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Two Degree-of-Freedom Modeling and Robust Control of Chatter
in Metal Cutting by Using Piezoactuators

Jian Wang

Abstract

Self-excited vibrations, also called chatter, are known to cause detrimental effects on
the machined surface finish while decreasing the machining efficiency and
productivity. Chatter is small-amplitude and high-frequency vibration, and an active
vibration control providing a force to the cutting system is necessary to overcome the
chatter effect. To provide such a force, piezoelectric actuators have been introduced

into the metal cutting systems.

In this thesis, the metal cutting processes are described as two degree-of-freedom
systems with two-dimensional or three-dimensional forces. One of the main
contributions in this thesis work is that the hysteretic characteristic models are
incorporated into the chatter suppression control in metal cutting systems. It should
be noted that this incorporation severely complicates the tasks of control iaw designs
and analyses. In order to overcome the chatter effect, several robust adaptive
control schemes are proposed for different scenarios in this thesis. The simulation
results show significant reduction of chatter by using the proposed adaptive control

laws in all the cases.
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Chapter 1

Introduction

Introduction - the general theories of the chatter vibration control in the metal cutting processes

and the literature surveys are given in this chapter. The contributions and organization of this

thesis are also outlined.

1.1 Main Objective of the Thesis

The main objective of this thesis work is to suppress the chatter vibrations during turning
processeses, the mathematical models of which is described as two degree-of-freedom of the
dynamic systems. By the aid of piezoelectric actuators, the study designs corresponding adaptive

control laws for both two-dimensional and three-dimensional cutting force models in this systems.
1.2 An Industrial Problem in Metal Cutting — Chatter Vibration

In metal cutting, such as turning, energetic vibrations are oﬁeh encountered. These vibrations give
rise to undulations on the machined surface and excessive variations of the cutting forces, which
jeopardize the life of the cutting tool and the machine. Characteristic surface patterns caused by
these vibrations in turning are shown in Fig. 1.1 [1]. in Fig. 1.1, points 4, B, and C indicate one
cycle of vibration, 4-B and B-C represent the stroke of the workpiece approaching the cutting edge

and the recess stroke, respectively. It is seen that because of the phase lag of undulation, the area



being cut in an approaching stroke is less than that being cut in a recess stroke, and therefore the

cutting force in recess stroke is larger than in approaching stroke.

Cutting Direction

Figure 1.1 Undulations on the machined surface caused by chatter

Under some cutting conditions, mainly for cuts with a small chip width, vibrations do not occur,
and the cutting process is stable. However, under some other conditions, vibrations occur due to
the increasing forces, the cutting process becomes unstable. It will be mentioned that it is always
possible to reach instability by increasing the width of chip. These vibrations belong to the class of
self-excited vibrations, and the source of the self-excited energy is the cutting process itself. In

metal cutting, such self-excited vibrations are referred to as chatter in [2].

Because of the above-mentioned effects, it is generally considered that cutting conditions must be
selected so as to avoid chatter. As a result, the choices for cutting conditions (i.e., speed, feed rate,
depth of cut, type of cutter, material, and so on) for a particular machining operation is often
limited to realize the optimal conditions with respect to surface finish, tool life and machining

output.

The phenomenon of chatter has been studied with the aim of creating rules by means of which the
choice of cutting conditions can be made and, the design of machine tools with higher stability can

be realized. The latter issue is the predominant one in the present study.

“Chatter is a nuisance to metal cutting and can be demonstrated on any chip-producing machine

tool. The effects of chatter are adverse and affect surface finish, dimensional accuracy, tool life



and machine life. Undulations in the surface finish are commonly referred to as chatter or chatter
marks. A great many factors contribute to chatter marks. In the case of turning, the basic
mechanics of the cutting process itself results in slide motion, perhaps caused by unbalance in the
drive system, servo instability, or stick-slip friction, can result in periodic variations in the finish.
However, forced and self-excited vibrations are the major sources of the problems about the finish

of workpieces referred to as chatter.” [3]

Chatter, in metal cutting processes, is the self-ecxited vibration caused by the lag of fluctuation in

the horizontal cutting force behind the horizontal vibrational of the workpiece [9].

The properties of chatter, as self-excited vibration, are 1) small amplitude and high frequency; 2)

the forces that sustain the vibration are created and controlled by the vibration itself.

As an introduction to the chatter theory presented in the following chapters, the basic principles of
self-excited vibrations in metal cutting will first be explained. Three principles will be presented,
each of which in itself may be a sufficient and independent source of vibration energy. Although
they will be discussed separately, it will be mentioned that in practice they all act simultaneously.
The explanations will be given for the simplest possible cases of vibratory systems. These

principles are:

(1) The first principle is called as “thé primary chatter” principle. It accounts for the fact that
the cutting tool is cutting on a “fresh” surface of the workpiece, i.e., the successive passes
of cutting tool do not overlap any previous ones on the workpiece. For turning, this
principle can dominate in the first cutting revolution, and it strongly depends on the pre-
condition that the workpiece has a smooth surface when it is “fresh”. An example to

primary chatter is shown in Fig. 1.2.



Workpiece

Cutting tool / '

/S

Figure 1.2 An example of primary chatter on the surface of a square thread

(2) The second principle is usually called “the regenerative chatter” principle. The simplest
system to which it can be applied is a single degree-of-freedom system. With the exception
of artificially arranged special cases, the tool always subsequently cuts the part of a surface,
which it has already been cut during the previous revolution (in turning). Therefore, as
shown in Fig. 1.3, if there was a vibration between the cutting tool and the workpiece
during the ith cut and the produced surface has become undulated, the chip of the (i+1)th
cut is removed from that undulated surface. If the amplitudes of the vibration in the
direction of the normal to the cut surface in the ith cut and the (i+1)th cut are denoted by ¥,

and Y, then the amplitude of chip thickness variation is (¥-Y;). Here, both of ¥ and ¥, are

time vectors, so that Y(r)=q¥,e™” where ¢ is the phase shift angle between the two

subsequent undulations.

Workpiece

Cutting tool /I/i}ﬁ
&

Figure 1.3 An example of regenerative chatter in the turning process
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(3) The third principle of self-excited vibrations in metal cutting, “the mode coupling”
principle, can take place with at least two degree-of-freedom (i.e., two modes). An example
of the simplest form of such a system is illustrated in Fig. 1.4. It consists of a mass m
attached to two springs of different stiffness acting in two directions X; and X which are
mutually perpendicular in the simplest case. If vibration occurs with a frequency @ in Fig.
1.4, the mass vibrates simultaneously in both directions X; and X, with different amplitudes

and with a difference in phase. Thus, its resulting motion is an elliptical one.
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Figure 1.4 Mode coupling chatter in a system with two degree-of-freedom

The primary chatter is generally called as “wave producing” chatter while the regenerative chatter

is referred to “wave removing” chatter.

Focusing on the chatter directions, Tobias and Fishwick [4] distinguish that there are two types of

chatter, Type 4 and Type B, based on different chatter directions. This is shown in Fig. 1.5.

(1) Type A chatter occurs when the amplitudes lie in the plane perpendicular to the cutting

direction.



(2) Type B chatter occurs when the chatter amplitudes have a component co-directional with
the cutting speed regardless whether the amplitudes are co-directional with the feed or
perpendicular to it. Furthermore, it is shown in [4] that type 4 chatter is a special case of

type B chatter.

Workpiece Chatter of Type A (y)

A

FEAN

Cutting tool

o AR

Figure 1.5 Chatter of type A and type B in turning process

It will be assumed [4][5] that chaiter can exist in either the direction 4 or B shown in Fig. 1.5, but
not both at once. When the relative stiffness in one direction, supposed to be 4, is small but in the
other direction, supposed to be B, is large. In that case, type A could occur. In the thesis, the study

will concentrate on the type A of chatter suppression.

1.3 Overview of Research on Chatter Vibration

The metal cutting systems may be represented by using a closed-loop model from Merritt [3]
shown in Fig. 1.6. This model consists of a flexible machine structure, a metal cutting process,
which requires a force varying with the tool position and perhaps with its time derivatives, and
feedback paths. In this closed-loop model, the machine deflections alter the cutting tool positions,
which in turn alter the cutting forces. An additional feedback path accounts for the regenerative

effect defined by Hanna and Tobias [6].
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Figure 1.6 Basic closed-loop diagram of chatter occrence

1.3.1 Structure Dynamics in Machine Tools

Long and Lemon [7] initiated the self-excited vibration analyses of the mechanical systems by
lumping the masses at points and connecting these points with elastic and dissipative elements.
After choosing reference systems and sign conventions, the differential equations of motion are
derived and solved under prescribed boundary conditions. In this method, the dynamic response to

any input can be obtained on any form required by the particular stability theory.

Modern operational techniques of the vibration analyses, such as the mobility and impedance
concepts, greatly facilitate the foregoing approachs. These techniques introduce the idea of the
“transfer function” and the associated frequency response with the resulting data presented in the

form required for stability analysis [8].
1.3.2 Cutting Dynamics in Machine Tools

Doi and Kato [9] and Tobias [4] have observed that there is a phase difference between the main
cutting force and thrust force components of the resulting force vector. As well, they observed that
the phase increases with the frequencies of the vibrations. The fact that a phase exists limits the

validity of the simple model of the metal cutting process.



Nachtigal and Cook [10] visualize two distinct models for phase behavior between the cutting
forces and uncut chip thicknesses. The first of these is concerned with the fact that the cutting
forces are determined by the instantaneous lengths of the shear planes. The second model is based
upon the effect discussed by Minis and Tembo [11] wherein the shear angle is a function of the
inclination of the uncut work surface. Thus, with a wavy surface, the shear angle fluctuates around
an average value. This will introduce the nonlinearity into the relationships between the oscillating

uncut chip thicknesses and the oscillating forces.
1.3.3 Feedback of the Closed-Loop Dynamic System of Machine Tools

The paper by Merritt [3] shows that self-excited chatter can be represented by a feedback loop.
The analysis of this loop by using feedback control theory yields a straightforward method of
calculating the asymptotic and lobed borderline of stability for a machine tool system with a

structure having n degrees of freedom and assuming negligible cutting process dynamics.
1.3.4 Comprehensive Overview on Machine Tool Chatter

The first comprehensive treatise about self-excited machine tool vibrations was written by
Cumming and Kobayashi [12] who gave a theoretical explanation of their test results obtained for
a one degree-of-freedom system. Further papers about vibrations with one degree-of-freedom were
published by Sarnicola and Boothroyd [13]. The self-excited vibrations of the systems with two
degree-of-freedom were investigated by Hanna and Tobias [6]. A mathematical analysis of the
systems having two degrees of freedom has been made by Aslie and Achen [14]. They considered

the variations of cutting forces F; and F; due to the depth of cut (i.e., the feeds in the orthogonal



cutting processes) and the velocities at the cutting tool-workpiece interface and discussed the

criterion of stability by means of the Hurwitz determinant.

A number of investigations on self-excited chatter of machine tools have been made with the
objectives that the limit of the stability would be identified as the machine tool performance, that
potential cutting conditions for stable machining would be investigated, and that an effective
method to prevent occurrence of chatter would be developed. The role of the cutting mechanism,
the regenerative effect, and the structural dynamics of a machine tool, will be made obvious to
identify the stability limit for the chatter. A stability chart is presented on the basis of methods

developed by Tlusty [15], Taylor and Tobias [16] and Merritt [3].

Ota and Kono [17] and others pointed out the existence of a new phenomenon and named it the
“multi-regenerative effect”: the chip cut by the present tool motion has the trace of the tool motion
not only one turn before, but two or more turns before. The effect plays an important role in the
continuation of the vibration with finite amplitude. Their papers showed how it works for a basic

system where a single degree-of-freedom system was assumed.

In the paper by Kaneko and Sato [18], the investigation simulating the behavior of the workpiece
in turning was performed by assuming a two degree-of-freedom system and taking the multiple

regenerative effects into account.

The existing experimental results, usually obtained from frequency response by moving the tool
sinusoidal by external means, point out the differences between the steady state and dynamic
cutting processes. The dynamic cutting forces are generally lower than the static ones for the same

value of the undeformed chip thickness as shown by Albrecht [19].



Taylor and Tobias [16] covered a wide range of frequencies (0-400 cps) and showed that above
100 cps, the oscillations in the thrust force lead the oscillation in the tool displacement. Kegg [20]
observed that the phase lead angles are different for the two components (cutting and thrust forces)
of the resultant cutting force and that within a band of scatter both phase lead angles increased

with the exciting frequency.

Marui and Kato [21] have experimentally determined the values of the phase lead in cutting of
aluminum alloy with 20 degrees rake angle tool. The experimental results of Marui and Ema [22]
by employing a high-speed camera have shown a phase lead between the measured shear angle
and the uncut chip thickness for different amplitudes of the depth of cut and cutting speeds. They
assumed that the cutting force is a linear function of the shear angle, and hence it follows that the

oscillations of the cutting force lead those of the uncut chip thickness.

In most published studies, the actual waveforms of the dynamically varying cutting forces obtained
from experimental frequency response are unfortunately not presented. Kegg [20], Doi and Kato
[9] remarked that they observed that the force waveform was not purely sinusoidal, but they
filtered out the high frequency components and recorded only the fundamental sine wave. An
exception is the study of Albrecht [19] who clearly shows the resuiting non-sinusoidal waveforms

of the cutting and thrust forces when the tool is displaced sinusoidally.

