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ABSTRACT

On the Decay of Strong Concentrated Columnar Vortices

Yasser Aboelkassem

Being able to predict the properties of a decaying vortex is of value to various
technological and scientific problems. The hazards presented by the vortices
shed by large, heavily loaded, aircraft to an incoming plane are well known. A
safe separation distance makes sure that the vortices shed by the first aircraft
have been decayed to a level that is safe for the following aircraft. The decay of
geophysical vortices is a highly complex phenomenon. Nevertheless, simplified
time-dependent vortex models, like the one presented in this thesis, do elaborate
on the basic processes involved during the energy dissipative phase. The general
approach also provides a method that enables us to study the transient tlow
development in a plethora of swirling flow problems that evolve by starting or

halting a pair of circular cylinders.

In the present thesis, a novel analytical method is developed to study the decay
of a strong, concentrated vortex. Based on the equations representing the
transient fluid motion and using a standard solution formulation via Fourier-
Bessel expansions will show that different initial profiles of the velocity produce

distinct velocity time distributions. Three initial velocity shapes will be explored

il



here. The first deals with the decay of a potential vortex. This type presents the
known theoretical discrepancy of infinite velocity and vorticity in the center at
the start. The second case considers an initial velocity distribution of a Rankine's
vortex. The latter although posses a continuous velocity and static pressure
distributions, it is also theoretically dubious since in this situation the vorticity
presents a jump discontinuity at the core radius. The final distribution will
assume the Vatistas” n = 2 vortex. The last kind of approximation does not suffer
from the previously mentioned theoretical contradictions. [t will be seen that all
the relevant fluid properties are indeed continuous and bounded, and all their
derivatives preserve the same mathematical qualities as well. The methodology
is kept general as to accommodate formulation of any initial steady-state initial

vortex profile.

Although, there were found no appreciable differences among the three near the
asymptotic condition regions i.e. near the center of rotation (forced-vortex) and
far away (free-vortex), they do produce substantial disparities in the mixed-
vortex region (near the core). Finally, it is shown that the time history profiles of
the velocity, and thus the pressure, exhibit a distinct self-similarity characteristic.
The last made possible the collapse of the various time distributions into a single

curve that is solely a function of the space coordinate.
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Nomenclature

Listed below the main symbols used in this thesis. Note that more than one
meaning maybe assigned to a symbol. Other symbols are defined internally
within each chapter.

Symbol Description
A Bessel function arbitrary constant
a,b,c&d Arbitrary constants

Bessel function of 1st kind

Bessel function of 1st kind and zero order
Bessel function of 15t kind and 1st order

Bessel function of 15t kind and 2nd order
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Static pressure.
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Normalized pressure
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Normalized vortex radial distance

Normalized maximum viscous core radius

Vortex core radius
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x xS vl

Quter vortex radius
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Time

Normalized time parameter based on the outer vortex radius

Normalized time parameter based on the vortex core radius

Total velocity vector

< <iar

Vg, V. Radial, tangential and axial velocity components
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Normalized velocity

V 6) max Maximum normalized tangential velocity

% Transformed swirl velocity
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Bessel function of 2nd kind

Cartesian coordinates

Normalized vortex radii parameter

Vortex circulation

Normalized pressure

Maximum normalized pressure

Dynamical viscosity

Zeros of the 1st kind 1%t order Bessel function
Density

Kinematical viscosity

Total vorticity vector

Normalized vorticity

Maximum normalized axial vorticity

Quantities at the vortex core radius
Vatistas'n=2 vortex model parameter
Quantities at the outer vortex radius
Radial, tangential and axial

[nitial quantities
Non-dimensional quantities
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Chapter 1

Introduction

1.1. Historical ~General

Vortex motion is generally regarded as one of the most complicated and yet very
important of the natural mechanisms to efficiently transport mass, momentum
and energy. Consequently, their study has sustained a considerable degree of
interest throughout the past one and a half centuries. The theory was first
mathematically modeled by Helmholtz [1858], considering the irrotational
motion of a perfect fluid. Helmholtz’ formulation was later adapted by Kelvin
[1880] in an attempt to develop an atomic theory [!l. It was natural for scientists to
ponder of how fast the vortex - like atoms would decay if they were immersed in
a nearly inviscid fluid. Although this model has long been abandoned, the

ensued research impetus has considerably advanced knowledge in this area.

The considerable mathematical difficulties associated with the subject matter
have prevented the development of a universal theoretical vortex model. [nstead,
investigators have used a variety of simplified models to study aspects of
swirling flows. The decay of an initial potential vortex including the viscous
effects was derived by, Ossen!22l [1911] and Hamel [1916]. The model was later

on known as Ossen-Lamb vortex. Burger 1! [1948] obtained simplified steady



flow solution by balancing the outward swirl velocity momentum diffusion by
an equivalent amount carried by the radial velocity of the traveling from the
extreme periphery towards the vortex center.

Burger’s vortex time development was formulated later by Rottltl [1958]. The
two-cell vortex was derived by SullivanBl [1959]. His formulation exhibited an

axial reversal flow near the axis of rotation, which was absent in Burger’s model.

1.2 Wakes Due to Tip Vortices

Bi-product of lift generation by fixed and rotating wings is the evolution of the
wing-tip-vortices. The latter is due to the pressure difference between the suction
and the pressure sides of the wing. Vortex decay within the far field domain is
very important phenomenon to reduce the hazards and noise created by the
aircraft wake. Current investigations are focusing on predicting, monitoring and
controlling the vortex decay. The approach is to minimize the vortex strength
and thus moderating the potential hazards that emerge from large heavily

loaded aircrafts.

The generation of hazardous wakes is one of the main factors of the Airport
limiting capacity problems. To overcome this problem, knowledge of the flow
behavior under various metrological conditions must be predicted with
confidence. This can only be achieved by understanding well the vortex decay

phase. Vortices shed by an aircraft are natural consequence of its lift. The wake

1~



flow behind the aircraft can be described by near field and far field
characteristics. Behind the trailing edge of the wing a strong down ward motion
(downwash) exists while beyond the wing tip a weak upward motion (up wash)
is formed B4. The separation of the boundary layer causes small vortices to
emerge from the wing tip in the area of near field. Meanwhile the roll-up process
of the vortex sheet consists of counter-rotating vortices that initiate vortex
instability, see figure [1.1]. This process defines the aircraft induced wakes

during the severe phase of its development in the far field.

Free Stream

N

Fig. 1-1 Schematic Figure Shows the Wing Tip Vortices

A similar phenomenon can be encountered in horizontal tornadoes where two

vortices of almost equal strength posses a strong potentially hazardous



circulation ['(r). The potentially dangerous conditions depend on the geometrical
characteristics of the wing such as its shape span and length as well as the

aircraft takes off weight.

The far field domain is defined as the region where the impact of the atmosphere
on the wake vortices becomes important. The vortex circulation [(r) is one of the
reliable parameters that can be used to express the degree of vortex hazard.
Recent research is dedicated towards finding ways to control and produce a less
harmful wakes by means of wing constructive techniques, which called [Low
Vorticity Approach}i3i. Another approach is related to the fast decay of the sheet
vortices called [Quickly Decaying Vortex Approach]i3l. The assessment of the
potential hazards requires a reliable estimation of the induced aerodvnamic
forces and moments, which consecutively requires the employment of an
accurate vortex model. Advances in this area can increase the airport capacity.

Predicting the vortex flow field parameters and the decay of concentrated
vortices in both confined and unconfined domains is very difficult. However, a
simplified time dependent vortex model can capture most of the main physical
features involved during the energy dissipative phase. The previously reported

steady state vortex formulations can then serve as initial conditions.



1.3 Problem and Contributions

Vortex motion appears in liquids, gases and plasmas. Their size can vary from
the extremely small (quantized vortices of super fluid helium) to enormously
large (galactic vortex). Depending on their aspect ratio (core size/height) these
can be categorized as columnar or disk-like. Furthermore, if they exist in a
limited domain, they are called confined, otherwise are unconfined vortices.
Concentrated vortices are those where most of its vorticity is clustered within a
tubular region close the center of rotation and rapidly decaying outward along
the radial direction. Intense or strong vortices are those who have a swirl velocity
that is orders of magnitude larger than the other two components.

This analytical study presents a new formulation, which describes the vortex
decaying process of intense, isolated, concentrated and columnar vortices that is
more realistic than those previously reported in the technical literature. As an
initial condition it assumes Vatistas B8 n = 2 vortex model which is known to be
more accurate in simulating real vortices and which does not suffer from the
mathematical or physical contradictions that are inherent in the other
formulations. Both the confined and unconfined types are addressed. The results
of the present model are compared with those having as initial conditions the

potential and Rankine’s swirl velocity and pressure distributions.



Chapter 2

Literature Review

Steady Formulation of Vortex Flows

2.1 Preface

One of the important properties of vortex flows is to determine velocity fields,
especially the radial distribution of the induced tangential velocity, which is used
frequently to model the vortex roll-up wake behind heavily loaded aircraft.
Based on experimental measurements, the induced swirl velocity is seen to
exhibits a strong self-similarity when the core radius is used as a reference scale
length. There are several generalized vortex models, that can describe the
tangential, radial and axial velocity components induced by the viscous core.
These models are derived by solving a simplified form of Navier-Stokes’s

equations.

A complete formulation of viscous and turbulent vortex flow requires a solution
of Navier-Stokes’s equations, which is indeed challenging due to difficulties
associated with boundary condition implementation. The fitted algebraic vortex
models are commonly used in the engineering due to their simplicity and
computational efficiency. There are common techniques used to represent the

induced velocity profile. One approach involves using the well-fitted algebraic



profile by assuming a constant viscous core size, while another uses the time
dependent core growth diffusion such as Lamb Ossen’s model. One of the most
over utilized models is Scully 29 & Sullivan [known as Kaufmann’s model],
which predicts qualitatively the overall velocity distribution. However, a result
compared with measurements in both rotating and fixed wings indicates that
this model underestimates the peak swirl velocity [l Vatistas et al [1991]
proposed a family of algebraic vortex induced velocity models. The results of the
tangential velocity and static pressure for the n = 2 member along with
experimental data are shown in Figure [2.1]H0L [t is evident that the two correlate
well. Because the latter quality and the fact that the model is mathematically
manageable it has become the basis of several studies involving vortices shed by
wings. It was successfully used to investigate the periodic wake of a hovering
rotor, Leishman [131 (1998), in the visualization of the compressible vortex flow
structure Bagai (2! and Leishman (1993), and the numerical characterization of
wakes produced by wings, Bagai B! and Leishman (1998), Tauszig 3% (1998) Nilay

(211 (2001), and Coton 51 et al (1998) and others.
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2.2 Axisymmetric Vortex Flow Equations

The vortex motion in laminar flows can be described as axisymmetric flow

problem. Therefore the general equation of motion can be derives in cylindrical

f

-

coordinates shown in figure [2.2].

