is used. By contrast, as the defects are undistinguishable and these
defects can be clustered in a module, Bose-Einstein combinatorial statistics is used. It
implies that the defects are dependant. Generally, any of these two kinds of combinatorial

statistics is used to infer a yield model, taking a form of clustered defects into account.

4.2 Yield modeling for the architecture assuming clustered defects

In this section, a yield model of the complex architecture presented in Chapter 2 is
developed and clustered defects are taken into account. As described in Chapter 3, in a
physical array based on this architecture, only three kinds of main sub-circuits, cells,
vertical bundles and horizontal bundles, need to be taken into consideration in the yield
analysis. To study the effects of clustered defects on the yield of this structure, two
assumptions are made in developing different yield models. First, it is assumed that the
defects in identical sub-circuits are statistically dependent, but those in different sub-
circuits are independent. In the second case, it is assumed that the defects in all sub-

circuits are statistically dependent.

4.2.1 Yield modeling with identical sub-circuits assumed statistically dependent

When defects in the three kinds of different sub-circuits, cells, vertical bundles and
horizontal bundles, are statistically independent, the yield of the fault-tolerant structure
assuming global redundancy is given as:

Yetobal = Ycen¥ve¥us 4.7)
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Meanwhile, to consider the effect of clustered defects, it is assumed that the identical
sub-circuits are statistically dependent. In other word, defects in cells are dependent of
each other, those in vertical bundles are dependent, and those in horizontal bundles are
dependent. The yield models of the cells, the vertical bundles, and the horizontal bundles

are respectively expressed as follows:

SC -
Yeens = Fz_o( ) 3 PLeIPy, (4.8)
Sva QVB 49
Yyp= 3 O(FVB) S PP, “.9)
vB =
SHB Q
Yyp = HB\ v piz}P. (4.10)
" F H§= O(F”B)-go b s

In (4.8), the binomial coefficient (%) gives the number of different distributions of the

c

defects in F, cells out of Q. cells with the assumption that all these defective cells can be

tolerated by spare cells. P{x} is the probability of having x defects in cellsand P isthe
-t c

probability of having all x defects distributed over F_ cells such that each cell has at least

one defect. The same conditions and assumptions of the defect distributions are applied to
(4.9) and (4.10), except for the different subscripts that refer to vertical or horizontal
bundles instead of cells. In (4.8), (4.9) and (4.10), x, y and z are the number of defects in
cells, vertical bundles and horizontal bundles, respectively.

By substituting (4.8)-(4.10) into (4.7), the equation can be written as follows:

S Sva Sus w0 )

Veorar = 2 % 2 [ LF, )(QVB)(QHB) Z PLxIPer, 3 PPy, B PLaYPp, (411)

F F
F,=0Fyy=0Fyug=0 VB/ATHBI y=0 =0
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When defects are distributed according to the negative binomial distribution, P{x},

P{y}, and P{z} can be expressed by (4.3). With a procedure similar to that used in (4.4)

and (4.5), the probabilities P_. , P and P, can be derived. Depending on the
xFe* " yFyg Fup

assumption of distinguishable or undistinguishable defects, two different yield expressions

can be obtained.
(1) Yield models with the assumption of distinguishable defects.
When defects are distinguishable, the yield expression is derived by using Maxwell-

Boltzman combinatorial statistics. Without loss of generality, the procedure to derive

P F,» the part associated with cells in (4.11), is presented as the following.

Using the subscript “F” instead of “m” of (4.4), Per. is given in (4.12).

Lﬁ () )k(FC-k)-‘]

P.rF( = k=0 o ,X2F, 4.12)
let P.rFC = 0 if x<F . Then, it is given,
» s ; P 4.13)
P{x}P p = P{x} \(-1) [ ] X
x=0 e x=0 k:o(/‘) Qc

For the generalized negative Binomial distribution P{x}, similar to [17][46], (4.13) can

becomes (the detail derivation is presented in Appendix E)

o Fc - T —a

F (Q.—F +KkA,
ZOP{.\:}P_:FC = LZO( ,j)(—nk(l +—C—TC——] (4.14)
X = ¢ =

Therefore, (4.8) can be written as (4.15).
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S F

c Q. € F (Q.-F_+k)A )™
Y . = c c (—l)k(l < - ) 4.15
cell FC2= O(FC),EO( $) @ (*.13)
Using the same method, Yz and Y,z can be presented as follows:
y SHB Z FuBy )il 1 (Q”B—F”B”)X”B)—a (4.16)
w= 3 (e (7 : -
HB =
SVB Fva F (QVB—FVB"’")XVB e
Yyg = ( B) z( VB)( 1)( 2 J 4.17)
Fyg=

where XC, XVB and XHB are the average number of defects in a cell, a vertical bundle,

and a horizontal bundle, respectively. It is assumed that, o, the clustering parameter of
these three kinds of sub-circuits is identical.

Substituting the respective terms into (4.11) with (4.15), (4.16), and (4.17), the yield of
the structure assuming global redundancy can be expressed as follows:

Sc Sva  Sus F, Fyg Fyg

= 583 (BUEEDE S0P

F F
F.=0Fy=0Fyz=0 VB/\"HB)  0y=0i=0

([ . (Qc—Fé+k)Xc)-a(l +(QHB—F”B+1)?—»HB)'“(1 . (Qug=Fyp+ i)l-.va)'a (4.18)

a 04
According to the study presented in Chapter 3, the equation for evaluating the yield loss

contributed by non-tolerable patterns can be expressed as follows:

S, Sva  Sus Fe FygFup . F
Uypp) = X D 3, NTCupWTC,pNTC ) 3, ) Z(F (W W 't
F_=0F,z=0Fyg=0 k=0j=0i=0

(l N (Q.-F.+ k)XC)‘“(l . (Qug—Fyg+ j)xHB)-a(l . (Qvg=Fyg+ i)}-‘VB)—a (4.19)

a a a
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(2) Yield models with the assumption of undistinguishable defects
In this case, it is assumed that the defects are undistinguishable. To model the yield of

the architecture, Bose-Einstein combinatorial statistics is used. With (4.5), we have,

x-1
(Fc_l)

P = —"_ x2F
xFC ‘H'Qc'l =%
()

(-
Fol)
VB
P = ,y2F
YFyg -v+QVB_l y="vs
)
z-1
(FHB“)

P = ,22F
ZFHB (Z+QHB‘ l) HB

Z J

Substituting above three equations and the negative Binomial distribution into
equations (4.8)-(4.10) respectively, the yield of the fault-tolerant structure assuming global
redundancy can be rewritten as follows:

s _ X x-1
< QN & C(x+a) (Qckc/a) (Fc - l) (4.20)

Y. = ¢ -
cell in 0( FC).: =2Fr <T(a) (1 + Qc}"c/a)a + .t(-x +Q.- l)
x

c

v-1
s o A i |

fog= 3 »Qvﬂ') s Lot @ughve/® G (421)
L _O(FVB Y7, YT (1 +Qv37LVB/a)°‘+-V(“’+Q:’B- l)

- z-1

S T z
Yug= X (QHB) y [erw Cusus’® (Fuo-) (4.22)
HB [.‘HB_-_-O FHB ::FHB Z!F(a) (l +QHBXHB/a)a+Z(:+Q{:IB—l)

~
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x-1 x—-1
In (4.20),if x-1 = Fc—l,(Fc_l) = L.If x<F, (Fc—l) = 0. These conditions

[T 4 )

for (4.20) are applied to (4.21) and (4.22), with the subscripts “y” or “z” instead of “x” and

with the subscripts “VB” or “HB” instead of “c”

Substituting (4.20), (4.21), and (4.22) into (4.7), the yield equation of the fault- tolerant
structure is presented in (4.23).

Sr SVB SHB z T = Ly
DYDY E iy QV Z 2 feray ‘@AY reay  Quatvg @
clubal F F B) oM(a) Jeyy + ¥ ¥IC(a) Y
£ VB/\" HB. 3 (1 +Q (/. a)) (1 *QVB"VB’ a)
F.=0Fyg=0 Ha'° s=Fy=Fygz=Fyp
T < _\‘-l z=1
rizeay CHsrug’® (F-1) (Fyg=1) (FHB 1) (4.23)

h(a) (l+QHBF-HB/G)“+:(“+QC_l)(-"*'QVB-l)(‘*QHB )

Based on (4.23), the equation for evaluating the yield loss due to non-tolerable patterns

can be expressed as follows:

s s

¢ Sve Sus - S reeq (@A sa)
x+a [
(Yyrp); = 2 E 2 (NTCHgKNTCyp)iNTC, ) 2 2 2 *T@ (140 7@
F.=0F,g=0Fyp=0 e=F.y=Fygi=Fug .
T ¥ = < c-1 / -1
rvea)  Qve*va’®  riea)  Cusrys’® (F.-1) lFVB“) Fus-!) (4.24)

y!IC(a) (“‘QVB;'VB/Q)&*"V #(a) () "’QHB}-‘HB/“)“*:( x+Q.- )(¥ +Qug- l)( +Qyp-1 )

Equation (4.18) and (4.23) present two kinds of yield models with the assumption that
defects are partially clustered in the structure, i.e., the defects in identical sub-circuits
comply with a clustered distribution but those in different sub-circuits with a random
distribution. With (4.19) and (4.24), the impact of partial clustered defects on the yield

loss can also be evaluated.