The theories of dynamic cutting, far from being complete, mostly consider the influence of the
geometrical changes in the cutting conditions, and by doing so considerably simplify the actual
physical situation. Some theories, such as those of Albrecht [19], have succeeded to some extent in
explaining the phase difference between the oscillations in the uncut chip thickness and the cutting

forces. For example, Lauderbaugh and Ulsoy [23], by introducing some simplifications, arrived at
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an expression for the phase angle by which the resulting oscillations in the force lead the
oscillations in the undeformed chip thickness depending upon the cutting conditions and frequency

of the oscillations for both “wave producing” and “wave removing” cutting mechanisms.

For the case of wave removing, Doi [24] obtained a numerical solution for the cutting force as a
function of the undeformed chip thickness at the outer edge of the shear zone and plotted this

relationship. The successful plot has the character of an active hysteresis.

The existing theories on dynamic cutting mostly assume that the shear angle remain constant and
neglect the influence of the changes in the cutting speed, rake angle and friction on the rake face.
Also, fluctuations in the rubbing force on the clearance face are likely to play a more important

role than they are recognized in the existing theories.

Thompson [25] has pointed out that the flank-face interference will introduce a strong nonlinear
component in the cutting forces. He has suggested that this limits effectively the amplitude of
vibrations to the point where plastic deformation occurs on the clearance face. Kegg [20]
postulated that an elastic deformation on the clearance face gives rise to a fluctuating friction force

leading the undeformed chip thickness by a phase angle of 90 degrees.

Although the dynamic cutting forces are obviously complicated functions of the time dependent
variables such as chip thickness, rake angle, shear angle, cutting speed, rubbing force on the tool
nose or clearance force, and friction force on the rake face, the existing stability analysis assume

the simplest linear relationship between the cutting force and uncut chip thickness.
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Merrit [3] employed the proportional relationships between the cutting forces and variations of
chip thicknesses and suggested the evaluation of the constant of proportionality from the material

properties and steady state cutting geometry.

Hanna and Tobias [6] suggested a linear relationship between the dynamic cutting force, uncut
chip thickness, speed and feed rate, but in their stability analysis they neglected the influence of
speed of the spindle. They considered the coupling between the cutting process and structural
dynamics and obtained the relationship between the width of cut and spindle speed on the

borderline of stability for structures with one to n degrees of freedom.

Nair and Danai [26] introduced the overlapping factor p, which accounts for the part of previous
cut that is overlapped with the succeeding cut. Merrit [3] has expressed the cutting process and
structural dynamics in the form of a block diagram that gives a good overview of the whole
system. The proportional relationship between the uncut chip thickness and cutting force cannot
cause any phase difference between them. In linear causal systems, the output cannot lead the
input for sufficiently high frequencies. Hence, there is a strong indication that any linear
relationship between the uncut chip thickness and the cutting force cannot satisfactorily express

the dynamics of the cutting process.

Saravanja and Dsouza [27] pointed out that the stability of self-excited and regenerative chatter
will be investigated with a nonlinear relationship between the cutting force and uncut chip
thickness. This nonlinear relationship exhibited active hysteresis and was obtained from Albrecht’s
experimental results [19]. The nonlinear active hysteresis relationship explains the observed phase
lead as well as the decrease in the dynamic cutting stiffness (ratio between the cutting force and

uncut chip thickness) and the nonsinusoidal waveform of the cutting force better as reported by
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Ablrecht [19] and Kegg [20]. The stability of the chatter loop is investigated here by employing

the describing function approach for structure dynamics with two degree-of-freedom.

As stated earlier, the non-linear relationship between the uncut chip thickness and forces in cutting

under dynamic conditions is obtained from the experimental results of Albert [28].

1.4 Basic Theory of Chatter Vibration

In metal cutting processes, where substantial energy is being transmitted and mechanical damping
ratio is low, a very small portion of that energy is sufficient to maintain large amplitude vibrations.
The mechanisms, which cause chatter, are invariably second-order effects, which do not appear in

the simple theory and hence are difficult to investigate directly.

IY(t) ,— 1.CuttingProcess Ft

|

| ; _

Y(t) = 2.Vibratory System of the | F(t)
|

Machine Structure E—

j

Figure 1.7 Basic diagram of the chatter loop

The basic diagram of the closed-loop process of self-excited vibrations in metal cutting is
presented in Fig. 1.7. It is a closed-loop system including two fundamental parts, namely the
cutting process and the vibratory system of the machine structure, as well as the mutual directional

orientation of the two parts [29].

It indicates that the vibration Y(#) between the tool and workpiece influences the cutting process so

as to cause a variation F{(#) of the cutting forces which are acting on the vibratory system of the
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machine, and generating again vibration Y(?). The mutual orientation 3 of the two fundamental
parts, incorporated in the links between block 1 and block 2, occurs be;:ause the machined surface
has a definite location in space, the cutting force has a definite direction, and also the vibratory
system of the machine has a definite location in space, with definite directions of vibration in its
individual modes. By changing the mutual directional orientation of both basic parts, the mutual

influence is changed and the limit condition for stable machining is changed too.

Thus, three groups of the parameters influencing the occurrence of chatter may be considered:

a. Those of the cutting process
b. Those of the vibratory system of the machine structure

c. Those of the orientation of the cutting process with respect to the vibratory system of the

machine.

The influence of the cutting conditions, i.e., block 2 in Fig. 1.7, upon chatter is not dealt with in
great detail in this thesis. These influences will be assumed as a standard, constant set throughout
the work. The parameters, which will be considered, are the chip width b, or some other

parameters related to the chip width, for example, the depth of cut ¢ in turning shown in Fig. 1.8.
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Figure 1.8 Depth ¢ expressing chip width b in turning
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The stability of different types of machines can then be measured by performing a cutting test

under a stancard set of cutting conditions starting with a small chip width b and increasing it until
the cut with a “limit chip width b, ” is attained, when the chatter starts to occur. The value b

can be used as a criterion of stability for individual cases (specified by machine type, arrangement

and orientation).

The cutting process is represented by the transfer function relating vibration Y(?) and force F(?) in
the closed-loop system in Fig. 1.7. Throughout this study, two simplified assumptions will be

made for the transfer function [29]:

a. The variation of the force acting on the workpiece is caused only by the effect of the

change of chip cross-section.

b. The direction of the variable component of the cutting force is the same as the direction of

the cutting force in a stable process.
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Figure 1.9 Vibration in the direction Y produces changes in chip thickness

The basics of the cutting process transfer function, i.e., block 1 in Fig. 1.7, are illustrated in Fig.

1.9. Only the component of vibration falling into the plane perpendicular to the direction of the
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cutting velocity v(?) influences the chip cross-section. That is, the vibration in the direction by Y.
During the vibration with an amplitude Y, the average chip thickness a, corresponding to a stable
process, varies between (a-Y) and (a+Y). The variation Y of the chip thickness causes a variation
with an amplitude F(?) of the average force F,(t) (corresponding to a stable process). Then the
average values of the chip thickness and of the force do not influence the vibratory process, an
expression [29] of the relationship between the variable components of the chip thickness and the

force will be:
F(t)=-kY(t) (1.1)

The minus sign on the right-hand side of Eq. 1.1 corresponds to the chosen senses of F(t) and Y(?)
indicated in Fig. 1.9 if k is positive. The coefficient k expresses either the intensity of the coupling

between the vibration and cutting force or the gain in this part of the loop.

Fig. 1.10 illustrates the conditions in the plane perpendicular to the cutting velocity. If there is a
vibration X in the direction X inclined at an angle £ to the cutting edge, it must follow that the
change in the chip cross-section parameters and the change in the cutting force, caused by the
deviation X, will be changed according to value of & It also follows that a direction ¥ may be
found in which the deviation causes the maximum change in the cutting force; it is the direction of
the maximum gradient of the force with respect to the vibration. A deviation in the direction

perpendicular to the direction Y will not cause any change in the force. Readers can refer to [16].

Therefore, vibration X in the direction X will influence the cutting force only by its projection ¥
onto the direction Y. Usually, the chip width b is far greater than the chip *hickness a, and therefore
the direction Y is almost perpendicular to the main cutting edge. The direction Y, which is also

perpendicular to the cutting velocity, will be called “the normal to the cut surface”.
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Workpiece

Cutting tool

Figure 1.10 The “normal to the cut > direction Y

The system is excited by the force acting between the cutting tool and workpiece in the direction
of the cutting force, and the vibration in the direction of the normal to the cutting surface is

measured relatively between the cutting tool and workpiece.

For usual thin chips, the direction Y is normal to the main cutting edge to a good approximation
and the coupling between the force and the vibration expressed by Eq. 1.1 is proportional to the

chip width 4. Accordingly, Eq. 1.1 may be rewritten as:

F(t)=-brY (t) (1.2)

where r is a coefficient, depending on all other cutting conditions except for b.

With respect to “the regenerative chatter” principle, the simplest system to which it can be applied
is a single degree-of-freedom system. It will be recognized that the diagram given in Fig. 1.9 does
not correspond to the actual machining operations. In Fig. 1.11, if there is the vibration between
the tool and workpiece during the ith cut and the produced surface has become undulated, the chip

of the (i+1)th cut is removed from that undulated surface. If the amplitude of the vibration in the
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direction of the normal to the cut surface in the ith cut is ¥pand in the (/+1)th cut it is ¥, then the
amplitude of chip thickness variation is (¥Y-Yp). So that Y(t) = ge™’*Y,(¢) where y is the phase shift
angle between the two subsequent undulations. Consequently, instead of Eq. 1.2, Eq. 1.3 must be

used for actual metal-cutting operation:

F(t) =—k(Y (1) - Y, (1)) (1.3)

It may be understood, on the basis of Fig. 1.11, that because of the undulation Y, the cutting force
contains a variable component, which excites vibration X of the vibratory system with the normal
component Y. The vibration Y creates again an undulated surface on the workpiece and the
regeneration of the undulation proceeds in the subsequent cuts. The frequency ® of the vibration

and the phase shift y between undulations in subsequent cuts will adjust themselves so that

maximum energy is delivered to the vibration of the system.
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Figure 1.11 Cutting an undulated surface

This energy will be sufficient to cover the losses of the energy caused by the damping in the
vibratory system so that vibration in subsequent cuts do not diminish but increase. Thus, a special

case of dynamic instability, the regenerative chatter, occurs. As will be shown later, it is the
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intensity of the coupling between the variation of chip thickness and that of cutting force, given by

the value (b-r), which determines whether instability will arise. In practice, regenerative chatter

always occurs when the chip width b is sufficiently large. The limiting case of stability is one in

which undulations in subsequent cuts neither decress nor increase.

For “the mode coupling” principle with two degree-of-freedom, if in the case depicted in Fig. 1.4
vibration occurs with a frequency , then the mass vibrates in both directions X; and X
simultaneously with different amplitudes and different phase. Thus, its resulting motion is an
elliptise. Assuming that the tool moves in the direction of the arrow in Fig. 1.4, then, during the
half-period of the motion from A to B, the cutting force acts in the direction of the velocity of the
motion. In the first half-period, therefore, energy is dissipated by the system, whereas in the
second half-period energy is delivered to the vibratory system by the cutting force. Because the
second half-period of the movement is performed with a greater average depth of cut, the average
force in this half-period is greater than the average force in the first half-period. Consequently, in
one cycle, the energy delivered to the system is greater than the energy dissipated by the system.
The surplus of energy may be able to cover damping losses. It has been shown that with suitable
arrangements of the system, the procedure described actually occurs and self-excited vibration is
developed. Among various interesting properties of the arrangements shown in Fig. 1.4, if the
direction X, falls between directions ¥ and F, and the direction X is perpendicular to direction X},
instability based on “mode coupling” can occur only if the stiffnesses of the two springs satisfy

ki<k;. Inversely, if k;>k;, the cutting process is stable at all cutting conditions.

In all actual cases, undulations of subsequent cuts overlap, and the vibratory system has more than

one degree of freedom. Therefore, all principles always appear simultaneously. It is necessary to
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describe which was expressed in Fig. 1.7, by a corresponding mathematical expression, so as to

include the principles and find the limiting equation of stability.

For further discussion on the cutting process, we assume a very simple system with two degree-of-

freedom where the directions of the two modes are different.

The system is shown in Fig. 1.12. A mass m (common for both modes) is attached to two springs,
acting in directions X; and X;. For simplicity it is assumed that direction X; and X, are
perpendicular to each other. The springs in the direction X; and X have stiffnesses &; and 43

(x1)

~

Figure 1.12 A system with two degree-of-freedom

The two modes of the system may be well separated and represented by the vibrations in the
directions X; and X>. It is obvious that the stiffhess k; and k; are stiffness of the individual modes.

Natural vibrations of the system are described in Eq. 1.4

szle(-tﬁ*m)' +X2e(-62*1vz)l (14)

where the values J,,v, and &,,v, are simply determined by &, ¢; m and &, ¢, m, respectively; the
values x, X, X, are in this case not only time vectors but also space vectors; the resulting

motion is performed in the plane (X, X, ) and its path has the form of the well-known Lissajous
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curves (damped); the values X, and X, depend on the initial conditions; the vibration in only one
of the two modes can be achieved, if either X, =0, or X, =0 (and also the initial velocities are

Zero).