X

Fig. 2-2Velocity vector in cylindrical system of axes.

Logical assumptions such as, the flow is considered to be incompressible, body

free forces and laminar. Hence

equations are:

Mass Conservation

AV, 1, V] V.l _

0
ar oz r

Radial Momentum

W,y ey V. VS 12
ot ar Tdz r p or

under these assumptions, the governing

(2.1)

) 1%
+yVV ——] (2.2)
r

-~



Where V3=a- li+l a-+a- b_o

Tangential Momentum

v, . v v, VvV , V
+V, L4y e e vy, - 28
or 'ar+:az+ r UV e rzl
Axial Momentum

AL +V, AL +V, IV, =—L§£+U[V2V_]

ot ar T dz p 0z -
23 Previous Steady Vortex Flows

_w+_ 5 5 3 +
or- rdr r-d@°- 9z Dt ot

e

(2.3)

(2.4)

In this section, we introduce the simple steady state solutions of self-similar

vortex flows such as the potential, Rankine and Vatistas’s model. These are used

as initial conditions for the simplified decay analysis via Bessel solution. Both

confined and unconfined solutions are addresses based on these steady models.

2.3.1 Potential Vortex Model "

Consider a flow where all the streamlines are concentric circles about a given

point 0, see Figure [2.2.], The velocity along any given circular streamline is

constant but it varies from one streamline to another inversely with the distance

r, such as the free vortex flow. v
3]

Fig. 2-3- Schematic illustrates the Viscous Potential Vortex flow.

10



Let the velocity take the form of:

V= ‘70 = E;,,. where, C= constant depends on the vortex hazard.
r

[t is easy to show that, the potential vortex flow is kinetically physically possible

flow at each point in the flow field because it satisfies the mass conservation i.e.

VeV =0. This elementary vortex flow is irrotational at each point except at the
origin, which posses a singularity. To evaluate the constant C, one can take the

circulation around a given circular streamline and integrate over a closed path to

obtain: ' = -{V e ds = -V,[27]

The above integration shows that, the tangential velocity depends mainly on the
radial parameter. Therefore,

r r
Vs =[—§l’; And C =[-§]~

The potential vortex model in the normalized form is then:

oL T
L
[ r(.
V 1 — v - l
2= — [fweletV,=—"2—.r=
2w, rfr, [/2nr, r/r.
V(=1 0<r<oo (2.5)
r

where, [=27C s the vortex strength
Based on the tangential and radial momentum equations, the radial and axial

velocity components must vanish. From experimental observations we can

11



assume that the pressure is only a function of the radius r. Since the axial and the

radial velocity components are zeros, the radial momentum equation simplifies

into:
Vo _ 1P
r por’

or in normalized form

2M=£ P= P
r

or 0.50(0/2mr.)*

Hence we can integrate directly to obtain

P(r) = jz@d;= [22dr=2 (2.6)
r r

2
r

The axial vorticity is

e, e e
EZ.:exV =l d-| -] d-] Therefore. Q:l&m
ri dr a6 dz r ar
V. rv, V.
Q=00 (2.7)

. The velocity, pressure and vorticity is plotted along the radial direction, see
figures [2.4], [2.5] and [2.6] respectively. It is clear that the tangential velocity,
axial vorticity and static pressure are singular at the vortex center. The potential
formulation has no information about the radial and axial velocity components.
This model is considered as single scale model, therefore it dose not give any

information around the viscous core radius.
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2.3.2 Rankine Vortex Model "

Due to the need for reliable models that can describe the nature of the vortex
flow around and away from the viscous core radius, Rankine developed a simple
model for the tangential velocity. This model represented a two-scale
formulation that can predict the most salient features of the viscous core.
Rankine’s model exhibits a solid body rotational motion [forced vortex] inside

the core and free vortex [potential] outside the core. The tangential velocity is

given by:
Lr 0<r<r,
2mr. 1,
Vo(r) =1
r
— r.<r<oo
27 ‘

or in normalized form

<
o
IA
~

A

l<r<eo

~ || -

~

-_r . : : :
where r=— ,r represents the vortex core radius, the radial and axial velocity
r.

are null everywhere. The radial momentum equation provides the static pressure

distribution

15



j@d?:ﬁd? 0<r<l
P(r) = _",
—dr-—j——dr l<r<oo

Integrating along the radius yields

-2 -

0<r<i

l<r<es

-2

2r

Similarly, the axial vorticity is given by

Q=_l_a[rVﬁ,]
r ar
rZL 0<r<r,
14 27,
ror| T
—_ r.<r<ee
2z
Q L 0<r<r
Q=r, -={r o
73
&t 0 r.<r<e

(2.9)

(2.10)

The velocity, pressure and vorticity are plotted along the radial direction, see

figures [2.7], [2.8] and [2.9]. The results show that for this case the singularity at

the vortex center is removed. However, generating a discontinuity of the

vorticity at the core radius. One can notice that this model is overestimating the

tangential velocity. This formulation also does not predict the other velocity

components.
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Fig. 2-7. Tangential velocity distribution of Rankine vortex model
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Fig. 2-8. Pressure distributionl%f Rankine vortex model
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Fig. 2-9- Vorticity distribution of Rankine vortex model
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2.3.3 Scully Vortex Model ™!

A singularity point is found at the vortex center in case of the potential model,
while a discontinuity of axial vorticity at the viscous core radius exist in case of
Rankine’s model. As a result scientists were seeking to develop a new vortex
model that is free of the last two inconsistencies. Scully’s model was successful in
achieving this. He developed a continuous tangential velocity component around
the core radius and far way from the core radius as well. His model also
estimates continuous axial and radial velocity components.

The tangential velocity in this case is given by

r
vg(r)=;[r::r:] 0<r<oo

The normalized form is

Vo =o——1 7=l
RGO T re

_— - / - - -

Ve(r):M:[ - 0<r<e (2.11)
U2 1 efp

The radial velocity component is derived using the momentum equations are

follows:
v,aaﬁ“_vaﬂ =y[VV, -V—‘;], 3. Lav

a‘r/ Vr Vr Where, V* = — +—a—”
VIS + 2L =y vy, - 22| rora

ar r re

2 - l’v ) _ 2 _ 2
Va(r)=—£[,r “avg:_r_ r: rH] d f’:i : J,,+ 41:(&. ‘r‘)
2 rS4rs Or 2w (rF+r7)? ar~  2r (rP+r)° (r>+r°)’
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— = Vr . . . . .
V.=-4—— Where V,=-2%, if we normalize the radial velocity using V,
v

l+r

. .o . o
instead of using <, the radial velocity is
v

v, =4 (2.12)
Re l+l’-
— Vv v
where V,=-- & R, = af: =L
V. U 2nv

<

Where V.= (2-13)

!
—
—
+
~
~—
(]
<

Notethat, v _=10"& wv_ =10" m'/s

waler

R o=lle o L , which is a very large value, hence . 0
v 2rv R

Therefore, we realize that the axial and radial velocity components are very small
compared with the tangential velocity. This implies that, the air vortices posse

only substantial tangential velocity while the other two components are

relatively small.

The static pressure distribution can easily found, if we assume that the radial and
axial velocities are negligible everywhere. Therefore the static pressure will
balance the centrifugal force. Based on the momentum equations and

assumptions made, the momentum equation will be,



_— -

—_ Vv - -
p=2[Zdr=[2—=—dr=01- L (2.14)
o (I+r )y L+r

The normalized axial vorticity for this model is given as well

_'.ﬁ: -7=L_%—
O/r} 7 q+r )

I (2.15)

The above analysis showed that, the flow properties have neither singularity
point nor discontinuity. The results of this model are shown in figures [2.10 to
2.14]. Although this formulation has been used previously in a variety of
aerospace related applications. However this model severely underestimates the
tangential velocity see figure [2.20]. This model is applicable for a limited
number of physical applications, moreover it dose not fit most of the

experimental results (14l



r
Fig. 2-11. Radial velocity distributions of Scully vortex model
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Fig. 2-13. Pressure distributions of Scully vortex model
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2.3.4 Vatistas et al n=2 Vortex Model **!
Due to problems in previous formulations of the vortex flow, many scientists
searched for a better realistic vortex model. Here we present Vatistas’s model,
which is an algebraic formula for the tangential velocity that fits the observations
as shown in figure [2.1]. This model consists of a family of continuous algebraic
swirl velocity profiles within and away from the core radius. The radial and axial
velocity components can be derived easily using the momentum and mass
conservation equations. This model is a generalized model, which produces a
family of curves ranging between Rankine’s model and Scully’s model. This
formulation is based on the hypothesis that, the tangential velocity and the static
pressure are only radial dependent as indicated by most of the experimental
observations.
The tangential velocity is given by

r

r
2 !
(r;ll ¥ rln ),,

Vo(r) =

where, n positive integer. If the equation is normalized based on the core size

vields,

_ v, 7 .
Va(r)= T, = T . r= - (2.16)
(+r )"

Similar analysis as previously shown, can be used to derive the radial and axial

velocity components as
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=(2n-D

- - Vv _=2n+l) r

Vi == (2.17)
r/zﬂrr R, (l+r- )
V.r
Where R, = << The vortex Reynolds number
v
‘7 (_) v 4 ( +l) =2(n-1) _ -
AL =2 L Where == (2.18)
z 3 2m; R, a+r) r.

The static pressure distribution can also be derived by resorting to the radial

momentum equation and the fact that RL =0.