4.2.2 Yield modeling with all sub-circuits assumed statistically dependent
In this sub-section, it is assumed that the defects in all sub-circuits are statistically

dependent of each other. The defects are distributed over the fault-tolerant structure
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described in chapter 2 according to the negative binomial distribution. The yield formula

of the structure assuming global redundancy is as follows:
Yetobat = X PLx}Pyy (4.25)
x=0

where, P{x} is the probability that x defects are distributed in the structure, and P, is the
probability that those x defects can be tolerated.

According to the above assumption, P{x} is expressed with the negative binomial
distribution (4.3). To obtain P,,, it is of prime importance to identify what defective parts
can be tolerated in this fault-tolerant structure. Fortunately, when the structure provides
global redundancy, all defects can be tolerated if the numbers of defective cells, defective
vertical bundles, and defective horizontal bundles are not larger than the number of
respective spares. Because the function of all sub-circuits are assumed to have the same
sensitivity to defects, each sub-circuit is considered to be composed of a certain number of
equivalent-area elements, called EEs[44], according to their effective areas. In fact, these
EEs have no other functions than helping to formulate the yield expression. Denote by n.,
the number of EEs in each cell, ny, that in each vertical bundle, and nyg, that in each

horizontal bundle. The structure is considered to be composed of z EEs,

2= Q.Xn +QygXnyg+ Qug X nygy. Then, P, can be expressed as follows:
p_== (4.26)

Here, C, is the number of the different distribution of x defects over EEs such that these x

defects can be tlerated, and D, is the total number of different distribution x defects over

the structure.
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If the number of the defects is less than or equal to the smallest number among the

number of spare cells, spare vertical bundles, and spare horizontal bundles, namely

x<min(S..Svg.Sz), it is evident that P =1. If S.=min(S.,Sy.Sus). and the number of

defects is greater than S, only when the number of the defective cells and defective

bundles caused by these defects is not larger than the number of respective spares, the

defects can be tolerated. Therefore, (4.25) is rewritten as follows:

S, -

C
Yeobar = 2, Plxb+ ¥ Ple}s®
x=0 x=5.+1 *
where
S(' nt’ nf Ff
Q, n
C\:= Z (FDE 2 va, (':;)+
Fc=l 1l=l IF(‘=l m=1
Svs Ayg Ayg Fyg
I P DI § (S
FVB—l n=t ;FV-l 1=1 f
Sus LT ) Fug
I EADRIEN 1 (s
Fug=1 ky=1 kg, =<1 ”l
5. Svg 0 o L L Fyg
> Z "’)Z 2 X2 ml—[ ’)H W)
F‘_:lF‘,B l-l F -l/l-l 1, =1 m=1 =
Se Sy a e a. Ay Ayp Fug
nu
$3mmE-L3- 3 oo, I i (1
F(=lF” = x,.-.zlkl 1 k’lla—l m=1
Sve Suam yg fyg g L L . Fup "
Vi
DY FV:) F,,:)z SDYED DY va,,l_[(j:’)l_[(kp
Fyg=1Fpyg=1 Ji=U g stky=t ke =1 t=1 p=1
S Sve Sug 0 o e e Mvg Mvg g "ug Fe Fyg Fus .
> X X V")rﬁ,’ﬁ)Z >3Y-3Y Y- X o, IEOMOHITED
F-IFVB-IFHB-I =t g slip=l g slkp=l ke =1 m=1  t=1 p=t
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4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)



F, Fyg Fug F, Fyg
Herea ny' =O lf x<yl" h= Zimv Y, = 2j,9 y3 = kav Yy = zim+ j,,
l m=1 =1 p=1 m=1 r=1
F, Fug Fyg Fup F, Fya Fus
¥s= X int Xk, Vo= X i+ X ko ¥e = Yint Lt Xk
m=1 p=1 t=1 p=1 m=1 r=1 p=1

The symbols used in the above equations are defined as the following:

ny _: the probability that all x defects are distributed over y; EEs so that each of these
i

y; EEs has at least one defect
yi(i=1,2,.,7): the total number of defective EEs in the ith term;
i: the number of the defective EEs in the cells;
ji: the number of the defective EEs in the vertical bundles;
k,: the number of the defective EEs in the horizontal bundles;

n.: the total number of EEs in a cell;
nyg: the total number of EEs in a vertical bundle;
nyg: the total number of EEs in a horizontal bundle;

When the defects are distinguishable, using Maxwell-Boltzman combinatorial statistics,

nyi and D, are given by,

Yi .
Gy, = X (—1)k(},}(’)(y,--k)x,x2y,- (4.35)
k=0

D =7 (4.36)

When the defects are undistinguishable, using Bose-Einstein combinatorial statistics,

nyi and D are given by
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x-1

Gy, = (yi _ 1) L X2y, 4.37)
x+z-1
D = (” c ) (4.38)

The yield model of the fault-tolerant structure with all sub-circuits assumed
dependents contains seven terms, (4.28) ~ (4.34), associated with different cases of defects

distributed into the whole structure.

(1) The (4.28) term corresponds to the case that defects are only distributed in cells. In
S
this equation, the component Y (,Q:c) gives the total number of selections of F . defective
F.=1> ©

cells out of a total Q. cells, such that the defects can be tolerated. Each defective cell may

n

be caused by one or more, up to n, defective EEs. Thus, a total of 2 (

in=1

n. .
i‘) selections can

mn

be chosen for the m* defective cell, m = 1,2, ..., F,.. As a result, there is a total of

nt‘ ’lC Fl‘
DI H(‘") selections. val is the number of different distributions of x defects into

=l ap =lm=1
1 FC

y, EEs, such that each EE contains at least one defect.

(2) The (4.29) term corresponds to the case that defects are present only in vertical
bundles. Term (4.29) is the same as (4.28), except that the subscript “VB” is used instead
of “c”, *j,” instead of “i,,”, and “t” instead of “m”.

(3) The (4.30) term corresponds to the case that defects are distributed only in
horizontal bundles. Term (4.30) is the same as (4.30), except that the subscript “HB” is

c: ({3l ]

used instead of “c”, “k,” instead of “i,,”, and “p” instead of “m”.
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(4) The (4.31) term corresponds to the case that defects are distributed only in cells and

2, 2y

vertical bundles while there is none in horizontal bundles. (,(,'%) is the number of

different selections of F,. defective cells out of Q, cells and selections of Fy; defective

e n. My b Fe Fyg
vertical bundles out of Q,; vertical bundles. 2. -y ¥ Y T ) [T ;‘“’) gives the
i = zFC=l/l=l IFVB=lm=l t=1

number of different selections of i, defective EEs from n_ in each cell and selection of j;

EEs from nyg in each vertical bundle.

(5) The (4.32) term corresponds to the case that defects are only distributed in both
cells and horizontal bundles while there is none in vertical bundles. The expression of
(4.32) is the same as (4.31) after replacing the subscript “VB” with “HB”, *j;” with “k.",
and “t” with “p”’;

(6) The (4.33) term corresponds to the case that defects are present in both vertical and
horizontal bundles while there is none in cells. Term (4.33) is the same as (4.31) except for
using subscript “HB” instead of “c”, “k,” instead of “iy,", and “p” instead of “m”.

(7) The (4.34) term corresponds to the case that each cell and bundle contain at least
one defect simultaneously. The components in (4.34) have the same meaning as in

previous expressions.

Based on the above yield model of the structure, the equation for evaluating the yield

loss contributed by non-tolerable patterns can be developed as follows.

(YNTP),' = E P{x}(Pntx)i
x=0
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where P{x} is the probability that x defects are distributed in the structure, (Pp); is the
probability that those x defects are distributed in the i non-tolerable pattern. Then, (Ppy);

can be presented as follows:

(4.39)

where (NTP, ); is the number of type i defect patterns where x defects are not tolerable, and
D, is the number of different distribution of x defects in the structure.

Based on (4.39), the equations for evaluating the yield loss due to two most significant
non-tolerable patterns presented in Chapter 3 in forming a logical array of NxN from a
physical array of (N+1)xN are developed as follows:

Pattern 1: it corresponds to the case where two vertical bundles in the same row of a
(N+1)xN physical array are defective.