If a force f = Fe/”acts on the mass m in the direction F, with angles a,and «, between
directions F and X, and F and X, respectively, it excites vibration simultaneously in both modes

with the same frequency. The resulting vibration is again a time and space vector:

x = Xe’”

2
Fcosa, Q; Fcosa, Q,

CEAPEIRY] —+ o - (1.5)
k, Q +(jw)" +26,(jw) k, Q;+(jw) +25,(jw)

X=X +X,=

where 6 = 2i , Q= \/z is the natural frequency of the undamped system, and v = VQ? =572 .
m m

The path of x is an ellipse in the plane ( X, X, ). Its form depends on the parameters of the system

and on the frequency @ of the exciting force. Eq. 1.5 implies that the vibration in each of the

modes is excited by the projection of the force in their directions.

If only the component of the resulting vibration in a direction Y is of interest, it may be realized

that it is a sum of the projection of directions X, and X, into direction Y:

cos(a, — B)cosa,Q; N cos(a, — f)cosa,Q;, (1.6)
k(Q] +(jo)' +26,(jo))  k,(Q] +(jw)’ +26,(jw))

In an similar way to the two preceding systems, systems with many masses, located quite

generally in the three dimensional space and partly interconnected with many springs may be
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assumed. A two-dimensional schematic representation of such a system is depicted in Fig. 1.13. If
the discussion given in the preceding cases are extended and generalized, it may be understood that

these systems will have many degrees of freedom with many natural frequencies ,, damping
constants J§, and corresponding modal shapes. For every modal shape there exists a particular
direction X, in which a particular point, such as point 2 in Fig. 1.13, of the system vibrates in the

given modes. (Several modes can eventually have one common direction).
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Figure 1.13 A system with multi degree-of-freedom

If a variable force f = Fe’* acts on the point 2 shown in Fig. 1.13, and if a particular direction ¥
is chosen, the angle between directions Y and F being P and the angles between direction ¥ and

individual modal directions X, being «,, then vibration of the point 2 in the direction Y will be:

y=Ye™

where ¥ = FY, 5 , - (1.7)
=l k Q' —w® +26,(jw)

The “directional factors u,” are defined as:
u, =cosa, cos(a; — ) (1.8)

where £, is stiffness corresponding to the individual modes.
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A machine tool structure is a vibratory system with an infinite number of degrees of freedom. It is
remembered that systems with an infinite number of degrees of freedom possess an infinite
number of modes with corresponding natural frequencies. However, the frequencies are distinct
representing separated values in the range from Q=0 up to Q =o0. For forced vibrations, with
the force acting at a particular point in the system or between two particular points and vibration
measured at a particular point or between two particular points, a particular stiffness &; corresponds
to every one of the infinite number of modes. The higher the natural frequency of the mode is, the
higher the value of its stiffness is. Observations also show that the value of damping is usually
higher in higher modes. Therefore, the higher the mode, the smaller its participation in the
resulting vibration. It follows that for a particular required accuracy of calculation, all but several
lower modes of the system can be neglected. Thus the actual structure of the machine can in
practice be considered as a system with a small number (usually less than ten) of degrees of

freedom.

Following the preceding discussions to describe self-excited vibrations in metal cutting, it is now
necessary to express the closed-loop system of Fig. 1.7 mathematically. Transfer functions for both
parts have already been derived in the preceding sections. They are expressed for the part relating
to the cutting process by Eq. 1.3 and for the part relating to the machine tool, including the mutual

orientation of both parts by Eq. 1.7.

As a basic theory, some assumptions will now be established which contains several
simplifications. By special experiments and observations, the simplifications that are introduced
have been shown significantly the practical application of the theory to the analysis of the stability

of machine tool structures. The simplifications enable the procedures of stability analysis to be
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carried out with a reasonable amount of work. The methods of the analyses are based on this
simplified theory. It will, therefore, be referred to as the basic theory in the sense of its

significance for practical use.

The assumptions made for simplification are [29]:

(a) The vibratory system of the machine is linear.
(b) The direction of the variying component of the cutting force is constant.

(c) The variable component of the cutting force depends only on vibration in the direction Y (t)
of the normal to the cut surface.

(d) The value of the variable component of the cutting force varies proportionately and

instantaneously with the vibration displacement y.

This basic theory and method of the stability analyses, proposed by Srinivasan and Nachtigal [30]
differ from the methods used by Thompson [31], Tobias and Ismail [5] in that the graphical
solution of the limit of stability is performed not in the complex plane of the receptance curve of
the machine but in the real plane. This permits an understanding of how the limit of stability
depends on the individual mode of the structure and leads to the suggestion of adequate changes of

the structures.

1.5 Main Characteristics of Turning

The turning tool is used for external and internal cylindrical machining processes. The basic
external operations include: facing, straight turning, taper turning, shoulder turning, turning
grooves, knurling, cutting off and threading. The basic internal operations are: drilling, boring,
turning internal straight, tapering, and undercut surface, countersinking, counter boring, reaming,

tapping and threading. A simple turning is shown in Fig. 1.14.
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Figure 1.14 The schematic of a turning system

The case 1 and case 2, given in Fig. 1.15, will be regarded as the main turning operations, on

which the machine structure will be discussed.
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Figure 1.15 General-purpose applications in turning [32]
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In case 1, the forces between the workpiece and tool appear in two-dimensional space. It means
that the only two forces including main cutting force and thrust force exist during the turning
operation. In case 2, the forces between the workpiece and tool appear in three-dimensional space.
It means that not only the main cutting force and thrust force but also the feed force exists during

the turning operation. The forces are shown in Fig. 1.16.
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Figure 1.16 Typical operations in turning

1.6Contributions of This Thesis Work

The work presented here was motivated by the industrial problem of metal cutting in turning
operation. In turning, the occurrence of self-excited vibrations, so called chatter, is undesirable as
it gives rise to production problems, causes detrimental effects on the machined surface finish,
decreases the machining efficiency, causes tool wear and decreases the tool life. Because of the
small amplitude (as small as several microns) and high frequency properties of chatter, an active
vibration control, providing forces acting on the cutting system, is required to overcome the

adverse effects of chatter.
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In this thesis, the vibratory system, i.e., the machine structure based on turning process, with two
degree-of-freedom has been investigated. Meanwhile, the orthogonal cutting processes with two-

dimensional and three-dimensional force models shown in Fig. 1.16 will be discussed in detail.

There are strong indications that the relationship between the cutting forces and uncut chip
thickness displays hysteretic behavior in cutting processes. The mechanism of energy excitation
for chatter is given in [27]. It is concluded that chatter is the self-excited vibration caused by the
hysteresis relationships between forces and deflection of the workpiece. In this thesis, work will
focus on the relationships between cutting forces and variation of chip thickness as a hysteresis
model where nonlinearity dominates. In addition, work in this thesis will take into account the

unavoidable effect of time delay in metal cutting process.

To rapidly adjust the displacement between the workpiece and cutting tool during the cutting
process, the piezoelectric actuators, as high-precision positioning elements in the metal cutting
process, are introduced into the design of the chatter supression. Nevertheless, piezoactuators also
display hysteretic behavior between the deflection of piezoactuators and the voltage applied to the
piezoactuators. With respect to different mechanical structures of piezactuators in metal cutting
processes, in this thesis, the mathematical models of piezoactuators will be implemented under two

structures, i.e., dependent and independent from the cutting tool holders

In this thesis, robust controllers are developed to deal with unknown hysteretic characteristic
combined with time delay in metal cutting processes. The proposed robust adaptive controllers
ensure the suppression of chatter and global stability in the metal cutting system. The simulations

of outputs of the controlled systems will be givens graphically.
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1.7 Organization of This Thesis

The present chapter provides a brief introduction and a literature reviewed on chatter vibrations in
metal cutting, specifically, in turning. In chapter 2, the mathematical models of machine structure
and hysteretic characteristics of dynamic cutting process are presented. Active hysteresis is
provided to be one of the causes of chatter occurrence as it provides the energy for chatter
excitation and maintenance. The simulations based on these models demonstrate the behaviors of
hysteresis behaviors. In chapter 3, main characteristics and applications of piezoactuators are
described. The hysteretic characteristics of the relationships between the applied voltage and
deflection of piezoactuator are demonstrated as well. Mathematical model for this hysteresis is

provided.

From chapter 4 through chapter 7, piezoactuators are introduced for the adjustments of the
machine tool displacements. Based on different turning models, different adaptive control laws are
proposed for eliminating the chatter. In chapter 4, dynamic system with two-dimensional forces
and model of piezoactuator that is dependent on the tool holder are treated; in chapter 5, dynamic
system with three-dimensional forces and models of piezoactuators that are dependent on the tool
holder are treated; in chapter 6, dynamic system with two-dimensional forces and model of
piezoactuator that is independent from the tool holder are treated; In chapter 7, dynamic system
with three-dimensional forces and models of piezoactuators that are independent from the tool

holder are treated.

In chapter 8, the conclusions of the thesis and some recommendations for the future work in this

field will be outlined.
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Chapter 2

Modeling of Machine Structure and Cutting Process

Introduction — based on theoretical analyses and experiments by precedents, the paper presents

the models of machine structure, hysteretic characteristics of cutting process and output feedback
in turning. Meanwhile, it proves that active hysteretic characteristic relationship between cutting
forces and uncut chip thickness of the workpiece in cutting process is the main cause of chatter
occurrence. Taking into account several situations in metal cutting process, the simulations of the

response of dynamic metal cutting systems are conducted.

2.1 The Machine Operation as a Closed-Loop System

In continuous machining processes, the structures are often excited by abrupt changes in the
cutting forces due to hard spots in the workpiece, material cleared from a built-up edge on the
cutting tool, or a chip breaking. The structures respond to the change in the applied force F{(t) with
a relative displacement Y(t) between the tool and the workpiece. This displacement ¥(t) affects the
values of the parameters of the cutting processes, such as chip thickness, effective cutting angle,

etc., which in turn result in further variations of the cutting forces.

The interactions between the machine structures and the cutting processes are described by a

closed-loop system that incorporates two fundamental blocks as shown in Fig. 2.1. The machine
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structures block describe the relationships between the cutting forces F{(t), which are applied on the

structures, and the displacements Y(t) of the machine structures

'
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Figure 2.1 Block diagram representation of the metal cutting dynamics
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Figure 2.2 Block diagram of chatter loop

The effects of the relative displacements Y{(r) on the variations of the cutting forces F, which can
be described by “cutting equations”, are represented in the cutting process block in Fig. 2.1. The
intrinsic coupling of the machining operation suggests the treatment of the chatter problem as a
closed loop system stability problem. However, complete analyses and experimental investigations
of the dynamics of both major system components in Fig. 2.1 is required prior to the development
of a stability criterion for the coupled machining system. These analyses have already been dealt

with in [29].
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As a summary, the machine structures and cutting processes can be presented by a closed-loop
diagram as shown in Fig. 2.2. In Fig. 2.2, the block G(s) represents the dynamics of the machine
structure; the block f(u(t),t) describes the relationship between the cutting force and the
displacement Y{(¢) between the cutting tool and the workpiece; the block g(t) indicated the feedback
of the displacement Y{(f) in the previous revolution; the “Primary Feedback™ is the feedback of the

displacement Y{(¢) in the current revolution.

2.2 Modeling of Machine Structure

To predict the onset of chatter, namely, self-excited vibration in turning, it is necessary to obtain
the representation of the dynamics of the machine structure, and the representation of relative
motion of the machine structure as a function of oscillatory force applying to the cutting tool.
Therefore these representations are the steady state solutions of the partial differential equations
defining the motions of the structures as various forcing functions. The solutions would be

extremely difficult to obtain in closed form, therefore approximate techniques are investigated.

The mathematical analyses of the systems with two degree-of-freedom have been made by
Saravanja-fabris and D’souza [27]. They considered that the variations of cutting forces F; due to
depth of cuts (i.e. the feed in the orthogonal cutting processes) and relative velocity between the
cutting tool and workpiece; discussed the criterion of stability by means of the Hurwitz

determinant.

A dynamic cutting system can be considered as a spring-mass-damper system with two degree-of-
freedom. The forces may be conveniently divided into three components: the main cutting force,

thrust force and feed force [32].
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A schematic representation of the system with two degree-of-freedom considered in this thesis is
described in the Fig. 2.3. One dynamic system to be considered is the cutting tool shown in Fig.
2.3(a), the other is the workpiece and the spindle in Fig. 2.3(b). It will be noted that the schemes
are not affected the research on the dynamic performance. Generally, in this thesis, the dynamic
systems of machine structures with two degree-of-freedom based on the Fig. 2.3 (b) will be taken

into consideration for deriving the mathematical models.
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Figure 2.3 The scheme of the machine system with two degree-of-freedom
In this thesis, the schematic diagram of the dynamic system of turning tool structure with two
degree-of-freedom is described in Fig. 2.4. A mass (namely a combination of workpiece and
spindle) is attached to the rigid support S; and S, through the springs &; and &,, dampers ¢, and c;.