[4

Sy S
p=2‘[?odr= I2—r—,dr (2.19)
r - =
0  (+r )
Caseofn=l;=[l— l_,l (2.20)
L+r
—_ 2 )
Caseof n=2 p=arctan(r ) (2.21)
/8
-2 -
J;r 0<r<i
Caseof n=c0 P=4{"~ 0 _ (2.28)
l-— l<r<es
2r

Similarly the normalized axial vorticity is given by

1
5.9 Ll a[ r J"__l_l 2
T 2rarlaer™y) 27 ' 2 L
" AL Lasr™y ey
i:i *IT (2.29)
/4 -n —
(I+r )"



It quite interesting to study the limiting cases have the tangential, vorticity and

the pressure for this model. The Therefore, the limiting velocity is given by:

a- LimVg (;) =Lim d - = C, —  Scully’s Model
n—l| n—l - - (l +'._)
+r )"
o - ro 0<r<li
b- LimVg(r)= Lim———=4 - - Rankine’s Model
=y o - - = l<r<o
+r ) r
— l ( l | 1
c- LimQ_ = Lim—| ———— =—[—_—,J —  Scullv’s Model
n—l - a—l g7 -ty — T 2 -
/ l -
= 1 1 — 0<r<i .,
d- LimQ_ =Lim—| ————\=|7 — Rankine’s Model
n—ses = T - = -
(I+r )" 0 I<r<e
— Voo o_ - _ - -
a-  Limp=Lim J'z‘T"dr = {Lim2—L _qr = jz—r_,—dr
n—l n—l r n—l -, = (l ¥ r‘ )7
(I+r )" =
Pt =[1 - ——| —  Scully’s Model
l+r
_ - Fd; 0<r<li
. . Ve - . r =
b- Lim p = Lim ITd r= ILmz —dr=| | - -
1o noe g A = = J._—dr I<r<eo
(L+r )" r3
1 -2 -
_ ;r 0 <r<l
Puoe=4" | _ — Rankine’s Model
l-— I<r<e
2r



The analysis showed that Vatistas’s model tends to scully’s model as n=1 and
reaches Rankine’s model as n tends to infinity. These results are plotted through
figures [2.15 to 2.19]. It is clear that these family members are plagued from the
previously mentioned mathematical and physical inconsistencies. [n addition it
simulates the actual tangential velocity reasonably well, see figure [2.1]. This
family model can be used to predict the aircraft wakes. [t has shown that, it gives
good predications of the wing tip vortices. Therefore this general model is
expected to be suitable for use in several aero acoustics applications that require
a good physical interpretation [14l. A summary figure illustrates the distribution
of induced swirl velocity inside a viscous vortex core on the basis of several

models are shown in figure [2.20].
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Fig. 2-16. Radial velocity distribution of Vatistas vortex model
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Fig. 2-18. Pressure distribution of Vatistas Vortex model
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Chapter 3

Decay of Confined Line Vortices

3.1 Overview
Confined steady and unsteady vortex flows are clearly appear in many of the

fluid mechanics engineering applications of fluid mechanics. Some of these
applications can be treated as confined flows without separation, such as the
swirl flows in a duct/pipe, channel flows and confined jets. If we add the swirl
intensity, pressure gradient or if we suddenly change the geometry of such
applications, then we have to analyze them as confined flows with separation.
Rotor stator interaction in turbine stage, mixing of the fuel-oxidizer during the
combustion process inside the confined liner [combustor] within the gas turbine

engine can be classified as unsteady confined flows.

Most of these confined flows are characterized by strong vortices. One of the
most widely used techniques to generate confined strong vortex is to force the
fluid in a cylindrical chamber [vortex chamber] through a series of tangential
inlets or by wall rotation. The swirl velocity near and far from the vortex core
and time dependent vortex flow field parameters can describe the natural

characteristics of these confined vortices. Here we present a new simple scheme



to track how the vortex flow field parameters, such as the tangential velocity,

radial static pressure and axial vorticity distributions decay with time.

3.2 Problem Formulation

Consider purely swirling motion of an unsteady, viscous, laminar, axisymmetric
and incompressible vortex filament shown in figure [3.1]. The later is considered
to be a self-similar line and concentrated vortex. Assumes further that, the
tangential velocity is orders of magnitude greater than the other velocity
components. Under these conditions the equations of motion in a simplified form

yields,

 J
~<

Fig. 3-1 Schematic illustrates the Confined Line Vortex
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Vo, 10P

Radial Momentum: -~ =—— (3.1)
r podr
Swirl Momentum: A = U[Vzvg —-V—f]
dt r-
Vi, = a-[‘:o] +la[V9]
ar r adr
aAVyl 9°V, 1av, V,
- 2 _ 3.2
ot U[ar2 +r or rzl (5-2)
Axial Momentum: (;;_P = (3.3)

The continuity is automatically satisfied, which indicates that this flow is
kinematical possible flow. The momentum balance equations suggest that static
pressure distribution does not vary along the axial direction. Which further
implies that the pressure is only a function of the time and the radius. Referring
to equation (3.1), it is clear that the tangential velocity will depend only on time
and radial location as well. Therefore the tangential velocity and static pressure

are:

V(r.t) =V, (r.De,
P =P(r.1)

[t is recommended to dimensionalize this set of equations. Therefore, we can use

the free stream parameters V,,p, and p, to normalize the equations. The

equations in normalized form are:
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A _ve

=== 34
ar r G4
Wol (2o 1o Vo, (35)

ot or- r ar ;7
While, the vorticity is given by:

Oery= LAVel 7 (3.6)
r odr
Where
e vg . . . .
Vy, = v Non-dimensional Tangential velocity components
&
n=2_° =z Non-dimensional Static Pressure
Ve,
-t . . .
t= IE Non-dimensional Time Parameter
r= -Rr— Non-dimensional Radial distance

Solving the vortex flow field of purely swirling fluid motion will require two
well-known boundary conditions for the velocity at the vortex center and at the
outer core radius. Hence it is quite interesting to study how the vortex flow field
parameters vary with time along the radial direction, provided that the velocity
may be free to slip at the outer vortex diameter or the velocity is not allowed to
slip [non-slip]. In the light of this, we present the solution, which can capture

most of the decay characteristics of such a vortex.



3.3 Analysis and Solution

Referring back to equations (3.4), (3.5) and (3.6) we can observe that, these
equations constitute an initial boundary value problem, which can be solved
using the separation of variables technique. The latter is a generalized solution,
which, is derived based on various steady vortex models as an initial conditions.
This procedure is applicable for both confined and unconfined vortices, however
mathematical transformations have been assumed separately to make sure that
the boundary conditions are homogenous.

Since, we are using the separation of variables approach, the tangential velocity

must assumed to consist of the following:
Vo(t.r) =T (0)R(r) (3.7)
() Considered to be only function of time

R( ;) [s considered to be only function of the vortex radius

Differentiating equation (3.7) with respect to rand r yields,

a[V_,,] = R(r) arg)
ot ot
Vsl - AR(r)
o7 - 3.8
or @) oar ( (3.8)
IWol _ 179 R()
r or’

Substituting back from equation (3.8) into equation (3.5) yields,

L T _ 1 (Rt 1R R(), (3.9)
T@W) 9t R 3y r or
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SinceT(r) & R(r) are two dependent variables, while (& r are two independent
parameters which indicates that equation (3.9) can only be satisfied if both sides

equal to a constant.

Lo - (3.10)
T(t) ot
L a'ligr)+L8R(_r)_R_(r)]=_ , a.10)
R(r) ar- r ar r-
Where -m* s the separation constant
Solving Equation (3.10), hence
LT __ -
T() or
aTE[) =-m’T@), J.aT(.t) = I— m3dt
di T()
nT@l=—mira,], €=
T([) = e—(m:;le—:\, ,
Letting A=e™"
Where, A& A, are constants, therefore
T()=Ae™ " (3.12)

Solving equation (3.11), we obtain

|=-m

1 [aIR(F)+ 1OR(r) _ R(r)
R(rY a7 r dr 7

*R(r) , LR() _ R(r)

— = —mzR(;)
or- r dr r |

(
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[a R(r) laR(_r) miR() - R-(Zr)]=0

ar roar r

a* R(r) l OR(r) +(m )R(;)] -0

ar " ar r

[

-2 3*R(r) —aR(r) .

[r (r'm* —DR("]=0 (3.13)

or ar

Recall that equation (3.13) is the general Bessel’s differential equation, which is a

standard form of the linear differential equation is given in form:

£ a'yg.t) i ay(x)
dx” ox

(4]
v
o

+(x*m* = 2)v(x) = (3.14)

By comparing equation (3.13) and equation (3.14) we realized that they are
identical if z=1 hence the solution of equation (3.13) can be introduced in terms of

the Bessel series function [151:

R(r)= BJ,(mr) + CY,(mr) (3.15)
Where

J, 1st kind 1st order Bessel function

Y, 2nd kind 1%t order Bessel function

B&C Constants

A physical restriction requires all the flow parameters to be finite over the entire

domain, therefore the tangential velocity must satisfy this mathematical fact.
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The latter is explained in detail, in Appendix A.
Since the tangential velocity is finite at the vortex center, therefore the constant C

in equation (3.15) must vanish. Consequently the solution must be restricted to

R(r)=BJ (mr) (3.16)
Using equations (3.12), (3.16) and substituting back into equation (3.7), then we

can obtain,

Vo(t.r)= Ae " "'BJ (mr)
Letting A =AB,
Where A, is constant, yields

Volt.ry=A,e "] (mr) (3.17)

Determining these constants will depend on whether the velocity is allowed to

slip at the vortex filament’s outer radius or it is halted.
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34 Casestudyl

Free Slip of The Tangential Velocity at The Outer Radius

|
|
|
|
!
|
1
|
|
|
|
|
Fig. 3-2 Schematic illustrates the velocity slip at the outer radius
In this case we assumes that the swirl velocity is free to slip at the outer vortex

filament’s diameter as shown in figure [3.2]. Therefore the boundary conditions

are given by:

For 12=0,
1. The tangential velocity is zero at the vortex center i.e. Vo =0at r=0
2. The tangential velocity is unity at the vortex outer radius i.e. Vo =tat r=1

Appling the boundary conditions indicates that, the first boundary condition is

automatically satisfied. While the second boundary condition gives:
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l=A,,e'('":;l./l(m) While, at 1 =0. e =) therefore,
1=A,J,(m) (3.18)

From the definition of the Bessel function of the 1st kind 15t order, we have
S 25+l

J.(m)= Z / )

Where [ here is the Gamma function. Substituting equation (3.18) gives

Z( 1)* (m/2)>" (3.19)
=4 SIC(2 +S) |

[t is clear that equation (3.19) is a very complicated function; hence we can do

some mathematically transformation without losing the generality of problem.
Letting V,(t.r) =r-Va(t.r) (3.20)
Differentiate (3.20) with respect to [, r

Vot.r) __ 3V,(.n)

ot o
lava(t r) l_lav «. )
r or r r or
- - - ; (3.21)
FVolt,r) _ 3 V,.r)
ar ar’
~Vor) _ 1, V,(t.r)
;2 r rw

Back substantiation of eq. (3.21) into eq. (3.5) will recover the governing

equation.

aV_o =[a'—V19 L | aVU _‘:'f)l (3.22)
dr > r ar
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Solution of equation (3.22) is identical to solution of equation (3.5). Hence

Volt.r)= A"e‘[’":‘:‘.ll (mr) (3.23)
The original boundary conditions must be rewritten again relative to the
transformed one, which is given by equation (3.23). The homogeneous boundary

conditions for the transformed equation are given by:

For 120
1. Ve =0 for r=0 therefore, V, =0
2. Ve=1 for r=1 therefore, V, =0

Application of the 2nd boundary condition to the model equation (3.23)
0=J,(m) (3.24)

Where, 4, = m, A, are the zeros of the Bessel function J,, which can be given as

"

0.151985 . 0.015399 0.245275

A, =r{n+0.25- — - -
(dn+1) @n+D)  @n+l)’

Since we are dealing with a linear differential equation, the principle of

superposition applies. Thus the velocity can be expressed by terms summation.
Vorn=Y Ae " (4,1 (3.25)

Where, A, Can be found analytically as.