It is evident that (P,,,), = 0 if x <2. Therefore, the equation for evaluating the yield

loss due to Pattern 2 can be written as follows:

(NTP )l
(Y.vrp)l E P{x}—k (4.40)
x=2
where,
Sve "vg  ™vg Fyg
Ny,
(NTPI)l = z [(F:::\ “‘Vﬂ.z VE’” ] E E ('rv [—[l
Fyg=2 =1 /Fvﬂsl =1
S. Su o " fvg  fyg Fyg
Qyp . R
Z 2 {F)[(Fvn} (FVZ)(V .n ]z Z z Z Gey, l—[[ |H| )
F.-=vau=2 l|=l AF-ll"l IFB-I =1
Sus  Svs L nyp  fvg  fvg Fyg
Q 18, n
z 2 [F::D[(F:Q 'Fw; (NVB. " B] z Z 2 z "3 l—Il ]Hl V”
Fug=1Fyg= ky=1 k;lasll;ﬂ iFg®?
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m. nyg Ay "y fyg Fyg Fus

Se Sug  Sva .
T I X anmfrn ey ]Z $3¥-% %% H | ) e
F :lF”BSIFVB‘- xlsl IF =ln= j,:vn’lkl-l kF =1 p=1
Fyy Fyg Fya Fus
Here, ny.=0 if x<y!.. v = Zi,, ya = Zz +Zjl’ vy = Zj,+ ka,
l t=1 m=1 e=1 t=1 p=1

. Fvg Fus o 0 (0] N FVB
vo= Y i+ Y+ Y k,. The component ( C)( HB) ( VB) ( )(N +1)
* g F )\ Fug)|\Fvs) \Fyg) V°

m=1 t=1 p=l
gives the total number of Pattern 1 as described in Chapter 3. The other components of

(4.40) are similar to those of (4.28)-(4.34).

Pattern 2: it corresponds to the case where three cells in a corner and one vertical
bundle in the first row of a physical array of (N+1)xV are defective.
According to the features of Pattern 2, evidently (P),=0 if x <4 . Thus, the formula

for evaluating the yield loss contributed by Pattern 2 is rewritten as follows:

- (NTP )a
¥ yre); = 2 P{x} (4.41)
I
=
Where,
S, Sva 0 -3 . . R, My Myg
2= RN -
wreg, = 33 [ e ]z X% n [1.
F.=3Fy=1 g =n=t g,
Sc Sus Svs " fyg  Ryg "y g Fe Fyg Fus
n
)0 YD N [0/ F8] (e (0  ERE ]z DY I YD I 1 i Gl | s
Fe=3Fyp=1Fyg=} A S e =
Fyg F. Fuy Fyg
Where G, =0 if  x<y, = 2 in* Y Qi V6= X imt XUt XKy
] m=1 1=1 m=1 t=1 p=1

[(T)(g;:j)](g:; [( IB)(IZZ: )(NVBH)F B_l] gives the total number of Pattern 2 as

presented in Chapter 3. The other components of (4.41) are similar to those of (4.28)-
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(4.34). Depending on the considered combinatorial statistics, Gy and D, can be
i

expressed with (4.35)-(4.38) respectively.

4.3 Numerical results of the yield with clustered defects

In this section, to investigate the effect of clustered defects on the yield and yield loss
of the fault-tolerant structure described in Chapter 2, results of quantitative studies based

on models developed in the previous section are presented and analyzed.

4.3.1 Effects of clustered defects on yield losses

In constructing a logical array of 20 by 20 from a physical array of 21x20, Pattern 1 and
Pattern 2 presented in Chapter 3 are the two most significant non-tolerable patterns.
Therefore, analyzing the yield losses due to these patterns may lead to revealing the
typical characteristics of the effects of defect clustering on the yield loss.

The parameters that need to be taken into consideration in the numerical analysis are as

follows. Variables Q o Qyp,and Qg p are the total number of cells, vertical bundles, and
horizontal bundles respectively, Variables S o’ Syg»and Sy g, the number of spare cells,

spare vertical bundles, and spare horizontal bundles, )‘c’}‘VB’ and A yp- the expected

number of defects per cell, per vertical bundle, and per horizontal bundle, and o, the

clustering parameter.

In this case study, Qc = QVB = QHB = 420, SC = SVB = SHB = 20, and

o = 5 is assumed. Also, according to the proposed WSI architecture, the area of a cell is
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0.25cm?2, that of a vertical bundles or a horizontal bundle with 4 wires is 0.4mm>. With
A = A x D, the expected number of defects, A.,A,; and A, can be obtained.

The yield curves computed with (4.18) and (4.23), respectively, are presented in Figure
4.2. For comparison, the yield curve computed with (3.10) is also presented in Figure 4.2.
The curve with (3.10) represents the case where defects comply with random distributions.
Form this figure, it is observed that the yield with clustered defect distributions is lower
than that with a random defect distribution when the defect density is below a certain
value. It implies that arrays subjected to clustered defects are not so robust as those
subjected to random defects at low defect density. However, when the defect density
increases, the curves obtained with clustered defects decrease slowly, with “long tails”, a
sharp contrast to the rapid fall of those with random defects. It shows that the arrays

subjected to clustered defects perform much better at high defect density.

1 T . T r r ;
4 —— Y-global with BD-21x20
0.9F —e— Y-global with MB-21x20 |
—a— Y-global with BE-21x20
0.8
0.7
g.0.6
:.'; 05
g Legend:
e 04
’ BD: Binomial Distribution
0.3
MB: Maxwell-Boltzman
0.2 statistics
0.1 BE: Bose-Einstein
* statistics
8.1 0.2 0.3 04 0.5 0.6 0.7 08

Defect Density fem®

Figure4.2  Effects of clustered defects on the yield of forming a logical array of 20x20
from a physical array of 21x20. The curve “Y-global with BD-21x20" is
derived from (3.10), the one “Y-global with MB-21x20"" from (4.18), and the
one “Y-global with BE-21x20" from (4.23).
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Substituting those respective data into equations (4.19) and (4.24), the numerical
results of the yield losses due to these two most significant non-tolerable patterns are also
computed. Figure 4.3 and Figure 4.4 show the characteristics of these curves in the two
case, respectively. To compare the effect of the clustered defects with that of the random
defects, the results of the yield loss computed with (3.15) assuming random defects are
also presented in these figures. From Figure 4.3, it is observed that the maximums of the
three curves of the yield loss are of the same order of magnitude, which is also observed in
Figure 4.4. These figures show that the yield losses contributed by these two most

significant non-tolerable patterns at low defect density are insignificant.

25

—— YNTP1 for Maxwell-Boltzman
—o— YNTP1 for Bose-Einstein
—e— YNTP1 for Binomial distribution

-
(4]
T

Probability

P

. 4 Legend:
"N

o©
n

YNTPl: Yield loss due to
Non-Tolerable Pattern 1

8.1 0f2 Oj3 0.4 015 0f6 Of7 OjB 0?9 ;
Defect Density fem?

Figure 4.3  Effects of clustered defects on the yield loss contributed by the first most
significant non-tolerable pattern in forming a logical array of 20 by 20 from a
physical array of 21x20. The curve “YNTPL for Maxwell-Boltzman” is
computed with (4.19), the curve “YNTP1 for Bose-Einstein” is computed
with (4.24), and the curve “YNTP! for Binomial distribution” is computed
with (3.15).

80



25

—— YNTP2 for Maxwell-Bolzman
—o— YNTP2 for Bose-Einstein
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Legend:

YNTP2: Yield loss due to
Non-Tolerable Pattern 2

8.1 02 03 04 05 06 07 08 09 1
Defect Density fem?

Figure 44  Effects of clustered defects on the yield loss contributed by the second most
significant non-tolerable pattern.The equations used to compute the results
are the same as in Figure 4.3.

For comparison, Figure 4.5 presents the yield curves of the structure assuming global
redundancy and the yield loss curves at the region of higher clustered defect density. From

Figure 4.5, it is observed that the yield degrades rapidly when defect density is above 1.0

defect per cm? and then the yield losses due to the defect Pattern | become comparable
with the yield of the structure with global redundancy. However, it is noted that the yield
has become unacceptable at this higher defect density level and more redundancy is
needed to add in the physical array. To summarize, considering the limit of acceptable
yields, the yield losses due to non-tolerable patterns in this structure are insignificant when
defects are distributed according to the studied clustered distribution. As a result, under
the condition of a clustered defect distribution, the yield of the structure can be considered
to be approximately equivalent to the yield of the structure assuming global redundancy

when the redundancy is suitable.
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Figure 4.5  Yield and yield losses due to two most significant non-tolerant patterns at
higher clustered defect density in forming a logical array of size 20x20 out of
a physical array of size 21x20.

Figure 4.2 to 4.5 show that the curves computed with Maxwell-Boltzman statistics and
Bose-Einstein statistics have very similar characteristics. On the limited set of
experiments, it appears that the equations developed with the two kinds of combinatorial
statistics do not make much difference in the computation of the yield losses.

Computing the yield loss with (4.40) and (4.41) for large arrays is very time-consuming
as illustrated in Table 4.1. Thus, the yield loss of forming smaller arrays is investigated to
analyze the effects of clustered defects. In this case, it is assumed that a logical array of 5
by 5 is constructed from a physical array of 6x5. The yield losses are evaluated with
equations, (3.15), (4.19), (4.24), (4.40) and (4.41), with different assumptions with respect
to defect distributions, from the purely random one to the fully clustered one. In the

numerical calculations, it is assumed that bundles are composed of 40 wires and that they

have an area of 0.1lcm2. The area of a cell is 0.25cm™. The clustering parameter is

assumed to be o=5 [12]. Figure 4.6 and Figure 4.7 show the results. From these figures, it



is shown that the yield loss computed with the Poisson random distribution Equation
(3.15) is larger than the others when the defect density is below a certain value. The yield
loss curve with the random defect distribution go down rapidly with the increase of the
defect density. However, the curves of the yield losses with clustered defects fall relatively
slowly, and the yield losses become larger than those obtained with the random defect
distribution beyond a certain value of the defect density. For instance, the yield losses
evaluated by (4.40) and (4.41) decrease at the slowest rate among all these yield losses
with the increase of the defect density. In the equations (4.40) and (4.41), the defects in all
sub-circuits are assumed statistically dependent. It implies that the defects tend to be
clustered over the structure, which is also called as large area clustering [17]. It is

observed that clustering changes the rate at which yield decreases with defect density.

