INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Router Buffering and Caching Techniques

for Multi-Session Reliable Multicast

ingfeng Xu
Qingfeng

A Thesis
in

The Depanment

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

April 2003

© Qingfeng Xu , 2003



i+l

National Lib Bibliothéque nationale
of Canada i du Canad:e
-_ d sitions et
‘B\%rg;‘r:magervms ::qrvlnlc'zs b?’gliggtaphiques
SasELY S,
Canada Canada
Your Sl Vove rékicence
Our Sle Nowe rékicence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77978-5



ABSTRACT

Router Buffering and Caching Techniques
for Multi-Session Reliable M ulticast

Qingfeng Xu

Reliable multicast has been swdied extensively during the past 10 years.
Recently. several reliable multicast schemes emploving router assistance have been
proposed. which not only promise performance gains, but also simplify applications. But
the existing schemes based on router assistance didn’t consider either simultaneous
multiple sessions in network, or the problem of how to share the forwarding buffer of
router outgoing port and partition the router cache for multiple multicast sessions so that
a better performance of reliable multicast can be achieved. Qur work is an attempt to

address some of these problems.

In this thesis, we consider a multi-session multicast network and the data caching
technique at router for loss recovery. Several policies of router forwarding buffer
allocation and router cache parition are introduced for use in the multi-session multicast
network. The effect of these policies on the performance of reliable multicast is tested.
compared. and analyzed. Additionally, the performance of the ARQ scheme with caching
is compared with that of the ARQ scheme without caching. Simulation results show that
for the scheme with router caching technique, significant improvements are achieved in
terms of end-to-end delay, session transmission time, feedback traffic. and bandwidth

utilization.

i



Acknowledgments

First of all, I would like to express my sincere gratitude to my thesis supervisor,
Dr. A. K. Elhakeem, whose guidance, support, and encouragement throughout my work,

have made the completion of this thesis possible.

I would also like to thank all of my friends who have ever helped me during
research years. It is their generous help that make me overcome many difficulties in my

life and study.

Finally, I would like to thank my sister, my brother and my dearest parents. They
are always standing besides me and helping me with love, encouragement and trust for all

the time.

iv



Table of Contents

LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF ACRONYMS xii
Chapter 1 Introduction 1
1.1 Motivation and SCOPE.........uueeeeumrrmeeetieeeeeeeeeee e s oo 1
1.2 Thesis Organizations............ceueeeeeeeeueeieieeeeeees e 3
Chapter 2 IP Multicast 4
2.1 OVEIVIEW ettt 4
2.1.1 Defnition.......... 4
2.1.2 Advantage Of IP MUItICASt. eeveeeuneeeeseeeeeeeeeeeeeeeeee e 5
2.1.3 Development and ApplCAtON...cee..eveeveee e eeeeeeeeeeeeeeoes oo 6
2.2 Groups and Group Management........ccoueuviiiiniiiii e T
2.2.1 the Concept of GIOUP. ....veeueeeeeereee et eeeeeeeee e e 7
222TGMP..ceiiiiiiiie et e e 7
2.3 IP Multicast AdIeSSING. .......ceeeererrreeeeeeeeeeeeeeeseee e oo oo 8

2.4 IP Multicast ROUHNG. «.ceei e D
2.4.1 Multicast Distribution TrES e 1O
2.4.2 Dense Mode Protocols (DVMRP, MOSPF, PIM-DM)...cuuvuviiiiriiiinaean 12

2.4.3 Sparse Mode Protocols (CBT, PIM-SM).......uvveoeeoeeeeooooooeo 13
Chapter 3 Reliable Multicast 15
3.1 Definition of RENAbIltY. ........evveveesieeeeeee oo 16
3.2 Challenges Facing Reliable MUItiCast. ........c..ccovevveemeeeseesoeoooeoo 17



3.2.1 Challenge I-Scalability....c...eeeeeruemneereeeeeeeeeeie e oo

3.2.2 Challenge II-Congestion CONMOL. ...ceeeruerenneeeeeeeeeeeeeeeee e e, 19

3.3 Ermror Recovery Mechanisms in Reliable Multicast.................... .20

332 FEC it 22

3.3.2.1 Introduction tO FEC......c.ciemmuniieieeee e 22

3.3.2.2 Erasure Cormrection Code (RSE and Tomado Codes) 24

3.3.3 Hybrid FEC/ARQ......ccccveveennnnnen... .27

3.3.3.1 Proactive FEC.........ccc.cuueun..... .27

3.3.32 Reactive FEC....cuueiiuiiiiiennieeieeee e eeeeeee e 08

3.4 Router Support for Reliable MUItiCaSt. ........cceeeeereeeeeeeeeeeeeeeeeee oo, 29

3.4.1 BaCK@IOUNA. ....eeuiiemi ettt e e e e e e e 29

3.42 LMS (Lightweight multicast SEIvice).........oemeeeeeeeernnrmneneeeenn.n. .30

3.4.3 PGM (Pragmatic general multiCast).......ceeueeneeenrneeennsoeeee oo 33

3.4.4 ARM (Active reliable MUItiCast).........cceenvernnreememnneooeeeee e 35

3.5 SUMMALY...vuiiiiiiii et et ee e e e 37
Chapter 4 Router Buffering and Caching

for Multi-Session Reliable Multicast 38

4.1 TeIMINOIOZY . eevuiruiiiiitne ettt e ee et r e e e et e e ee e ee e e e oo 38

4.2 Introduction t0 ROULEr AFCRItECUIE. ...\ veeeiecteee e ee e 40

4.3 SIMUulation MOGEL......covueuiimeieiiineit et et et e e e e e 43

4.3.1 Network Model and TOPOIOZY......ueeieennneneeeeeeaeeeeeeseeseeonennnnn 43

4.3.1.1 NetWork MOdel. ....euuireniiieiiiiiieiee et e ee e 43

4.3.1.2 Topology of Multicast Network and the Multicast Routing Table......44

4.3.1.3 Function of Each Part ............... ...49

4.3.2 Queuing DisCIPlNE....c.uvierrreeieeiieiiii e ee e e e S0

4.3.3 Buffer Management Model.........c..couveueuneiieieenneeennoeeeeeinnnnnnnn 51

4.3.3.1 Buffer Allocation AIGOTIthMS......c.uuueeeeeneeeeeeen e, 51

4.3.3.2 Discarding (Drop) POLICY .. ..uuvuiveeneeeieeer e eee e eee e 53

4.3.4 Data Caching Model......cuuiuenieinieieeeeeee e, 54

vi



4.3.5 Input Traffic Load and Loss Model.........ccoevmiriiiiiieieiiiieeeeee 55

4.3.6 Assumptions for this Simulation................eouveoeeoeei 56

4.4 Performance MEaSUIES. .........ceuueevrereeeeieeeeeeeeiee oo 56
4.5 Simulation DeSCHPUONS. ..cecvvveeiieeeecce e 64
45.1 Input Parameters...........ceeeereermnneeeeioeeeeeeeeeeeeeeeeeesen .64

4.5.2 The Data Structure of This Simulation.................oceeeveeeeeoeeoee 65

4.5.3 Simulation DesCriptions.......c.euereereeeiiiceeee e 66
4.5.3.1 Senders Part..........cocuueummuenninieeeeeeeeeeeeeeeeeo 6T

4.5.3.2 Backbone Routers Part...........uuieeeeeeeeneeeeeeeeeeeeeeieeoeeo. . 68

4.5.3.3 Edge ROULETs Parl......cuuueeeieeeiiieeeeeeeeee e oo, 70

4.5.3.4 Receivers Part.......... 75

4.6 Simulation ReSUItS ANALYSIS......c.cveureeeeereieeeeeeeeeeseeoeeoee oo 76
4.6.1 Three Forwarding-Buffer Policies Comparison..............ocovevoeeoenn . 76

4.6.2 Three Cache-Partitioned Policies Comparison. ......... 81

4.6.3 Caching Technique vs. No-Caching Technique for ARQ..................... 90

4.7 SUMMALY...otiiiiiiiiiii it et e ee e 99
Chapter 5 Conclusions and Future Work 100
5.1 Contributions and CONCIUSIONS. .......eeeveeeeeeeeeeeeeesee e oo 100
5.2 Suggestions for FUtUIE WOTK.........ceueeueeetieeeeeeneeeeeeeo oo 102
References 103

vii



LIST OF FIGURES

Figure 2.1 Comparison of (a) unicast, (b) broadcast, and (c) multicast...............

Figure 2.2 IGMPv1 Dialog........cccecemneununnn.n.....

Figure 2.3 Format of Class D IP AdAIeSs...........ccuueueeeeeememeneeees e e
Figure 2.4 Multicast Routing Protocol Family Tree.......c.oueevveveeeneenensennn...
FIQUIE 2.5 SOUICE TTEES. ..euueneeneeeeeeecee e e e eee e oo oo

Figure 2.6 Shared TIEE.....uuuvenieieeneeiiieeteee e e ee e,
Figure 3.1 Decoding and Encoding Process of (n, k) Block Erasure Codes.................
Figure 3.2 Request and Repair Procedure in LMS......ccoouueemmmmmemeeseenn.o
Figure 4.1 Basic Router ATChiteCtUre. ..uuueeevseeeieceeeeeeee e
Figure 4.2 Packet Forwarding Processing............c.eeeevuenveemeeuemeroeonsnnn.n,

Figure 4.3 Two Basic Queuing TeChNIQUES. ........cuveememreeeemeeeeeeeeeeeeens,

Figure 4.4 Network Model......................

Figure 4.5 Hierarchical Topology of Multicast NetwWork. .........oveeeeeeeveeonn.on.
Figure 4.6 Specific Source Trees for the SIMulation...........ce.uvveeeveeeeenen oo,

Figure 4.7 Main Program FIow Char.........c....uuueeeveemeneeeeeieeeeseeeeeioeens

Figure 4.8 Sender Processing.........c.ceeevvveeevenennennn.n..

Figure 4.9a Backbone Router Processing. .........coeueeeeemuneeesunnnneienoesnnn,
Figure 4.9 Process of NAK PaCKELS. ... ...uveiviueemeeeeeeeeeeeemeeereeeess e o s e
Figure 4.9¢ Process of ReCeiving Data.........c.cceveneeneeeeeemeeneeeeerennsenies
Figure 4.9d Process of Sending Data.........c...uueueeneeeieeneneeeeeeseeeeaseeesennn,
Figure 4.10 Receiver PrOCESSING. «eveueruruueeirtienee e eeeeieeaeneesseeeeeseeeieee s
Figure 4.11 Average End to End Delay vs. Forwarding Buffer Size................
Figure 4.12 Variance End to End Delay vs. Forwarding Buffer Size................
Figure 4.13 Average Forwarding Buffer Overflow vs. Forwarding Buffer Size............
Figure 4.14 Average Number of NAKs vs. Forwarding Buffer Size................

Figure 4.15 Average Queue Length vs. Forwarding Buffer Size...........coeeuv.......

viii

.........

w7l
......... 72
T2

........ 42

73
74
75



Figure 4.16 Variance of Queue Length vs. Forwarding Buffer Size...........ccceeee...... 81

Figure 4.17 Average Number of NAKSs vs. Caching Buffer Size...........cccuvueeunnn...... 83
Figure 4.18 Cache Hit Probability vs. Caching Buffer Size...............oooeoeoeeonnnn. 83
Figure 4.19 Average Caching Buffer Overflow vs. Caching Buffer Size...................84
Figure 4.20 Average Number of NAKSs vs. TTL of Cached numbesrs. ............. verreeee..86
Figure 4.21 Cache Hit Probability vs. TTL of Cached Data...............oooeomoomeomn... 86
Figure 4.22 Average Caching Buffer Overflow vs. TTL of Cached Data.................. 87
Figure 4.23 Average Number of NAKSs vs. Packet Random Loss Rate. .................... 88
Figure 4.24 Cache Hit Probability vs. Packet Random Loss Rate............. B . 1
Figure 4.25 Average Caching Buffer Overflow vs. Packet Random Loss Rate. ........... 89

Figure 4.26 Comparison between With Caching to Without Caching: Average End to

End Delay for All Receivers vs. Packet Random Loss Rate....................93
Figure 4.27 Comparison between With Caching to Without Caching: Variance of End

to End Delay for All Receivers vs. Packet Random Loss Rate................03
Figure 4.28 Comparison between With Caching to Without Caching: Average End

to End Delay for All Sessions vs. Packet Random Loss Rate................. 94
Figure 4.29 Comparison between With Caching to Without Caching:

Variance of End to End Delay for All Sessions

vs. Packet Random Loss Rat........ceeuenenieeieeeeeereeaeeeeeeeeeeeee %4
Figure 4.30 Comparison between With Caching to Without Caching:

Average Number of NAKs vs. Packet Random Loss Rate...................... 95
Figure 4.31 Comparison between With Caching to Without Caching:

Variance of Number of NAKs vs. Packet Random Loss Rate..................95
Figure 4.32 Comparison between With Caching to Without Caching:

Average Queue Length of Forwarding Buffer for All Receivers

vs. Packet Random Loss Rate.........cueeeeveveeieienenreniriireeeeeeneen .96
Figure 4.33 Comparison With Caching to Without Caching:

Variance of Queue Length of Forwarding Buffer for All Receivers

vs. Packet Random Loss Rate.......cceeuvuneeeeiviineeeeeee oo 96
Figure 4.34 Comparison between With Caching to Without Caching:

Average Queue Length of Forwarding Buffer for All Sessions



vs. Packet Random Loss Rate............ccovvnveeneennnennnn...
Figure 4.35 Comparison between With Caching to Without Caching:
Variance of Queue Length of Forwarding Buffer for All Sessions
vs. Packet Random Loss Rate............ooeveecnnneenerneneeseo
Figure 4.36 Comparison between With Caching and Without Caching:
Average Queue Length of Forwarding Buffer for All Receivers
vs. Packet Random LoSS Rate.........vuneeeeueeeeeeeeeeeeeeeeeeeeo oo
Figure 4.37 Comparison between With Caching and Without Caching:
Average Transmission Time of Session for All Sessions

vs. Packet Random Loss Rate...........ooouuveemeonnnnn. o,

...97

...97

...98



LIST OF TABLES

Table 2.1 Multicast AppliCAtONS. . .c...cueeueeeenreniieneeeeeeeeeeeeneo e
Table 3.1 Different Application Scenarios for Pure FEC and ARQ............
Table 4.1: Multicast Routing Table (Backbone Router) ..........ooonovnoennn.

Table 4.2: Multicast Routing Table (Edge Router.....................

Table 4.3: Sender and Its Neighbor Backbone Router.........................
Table 4.4: Reverse Unicast Routing Table for Each Session..............

xi

cenn 47

w47



LIST OF ACRONYMS

ACK ACKnowledgment

AER Active Error Recovery

ARM Active Reliable Multicast

ARQ Automatic Repeat reQuest

BGP Border Gateway Protocol

BGMP Border Gateway Multicast Protocol
CBT Core Based Trees

DMCAST Directed Multicast

DVMRP Distance Vector Multicast Routing Protocol
FEC Forward Error Correction

FIFO First In First Out

FQ Fair Queuing

IETF Intemet Engineering Task Force
IGMP Intemet Group Management Protocol
IP Intemet Protocol

LAN Local Area Network

LMS Lightweight Multicast Service

MAC Medium Access Control

MBGP Multiprotocol BGP4/Multicast BGP
MBone Multicast Backbone

MDP Multicast Dissemination Protocol
MOSPF Multicast Extensions to OSPF
MSDP Multicast Source Discovery Protocol
MTP Multicast Transport Protocol

NAK (NACK) Negative ACKnowledgement

NCF NAK Confimation

xii



ODATA
OSPF
OTERS
PGM
PIM
PIM-DM
PIM-SM

QoS
RDATA

RMANP
RMTP

RSC
RSE
RTT
SPM
SPT
SRM
TCP

TTL

WAN

Original Content Data

Open Shortest Path First

On-Tree Efficient Recovery using Subcasting
Pragmatic General Multicast

Protocol Independent Multicast

Protocol Independent Multicast Dense Mode
Protocol Independent Multicast Sparse Mode
Quality of Service

Retransmission Data

Routing Information Protocol

Reliable Multicast

Reliable Multicast Active Network Protocol
Reliable MTP

Rendezvous Point

Reed-Solomon Code

Reed-Solomon Erasure Code

Round Trip Time

Source Path Message

Shortest Path Tree

Scalable Reliable Multicast

Transmission Control Protocol

Tuming Point

Time to Live

User Datagram Protocol

Wide Area Network

xiii



Chapter 1

Introduction

1.1 Motivation and Scope

With the development of the computer and network techniques, a large number of
applications like distributed computing, software updates, distributed caching, etc., which
require reliable multicast delivery, are emerging on the Intemet. But it is difficult to
realize reliable multicast over a best-effort network, especially over Internet.
Retransmission request from a large number of receivers can lead to sender and network
overload. Additionally, the retransmission from the sender is multicasted to the whole
group, even if some receivers don’t experience the loss. This will waste network
bandwidth and degrade overall performance.