The damping ratios and the spring constants for both directions S; and S; are taken differently. For

simplicity, it is assumed that directions S, and S; are perpendicular to each other.

In the situation of two-dimensional orthogonal cutting operations, main cutting force and thrust
force act onto the workpiece due to the fixed cutting tool, both of the directions of two forces are
shown in Fig 2.4. The displacement y between the cutting tool and workpiece is made positive for

the direction that the workpiece leaves from the cutting tool.
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The chip-formation mechanism will to be controlled by instant cutting conditions, including feed,
speed, and depth of cut, etc. Any change in these conditions during the cutting processes will
instantaneously change the values of the normal forces F{(t) and the relative speed v of the chip to
the tool, even affect the dynamic behavior of the systems. Under conditions of small vibrations, it
is reasonable to assume that the relationships between forces F and speed v remain the same as
those under steady state cutting conditions. In other words, the physical relationships established in
steady state cutting can be applied to dynamic cutting processes as well, if the amplitudes of
vibrations are relatively small. This argument will be carried throughout this thesis in the

developments of the mathematical models governing the system behavior.
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Figure 2.4 Machine structure with two degree-of-freedom

The conventional vibration analyses of mechanical systems precede by lumping masses at points
and connect this mass-point to elastic and dissipative elements. After choosing reference systems

and sign conventions, the differential equations of motions are derived and solved under desirable
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boundary conditions. In this method, the dynamic responses to any inputs can be obtained on any

form required by the particular stability theories.

Modem operational techniques of vibration analyses, such as the mobility and impedance
concepts, greatly facilitate the foregoing approachs. These techniques introduce the idea of the
transfer functions, and the associated frequency responses, with the resulting data presented in
precisely the form required for stability analyses. However, these techniques no way reduce the
complexity of obtaining solutions for the equations of motions for the systems. Each degree of
freedom adds to the analytical complexity of the vibration analyses, and even with large digital
computers, their capacities are taxed and the costs become prohibitive when studying complex

structures.

However, some continuous structures with certain symmetrical properties can be analyzed
accurately, using a digital computer. These programs obtain undamped natural frequencies and
corresponding mode shapes. Highly accurate results often can be obtained with these programs
owing to the methods, which allow nearly unlimited degrees of freedom to be input to the
computer programs. Computer costs are kept relatively low because no attempt is made at
obtaining all natural frequencies. Instead, only those frequencies in a specified range of interest,

say 0-1500 cps (i.e., cycle per second), are sought out by the computer programs.

As mentioned earlier, natural frequencies and mode shapes are not sufficient for stability analyses
for chatter. Knowing these values for a particular structure, it is possible to approximate accurately
those transfer functions of interest in the frequency ranges of computed critical frequencies. This is

done under the assumptions that internal structural damping is small which experience indicates to
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be true. Thus, if large external damping mechanism can be treated as boundary conditions, the

foregoing approximate techniques seem appealing.

The cutting forces displace the workpiece and the structure of the machine. Therefore, the dynamic
compliance characteristic of the structure is of interest from the viewpoint of chatter. Machine
structures are continuous systems, and are described by partial differential equations. These are
formidable equations with complex boundary conditions and constraints. In most cases, the

dynamic systems may be approximated adequately using lumped-parameter analyses.

Since it is not presently possible to compute all the quantities required to define modes of
vibrations, the dynamic compliance of a structure must be obtained experimentally for each
possible machining operation. The relative displacement y(t) is measured normal to the
instantaneous cut surface because the chatter, namely Type A, in this direction affects the uncut

chip thickness very much.

Case 1: the structure of turning with 2-dimensional forces in Fig. 2.5
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Figure 2. 5 The schematic of turning operation with two-dimensional forces
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1. Mode in direction S1 in Fig. 2.5, the dynamic equation of the system in this mode is:

= d-y'z(t)“r @ dx0, K »,(0)=F() @.1)
cosa, dr cosa, dr :

After Laplace transformation, the dynamic compliance:

7(s) L @2)
Fi(s) m sy d BN k,
cosa, cosa,  cosa,

where F|(f) is the resulting cutting force between the cutting tool and workpiece in mode S1,
F (t) =cosa,F,(t)+sina, F.(t), F,(¢) is main cutting force, F_(t) is thrust force, &, is the angle
between the mode S1 and the direction Y; y(t) is defined the relative displacement between the
cutting tool and workpiece along the direction Y; m denotes to equivalent mass of the metal cutting
system; k; is represented as the spring factor in mode S1; c;is represented as the damping ratio in

mode S1.

2. Mode in direction S2 in Fig. 2.5, the dynamic equation of the system in this mode is:

2
m _d yzz(t) L & dyn®, k, y,(t) = F, (1) 2.3)
cosa, dt cosa, dt cosa, )

Which may be Laplace transformed to give the following dynamic compliance:

Y2(8) _ 1 (24)
Fy(s) m o2, % o, k,
cosa, cosa, cosa,

where F, () is the resulting cutting force between the cutting tool and workpiece in mode S2,
F,(t) =cosa.F,(t)-sina, F.(t), F,(t) is main cutting force, F_(¢) is thrust force, «, is the angle
between the mode S2 and the direction Y; y(t) is defined the relative displacement between the
cutting tool and workpiece along the direction Y; m denotes to equivalent mass of the metal cutting
system; k; is represented as the spring factor in mode S1; c;is represented as the damping ratio in

mode S2.
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3. The dynamic equation of complete vibratory system

For the complete vibratory system in Fig. 2.5, the combination of Eq. 2.1 and Eq. 2.3 can be

rewritten as matrix formula as following:

m d*y, (1) ¢ dy, (t) ki
0 0 AL SA 0
cos , dar? || cose dt || cose, n (@)
0 m__| d’y,(t) 0 ¢, | &0 0 ky |y, (0)
cos a, dt? cos &, dt cos @,
(1 0YF (@) (cosa, sing, \F(@) 2.5
1o 1 F,(t) | cos a, -—sina, \ F_(t)

In terms of the Eq. 1.7, the dynamic compliance of a lumped-parameter model with two degree-of-

freedom can be shown:

Fi(s) + F,(s)

s2e— 54 il P 2 +—2 4 ul
cosa, cosa, cosq, cosa, cosa, cosa,

(2.6)

Y()=y(8)+y,(s)=

where F(s) =cosa,F,(s)+sine, F_(s), F,(s)=cosa,F,(s)~sina,F,(s); the other parameters

are defined above.

Case 2: the structure of turning with 3-dimensionai forces in Fig. 2.6
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Figure 2. 6 The schematic of turning with three-dimensional forces

37



1. Mode in direction S1 in Fig. 2.6, the dynamic equation of the system in this mode is

m dzyl(t)+ c dy,(t)+ k,
cosa, dt* cosa, dt cosq,

@ =F@® 2.7)

After Laplace transformation, the dynamic compliance:

RO m ek
cosq, cosa, cosa,

where F{(¢f) is the resulting cutting force between the cutting tool and workpiece in mode S1,
Fi(t)=cosa,sin B-F(t) +sing F (t) +cosa,cos B - F,(t), F,(t) is defined as the feed force
between the cutting tool and workpiece, the other parameters are defined in case 1; the definition

of B is shown in Fig. 2.6.

2. Mode in direction S1 in Fig. 2.5, the dynamic equation of the system in this mode is

2
m d ,Vzl ® LG d y.(t) N k, 126 = Fu(t) 29
cosa, dt cosa, dt cosa,

Which may be Laplace transformed to give the following dynamic compliance:

Y2(8) 1 (2.10)
Fy(s) m sy ) 5+ k,
cosa, cosa, cosa,

where F,(f) is the resulting cutting force between the cutting tool and workpiece in mode S2,
F,(f) =cosa, sinf- F;(t)—sina, F, () +cosa, cosf3 - F,(t), F,(t) is defined as the feed force between
the cutting tool and workpiece, the other parameters are defined in case 1; the definition of S is

shown in Fig. 2.6.
3. The dynamic equation of complete vibratory system

For the complete vibratory system, the combination of Eq. 2.7 and Eq. 2.9 can be rewritten as:
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- 0o |[£rn®) % 0 |[#0 ul 0

cos a, dt* || cosa, dt |, |cosa ni(1)
0 m dzyz(’) 0 Cs dy,(1) 0 k, y,(2)

cos @, dr? cos a, dt cos a,
F.(t
=(1 OJ(F[(t)J =(cos a;sin B sina, cosa,cos ﬂj Ftit; (2.11)
0 1NF,( cos a, sin -sina@, cosa,cos ¢
2 (1) 2 sin 2 2 C0s f F, (1)

In terms of the Eq. 1.7, the dynamic compliance of a lumped-parameter model with two degree-of-

freedom can be shown:

F (s) F,(s)
- +y,(s)= + 2 2.12
Y(s) = y,(s) + y,(s) ) . 3 — . . (2.12)
S+ s+ S+ —S5 + =
cosa, cosa, cosa, cosa, cosa, cosa,

where Fi(t) =cosa,sin 8- F,(t)+sina,F.(t)+cosa, cos f - F,(¢), and
Fy(t)=cosa,sin B-F,(t)—sina,F,(t) +cosa, cos § - F,(t); the other parameters are defined in

preceding sections.

It will be noted again that the relative displacement y(t) is measured normal to the instantaneous

cut surface because variations (chatter) in this direction affect the uncut chip thickness very much.

In the dynamic equations of machine structure, each of forces, including main cutting force, thrust
force, and feeding force, has been applied to the different dynamic compliance, instead of the
resultant forces. Therefore the orientation of the resultant cutting forces as space vector will not
affect the applications of the dynamic equations, i.e., the applications of the dynamic equations
above will not be limited by the constraint of the orientations of the resultant forces during metal

cutting processes, which is the assumption (b) in the chapter 1.
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2.3 Modeling of Cutting Process

2.3.1 Hysteresis — A Cause of Chatter Occurrence

A large number of investigations on chatter on turning processes have been performed to study the
mechanisms of chatter vibrations in order to suppress chatter. One of the proposed mechanisms is

the active hysteretic behavior appearing in the dynamic cutting processes.

Because chatter is caused in the

horizontal vibration of workpiece, we -—'- S
treat the problem based upon that m\ -
direction only. In Fig. 2.7 referred to [9], i - ;—-_ Y

let point C denote the center of the
workpiece before cutting. If a cut is Tool —

operated on the workpiece, the center C Figure 2.7 Workpiece and cutting edge
displaces to the point O and this displacement is denoted as a. We can define point O as the point
of origin and indicate displacement of workpiece by y(t). When the motion is in the direction away

from the cutting tool edge, y(t) is considered positive.

As; stated earlier, the nonlinear relationship between the uncut chip thickness and forces in cutting
dynamic conditions is obtained from the experimental results of Albercht [19]. In his experiments,
the end of a tubular workpiece was machined orthogonal with a cutting tool mounted on a special
two-component tool dynamometer and activated in the direction of feed by a hydraulic actuator.
The sinusoidal motion imparted to the tool causes cyclic change in the uncut chip thickness during

cutting, resulting in the dynamic response of the cutting forces, including the main cutting force,
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thrust force and the resultant force. Albercht has presented oscilloscope traces of the oscillations in
tool displacement, main cutting force, and thrust force. We amplified the oscilloscope traces of

Albercht and used the values of amplitudes for their scaling. The waveforms for one cycle are

shown in Fig. 2.8.
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Figure 2.8 Waveform of the displacement and cutting forces fluctuating
(Computered from data of [27])
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It may be observed from Fig. 2.8 that the tool motion closely resembles a sine wave but the
waveform of the main cutting and thrust forces have skewed shapes and they both lead the input
wave (tool motion). The frequency in Fig. 2.8 is 400 cps and Albercht [19] has presented a
frequency response chart that shows that the effect of frequency upon the amplitudes is negligible.
Now, it is possible to obtain the relationships between the dynamically varying forces and uncut
chip thickness by plotting the amplitude of the forces versus that of the chip thickness at the same
instant in Fig. 2.8. These relationships are shown in Fig. 2.9(a), (b) and (c) [27]. It can be seen
from these figures that the dynamic cutting processes exhibit active hysteresis that always give rise

to a leading phase shift.

In Marui and Ema’s experiment [33], for the mechanism of chatter vibration, with respect to
different metal cutting conditions for one cycle of the chatter vibration, the relationships between
the cutting forces F; (t) and the horizontal displacement y(t) are shown in Fig. 2.10, 2.11, 2.12 and
2.13 [33]. Based on the research to the above experimental results, hysteretic characteristic is
clearly noticed for the cutting forces in both conditions, so the cutting forces acting against the
turning tool when the tool deflects downward is lager than when it deflects upward. Since this
cutting forces act downward against the turning tool, vibratory energy can be supplied to the
vibratory system by this cutting forces during the downward deflection phase. On the other hand,
the turning tool dissipates energy in the next half-cycle phase in which the turning tool vibrates
upward, contrary to the cutting forces. Accordingly, the energy is supplied in the vibratory system
during one vibration cycle, and the chatter vibration thus continues. This supplied energy is, of

course, consumed by the positive damping of the system.
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Figure 2.12 Relationship between cutting force ' Figure 2.13 Relationship between cutting force
and vibratory deflection (M.S) and vibratory deflection (C.I)

Subsequently, in order to determine the reason for these hysteretic characteristics of the cutting
forces, the chatter mark is investigated. Fig. 2.14 from [33] shows an example of the chatter marks
(included by black dots) measured by a surface profile tracer. The solid line in Fig. 2.14 represents
the configuration of chatter marks plotted by combining the revolution of the workpiece, where the
cutting distance is taken as e =Vt —asin(27/t), (¥, is nominal cutting speed, eis cutting
distance). Both the measured and calculated results of the chatter marks agree with each other. The

chatter marks also become jagged as shown in Fig. 2.14, in the case of the cutoff type, which is
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used in this experiment. Accordingly, it is clear in Fig. 2.14 that the flank surface will come into

contact with the workpiece material, that extremely violent interference will thereby result,

because the chatter marks show a steep slope when the uncut chip thickness increase with

downward deflection of the turning tool.