[rv o =0.n7,4,ndr o
\ 1 == J.rVu(;z().r—')Jl(/l”;)d; (3.26)

2 N ‘,:(/in)
Ir.l C(A, rdr ‘

0

>
I
e

0



Substituting from equation (3.25) into equation (3.20), gives
Vot =r=3 A, (4, 7) (3.27)

Once the tangential velocity is known, the axial vorticity and radial pressure

distributions can be determined via Bessel series by back substitutions as well.

Q(r.1) = [2 - LZ Ae N (A r) - lz A (A, P = T4 (4, F)]] (3.28)
r n n 7

2

n=;j[ " _ j " . (3.29)

The tangential velocity expression depends on the constant coefficient A,, which

n’

can be found based on the initial velocity distribution. Here we present three
different initial vortex swirl velocity models, which are the Potential, Rankine
and Vatistas's n = 2 model. Each model is presented in a separate section,
however a relative time comparison is shown in figure [3.12]. The steady vortex
solution presented in chapter two can be used as an initial condition to predict
the decay phase of the vortex field. This solution is an approximate solution to
The Navier-Stokes’s equation, assuming a pure swirling motion. These results
are based on the assumptions that the vortex outer core radius is 20 times larger

than the inner radius, which means that, £ =0.05.
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3.4.1 The Potential Vortex Decay [Slip]
In this section, we will use the potential vortex model as an initial velocity

distribution. Let the initial potential vortex model is given by

Vo(t=0.r)= 0<r<i

~ U —

Using the general transformation made previously [see Eq. (3.20)}], we have:

Vot =0.r)=r-Ve(=0.7)=F -+ (3.30)
r

In order to determine the tangential velocity distribution, one has to evaluate the

coefficient A, using this standard formulation:

! - - - —_ —_
jrva(r=0.ru.(z,,r)dr .
, o L
A =2 =" )IrVg(1=0,r)Jl(/{,,r)dr

n I ] L J"Z (/{
Ir./ (A, rdr

1]

n’ o)

7 ey o - -
A, =—— F(r—i)]l(/l“r)dr
S, 4,)

0 r

2 ! - - -
— (r =O)J (A, r)dr
J,:(fl.,).,I ’

By Referring to Appendix A

] 1 43 .
- - - T T A S,
J!,(l,,r)dr=/{—[.l“(/l”)—-ll and J7 S P = (=0 (R + 20, )

" Q n -

2 4 A A |
A =—= —[-2 7 (A = J A)N+—[J Ary-1!|,J. (4 )=0
" !f(i,,)(/i;‘.[ 3 LA+ 5 [ (4] /1"[ oA l] (4,)

A =—— (3.31)
A, 024,

”n o



The tangential velocity distribution can be determined by inserting equation

(3.31) into equation (3.27), yields:

n 0

Similarly, the vorticity and static pressure are given respectively

— 1
Q( A)=|12-=
’ ( r,zzl.l (4,)

n 0

PRER PR
J (4,r) 2Z FWE

e (A7) = .4, 7) IJ (3.33)
n 0 (l

- e 22wy o) (e e, )
;(r_zl{ T IJ'M"”] '(r_le JIA e['lj'('{"r)]

n n a n ) n n [/} n
n=| - J
0 r

0 r

(3.34)

The tangential velocity, vorticity and pressure distributions are shown in figures
[3.3], [34] and [3.5] respectively. The entire analysis of the potential vortex must
be restricted to times greater than the mean free length. Since for smaller times
the continuum assumption is violated and hence the phenomena cannot be
descried by the standard continuous equations assumed. The early decay of the
potential model exhibit higher values of the tangential velocity inside the core.
Since the steady the Potential model assume infinity tangential velocity at the
vortex center. Therefore at the beginning it is expected to evolve higher values of

the velocity, vorticity and pressure distributions.
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Fig. 3-3 Tangential velocity decays, using potential model [Case of Slip|.
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3.4.2 Rankine’s Vortex Decay [Slip]
Rankine’s vortex model will now used as an initial velocity distribution. Similar
analysis also applies, however the initial swirl velocity is now:

-1 -

o r[ ] 0<r<g
Ve(t=0,r)= ﬂ (3.35)
r—= B<r<l
r
r. - r
Where, f=—~,r=—
ere, f . r o

The coefficient A,, can be derived in the same way as previously, [Appendix B

detailed derivations].

_-4,(LB)
" ﬂ/lz.,’(/l )

no oo

(3.36)
The tangential velocity distribution can be determined by inserting equation
(3.36) into equation (3.27), yields:

Vott.r=r- Z%M(Tﬁ)) e (A, (337)

n o

Similarly, the vorticity and static pressure are given respectively as,

7_—2_4{ (A, 0) _[z,,’iijl(/in;)_
ﬁ(r,t)_ r "4]31:1!'» (4,) .
Z_ 14,06) ol rl[_, (,{ .lﬁ(/l,,;)l
- n ﬂ/t,.,\l,, (/1 ) -
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;{ = BRINA,) —~ BZIX(A,)
-] ; I ;
0

0

;_Z —4];(/{nﬂ) e'”"-”-'.l,(/l,, ;)J (;_Z -4 (4,06 e_H":;I‘II(/i" ;)

(3.39)

The tangential velocity, vorticity and pressure distributions are shown in figures
[3.6], [3.7] and [3.8] respectively. Initially there is no singularity at the origin for
this case. However the physical problem now has moved to the core where the
derivative of the velocity is now singular. The latter will also violate the
continuum assumption for times smaller than the mean free times. The results
showed that, the early decay of the tangential velocity has value less than the one
predicated by the potential model at the same time. However the late decay have
almost the same values. One can notice that the static pressure has gradually
decayed within radius equal to [0 -15%] of the vortex radius and it vanish fast
after this radius. The Vorticity smoothly drops within radius equal to [0-30%] of

the vortex outer radius and vanish beyond this value.
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Fig. 3-7 Axial vorticity decays, using Rankine’s model [Case of Slip]
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Fig. 3-8 Radial pressure decays, using Rankine’s model [Case of Slip]
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3.4.3 Vatistas’s n=2 Vortex Decay [Slip]
In this section, we will employ Vatistas’s vortex model as the initial velocity

distribution,

vg(;=0,l—')= r -

( %y +;2n )"

Here, we will use another mathematical transformation. This transformation

enables us to satisfy the boundary conditions. Therefore the tangential velocity is

given by

Vo(t=0.r)=———— Vs (3.40)
(B +1)s

Since the initial velocity satisfies the governing equations, so we can use the

same procedure to find velocity decay in terms of Bessel function.

V(=01 =——— ?—7(_@—’1'—} (3.41)
(ﬁln +l); ﬁ'" +r
Where B= ’ and let Vatistas's model exponent takes the value of n=2

o

Therefore, the coefficient A, is determined in the same manner as that outlined

in Appendix B.

-2
L fo(’ln)l _H (3.42)
I A 4, (6* +1)2

n



1o | =

1 -2 L
Where, H = d — | Ji(4,rdr
o\ B* +r

The latter can be fourd by using the standard numerical integrations.
Consequently, the tangential velocity is given by using equation (3.27) and

substitute back into equation (3.42), yields:

- b =2 L -
Voltr)=—— T L L)y lenig 7 (3.43)
> n "o A -
(,B‘ +l)2 (4| 4 (,B‘ +l)2

The axial vorticity and the static pressure distributions are given by back

_—Z__Li ’—2 _‘l_ ‘l()(/llx) -H e-l/l,,:;lj (/i",..)
(5* +1)§ PR A (g ) |
substitution. Q(r.1) = (3.44)
—li -2 L ) —HL"’i-«:"'[J,,</:,,?»-J,(/:,,Z)l
2TTAD Ay (0 :
gt )
r = -2 |1 J L -
| Tl )| 4, o ")1 ~H e
,‘,[ (ﬁ-& +l)2 ” n n (ﬁ-‘ +l)2 )
m=2 4 : (3.45)
r = -2 |1 Jy4 -
r l —ZJZ (/l ) _/1_ 0( u)l -H e(A,, I.I|(/1"r)
|'[ (ﬂ-l +l)’ n o n " (ﬁ.t +l)5
B r
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The tangential velocity, vorticity and pressure distributions are shown in figures
[39], [3-10] and [3.11] respectively. This formulation has no mathematical
shortcoming. Therefore, it must represent the physics of the problem better. The
early decay of this model exhibit gradually velocity drop. The vorticity smoothly
decrease within the 30% vortex radius and vanish beyond it. The pressure drops
gradually within 15% core radius and maintain zero value along the rest of

vortex radius.

The tangential velocity, axial vorticity and static pressure distributions on the
basis of these vortex models are compared at the same time. The results are
plotted in figure [3.12]. The first time represents the early decay phase, while the
second choice indicates the late decay. The early decav shows that, the potential
model and Rankine solution overestimates the swirl velocity. Unlike Vatistas's
n=2 which predict smaller values. The late decay shows that the tangential
velocity for each model almost has the same values. It also shows that the
vorticity distributions for both potential and Rankine are asymptotically the

same, while Vatistas’s n=2 is not.
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Fig. 3-9 Tangential velocity decays, using Vatistas’s model [Case of Slip]
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3.5 Case study 2

No Slip of Tangential Velocity at The Outer Radius

v

Fig. 3-13 Schematic illustrates the Non- slip velocity slip at the outer radius

[n this case it is assumed that the vortex induced swirl velocity is not allowed to
slip at the filament’s outer cylinder, as shown in figure [3.13]. The solution can
also be derived via the standard Bessel function. However, the new boundary

conditions of the tangential velocity are:

1. For 120, the tangential velocity is null at the vortex center i.e.
Vo=0atr=0

2. For >0, the tangential velocity is null at the vortex outer radius i.e.
Vo=0at r=1



The same analysis similar to the previous one can be used here. One can realize
that, in this case we don’t have to do mathematical transformation. Therefore the

Bessel constants can be easily determined, consequently the tangential velocity is
Vot)=Y A 1, (4,7) (3.50)

Where in this case the coefficient A is defined as

[rVo(e=0,r)J (4, rdr
A =2

"

, — =—=—[rVo(t=0.r)J,(4,r)dr (3.51)
JrJ,z (A, r)dr I (A

Vo (; = O.;) is the initial swirl velocity distribution

Once again, the axial vorticity and the static pressure distributions are given by:

Q(r.py =LAV
r odr
:-:L ‘_/-() +;a[v— ] =ﬁ+a[v—”]
r or r ar
o, (A, r) 1
M =—[‘,n—l(/lur) - ‘lnvl (/l,,r)]
ar 2
M:lu“(,{,,r)-h(iur)]
ar 2
Q(r.0) =(%Z AN (A, + éz A, (A7) = T3 (4, 7)) (3.52)

s (ZA,,c"""”'J,M,,F)




i~

oo . )
(Z AN (A, )
" /

r

e (3.53)

l [i Ae™ T (A7)
!