Aimed at the above problems, extensive studies for reliable multicast schemes
have been done during the past 10 years. Recently, several reliable multicast schemes
employing router assistance have been proposed. These schemes mainly take advantages
of network-based processing and storage to control feedback and retransmission

problems. In particular, some of these schemes use the routers to cache data for possible



retransmission in loss recovery. This approach will efficiently relieve the burden of the
source, reduce the network bandwidth for repair traffic, and improve the loss recovery
latency. However, these schemes based on router assistance are basically addressed in
the study of one multicast group, without considering the condition of simultaneous
multiple groups (i.c. multiple sessions). When multi-session data packets exist
simultaneously at a router, different forwarding buffer allocation polices for sessions and
different cache partition policies for sessions will lead to different performance for
reliable multicast. Which policy will be more suitable for reliable multicast? This is the

motivation of our research work.

The objectives of this thesis are as follow:

e Studying the performance of reliable multicast for a multi-sessions environment.
Given three forwarding buffer allocation policies and three cache partition policies: No-
Split, Uniform-Split, and Flexible-Split.

* Ensuring reliability by ARQ.

* Studying the effects of three buffer allocation policies at routers on the performance
of reliable multicast.

¢ Equip some routers with the function of caching data, and evaluate the performance
improvement of reliable multicast by comparing with the pure ARQ scheme.

* Study the effects of three cache partition policies at the router on the performance of
reliable multicast.

* Vary input parameters, and perform the above studies and comparisons.



1.2 Thesis organizations

In chapter 2, we first introduce IP multicast concepts including the definition, the
necessity, and its application, then review some important [P multicast techniques: group
management, addressing, and routing. In IP multicast routing, we briefly discuss its two
basic routing approaches: dense mode and sparse mode.

In chapter 3, we first review the requirement for reliable multicast, the definition
of reliability, and the challenges in design of reliable multicast schemes. Based on the
requirement of reliability, two error recovery mechanisms, ARQ and FEC, are described.
Furthermore, based on the challenges for reliable multicast, we focus on these reliable
multicast mechanisms with router assistance.

In chapter 4, we propose three forwarding buffer aliocation policies for multiple
sessions, data caching technique for retransmission, and three cache-partition polices for
multiple sessions at router, and study the effect of these policies on the performance of
multi-session reliable multicast. These policies are to be applied at the router, hence we
first give a brief introduction to router architecture. Then we present the simulation
models, and give a detailed description of these simulations. Finally, we compare the
performance of different policies, and give the performance analysis based on the
simulation results.

In chapter 5, we summarize the contributions and conclusions, and suggest the

future works.

L



Chapter 2

IP Multicast

This chapter provides a technical introduction to IP Multicast. Firsty, it gives the
definition of IP multicast, discusses the advantage of multicast compared with unicast
and broadcast, and reviews the development and application. Furthermore, it introduces

the group management, IP multicast addressing, and IP multicast routing.

2.1 Overview

2.1.1 Definition

IP Multicast is described as: “the transmission of an IP datagram to a ‘host group’,
a set of zero or more hosts identified by a single IP destination address” by Steve Deering
in [1]. The transmission can be one-to-many or many-to-many, which means one or
multiple sources are sending to multiple receivers. The main characteristic of multicast is
that the sender only needs to send every datagram once and there is at most one copy of

the datagram on every physical link, if the retransmissions do not be considered.



2.1.2 Advantage of IP Multicast

There are three fundamental transmission types for multipoint communication in
network [2]: unicast, broadcast, and multicast. Unicast is the transmission of a datagram
to a single destination. Broadcast is the transmission of a datagram to an entire
subnetwork. Multicast refers to the delivery of datagrams to a set of hosts that have been

configured as members of a multicast group across various subnetworks.

() ) (c)
Bote: data is required to send from sender to Rl and R2

Figure 2.1 Comparison of (a) unicast, (b) broadcast, and (c¢) multicast

In a point/multipoint to multipoint communication (see Figure 2.1), with unicast,
the source will send a copy of the packet to the each group member separately (multiple
one to one connection), and it is possible that many copies appear on the same physical
link. With broadcast, the packet is forwarded to all outgoing links except the incoming
one at each intermediate node, which implies that some hosts receive the packet even if
they don’t belong to this group. With multicast, just as described in section 2.1.1, the
source will send one single copy of the packet for the whole group of members to receive
it, and there is at most one copy of the datagram on every physical link along the path

from a source to the receivers. From the comparison of the three types of



communications, we can easily get that the multicast significantly reduces network traffic,
server loads, and bandwidth utilization, so that it is suitable to the point/multipoint to

multipoint communication.

2.1.3 Development and Application

Table 2.1 Multicast Applications

Real-time Non-real-time
e Video server ¢ Replication:
¢ Video conferencing | e Video and Web servers
¢ Intemet audio ¢ Kiosks
Multimedia | o  Multimedia events | o Content delivery
e Intranet and Intemet
e Stock quotes ¢ Data delivery
e News feeds e Server-server
¢ White boarding e Server-desktop
Data-only e 1nreractive gaming | e Database replication
e Software distribution

In 1989, the original model of IP multicast is proposed in [1]. The Mbone, an
interconnected set of subnetworks and routers that support the delivery of IP multicast
traffic, is built in 1992 [2]. Since then, IP multicast has been tested and implemented on
the Mbone (Multicast Backbone). Recently, with increasing the requirement of various
multicast applications in the Internet, more multicast research work has been done, and
more new protocols and schemes aimed at different issues are proposed. But this is far
from being fully developed and there is still huge developing space in this area. With the
development of multicast technique, many applications of multicast emerge in multitude
in our lives, such that video conferencing, corporate communications, distance leaming,

distribution of software, stock quotes, news and so on [3], as shown in Table 2.1.



2.2 Groups and Group Management

2.2.1 Concept of Groups

Multicast is based on the concept of a group. In (1], Steve Deering described the
group as: “the membership of a host group is dynamic; that is, hosts may join and leave
groups at any time. There is no restriction on the location or number of members in a host
group. A host may be a member of more than one group at a time.” In addition, at the
application level, a single group address may have multiple data streams on different port
numbers, on different sockets, in one or more applications. Multiple applications may

share a single group address on a host.

2.2.2IGMP

Router Haost Membership

Repott to Sozup Addeeszs

Figure 2.2 IGMPv1 Dialog

Usually, the multicast network uses IGMP to manage groups. The Intemet Group
management Protocol (IGMP) runs between hosts and their immediately-neighboring

multicast routers, as shown in Figure 2.2. It is used to dynamically register individual



hosts in a multicast group on a particular LAN. Hosts identify group memberships by
sending IGMP messages to their local multicast router. Under IGMP, routers listen to
IGMP messages and periodically send out queries to discover which groups are active or
inactive on a particular subnet. IGMP uses [P datagrams to camry messages and provides a
service used by IP. Therefore, it is thought as an integral part of IP, not a separate
protocol [4].

IGMP [1], [5], [6] is the group management protocol currently used in Intemnet
Multicast. Based on the group membership information leamed from the IGMP, a router
is able to determine which multicast traffic needs to be forwarded to each of its “leaf”
subnetworks. Multicast routers use this information, in conjunction with a multicast

routing protocol, to support IP multicasting across the Intemet.

2.3 IP Multicast Addressing

()
—

1z 32
10

(]1T1]4] Multicast Group ID
— 28 bits

1L

Figure 2.3 Format of Class D IP Address

The range of IP addresses is divided into “classes” based on the high order bits of
a 32 bits IP address. [P Multicast uses Class D Intemet Protocol addresses to specify
multicast host group. The format of the address (IPv4) is shown in Figure 2.3. The first 4
bits, 1110, identify the address as a multicast. The remaining 28 bits specify a particular
multicast group. All [P multicast addresses fall in the rage from 224.0.0.0 through

239.255.255.255.



2.4 IP Multicast Routing

Multicast Routing refers to efficiently transmitting multicast datagrams from the
source subnetwork(s) to the destination subnetworks. Figure 2.4 shows the family tree of

the multicast routing protocol.

Multicast
routing
protoccls
l |
Dense mode Sparse mode
|
l Il
Distance link state Shared tree
vector
' |
[ OWRP | [ PoeDM | [ NOSPF | [ PIN-SM | CBT

Figure 2.4 Multicast Routing Protocol F amily Tree

Multicast routing protocols can generally be classified into two categories, sparse
mode and dense mode, which mode is adopted depends on the distribution of multicast
group members throughout the network [2]. The Dense-mode is based on the assumption
that the multicast group members are densely distributed throughout the network and
there is plentiful bandwidth, while the Sparse-mode is based on the assumption that the
multicast group members are sparsely and widely distributed throughout the network, for
example across many regions of the Intemet. We will review the two modes protocols
hereinafter.

Note the protocols in Figure 2.4 are intradomain protocols. To perform multicast



between different autonomous administrative entities, the interdomain protocols are
required, such as MBGP [7], MSDP [8] and BGMP [9]. In this thesis, we won’t discuss

them in detail.

2.4.1 Multicast Distribution Trees

In order to better understand the multicast routing algorithms, we first introduce
multicast distribution trees.

Multicast enable routers use multicast distribution trees to control the path which
IP Multicast traffic takes through the network in order to deliver traffic to all receivers.

There are two basic types of multicast distribution trees: source trees and shared trees [2].

e Source Trees [2]

The simplest form of a multicast distribution tree is a source tree with its root at
the source and branches forming a spanning tree through the network to the receivers.
Multicast routing protocols using this algorithm will build a tree for each source or each
source/group pair. Because this tree uses the shortest path through the network, it is also
referred to as a shortest path tree (SPT). The example of source tree is shown in Figure
2.5.

Shortest Path Trees have the advantage of creating the optimal path between the
source and the receivers. This will guarantee the minimum amount of network latency for
forwarding multicast traffic. However, the routers must maintain path information for
each source. In a network that has thousands of sources and thousands of groups, this can

quickly become a resource issue on the routers, and limit the scalability of applications



with many active senders. Hence, memory consumption due to the size of the multicast

routing table is a factor that network designers must take into consideration.

soure 1 source 2

source tree of
source |

mm—SO0Urce tree of
source 2

receiver receiver receiver

Figure 2.5 Source Trees

e Shared Trees [2]

Unlike source trees that have their root at the source, shared trees use a single
common root placed at some chosen point in the network. This shared root is called a
Rendezvous Point (RP). The protocols using this algorithm construct the delivery tree(s)
that is shared by all members of a group. The example of shared tree is shown in Figure
2.6.

Shared Trees have the advantage of requiring the minimum amount of state in
each router. This will lower the overall memory requirements for a network that only
allows shared trees. The disadvantage of shared trees is that under certain circumstances

the paths between the source and receivers might not be the optimal paths—which might

11



introduce some latency in packet delivery. In addition, shared trees may result in traffic
concentration and bottlenecks near core routers, hence it must be carefully considered

about the placement of the RP in a shared tree only environment.

osme—s shared tree

receiver

Figure 2.6 Shared Tree

2.4.2 Dense Mode Protocols (DVMRP, MOSPF, PIM-DM)

Dense mode protocols use source-based shortest path tree algorithms. To inform
other routers of multicast sources, this mode protocol uses a push model to flood the
multicast traffic to all routers in the network. A router with no receivers interested in this
traffic will then tell its upstream router to stop forwarding this traffic or to prune this
branch from the tree. This flood-and-prune mechanism allows these protocols to easily
build a multicast distribution tree rooted at the source. A source-based tree guarantees the
shortest and most efficient path from source to receiver. While this may be an ideal

enterprise solution in many circumstances, the reliance on broadcast and flooding across

12



the Intemet simply will not scale.

Examples of dense mode protocols are Distance Vector Multicast Routing
Protocol (DVMRP) [10], Multicast Open Shortest Path First (MOSPF) [1 1] and Protocol
Independent Multicast Dense Mode (PIM-DM) [12]. DVMRP protocol incorporates the
distance vector algorithm to provide routing information, while MOSPF depends on the
link-state routing protocol OSPF version2 [13]. Unlike the above two protocols based on
a specific unicast routing algorithm to provide routing information, PIM does not depend
on a certain underlying unicast routing protocol, which could use any underlying unicast

routing protocol to build the multicast distribution tree.

2.4.3 Sparse Mode Protocols (CBT, PIM-SM)

Sparse mode multicast routing protocols use shared tree algorithms, which have a
better scalability than dense mode protocols and are best suited for the environment with
widely dispersed group members in a wide area network.

This mode protocol uses a pull model to deliver multicast traffic. Only networks
that have active receivers that have explicitly requested the data will be forwarded the
traffic. When a source begins to actively send multicast traffic, its directly connected
router, or designated router, registers with the RP. The RP will keep track of all active
sources in a domain. When a router is connected to a host that wants to receive a
multicast group, it will use RPFs to determine the shortest path to the RP. While the RP
builds a tree to the source, all receivers join the tree at the RP. The multicast traffic will
be forwarded to the receivers along the shared tree. As long as all routers know which

router is the RP, broadcast is not needed to distribute multicast routing information.

L)



Protocol Independent Multicast Sparse Mode (PIM-SM) [14] and Core-based tree
(CBT) [15] are examples of sparse mode routing protocols. There are three main
differences between PIM-SM and CBT. The shared trees built in CBT are bi-directional,
while in PIM_SM they are uni-directional; In addition, PIM-SM trees are “soft state”,
maintained by periodical “join” message, while CBT trees are “hard state” and an explicit
tear down message is needed to delete a state; Finally, if the traffic volume exceeds a
centain threshold, in PIM-SM a router can switch from the shared tree to a shortest path

tree.

14



Chapter 3

Reliable Multicast

Multicast has become an important component of the Intemet within the past
decade, due to its advantages discussed in Chapter 2. Many multicast applications require
reliable delivery. But the network layer multicast [2] only offers best-effort one-to-many
Or many-to-many delivery service and offers no guarantees. Therefore, reliable multicast
transport protocols on top of IP multicast are required to guarantee reliable delivery.

Designing a generalized “One-size-fits-all” multicast transport protocol is a
difficult task [16], hence a large number of reliable multicast protocols are proposed to
solve the different needs of particular applications. But generally, the error handling
mechanisms of these protocols can be classified into Automatic Repeat reQuest (ARQ)
and Forward Error Correction (FEC). A recent wrend in reliable multicast has been
focusing on adding router support for fast and efficient loss recovery, and these schemes
with router assistance are proved to be able to achieve significantly better performance

than non-assisted schemes. These protocols and schemes will be described in detail.



This chapter will first give the definition of the reliability. Next it will review the
challenges, problems, and the solutions in design of reliable multicast protocols. Finally,
these ARQ/FEC mechanisms and router supporting schemes are introduced in later

sections.
3.1 Definition of Reliability

There are different definitions to “reliability”, depending on different applications.
In general, the broad-sense “reliability” includes error-free delivery [17], atomicity [18],
and ordering [18]. The first propenty, error-free delivery refers to delivering all data to all
receivers eventually, which will be further discussed hereafter. The second property,
atomicity, guarantees either all of the applications/processors or none of them receive a
message. Ordering refers to keeping the time precedence relations between multicast
messages. In this thesis, we will focus on the first property.

Emor-free delivery, is the narrow sense “reliability” used in Intemnet multicast,
which can be further classified into semireliability which means a cemain level of erTors
can be tolerant, time-bounded reliability which means strict delay and/or delay jitter
bounds are required, and full reliability which indicates delivery of all data to all
receivers is required to be fully error-free.

To better understand these concepts of the narrow sense “reliability”, we will give
some application examples about them. Bulk-data transfers, such as file distribution and
web cache updates, are both fully reliable and not time-bounded. On the other hand, some
applications require not only full reliability but also time-bounded delivery, such as

shared whiteboards and distributed games. Furthermore, real-time streaming applications

16



like video/audio multicasting interactive applications like video conferencing are both

semi-reliable and time-bounded.
3.2 Challenges Facing Reliable Multicast

There are many challenges in reliable multicast. This section introduces two main

problems: scalability and congestion control.
3.2.1 Challenge I — Scalability for Loss Recovery

Scalability indicates the ability to have large groups for a reliable multicast
scheme. It is a fundamental issue to a successful reliable multicast protocol [19]. There

are two main issues related to scaling: feedback implosion and retransmission exposure.

e Feedback Implosion

ARQ technique is usually used in reliable transport of network. For multicast, a
large amount of feedback traffic (NAK or ACK), which is sent synchronously by many
receivers, can result in network congestion and overwhelm the sender. This is so-called
feedback implosion [20]. Basically, there are three solutions for this problem.

The first approach is timer-based NAK suppression at the receivers. Each receiver
will set up a timer for a NAK and send it at timeout. If loss has been corrected or the
receiver has received a NAK containing the same information, the timer is reset and the

NAK is cancelled. In [21], the scheme based on this approach is proposed.

17



The second approach is hierarchical ACKs aggregation and/or NAK suppression
at some intelligent routers/servers. This approach uses a tree structure. RMTP-II [22] is
such mechanism.

The third approach is using proactive FEC (forward error correction). Send some
parity data packets with the source data packets. When loss is detected at receivers, the
receivers can use the redundancy information to correct the loss. In [23], this mechanism

is adopted.