2.3.2 Mathematical Hysteresis Models of Dynamic Cutting Process

For the designs of the control laws in metal cutting
systems, some simplifications are required for the
hysteresis models of the cutting forces and cutting

tool motions.

In this thesis, we will treat the hysteretic
characteristics of the relationships between the
cutting forces and uncut chip thickness as
backlash hysteresis due to their resemblance in
profile in the metal cutting systems, in Fig. 2.15.

The reasons will be demonstrated in the following

figures.

Traditionally, a backlash hysteresis nonlinearity

can be described as following [34]:

Q03 Qo2 Qo [¢)
4 mm

Figure 2.14 Chatter mark configuration

wn) ‘

Figure 2.15 Backlash of hysteresis model

Av()+B, if v()>0
w(t) = Po(t) = P(k,B) = {av(t) + B,  if v(t)<0
w(t.) i v(t)=0

(2.13)
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where P(.) is hysteretic functions; 4 > Ois the slope of the lines in Fig. 2.15, B, =-B, =B>0 is

backlash distance.

According to the preceding analyses, due to the different descriptions of hysteresis models for the
main cutting force and thrust force, the following functions will be used to describe the hysteretic

characteristics of the main cutting force F, (), thrust force F,(¢) and feed force F,(¢) in terms of

the uncut chip thickness v(¢) in metal cutting processes,

Av(®)+B, if v()>0
F.(t)=P0®)=Pk,B)={AM)-B, if w©)<0 (2.14)
F.t.) if W)=0

(4vin+B, it w>0
F()=P ) =P(k,B)={4v)-B, if w)<0 2.15)
F(t.) if v()=0

AN +B, if wW5)>0
F,(t)=P,((t) = P(k,,B,)={4v0)~B, if v()<0 (2.16)
F,(t) if w(t)=0

where 4,, A, A ,are the slopes of the lines, B,, B, B, are backlash distance responding to

main cutting, thrust and feed forces respectively, these parameters can be assumed positive.

A widely held opinion is that the cutting forces always decrease with increasing cutting speed. But
if these velocities are low, an increase of the cutting forces with the velocity can be observed in
many cases. The slopes of the cutting forces versus speed curves can vary from positive to

negative and need not be the same for the forces F. and F,.
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The cutting forces always increase with the depth of cut. The slopes of the cutting forces versus
depth-of-cut curves depend upon the workpiece material and the depth of cut itself. The slopes
increase with increasing depth of cut. The slopes of F. and F, may also differ from each other.
Further, the slopes of these curves include the effect of cold-working of the work surface, which

has an appreciable influence on the excitation of vibrations.

2.4 Modeling of Uncut Chip Thickness

In machining work as shown in Fig. 2.16 and 2.17, the horizontal rigidity of the tool is usually
much greater than that of the workpiece, so Type 4 of chatter is considered only. The vibratory
system of the machine tool shown in Fig. 2.17 is entirely similar to that of the workpiece shown in
Fig. 2.16 as to dynamic effects. The results obtained on the horizontal vibration of the workpiece
are also directly applicable to the vertical vibration of the cutting tool where the vibration of the
workpiece may be considered negligible.

A main cutting force or thrust force in Fig. 2.17 removing a wave generated by a previous cut is
affected by the waving surface y(t —7 + H) which is antecedent to the present vibration y(f) by a
time value T-H, and precedes the cutting edge nearly by a certain distance e in Fig. 2.17, where T
is time interval of one revolution of workpiece and H is time lead associated with the chip
thickness oscillations at the free end of the shear plane relative to the chip thickness oscillations at
the tool tip shown in Fig. 2.17.

While the cutting speed is defined as v, the depth of cut is denotes as d, the value of the shearing
angle during wave removing is presented as 4, then the geometrical relation in Fig. 2.17 yields the
time lead H:

H =dcos(A/v) 2.17)

46



For orthogonal cutting process, the chip thickness u(z) in the case of the primary effect can be
described as

u@®)=y()-y@e-T) (2.18)
where y(?) is the displacement between the cutting tool and workpiece along Y-axis and T is the

time interval during one revolution of workpiece.
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Figure 2.16 The schematic of the cutting tool in a turning

_d+y(t-T)
, — d+y(t-T+H)
workpiece :Cuttmg tool o ,

Figure 2.17 Vibratory system of the workpiece

In order to describe the chip thickness variation due to the different effect, Merrit [3] provided an
equation for uncut chip thickness, defining the primary and regenerative chatter by the parameter

of the overlap factor x,

u@=yt)y—pu-yt-T) (2.19)
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where u(t)is the instantaneous chip thickness variation at time ¢ and y(t) is the relative
displacement between cutting tool and workpiece normal to machining surface, and x4 is the
overlap factorand 0 < z <1.
As mentioning early, considering the geometrical relations of shear angle, it was proposed by Ota
and Kono [9] that the chip thickness variation will be

u@@)=y(+H)—u-y¢—-T+H) (2.20)

where the definition of H in Eq. 2.17.

In order to derive the feedback loop representing chatter, the cutting processes will be illustrated
with a single-point tool performing orthogonal cutting on a lathe shown in Fig. 2.16. The cutting
tool is mounted rigidly and the feed rate is adjusted to obtain an average or steady state depth of

cut u,(¢). In this steady state condition, the structure maintains a certain deflection caused by the

steady state cutting force. The equations will be written about this point of equilibrium.

In Fig. 2.16, the instantaneous depth of cut u(z) is decreased as the workpiece moves away from

the cutting tool, i.e., y(t) increases. Further if the workpiece moves away form the cutting tool, a
lump is left on the workpiece. This lump increases the uncut chip thickness in one revolution of the

workpiece or time delay 7.

Hence the instantaneous uncut chip thickness can be written

u(t) =u, () - y()+ p -yt -T) 2.21)
where u(t) is the instantaneous uncut chip thickness, u,(#) is the nominal uncut chip thickness,
y(t) the workpiece or cutting tool displacement, T is delay time, (the value of T is the inverse of
the lathe speed v in cps), and u is the overlap factor in this system.

Laplace transforming Eq. 2.21, yield
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u(s) = uy(s) = y(s) + p-e™ - y(s) (2.22)

The overlap factor # accounts for the overlapping of successive cuts; i.e., it defines the portion of
the previous cut that is overlapped by the present cut. In a turning operation, such as threading, the
previously machined surface does not affect the present uncut chip thickness, then x=0.
However for most machining operations, such as orthogonal cutting, z=1.

The overlap factor x also may be used to account for the geometrical effects of rounding at the

tool cutting edge and of tool clearance angle. Both of these effects tend to smear the machined
surface and thereby reduce the amplitude of periodic variation in the machined surface. It is

difficult to make a precise definition for the overlap factor u; however, it is certainly bounded
between zero and unity 0< u# <1. An overlap factor of unity is the most critical value from the

viewpoint of chatter.

2.5 The Closed Loop of Metal Cutting System

Based on some theoretical and experimental analyses, the mathematical models representing the
blocks in Fig. 2.2 are derived into the Egs. 2.5, 2.11, 2.14, 2.15, 2.16 and 2.21 for two-dimensional
and three-dimensional force models respectively. These equations will be placed into Fig. 2.2.
Thus, Two block diagrams of metal cutting process for both two-dimensional and three-
dimensional force models are plotted as shown in Figs. 2.18 and 2.19.

In Figs. 2.18 and 2.19, the blocks of G1(s) and G2(s) will be replaced by using Eqs. 2.2 and 2.4;

three hysteretic relationships betvzen the cutting forces, namly, F,(t), F,(t), F,(t) and uncut chip

thickness will be defined by using Eqs. 2.14, 2.15 and 2.16 respectively; the block of the

regenerative feedback (time delay) g(s) is denoted as

49



gls)=p-e™ (2.23)
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Figure 2. 18 Block diagram of chatter loop with two-dimensional forces
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Figure 2. 19 Block diagram of chatter loop with three-dimensional forces

The closed loop dynamic metal cutting systems, including cutting process, machine structure and

feedback, have already been built as shown in Figs. 2.18 and 2.19. In the following chapter, the

several mathematical models corresponding to different blocks in Figs. 2.18 and 2.19 will be used

for the designs of the control laws.
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2.6 Simulation Results

In order to determine the actual effects of active hysteretic characteristics in the situations of
primary chatter and regenerative chatter vibrations in metal cutting processes, the simulations are
introduced as follows.
A metal cutting system will be described as

my, )+, 3,0+ ky0) = FO) 224

my,(t)+c Y.+ ky,(t)=F,()

where the values of the equivalent mass, damping ratios and spring coefficients for the metal

cutting system in each equation are listed in the appendix of Table A.
2.6.1 Simulations of the Dynamic System Responses without Forces

With respect to Eq. 2.24 and the initial conditions of y,(t) =0.01 (mm) and F,(t) = F,(t) =0, the

response of the system in Eq. 2.24 under this condition is illustrated in Fig. 2.20

Tha rasponsa ofsystem undar tha condmon offort:e free

&7 D
@“

? 3
RIS

Figure 2.20 The dynamxc response of metal cutting system without
2-dimensional or 3-dimensional forces
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By Fig. 2.20, It is clear that the cutting system responses is decreasing exponentially onto

equilibrium state of the system with two degree-of-freedom due to damping ratios c,,c,, while

external forces are zero.

2.6.2 Simulations of the Dynamic System Responses with Hysteresis Effect

The active hysteretic characteristics between the cutting forces and uncut chip thickness in the
metal cutting process should exist commonly. In order to demonstrate the effect of the hysteretic
characteristics, the primary and regenerative chatter will be simulated. The coefficients of

hysteresis models and other parameters involved in the simulations are listed in Table A and B.

x 10° Respanse of the system with active hysteresis, primary chatter, 2-dimensicnal forces
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Figure 2.21 Response of the system with active hysteresis, primary
chatter, 2-dimensional forces

x 10° Responsa of the systemn with active hysteresis, regenerative chatter, 2-dimensional forces

Amplituds of vibration (m)

0.2
Time (8ec.)

Figure 2.22 Response of the system with active hysteresis, regenerative
chatter, 2-dimensional forces
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nd Response of the system with active hysterests, primary chatter, 3-dimensional forces

Ampltude of vibration (m)

Time (sec.)

Figure 2.23 Response of the system with active hysteresis, primary
chatter, 3-dimensional forces

x 10“ Response of the system with active hysteresis, regenerative chatter, 3-dimeansional forces

Ampitude of vibration (m)

a.2
Time (sec.)

Figure 2.24 Response of the system with active hysteresis, regenerative
chatter, 3-dimensional forces

In Fig. 2.21, the dynamic response of the system that is described as two degree-of-freedom and

two-dimensional force model is plotted, meanwhile, the chatter is considered as primary type, i.e.,

4 =0 in Eq.2.21.

In Fig. 2.22, the dynamic response of the system that is described as two degree-of-freedom and

two-dimensional force model is plotted, meanwhile, the chatter is considered as regenerative type,

ie., #=0.75 in Eq. 2.21.

In Fig. 2.23, the dynamic response of the system that is described as two degree-of-freedom and

three-dimensional force model is plotted, meanwhile, the chatter is considered as primary type,

i.e, #=0 inEq.2.21.
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In Fig. 2.24, the dynamic response of the system that is described as two degree-of-freedom and

three-dimensional force models is plotted, meanwhile, the chatter is considered as regenerative

type, i.e., #4=0.75 in Eq. 2.21.

In Fig. 2.21 through 2.24, under both conditions of two and three-dimensional forces, either
primary or regenerative chatter, it can seen that the vibrations of the metal cutting systems will be
growing as time is going on. Theoretically, chatter can grow as metal cutting process stay in the
oscillation state, it is indicated also that chatter can not grow infinitely during cutting process due

to the regenerative or even multi-regenerative effects [35].