Oo__.ﬁl

~

n /

r

As can be seen from the above analysis, the tangential velocity expression

depends on the summation coefficient A,, which further depends on the initial

velocity distribution. Here we will introduce the same three initial vortex swirl
velocity models that have been used in case study 1.

Each vortex model is presented in separate section with separate analysis,
however a distinct time comparisons are addressed in figure [3.23]. All the
results are based on the assumption that the vortex outer radius is 20 times the

inner radius.
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3.5.1 The Potential Vortex Decay [No Slip]

The decay of the potential vortex model is presented in this section. We assume

the potential model as an initial velocity for our model solution. Therefore,

Vol=0.1 =~  0<r<eo (3.55)
r

The coefficient A, is derived in detail in Appendix B and given by:

A =—2 (7 (A)-1) (3.55)
n = J’% (/1") o n -

Also, the swirl velocity distribution can be written in the form of

— - - had — 2 | /: :[. pa—

Vg(l.r)=;m(.l“(/l")—l)e(" '.l[(/l,,r) (356)

And the axial vorticity and static pressure distributions are given respectively as:

b -9 .- -
iz;ﬁw") —e™ 1 (4, )+
-

Qr.)= [ " : " _ (3.57)
;Zﬁ(!.ﬁ&.)—l)e""'*"u.,u,,?)—J:(/n,.?)l
S 2 1A =Y
’ Zm(‘,u(in)—l)e ) ‘ll(/lnr)
=2 il 2 (3.58)

-2 cr -
———)(Ju(/{,,) ey (4, r)]

r

CY S—
N
= 2
AW
E)
~
CI
1t
o~
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Figures [3.14], [3.15] and [3.16], shows respectively the decay distributions of the
tangential velocity, axial vorticity and static pressure. Obviously the analysis of
the potential vortex in case of non-slip must be restricted to times greater than
the mean free length as well.

The early decay of the potential model predicts higher values of the tangential

velocity inside the core. While, the late decay has gradually dropped.
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Fig. 3-14 Tangential velocity decays, using Potential model [Non-slip]
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Fig. 3-16 Radial pressure decays, using Potential model [Non-slip]
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3.5.2 Rankine’s Vortex Decay [No Slip]

Rankine’s vortex decay is presented in this section. Here we will use the
Rankine’s vortex model

as an initial velocity distribution.
;

- 0<r<f
Vot=0.1=1P

Therefore,

1
;

(3.59)
ﬂ<?31

The coefficient A, is derived in detail. See Appendix B and is given by

4o 2 2, (4B |
" iIl'l" (All ) ﬂill jl) (i" )

(3.60)
The swirl velocity distribution is given by substituting equation (3.56) into
equation (3.65). Therefore,

o

= - 2 (20D ) i,
1% I = 3 n -1 {4, (lJ
e(L.r) Z,:/l,.J,,M,.)[ﬁﬂ,.l,.(/l,,) ]e (4,7)

(3.61)
The axial vorticity and static pressure distributions are given by:
2 204, B) IR \
- iy
LZ A, (4,) ( BAT (A) € 1{4,r)
ﬁ(r.l) = r . (362)
e 2 (2B ) 3 _
-— n -1 . J /1 _7. /{
k?.;/l"./”(/{")(ﬁ,{".[“(&") e [ u( u") _( "I'H
- 2 o) . N
; {Z A J-(,l )['f-)’-,{lj/lz:f)) - 1}""‘" (4, r)) ar (_ ) _):
n-fremmme Iv"(f" ar (3.63)
0 r o r
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The tangential velocity, vorticity and pressure distributions are shown in figures
[3.17], [3.18] and [3.19] respectively. Initially this formulation will also violate
the continuum assumption for times smaller than the mean free times. The
results showed that, the early decay of the tangential velocity has almost the

same value as predicated by the potential model at the same time. However the

late decay is different from the potential.
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Fig. 3-17 Tangential velocity decays, using Rankine’s model [Non-slip]
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3.5.3 Vatistas’s n=2 Vortex Decay [No Slip]

The decay of Vatistas’s vortex is examined as well. In this section we will use

Vatistas’s model at n=2 as an initial velocity distribution.

Let,Vo(:=0.r)= ———— (3.64)
(ﬂ-‘ +;4)2
The coefficient A, is derived in details based on Vatistas’s initial velocity

distribution, see Appendix B and it is given by:

.
a4 =2 (3.65)
J -u(lln)
! ;3 o
Where, H = j' —J (4, r)dr,Canbe found using numerical integration

¢ (ﬁ-& + ;" )S
The tangential velocity is given by substituting back using equation (3.51) into

equation (3.65). Therefore,

"

O ) e -
.'.Vg(l.ﬂ:ZLJ;Z ))e'“" 'l.ll(/i"r) (3.66)

The axial vorticity and static pressure distributions are given respectively as:

1 & 2H 4,1 -
— (A
rg(41<i>] (A1)

n o

Q(r.t) = (3.67)
1 & 2H a0 - -
=S == e, (4, 1) - T2 (A
22( U(/{n)] [ "( "r) -( "r)l
. %
_[Z[jff; )] W (4, r)J ¢
= [~ Vottr] 7 (3.68)
Q0
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The tangential velocity, vorticity and pressure distributions are shown in figures
[3.20], [3.20] and [3.22] respectively. The early decay of this model shows a
moderate velocity distribution. At t=0.0004 there is a 50% velocity difference
compared with Rankine or Potential results. While the vorticity value smoothly
decrease and shows 75% difference than Rankine results. The late decay shows

that the parameters are consistence with both Rankine and potential models.
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Fig. 3-20 Tangential velocity decays, using Vatistas’s model [Non-slip]
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The tangential velocity, axial vorticity and static pressure distributions on the
basis of these vortex models are compared at the same time. The results are
plotted in figure [3.23]. It is quite interesting to notice that, during the early
decay phases both potential and Rankine overestimates the velocity and the
vorticity. While the pressure distributions for both Rankine and Vatistas are
closer. Potential model exhibit larger pressure values of both early and late
times. The late decay showed that, the velocity distribution for each model is not
closes. The late phase also indicated that, the vorticity and the pressure of

Rankine and Vatistas have almost the same values.
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Chapter 4

Decay of Unconfined Line Vortices

4.1 Overview

The decay of unconfined vortices, such as those generated in the wake of high lift
aircrafts for both fixed and rotating wings is complicated. This difficulty is due to
the complexity of the mathematical models, which govern the decay process in
both turbulence and quiescent atmospheric conditions. The early development of
the sheet vortices is not affected by atmospherics turbulence I7l. However, the
sheet vortex decay process is affected by whether the neighboring atmospheric

field is quiescent or turbulent.

One of the techniques used recently to investigate the decay process, is via the
Large Eddy Simulation [LES] method [!l, which must be initiated by appropriate
measurements data collected from different aircrafts at different atmospheric
conditions. This method provides appropriate results for both quiescent and
weak turbulent conditions, but it gives poor results in case of strong turbulence
atmospheric conditions. The vortex decay in a quiescent neighboring field is
influenced by the interaction of short wave disturbances induced by aircraft and

vorticity field. Conversely, if the neighboring field is turbulent enough the decay
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process is controlled by large wave instability. Vortex decay is an essential aspect
in the issue of the wake dissipation. However, a simplified mathematical analysis
as the present can set a light into the basic mechanisms involved in this

phenomenon.

4.2 Problem Formulation

The time dependent solution of unconfined line vortices will be solved based on
the same assumptions that have been made in chapter 3. Consider the vortex
filament to be an isolated and intense vortex as shown in figure [4.1]. The
simulation of unconfined vortex is achieved by letting the vortex filament’s outer

radius extends to a very large value.

To be able to tackle the unconfined vortex, the value of B which describes how
far the outer radius should extend in relative to the core radius is required. The
decay solution of the potential model based on this theory and Oseen Hamel

vortex are compared. The error between both solutions is examined for the value
of p=0.01.

Hence, in this chapter we are going to present a simplified analytical solution,
using the same approach. It will consider the decay of the same steady vortex
models used to find the confined vortices solution. However in this case different

boundary conditions are needed.
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Fig. 4-1 Schematic illustrates the Unconfined Line Vortex

Ro" l/B

Fig. 4-2 Schematic shows the velocity distribution in case of unconfined vortex
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We will also predict the vortex maximum core radius growth, maximum induced
swirl velocity, maximum pressure and maximum vorticity distributions as a
function of time.

A distinct mathematical normalization based on the parameters at the maximum
core radius is also addressed. The later shows that it is possible to collapse the
velocity time distributions into one single curve, which also exhibits a self-

similarity distribution.

Since the outer filament’s diameter will extend to a larger value, it is
recommended to use the core radius as a reference scale. Based on the governing
equations of swirling fluid motion i.e. those presented in chapter 2 and the set of
assumptions given in chapter 3, we can normalize the governing equations using
the parameters at the core radius, see figure [4.2]. Therefore the dimensionless set

of equation are given by:

a[‘{olz[a'_‘{‘a+ia‘/_o _!:}_ 1)
at ar- r r ,--
a_Vve (4.2)
ar r
G(riy = L9 Vel (4.3)
r or
Where, 7 =— 7o =22 g=B g v
R v, " R R
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This set of equations describes how is tangential velocity; axial vorticity and
radial static pressure can vary along the vortex radial direction at different time
levels. Since the static pressure and the axial vorticity distributions depend on
the tangential velocity, therefore, we have to start solving the radial momentum
equation first. We can apply directly the solution derived via Bessel function
based on the separation of variables used to solve the case of confined vortices.
However, according to the unconfined natural boundary conditions the solution
will be slightly different

Refer to the unconfined line vortex presented in figure [4.2], provided that the
vortex induced swirl velocity must satisfies the unconfined boundary conditions.
Which implies that, the swirl velocity is null at the vortex center i.e. at

r=0therefore, Vy =0and it tends to zero as the vortex outer radius tends to

infinity i.e. at r=oo, therefore rV,=1. Theoretically we can’t let r tends to

infinity, however it is possible to assume that can reach maximum possible value

| = . s
which is, —. Consequently Vo will tends to a minimum value, which is g.