¢ Retransmission Exposure

Retransmission exposure means that recovery-related traffic reaches the receivers
which have not experienced any loss. In reliable multicast, usually, the sender is the
ultimate responder of retransmission request and it retransmits repair packets by
multicast. Hence, when group size is very large, if the sender responds to every
retransmission request, this approach possibly leads to overload of the source, a relatively
large recovery delay, and retransmission exposure. Retransmission exposure reduces the
network bandwidth efficiency. Especially when only a small fraction of the receivers
suffer loss persistently to request retransmissions (the “crying baby problem™) [19], this
problem is worse.

To solve this problem, several schemes can be adopted. Hybrid FEC/ARQ
technique can partly alleviate the effect [23]. Another solution is using hierarchical
structure, distributing the burden of retransmissions among the sender and some
retransmission servers (receiver, router, or server) and limiting the scope of

retransmission [21].



3.2.2 Challenge I — Congestion Control

Multicast congestion control is set of techniques that regulate the data
transmission rate in response to network conditions and the principles and mechanisms of
sharing congested links among many sessions. The primary goal for multicast congestion
control is avoiding congestion collapse and achieving faimess with competing traffics to
utilize the network resources efficiently. The major issues for multicast congestion
control are scalability, heterogeneity, and faimess. Multicast congestion control is more

complicated than unicast congestion control.

* Scalability for Congestion Control

A multicast congestion control protocol not only needs to scale to a large number
of receivers but also needs to scale in a more heterogeneous environment with different
link capacities and delays. This can results in two problems. One is aforementioned
feedback implosion, which won't be repeated. The other is the loss path multiplicity (or
rate drop-to-zero) problem [24]. The loss path multiplicity problem arises when receivers
use packet losses as congestion signals and the source uses these signals to regulate its
transmission rate without proper aggregation. When packets are lost on multiple paths
independently, receivers downstream of these paths will all send congestion signals to the
source resulting in multiple rate drops at the source. Decoupling feedback for error

control and feedback for congestion control can solve this problem. [25].

e Heterogeneity
Another major issue for multicast con gestion control is the heterogeneity of group
members and network capacities. For example, the bottleneck link capacity leading to

19



receivers in a multicast group can vary from 33.6 kb/s for a dialup link to more than 100
Mbps in a LAN. It is often desirable for a receiver to have a transmission rate that
matches its receiving rate. This leads to the inter-receiver faimess requirement: the
transmission rate of a multicast group should satisfy faster receivers in the group while
not overwhelming slower ones at the same time. The multi-rate multicast congestion

control schemes [26] can help improve inter-receiver faimess.

¢ Fairness

Faimess in multicast congestion control mechanisms refers to sharing the network
resources equally among receivers or sessions, which includes inter-receiver faimess and
inter-session faimess. Inter-receiver faimess means the faimess among receivers in a
multicast session, which has been mentioned above. Inter-session faimess refers to
faimess among multicast sessions and between multicast and unicast sessions (such as
TCP flows).

The definition of “intersession faimess” is largely policy-based. Different
definitions are possible due to various requirements of applications, customers, and
service providers. Popular faimess criteria include max—min faimess [27] and “TCP-

friendliness” [28).

3.3 Error Recovery Mechanisms in Reliable Multicast

IP multicast provides only unreliable and best effort delivery at the network layer.
To deal with loss, two basic mechanisms exist: ARQ (Automatic Repeat Request) which

retransmits the lost data, and FEC (Forwarding Error Correction) which transmits

20



redundant data including the original data and the parity data. If the amount of original
data lost is not more than the amount parity data sent, the parity data can be used to

reconstruct the lost original data.

3.3.1 ARQ

ARQ [29] can achieve reliable delivery by the receiver explicitly (via NAKs) or
implicitly (via ACKs and timeouts) requesting retransmission of the lost segments. The
ARQ mechanisms include three parts. The first part is loss detection, which can be done
by the receiver (gap-based loss detection or timeout) or by the sender (timeout). The
second part is sending feedback, either positive acknowledgements (ACKs) or negative
acknowledgements (NAKs). The last part is the lost data retransmission, which is the
responsibility of the sender or other nodes (receiver, router, etc.). There are two main
retransmission schemes, Go-back-N and Selective, which trade off simplicity of the
receiver implementation and transmission efficiency.

ARQ based reliable multicast protocols can be classified into sender-initiated and
receiver-initiated protocols, according to their different feedback mechanisms [30]. In
sender-initiated reliable multicast protocols based on the use of ACKs [30], the sender
maintains state information of all receivers and detects packet losses. Receivers need to
acknowledge every correctly received packet via ACK to the sender. If the sender does
not receive the ACK for a packet after time out, it will assume that the packet is lost and a
retransmission will be triggered. In receiver-initiated reliable multicast protocols based
on the use of NAKSs [30], most of the responsibility for reliable data delivery is shifted to

the receivers. Each receiver is responsible for detecting loss by observing gaps in

21



received packets and informing the sender via NAK's when it requires the retransmission
of a packet.

Receiver-initiated protocols have the advantage of being scalable to a large
number of receivers than sender-initiated protocols [30], since the receiver-initiated
protocols distribute the burden of maintaining reliability into all receivers, NAKs are only
issued when packet losses occur, and the sender need not keep the state or identity of
each receiver. But these two types of protocols will be confronted with the same
problems for scalability, how to alleviate feedback explosion, how to resolve
retransmission exposure, and how to provide timely delivery. Aimed at these problems,
many protocols with hierarchical mechanism based on tree structure, are proposed, such
as RMTP [17] and RMTP-II [22].

However, the pure ARQ mechanisms scale badly to multicast protocols and large
groups, because they would generate excessive traffic and high network latency due to its
feedback transmission and each lost data retransmission. FEC mechanisms have thus

been introduced for reliable multicast.

3.3.2FEC

3.3.2.1 Introduction to FEC

FEC [31], forward error correction, is an error detection and correction technique
based on transmitting redundant information, which reconstructs some amount of missing
data by using the parity packets instead of the retransmission of the lost data. The
different properties on mechanism between FEC and ARQ, decides the differences of

their application scenarios in reliable mulitcast, as shown in Table 3.1.

~
[N]



Generally, FEC has the following benefits for reliable muliticast: Firstly, it has a
faster recovery of missing packets and a lower latency to receive all data intact at all
receivers, compared with ARQ recovery with a larger RTT (including the time of sending
NAK and the time of lost data retransmission). In addition, FEC can improve scalability
in terms of group size, because it can significantly reduce the necessity for retransmission
request or make them totally unnecessary by large improvements in the packet loss rate.
Furthermore, FEC can improve transmission efficiency for reliable multicast, since
different receivers with different loss pattemns can be recovered using the same set of
transmitted data. Finally, FEC has been implemented in software without an excessive
overhead [32], which makes it possible to widely use FEC.

However, FEC by itself cannot provide full reliability, because the sender does
not receive any feedback from the receivers about their losses, thus there is no way for
the sender to know how much redundancy is needed to fully recover lost data. Therefore,
merging ARQ and FEC is necessary for reliable multicast protocols, which will be

discussed later.

Table 3.1 Different Application Scenarios for Pure FEC and ARQ

FEC ARQ
Suitable for large groups with large Suitable for small groups with feedback
Round-Trip Times(RTTsSs), or when the | channel
feedback channel is unavailable

Suitable for networks with homogeneous | Suitable for networks with heterogeneous
loss probability loss probability

Efficient in overcoming independent loss | Efficient in overcoming shared loss

Suitable for real-time interactive Suitable for non-interactive applications
applications
Only provides semi-reliability Provides total reliability




3.3.2.2 Erasure Correction Codes

FEC comrects loss or ermror by using FEC codes. Genenlly speaking, FEC
correction includes both erasures (which is usually generated by network congestion) and
bit-level corruption (which is usually generated by line noise) corrections. However, in
computer network, the link layer or transport layer can use packet authentication to
discard corrupted packets, which leads to the transform from unrecoverable corruption to
erasure [32]. Hence, transport layer FEC will only be required to deal with the packet-
level erasures by using erasure comrection codes.

Erasure codes are a subset of Error Control Codes, largely used in the
telecommunication field [32]. Basically, a (n, &) block erasure code takes k& source
packets with same packet length and produces n encoded packets that include k source
packets and n-k parity packets with the same packet length. Any subset of &> (for RSE
k’=k; for Tomado code k’>k) encoded packets allows the reconstruction of the source

packets, such as shown in Figure 3.1 [32].

encoded data received dala
source dala reconstructed
—3- \ data

Jme-

— >

+

—

Encoder Decoder

e

Fow-

> o

k k
3
n k'>=F

Figure 3.1 Decoding and Encoding Process of (n, k) Block Erasure Codes

24



The following subsections describe the commonly employed coding schemes for

reliable multicast: Reed Solomon Erasure (RSE) code and Tomado code.

¢ RSE Code

The Reed-Solomon erasure correction code (RSE) [31] is a small block FEC code,
which is derived from the well-known Reed-Solomon error correction code (RSC). The
major difference between RSE and RSC is that RSE only corrects erasures. RSE is used
in many FEC-based reliable multicast protocols.

RSE code can be constructed based on the properties of linear algebra over finite
fields [32]. It interprets & source packets as the coefficients of a polynomial P of degree
k-1. As the polynomial is fully characterized by its values in & different points, we can
produce the desired amount of redundancy by evaluating P at n different points (i.e. n
different finite fields elements). Reconstruction of the original packets (the coefficients of
P) is possible as soon as any k of these values are available. In practice, the encoding
process requires multiplying the original packets by an nxk encoding matrix G, which
happens to be a Vandermonde matrix. The decoding process requires the inversion of a
kx k encoding submatrix G’ taken from G, and the multiplication of the received packets
by G’ ™ (inversion matrix of G’). By simple algebraic manipulation, G can be
transformed to make its top k rows constitute the identity matrix, thus making the code a
systematic code.

The Reed-Solomon code [31][32] is computationally expensive. The encoding
and decoding times of RSE are relatively high, and increase as the size of the original
data block increases. Usually, the data block size has to be kept as small as possible.

While hardware implementation is faster than software implementation, hardware FEC is



more common in telecommunication equipment rather than in PCs and workstations for
end-to-end transport protocols. Ho-wever, Rizzo et al. [32] showed that software FEC is
becoming feasible as the CPU speed increases. For % values under 32, his software
implementation can encode at 10 megabytes/second and decode at 9 megabytes/second

on even a low-end PC.

e The Tornado Code

Tomado code [33] is a large block FEC code that provides an altemative to small
block FEC codes. The mathematical basis of the Tomado code is also linear algebra,
which produces linear-time encodable and decodable codes based on a series of random
bipartite graphs. To ensure that a receiver can reassemble efficiently the object with low
reception overhead, the packets are permuted into a random order before transmission.
The decoding process can be achieved using only simple substitutions and XOR
operations. When close to required number of packets are received, the arrival of one
more packet may trigger a whirlwind of substitutions and regenerate a number of original
packets. Hence this code is named “Tomado”. The technique is described in detail in
[33].

Tomado code [33] promises fast encoding and decoding, and overcomes the
limitation of small block size of RSE. The advantage of Tomado code over RSE is that it
can trade off a negligible increase in reception overhead for a substantial decrease in
encoding and decoding times. That is, a (n, k) Tomado code requires slightly more than k
out of n encoding symbols to recover k source symbols, i.e., there is a small reception
overhead, while the Reed-Solomon code requires only exactly k£ out of n encoding

symbols received in order to reconstruct the original & symbols. In retum, the Tomado

26



code encoding and decoding involve only addition (i.e., XOR) and no matrix inversion

(which requires more costly multiplication, typically using table lookups).
3.3.3 Hybrid FEC/ARQ

In reliable multicast schemes, FEC is often used together with ARQ, called hybrid
FEC/ARQ [29][34]. In hybrid FEC/ARQ schemes, instead of retransmitting individual
lost packets in pure ARQ schemes, the source transmits parity packets either proactively
with the original data or in response to a NAK (or ACK timeout). Receivers can use the
parity packets to recover any losses in a range of data packets. Hybrid FEC/ARQ
techniques combine the benefits of FEC and ARQ, and are significantly suitable for
reliable multicast, hence so far a large number of reliable multicast protocols with hybrid
FEC/ARQ are proposed.

Hybrid FEC/ARQ techniques are classified into two categories: hybrid FEC/ARQ
I (proactive FEC) and hybrid FEC/ARQ II (reactive FEC), depending on how to use FEC

[29][34].

3.3.3.1 Proactive FEC

In proactive FEC, for each block, the source transmits both original packets and
extra parity packets, regardless of the receiver’s feedback. Retransmissions are still
necessary to ensure reliability but are fewer because proactive FEC effectively reduces
the end-to-end loss rate. The approach makes more efficient use of network resources
than an approach with pure ARQ when losses are not temporally very burst [35].

But for proactive FEC, it is difficult to decide the appropriate amount of parity

packets to send proactively for source in heterogeneous network. Any amount may be

27



insufficient to some receivers while unnecessary to others [35]. A scheme, which intends
to resolve the above problem by estimation of loss rate based on feedback and

localization traffic, was presented in SHARQFEC [36].

3.3.3.2 Reactive FEC
Reactive FEC, i.e., hybrid FEC/ARQ II, was proposed in [37]. Reactive FEC

more efficiently utilizes the network resources than proactive FEC. It can reduce the
usage of network resources, even when losses are temporally correlated. In this approach,
FEC packets are transmitted only as retransmissions, either upon timeout waiting for an
ACK or in response to a NAK. Reactive FEC has the following properties:

® Remansmissions are no longer the lost source packets of certain receiver but

parity packets that can help recover any lost packets.

e The same parity packet can be used to repair the loss of different data packets at

different receivers.

* A NAK from a receiver only simply indicates the number of the lost source

packets in certain block instead of the sequence number of each lost source packet.

e Source picks the maximum number of losses reported by all the NAKs for the

same block and multicasts that amount of parity packets to the multicast group.

However, because the source has to retransmit according to worst case and the
responsibility of retransmission is centralized at the source [35], the schemes exist the
problems of crying baby [19] and NAK implosion [20)(mentioned in section 3.2),
although FEC reduces the number of NAKs. Of course, we can ease the problem by

localizing the retransmission into subgroups [36]. But the fewer the receivers that share



the repair packet (due to localization), the less FEC improves the performance over
normal ARQ. Therefore, reactive FEC is more suitable for a large set of homogeneous (in
terms of loss rate) receivers with some form of NAK suppression such as duplicate

avoidance or aggregation along the fusion tree.

3.4 Router Support for Reliable Multicast

3.4.1 Background

In the past ten years, many solutions have been proposed on a high layer (transfer
layer and application layer) for reliable multicast, such as RMTP [17], RMTP II [22], etc.
However, these solutions either do not scale well, or are inflexible (e.g., they employ
static hierarchies). Recently, a new class of solutions with the assistance of the network
elements (routers) has emerged. Router support in network can often help to improve the
performance of reliable multicast protocols.

Major proposed schemes using router support can be roughly divided into two

categories.

1) Router Support to richer multicast Jorwarding semantics

This category of schemes uses minimal router support to direct retransmission
request (e.g., NAK) to proper repliers, thus, reducing feedback implosion. These
protocols include LMS [37], search party [38], and RMCM [39]. The operations of these
protocols can be summarily described as: when a loss occurs on a link of the multicast
distribution tree, all receivers downstream to the link suffer losses and require

retransmissions. The router will redirect retransmission request to a replier link

29



immediately upstream of the loss. After receiving the retransmission request, the replier
would retransmit the lost packet by multicasting it to the sub-tree downstream from the
link where the loss occurs. Multiple NAKs for the same lost packet can be aggregated

and restricted by the replier in the sub-tree suffering the loss.

2) Using Active Routers for Reliable Multicast

This category of schemes uses active routers (or active servers collocated with
routers) for NAK suppression, partial multicast, and local recovery. In these schemes,
active routers can construct an efficient logical tree for feedback control and
retransmission automatically by using the underlying multicast routing tree directly.
Thus, routers actively take part in the reliable multicast protocols. The tradeoff is the
extra burden on the network, because active routers must maintain soft state of
retransmission or buffer/cache packets. These protocols include ARM [40], AER [41],
PGM [42], OTERS [43], and RMANP [44].

In other several subsections, we will describe LMS, PGM and ARM in detail,

through which we will better understand this class of protocols with routers assistance.

3.4.2 LMS (Lightweight multicast service)

Light-weight Multicast Services (LMS) is a router-assisted scheme created to
address the problem of scalable reliable multicast. The scheme defines a set of
forwarding services at the routers that help steer control messages to the surrogates (i.e.
repliers which is some selected receivers), and targets at the replier to do NAK
aggregation and retransmission. Thus, most of the problems associated with reliable

multicast mentioned in section 3.2 could be efficiently solved with minimal assistance

30



from the routers. In addition, since the forwarding is done at the network layer, these
services do not need to peek into higher layers and thus avoid layer violation.
Routers enhanced with LMS, in addition to their regular duties perform the

following additional tasks:

1) Replier selection

Potential repliers (receivers) advertise their willingness to serve as repliers for a
particular (Source, Group) pair with their local router. Routers propagate these
advertisements upstream. Before propagating the message upstream, a router selects one
of its downstream interfaces (based on an application-defined metric) as the replier
interface. When all routers have received advertisements, the replier state is established.
Replier state is soft state which provides robusmess and guards against replier and link

failures.