2.7 Summary

With respect to the metal cutting process in turning, the machine structure, the dynamic cutting
process with the hysteretic characteristic are presented in mathematic approaches. Furthermore,
based on theoretical analyses and experimental results, the closed-loop diagram of dynamic system
is plotted. An active hysteresis in metal cutting process is proved to be the main cause of chatter
occurrence as it provides the energy for chatter excitation and maintenance. The simplified
mathematical equations of the hysteresis models are given. The simulations of the systems indicate
the behaviors of the self-exited vibrations in the metal cutting systems under the conditions of
regenerative and primary effects, while the cutting forces acting onto the workpiece are either two-

dimensional or three-dimensional models.
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Chapter 3

Applications of Piezoactuators in the Suppression of Chatter

Introduction — the main characteristics and applications of piezoelectricity will be analyzed; the

preceding applications of piezoactuators in the suppression of chatter in metal cutting process will
be surveyed; the mathematical models of the relationships between the applied voltages and the
deflections of piezactuators will be presented; two dynamic systems of the metal cutting with both

dependent and independent piezoactuators from the tool holders will be constructed.

3.1 Surveys on Control Schemes on Chatter Suppression in Turning

In order to suppress the chatter occurrence during the metal cutting process, proper control
schemes are proposed. Rasmussen [36] reviewed the progress in machine tool control during the
last three decades; three types of controls are discussed as following:

a. Servo-control loops that control the individual axes of the machines

b. Interpolators that coordinate the motion of several axes

c. Adaptive control that adjusts the cutting variables in real time to maximize system

performance.

Rasmussen [37] improved the workpiece surface by employing a digital repetitive servo-control

with the design of a piezoelectric actuated cutting tool.
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Tarng [35] developed an adaptive fuzzy control system for the turning processes with highly

nonlinear and time-varying cutting characteristics.

Recht [38] obtained satisfactory chatter vibration control by implemented a fixed gain PI control

and an adaptive pole assignment control technique with the feed force feedback.

Chen [39] and Yang [40] considered the system to be linear with nonlinear time-varying

perturbation and employed PI controller to treat this stabilization problem.

Mahmoud and Al-Muthairi [41] presented an adaptive turning force controller that has optimal

robustness under the constraint of the feed rate.

Recently, with the advent of piezoelectric devices, increasing attention is attracted to the
applications of piezoactuators in the metal cutting systems. Piezoactuators have a prominent
characteristic that is fast expansions with short response time. The properties of piezoactuators

have made them the high-precision positioning clcments in the metal cutting processes.

3.2 Main Characteristics and Applications of Piezoelectricity

In 1880, Jacques and Pierre Curie [42] discovered that pressure applied to a quartz crystal creates
an electrical charge in the crystal. They called this phenomenon the piezo effect. Later they also
verified that an electrical field applied to the crystal would lead to a deflection of the material. This
effect is referred to as the inverse piezo effect. After the discovery, it took several decades to

utilize the piezoelectric phenomenon. The first commercial applications were ultrasonic submarine
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detectors developed during World War I. In the 1940s scientists discovered that barium titanate

ceramics could be made piezoelectricity in an electric field.

Piezoelectricity materials can be used to convert electrical energy into mechanical energy and vice
versa. As the actuators, the piezoactuators first became available around 20 years ago and have

changed the world of precision positioning.

Piezoactuators (PZTs) offer several benefits and advantages over other motion techniques:

Repeatable nanometer and sub-nanometer sized steps at high frequency can be achieved with
PZTs because they derive their motion through solid state crystal effects. There are no

moving parts (no "stick-slip” effect).

. PZTs can be designed to move heavy loads (several tons) or can be made to move lighter

loads at frequencies of several 10 kHz.

. PZTs act as capacitive loads and require very little power in static operation, simplifying

power supply needs.

. PZTs require no maintenance because they are solid state and their motion is based on

molecular effects within the ferroelectric’s crystals.

With high-reliability of PZTs’ materials, a strain on the order of 1/1000 can be achieved. This
means that a 100 mm long PZT actuators can expand by 100 micrometers when the maximum

allowable field is applied.

Main applications of piezoactuators in mechanical engineering show as follows [43]:
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Microelectronics

e Nano-metrology

e Wafer and mask positioning

e Critical dimensions measurement
e Microlithography

e Inspection systems

e Vibration cancellation

Precision Mechanics and Mechanical Engineering

e Vibration cancellation

e Structural deformation

e  Out-of-roundness grinding, drilling, turning
e Tool adjustment

e  Wear correction

e Needle valve actuation

e  Micro pumps

e Linear drives

e Piezo hammers

e Knife edge control in extrusion tools

3.3 Dynamic Behavior and Mathematical Modeling of Piezoactuators

Piezoactuators can reach the nominal displacement in approximately 1/3 of the period of the
resonant frequency. Rise times on the order of microseconds and accelerations of more than
10,000 g's are possible. This feature permits rapid switching applications. Injector nozzle valves,
hydraulic valves, electrical relays, adaptive optics and optical switches are a few examples of fast-

switching applications of piezactuators.
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Resonant frequencies of industrial piezoactuators range from a few tens of kHz for actuators with
total travel of a few microns to a few kHz for actuators with travel more than 100 microns. An
additional load will decrease the resonant frequency as a function of the square root of the mass

(quadrupling the mass will halve the resonant frequency).

Piezoactuators are not designed to be driven at resonant frequency (with full stroke and load), as

the resulting high dynamic forces might endanger the structural integrity of the ceramic material.

3.3.1 Hysteretic Characteristics of Piezoactuators

In Cuttino and Fripps® experiments [2], it was proved that the relationships between the stimulated
piezoelectricities” deflections and the applied voltages were the nonlinear hysteretic
characteristics. Even for piezoelectric products of some commercial companies, the measured data

about piezoelectric dynamic behavior also have shown that the hysteretic characteristics exist.

In most applications, piezoactuators are used to produce displacements. If used in the restraint,
they can generate forces. The generations of the restraint forces are always coupled with
reductions in displacements. The maximum forces (blocked force) that piezoactuators can generate

depend on the stiffness and maximum displacement of piezoactuators as Eq. 3.1.

F..=KAL @3.1)
where AL,is maximum value of nominal displacement without external force or restraint [m]; K, is

denoted as PZT actuator stiffness [N/m].

Maximum forces that can be generated in infinitely rigid restraints, namely, infinite spring
constants. Under the condition of the maximum blocked force, the displacements of

piezoactuators are zero.
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In Fig. 3.1, it plots that dynamic behavior curve of the piezoactuator, which type is TS18-H5-104
in Piezo System, INC [42], low voltage piezoelectric stack. In Fig. 3.1(a), it shows the relationship
between the voltage applied to piezoactuator and the deflection due to the voltage. In fig. 3.1(b),
the two lines, which represents the different performance of each type of the piezoactuators,
present the relationships between the deflections and forces (pushing and pulling) acting on the

piezoactuators due to the inertias of the PZT masses (plus any additional masses),

200 -
4,000
100 - = -
=

z s 3,000+
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Figure 3.1 Hysteretic characteristics between the voltage and deflection of piezo

3.3.2 Mathematical Modeling of Piezoactuators

Hysteresis is known to be non-differentiable and severely limits the performance of the system by
causing undesirable chatter. Moreover, the hysteresis behavior demonstrated in the actuator signals
makes it impossible to achieve a high accuracy positioning. Most of the hysteresis mathematical
models proposed, like a backlash, are very complicated and may not be amenable to controller

design for the nonlinear systems.

For the controller design, instead of traditional backlash hysteresis nonlinear models, a continuous-

time dynamic model of hysteresis to describe a class of backlash-like is defined in [34]:
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dL(t) _ |dv(¢) ) _ dv(t)
T_al ~—1 (v () L(t))+B——dt (3.2)

where v(t) denotes as the voltage applied to piezoactuators, L(t) is the deflection of piezoactuators,

a, p and B are constants, satisfying c¢>B.

To describe the hysteresis in the system, Difference equation about Eq. 3.2 is

L[+ (@pli +1]=v[i] p + B +1] - BV[i]
B 1+ alvfi +1]-v[7]

L[i +1] (i=1,2,3,--) (3.22)

As the proofin [34], Eq. 3.2 can be solved explicitly for v(t) piecewise monotone

L(t)=pv(t)+gv(1)) (3.3)
with  g(v(¢)) =[L(0) - pv(0)]e =" g™ [" [ B - ple**®"dg, and g(v(t)) is uniform

(

bounded, i.e., |[g(v(1))| < p,. p, is constant.

With @ = 0.5, p=3.17 and B=0.35 and input v(¢) =8.5sin(10¢) , Fig. 3.2 shows the model (Eq. 3.2)
indeed generates the backlash-like hysteretic curves. It will be mentioned that the parameter

a determines the rate at which L(f)switches between — p,and p,. However, the backlash
distance is determined by p, and the parameter must satisfy ¢>B, therefore, the parameter o

cannot be chosen freely.

Figure 3.2 Hysteresis response given by using Eq. 3.2
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Hence, in the designs of the control laws, the force-expansion relationship F,(v) of the

piezoactuators can be described as,

F,(v) =K, (pv(t) + g(v(#))) (3-4)

where K, is the stiffness of the piezoactuator, g(v(t))" < p, (p, is aconstant).

3.4 Applications of Piezoactuators in Turning

One of the schematic of turning metal cutting system is illustrated in Fig. 3.3, in which the cutting

tool is mounted on the tool holder with a piezoactuator.

With the advent of improved machines and process, the interests have been growing for a fast tool
servomechanism to increase the capability and capacity of existing machines. The purpose of the
piezoactuators is to move the tool small displacement into and out of the workpiece, thus

generating desired workpiece surface finish.

Headstock Workpiece Tailstock

— ,//
- — - - 4 - - <= -
~ £+ ToolHolder —
. ! 24 R
—_— 7 Piezo-actuator
. - ke
Cutting tool Tool Post

Figure 3.3 The schematic of turning with a piezoactuator

With electrical voltage applied, the piezoactuator can expand and reach its nominal displacement
on the order of microseconds and more than 10,000 g’s forces are possible, so that the position of

the cutting tool can be maneuvered. Therefore, the chatter occurring in metal cutting can be
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reduced or suppressed with appropriate control scheme with the help of piezoactuators. In Fig. 3.4,

it presents the one of the simplest section view of a piezoactuator structure.

Many piezoactuator models are offered with a mechanical preload so that it is possible to apply
larger pulling forces to the positioning element. In order to present the description of a

piezoactuator model, the mechanical preload is not indicated in Fig. 3.4.

Tool holder Piezoelectric stack

Cutting tool

Alignment cap Housing

Figure 3.4 the section view of piezoactuator structure

Whether the piezoactuators can generate forces depend on their stiffnesses and expansion
capacities. If the piezoactuators are attached between two rigid walls so as not to expand, then the
piezoactuators generate the maximum forces, called blocking force. However, it is only true for
ideal restraints, whose spring constant Kp is infinitely large. In practice, due to fast expanding of
the piezoactuators and the inertia of the mass loads connected to the piezoactuators, the pushing or

pulling forces can be excited and described.

3.5 Structure of the Dependent Piezoactuator on Tool Holder

To simplify the mechanical structures of the metal cutting systems with the piezoactuators, Liu

[44] [45] presented a dynamic model for the turning as follows:
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m-y@)+c-y(O)+k-y(t)=F@)-F,() (3.5)
where the equivalent mass of the cutting system is m; the damping coefficient of modes of the
system is c; the dynamic stiffness is k; the F represents the cutting forces; and F, is the force

generated by the piezoactuator.

The structures of the dependent piezoactuators on the tool holder in the metal cutting system are

shown simply in Fig. 3.5.

cutting tool : P
- &

piezoactuator -~

Figure 3.5 Dynamic model of dependent piezactuator on tool holder

3.6 Structure of the Independent Piezoactuator from Tool Holder

Considering the independent piezoactuators from the tool holders while mount the piezoactuators
in metal cutting systems, the structure of a piezoactuator can be described in Fig. 3.6. The
equations of the dynamic systems are presented as follows:

m-y()+c-y(t)+k-y(t) = F(t)-F,(t) (3.-6)
F,@0=F0-m,y,) 3.7
where the equivalent mass of the cutting system is m; the damping coefficient of modes of the
cutting system is c; the dynamic stiffness of the cutting system is k; the equivalent mass of the

piezoactuator is m, ; the cutting forces between cutting tool and workpiece are F(t); the reaction
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force between piezoactuator and cutting tool is Fj,(t); the force generated by the piezoactuator due
to the expansion while voltage is applied is Fy(t); the relative displacement between cutting tool
and workpiece is y(t); the displacement between cutting tool and independent tool holder (in Fig

3.6) is y,, which the direction is parallel to one of y(t).
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Figure 3.6 Dynamic model of independent piezoactuator from tool holder

3.7 Summary

Based on the analyses of the principles and applications of the piezoactuators in the metal cutting
process, the backlash-like model of the hysteretic characteristics is given, two different models of

both dependent and independent piezactuators from the tool holders are presented.
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Chapter 4

Chatter Suppression for the Controlled System with 2-D Model

and Dependent Piezoactuator

Introduction — in order to suppress chatter in the metal cutting processes, a piezoactuator is

introduced for the regulation of the displacement in the metal cutting process with two degree-of-
freedom. The closed-loop dynamic of the metal cutting system with two-dimensional force model
is presented. The piezoactutor in the systems exhibits the hysteretic characteristics. The adaptive
control law is designed. The simulations of the dynamic performances of the system with the

piezoactuator are shown.