Since the general solution of swirl velocity is given by:
Ve (;,;) = Ane‘_["'!"'.ll (m;)
Where, A, and m are constants. Determination of the constants requires

applying the set of boundary conditions that were outlined. The first boundary
condition is automatically satisfied, while the second boundary conditions leads

to a complicated equation.
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ﬂ = Ane_["’:;'./, (%) (4.4)

This equation cannot be solved explicitly to find the constants. Therefore, a
mathematical transformation is required in order to make the boundary

conditions homogeneous. This transformation is given by:

V,(e.r)=B*r-Va(,r) (4.5)
One can prove that, the transformed velocity satisfies the momentum governing
equations. Therefore the solution will be similar to the previous solution derived

in chapter 3. However the detailed analysis is listed in Appendix B. The original

boundary conditions are then given by:

For £ >0
1. As r=0. yields V' =0 consequently Vo =0
2. As r= % yields V4 = 8 consequently Vo =0

The solution of the transformed swirl velocity is then given as,

Vo)=Y A, e P47 (A7) (4.6)
n=}
Where,
A =2 I/Jq V ot =0.7J,(BA rydr 1.7)
= rv o(r=0, .
n j:(/{ ) I’} r | " r)( r

n n’ g
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Since we are looking for the unconfined solution based on the swirl velocity,
therefore reverse substantiation should be made by using equation (4.6) and
(4.5). That will give the analytical time-radial vortex induced velocity

distribution.

Vo(t.r)=Br~Y A,e 4 (B3 7) (+.8)

n=t

Consequently, the distributions for both vorticity and pressure are given

respectively,

— . | & SRS .- = gt .- =)
Q(r'[) =[2ﬁ— _:Z“‘ne 154, ,I‘ll(ﬁA‘ur) —%ZA"") s II[‘/';(lHAnr) —‘ll(ﬂﬂ'u’-)l (49)
r .

n=l = n=l

(ﬂZ;_ZAne—[’:":;l‘]l(/{";)] l[ﬁZ;_ZAHE_H":III‘II(Z'";)J
n=i

I =;j . j el (4.10)

r

This solution is examined for the same three initial velocity distribution.
However each vortex model is presented in a separate section. A distinct
comparison between the three models at the early [t=0.1] and late [t=5.0] decay is

addressed.
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4.3 Decay of The Potential Vortex
In this section, we will examine the potential vortex model as an initial velocity

distribution. Since the induced swirl velocity is expressed as:

Va(t-Or)=— O<r<eo

~ |

Based on the transformation, the velocity will take the form:

Vot.r) =B r —Ve(i=0.7)= B - = (4.11)

r

The coefficient A,, see Appendix B is given by:

-28
/lj (4,)

n o

(4.12)

n

The swirl velocity, axial vorticity and static pressure distributions are given as:

- - = e -2 LR .-
Vo([.r):ﬂ'r-zlij ;[i )ew/"' 'l./,(,[)’/t"r) (4.13)

n=1 *qv o

s nd -2 LI -
28° -Lz/l 2B ns, B, r) -
r

_ S A (4,)
O (14
o -2 Ny RN - i
=S 2R AR (BATY - 1. (BAT)
?_;/l,,l,f(/i,,)e Y. (A
o -2 PN - i - ('
J‘[,B ‘B e 1A 4 "J,(,B/l,,r)] ar "/r
n={ '1:1]0 (/{ ) ’ (-1 15)

28 PRrEA o P
ST (BAN | ar
J{ﬂr ,,,/ll( ) (B r] rir

n>< o

The tangential velocity, axial vorticity and static pressure distributions are

shown respectively in figures [4.3], [4.4] and [4.5].
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Fig. 4-3 Tangential velocity decays, using potential model. [Unconfined Vortex]
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Fig. 4-4 Axial vorticity decays, using potential model. [Unconfined Vortex]
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Fig. 4-5 Radial pressure decays, using potential model. [Unconfined Vortex]

[t is quite interesting to compare the results between the present theorvy and
solution given by Oseen Hamel model.

The time dependent vortex model of Ossen Hamel is given by:

=1 -7
Vg ==|l-ex

— vV
Where, Vo=—2, r=— &t =—
V()

The tangential velocity distribution of the potential model is compared with
results obtained by Ossen model at [t=0.1]. The results are tabulated and plotted
in table [4.1] and figure [4.6], respectively. This comparison shows that, when

[B=0.01] the similarity and that obtained by separation of variables solutions
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produce no differences up to and including fourth decimal place. Therefore, we
find that this value of B gives a radius, which is sufficiently far to represent the

unconfined vortex flow.

Table [4-1] Comparison of the tangential velocity on the basis of
present theory and Ossen solution at t=0.1 and B=0.01

r Vo-Bessel | VO-Oseen Error

0 OIN/A 0
0.125{ 0.306441| 0.306475 0.0034
0.25| 0.578585| 0.578619 0.0034
0.375| 0.790429| 0.790432 0.0003

0.5| 0.929498( 0.929477 0.0021
0.625| 0.99745| 0.997434 0.0016
0.75| 1.006579| 1.006586 0.0007
0.875| 0.974292| 0.974309 0.0017
1] 0.917911} 0.917915 0.0004
1.125; 0.851342] 0.85133 0.0012
1.25| 0.783918| 0.783907 0.0011
1.375| 0.720828( 0.720831 0.0003

1.5] 0.664251] 0.664262 0.0011
1.625| 0.614544| 0.614549, 0.0005
1.75| 0.571165| 0.571158 0.0007,
1.875| 0.533261] 0.533252, 0.0009

2| 0.499977| 0.499977 0
2.125| 0.470574| 0.470582 0.0008
2.25| 0.444438| 0.444443 0.0005
2.375| 0.421056| 0.421052 0.0004
2.5| 0.400007 0.4 0.0007

2.625| 0.380954| 0.380952 0.0002
2.75| 0.363631] 0.363636 0.0005
2.875| 0.347821| 0.347826 0.0005
3| 0.333335| 0.333333 0.0002
3.125] 0.320005 0.32 0.0005
3.25| 0.307695( 0.307692 0.0003;
3.375| 0.296293| 0.296296 0.0003

3.5( 0.28571] 0.285714 0.0004
3.625| 0.275862| 0.275862 0
3.75| 0.266671| 0.266667| 0.0004
3.875| 0.258067} 0.258065 0.0002
4] 0.249998 0.25 0.0002
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Fig. 4-6 The tangential velocity comparison between the present theory
and Ossen solution at t=0.1 and g=0.01
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4.4. Decay of Rankine’s Vortex

Using Rankine’s vortex model as an initial velocity distribution. That is,

0<r<li

Vot =0.r)= oo
r< —

- ~I

Using the transformation mentioned before yields,

. [ns-1 0<rs<i
Vet =0.r)={ - - 4.16
ol : Br- L l<r< L (+.16)
r B
From Appendix B, the coefficient is given by:
A, -M (4.17)
AJEA)

Similarly, the swirl velocity, axial vorticity and static pressure formulas and their
distributions can be found. Results are shown in figures [4.7], [4+.8] and [4.9]

respectively.

- - = o= ABY
Vott.ry=f"r-Y —"2" ¢ '.I( A, ) (4.18)
' d Z’ FNEUR, bt

nT oo

26° -—i———;l ,(’:"'B) AN (BA, )
Q(r.1) = = A () (+.19)

L —4J,(BAD) “,,,,
Z J (BA,r) =T, (BA,r)
22. G (J,(BA,r BA, )]

n- oo

()

1 > 4.[ (/{ ﬂ) = ﬂ , ,
Prr=y — e (A, )
k n={ /1.", ('l )

n [

Og__.\i

r

.- -4 (J.,,ﬂ) -[ﬁA 0 .
oy J\(BA,r
ﬂ ’ n=l l-./ (/1 ) l(ﬁA"’)

n o

(4.20)

0 r
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Fig. 4-7 Tangential velocity decays, using Rankine’s model. [Unconfined Vortex|

B =0.01

2.2F
i 4

0.1

1.4r 025

v
~

o6f -

0.2

0.2
-6 -2 X

Fig. 4-8 Axial vorticity decays, using Rankine’s model. [Unconfined Vortex]
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Fig. 4-9 Radial pressure decays, using Rankine’s model. [Unconfined Vortex]
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4.5 Decay of Vatistas’s n=2 Vortex

Using Vatistas’s vortex model at n=2 as an initial velocity distribution. Yields.

r

()

Here we had to use another transformation, which is given by:

Vg(;=0.;) =

1} -

r

VeG=0=—L" : (4.21)
(“”'5 )2 (1+;‘)2

From Appendix B, the coefficient is given by:

246° L
A, =— ~J,(4) (4.22)
J.I(/l,,)(,l g1+ g J
I
vp( 7 2 o
Where H = I — | J(BA,rdr. Hcan be found using numerical integration
l+r

methods. Similarly, the swirl velocity, axial vorticity and static pressure formulas

are:

e VAT (BA,T) (4.23)

H e P40 g (BA,r)

(=J,(4))-

Qr.n)= (324

e AN (BA Y = T (BA, )]
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[}

(= J,(A)) - H e %1 (B, )

M= . (4.25)

(—J,(A)) - H e %1 (B2, 7

S -

The results for the tangential velocity, axial vorticity and the radial static
pressure distributions are given in figures [4.10], [4.11] and [4.12] respectively.
Also figure [4.13 a-c] shows a comparison between these parameters at the early
[t=0.2] and late [t=5.0] decay. The results showed that, the early decay of the
potential overestimate the tangential velocity, vorticity and pressure. While
Rankine’s decay have almost 20% difference from Vatistas et al n=2. Therefore,
the early decay has considerable differences among parameters. These results
were expected from the steady solution. The late decay showed that, the
tangential velocities of the three models have almost the same value
asymptotically. However the vorticity and the pressure of the potential and

Rankine model are slightly different from Vatistas et al n=2 model.
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4.6 Maximum Viscous Vortex Core Growth