2) NAK forwarding

LMS routers forward NAKs hop-by-hop according to the following rules: a NAK
from the replier interface is forwarded upstream; a NAK from a non-replier interface
(including the upstream interface) is forwarded to the replier interface. However, a NAK
from a non-replier down multicast stream interface marks this router as the “tuming
point” of that NAK. Note that by definition, there can be only one tuming point for each
NAK but the same tuming point may be shared by multiple NAKs. Before forwarding a
NACK, the tuming point router inserts in the packet the addresses of the incoming and

outgoing interfaces, which we call the “tuming point information” of the NAK. This

31



information is carried by the NAK to the replier. An example about the process of the

request is shown in Figure 3.2.

Routers

Common Recsivers
Repliers

Common Links

Link Where Losses Qceur
Replier Links

> Requests

Repairs

Figure 3. 2 Request and Repair Procedure in LMS

3) Directed muiticast DMCAST)

Repliers use DMCAST to perform fine-grain multicast. A replier creates a
multicast packet containing the requested data and addresses it to the group. The
multicast packet is encapsulated into a unicast packet and sent to the turning point router
(whose address was part of the tuming point information) along with the address of the
interface the NACK originally arrived at the tuming point router. When the tuming point
router receives the packet, it decapsulates and multicasts it on the specified interface. An
enhanced version of DMCAST may allow repliers to specify more than one interface that
the packet should be directed to send on. An example about the process of retransmission

is shown in Figure 3.2.

32



Recently, LMS has added incremental deployment methods to their specification
in order to be deployed in an incremental fashion on the Internet, due to the scale and
inherent heterogeneity of the Intemet. These methods help LMS more efficientdy

improving the performance of reliable multicast.

3.4.3 PGM (Pragmatic general multicast)

PGM (Pragmatic General Multicast) [42] is a recent proposal made by Cisco
Systems and Microsoft. It is currently published as a working document of the [ETF
(Intemet draft). The protocol employs “network elements” (routers) to fuse NAKs and
constrain retransmissions to save bandwidth, which means that routers do some process
of transport level.

PGM [42] has a few data packets, ODATA (original content data), NCF (NAK
confirmation), RDATA (retransmission (repair)), SPM (source path message), and NAK
(selective negative acknowledgment). The first four packets of them flow downstream in
the multicast tree, and NAK packets flow upstream toward the source.

We describe PGM from the following several aspects:

1) Source Path State Establishment

The source will periodically multicast out a Source Path Message (SPM) along
the multicast tree to establish source path state for a given source and session in the
network. When forwarding a SPM to its downstream nodes, a PGM router will include its
own address into the SPM. In this way, a PGM router or receiver can know the address of

its upstream PGM router.

33



PGM routers use this state information to determine the unicast path back to the
source for forwarding NAKs. SPMs also alert receivers that the oldest data in the transmit
window is about to be retired from the window and will thus no longer be available for

repairs from the source.

2) NAK Generation
Upon detecting a packet loss, a receiver will set a back-off timer. When the timer
expires, the receiver will generate a NAK for the lost packet and unicast it to its nearest

upstream PGM router.

3) NAK Aggregation and Suppression

NAKs are unicast from PGM router to PGM router. When receiving a NAK, a
PGM router will add the interface from which the NAK arrives to the repair interface list
for the lost packet. . Each PGM router keeps forwarding NAKSs until it sees an NCF or
RDATA, which indicates that a repair is being sent. This reason that an NCF is sent by
multicaste (even limited to the interface on which the corresponding NAK was received)
instead of being sent by unicast, is to prevent redundant NAKs. This point will be
explained below.

For NAK suppression, the PGM router will immediately multicast a NAK
confirmation (NCF) packet along that interface. When a receiver receives the NCF before
its timer expires, it will cancel the timer, and no NAK will be generated. When a
downstream PGM router receives the NCF, it will stop the propagation of the NCF, and
meanwhile it will refrain from forwarding any new NAK for the lost packet to the

upstream PGM router.



For NAK Aggregation, the PGM router will not forward a NAK upward if it has

forwarded a NAK for the same lost packet upward before.

4) Retransmission of the Data Packet

When the sender receives a NAK, it will first multicast a NCF out, Jjust like what a
PGM router does. Then it will multicast the repair packet along the interface from which
the NAK arrives. When a PGM router receives the repair packet, it will multicast the
packet along all interfaces in the repair interface list for the packet, which will eliminate
the transmission of repair data to parts of the distribution tree where the repair is not
needed. A router that is not PGM capable will simply forward the multicast packet

(including the NCF and the Repair Packet) on all downstream interfaces.

3.4.4 ARM (Active reliable multicast)

ARM [40] is a NAK-based scheme that utilizes active routers at strategic
locations to protect the sender and network bandwidth from unnecessary feedback and
repair raffic. ARM provides the active services in the network similarly to PGM, except
caching data for possible retransmission.

ARM assumes that the forward multicast paths comrespond to reverse unicast
paths. It caches information in routers’ soft state to aggregate NAKs and limit the
delivery of repairs. We introduce the scheme from the three aspects:

1) Caching Data at Routers
Active routers (selectable) perform best-effort caching of multicast data packets

for possible retransmission. After detecting a loss, a receiver sends a NAK to the source.



When the NAK reaches an active router on the path, the router will retransmit the
requested packet if that packet is in its cache; otherwise, it will consider forwarding the
NACK towards the sender. The holding time of a data packet in cache depends on the
sending rate of data and the max RTT between the sender and the “farthest” receiver
downstream.

In fact, caching deals with a tradeoff between network-based storage and
bandwidth. Data caching function significantly reduces the recovery latency for distance
receivers and lossy links. It also protects the sender and bottleneck links from

retransmission requests and repair traffic.

2) Processing of NAK packets

Each active ARM router maintains a NAK record and a REPAIR record for each
loss that it is handling for a short amount of time in cache. The NAK record is used to
suppress subsequent duplicate NAKs of the same packet, and the REPAIR record is
mainly used to suppress NAKs sent by receivers before they receive a repair that is in
transit. In general, the holding time of a NAK record in cache depends on how soon the
router expects to receive the corresponding repair, and the holding time of a REPAIR
record should be approximately one RTT from the router to the farthest receiver
downstream.

When the NAK packet reaches an active ARM router, the router first checks
REPAIR record of this NAK. If the REPAIR record indicates that the requested repair
has just been forwarded down the link on which the NAK arrived, the router will drop
this NAK. If the requested repair has not been forwarded down the corresponding link,

and the requested repair is in the router’s cache, the router retransmits the repair and

36



modifies the REPAIR record. Otherwise, the route subscribes the originator of the NAK
to a subsequent transmission of a repair and modifies the NAK report, which is the
necessary preparation for scoped retransmissions; it forwards only the first NAK for this

repair to the sender, according to the NAK report of the lost data packet.

3) Processing of Retransmission Packets

When the NAKs of a2 multicast data packet reach the router, a subscription bitmap
will be created and cached to determine outgoing link to forward subsequent repairs.
When an active router obtains a repair packet from the upsteam active router or in the
cache of this router, the active router will first look up the corresponding subscription
bitmap in the NAK report of this lost packet, then partial multicast the repair packet to
these outgoing links which the subscription bitmap indicates. This guarantees that the

repair packet is scoped the portion of the multicast group experiencing loss.

3.5 Summary

In this chapter, we gave a definition of reliability for multicast and studied
mechanisms, including FEC and ARQ, to provide reliability. In addition, we also studied
some router-assisted mechanisms for reliable multicast in detail. In general, these
mechanisms make design tradeoff between bandwidth and latency.

In this thesis, I will focus on the buffering and caching techniques of router for
reliable multicast, and the data caching of router in my simulation is similar to the
aforementioned active service in ARM [40]. Chapter 4 will present this simulation in

detail.

37



Chapter 4

Router Buffering and Caching Techniques

for Multi-Session Reliable Multicast

This chapter first presents the details of the simulation conceming buffering,
forwarding and caching at the routers for the proposed multi-session reliable multicast.
We perform the performance comparisons of three different forwarding buffer allocation
policies using ARQ for loss recovery. Also we study the effect of network elements
(routers) with caching and no caching on the performance of multi-session reliable
multicast.

These three allocation policies of forwarding buffer and caching buffer are No-

Split, Uniform-Split and Flexible-Split, which will be described hereinafter.

4.1 Terminology

The following terms have special significance for this simulation:

e Buffer



A temporary data storage area that compensates for a difference in data transfer rates
and/or data processing rates between sender and receiver.

* Buffering

Buffering is a common technique to improve efficiency of the system in data transfer
which involve several VO devices with different speeds and different transfer data sizes
(bytes, blocks).

e Cache

Generally a small block of fast memory that sits between either 1) a smaller, faster chunk
of memory and a bigger, slower chunk of memory, or 2) a processor and a bigger, slower
block of memory. This is to provide a bridge from something that's comparatively very
fast to something that's comparatively slow.

Cache and caching buffer are thought to be the same thing here. Note that caching buffer
is mainly used for data buffering in this simulation, and the cached packets can partly
recovery the lost data packets of receiver so as to decrease the number of network
retransmission.

e Caching

Caching is an optimization technique that is used whenever a process has to compute the
value of a function over and over again and it is faster to remember previous values than
to compute them over again.

In this simulation, caching means the packet is still buffered in the caching buffer of this
router for a while after it leaves the router.

e Cache Hit

A cache hit occurs when a requested packet is found in the cache in this simulation.

39



® Unicast Routing Table (URT)

This table specifies the outgoing interfzice for a data packet to next hop towards the
destination.

® Mulficast Routing Table (MRT)

This is the multicast topology table, which is typically derived from the unicast routing
table. In this scheme, the MRT is used to decide where to send data packets. A secondary
function of the MRT is to provide routing metrics for destination addresses.

e  Upstream

Towards the root of the tree. The root of tree is the source.

e Downstream

Away from the root of the tree.

o Iif

Incoming interface of certain node.

e Oif

Outgoing interface of certain node.
4.2 Introduction to Router Architecture

Router is a network device that can handle multiple protocols by sending data
between dissimilar networks. A basic architectural of an P router is given in Figure 4.1,
which includes the control card (which holds the CPU), the router back plane, and
interface cards. The CPU in the router typically performs route processing (i.e., path
computation, routing table maintenance, and reachability propagation). It runs whichever

routing protocols needed in the router. The interface cards consist of adapters that



perform inbound and outbound packet forwarding. The router back plane is responsible

for transferring packets between the cards.

“ontroller Card

Routing
'l.'nl*c

Router
Backplane

Interface Card

Figure 4.1 Basic Router Architecture

Router must perform two fundamental tasks, routing processing and packet
forwarding. The routing process collects information about the network topology and
creates a forwarding table. The packet-forwarding process copies a packet from an input
interface of the router to the proper output interface based on information contained in the
forwarding table (see Figure 4.2). In the process of packet forwarding, firstly the router
accepts the arriving packet on an incoming link, and lookups packet destination address
in the forwarding table, to identify outgoing poni(s). Next the router manipulate packet
header (decrement TTL, update header checksum, etc.), sends packet to the outgoing
port(s), classifies and buffers packet in the queue. At last, it transmits the packet onto the

outgoing link.

41



e,
@ . @ Output

Scheduling
Taple Interconnect

ding

Forwarding
Decision

Forwarding
Table

G 0

3 Forwarding ¢
Degcisio 3

// Forwarding

7 Taple §

7z

/ Forwarding

R
SO

N

Figure 4.2 Packet Forwarding Processing

In the part of output scheduling, usually there are two basic queuing techniques:
input queuing and output queuing (see Figure 4.3). Input queuing means that packets are
queued in input buffer, while output queuing means that packets are queued in output

buffer. In this simulation, output queuing is adopted.

Input Queuein OQutput Queueing

-
.-

Usually a non-blocking Usually a fast bus
switch fabric (e.g. crosshar)

Figure 4.3 Two Basic Queuing Techniques

42



4.3 Simulation Model

4.3.1 Network Model and Topology
4.3.1.1 Network Model

We adopt a typical network model as shown in Figure 4.4. The network consists
of multiple multicast trees/sessions, where each tree has a sender at its root and several
receivers at its leaves. Receivers are connected to high-bandwidth backbone network

through edge routers.

sender sender sender sender sender
1 2 3 % 5

. receiver for
session 1
receiver for

session 2

Edge Router ) —-——— ( Edge Rouer O receiver for

Edge Router

session J

ceceiver for
session 1

receiver for
session 5

Figure 4.4 Network Model

We assume that the network provides a “best-effort” service model, and that the
underlying network is unreliable and packets can be lost or delayed. The end-points must
ultimately be responsible for the reliable transport of data packets. However, they can
take advantage of network-based processing and storage to improve end-to-end
performance and scalability for certain applications. Some intermediate routers will cache

data packets for possible retransmission. This point is similar to the role of active router



in ARM [40], but here we are just concemed with the cached data packets, other aspects

will not be considered.

4.3.1.2 Topology of Multicast Network and the Specific Source Trees

The topology of the simulation is shown as Figure 4.5, in which there are 11
backbone routers, 11 edge routers, 5 sources, 14 receivers (it is enough to have at least |
receiver for the same session under the same edge router). We also present the detailed
multicast path with multicast tree for each session in Figure 4.6. Tables 4.1 to 4.4 give the

corresponding routing tables.

19

Z

%

15 16

Backbone router

@ Edge router

Figure 4.5 Hierarchical Topology of Multicast Network




Tree of session 2 (sender 2)

16

Tree of session 3(sender 3)

Tree of session 5(sender 5)

fote.numder |-17 tenste rouler mmper

Figure 4.6 Specific Source Trees for the Simulation

45



In this simulation, routers use multicast routing table (Tables 4.1) to find outgoing
interfaces for multicast data packet of different session. For example, in router 1, the
outgoing interface for session 1 is OIF 1 and OIF 2, and accordingly its next hop node is
router 2 and router 8; the outgoing interface for session 3, 4, 5 is OIF 3, and their next

hop node is router 12; there is no multicast traffic passing through the OIF 4 of router 1.

router 2

session §

session |
router 8

3

s

8
oIF 2

desston 3, 4, 6

router 12

Table 4.1 Multicast Routing Table (Backbone Router)

To OIF 1 OIF 2 OIF 3 OIF 4

From Next Session | Next Session | Next Session | Next Session
router | no. router | no. router | no. router | no.

Router1 |2 1 8 1 12 3,4,5 | —- S—

Router?2 |3 1,2 8 2 1 3 ——- —

Router3 | 4 1,3 9 2 2 3 14 5

Router4 | 15 1 5 3

Router5 | 16 3,5

Router6 | 17 1,5 7 4 5 5 ——— ——-

Router7 |6 1,5 11 1,4 8 4,5 9 4,5

Router8 |7 1 19 2 1 4,5 —— ——

Router9 | 20 2,4 5

Routerl0

Routerll | 22 1,4 |- -

OIF : outgoing interface From: from a router(source router) To: to next neighbor router



Table 4.2 indicates the relationship among edge router, its hosts, and the sessions.
For example, for edge router 12, in these hosts that locate at its downstream link, receiver
I (host 1) joins into session 3 (group 3), receiver 2 joins into session 4, and receiver 3

Joins into session 5, but no hosts intend to join into session 1 and session 2.

Table 4.3 indicates the corresponding relationship between the source and its

neighbor backbone router.

Table 4.2 Multicast Routing Table (Edge Router)

Session 1 Session 2 Session 3 Session 4 Session 5
to s

from
Router 12 —— —— Receiver I | Receiver2 | Receiver 3
Router 13 — —- —— -—- —
Router 14 e ——— — e Receiver 4
Router 15 Receiver5 | -——- — - —
Router 16 e — Receiver6 | -——- Receiver 7
Router 17 Receiver8 | -—-- — -——- Receiver 9
Router 18 ——— — — — e
Router 19 e Receiver 10 | -~——- . -———-
Router 20 e Receiver 11 | -—- Receiver 12 | -——-
Router 21 —— ——— — e -——-
Router 22 Receiver 13 | -——- —— Receiver 14 | -—--

s:sessionno.  from: from an edge router to: to the according receiver
Table 4.3 Sender and Its Neighbor Backbone Router
Source 1 Source 2 Source 3 Source 4 Source 5
Router 1 Router 2 Router 3 Router 6 Router 7

47




Table 4.4 is the reverse unicast routing table used for NAK packets. It indicates
the next hop node for the NAK packets of certain session. For example, in router 1, the
next node for NAK packets of session 1 is node 31(i.e. source 1); the NAK packets of
session 2 should not pass through router 1; the next node for the NAK packets of session
3 is router 2; the next nodes for the NAK packets of session 4 and session 5 are the same

router 8.