Table4. 1 Computation time of one numerical point of the yield loss curves in
forming a logical array of size 20x20 from a physical array of size

21x20, where a bundle comprises 40 wires with an area 11 mm? and

the area of a cell is 25mm?. The clustering parameter a:=5 were used
based on ITRS[12].

Computer information Yield loss (YNTPI) model CPU time
Manufacturer: Sun Equation (3.15) assuming pure 42 ms
Microsystems random defect

Equation (4.19) assuming partial | 386s
clustered defect, with Maxwell-
Boltzman statistics

System Model: Ultra 10

Real Memory: 512 M

) Equation (4.24) assuming partial | 189s
Virtual Memory: 2048 M | c[ystered defect, with Bose-Ein-

stein statistics

Number of CPUs: 1
Equation (4.40) assuming large 159225 h

CPU type: sparcv9 clustered defect, with Maxwell- (Estimation)
Boltzman statistics

OS name: SunOS Equation (4.40) assuming large 12332 h

clustered defect, with Bose-Ein- (Estimation)

OS version: 5.8 stein statistics
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Yield loss contributed by the first most significant non-tolerable pattern in
forming a logical array of 5x5 from a physical array of 6x5. The curve of Y
with BD” is derived from (3.15), *Y with MB-L" from (4.40) using Maxwell-
Boltzman statistics, Y with BE-L" from (4.40) using Bose-Einstein
statistics, *Y with MB-S” from (4.19) and *Y with BE-S” from (4.24)
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Yield loss contributed by the second most significant non-tolerable pattern in
forming a logical array of 5x5 from a physical array of 6x5. The curve of “Y2
with BD” is derived from (3.15), “Y2 with MB-L” from (4.41) using
Maxwell-Boltzman statistics, Y2 with BE-L” from (4.41) using Bose-
Einstein, “Y2 with MB-S” from (4.19) and “Y2 with BE-S™ from (4.24).
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4.3.2 Effects of the clustered defects on the yield of forming logical arrays

To study the effects of clustering on the yield of the fault-tolerant structure described in
Chapter 2, the case of 3 logical arrays of size 20x20 constructed from physical arrays of
size of 21x20, 21x21 and 22x22, respectively, is used. The yield of the various structures
assuming global redundancy are computed with equations developed in previous sections.

In the numerical calculation, it is assumed that a bundle is composed of 40 wires, and the
areas of a bundle in these physical arrays are different, 0.096cm™> for the physical array of
size 21x20, 0.10cm™ for that of 21x21, and 0.1lcm™ for that of 22x22, respectively. The

area of a cell is 0.25 cm™. It is also assumed that o = 5 when (4.18) and (4.23) are used.

Figure 4.8 presents the characteristics of the yield computed with (4.18) and (4.23)
assuming partially clustered defects in the array structure, i.e., the defects only in identical
sub-circuits are statistically dependent. For comparison, the yield curves computed
according to (3.10) with a completely random distribution are also shown in this figure. In
this figure, it should be noted that the yield curves with clustered defects shift right when
the number of the spares of the physical array increases. Evidently, clustered defects have
no major impact on the yield trends when the redundancy of a physical array increases.
With suitable redundancy, the array is rather robust to variations of the defect density
when it is below some threshold values. However, it is shown that clustering reduces the
yield when the defect density is smaller. For example, in forming a 20x20 logical array

from the physical array of size 22x22, the yield with the clustered defects are lower than

the yield with the random defects when the defect density is below 0.7cm™. It implies, for
fault-tolerant circuits, that clustered defects tend to lower the effectiveness of fault

tolerance as described by several authors [22][34].
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Figure 4.8  Yield of forming logical arrays of size 20x20 from physical array of size
21x20, 21x21, and 22x22. “BD”, “MB” and “BE"” indicate that the curves are
obtained from equations (3.10), (4.18), and (4.23) respectively.

In Figure 4.8, it is also shown that the yield computed by (4.23), with Bose-Einstein
statistics, is a little higher than that by (4.18), with Maxwell-Boltzman statistics. However,
both curves have the same shape. Let us note that numerical yield computation with (4. 18)
needs careful consideration in programing the computation. To avoid overflows, it is
necessary to deal with alternating series in the equation. Thus, the numerical computation
of Equation (4.18) requires a much longer computation than that of (4.23), but both
produces very similar results. Moreover, if the effect of completely clustered defects is
considered for a large physical array, the computation process will be more complex and
time-consuming.

Due to limitation in computational power, the computation of yields for larger arrays
with (4.27) is difficult. To illustrate the impacts of large area clustered on yields, a smaller
physical array is used. In the numerical analysis, it is assumed that a logical array of 4 by

4 is constructed from physical arrays of 5 by 4 and 5 by 5, respectively. The area of a
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bundle is 0.11cm™2, the same as that used with a physical array of size 22x22. The area of

acell is 0.25 cm™ and the clustering parameter is 5. Figure 4.9 and Figure 4.10 present the
results of the yield as a function of the defect density. From Figure 4.9 and Figure 4.10, it
is observed that all yield curves shift right with the increase of the redundancy ratio in the
physical arrays. It is shown that a clustered defect distribution does not impact the general
yield trends as described in Chapter 3. Also it is observed that large area clustering tends
to lower the yield when the defect density is below some levels. It implies that, due to the
interaction of the yield of the sub-circuits, clustered defects in a wafer scale system
partitioned into sub-circuits can potentially result in reduced yield, as described in
[16][22][36]. Figure 4.10 illustrates that the yield curves computed with (4.18) and (4.23)
fall rapidly above some defect density threshold, as those obtained with (3.10), but those
computed with (4.27) go down slower. As for (4.27), it is derived with the assumption of
completely clustered defects. From these figures, it is clear that the yield computed with
different yield equations present some significant differences when the defect density is

higher. Thus, clustering has a great impact on yield when defect densities are higher.
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Figure 4.9

Figure 4.10
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Comparison of the yield computed with different equations in constructing a
logical array of 4x4 from a physical array of 5x4. “BD”, “BE-S", “MB-S"
indicate that the curves are obtained with(3.10), (4.23) and (4.18),
respectively. The curve indicated by “BE-L” is computed with (4.27), (4.37)
and (4.38). The one indicated by “MB-L” is done with (4.27), (4.35) and
(4.36). The symbols in the legend are the same as those in Figure 4.6.
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(4.36). the symbols in the legend are the same as those in Figure 4.6.
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4.4 Yield model regression with clustered defects

In this section, to find a simple method to evaluate the yield of large arrays subjected to
clustered defects, the regression model introduced in Chapter 3 is extended to the
clustered defect distribution such as Bose-Einstein.

In this study, the yield of arrays of equivalent redundancy ratio, but different sizes are
evaluated according to Equation (4.27). The results are shown in Figure 4.11. it should be

noted that the obtained yield curves tend to cross approximately the point where the

probability is equal to 1 - et , which has been mentioned in Chapter 3. Table 4.1 presents
numerical calculation results of the approximate cross points. From the table, it is shown

that, regardless of the array size, in each of the arrays, the defect density that results in a

yield of 1 —e-l is around a certain value of 0.47. As an approximation, the point can

again be considered as a pivot point.
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Figure 4.11 Yield of arrays with equivalent redundancy ratio, computed with (4.27),
(4.35), and (4.36) using Bose-Einstein statistics. 2/20 array for a physical
array with 20 cells including 2 spares, and the other arrays of different sizes
have the same redundancy ratio as 2/20.
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Table 4.2  Numerical value of the approximate pivot points for arrays with
redundancy ratio equal to 0.1. It is assumed that defects comply with
Bose-Einstein distribution.

Size of arrays Nl:;labrz()f Defe::ﬁr)xsity Probability
20 2 0.47279923 j
30 3 0.47161067 l-e!
40 4 0.47334149 j
50 5 0.47512312 l-e!
60 6 0.47650617 l-e7!
70 7 0.47748665 l-e!
80 8 0.47814201 l-e’!

Similar to the method used to develop the regression model with the random defect
distribution in Chapter 3, a simple regression model with the clustered distribution can be
derived by using these approximate pivot points. This regression model can be used to
predict the yield of larger arrays in the region around the pivot point. Especially, when it is
difficult to compute the true yield of large arrays with the clustered defects, the regression

yield model can help to determine the characteristics of the true yield curves in the region

of interest. The defect density, 8(r), where the probability is equal to | —e_l, and the
slope at the pivot point, K(r,m), can be approximated by (4.42) and (4.43), respectively.
d(r) = -0.0407 +5.1175r (4.42)

1.1

- 2 -
K(r,m) = 0.0860r ~~ +(4.0352x10 3_ 8.7529 x 10_4r)m (4.43)
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where r is the redundancy ratio of a physical array of size K by L, and m is the number of
cells in the physical array, i.e., m=KxL. k(r,m) is expressed with an absolute value in
(4.43). Figure 4.12 presents the yield curves predicted by the regression models and the
complete yield curves computed with Bose-Einstein distribution represented by (4.27),
(4.37) and (4.38). It is observed that the yield predicted by the regression models is a good
agreement with those computed with the complete yield models. In this figure, the yield
curves of large arrays of 21x20 and 22x22, predicted with the regression models, indicate
that the characteristic curve around the threshold become steeper with the increase of the

physical array sizes.
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Figure 4.12 Comparison between the regression model and the yield model assuming
Bose-Einstein distribution. The dotted lines are obtained from the complete
yield model, the solid lines and the dash-dot ones from the regression models.