4.1 Dynamic Model of Turning Process

The schematic model of the metal cutting system with two degree-of-freedom is illustrated in Fig.
4.1. The dynamic cutting process is demonstrated in the magnified contact parts of the workpiece
and cutting tool. In this thesis, the work focuses on the type A of chatter that is normal to the
machining surface of the workpiece. Considering the piezoactuator tool holder assemble as a

lumped mass system, the structural turning system may be represented as illustrated in the follows.
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' ‘ A ‘/\z k1

— s R BPCI.

T2y oy

—
—
~ —
N -

Fo . 012

| /

-Piezoactuator | Cutting Tool

Figure 4.1 Schematic model of turning system with dependent

piezoactuators and 2-D force models

In Fig. 4.1. the dynamic process of the metal cutting system can be described with a linear second

orcer function as following:

N/ e
2 o [dn o 0o | ud 0
cos «, dr? cos «, dr cos a, Y
m dy. |* c dv. |* k.
0 }:: 0 2 — 0 = Y-
cosa. \ dr? cos a, \ dt cos a,
"cosa. sina. YF, cos a, ,
= o + F, 4.1)
cosa. sina. JKF‘, cos a,

where y,. y,represent the relative displacements between the cutting tool and workpiece normal to

the machined surface in each degree-freedom direction; m. c,, k, are the equivalent mass, equivalent
damping coefficient and equivalent spring stiffness of vibration structure, respectively, in each

dirsction: F,. F, are the thrust and main cutting forces exciting the structure; F , results from the

piezoactuator: «,. &, are geometrical angles of models of the vibrations of the structure relative to

the line normal to the machined surface.
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According to the analyses in Eq. 3.4 in the chapter 3, the reaction force F, between the cutting
tool and workpiece is defined as

F,(v)=K,(p-v(t)+g(v(1))) (4.2)
where K, is the stiffness of the piezoactuator, v(t) denotes as the applied voltage, other parameters

are defined in the chapter 3.

The closed-loop dynamic system of the metal cutting in turning with the piezoactuator and the

adaptive controller designed in the next section is illustrated as follows,

______ Piezoactuator
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Cutting Process ~cosa2 -
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0 - . sinal \\\\-\ ] ] )
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- Teosar Machine Structure
F(t) Dynamics

Primary Feedback

Regenerative Feedback (Time Delay)

g(s)

Figure 4.2 Block diagram of turning system with piezoactuator and controller

4.2 Adaptive Controller design

Based on the mathematical model of the closed-loop dynamic system described in Eq. 4.1, the
control law will be designed in order to suppress the chatter effect in metal cutting process. Based

on Eq. 4.1, we can transform and calculate it further as follows,
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m dy®,_ & dax0, k (1) = cosa, F(r) +sina,F,(¢) +cosa,F, (1)

cosq, dt* cosa, dt cosa,
cosa,F,(s) +sina,F,(s) + cosa,F,(s) (4.3)
y(s)= T
m , i
s+ s+
cosa, cosa, cosq,

m dzyz(t)+ c, dyz(t)_*_ k,

y,(t) =cosa,F,(t) +sina,F (1) + cosa, F, (r)

cosa, dr’  cosa, dt cosa,
) cosa, F,(s) +sina,F,(s) + cosa,F,(s) (4.4)
a3 S)=
’: m . ¢ ,
s ——s+ 2
cosa,  cosa, cosa,

The combination of Egs. 4.3 and. 4.4 yields

Y(8) = 1 (8) + y,(s)
cosa, F,(s) +sina, F (s) +cosa, F,(s) cosa,F,(s)+sina,F,(s)+cosa,F,(s)
= +

m 2! k, m 5 ¢, k,
5T+ s+ sTH—F—s5+—=
cosa, cos@, cosq, cosa, cosa,  cosa,
cosa F(s) +sina, F_(s) +cosa, F, (s) cosa,F,(s)+sina,F, (s)+cosa,F,(s)
= 2 + 3
mys® +c,s+k, MyS~ +Cyy S+ kyy 4.5)
where
m c k m c k
m, = y Oy =——, ky =——, my,= y Cp = 2, ky = 2
cosq, cos, cosq, cosa, cosa, cosaq,
Eq. 4.5 can be further written as
Y(S)(m,s* +c¢,5 +k, ) (M,,s* +c,s + k)
= (cosq,F,(s) +sina,F,(s) + cosa, F,(5))(m,s* +c,,s + k,,)
+(cosa,F,(s) +sina,F,(s) + cosa,F,(s))(m,s* + ¢, s + k) (4.6)
For simplicity, Eq. 4.6 can be rewritten as
y(sXas'+as’ +a,;s* +as+a,)
= (F(5)+ F,())(B,5" +b,,5 +b,,) + F.(s)(b.,s* + b5 +b,,) 4.7

where

Ay =mMy, Qy=CyMyu+CyMy, ay=kmytk,m, +c,cpn, a =k, Cp +kpc), a,=k,ky
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b,, =cosamy, +cosa,my,, b, =cosac,, +cosa,c,, b, =cosak, +cosa,k,

b,, =sinaym,, +sina,m,, b, =sinac,, +sina,c¢,;, b, =sinak,, +sina,k,

Hence by the inverse Laplace transformation, one can yield.

a,y ) +a,y? () +a,y? ) +ay" () +a,y(t)
= b, F 2 () + b, F" () + b, F, () +b,,F. 7 (t) + b F. " () + b F.(r) (4.8)
+b,, F, 7 () + b, F," (1) +b,,F, (1)

based on the analyses in Chapter 2, the uncut chip thickness u(t):
u(t) =u,(t)— y(t)+ p- y(t —7) (4.9)

where uis the overlapping coefficient, r is time delay of the system, y(t) is the displacement.

Due to the effect of hysteresis between the forces and uncut chip thickness,

Fi(t) = pu(t)+ g (1)) = p,(u, (1) — y() + syt = 7)) + g, (u, () — (1) + pp(t = 7)) (4.10)
F(t) = pu(t) + g. (1)) = p.(u,(£) - y(0) + (1 — 7)) + . (u, (1) = y(t) + py(t ~ 7)) (4.11)
To simplify Eqgs. 4.10 and 4.11, the corresponding backlashes can replace the above equations,
F()=Au(®) B, = 4,(uy(1) = y(t) + wy, (1)) £ B, == A4, y(t) + A, 1y, (1) £ B,

F.(t)= Au(t)+ B, = Aty (t) = y(0)+ 1, () = B, = ~A y(t) + A sy, () £ B, (4.12)
where y ()= y(t —7); B, = Au,(t) £ B,; B, = A u,(t) £ B, ; other parameters are defined in Egs.

2.14 and 2.15.

Substitute Eq. 4.12 into Eq. 4.8, the dynamic equation will be as following:

ay () +ay? )+ a,y® )+ ay" () + a,y(t)

=b,, (=4 YP )+ 4y (1)) + b, (=4Y" () + 1A Y (1)) + b,o(~Ay(6) + Ay, (t) £ B)
+b,(~4YP O+ Ay () + b, (=4yV () + pA. Yy (1)) + b, (4. y(t) + pd.y,(£) £ B,)
+b,,F () +b,,F,"(t) +b,,F, () (4.13)

Eq. 4.13 can be simplified into the form below,
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a,y ¥ () + a,y® () + ay® () + ay® (1) + a,y(t)

=ry2(O)+ryl () +ry, () +b,F,(t) +e(t,F,",F®) (4.14)
where

Z=a4’ a—3=a3’ _2=a2 +bp!2Al +bc2Ac’ Zzal +bpllAl +bclAc’

a_o=ao +bplOAl +b44,

ry=u (b,,4, +b.,4,)
n=Hu (blplAl +b,4,)
ry=H (b,poA: +b,04,)
e(t, ;" F™)=r,, +b

1p2
rtb = iblpOBl ichBc

FPW)+b,F" ()

pl

Remark A: the term e(t, F,”, F,”) is the lumped uncertain element in Eq. 4.1. Its upper boundness
is assumed to be known, i.e. " et,F", F™) " <p().

4.2.1 Designed Control Law

Define the switching surface as:

o(t)=S-x(t) = 5,x,(t) + 5%, (1) + 53, (t) +5,x,(t) =0 4.15)

where SeR™, x(t)eR™,and s, s,, s,, s, are positive coefficients, x,(¢), x,(t), x,(t), x,(t)

are the state variables in Eq. 4.1.

A tuning error o, is defined as follows,

o (1)

)

o,(t)=0()-¢€ - sat (
where € is an arbitrary positive constant vector, sat(*) is the saturation function and o(z)is the

sliding surface.

Differentiating o () with respect to time ¢, and substituting Eq. 4.2, one obtain:
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. do (¢t
o(t) = a( ) x() =5,y + 5,y + 5,9y + 5, y®
;l ; 2 a_ a
= (s, — 5, —_)y(” + (s, — 5,4 __2)y(_) +(s; — 5,4 '—_3“)}’( - 54 =y (1)
as as as

b b
+ = (ryy )+rly:”+royr+e(t)) + 5, I—p—opv(f)'*'-ﬁ Z-g(v(1)) (4.16)
as as as

where b, = K b,,9, K, is the stiffness of the piezoactuator in Eq. 4.2.

p0 ?

L (N>0), 6, =N(s, -5, =2), 8,=N(s, —s,=2), 6, =N(s, -5, =),
as as as

Define N =

sb,,

0, = N(-s)2, 6, =N22r, 6, N_ r, 6, =N=r,.
as

as as

For the design of the control laws, the following assumptions concerning the systems and

hysteresis are required.

Assumption 1:

There exist positive scalars g, ¢q,, g5, such that [[yP@+7)|<q |l y*®)Il,

1y +2) IS g, | YO land [y +7)| < g,y
Assumption 2:

There exist known constants b and b

\pomin oms » SUCh that the control gain b_,in Eq. 4.16 satisfies

g € BpuriarBpamac |-

Assumption 3:

There exist known constants p_. and p_. such that the control gain pin Eq. 4.16 satisfies
PE [pmin ) pmax]'

Assumption 4:

<6, <6,

imax ?

Define e Q, ={6:6, Vie {l,r}} where 6, ..., 0., are known real numbers.

imin
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Assumption 5:

In Eq. 4.2,

lg(v(®))| < p.. p, is a constant.

With respect to the plant and hysteresis models subject to the above assumptions, the following

control law and adaptation mechanism are presented:

w(0) =Tk o () +6,()y" (1) +8,(0)y™ (0) + 6,(t)y (1) +6,()y(0) + B,y )|
_ _ o () (4.17)
+eo(r)lly‘”(r)ll+9,(z)||y(r)||+k'sar(7)]

where 8, = proj (éi,—y,a),.) ((=1,2,3,4,5 6, 7); k., k' are constant positive gains.

proj(,,+)is a projection function as follows
O I.f(él > emax and}’iwi < O) or (é; < 6min and }’iwi > 0)
proj(éi ’_710),') =4"7%:%; if(emin < é: < 9mu)or (éx > emax and ViQ; 2 0) (418)

or8, <8, andy,w, <0)

where o, are defined as
o,()=0,0)y"®), 0,)=0,y?W), o,0)=0c,0y?0), @) =00y,

o;)=0,0ly?Ol, @O =0.01y"Ol, o,©=0c,0ly0l;

and scalars y,(i=1, 2, 3, 4, 5, 6, 7) are coefficients chosen by the designers practically.

4.2.2 Stability Analysis of the System

To establish global bound, we define a Lyapunov function candidate for the system in Eq. 4.1:

1 i1 ERS R ,
V)= E[NO’.Z(f) + 5[7(9.-(1) -6)1+ ;[7(9,-(') - qi—-lei)-]jl (4.19)
Case 1: when | o(r) |< €, the derivative ¥ (r) exists for all o(r), whichis V(£) =0.

Case 2: when | o(¢) |> ¢, using Eq. 4.16 and the fact o = a.' ', One obtain
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L4 i=7

V()< N, a+Z[—(0(r) 0)0]+Z[—(0(t) 4,466
i=] i i=5 i

4 i=7

—Z[—(e(f) 9)9]+Z[—(9(f) q,_49)9]+6(v(f)+ g(V))
Vi = 7 t (4.20)
+0,(0y" +6,y? +6,y° +8,y + 6,y +6,y " +97y,+e())
1po

As a projection function, (6, - m@,) proj(é,.,r;zzr,.) <(8 -m@,)rw,, m; are positive scalars. Then

e(r)

1po

‘o, (v(r)%g(v(r))) +0,(6, ~6)y" + @, —8,)y™ + (@, -6,)y®

Viy<so, 0y" +60,y? +6,y% +0,y +6,y. P +6,y." +6,y, +

)

+(8, —8,)y + (85 —q,0) | v | +@s = 4.0:) 1| Y 1| +(8, — ;0,1 ¥ ) (4.21)

According to the assumption I, we can get

e(t)
bypop

tpo

Vi <o, (gly(l) '*‘62.}’(2) '*'93}’(3) +6,y +q,6; || y(z) | +4,6; |l y(l) l+q,6, Il ¥ Il +

)
+o, (v(t) +%g(v(,)» +0,(6, -6)y" +(8, —8,)y® + (8, -6,)y®

+(8, = 8,)y + (85 —q.0) Il YO || +(85 —4:.0) | y" Il +B; —q:0) | )

<o, (2D By vty 40, Gy + 8,9 + 8,57 +8,y+0, ||y 1146, |y 1| +6, | 1D
1po

<o, (2 EDy | 5 By + 8,y 46,59 +8,y+8, || y? 1| 40, 11y 1146, | ¥ ID
wo P

-o,(k c+8 y") +8 y(’) +0,y +6 ('))||+0 ||y||+k sat(——= ot )))

o(t)

=—k o, ()o(t) - O',k'sat(—) +0, ( gv)+
P

ﬂ
bpp

ipo

)

)

<—k 6l (-0 k Sat(—()-)+0'( g(v)+ 20
L

Ipo
le(t)]
b,. D

1po

<—k o} (t)-|o,

—I g+ ) (4.22)
P

In the assumption 5 and the Remark 4, | g(v) I< p, and |e(r) |[< p(t) are defined.