Table 4.4 Reverse Unicast Routing Table for Each Session (used for NAK packets)

1 2 3 4 5
from

1 31 — 2 8 8
2 1 32 3 s ——
3 2 2 33 — 9
4 3 — 3 — —
5 — — 4 — 6
6 7 — — 34 7
7 8 — — 6 35
8 1 2 — 7 7
9 —— 3 — 7 7
10 S — — — —
11 7 — N 7 —
12 —— — 1 1 1
13 — — —— — —
14 — — — — 3
15 4 — — — —
16 — — 5 — 5
17 6 — — — 6
18 —— — - — —
19 —— 8 — — —
20 — 9 — 9 —
21 — — — — J—
22 11 — S 11 S

S: session no.

1-11: backbone routers

from: from a router
12-22: edge routers

to: to upstream router or senders
31-35:senderno. 1-5




4.3.1.3 Function of Each Part

There are four main parts in our multicast network, which are sender (source),

backbone router, edge router, and receiver. For each part, there exist the following

functions within the simulation program.

1)

2)

3)

4)

Function of Sender

¢ Generate data packets and forward them to backbone router.

e When receiving NAK, sender retransmits the packet to the downstream router by
unicast.

Function of Backbone Router

® Multcasting data packets to the downstream routers according to multicast
routing table;

¢ When receiving NAK from the downstream router, either it retransmits directly
the requested packet to the receiver (this router is equipped with caching buffer and
the packet is cached at that time) or it forwards the NAK packets to the upstream
backbone router or sender,

e Handling data buffering and forwarding according to the three different policies
in this thesis.

Function of Edge Router

* The function of edge router is similar to the backbone router except that no data is
cached. And edge router is responsible for forwarding data to or from the receivers of
certain local domain.

Function of Receiver

49



® It checks sequence number of packets. If it detects a loss, send NAK to its edge

router.

4.3.2 Queuing Discipline

In this simulation, we adopt two queuing disciplines: FIFO and Fair Queuing. The
No-Split forwarding buffer policy uses FIFO Queuin g, and the other two policies use Fair
Queuing. We will introduce the two queuing disciplines and present their advantage and

disadvantage.

1) FIFO Queuing

Routers traditionally have used a FIFO queuing discipline. A single queue is
maintained at each output port. When a new packet arrives and is routed to an output port,
it is placed at the end of the queue. As long as the queue is not empty, the router transmits
packets from the queue, taking the oldest remaining packet next.

There are several drawbacks to the FIFO queuing discipline:

(1) No special treatment is given to packets from flows that are of higher priority
or are more delay sensitive. If a number of packets from different flows are ready to
forward, they are handled strictly in FIFO order.

(2) If 2 number of smaller packets are queued behind a long packet, then FIFO
queuing results in a larger average delay per packet than if the shorter packets were
transmitted before the longer packet. In general, flows of larger packets get better service.

(3) A greedy TCP connection can crowd out more other TCP connections. If
congestion occurs and one TCP connection fails to back off, other connections along the

same path segment must back off more than they would otherwise have to do.

50



2) Fair Queuing (FQ)

A router maintains multiple queues at each output port. In general maintaining
one queue for each source. With fair queuing, each incoming packet is placed in the
appropriate queue. The queues are serviced in round-robin fashion, taking one packet
from each non-empty queue in turn. Empty queues are skipped over.

This scheme is fair in that each busy flow gets to send exactly one packet per
cycle. Further, this is a form of load balancing among the various flows. Also note that
there is no advantage in being greedy. A greedy flow finds that its queues become long,

increasing its delays, whereas other flows are unaffected by this behavior.

4.3.3 Buffer Management Model

In this simulation, one of the tasks aims at studying of buffer (the buffer of router
output port) sharing for multi-sessions reliable multicast. Several flows of packets may
share a common pool of buffers of an output port. Buffer management sets the buffer

sharing policy and decides which packet should be discarded when the buffer overflows.

4.3.3.1 Buffer Allocation Algorithms

So-called buffer allocation algorithm means the buffer sharing policy of output
port. Any given node has a number of I/O ports to other nodes or end systems. There are
two buffers at each port: input and output buffer. We assume that all routers are output-
buffered routers. There is a fixed-size output buffer associated with each output porn, and

the buffer size is the same for all output ports of all routers.

St



The forwarding buffer allocation policies focus on the problem how the buffer of
each port is partitioned for different session whose stream is departing from the port. In
my scheme, three policies are adopted: No-Split policy, Uniform-Split policy and
Flexible-Split policy.

No-Split forwarding buffer allocation policy means the buffer is not partitioned
and all sessions that go through the port to next node share the buffer of this port. The
packets are stored in the buffer with their reaching orders (first in first stored), regardless
of the sessions to which the packets belong. The maximum length of this queue is equal
to the maximum size of this output buffer.

In contrast to No-Split policy, other two policies mean that the buffer of this port
is split into several small buffers according to different sessions that go through the port.
In other words, each output port of any node maintains several different queues for
different sessions. For Uniform-Split policy, each queue in certain output buffer has equal
maximum length by uniformly splitting the output buffer according to the different
sources whose stream is departing from the port. For Flexible-Split policy, the maximum
length of each queue is unequal by flexibly splitting the output buffer according to the
different sources and is proportional to the input traffic load of this source. The formula
of each policy is listed below.

e No-Split

Max_Ql = Max_Bs (4.1)
Where Max_QI is the maximum length of the queue, and Max_Bs is the maximum
forwarding buffer size of an output port in router.

¢ Uniform-Split

52



Max_Bs 42)
Num _ Se

Max_Ql =
Where Max_Q! is the maximum length of each queue in an output pon, Max_Bs is the
maximum forwarding buffer size of an output port in router, and the Num_Se is the

number of sessions through the output port.

¢ Flexible-Split

Max_Q! = Max_Bs* IL, (4.3)

N

YL,
J=1
Where Max_Q/, is the maximum queue length of session / in an output porr, Max Bs is

the maximum forwarding buffer size of an output port in router, 7L, is input traffic load

of session i advertised into multicast packet, and N is the number of sessions through the

output port.
4.3.3.2 Discarding (Drop) Policy

Drop policy decides which packet should be discarded when a cerain buffer
overflows.

The Intemet Protocol (IP) architecture is based on a connectionless end-to-end
packet service using the IP. The advantages of its connectionless design, flexibility, and
robustness, have been amply demonstrated. However, these advantages are not without
cost: careful design is required to provide good service under heavy load. In fact, lack of
attention to the dynamics of packet forwarding can result in severe service degradation.

There are many policies of buffer management in the Internet, for example: tail

drop, random drop on full, drop front on full, random early detection (RED), differential

53



dropping (RIO), etc. In this simulation, we adopt the policy of tail drop in order to
simplify the simulation.

Tail Drop, the traditional technique for managing router queue lengths, sets a
maximum length (in packets) for each queue, accepts packets for the queue until the
maximum length is reached (i.e., the queue is full), then drops subsequent incoming

packets until the queue decreases because a packet from the queue has been transmitted.

4.3.4 Data Caching Model

Since edge routers connect the local area network (LAN) to the wide area network
(WAN), more handling capacity is paid for routing LAN as well as WAN packets. Thus,
the handling speed of packets is lower than backbone router if CPU speed is the same.
Moreover, the backbone network is bandwidth-rich, but the access links to backbone
network have typically slow-speed. The above two points lead to that fact that most
packet losses occur on the links from backbone router to edge router, i.e. “edges” of the
network [56].

Due to the above two reasons, we just utilize caching techniques in these
backbone routers which are connected to edge routers for local recovery. Only these data
packets, which are departing from this backbone router to the next edge router, are
cached.

The caching buffer size of each router is fixed and limited. We adopt FIFO (first
in first out) with a holding time constraint as the caching buffer replacement policy. This
is to avoid the problems that when caching buffer is not sufficient, a packet cached at the

router is possible to be replaced with another packet before it gets a chance to be sentas a

54



repair downstream if TTL is low, but on the other hand if this TTL is too high, it may
result in more overflows. When the packet is being forwarded to the next node, it is
stored in the caching buffer with TTL (Time to Live) which is the holding time in

caching buffer.

4.3.5 Input Traffic Load and Loss Model: Uniform Random Generator

Source input model is Bemouli model and follows the uniform distribution
between 0 and the traffic load of the source. We call a uniform distribution function to
generate a uniform random number at each iteration. If the random number is less than
the given traffic load of this source, the function retum the value 1 and it means this
source can generate a packet at that iteration; otherwise no packet is generated. For
example: the traffic load of source 1 =0.8 and the generated random number at certain
iteration=0.68, then the source 1 can generate a packet at this iteration.

Buffer overflow and bad link state can generate packet loss. In this simulation,
both the losses will be considered. The packet loss due to buffer overflow is dependent,
and the link loss is assumed to be independent. The loss occurrence on links follows the
uniform distribution between 0 and the loss rate of the link. The process is similar to the
input process. Before a packet passes a link, we call a uniform distribution function to
generate a uniform random number. If the number is less than the loss rate of the link,
loss happens on this link and this packet is discarded. Otherwise this packet won'’t be lost
on this link at this iteration.

The uniform distribution gives an equal probability for the value of a random
variable over a given interval. The continuous uniform distribution function between 0

and a (traffic load of a source or the loss rate of a link) is given by

55



0 ifx<0

F(x)= = f0<x<a 4.4
a
1 fa<x
The corresponding density function is given by
1 if0<x<a 4.5
f)={a (4.3)
0 otherwise

4.3.6 Assumptions for this Simulation

In this simulation, we assume the following points:
® All data packets have the same size. The size of forwarding buffer and caching
buffer are measured in terms of the number of data packets it can store.
e NAK does not occupy much of the buffer of the routers, because NAK packet is
very small compared with a data packet, so it is negligible.
* Packet losses on links are independent and follow uniform distribution. In my
simulation, the packet loss rate on link is point to point (each link).
¢ Each sender at most sends a packet per iteration. Each backbone router at most
sends 4 packets at centain link per iteration. Each edge router at most sends 2 packets

at certain link per iteration.

4.4 Performance Measurement

Parameters given in this section are used for evaluating the performance of multi-
session reliable multicast. Each performance parameter is the averaged value over some

input parameters, such as the number of users.

56



» Average Forwarding Buffer Overflow

In routers, each queue length has its maximum limit due to the finite buffer size of
each output port. If the rate at which packets arrive and queue up exceeds the rate at
which packets can be transmitted, the queue size grows to its limit and extra packets will
be lost. That means that buffer overflow happens.

In this simulation, we set a counter to record the number of buffer overflow
throughout the whole simulation. The average of the forwarding buffer overflow is
calculated by dividing the sum of these overflows by the total iterations and by the sum
of the number of output ports of all routers. We give the following formula for average

forwarding buffer overflow (FBO).

by

M Py
Y Y 0. ik
j=l k=l (4'6)

N*3 P(j)
=t

Me

1]
-

FBO =-

Where O(i, j, k) is the number of forwarding buffer overflow at output port k£ of router j
at iteration i, P(j) is the total number of output ports of router J» N is the number of

iteration, and M is the number of routers .

 Average and Variance of Queuing Delay (Length)

Queuing Delay is defined as the time that a packet needs to wait from entering the
queue to departing the queue. The mean queue length, or the average number of packets
waiting to be forwarded at output queue is directly proportional to queuing delay. Hence,

we use queue length in unit of packet for evaluating the queue delay.

57



In this simulation, average and variance of the queuing delay can be calculated in
two cases. The first case (named: for all sessions) is calculated according to the trace of
each session in the network (specific source multicast tree). Another case (named: for all
recetvers) is calculated according to the trace from the source to each receiver in the

network. The formulas for these two methods are given below.

Method 1: for all receivers

fre Roti. )

Se Reti z QL"lu

$3laa =

Ite
=AY RoG, )
k=l
AQL = =

D Re(®)

= 4.7)

Ite Ra(i.,)QL
=Y RoG, )
VQL = .

[i Re(?) ]_1

izl

(4.8)

Where AQL is the average queue length, VOL is the variance of the queue length, Se is
the number of sessions, Re(i) is the number of receivers for session i, Ite is the number of
iterations, Ro(i, j) is the number of routers passed by the packets from the source i to

receiver j, and QL is the queue length of session i in router / along the trace of from

source i to receiver j at iteration k.

58



Method 2: for all sessions

fie Roti)Poli. j) 3\
QL

Wi
z 1=l j=l k=l

Roti)
Ie* Y Po(i, )
AQL =— ;vl £ 49)
( Jiw RotiPoli. ) A
oLy
=t j=t k=l -AQL

Rot()

Ite* Y Po(i, j) J

j=l

(2]

M

(4.10)

VQL =
e N-1

Where AQL is the average queue length, VQL is the variance of the queue length, N is the
number of sessions, Ro(ij is the number of routers along the multicast tree of session 7, /re
is the number of iterations, Po(i, j) is the number of output ports of routers j for session i,

and QL;, is the queue length of session / in output port k of router j along the multicast

tree of session i at iteration /.

e Average Caching Buffer Overflow

There is only one size-limited caching buffer in one router with cache. When
caching buffer is full and the cached time of all cached data packets don’t exceed the
holding time in caching buffer, new packets won’t be cached. We call it as caching buffer

overflow. This parameter indicates the probability of how many packets can’t be cached.

N M

Y. 80,
CBO =2l 4.11)
N*M

59



Where CBO means average caching buffer overflow, BO; is the number of caching

buffer overflow of router j at iteration i, N is the number of iterations, and M is the

number of routers.

o Cache Hit Probability

The cache hit probability is the probability that a requested packet will be found
in the caching buffer for all routers with caching. We assume only one cache per router.
The more the cache hit probability, the more the requested packets will be found, which
can save more bandwidth of network and improve the network delay due to decreasing of

retransmissions.

Fo,

Mx

>

CBP=ftit
2

izl j

N

(4.12)

FL,

M::

1

Where CBP is cache hit probability, N is the number of iterations, M is the number of

routers, FO, is the number of found packets in router j at iteration /, and FL;is the

number of packets which are looked for in router j at iteration i.

» Average and Variance of End to End Delay

In this simulation, end to end delay means the total time that a packet takes from
its generation to its successful delivery to the final destination. It includes the queuing
delay and the propagation delay. The average and variance of end to end delay can be
calculated in two methods, as such described in queue delay. Its time units are iterations

(or packets).



Method 1: for all receivers

Pa(i)

. Y @E, -1B,)
z - Pa(i)

i=l

AED = I (4.13)
Pali) 2

N Z IE"J' _mii)

PR AED

P Pa(i)
VED =

N -1
(4.14)

Where AED is the average end to end delay, VED is the variance of end to end delay, NV is
the total number of receivers of all sessions, Pa(i) is the number of packets received by

receiver i, TE; is the end iteration of packet j of receiver /, and TB; is the begin

iteration of packet j of receiver .

Method 2: for all sessions

RetiYPat )
Y Z;(TEU, -T18,,)

j=l k=
Reti)
= > Pa(j)
j=t
AED = I (4.15)
RetiPai )
zv: > 2 (e, -18,)
Reti) —-AED
i=l Z Pa(j)
VED = 2
N -1

(4.16)

Where AED is the average end to end delay, VED is the variance of end to end delay, N is
the total number of sessions, Re(i) is the number of receivers of session i, Pa(j) is the

61



number of packets of receiver j, TE; is the end iteration of packet & of receiver Jjof

session i, and TBy, is the begin iteration of packet k of receiver j of session i.

e Average and Variance of NAKs

NAKSs are defined as the total number of NAK packets, which are received at one
sender. The parameter is one of imporant performance criteria in reliable multicast
communication, because excess NAKs could lead to the well-known NAK implosion

problem which will seriously deprave the performance of reliable multicast.

zv: Na()
AN =
N (4.17)

Y (Na@) - ANy
VN = i=1

N -1
(4.18)
Where AN is the average number of NAKs received by each source, VN is the variance of

NAKSs, N is the number of sources, Na(i) is the total number of NAKs which is received

by source i.

e Average and Variance of Session Transmission Time

It is the time during which total packets of certain session are received by certain
receiver or by all receivers of certain session. It is a parameter measuring end to end

performance, and its time unit is iterations. Two measurement methods are given below.



Method 1: for all receivers

3@z, -7F,)
ATT =&
(4.19)
Y[z, -1F,)- aTTF
m - i=|
N -]
(4.20)

Where ATT is the average session transmission time for each receiver of each session,
VIT is the variance of session transmission time, N is the number of receivers of all

sessions, TL, is the end iteration of the latest reaching packet of receiver i, and TF, is the

begin iteration of the first generated packet of receiver .

Method 2: for all sessions

Y (1L, -1F))
ATT = &=
v 4.21)
Y [0z, ~TF)- AT}
VIT = &=t

N -1
(4.22)

Where ATT is the average session transmission time for each session, VTT is the variance

of session transmission time, N is the number of sessions, TL, is the end iteration of the
latest reaching packet of session i, and TF;is the begin iteration of the first generated

packet of session i.

63



4.5 Simulation Descriptions

4.5.1 Input Parameters

In this simulation, some parameters of network structure are fixed. Moreover,
there are some parameters which can be varied and used to evaluate the performance

under different conditions.