Figure 4.13 presents the yields predicted by the regression models in (4.43) and (4.44)
with those computed with the regression model based on random defect distributions in
(3.25) and (3.26). For comparison, the yield curves computed with the Binomial

distribution are also presented in this figure. From Figure (4.13), it is shown that, for
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physical arrays of the same size, the curve of the yield predicted by the regression model
based on random defect distributions is much steeper than that based on a clustered defect
distribution. This results agree with the previous studies presented in Figure 4.6.
Furthermore, using this regression model to estimate the yield is very time-efficient. Table
4.3 illustrates required CPU time for the computations of different yield models. It should
be noted that the computation for the regression models cost the least CPU time among
all. Therefore, using this model can give a quick yield prediction of large size arrays

subjected to a clustered defect distribution.
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Figure 4.13 Comparison of the yield predicted by regression model with the clustered
defect distribution and the random defects distribution. The dotted lines are
obtained from complete random defect models, the solid line from the
regression yield models with random defects, and the dash-dot lines from the
regression yield models with clustered defects.



Table4.3  Computation time for one numerical point of different yield curves in
forming a logical array of 20x20 from a physical array of 21x21,

where a bundle comprises 40 wires with an area 11 mm? and the area

of a cell is 25mm?.

OS version: 5.8

Computer information Yield model CPU time
Manufacturer: Sun Equation (3.10)- random defect, 833 ms
Microsystems with Binomial distribution.

System Model: Ultra 10 Ec_{uation (4.18)-partial clustefrefi defects, 237 min.
with Maxwell-Boltzman statistics

Real Memory: 512M Equation (4.23)-partial clustered defects, 12 min.
with Bose-Einstein statistics

Virtual Memory: 2048M
Equation (4.42) and (4.43), regression < lms

Number of CPUs: 1 model assuming large clustered defect

) Equation (4.27) -large clustered defect. 1.97x10"% h

CPU type: sparcvd with Maxwell-Boltzman statistics (Estimation)

OS name: SunOS Equation (4.27) assuming large clustered | 4.24x10!! h
defect, with Bose-Einstein statistics (Estimation)

4.5 Summary

In this chapter, yield losses due to non-tolerable defect patterns have been re-evaluated
with the assumption of clustered defects. Based on this assumption, the defect distribution
is expressed with the negative binomial distribution. Two kinds of combinatorial statistics
are used to deal with the two cases of clustered defects to derive the yield models. The first
case is assumed distinguishable defects and Maxwell-Boltzman combinatorial statistics is
used. In the second case, defects are assumed indistinguishable and Bose-Einstein
combinatorial statistics is applied. By assuming different statistical correlations among

cells, vertical bundles and horizontal bundles, respective yield models are derived and the

corresponding equations for evaluating yield losses are obtained in this chapter.
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It has been found that the results obtained by using yield models assuming clustered
defect distributions agree with those based on a random defect distribution. [t shows that
the non-tolerable patterns have no significant effect in terms of yield loss in the region of
interest when the array structure possesses suitable redundancy. A numerical analysis of
the yield with clustered defects has been conducted. It is found that, when the defect
density is below a certain value, the yields are lower than those obtained with random
defects. It implies that, in the case of fault-tolerant circuits, clustered defects tend to
reduce the effectiveness of fault tolerance. However, the clustered defects also reduced the
rate at which yield decrease with defect density. Consequently, the yield with clustered
defect distributions can be very different from the one with random defects when the
defect density is higher.

In this chapter, the regression yield model proposed in the previous chapter has been
extended to reflect clustered defects distribution such as Bose-Einstein. Using these
simplified yield models, one can quickly predict the slope and pivot point of true yield

curves of large arrays subjected to clustered defect distributions.
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Chapter 5
Conclusion

5.1 Summary of the work

In this thesis, a closed form yield model has been proposed. In this model, the
constraints of a complex interconnection architecture has been taken into account. It is
applicable to the architectures in which approximate global redundancy is involved and for
which constraints are interpreted into yield losses. The impact of such yield losses can be
evaluated as follows. First, the probabilities of the existence of non-tolerable defect
patterns is calculated. Then, the impact can be assessed by comparing the yield of the
architecture with global redundancy and these probabilities.

With this approach, the diagnosis and analysis of a complex interconnect architecture
with fault tolerance has been processed. It is shown that it is difficult to find all the
significant non-tolerable patterns but they are tractable. After a great deal of study on the
operation of the fault-tolerant structure, the most significant non-tolerable defect patterns
have been identified and proved. To study the impact of these defect patterns on the yield
of the architecture, yield loss equations for evaluating these defect patterns have been
developed. With these equations, the numerical results of the yield losses contributed by
the significant non-tolerable patterns were computed. It has been proved that many
complex patterns with large number of defects can not be tolerated, but the yield loss due
to these patterns decreases very rapidly; thus, they become insignificant. It has also been

shown that most of the yield losses in this structure result from a few non-tolerable
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patterns comprising small number of defects, and that the yield losses sharply decrease
with the increase of the number of defects involved in a pattern. The amount of reduction
is in the order of several decades of magnitude with one or two additional defects in a
pattern. Thus, even though finding all non-tolerable patterns is intractable, it is only
needed to find the set of small defect patterns that cannot be tolerated. The yield losses
contributed by small defect patterns of this structure have also been studied. If a suitable
redundancy is added in the structure, it has been shown that the yield losses are small
enough to be neglected. It is commonly known that neglecting the yield losses due to non-
tolerable patterns leads to an overestimation of the yield. However, because of the very
low probability of non-tolerable patterns in this structure, the error is quite small in
practice. Approximately, with suitable redundancy, the yield of the fault-tolerant structure
with constraints can be expressed by the yield of the structure with global redundancy.

In this thesis, based on the study on the yield of the structure assuming global
redundancy, the sensitivity of the yield of the targeted array to variations of the defect
density has been investigated. To develop the yield models, several assumptions are made
in terms of different kinds of sub-circuits in the structure and nature of defects. This
structure has three kinds of main sub-circuits, cells, vertical bundles and horizontal
bundles. Defects in each kind of the sub-circuit are assumed statistically independent. In
this case, the yield models are obtained. The results of the yield computed with these
models show that the circuit array is fairly robust because the yield losses are proved to be
insignificant in the region of interest. It is noted that the yield is very sensitive to the defect
density around an observed certain points called the threshold. A relatively steep curve of

the yield to defect density relationship around the threshold is observed. When the level of
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redundancy is not suitably adjusted, the yield rapidly degrades. With these yield models,
the required redundancy of a physical array for forming a logical array with robust yield is
also predicted.

Yield model have also been developed for the case of a clustered defect distribution. To
deal with clustering, Maxwell-Boltzman combinatorial statistics and Bose-Einstein
combinatorial statistics are used. By establishing different statistical correlations of the
sub-circuits, the yield models with clustered defects are developed. Based on these
models, the equations for evaluating yield losses under the condition of the clustered
defect distribution have been derived. The numerical results computed with these
equations show that the non-tolerable patterns in a physical array with suitable redundancy
are proved to be insignificant in the region of interest when defects comply with a
clustered defect distribution. These results are consistent with those obtained with a
random defect distribution. In addition, a relatively steep characteristic curve in the yield
versus clustered defect density relationship is also observed. When the redundancy level is
suitable, below some defect density threshold, a circuit array can be made robust. The
study shows that defect clustering changes the rate at which yield decreases when the
defect density increases. As a result, around the threshold, the yield curves with clustered
defects is not as steep as those with random defects. Furthermore, it is demonstrated that,
when the defect density is lower, the yield of the fault-tolerant structure can be reduced by
the clustered defects. It implies that, in the case of fault-tolerant circuits, clustered defects
tend to decrease the effectiveness of fault tolerance.

In this thesis, regression yield models have also been proposed. Using a simple

regression analysis, a simplified yield model with random defects is developed to
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reasonably predict the slope and pivot points of the true yield curves. Additionally, these
models can be used to predict the redundancy needed for given array and cell sizes.
Furthermore, the proposed regression models and results are extended to clustered defect
density distributions such as the Bose-Einstein distribution. With these simplified yield
models, the slope and pivot points of the yield curves of large arrays can be easily
evaluated. Whereas, with complete yield models, the numerical computation for those

data is a very time-consuming.

5.2 Suggestions for future research

For the circuit architecture studied in this thesis, the yield modeling is based on the
assumption that the reconfiguration logic is fault-free. The fault tolerance schemes used in
the architecture make the reconfiguration logic mostly non-critical to the existence of
defects in the structure. However, when a bundle contains many wires, the reconfiguration
wire complexity increases correspondingly. A study on the impact of defective
reconfiguration logics on the yield needs to be undertaken as a future study.