The vortex-induced velocity is sensitive to the vortex core structure and the
viscous vortex core growth. The induced velocity of the simple vortex models
assumes constant viscous core size. The diffusive core growth with time was
firstly explained by Oseen-Hamel. In this part, we will address the maximum
viscous vortex core radius growth for various initial vortex models (see figure
[4.14]). Using curve-fitting techniques, we can build simplified equations that can
approximately describe the growth of maximum core radius and maximum
velocity. The results are tabulated, see table [4.2] and [4.3]. Maximum induced
swirl velocity, maximum vorticity and maximum radial pressure with time for
each initial vortex model have been investigated as well, see figure [4.14 b-d].
Based on the previous analysis an analytical expression can be derived. Recall

equation (4.8), which is:

Valt.r) =ﬂl;-ZA,,e“":""’;'J.(ﬂA,,;)

Vo _ 2l
oty

¢

=3 A, (B4, RL) (4.26)

n=l (3

Since the induced swirl velocity attains its maximum value at the core radius,

hence the slope of the swirl velocity at the maximum core radius must vanish at

this point yields,
Vv
WV, =0.0 (4.27)

dr,



(=
=
]
™

dr

n=1 c

o 1 = i d r
H—1=Y A4 g (A —)L _
R‘.J Z " l~lB n R r=r,

I N 1m0 B r r
P2 A VAN g (A B—) . (B, —) |4,
ﬂ o 'le 2 ( Il( Ilﬁ R’: ) -(ﬂ n R )J r=r,

¢

4

n={ -

ﬂ'.' =ZA"e-[ﬂ3,:“3}| __/{"_ﬂ[j”(/{"ﬂ%) —J:(ﬂ/l" ;m ))

¢

Let r—m =In
R,
B = Z A"e‘lﬂ:,i;h '{"T'B(j"(/luﬁa) ~J,(pA, a)) (4.28)

The Bessel function definition in terms of positive integer (n), can be expanded

as.

- i l T [ - 3, [ . 6, .6
(A, Lr) =l =—(A,B8)(r,) +— (A, (r,) ————(A,B8)°(r, )" + ...
(A Br,)=1-—(4B(r,) oy B () T P’ ()

303, Bro) = é(&.ﬁ)z(ﬁf - éu‘,ﬁ)%ﬁ)‘ b (A BV ) = e

® Q3
T C

Since the order of magnitude of fr, is relatively small, consequently we can

"

neglect higher order terms such as (fr, )* &c(ﬂa)6 with respect to (Br.)’

— I —
J,(4,Br,) = l—z(i,,ﬁ)‘(r,,,)‘ +0(fr,)!

4 a I. T .4
JZ(Anﬁrm) =§(inﬂ)-("m)- +0(ﬂrm)

J(ABr,)=J,(A,Br,) =1 —%(inﬂ)z(a)z +0(fr, ) (4.29)

nt

M - ., /1 . M T A —_—
Since we have f7 =) A e ¥4 ’—;’B—(l —%(A,,,B)'(rm )" +0(fr,)* ) therefore we can

n=1 -

solve for r_ :

m
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iA"(’l_'_ﬂ_)e-l/f:z;.’il - B

+0(fr, )" (4.30)

Equation (4.30) is an explicit expression that determines, how the maximum
vortex viscous core growth varies with time, for given values of

B & A, corresponding to each initial vortex model. Simplified equation that can

predict the maximum vortex viscous core radius as function of time is presented

based on the curve fitting approach. Therefore, the core grows expressed as

r =dlt.f (4.31)
Where a & b are arbitrary constants varies from initial vortex model to another

see table [4.2].

Since, that the maximum viscous vortex core radius growth can be formulated in

the form of r_=a(;. )h, hence the normalized time parameter can also be

”m

introduced in terms of the maximum core radius. Therefore,

: =[iJ” (4.32)

a

Consequently, the maximum induced swirl velocity can be expressed as a

function of the maximum core radius as well.
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Voo =81, -3 Ae ) J (BT (4.33)

If we now dimensionless the induced velocity expression of equation (4.8) using
the maximum swirl velocity given in equation (4.33), that led to another swirl

velocity expression, which is:

oo

Br=3 APy (A )
nzl — (4.34)
— = 84, ';"JH

ﬂzrln —ZA"e ~ Jl(ﬂ/{'n;;)

_ ‘79(;,;) _
Vg)m‘

Vo

A simplified equation that can also predict the maximum swirl velocity as
function of time is introduced based on the curve fitting approach. Therefore, the
maximum induced swirl velocity takes the form of:

Vlhuuu = (.—. (435)

- o
()
Where ¢ & d are arbitrary constants varies from initial vortex model to another

see table [4.3].

Here the swirl velocity is based on the maximum core radius as a reference scale.
While the non-dimensional time enter the expression in a parametric way.
Therefore, the distinct time distributions of the induced swirl velocity based on
various initial vortex model shown in figures [4.3,4.7,4.10], will fall into a single

curve as shown in figure [4.15]. This results shows that Rankine model
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overestimate the tangential velocity in percentage of 4% at the early decay
relative to the other formulations.

Also it is evident from figure [4.14] that the divergence of maximum core radius
and the maximum velocity versus time among the three profiles of different
initial conditions is largest during the beginning of the decaying process. The
early phase decay of the potential model shows that, it over estimate the
maximum parameters. Therefore this model has a considerable decay lag at the
beginning. Although, initially the maximum vorticity and maximum pressure for
both Rankine’s and Vatistas's n=2 are equal. The later show leading vanishes.
The late decay such as at t>~ 5.0, the curve representing The potential, Rankine’s
vortex and Vatistas'n=2 tends asymptotically which implying that beyond this

time level, there are no appreciable differences between the three models.

= Potential | [a}
4 — Rankine ,
— Vatistas et al n=2
31 i
max. 2
1
09}
0.8
0.001 0.01 0.1 1 10
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Fig.4-15 Swirl velocity decay will fall into one curve for a various vortex model
Compared with Oseen-Hamel model. [Unconfined Vortex]
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Table [4-2] Maximum viscous vortex core radius growth on basis of various vortex

models. Using curve-fitting approach. [Unconfined Vortex|

Vortex Potential Rankine Vatistas Lamb Ossen
- - 10464 - \0.4078 0.4377 - 03
rm = | 23413 ) 2.5696(r. ) 24312(. ) 22418, )’
a 2.3413 2.5696 24312 22418
b

0.464 0.4078 04377 0.5

Table [4-3] Maximum tangential velocity growth on basis of various vortex models.
Using curve-fitting approach. [Unconfined Vortex|

Vortex Potential Rankine Vatistas et al n=2 | Ossen-Hamel
V 0.3191 0.3074 0.2918 0.3191
) max —_— _— _— -
= 0.5 0.2822 - )042331 (— )u 3
(‘ . ) (; ) (t . r
c 0.3191 0.3074 0.2918 0.3191
d 0.5 0.2822 0.2381 05
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Chapter 5

Conclusions

A novel analytical method was developed to mathematically simulate the decay

of a strong, concentrated vortex. The governing diffusion type equation was
solved using separation of variables via Fourier-Bessel expansions for the
tangential velocity. Three initial velocity shapes; the potential, Rankine’s, and the
n = 2 vortex were explored. The last has been shown not suffer from anv
theoretical contradictions. All the relevant fluid properties were indeed
continuous and bounded, and all their derivatives preserve the same
mathematical qualities as well. The methodology was kept general so as to

accommodate the formulation of any initial steady-state vortex profile.

Although there were found no appreciable differences among the three near the
center of rotation and far away, they do produce substantial disparities in the
mixed-vortex region in the neighborhood of the core. Finally, it is shown that the
time history profiles of the velocity, and thus the pressure, exhibit a distinct self-
similarity characteristic. The last made possible the collapse of the various time
history distributions into a single curve that is solely a function of the space

coordinate, while the time dependence of the phenomenon enters parametrically.
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This work is a natural evolution from steady state family of algebraic vortex
equations proposed by Vatistas et al(®¥! over a decade ago, towards the
formulation concerning the time reduction of an isolated, strong vortex. Besides
the applicability of the subject matter in many areas of science and technology,
the completion of the work was triggered by the remark made by Rossow (281
that: “the use of the previous algebraic equations for determination of a decay
rate for the vortex is not clear”.

The methodology is kept general enough to accommodate the other members of
the Vatistas vortex family model, or any of the known vortex formulations such
as Burgers, Taylor’s, Scully’s, or even two celled vortices such as Sullivan’s and

Vatistas [391.
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Appendix A
Bessel Function properties and important integrals

Bessel function arsis as solution of standard differential equation

,0°
dx

‘<

X

[F)

+xa—y+(xl—n2)y=0 n20
dx

Which is called Bessel’s differential equation.
The general solution of this type is given by
y=CJ, (x)+C,Y (x)
Mathematical Fact
e J, (x) Iscalled Bessel function of 1st kind and order n, which must be
finite as x approaches zero.

e Y, (x) [scalled Bessel function of 27d kind and order n, which is

unbounded solution as x approaches zero.
Since our solution must be bounded, so we are interesting in the solution of

Bessel of 1t kind and order n.