Constant Parameters:
o Sessions: the number of sessions =5
* Nodes: the number of backbone routers =11, the number of edge router=9
e Sources: the number of sources=5
® Receivers: the total number of receivers =14

® Maximum Iteration: the total running time of this simulation =7000 iterations

Variable Parameters:
o [nput Traffic load
Input traffic load of each session indicates the number and the frequency of
data packets which will be generated. In this simulation, the total number of packets at
certain source = 5000*input traffic load of this source. Note that we set Maximum
iteration =7000 in order to guarantee that all packets in network can reach their
destination at the end of the simulation.

o [Loss Rate



Loss rate denotes the random loss probability of packet at each link. In this
simulation, it can be vary from 0 to 0.02.
® Forwarding buffer size

This parameter indicates the maximum buffer size of each output port at router,
whose unit is packet. When we simulate the part of three forwarding buffer policies, it
is varied from 36 packets to 396 packets. In other part of simulation, we fix it to 30
packets.
® Caching buffer size

This parameter indicates the size of caching buffer in one router, whose unit is
packet. We vary the value of this parameter from 6 packets to 27 packets in order to
study its effect on performance. In other cases, we fix it to 18 packets.
e TTL of Cached Data

TTL of cached data means how long the holding time of data packets in
caching buffer of router. Its time unit is iteration. When studying its effect on
performance, we vary it from 2 iterations to 20 iterations. In other cases, we fix it to 8

iterations.

4.5.2 Data Structure of This Simulation

In the simulation, each data packet contains the head of data packet, which
includes fields such as:

« Data Type: There are 4 types of data packets, which are Fresh (Type 1),
Retransmission (Type 2), NAK (Type 3), and Cache (T ype 4). Fresh means the
packet that is transmitted successfully to receivers. Retransmission means the packet
which is retransmitted by the sender due to the loss of this packet before reaching the

65



receivers. NAK means the packet which is sent by the receivers to inform the sender
that which packets are lost and are required to retransmitted. And Cache means the
recovery data packet comes from cenain router that has cache buffer instead of the
sender.

¢ Sequence Identifier: Each packet of each session has a unique identifier.

® Group (Session) Identifier: Each session has a unique identifier. In this simulation,
there are 5 sessions which are originated by different sources.

* Begin Iteration: This field indicates when the data packet is generated.

¢ End Iteration: This field indicates when the data packet reached the destination. The
two fields of begin iteration and end iteration can be used to statistic calculation.

* Input Traffic Load of Session: This field indicates how much input traffic load this
session has. It is useful for flexible allocation of buffer.

e TTL (Time to Live): In this simulation, only the cached data packet at routers uses
this field to indicate how long the holding time is in the caching buffer.

* Option: For NAK type data, this field indicates which receiver sent this NAK packet.
For Retransmission and Cache type data, this field indicates to which receiver the

packet should be sent. This field is not used by Fresh type data.

4.5.3 Simulation Descriptions

According to the different roles of each part of the network, the simulation
includes 4 parts: sender, backbone router, edge router and receiver. The program is
written in C Language (Linux operation system). At each iteration, we call these 4

functions: the processing of senders, the processing of backbone routers, the processing



of edge routers and the processing of receivers, which is shown in the main flow chan
(Figure 4.7).

Besides the above-mentioned parnts, we also include the programs which record
data and calculate all kinds of performance parameters in order to evaluate the
performance of each policy. The details to statistical processing follow the rules of
Performance Measurement in section 4 4.

In this simulation, we don’t consider the establishing procedures of multicast trees,
and assume that the multicast trees do not change during the whole multicast session, so
that we can focus on the study of different buffering, caching and forwarding policy for
the reliable multicast. Based on this assumption, we establish statistic routing table

(multicast and unicast), which are shown hereinabove (see Table 4.1 to Table 4.4).

4.5.3.1 Senders Part

Each sender (Figure 4.8) first checks the NAK buffer. If the NAK buffer is not
empty, the first stored NAK packet will be handled and the requested packet is
retransmitted according to the field of sequence number of this NAK packet, then the
counter of NAK packets is decreased by 1 and the sender will wait for the handling of
the next iteration. If there is no NAK packets in the NAK buffer, the program calls a
uniform distribution random function U(0,1) and generates a random variable X. If X is
less than P(ii), the traffic load of sender ii, the sender will generate a new data packet
encapsulated with header, and forwards this packet to downstream router. The procedure

is shown in Figure 4.8: the flow chart of Sender Processing.

67



initial
variables

sources
processing

O

backbone
routers
processing

®

edge routers
processing

®

receivers
processing

®

i=i+l

Figure 4.7 Main Program Flow Chart

4.5.3.2 Backbone Routers Part

The simple flow chart of a backbone routers simulation part is shown as Figure
4.9a. Maintaining of queues state is a quite important job for buffer management of router.

In this simulation, the queue state includes the following items: the beginning position of

68



the queue, the limit of the queue length, the queue length, and the flag of queue overflow.
The last two items of the queue state are dynamically modified as the new packet comes
into the queue or the old packet leaves the queue. The simulation depends on the queue

state to handle the incoming and departing of the data packets.

Processing description:

1) Check the TTL of all cached packets. If it does not timeout, the TTL will be
decreased by 1.

2) Check the NAK buffer (Figure 4.9 b). In case of the NAK buffer being not
empty, if the requested packet can be found in cache, we check the unicast routing table
to find the output port and load this packet into the buffer of the output port; otherwise,
we check reverse unicast routing table and send the NAK packet to its sender. The
counter of the NAK packets is decreased by 1. Because priority is given to retransmission
packets, the found cached packet is replicated at the head of the queue, and if the queue is
full, the cached packet will replace the oldest fresh data packet. The processing of NAK
packets is shown as Figure 4.9b.

3) Receive the data packets from every upstream router if necessary (see figure
4.9¢). (1) If this packet is fresh, check the multicast routing table to find the output ports
according to the session number of the received packet. If the type of this packet is
retransmission, check the unicast routing table to find the output port according to the id
of receiver requesting this retransmission. (2) If the buffer of the output ports is full, the
function of discarding process will be called. In this function, we first check the type of
this data packet. If this packet is fresh packet, the new packet is discarded; if this packet

is reransmission packet, we discard the oldest packet and store the new packet in the first

69



position of the queue. (3) If the buffer of the output ports is not full, we store the packet
to its exact position in the queue according to the type of this packet. For the fresh packet,
it is stored to the tail of the output queue, and for the retransmission packet, it is stored at
the head of the output queue.

4) Sending the data packets (see figure 4.9d). The buffer of every output port of a
router is handled one by one. (1) Check if the buffer of this output port is empty. If it is
empty, this port is ignored and the program goes to handle the buffer of next output port.
(2) Otherwise, call the function of packets scheduling to find which queue would be
handled. (3) Then check if the loss will happen on its output link. If it is, discard the first
packet of this queue, and the size of this queue is decreased by L. Otherwise, the program
goes to next step. (4) Call function of data forwarding and caching. If this packet is either
fresh packet or retransmission packet from the source, and there is a cache available for
this output port, this packet is forwarded to the downstream router and is cached in the

caching buffer at the same time. Otherwise this packet is Jjust forwarded to the next router.

4.5.3.3 Edge Routers Part

The processing of edge router part is similar to the processing of backbone router
part except for two different points: there is no function of caching data in edge router;
and downstream nodes are receivers. Since we can refer to the part of backbone router,

the detailed description of this part will not be given.

70



11=0

\ 4

1i=ii+l

retansait this
packet

b

1i<YAX number
of sources

unifora

randor function

U(0, 1) generate
£341i)

don’t generate packet

X(i1) < P(ii)

genearate a new
data packets

encapsulated the
packet head

discard this packet due
to the loss of link

4
call uniform
random function

forward the
packet to
downstream

router

Figure 4.8 Sender Processing

71

P(ii):data packets load

head includes: sequence
number, interation
number, session number,
ITL of packet, traffic
load rate.

LOSS(ii): the loss

rate of this link

between the sender
and the router



Jj=0

1f received
NAK

ij=jj-t

RLRT: reversal unicast
routing tsble

according to
RURT, find upstream
router, send the [»
YAK to upstream

rouer
check TTL of all
packets in caching
buffers, if no
timeout, decrease check URT to
TTLL by 1 find output port| yRT:unicast routing
of this packet table

21

y

store the cached
packet in the
front of the queue

process of
NAK packets

22)

output port for
this packet is

process of receiving discard the oldest
data packet in the queue,
stored the packet in
the front of the
23 queue
process of sending
data Ve
4
peot]

24

Figure 4.9a Backbone Router Processing  Figure 4.9b Process of NAK Packets



receiver a data packet from
every upstream router if
necessary

e type of the

get the session id of the
packet; according to the
MRT, find output ports

URT .uncast routing table

get the id of receiver

requested the packet;
check LRT to find output

port for this packet

¥RT:multiast routing
table

he queue of the
output port for this
packet is full

call function of discarding
process: if it is
fresh, discard this packet;
else discard the eldest
packet and fill it in the
front of the queue

fill the fresh data at the end
of queue of the output port for
this packet;fill the
retransmission packet in the
front of the queue

Figure 4.9c Process of Receiving Data

73




k+1

of the outpu

e buffer

output port k
is eapty

all function of packets
scheduling: find the
queue should be handled
for this port _

call uniform function
U0, 1), generate X(jj, k)

Jj, k)<=la
rate of this
link

call function of data
forwarding and
caching

I

discard this
packet from
the queue

Figure 4.9d Process of Sending Data

74




4.5.3.4 Receivers Part

We give the flow chart of receiver part in figure 4.10. Every receiver receives
packets from upstream router and stores them into the receiver buffer. Also, the receiver
checks the sequence numbers of received packets to see if there are lost packets at every

iteration. If the receiver finds any lost packet, it sends NAK for this packet to upstream

edge router.

1i=0

ii=ii+l

1i<MAX number N
of receivers

Y

Teceive data
packets to store
themr into the

i

N eck if have la
packets with packet
seq. mumber

send NAK for this
packet to upstreans
edge router

]

Figure 4.10 Receiver Processing

75



4.6 Analysis of Simulation Results

4.6.1 Three Forwarding-Buffer Policies Comparison

In the test for the performance of the three forwarding buffer policies, we won'’t
consider the link loss and caching technique. As shown in Figures 4.9 - 4.14, we vary the
forwarding buffer size from 36 to 396 and fix maximum number of iteration=7000, the
traffic load of sources 1, 2, 3, 4, 5 are 1, 0.8, 0.8, 0.7 and 0.6 respectively to run the
simulation and compare the three policies in terms of end to end delay, average NAKSs of
source, average forwarding buffer overflow, and queue delay. We give below the detailed

comparison of the three polices.

® Endto End Delay

1) The average end to end delay increases with increasing the forwarding buffer size for
the three forwarding buffer polices because the maximum number of packets that can
be placed in a queue increases with increasing the buffer size (Figure 4.11-4.12).

2) When forwarding buffer size is same, the end to end delay of No-Split policy is the
highest, and that of Uniform-Split policy is the lowest among the three polices.

3) If the forwarding buffer size is sufficient, buffer overflow will not occur; hence the
average end to end delay will not change any more with increasing the buffer size. In
Figure 4.11, when forwarding buffer size is more than 252, the end to end delay of
No-Split policy tends to a constant value with increasing buffer size; when
forwarding buffer size is more than 324, Flexible-Split policy tends to a constant
value; when forwarding buffer size is more than 396, the end to end delay of

Uniform-Split policy tends to a constant value.

76



4)

1)

2)

3)

When forwarding buffer size is big enough for every policy (no buffer overflow), the
end to end delay of Flexible-Split policy is equal to that of Uniform-Split policy. But

they are lower than No-Split policy.

Forwarding Buffer Overflow

The average forwarding buffer overflow decreases with increasing the forwarding
buffer size for the three forwarding buffer policies (Figure 4.13), whose reason is that
the big buffer can contain more packets.

When forwarding buffer size is the same, the average forwarding buffer overflow of
No-Split policy is the lowest, and that of Uniform-Split policy is the highest among
the three policies.

If buffer size is sufficient, the overflow will not occur. In Figure 4.13, when
forwarding buffer size is more than 252, the average forwarding buffer overflow of
No-Split policy becomes zero; when forwarding buffer size is more than 324, the
Flexible-Split policy has no more buffer overflow: when forwarding buffer size is

more than 396, the Uniform-Split policy also becomes zero.

NAKs

This parameter refers to the average number of NAKs received by source. In

order to avoid the well-known problem of NAK implosion, it is an important criterion to

be considered in reliable multicast communication. In Figure 4.14, the tendency of the

average number of NAKs for the three policies is similar to the figure for the average

forwarding buffer overflow because packet losses are mainly generated by forwarding

buffer overflow.

77



® Queue Delay
As shown in Figures 4.15-4.16, the tendency of average queue delay for the three

policies is similar to the average end to end delay.

In conclusion, for small forwarding buffer size (with overflow), we find through
the comparison of the above four criteria, that the No-Split forwarding policy is the
optimal way to avoid the NAK implosion problem of reliable multicast, with the least
NAKSs and forwarding buffer overflow, while the Uniform-Split forwarding policy is the
worst. But at the same time, we also find that the delay (end to end delay and queue delay)
of No-Split policy is the highest among the three policies. Therefore, which policy is
more suitable to reliable multicast will be determined by the specific requirement of the

different services.

Average End to End Delay of Every Packet for All Recaivers

9f - /... ‘. <. ¢ - -[S No-spiit Forwarding Butler
' -#— Uniform-Split Forwarding Butfer
8-/ - . . L. + - .| - Flexible-Split Forwardig Buffer
7 """""" L A A T T R
L2 o T T
N,
5 1 L ] 1 J
36 108 180 252 324 396

Forwarding Buffer Size

Figure 4.11 Average End to End Delay vs. F orwarding Buffer Size

78



(-]

o

o
-

wn
[=3
[=]

23
o
[=]

(2]
o
o

—%-— No-Spiit Forwarding Buffer
—&- Uniform-Split Forwarding Butfer |*
~&- Flexible-Spiit Forwardig Buffer

Varlance of End © End Delayot Every Packetfor All Receivers

34 L L /] ]
36 108 180 252 324 396
Forwarding Butfer Size

Figure 4.12 Variance of End to End Delay vs. Forwarding Buffer Size

—#- No-Spiit Forwarding Butfer
—%— Uniform-Spht Forwarding Butfer
-~ Flexible-Spiit Forwardig Butfar

3

S

g

LR N N N
H

x

3

Q

X O N
T

a

4

o

'S

0 04k . . L N s LTSN
-

L]

H

>

<

e
N

252
Forwarding Butfer Size

Figure 4.13 Average Forwarding Buffer Overflow vs. F orwarding Buffer Size

79



60 - - - e e e e Ll
F —#- No-Spit farwaraing butter
—&— Umilorm-Spiit forwaraing butfer
sc; .............. -&- Flaxible-Spiit torwaraig butfer
- . T
2
5
@ . ' . .
z 40 S R R I TR .
<
8
£
EA L R N L
s . .
H . .
2 . .
£ . .
220""""""""" Tttt .
L]
a . .
s
g .' :
B L O N, e e e e e - .
o : " 3\?
36 180 252 324 356

Forwarding Buffer Size

Figure 4.14 Average Number of NAKS vs. Forwarding Buffer Size

—4— No-Spiit Forwarading Butfer
~&— Umform-Spiit Forwarding Butter . . .
1.8+ 1 o Flexibie-Spht Forwaraig Bufter | -.= - - - - - - - - ... .

Average Queue Length of Forwarding Butter for All Recelvers

3 : L L L :
36 108 180 252 324 396
Forwarding Bufter Size

Figure 4.15 Average Queue Length vs. Forwarding Buffer Size

80



—#— No-Spit Forwarding Butfer
[| < Uniform-Spiit Forwarding Butfer
-©- Flexible-Spiit Forwardig Buffer

10( -----------------------------------
Y,

..........

Varlance ot Queue Length of Forwarding Butler for All Receivers

o I 1 1 L i3
36 108 180 252 324 396
Forwarding Buffer Size

Figure 4.16 Variance of Queue Length vs. F orwarding Buffer Size

4.6.2 Comparison of Three Caching Policies

In the test for the performance of the three caching buffer policies, the Uniform-
Split forwarding buffer policy is adopted. The performances of the three policies are
explored through 3 criteria: average NAKs received by source, cache hit probability, and
average caching buffer overflow by varying caching buffer size, TTL of cached data and

packet random loss rate of each link.

L. Vary Caching Buffer Size

Simulations are run by varying the caching buffer size from 6 to 27 and fixing
forwarding buffer size=30 packets, TTL of cached data=8 iteration, packet random loss
rate of each link=0.01, maximum value of iteration=7000, input traffic load of source 1, 2,

3,4,and 5is 0.6,0.9,0.3, 0.6, and 0.9.

81



e NAKs

From Figure 4.17, we find that the average NAKSs received by source decrease
with the increase of caching buffer size until it achieves certain constant value, whose
reason is that big-size cache can contain more packets used to loss recovery. When the
caching buffer size is less than 18, the NAKSs for the No-Split caching buffer policy are
less than the other two policies that are almost the same but the Flexible-Split policy is a
lide bit less. When the caching buffer size is more than 18, the curves of the three

policies are almost overlapped with the increasing of caching buffer size.