When this complex interconnection architecture is implemented with WSI, there will
exist a misalignment problem of the connection of the data buses between neighboring
cells in the fabrication. The study of how this potential misalignment impacts the yield and
yield model of the structure should be conducted.

Finally, the yield of harvesting a logical array depends heavily on the practical
reconfiguration algorithms applied to a fault-tolerant structure. Therefore, the yield model

needs to be adjusted to reflect the practical impact of reconfiguration algorithms.
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Appendix A. Terminology and replacement rules of the
fault-tolerant structure

The terminologies used in the yield analysis of this thesis are defined in this appendix.

Due to the limitation of the number of recofiguration wires, there are some constraints in

the replacement of the defects in the structure. These constraints are generalized as some

basic replacement rules (detail analysis of these rules are shown in [47]). For convenience

of the study, the corresponding analysis expresses of these rules are presented as follows.

A.1 Terminology of the fault-tolerant structure

The fault-tolerant structure is divided into several basic sub-circuits. Among them,
cells, vertical bundles and horizontal bundles, are basic replaceable units. The respective
redundancy is added in this structure to achieve fault tolerance. In the yield analysis of the
structure, all basic sub-circuits are defined as following:

(1)Cell: comprising processing elements and its related reconfiguration circuits that
include JTAG controller, configuration registers and receiver multiplexers of the cells.

(2)Horizontal bundles: comprising the vertical transmitter multiplexers and the
horizontal interconnections between cells.

(3)Vertical bundles: comprising the horizontal transmitter multiplexers and the vertical
interconnections between cells.

(4)Reconfiguration logic: the interconnections between cells and bundles for the
reconfiguration of cell replacements and bundle replacements.

The properties and symbols of a cells and a bundle in a physical array of size

(N+S)x(N+S) based on the architecture[27]-[29] are also defined as the following.
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(1)P(i,j): a physical cell of a physical array, where i and j indicate the column and the
row where the cell is located. L(i,j): a logical cell of a target logical array.

(2)SC(i,j): the status of the physical cell P(i,j).

SC(i, j) = {é , where | indicates that the cell is defective and 0 indicates that the cell is

good.
HB(0.Q.0,0; HB(0.Q.1,0;
c:p — —
VvB(0,0.0.0) vB(0.0.0.1)
..... .&P!O.U‘ D“b(l.? cemen P(G.0 P, 0]
- .
8undle Stealing
— —] —
D P(0.1 D D P/G,1 D

Figure A.l  Anexample of the expression of VB(i.j.k,I) and HB(i.j,k.1).

(3)VB(i.j,k.I): a vertical bundle, as shown in Figure A.l. Where i and j indicate the
physical column and row of the cell originally owning this bundle, k and | indicate the
physical column and row of the cell that is current owner of this bundle. li-#<1 and
-f<t.

(4)HB(i,j,k,1): a horizontal bundle, as shown in Figure A.l. Where i and ] indicate the
physical column and row of the cell originally owning this bundle, k and | indicate the
physical column and row of the cell that is current owner of this bundles. li-<1 and
lj-ts1.

(5) SVB(i,j): the status of a vertical bundle that originally belongs to the cell P(i,j).
SVB(i, j) = '(l) 1: defective, 0: good.

(6)SHB(i,j): the status of a horizontal bundle that originally belongs to the cell P(i,j).
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SHB(i, j) = {(l) 1:defective; 0: good.

(T)C_R(x)_H(i,j,k,l): representing the multiplexer of the x" horizontal receiver of the
cell P(i,j). Here, k and | indicate the selected signals from the vertical transmitter of the
cell P(k,]), and x=1,2,...,(N+S)-1.

C_R(y)_V(i,j.k,1): representing the multiplexer of the y* vertical receiver of the cell
P(i,j). Here, k and | indicate the selected signal from the horizontal transmitter of the cell
P(k,1), and y=1,2,...,(N+S)-1

C_Tran_H(i,j,k,!): representing the multiplexer of the horizontal transmitter of the cell
P(i,j) and it is currently owned by the cell P(k,l). where li-jl<t and k-4 <t.

C_Tran_V(i,j.,k,l): representing the multiplexer of the vertical transmitter of the cell
P(i,j) and it is currently owned by the cell P(k,l), where li-jl<t and k-l <1.

A.2 Replacement rules of the fault-tolerant structure

In the structure a defective cell or bundle in a corner can be replaced with a respective
spare one in the other corner through shifting the space one by one position at a time. As
an approximation, the structure provides global redundancy. However, due to the limit of
the number of reconfiguration wires, constraints are present in the structure and replacing
defects must comply with the rules as the follows (the detail analysis is shown in [47]).

(1)Cell replacement rule

A defective cell can directly be replaced by any of its nearest neighbors.

(2)Bundle replacement rule

A defective horizontal bundle can directly be replaced with a good bundle in the same

row or its nearest neighboring rows, the same is true for the vertical bundle. In analytical
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expression, for any vertical bundle VB(i,j,k,l) and horizontal bundle HB(,j.k,l), two
condition, |i-ji<1 and [k-/ <1, must be satisfied if the replacement succeeds.

(3)Transmitter connectivity rule

For the transmitter multiplexer of a vertical transmitter, C_R(y)_V(ij.k,D), two
condition, |i-k<1 and |j-f<1, should be satisfied in order to establish successful
connections. The same is true for the transmitter multiplexer of a horizontal transmitter
C_R(y)_H(,j.k,1), where i~k <1 and |j-#<1

(4)Receiver connectivity rule

Any horizontal receiver of a cell can only receive signals from the transmitters of cells
that are located in the same row or in its nearest neighbor rows. The analytical expression
is as the following.

For the receiver multiplexer of any horizontal receiver of a cell, C_R(x)_H(,j.k.1),
where, x=1,2,...,(N+S)-1, |j-#<t,and i £k if j#1.

The receiver multiplexer of any vertical receiver of a cell can only receive signals from
the transmitters of cells located in the same column or in its nearest neighbor column.

For the receiver multiplexer of any vertical receiver of a cell, C_R(x)_V(i,j,k,l), where,
x=1,2,....,(N+S)-1, li-#<1,and j#if i#Zk.

(5)Receiver source exclusion rule

The horizontal receivers of a cell cannot receive signals simultaneously from more than
one transmitter of cells located in the same physical column.

For the two receiver multiplexers of any two horizontal receivers of a cell,

C_R(Xl)_H(i,j,ml,nl) and C_R(x?)_H(i,j,mz,nz), lf Xy #* X, then n, #n,.
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The vertical receivers of a cell cannot receive signals simultaneously from more than
one transmitter of cells that are located in the same physical row.

For the two receiver multiplexers of any two vertical receivers of the cell,

C_R(y,)_H(,j,m,n;) and C_Ry, H(ijm,n,), if y, #y, then m, #m;,
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Appendix B. Thirteen kinds of non-tolerable patterns

Thirteen kinds of non-tolerable patterns in a physical array of (N+1) x N are presented
in this appendix. In this case, all bundles are assumed to be good and they are not shown in
the graphs to simplify the configuration.

(1)Pattern 1: Corresponding to the case where six cells in any of four corners of the
array are defective, as shown in Figure B.1.

In this case, the position of defective cells C1-C6 prevents two defective celis C1 and
C2 from being replaced with good spare cells although there are available spares in the
array. Moreover, because of the limit of the number of spare columns, only one physical
column in the array can be excluded with the row or column exclusion strategy described
in Chapter 2. Consequently, there are not enough good cells for a certain logical column of

the logical array of N x N no matter what kind of construction method is used.

Oooo-— ood

Figure B.1  Non-tolerable Pattern 1.

The equation for calculating the total number of this kind of non-tolerable pattern is

presented as the following.

NTC,.y = (4)((N+ l)N—6)

1 F.-6
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(2)Pattern 2: corresponding to the case where seven defective cells in any of four
corners of the array are defective as shown in Figure B.2.

In this case, if the second column containing three defective cells (Cl, C4 and C7) is
used as spare column, defective cell C2 cannot be replaced by a good spare cell in the
second column. Moreover, due to the presence of defective C7, only one defective cell Cl
or C2 can be replaced by the good spare cell if the other column is used as spare column
other than the second column. Consequently, it is sure that there are not enough good cells
for a certain column of the logical array of NxN no matter what kind of construction

method is used.

FAFaEs
CICFaEs
L
[ ]
000

......

ooo0o- 00

Figure B.2  Non-tolerable Pattern 2.

|
1L
L]
L]
|

|

The equation for calculating the total number of this kinds of non-tolerable patterns is

presented as NTC,,, = (“)((N +ON '7) :

1 F.-1

(3)Pattern 3: corresponding to the case where eight cells in the two corner of the array
are defective as shown in Figure B.3.

In this case, because only one spare column in a physical array of (N+1) x N can be

used to form a logical array of N x N, there must be one defective cell, Cl or C6, cannot be
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replaced with a good spare cell. Consequently, there must be not enough good cells for a
certain column of the logical array of Nx no matter what kind of construction method is

used.

Figure B.3  Non-tolerable Pattern 3.