J=—X |- <, x _
U T+l 22n+2) 24Q2n+2)Q2n+dy T

_ i (_[)r(x//z)nklr

o r'Cn+r+1)

Where I'(n +1) is called Gamma Function, if n is positive ['(n+1) =n!
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Basic Recurrence formulas are given by:
2n
Jlnl (‘t) = ‘[n ('t) - ‘ln-l (x)
X
l
= ;[‘,n—l (I) _‘, nfl(‘t)]
Fourier Analysis

Based on Fourier series analysis, we can show that if any function f(x)satisfies the

Dirichlet boundary conditions there will e exist a Bessel series expansion having the form

flx)= ZA,,J,,(/I x)

n=l

Where 4, is the positive roots and A, successive constants

A, = o, (A, x)f (x)dx
nrl( n J‘

[mportant [ntegration

- I= J'Jl(/{";)d;=:{—ljl,(l,,r)+C

"

2 1= [rLAndr= s, C

n

7
Hence J, (4,r) = /{if,,(/i,,") +J,.,(4,r)
r

"

Letn=1 -/, (4,r)= iJl (A,r)+J,(A,r) substitute back

n

rrf 2
sl = '/l—(:l—r‘/l(/lnr) +J0(/ln’.)j *c

" n
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Appendix B

Detail derivation of A, for different Vortex Models

1.Confined Vortex

Case Studyl
The tangential velocity is free to Slip at the outer
diameter

Rankine’s Model [Slip]

I - - p— - -
IrVg(l=0.r)./,(/i"r)dr |
7 - - - - —_
A, =0 =—— [rVo=0.n7,(4,ndr

b - - J- n
J'r./,'(/lnr)dr o g
0
- B8 -1
S L e - -
A=——[r F Jy (A, rdr
J"-(/l,,)n - l
r—=
’
(B, p2 - -
J"-.-[ia—ll‘/l(/lur)dr
—_— 2 <O ﬁ_
- Jl /1 1 5 _ _ ! - -
o (%) [raG,ndr + [-1,04,rdr
L8 s
g B 2 s
: A W L b
w Ut L+ Gl& L = | [ (4, ndr =[——]|r J,(4,rdr
‘ll)-(/lu) l . } l (‘).’_ ‘B- l ﬂ- 6.'_ |

Using the integration techniques Appendix A.
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1.=[ﬁ1"1[ iy (zl,.ﬂ)+ff</l,.ﬂ))

n n

3__ 2 o)
£ 4% ( 2 Jl(/l,,ﬂ)—J,,(/l,,ﬁ)]sinceJ:(/l,ﬁ) ]J (4B ~1,(BA,)

A.B
_B -l
== [Ml(z A - J,,(A,,ﬂ)]

G

—! J5(A,B), Similarly

J.(4,) _p°
A

I
2 - - 2
[7=F jl(/lnr)dr =/l—-2'\]|(/l")_ /l 2 n A | n _O

n

2 ! _ N
[lz—J—(/l_)_g Jl(ll:rﬁ)&[j,:jjl(/l"r)d =j,,E/ln)_J()(/;‘nﬂ)
" " B " "
B - 1,4, B
Jo(4 (A
7 £10,a.m)- PR Al
An = 12 +
g, (4,) [
z—(— ‘,u (/ln ﬂ) + ‘/n (iu ))
-8 - B) |44, B) + 1, (BA )—(—2—\1 (A, B)
-I:(/l”) A“ 2 " /1" o\ rJ 2y, o n ﬂ/{"J 1 n
_—45(AB)

n ﬂ/lz_l’(,l)

n- oo

Vatistas's Model [Slipl

[rvea=0r11,,ndr

; T
A, =t — =< [Vt =00, Gundr
frii,ndar oo
0
l_
2 l - 4 B+l - -
A, =— J7 c|r—r | |/1(4.)dr
J (A0, (ﬁll +l);\ et
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bl -2

I -
2 r r

== o |/, (4, rdr
J, (45 (ﬂll+l)7 u 7Y
[ntegration techniques Appendix (A)
I o7 - -
A, =— y . J,(/l,,r)dr+J' —J (4, r)dr
J (4 |5 (ﬂzl +l)7 o (gu 7
! -2 o
A":,lj 2/1 1 I_le,{ J‘ ~J (4, r)dr
W) C ")(,Hy-i-l); . ,,)Q(ﬂu+;21

-2 | J,4) 1

= JA)| A, (,321 +l)l£

+ H

n

|
2 !

{
r

Where, H = J,(4,r)dr |, found by numerical integrations

=2

S
0 A +r

Case Study 2
The tangential velocity isn’t allowed to slip at the outer

diameter.

Potential Model [Non Slip]

n

‘Ij (/ln ) 0 n( " ) 0 N o A‘Il) 0

I I B - -2 - -
A IrVg(l =0,r)J, (4, rdr = Y2y F(—;-jjl(i,,r)dr =— le(/l,, rydr

A, =2 (J,(A)-1)

n h

J(4,)

n

L1l



Rankine’'s Model [Non- Slip]

j' rVe(t=0.r)J,(A,r\dr

9 - - _ _ -
A, =2 | =— Irvo(t=0.r)J,(i,,r)dr
2 - - J(;(/t,,)o
Ir.l,‘ A, rdr
0
f'ﬂ _ ) B _ B _
FVa(t=O,r)Jl(/lnr)dr 0<r<p
?) Q
A=— 4 +
jl:(ln) l
P%(E:O.?)JI(,{nF)d? f<r<l
¥
J",Jl(,l,,?)d? 0<r<p
3 B
)
A=— < +
oA,
j/,(z,, rdr B<r<l
B
1 (28 ik )
N1 4B - 1,4, 8)
7 Zan-L-ra)
2
A, =——1 +
JoA |
FRLLCIAACN)

4 o2 2J,(4,8) 0
YA A BAT(A,)

nv o n a

Vatistas’'s Model [Non Slip]

i
‘.-r‘?g (; = O';)Jl (/{‘n ;)d; i
, - - -
A =2 =——— [rVot=0.r)J,(4,n)dr

n 1 . _ _ j: /{
J-rjl“(/l" rydr o ()

0




A, =— fr—"— 716, n1dr
] :

J (4,) (ﬂy +;21),
_2H
n ] 1” (/{" )
! ;3 _
H = J-———-—l J,(A,r)dr,Can be found using numerical integration methods.
0 a —uy
Y+

2.Unconfined Vortex Analysis

Boundary Conditions

Refer to the unconfined line vortex presented in figure [4.2], provided that the

vortex induced swirl velocity must satisfies these boundary conditions.

L. Tangential velocity is null at the vortex center i.e. at r =0 therefore, Vy =0

2. Tangential velocity tends to zero as the vortex outer radius tends to infinity i.e. at r=se,
therefore Vg =1.

ie. Vg =0, Theoretically we can’tlet r tends to oo but it is possible to assume that r can

reach maximum possible values which is — consequently Vs will tends to minimum values

whichis A ie.

— - 1 -
<> Lim._ l(;Va)zl sat r=—=->5Ve=f,
r_.i ﬂ
Solution Model
Vel Ve 10Vy V
Back to the general swirl velocity equation [ .0] = _,0 == - _:) |, using the
ar or-  r dr 7

separation of variables technique.
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Let Vo(t.r) =T()R(r)

T(;) Indicates only a Function of time. R(;) Indicates only a function of the vortex radius.
T()=Ae™ " and R(r)=BJ,(mr)

Va(t,r)= Ae™ "BJ (mr) , Let A, = AB

Ve(t.r)=A,e ™ (mr) Where A, =Constant
Determining the constants requires applying the set of boundary conditions

illustrated above. The first boundary condition is automatically satisfied, while
the second boundary conditions leads to a complicated equation.

[ = A"e-lm:ilj (ﬂ)
"B

this equation is complicated; we cannot solve it explicitly to find the constant

Therefore, we have to resort to a technical mathematical transformation without
losing the problem generality.

Let

V; (t.r)= ,317—&79 (t.r) . Differentiate (3.25) with respect to ror

Vot,r) 3V, (1)

at o
LaVai,r) _ B0 13V,a.n)
I T
3 Va(tr) 3 V,(r)

ar’ ar
~Votr) __ B Vo)

r roF
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Therefore, av_” =[a'_v1" +Lav_" _‘i:’l
dar or- r dr T

Solution of this equation can be solved in terms of Bessel function.

Vo(t.r)=A,e™ "], (mr) The original boundary conditions must be rewritten again
relative to the transformed model equation. Boundary conditions for the

transformed equation are initially given as: forz >0
1. r=0-V,=0 -V, =0
2 r=— Vs =p SV, =0
By applying the 2nd boundary condition to the model equation

0=J, (%) ,Letd, = %, A, is the zeros of the Bessel function J, which is

~. 0.151985 0.015399 0.245275
A, =n{n+0.25- + = ;
(4n+1) (dn+1y (dn+1)

Consequently, the velocity be attained by summation of enough terms.

Vg . - _ _
jrv ot =0.7)J (B, r)dr

Vo)=Y A, 4 (BAT), A, =2—0
=l [rsi(BA,ndr
0

Therefore the tangential velocity is Vo(,r)=87r- Y. AP g (BALT)

n=l

The Potential Model

24 ”f oG =010 (BA. Py
=— rVe(t=0.rJ (BA,rydr
jl:(/lll)() :

n
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280 1 V8

A" N ./,:-(/ln) (;“(ﬂ r l)J (ﬂlﬂ r)dr nd J’jl(ﬂ/i'u ;)d;:;l—-[j”(/i" ) N ”
0 &,
ve | 2
27 7 (BA Pdr -—J, A)+——J (4

!ﬂ r J(BA,rdr=B% ﬂ - 2 (4,) B 1(4,)]
A_2ﬁ3 B S, () + =5 A+ —[J,(4,) =11 | & S (4,) =
i Gl iy ey

_7ﬂ
" /ln’lu(/l)

Rankine’s Model

v _ o
IrVe(t=0.r)Jl(,b’/l"r)dr
0

2 VB - -

An = = : rVE([ =O~ r)-/ (ﬂ’iur)dr
Ve J,;(/l,,)(! ]
J.r.l,'(/l,,")d"

]

!

| 1B -ur s 4, Briar
P 2,5' 0
iy j:(/‘i") Vg R _
J'[,B-r —1)J,(4,Br)dr
|

[18> -ur s 4, Brdr
2,62 0 2’[)::

L ulNY + S04, =-——
Jo(A) |y, vp JIA)

{827 1,4, Brydr - _[J (A,Bridr

L1

{f,+1,+1.]

1 - ] . -
Where, I, = [r'(B* =11/ (B4,r)dr =[B* - U [rJ,(BA,rdr
0 0

2
1, =[p* —l][—%] (A"'B)+,8:/lz jl(/i,.ﬂ)J

n
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va_, _
[,=p [rJ(BA,rdr
1

gt
(-

Aud o (A,) + 20, (A,) + 4,820, (A, B) - 21, (i, )& 1, (4, ) =0

2
n

I, = A A+ 4, B2 (A,B8) =21, (A,B))

B2

vp
== J,(A,) Ty(4,P5)
[}= ‘Jl(,ﬁll,,")d"'[3= o n’ - n
f" lnﬂ A’nﬂ

Bv using I, [, [, substitute back

_—H(4,P8
Al (4,)

" 4]

n

Vatistas'’'s Model

7;62 v . _ — - -
A, =— rVe(t=0,r)J,(BA, r)dr
Ry i
21 VB g - o - -
:jz(,l : f Tro- ! J(BA, rdr

A el (7

2° e, s ;2 o
A, =— {Iﬂ'r'J,(ﬁi,,r)dr—I =J (BA,r)dr

Va8 —1
-J (/1,,)+—J (A, )J [—— 7., r)dr) J,(A,)=0
! l+;” )

2° 1
A, = jzﬁ (=7,(4,))
o u) /l"ﬂ(l + ﬂ4 )[
i
va( T\ o
where, H = J'[ — | J,(B4,r)dr ,H Can be found using numerical integration.
l+r
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