¢ Cache Hit Probability

From Figure 4.18, we find that the cache hit probability increases with the
increase in caching buffer size until it achieves certain maximum value. This can be
explained that big-size cache can contain more packets and any lost packets between the
caching router and the receiver can be found in the sufficient cache. When the caching
buffer size is less than 18, the cache hit probability for the No-Split caching buffer policy
are higher than the other two policies, while the other two policies are almost same but
the Flexible-Split policy is a little bit higher. When the caching buffer size is more than
18, the curves of the three policies almost ovedap with continuously increasing of

caching buffer size.

¢ Caching Buffer Overflow
From Figure 4.19, we can get the same conclusion as the NAKs for the three

policies. When the caching buffer size increases to a certain value (it is 24 for our case),

82



all data packets can be cached in the caching buffer for a while (TTL of cached data), in

other word, the caching buffer overflow becomes zero for all the three polices.

—¥#— No-Split Caching Buffer

360 ccmt-- .0 =%+ {-e Uniform-Spiit Caching Buffer
N R N -©- Flexibla-Spiit Caching Butfer s
3508\ A\ c- - e - el oL R - - TS T,

340

330

320

[2]
-
(=4

[2}
(=]
o

Average Number ot NAKs Recelved by Source

n
w
(=]

nN
@
Q

]
18 21 24 27
Caching Butffer Size

o
0
~
o

Figure 4.17 Average Number of NAKS vs. Caching Buffer Size

0.4
0.38
0.36
0.34

z

3 032

a

2

[

< 03

i R R . —%— No-Split Caching Buffer

£ 0.28 ot +7 77 73 | &~ Uniform-Spiit Caching Buffer

S . . -5~ Flexible-Spiit Caching Butfer
0.26 B B —
LR 3 A B e e
2 A e ..
0.2 2 Il L L ; :. J

6 9 12 15 18 21 24 27

Caching Buffer Size

Figure 4.18 Cache Hit Probability vs. Caching Buffer Size

83



04F - o o e o o m qie o oL,

~%— No-Split Caching Buffer
~¢— Uniform-Split Cactung Butfer |«
-O- Flexible-Split Caching Butfer | *

0.35¢

0.3 ot e S S L S

025k \\\- - - - - - S N .

Average Caching Butfer Oveiflow

L L
6 15
Caching Buffer Size

Figure 4.19 Average Caching Buffer Overflow vs. Caching Buffer Size

From the above observation, we can easily draw a conclusion that among the
three policies, the No-Split caching buffer policy is the best one due to the relative high

cache hit rate, the relative low caching buffer overflow and NAKs.

II. Variation of TTL of Cached Data

Simulations are run by varying the TTL of cached data from 2 iteration to 20
iteration and fixing forwarding buffer size=30 packets, caching buffer size=18 packets,
packet random loss rate of each link=0.01, maximum value of iteration=7000, input

traffic load of source 1,2, 3,4,and 5 is 0.6,0.9,0.3,0.6, and 0.9.

84



¢ NAKs

From Figure 4.20, we get that the average NAKs received by source for all these
three polices can be achieved at the lowest value when TTL is equal to 8, after this lowest
value, the number of NAKSs will increase with increasing of TTL of caching data. It can
be explained that the cache hit probability is highest at TTL=8 (see Figure 4.21), hence

more lost packets can be found in caching buffer and the NAKs to source will be

decreased accordingly.

e Cache Hit Probability

From Figure 4.21, we can find that the performance for cache hit probability is
Just contrary to the NAKs. The cache hit probability can be achieved at certain peak value
which is about 38%, after this peak value, the hit probability will be decreased with the

increasing of TTL of caching data.

¢ Caching Buffer Overflow

As for the average caching buffer overflow shown in Figure 4.22, the overflows
are increased with the growth of TTL of caching data. The reason for this is that the data
packets which are not cached will be more if the TTL is longer. Among these three
caching policies, we find that No-Split caching policy provides the least caching buffer
overflow. But we should state a point that there is no direct relationship between the
caching buffer overflow and the cache hit probability. When the caching buffer size is
fixed, the caching buffer overflow can’t be too low or too high to attain a relative high

cache hit probability.

85



. . . —j¢— No-Spiit Caching Buffer
Tt owt ot s - —o-— Umiform-Split Caching Bufter
. . . -©-~ Flexibie-Split Caching Butfar

»
N
[=]

o
(=]
[=]

(%]
(-]
(=]

Average Number ol NAKa Recelved by Souice

360 - -\t - Lt

7.1 R L R L R R

R N g oo

300

280 ; 1 v 1 L I 1 1 1
2 4 6 8 10 12 14 16 18 20

TTL otCached Dan

Figure 4.20 Average Number of NAKs vs. TTL of Cached numbers

0.4

0.3

z

g 0 . . . . .

8 025 . S

s . . . . . . .

Q

T a2f. T

s , . . . . , . .

3 i . . + | ~% No-Spiit Caching Butter
0.15 . . e e e oL ... ] -& Unitorm-Spiit Caching Butter

X : ' -&- Flexible-Spiit Caching Butfer

PR RV A S P T S

0.0 !
2 4 6 8 10 12 14 16 18 20

TTLotCached Data

Figure 4.21 Cache Hit Probability vs. TTL of Cached Data

86



0.35r---.----.-------.---.:.--..---:---..--..

—#— No-Spiit Caching Butfer
0.3 }{ —¢— Uniorm-Spiit Caching Buffer |_ . _ & _ _ *_ _ _*_ _ _*
-©- Flexible-Split Caching Butfar ' ' ' ' :

L S S
g

o . . . .

R

3 0 » . .

a

-]

£ . . . . . '

e

Q

o

g

8 Otb-- -
H

<

005L « - -'e o s o v w R A S S T

! L
10 12 14 16 18 20
TTL ofCached Data

6 8

Figure 4.22 Average Caching Buffer Overflow vs. TTL of Cached Data

From the observation of the above three figures, we find that the better
performance could be achieved if the TTL value of cached data is properly selected. The
optimum value of TTL is mainly determined by the maximum round trip time between
this backbone router and the receiver. If TTL is too shor, the packet will be discarded
before it can be used as retransmission packet. On the other hand, if TTL is too long, it
will result in more cache overflows and some packets cannot be cached in this router. In

this simulation, the optimal TTL value is equal to 8.

IIL. Variation of Loss Rate

In order to test this par, we will vary the packet random loss rate of every link

from to 0 to 0.02 and fix forwarding buffer size=30 packets, caching buffer size=18

87



packets, TTL of cached data=8 iteration, maximum value of iteration=7000, input traffic

load of source 1, 2,3, 4,and 5 is 0.6, 0.9,0.3, 0.6, and 09.

From Figure 423 and Figure 4.24, we can find that the NAKs or cache hit
probabilities of these three policies are almost same. The higher the loss rate increases,
the more the NAK's will be received at sources. But the cache hit probability is nearly a
constant value when the loss rate is more than zero. This shows that the loss rate has no

big effect on the cache hit probability.

In Figure 4.25, the average caching buffer overflow of every policy decreases a
lirde bit with the increase of the loss rate, due to the increase of lost packets on some
links before arriving at the caching router. When the loss rate is same, the No-Split
caching buffer policy is the lowest among the three policies, while the Uniform-Split

caching buffer policy is the highest.

700( --------------------------------
—#— No-Spit Caching Butfer
o 800[ .| —G- Umform-Spit Cachung Buffer |. . _ _ % . . . ..
e G
g —©- Flexible-Spiit Caching Butfer
mO 0 . " v v
J 1] S S T
bt \ . v : . . ; v
-
° .
:400 2 . », 3 . . 7 .
« ---n-.-t.-.-..-u’.-»..--‘. v‘ -n‘-‘.'--l
o
2
;300.--~---.--.,.- .
G
£
5
z 200k - - o .- - L
©
-]
<
H
< 100F - .o BB L

L L 1 L L. L L L J
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Packet Random Loss Rate of Every Link

Figure 4.23 Average Number of NAKs vs. Packet Random Loss Rate

88



045 v - m e e e e e e e e e e e e e e e

L -~ S A, e e
LEN] R SRR P R T
E ' . , . . . » ’ . .
5025 T A S S
S . . 3 . . . . ) » .

o . . . . .
I 02t .l 2. . . _ . _.:__ {3 No-Spit Caching Buffer .
H . . . ~&— Uniform-Split Caching Butfer |
H * * * —©- Flexibie-Split Caching Butffer |{*
(SIS 13 S S LRI = e —
otbl . oL .. e e e e et e e et e et e e e
0.05 B T VR
: . : : . : : M ;
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

PacketRandom Loss Rate of Every Link

Figure 4.24 Cache Hit Probability vs. Packet Random Loss Rate

0.02
q
0.018
0.016
0.014
0.012
¢

0.01

0.008

~%— No-Split Caching Butfer '
. —¢— Uniform-Split Caching Butter | .

0.006f . - 2. ..

Average Caching Butter Ovarliow

. ' Flexible-Spht Caching Butfer
0.00af - - ... .. R .= it i

L R S
k.

0 1 1 1 L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Packet Random Loss Rate of Every Link

Figure 4.25 Average Caching Buffer Overflow vs. Packet Random Loss Rate

89



4.6.3 ARQ with Caching vs. ARQ without Caching

For the test of pcffonnance of the ARQ scheme with caching, we adopt the
following values of the parameters: the forwarding buffer size=30 packets, the caching
buffer size=18 packets, the holding time of every cached data=8 iterations, maximum
number of iteration=7000. We test two cases that traffic load of each source is 0.2 and 0.6
by varying the packet random loss rate of each link from 0t0 0.02. The forwarding buffer
policy is the Uniform-Split policy and the caching buffer policy is the No-Split policy.
For the test of performance of the ARQ scheme without caching, the two parameters, the
caching buffer size and the holding time of cached data (TTL), don’t be used, but other
parameters are same as the ARQ scheme with caching. We will compare these two
schemes from four aspects: end to end delay, NAKSs, queue delay, and transmission time

of session.

® Endto End Delay

Figures 4.26 to 4.29 illustrate the average and variance of end to end delay for
different input traffic loads (0.2 and 0.6) when varying the loss rate. The output
parameter is calculated by the two different methods mentioned in section 4.4. When
input traffic load is fixed (0.2 or 0.6), we observe that the ARQ scheme with caching
reduces the end to end delay comparing with the ARQ scheme without caching, and that
the end to end delay of each scheme increases with the growth of the loss rate. In addition,
for each scheme, the end to end delay for input traffic load of each source=0.6 is greater

than that for input traffic load of each source=0.2.



* NAKs

The average and variance of NAKs received by source is shown in Figure 4.30
and Figure 4.31.

First, we can observed that for the fixed input traffic load, the higher loss rate
leads to more NAKs, and the number of NAKs of the ARQ scheme with caching is
distinctly less than that of the ARQ scheme without caching because the caching
technique at routers can partly recovery lost data instead of sending their NAKs to the
sources. Hence, the caching technique is an imponant way to solve the NAK implosion
problem. Second, whether for the ARQ scheme with caching or for the ARQ without
caching, the increasing input traffic load leads to the increasing NAKSs even if the loss
rate is the same. since the number of lost packets increases with the increasing input

traffic load.

¢ Queue Delay

The average and variance of the queue delay are shown in Figures 4.32 to 4.35.
When the input traffic loads are fixed, average queue delay increases gradually with the
growth of the loss rate, and average queue delay of the ARQ scheme with caching is a
little bit less than that of the scheme without caching. The reason is that the growth of
the retransmission packets leads to the increase of queuing packets in the forwarding
buffer, but some cached packets in the scheme with caching can be used as the repair
packets which can reduce certain amount of retransmission traffic passing through some
routers. Besides, we can observe that average queue delay for traffic load=0.6 is about

0.28 packet higher than that for traffic load=0.2.

91



® Transmission Time of Session

Figures 4.36 to 4.37 show the relationship between the average of the
transmission time and the loss rate at different input traffic loads. With increasing the
packet random loss rate of each link, the transmission time of each scheme will be
increased quickly. The transmission time of each scheme at input traffic load=0.6 is
higher than that at input traffic load=0.2. Apparently, the scheme with caching improves
the performance of multi-session reliable multicast in terms of the session transmission
time. For example, when loss rate<0.02 and input traffic loads=0.6 in Figure 4.36,
average session transmission time of the scheme with caching is about 5530 iterations,

while that of the scheme without caching is about 5860 iterations.

From the above comparison of the four aspects, we could draw conclusion that the
ARQ technique with caching are more suitable to reliable multicast in this simulation
since it has less delay (end to end delay, and queue delay), less transmission time, and

less NAKs.

S



o
®

T T T T T T T T

~#— with caching, traffic l0ad«=0.2
-~ without caching, traffic load«0.2
- % with caching, traffic Joad=0.6
-Q@ without caching, tratfic l0ad=0.6

o
3
¥

o
&
T

o
N
Y

[,
T
.

&
(<]
T

»
[+
¥

o
o>

»
o

Average End to End Dolayof Every Packet bor Al Recelvers

LY

1 ] 1 L L L A L 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Each Link

Figure 4.26 Comparison between With Caching to Without Caching: Average End
to End Delay for All Receivers vs. Packet Random Loss Rate

-
w

. T T T r
3 —¥~ with caching, tratfic Ioad=0.2 ?
E 1.2¢ —&~ without caching,traffic loade=0.2 Lo
x - % with caching, traffic load=0.6 e
< 11k [-Q wihout caching, traffic 10ad=0.6

K] *.

- .

= 1|

s . .

> K 3

2 09} - .

w -

3 e 1.---9

08l . 4
° -

Q

2oz .
e

°

S 0.6 .
s

¢ os .
L]

H

> 04

' 1 L 1 L L L 1 L
o} 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Each Link

Figure 4.27 Comparison between With Caching to Without Caching: Variance of
End to End Delay for All Receivers vs. Packet Random Loss Rate

93



o
®

2 —¥— with caching, traffic load=0.2

2 56} | - without caching, trafic load=0.2

° -4 with caching, traffic load=0.6

g 5.4}F |- without caching,traffic load=0.6

2

e szt

Q

IJd

a

el

§ 5 ol - -4
w

S a8l J
s

L

a

o 4.6} -
c

w

2

o 4.4 -
c

w

° &

@ 4.2 4
S

<

4 L L L L L 1 L L L
0 0.002 0.004 0.006 0.008 0.0t 0.012 0.014 0.016 0.018 0.02
PacketRandem Loss Rate of Each Link

Figure 4.28 Comparison between With Caching to Without Caching: Average End
to End Delay for All Sessions vs. Packet Random Loss Rate

1 T T T T T T T T T

~—¥— with caching, traffic load=0.2
| | =5~ without caching,tratfic load=0.2
- % Wwith caching, traffic l0ad=0.6
-( without caching,traffic 10ad=0.6

o
o

o
@
T

o
3
v

g
o
v

o
n
T

o
'S

Variance ol End to End Delayof Every Packetfor All Sesslons

o
[X)

!

1 1 1 b 1 L 1 1
[¢] 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Each Link

Figure 4.29 Comparison between With Caching to Without Caching: Variance of
End to End Delay for All Sessions vs. Packet Random Loss Rate

94



800 v T T T Y T Y T T
~%~ with caching, traffic 10ad=0.2 Ko
800 | - withaut caching, traffic load=0.2 L
-4 with caching, traffic load=0.6 L

S 700[ |-Q@ without caching,trafiic load=0.6 L B
o
5 o
3 -
3 600 | - - ,
8 - H
2 soof 0 R
< . -
z 3 -
S 400} . .-* .
s . .
3 o .-
3 300} . LT 7
o
s
e 200
>
<

100

- 2 L 1 1 2 1 1 i
0.002 0.004 0.006 0.008 0.0t 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Every Link

Figure 4.30 Comparison between With Caching to Without Caching: Average
Number of NAKSs vs. Packet Random Loss Rate

4
x 10
8 T T T r T T T T T
—%— with caching, tratfic load=0.2 P
7L | <6 without caching, traffc load=0.2 .y
- - % with caching, traffic l0ad=0.6
S -(® without caching,traffic load«=0.6
3sf .
L)
Z
S5t .
id
z © L
s 4r
H
a
E .
I . E
z )
s .
o
g2t . 4
8 . .
E .© SoenH
1t - e -
. . »
e - - *- J
- - L L Il
0.002 0.004 0.006 0.008 0.0 0.012 0.014 0.016 0.018 0.

o™

2
PacketRandom Loss Rate of Every Link

Figure 4.31 Comparison between With Caching to Without Caching: Variance of
Number of NAKs vs. Packet Random Loss Rate

95



e
<

T T T T T T T T T

[
o
2 —j— with caching, traffic icad=0.2
S 0.6l | -© without caching,traffic load=0.2
- -4¢ with caching, traffic load=0.6
< -(@ without caching,traffic l0ad=0.6
L2
s
= 0.5
3 -
Q@ - s =z S 'Q
- @.:::;:@:::::_9 ----- 5
s
g 0.4} 4
o
w
K]
£
@ 03} 4
)
-
o
3
S
o 0.2¢ 4
>
Fon)
H +;; @ - \ o —=
>
< o 1 L Al L

i 0 0.002 0.004 0.006 0.008 0.0t 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Each Link

Figure 4.32 Comparison between With Caching to Without Caching: Average
Queue Length of Forwarding Buffer for All Receivers vs. Packet Random Loss Rate

x 10
o 2 T T T T 2 T T T
H
§ 1-8F S5 wih caching, nrafic load=0.2 7
« —&~ without caching,traffic Icad=0.2
< 161 -3 with caching, tratfic load=0.6 9
-E -() without caching,tratfic load=0.6
214 4
3
@
g2 4
R
H
2
o
'S
s 0-8%. %
-3 -
g - -
S oslt SO L. 3 .
p . T - .. .-
Z * e I A >
3 04t O e
K]
g o2t -
c
a
o
s % 2 : L . .