The equation for calculating the total number of this kinds of non-tolerable pattern is

presented as NTC,,,, = (%)(%)((N ;}:%'8).

(4)Pattern 4: corresponding to the case where eight cells in the top or bottom of the

physical array are defective as shown in Figure B.4.

In the case, there must be one defective cell, C2 or C3, can not be tolerated.

N+1

O--0EEEE0-— O
O--0EEEEd-0 ,
00000000
00000000

I Rt N I I I | I e
O---Ooduod-—U

Figure B4  Non-tolerable Pattern 4.



The equation for calculating the number of this kind of non-tolerable pattern is
presented as the following.

NTCooy = G)(N- l)((N }9%"‘8)

(5)Pattern 5: corresponding to the case where nine cells in any of two edges of the

array are defective, as shown in Figure B.5.

In this case, one defective cell, C4 or C5, are not tolerable.

N+l

AEEO-0O
OOood O

------

Figure B.5 Non-tolerable Pattern 5.

The equation for calculating the number of this kind of non-tolerable pattern is

presented as the following.

NTC, = ("‘;’)(N_p_)((N ;cllh‘;_q)

(6)Pattern 6: corresponding to the case where at least ten cells that are shown in Figure

B.6 are defective.

In this case, because the limit of spare column in the physical array, one defective cell,

C1 or C8, can not be tolerated.
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------------
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Figure B.6  Non-tolerable Pattern 6.

The equation for calculating the total number of this kind of non-tolerable pattern is

presented as: NTC,,, = (-’l—)m( N _2)((N ;(l 11\{0- 1

(7)Pattern 7: corresponding to the case where 10 cells that are shown in Figure B.7 are
defective.

In this case, there must be one defective cell, C1 or C9, are not tolerable.

The equation for calculating the total number of this kinds of non-tolerable pattern is

presented as the following:

For case (a): NTC,,,; = 2(N - 1)((N;'1A{O'l
c

For case (b): NTC,,,; = g(N_z)((N;}llx{()-l
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N e I I N (I [ A I

............

I it N N I O [ R B
Qoo OREna U
N I R O 5 e O R

(a)Four defective cells and the other six defective
cells are not in the top or bottom rows simultancously

N+l

I G I I I (I | A
Ood---oogot-—U
I I R B O (I [ R O

............

I Rt N N I I R B
DEO---OEEnO--U
[ B i I i il | A B

(b)Ten defective cells are in the top
or bottom rows simultaneocusly.

Figure B.7  Non-tolerable Pattern 7.

(8)Pattern 8: corresponding to the case where 12 cells that are in the position as shown
in Figure B.8 are defective.

In this case, one defective cell, C6 or C7, can not be tolerated.

The equation for calculating the total number of this kind of patterns is expressed as

follows:
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N+ 1)N-12
NTC,,, = (N—Z)(N—Z)(( ‘;6112 l’)

N+l

O --000000-0
O --00goog-O
O --0EEEE0-—-O0.
0 -0aEEa0-—O
0 -gEEssd-—O
0 --00000g-O

0 -+-000000-0

Figure B8  Non-tolerable Pattern 8.

(9)Pattern 9: corresponding to the case where 12 cells that are in the position shown in

Figure B.9 are defective.

In this case, due to the limit of the number of spare columns, there must be one

defective cell, C2 or C10, cannot be tolerated.

HEE

Figure B.9  Non-tolerable Pattern 9.

2

The equation for calculating the total number of this kind of patterns is presented as

y(N+ N =12
NTCcell=(N_2)(( Fcllz )
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(10)Pattern 10: comresponding to the case where 12 cells in the top or bottom rows as

shown in Figure B.10 are defective.

N+1

o o [ R o
[ O A | |
O--00000--00000-0

..................

O--0oooo--gggoo-—O
O OEEE0--000m0-— O
O CEREO--Omnamnd- O

Figure B.10 Non-tolerable Pattern 10.

The equation for calculating the total number of this kind of patterns is

N+1)NV-12
NI = -niv =) £ 2115 )

N+1

AEO---goodd-—U
FEd---gogod-U
OOoOo---ooood-U

[ R [ [
Do0--0EEE0-—0
Do0--0EaE0-—0
No0--OEEgd-—0
Do0O--00000-0

OOoOo--oooog-U

Figure B.Il Non-tolerable Pattern 11.
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(11) Pattern 11: corresponding to the case where 13 cells shown in Figure B.11 are

defective.
In this case, there must exit one defective cell, C1 or C9, that cannot be tolerated.
The equation for calculating the total number of Pattern 11 is presented as the following.

NTCon = G)(N(N-3)+ 1)((N ;:l“{; 13)

(12)Pattern 12: corresponding to the case where 15 cells, of which six are in the edge
position of the array as shown in Figure B.12, are defective.

In this case, there is at least one defective cell, C3 or C11, that cannot be tolerated.

N+l

..................

T
m[m[w
OO0

00000 R
00000
00000
OO000
B[EETN
BE[E[TN

Figure B.12 Non-tolerable Pattern 12.

The equation for calculating the total number of this kind of pattern is presented as the

following.

N+[)N-15
NTC“,,,=((N—4)(N—3)(N-l)+(N-2)(3N—8))(( ;‘.115 )
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(13)Pattern 13: corresponding to the case where 18 cells shown in Figure B.13 are
defective.

In this case, there must be at least one defective cell, C5 or C14, that are not tolerable.

N+l

------ Oooog--0o0og--
OEEE0--00000
------ OEEE0--C0o00g-
OnEE0--00000
------ 1 e e

Ooooo--0oogo-
00000--0E8E0
...... %D

OO0--OEsEg-
0000--0EnE0

Figure B.13 Non-tolerable Pattern 13.

The equation for calculating the total number of this kind of pattern is presented as the

following.

4N =22 - - (N+ )N -18
NTC“,,=((N-4)(N-3)(5N-l6)/2+(N—l)(N-Z)("N dtild it 7”)(( ;‘.lls )
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Appendix C. Analytical proof related to the second most
significant non-tolerable pattern

Analytically prove that the non-tolerable pattern, called Pattern M in this analysis,
which corresponds to the case where two cell in a corner and one vertical bundle in the
first row are defective, is the one which comprises smallest number of defective cells and
bundles among the non-tolerable patterns that cannot be tolerated and comprise at least
one defective cell.

A counterevidence method is used to prove this case. it is assumed that there exists a
non-tolerable pattern that comprises less number of defective cells and bundles than
Pattern M, i.e., the number of defective cells in this pattern must be 1 or 2 and the number
of defective bundles is no more than one.

(1)A pattern comprising one defective cells and one defective vertical bundle.

Without loss of general, it is assumed that this pattern comprises one defective cell plus
one defective vertical bundle: the defective cell is the cell P(i, j) with SC(i, j)=1, where
0<i<N and 0<j<(N-1), and the defective vertical bundle VB(k, I, k, 1) with SVB(k, 1)=1.

If k = i and j = [, it means that the defective vertical bundle originally belongs to the
cell P(i, j). Evidently we can form a logical array of N x N by dropping the i column as
shown in Figure C.1.

If the defective vertical bundle does not belong to the defective cell, we can use the k"
column containing the defective vertical bundle as a spare column. Then any good spare
cell except the cell P(k, 1) can be used to replace the defective cell P(i, j) with cell-shifting
reconfiguration strategy. For example, using the spare cell P(k, h) with SC(k, h)=0. The

cell shifting operation is presented as the following. First of all is the cell shifting in the
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row direction. The corresponding change of bundles can be expressed as VB(k-1,h,k,h)
and HB(k-1, h, k, h), VB(k-2, h, k-1, h) and HB(k-2, h, k-1, h),...,VB(, h, i-1, h) and
HB(, h, i-1, h). Then, the operation of cell shifting in the column direction is processed.

The corresponding change of bundles is: VB(, h+1, i, h) and HB(i, h+1, i, h),VB(, h+2, i,

h+1) and HB(, h+2, i, h+1),....., VB(, j, i, j-1) and HB(i, j, i, j-1). The process is shown in
Figure C.2.
N+l Used as_spare column
: the ith col‘u:;n; _____ ' """ .
0] D D UE] 001 00
= & ch 0o 1 cha

000000 - 1R 0 0

DDD SR odo0 =
100 0cl - ofd 001 06
unn LRl SR

............ logical column

Figure C.1  Using column elimination strategy to form the logical array.



the ith column
| — —  —

ool o ot

— /|3 3

Figure C.2  Using the cell-shifting strategy to form the logical array.

Therefore, the pattern comprising one defective cell and one defective vertical bundle
can be tolerated in this structure.

(2)A pattern comprising two defective cells and one defective vertical bundle.