0.002 O.ggd 0.006 0.8%8 0.01 0.812 0.014 0.816 0.018 éZ

PacketRandom Loss Rate of Each Link

Figure 4.33 Comparison between With Caching to Without Caching: Variance of

Queue Length of Forwarding Buffer for All Receivers vs. Packet Random Loss Rate

96



0.6 T T T T r T
g
2 .55 ] =¥ with caching, traffic load=0.2 i
2 —©- without caching, traffic load=0.2
o osLl % with caching, tratfic load=0.6
€ "7T|.@ without caching,tratic load=0.6 ;\
2 . D)z sz oz @ ilW
50.4X+ _____ @ @iz @ @ -
]
@
@ 04} 4
(-4
3
$ 035} B
s
u
s 03 4
£
o
S o025l -
-
Ll
3
° o2} .
[+]
°
g 0.15{ s; o~ 4& e O
$
< 0.1 L 1 1 1

L : : L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate ofEach Link

Figure 4.34 Comparison between With Caching to Without Caching: Average
Queue Length of Forwarding Buffer for All Sessions vs. Packet Random Loss Rate

x 10
1 T T T T T T T T
09 L | = with caching, traffic load=0.2 4
—&- without caching, trafic load=0.2
0.8F | -# with caching, traffic load=0.6 4
-( without caching,traffic load=0.6

Q.74 4

0.5f R

03}

0.1 "O ......

Varlance olQueue Length of Forwarding Buttar for All Seaslans

L ya i 1
0.002 0.0b4 0.006 0.008 o0.01 0.012 0.014 0.5%6 0.018 0.02
PacketRandom Loss Rate of Each Link

Figure 4.35 Comparison between With Caching to Without Caching: Variance of
Queue Length of Forwarding Buffer for All Sessions vs. Packet Random Loss Rate



5900 T T T T T T T T T
P

58001 | —k— with caching, traffic load=0.2 .0
—©- without caching,traffic load=0.2 °
5700} | - % with caching, traffic load=0.6

-( without caching,traffic load=0.6 - o |
5600 o 4
5500 .o . -
. ’ . e ’
5400 ) c .- - 1
5300} - ¥

5200

5100

500

Average Transmission Time of Session for All Receivers

H
[
(=]
o

1 i L L 1 L 1 1 1
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Each Link

o

Figure 4.36 Comparison between With Caching and Without Caching: Average
Transmission Time of Session for All Receivers vs. Packet Random Loss Rate

5900 v : y T v T T

fra
A%

5800} | —%— with caching, traffic load=0.2

-©- without caching,tratfic load=0.2 .

5700 | -4 with caching, traffic loada0.6 L i
- without caching,traffic load=0.6 .

5600} .
chy

5500f - &
sa00| o L. 4
saoe| . LW

5200

5100

500

Average Transmisaion Time of Seaslon lor All Sessions
.
*

f
o
[=3
o

L 1 I L L 1 ] 1 1
4] 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
PacketRandom Loss Rate of Each Link

Figure 4.37 Comparison between With Caching and Without Caching: Average
Transmission Time of Session for All Sessions vs. Packet Random Loss Rate

98



4.7 Summary

In this chapter, we have investigated the router buffering and caching techniques
for multi-session reliable multicast. We test the performance of different buffering and
caching policies of router buffer. Firstly, we introduced some terminologies that will be
used in this chapter. Next we gave the simulation model and explained how it works. For
the simulation, we selected several meaningful parameters to evaluate the performance,
and gave their definitions prior to describe the detailed simulation procedure. Finally, we
gave simulation results and analysis in section 4.6.

When we compared three forwarding buffer policies, we found that for small
forwarding buffer size (with overflow), the No-Split forwarding policy is a better way to
avoid the NAK implosion problem of reliable multicast, with the least NAKSs and
forwarding buffer overflow, but its delay (end to end delay and queue delay) is the
highest among the three policies. Therefore, specific requirement of different services
determines which policy should be selected.

As for three cache partitioned policies, we found that at small caching buffer size,
the No-Split caching buffer policy is the best one for reliable multicast due to the higher
cache hit rate, the lower caching buffer overflow and NAKs.

At last, through the comparison of performance between the ARQ scheme with
caching and the ARQ scheme without caching, we conclude that the ARQ scheme with
caching improves the performance of reliable multicast in this simulation, which has less

delay (end to end delay, and queue delay), less transmission time, and less NAKSs.



Chapter 5

Conclusions and Future Work

5.1 Contributions and Conclusions

In this thesis, we have investigated different router buffering and caching policies
in our proposed multi-session multicast network. We intended to find a better policy for
multi-session reliable multicast by comparing and analyzing the effects of these policies
on the perfformance of reliable multicast through simulation. This is the contribution of
our work.

In the first part of our work, we have given three forwarding buffer allocation
policies for multiple sessions at routers: No-Split, Uniform-Split, and Flexible-Split. And
we have studied the effects of these three policies on the performance of reliable
multicast. We have found that at small forwarding buffer size (with buffer overflow), for
the amount of the feedback traffic, the No-Split forwarding buffer policy is better than
Flexible-Split policy, while the Flexible-Split policy is better than the Uniform-Split
policy. But for the latency including transmission delay and queue delay, the case is just

the opposite of the above results. Therefore, under our simulation condition, we conclude



that the No-Split policy can more efficiently utilize the network bandwidth than other two
policies, while the Uniform-Split can improve the latency than the other two policies.

In the second part of our work, we have given three cache partition policies at
router and have studied the effects of these three policies on the performance of reliable
multicast. We have studied the cache policies from these aspects: cache hit probability,
caching buffer overflow, holding time of cached data, and feedback traffic (NAKSs) to the
source. We have found that for each policy, selecting properly the TTL of cached data,
can make this policy to achieve its highest cache hit probability at the same conditions,
for example, in this simulation the proper TTL is equal to 8 iterations. At large caching
buffer size, the performances of the three polices have not much difference. But at small
caching buffer size, the No-Split cache partition policy is superior to other two polices
due to the higher cache hit rate, the lower caching buffer overflow, and the lower
feedback traffic. While the performance of the Flexible-Split policy and Uniform-Split
policy are almost same.

In the last part of our work, we have equipped some routers with the function of
caching data for possible loss recovery, and have evaluated the performance
improvement of reliable multicast by comparing with the pure ARQ scheme. The
scheme of ARQ with router caching data distinctly improved the performance of reliable
multicast in this simulation. It reduced latency and session transmission time due to
router assistance for loss recovery. Additionally, it saved the network bandwidth due to
the reduced feedback traffic to the source and the reduced repair traffic from the source.
Of course, the advantage is achieved through the tradeoff between network bandwidth

and network-based storage.

101



3.2 Suggestions for Future Work

What we have done in this thesis is only part of study for this research direction,
and there remain many aspects that can be further studied and investigated.

Firstly, we can study these polices by using different network topologies, which
will contain more nodes, more sessions, and more links to each receiver.

Secondly, the study of Flexible-Split policy can be further improved by
considering more factors, such as the packet arrival process, the number of links to reach
a receiver, the link delays, the packets loss probability, etc. Of course, it will be a
significantly complicated and difficult work, but it is valuable.

Additionally, unicast data flow and different service class of each session could
be considered in the study of the buffer and cache allocation policy, which will make the
work more practical.

Furthermore, we could consider having the router suppressing NAKs and
subcasting the repair packets to the receivers that request them, just like the active router
in ARM.

Finally, we could study these polices at the condition with end to end FEC

technique.

102



References

[1] S.E. Deering, “Host extensions for [P multicasting” , RFC 1112, August 1989.

(2] T. Maufer, C.Semeria, 3Com Corporation, ** Introduction to [P Multicast Routing”,
draft- ietf-mboned-intro-multicast-01.txt, March 1997.

[3]1 C. K. Miller, “Multicast Networking and Applications”, (c) 1999 Addison Wesley
Longman, Reading MA ISBN 0-201-30979-3.

[4] Douglas E. Comer, “Internetworking with TCP/IP Volume [ Principles. Protocols.
and Architecture 3% ed.”, 1998 Prentice Hall, ISBN 7-302-02946-6.

(5] W. Fenner, “Internet group management protocol, version2”, Network Working
Group, RFC 2236, Nov. 1997.

[6] B. Cain, S. Deering, I. Kouvelas, and A. thyagarajan, “Intemet group management

protocol, version 3", Internet draft, draft-ietf-idmr-igmp-v3-09.txt, Jan. 2002.

(71 T.Bates er al., “Multiprotocol extensions for BGP-4", Network Working Group, RFC
2283, Feb. 1998.

[8]1 D. Farinacci et al., * Multicast source discovery protocol (MSDP)”, Intemet draft,
draft-ieft-msdp-spec-13.txt, Nov. 2001.

[9] S. Kumar ez al., * The MASC/BGMP architecture for interdomain multicast routing”,
in Proc. ACM SIGCOMM, Vancouver, BC, Canada, Aug./Sept. 1998, pp.93-104.

103



(10] D. Waitzman, C. Partridge, and S. Deering, “Distance vector multicast routing
protocol (DVMRP)”, Network Working Group, RFC 1075, Nov. 1988.

[11] J. Moy, “Multicast wxtensions to OSPF”, Network Working Group, RFC 1584, Mar.
1994,

[12] A. Adams, J. Nicholas, and W. Siadak, “ Protocol independent multicast dense mode
(PIM-DM): Protocol specification (revised)”, Intemet draft, draft-ietf-pim-dm-new-v2-
01.xxt, Feb. 2002.

[13]J. Moy, “OSPF version 2”, Network Working Group, RFC2178, Apr. 1998

[14] B. Fenner, M. Handley, H. Holbrook, and J. Kouvelas, “Protocol independent
multicast sparse mode (PIM-SM): Protocol specification (revised)”, Intemet draft, draft-
ietf-pim-sm-new-v2-01.txt, Mar. 2002.

[15] A. Ballardie, “Core-based trees (CBT version2) multicast routing”, Network
Working Group, RFC 2189, Sept. 1997.

[16] A. Mankin er al., “IETF Criteria for Evaluating Reliable Multicast Transport and
Application Protocols”, Network Working Group, RFC 2357, 1998.

[17]J. C. Lin and S. Paul, “RMTP: A reliable multicast transport protocol”, in Proc.
IEEE INFOCOM, San Francisco, CA, Mar. 1996, pp. 1414-1424.

(18] Hector Garcia-Molina, and Annemarie Spauster, “Ordered and Reliable Multicast
Communication”, ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991,
pp-. 242 -272.

[19] H. Holbrook, S. Singhal, D.R. Cheriton, “Log-Based Receiver-Reliable Multicast
for Distributed Interactive Simulation”, SIGCOMM'95 , Cambridge, MA, USA.

[20] B.N. Levine, J.J. Garcia-Luna-Aceves, “A Comparison of Reliable Multicast

Protocols”, Multimedia Systems (ACM/Springer), Vol. 6, No.5, Au gust 1998.

104



[21] S. Floyd, V. Jacobson, C. G. Liu, S. McCanne, and L. Zhang, “A reliable multicast
framework for light-weight sessions and application level framing”, IEEE/ACM Trans.
Neworking, vol. 5, pp. 784-803, Dec. 1997,

[22] B. Whetten and G. Taskale, “An overview of reliable multicast transport protocol
II", IEEE Network, vol. 14, pp. 37-47, Jan/Feb. 2000.

[23] D. Rubenstein, J. Kurose, and D. Towsley, “A Study of Proactive Hybrid FEC/ARQ
and scalabel Feedback Techniques for reliable, real time Multicast”, Computer
Communication Journal, Elsevier Publisher, Vol. 24,2001, pp. 563-574.

[24] S. Bhattacharyya, D. Towsley, and J. Kurose, “The loss path multiplicity problem in
multicast congestion control”, in Proc. IEEE INFOCOM, New York, Mar. 1999, pp.
856-863.

[25] S. Ha, K.-W. Lee, and V. Bharghavan, “A simple mechanism for improving the
throughput of reliable multicast”, in Proc. IEEE Int. Conf. Computer Communications
and Networks, Boston, MA, Oct. 1999, pp. 372-377.

(26] T. Jiang, M. H. Ammar, and E. W. Zeguna, “Interreceiver faimess: A novel
performance measure for multicast ABR sessions”, in Proc. ACM SIGMETRICS,
Madison, WI, June 1998, pp. 202-211.

[27]H.-Y. Tzeng and K.-Y. Siu, “On max—min fair congestion control for multicast ABR
service in ATM”, IEEE J. Select. Areas Commun., vol. 15, pp. 545-556, Apr. 1997.

(28] J. Mahdavi and S. Floyd. (1997) TCP-friendly unicast rate-based flow control.
[Online]. Available: http://www.psc.edu/networking/papexs/tcp-friendly.html

[29]S.Lin, DJ. Costello, M.J. Miller, “Automatic-repeat-request error-control schemes”,

IEEE communication magazine, 22(12):5-17, 1984.

105



[30] D. Towsley, J. Kurose, and . Pingali, “A comparison of sender-initiated and
receiver-initiated reliable multicast protocols™, [EEE J. Select. Areas Commun., vol. 15,
pp- 398-406, Apr. 1997.

[31] Anthony J. McAuley, “Reliable Broadband Communication Using a Burst Erasure
Correcting Code”, ACM SIGCOMM *90, September 1990.

[32] L. Rizzo, L. Vicisano, “Effective erasure codes for reliable computer communication

protocols™, ACM Computer Communication Review, April 1997.

(33] M. Luby, et al. "Practical Loss-Resilient Codes". Proceedings of the 29th ACM
Symposium on Theory of Computing, 1997.

(34] R.H. Deng, “Hybrid ARQ Schemes for Point-to-multipoint Communication over
Nonstationary Broadcast Channels”, IEEE transactions on communications, vol. 41, No.
9.September 1993.

[35] J. Nonnenmacher, E. W.Biersack, D. Towsley, “Parity-based loss recovery for
reliable multicast transmission™, SIGCOMM'97, September 1997.

(361 R.G. Kermode, “Scoped Hybrid Automatic Repeat Request with Forward Error
Correction (SHARQFEC)”, SIGCOMM'98, September 1998.

[37] JJ. Metzner, “*An improved broadcast retransmission protocol”, [EEE Transactions

on Communications, vol.COM-32, no.6, June 1984.

[38] C. Papadopoulos, G. Paruikar, and G. Varghese, “An error control scheme for large-
scale multicast applications”, in Proc. IEEE INF OCOM, San Francisco, CA, Mar.~Apr.
1998, pp. 1188-1196.

[39] A. M. Costello and S. McCanne, “Search party: Using randomcast for reliable
multicast with local recovery”, in Proc. [EEE INFOCOM, New York, Mar. 1999, pp.
1256-1264.

106



[40] Y. Gao, Y. Ge, and J. C. Hou, “RMCM: Reliable multicast for corebased multicast
trees”, in Proc. IEEE Int. Conf. Network Protocols, Osaka, Japan, Nov. 2000, pp. 83—.

[41] L. H. Lehman, S. J. Gadand, and D. L. Tennenhouse, “Active reliablemulticast”, in
IEEE INFOCOM, San Francisco, CA, Mar./Apr. 1998, pp. 581-589.

[42] S. K. Kasera er al., “Scalable fair reliable multicast using active services”, I[EEE
Nenwork, vol. 14, pp. 48-57, Jan.~/Feb. 2000.

[43] T. Speakman et al., “PGM Reliable Transport Protocol Specification”, Intemet draft,
draft-speakman-pgm-spec-04.txt, 2000.

[44] D.Li and D. R. Cheriton. “OTERS (On-Tree Efficient Recovery using Subcasting):
A Reliable Multicast Protocol”, Proceedings of 6th IEEE International Conference on
Nenwork Protocols (ICNP’98). October 1998, Austin, Texas, pp 237-245.

[45] M. Calderon et al., “Active network support for multicast applications”, IEEE
Nerwork, vol. 12, pp. 46-52, May/June 1998.

[46] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss Correlation in the MBone
Multicast Network™, IEEE Global Internet mini-conference, GLOBECOM’96, 1996.

107