Without loss of generality, it is assumed that two defective cells are: P(i;, j,) with SC(i,,
j)=1 and P(i,, j,) with SC(i,, j»)=1, and that one defective vertical bundle is: VB(is, Js. i3,
j3) with SC(i, js, i3, ja)=1. There are several possibilities as follows:

()If i,=i,=i;, they are in the same column. Under this condition, it is evident that this
pattern can be tolerated;

(iDIf i5=i, or i;= ibut i, #i, , the defective vertical bundle and one defective cell are

in the same column. The i;% column can be used as a spare column. Any good cell in the
spare column can replace the other defective cell by the same procedure as shown in

Figure C.2. Thus, this kind of pattern can be tolerated as well;



(iii)If i, #i,#1i,, they belong to three different physical columns. There are two
possible cases: One is that they belong to the same physical row. i.e., j, = j, = j;- The

column containing one defective cell or one defective vertical bundle can be used as a
spare column. An example of tolerating these defects is shown in Figure C.3. Therefore,

this pattern can be tolerated.

the spare column

10 00~ 000 001 000~ 0
101 00 - 000 060 000 1
101 00 - 000 060 00— 0

10) 000~ B0 0F-- [

00000 0000 0

100 000000 DI3-EET -
100 00 --000 0 0001

Figure C.3  Tolerating three defects by dropping a column containing one defects.

The other case is that they belong to different physical rows, i.e., j, # j,# j; - An example

of tolerating these defects is shown in Figure C.4. In this case, the z“:" column is used as a
spare column. Then, the good spare bundle VB(i,, js, i», j3) can be used to replace the
defective bundle naturally owned by cell P(is,j3) through bundle-shifting strategy, and

defective cell P(i}, j;) can be replaced with the good spare cell P(iy, j)- Conclusively, the



pattern that comprises two defective cells and one defective vertical bundle can be

tolerated.

the spare column

10 0000 00 0000
15 80500 0500
10 00-—00 000 00 000
10 0000 t@ 0000
10000000 0000

Figure C4  An example of tolerating three defects that are not in the same physical row.

From the above analysis, the results is contradictory to the assumption that there is a
pattern that comprise smaller number of defective cells and defective bundles than Pattern
M. Therefore, among the non-tolerable patterns that comprise at least one defective cell
and one defective bundle, the non-tolerable pattern, Pattern M, is the one that consists of

smallest number of defective cells and bundles.



Appendix D. Derivation of the regression yield model

Figure D.1 shows the characteristic of the measured slope to the size of different array,

but equivalent redundancy ratio. These measured slope is calculated from the points

around the pivot point where the probability is equal to 1 —e—l in the complete yield
curve. From the figure, it is observed that these curves can be approximated with straight
lines. Therefore, it is assumed a linear function, y = a,+a,x, is used to fit these curves.
Using the normal equation based on the method of least square [10], these curves can be

fitted with three linear functions presented in the following:

10

—w— Slope for ratio=0.0478
-o— Siope for ratio=0.083
ol = Slope for ratioa0. 17

Y " 2 . L L : L 2 L
] 50 100 150 200 250 300 350 400 450 500
Number ot Array

Figure D.1  Relationship in the measured slopes to the size of the array with the same
spare ratio.

For the spare ratio equal to 0.0476

y = 3.82+00111x D.1)
For the spare ratio equal to 0.093

v = 1.92 +0.0103x (D.2)
For the spare ratio equal to 0.17

y = 1.37 +0.00706x (D.3)
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Figure D.2 shows the curves of above functions. They agree with the measured data

very well.

x  Slope lor rato=0.0478
«- Slope lor ratow=0.083
gH* Slope for ratica0.17

. : L 2 1 " .
[} 50 100 150 200 250 300 350 400 450 500
Number of Array

Figure D.2  Comparison between linear function and measured data.

With (D.1), (D.2) and (D.3), the slope S(r,m) expressed with the spare ratio r and array
size m, at the pivot point is approximated as (D.4)
S(r.m) = 0.3166r °% +(0.0130 - 0.0337r)m (D.4)
Where, r is the redundancy ratio of a physical array of K by L, and m is the number of
cells in the physical array, i.e., m=KxL. In (D.4), the slope S(rm) is expressed in absolute
value.

Similar to the above derivation, the defect density, D(r), where the probability is equal

to 1-e’!, can be approximated with (D.5)

D(r) = -0.0208 + 4.3111r (D.5)



Appendix E. Derivation of Y ,;; with Maxwell-Boltzman
combinatorial statistics

Without loss of generality, the procedure to derive P , the part associated with cells
-t

in (4.14), is presented as the following.

Using the subscript “F,” stead of “m” of (4.4), P . is givenin (E.1).

F.
[z (Z‘)(—-l)k([;c-k)"]
= Le=o (E.1)

P = x2F
<F. ’
i Qr

¢

let P.\'Fc = 0 if x<F_. Then, it is given,

o QA /ay  Fe g F—k\x
2 Cx+a) cc Z( C)(—l)k( c }
0 k

0 x!'T'(a) (1+ chc/a)a +xk <

Z P{x}PxFC

x=0 x=

F o - x
i (FC)(—l)k Y e e (Fc‘k]x (E.2)
T T .

im0k £=0 (m)(“chc/m)m“k Qe

To simplify (E.2), similar to [17][46], replace the gamma function with its definition

F.- Q..

C(a) = jmta— Lo andlet b = | -< and =
0 0,

, (E.2) becomes,

> e p - 1 1 x*
x+oa-1- 7

Y PPy = Y€ kY ———— AT A e (g3
*Fe (") x=or(a)(1+n)°‘J: RO (E-3)

x=0 k=0

né , (E.3) is rewritten as the following.

(1+n)

Lety =

F

= ¢ F , 1 = (yt)x a-1 -t
S P{x}P = Y C(-l)‘——f’"( > A e
oo e k=0(k) ray(t+m® 0 2o ©
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[
™M

F 1 yro-1 -t
C(-l)"———r’e &
o( ) r(ay(1+m)*°

o 1 a-1 —(L=y)r
Y ()b ——— [ e dr
k=0(k) (el +m*?

F
(vt L e (E4)
Fla)(1+n) (1-¥)

FC
=2
k=

0

F -k 0 A
S . nb . c . cc.
Substituting y with ————, b with , and n with in (E.4):

F T -

o C F g (Q —F +k)A.

T PxtPr = X k‘)(—l)"(l +°—;——C] (E.5)
X = 0 k= 0

Therefore, (E.5) can be rewritten as (E.6).
S, 0 F. AT \—C
F (Q -F +L))\.C

Y . = ¢ N-nM 1+ £ ) (E.6)
cell F%O(Fc)kgo( k)( ) ( + 5

c
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Appendix F. Derivation of the formulas with Maxwell-
Boltzman statistics and Bose-Einstein statistics

F.1 Deduction of the formula by Maxwell-Boltzman statistics

This question can be solved as a mathematical occupancy problem of distinct balls
distributed over a number of distinct boxes.

Question: How many ways are there to distribute m distinct balls into n distinct boxes
with at least one ball in each box? (m>n)

Define the universe v to be all ways to distribute m distinct balls into n distinct boxes.
Denote by A,(i=1,2,...,n) the set of distributing m distinct balls into n distinct boxes with a

void in the i* box and Ki the complement set of A;. Denote by N(S) the number of

N(v) =n", N@A)=(@-1)", NAA)=@-2)" and N4 A4;,..4,) = (n-k)". Denote

n n
S, = Y N(A),S, = TN, and Sy is the sum of the size of all k-tuple intersections of
i=1 iJ

A;s. It is evident that s, = (’{)(n- D", sy = (3);n-2)" and s, = (})n =" According to the
principle of Inclusion-Exclusion[48], it is given,
N(A An..Ay) = N(U) =S, +855=S3+ ...+ (=1)Sp ..+ (=1)'S,

Therefore, the number of all ways to distribute m distinct balls into n distinct boxes

with at least one ball in each box is:

3 (-0
k=0



Similar to above, we can derive the formula of the ways to distribute all x defects into

F_ cells so that each of these F_ cells has at least one defect. Assume that defects are

distinguishable. Then, we have:

< LAY
Eo( l)(lc)(F‘ k)

where, k: the number of cells that have no defects

F.: the number of cells that are defective
F.2 Deduction of the formula by Bose-Einstein statistics:

This question can be solved as a mathematical occupancy problem of indistinguishable
balls distributed over a number of distinct boxes
Question 1: How many ways are there to distribute m indistinguishable balls into n
distinct boxes?
Distributing m balls into n boxes is similar to the process of dividing m balls into n
parts. Arrange balls into a straight line and using (n-1) slashes to divide them into n parts

as shown in Figure F.1

X X X X x X X X X X X X K e e ... ////x x x X

x stands for a ball

Figure F.1  [llustration of m balls being divided into n parts.

The x’s before the first slash belong to the first box, and the x’s between the first and
second slash belong to the second box,..., and the x’s after the (n-1)* slash belong to the n

box. The distribution problem becomes to select possible positions for (n-1) slash.
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Because the situation of no ball in a box exists, there are total (m+n-1) positions in this
sequence. The answer is ('" o ') .

Question 2: How many ways are there to distribute m indistinguishable balls into n
distinct boxes with at least one ball in each box?

In this case, each box has at least one ball, so there are only (m-1) positions, each
between any two neighbor x’s, to select for (n- 1) slashes. The answer is ("':: ll) .

From the above derivation, we can obtain the formula of the ways to distribute all x

indistinguishable defects into F cells so that each of these F_ cells has at least one defect.

[t is presented as ( ,',f.'_‘[) . The number of all ways to distribute x indistinguishable defects

into F,, cells can be expressed as (” Fr e~ l) i
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