While defines k° = k" > ~(p, + -’i(%i‘@), it yields
P

1po

74



V) <k o2 @) -lofkent1o, | (C1em+ N < ko Vie@be 4.23)
’ P b,.p

Based on the above analyses and proof, the following theorem regarding the stability of the closed-

loop system described by Egs. (4.2), (4.14) and (4.17) can be established.

Theorem: For the plant in Eq. (4.1) subject to Assumptions 1-5 and Remark A, the robust adaptive

controller specified by Eq. (4.17) ensures that all the closed-loop signals are bounded and the state

variable y(f) converges to zero for Vr >¢,.

4.3 Simulation Results

The adaptive controller developed in Eq. 4.17 is introduced into the system in Eq. 4.1. The
parameters involved in all equations in the simulations are listed in Table A. Fig. 4.3 shows the
dynamic response of the metal cutting system (in Eq. 4.1) combined with the control law (in Eq.

4.17); Fig. 4.4 illustrates the dynamic response of the main cutting force F,(t) during the cutting

process; Fig. 4.5 presents the dynamic response of the thrust force F,(¢) in the same process.

- 10‘ Response of the dynamic system, 2-D, dependent piezo, under the adaptive controller
14
12 e o e e e e e e e e e ieeeaeias -
B0 b o m e e e et e e e eeaeeaae e e ee et e e me e am e —_—
E
§ 3 S —_
- T ST -
3 i
§ R | U SO SR -
< ’ ‘
S S S
SRS : ;
0 T N T N T T N S TN T e T e o T e e T T S e T L T T TN T Y
2L l : ' : . ' ) ) ; |
0 0.005 0.0t 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (sec.)

Figure 4.3 Response y(t) of dynamic system with the control law
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c.025 X N 3 a.05
Tme (sec)

Figure 4.4 Response of main cutting force F_(¢) during cutting process

Dynamic respansae of thrust force Ft dunng cutting process

824 ' ; T T ! T ; ; ;
e bresenanesees R R R —— LT S S beneenneenes -
---------- USROS SOOI SRS SN SR SR SR
i i i i i i i i
0.01 0.015 o002 Q.g2s [s }sx] 0.035 0.04 0.045 a.05

Timea (sec.)

Figure 4.5 Response of thrust force F,(¢)during cutting process

From Fig. 4.3 through Fig. 4.5, the simulations of the system with the adaptive controller show
clearly that: 1) the proposed adaptive controller results in the suppression to chatter; 2) the cutting

forces during the cutting process are stable eventually.

4.4 Summary

In order to suppress the chatter in the metal cutting system, a piezoactuator is introduced into the
system; the system is modeled as a class of uncertain linear system with hysteresis and time lag; an

adaptive control law for the system is presented. The simulation results show that the designed

control law significantly eliminates the chatter effect in the metal cutting process.
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Chapter 5

Chatter Suppression for the Controlled System with 3-D Model

and Dependent Piezoactuators

Introduction — in order to suppress chatter in the metal cutting processes, the piezoactuators are

introduced for the regulation of the displacement in the system with two degree-of-freedom. The
closed-loop dynamics of the metal cutting processes with three-dimensional models of forces is
presented. The piezoactutors exhibit the hysteretic characteristics. Two adaptive control laws are
designed. The simulations for the dynamic performance of the system with the piezoactuators are

shown.

5.1 Dynamic Model of Turning Process

The schematic model of the metal cutting process with two degree-of-freedom and three-
dimensional force models is illustrated in Fig. 5.1. The dynamic cutting process is demonstrated in
the magnified contact parts of the workpiece and cutting tool. The work will focus on the typy A
of chatter that is normal to the cutting surface of workpiece. Considering the piezoactuator tool
holders assemble as a lumped mass system, the structural turning system may be represented in the

following Fig. 5.1.
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kr is the major cutting edge angle

2y
4 Ft

e

Piezoactuator

Cutting Tool

Figure 5.1 Schematic model of turning system with dependent

piezoactuators and 3-D force models

In Fig. 5.1, the dynamic process of the metal cutting system can be described with a linear second

order function as following:

- 0 [Ln] (& 0 | (K 0
cosq, dr? 4| cose dr cosa, ( N J
: 2 2 k
0 e d }” 2 0 & (323 0 2 Y2
cosa, N\ dr? cosa, \ dt cosq, (5.1)
_[eose sinf sina, cosa,cospf N cosa,sinf cosa,cos B\ F,
cosa,sinf —sina, cosa,cospf F‘ cosa,sinfB cosa,cos BN F,
'y

where y,, y,represent the relative displacement between tools and workpiece normal to machined

surface in each degree-freedom direction; m,

c,, k, are the equivalent mass, equivalent damping

coefficient and equivalent spring stiffness of vibration structure, respectively, in each direction;

F,, F,, F, are defined as the thrust, main

F

o

cutting and feeding forces exciting the structure;

F,, are denoted as the forces resulted from the piezoactuators in both directions of thrust and
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feed forces; a,, a,are geometrical angles of models of vibration of structure relative to a line
normal to the machined surface; £ is the angle between the horizontal line and the area normal to

the machined surface.

The closed-loop dynamic system of the metal cutting in turning with the piezoactuators and two

adaptive controllers designed in next section is illustrated as follows:

Falt) Piezoactuator1

cos alsing - - —_—
S <Y Culaw2 —-—
. cos a2sing - _- :
Cutting Process Rl Piezoactuator2
— cosalcosg - -y
T Tsinal —— T CuLaw] —=-
P———— : ~ cos a2cosp -
Us 7 . -sina2 . s . Ff"(t) —= COSf —
| Fe(t) N _(;)_* o g
: R e — S) —— —e Sin
! O _cosalsing —= o Y(®)
A _ I - - cos a2sinp \‘;'“> G2(s) —
‘ Fx(t) -
- cosalcosp - ‘Machine Structure!
T —, Dynamics
- - COS a2cosg -
F(t) T T
Primary Feedback

‘ _ Regenerative Feedback (Time Delay)
—— g(s)

Figure 5.2 Block diagram of turning system with the piezoactuators and controllers

According to the analyses in Eq. 3.4 in the Chapter 3, the reaction forces between the cutting tool

and workpiece are defined as:
F,(»)=K,(p, -v,(6)+g,, 1) (52)

pr(v)=Kpf(P/'vf(t)'*'g/(vf(t))) (5.3)
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where K}, and K,rare the stiffness of the each piezoactuator, v,(f) and v, (t)denote as the applied

voltages and other parameters are defined in the Chapter 3.
5.2 Adaptive Controller design

Based on the mathematical model of the closed-loop dynamic system described in Eq. 5.1, the

control laws will be designed in order to suppress the chatter in the metal cutting process.

Based on Eq. 5.1, we can transform and calculate it further as follows:

m dzy,(t)+ o dy@®, k
cosa, di* cosa, dt cosa,

n(t) (5.4)

= cosq; sin fF, (1) +sina, F_(t) + cos a, cos BF (1) + cosq, sin fF, (1) + cosa, cos fBF . (¢)

cosa, sin fF,(s) + sina, F,(s) + cosq, cos fBF,(s) + cosa, sin fF, (s) + cos a, cos SF(s)

nis)= m 2 G k,
sT+ s+
cosa, cosa, cosq,
d*y, (¢ . d oy (t k,
m y,’() L G y. (1) —5 0 (5.5)
cosa, dt’ cosa, dt cosa,

= cosa, sin fF,(t) - sina, F,(t) + cos a, cos BF , (t) + cosa, sin BF,, (t) + cosa, cos fF . (¢)

) cosa, sin BF,(t) —sina, F_(t) + cos a, cos BF, (t) +cos a, sin fF, (t) + cosax, cos AF, (t)
2 S)=
% m c, k,
P ——s5s+—2
cosa, cosa, cosa,

The combination of Egs. 5.4 and 5.5 yields

W(s)=y,(s) + y,(s) (5.6)

where

) cosq, sin fF,(s) +sine, F, (s) + cosa, cos fF,(s) + cosq, sin BF,, (s) +cosa, cos BF . (s)
S)=
h m_ ! ky
s+ s+
cosa, cosq, cosa,

cosa, sin fF,(f) —sina, F, (t) + cos a, cos fF, (t) + cosa, sin fF, (t) +cosa, cos FF . (¢)
m )

k,
5T+ s+
cosa, cosa, Cosa,

ya(s)= c,
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From Eq. 5.6, we can obtain:

y(s)Y(m,s* +c,s+k,)(m,s* +c,s+k.,)
= (cosa, sin BF,(s) + sina, F (s) + cos @, cos BF,(s) + cosa, sin fF,, (s) + cos e, cos fF, (5))
x(m,s* +c,s + k)
+(cosa, sin BF,(t) —sina, F (1) + cosa, cos BF, (t) + cosa, sin BF, (¢) + cosa, cos BF, (1))

x(m,s* +c,s+k,) (5.7)
where
m c k m c k
m, = Lo =——, ky=——"—, my= , Cp=———, hky=—2
cosq, cosq, cosq, cosa, cosa, cosa,
For simplicity, rewrite Eq. 5.7 as
y(s)a,s* +a,s’ +a,s* +a;s+a,) =(F,.(s)+ Fo (s)b,,8° +b,,5+b,,) 5.8)

+ F.(5)(b,,5° +b,5+b,)+(F,(s)+F, (s))(b/pzs2 +bys+by,)

where

ag=mymy, da;=CyMy+cyumy, ay=kymypt+kym, +c,cy, a =k cp+kpey, a,=k ks,
b
b

p2 = C€OSQ, sin f-my, +cosa,sinf-my, b, =cosa sinf-c, +cosa,sinf-c,

po = COS@, sin B-k,, +cosa, sin -k,
b., =sinaym,, +sina,m,,, b, =sina,cy, +sina,c,, b, =sinaky, +sina,k,,

bfpl

b o =cosa, cos Bk, +cosa, cos f-ky,.

=cosa, cos B-my, +cosa,cos f-my, by =cosa, cosf-cy, +cosa,cos B ¢

By the inverse Laplace transformation of Eq. 5.8, one can obtain:

a,y (1) +a;y0 (1) +a,y P (1) +a,y® (1) + a,y(t)

= b,y F2 () + b, F " (0) + b0 Fy (1) + b, FL 2 (1) + b, F. O (0) + b o F.(8)
+b 4y F, P () 48, F, O (0) + b0 Fp (6) + b, Fo P () + 5, F, O (1) + 5,0 F,y (1)
+b,, F D (@) 45, F, () +b,,F, () (5.9)

[n terms of the analyses in Chapter 2, the uncut chip thickness u(t) is

u(t) =u,(t) - y(@)+ p-y(t — 1) (5.10)
where u is the overlapping coefficient, 7 is time delay of the system, and y(t) is the displacement.

Due to the effect of hysteresis between the forces and uncut chip thickness, the forces can be

expressed as:
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Fi(t) = pu(®) + g,(u()) = p,(u,(£) = y(t) + 1y(t = 7)) + &, (u, (1) = y(O) + py(t - 7)) (5.11)
F.(t) = pu(t) + g.(u(1)) = p.(u, (1) = y(O) + py(t — 7)) + 8. (u,(¢) — (&) + wy(t — 7)) (3.12)
F (0)= pu(t)+g,(u() = p,(u,(t) = y(O) + py(t — 7)) + g, (=y(t) + py(t — 7)) (5.13)

To simplify the above equations, the corresponding backlashes can replace them,

F(t) = Au(t) £ B, = A,(uy(0) = y(O) + i1y, () £ B, = =4 y(O) + Aps- y, (1) £ B,
F.(0)= Au() £ B, = A, (uy() = y(t) + -y, () £ B, = A, y(t) + At y,(1) £ B, (5.14)
Fr(t)=Au(t)£B, = A (u, ()~ y(O)+ 4 y, ()£ B, =—A,y(t) + A, -y, () £ B,

where y ()=y(t-7); B, =Au,()xB; B.=Au,()*B,; B,=Au,()£B,; other

parameters are defined in Eq. 2.14 and 2.15.
Substitute Eq. 5.14 into Eq. 5.9, the dynamic equation of the system will be as following:

a, y P () +a,yP () + a,y P () +a,y® () + a,y(r)

=b,y (AP O+ pAyE @) + b, (=AY V() + A,y () + o (A, y(0) + pA,y. () £ B,)

+b, (=AY O) + A y P O) + by (A YV () + pd. y O () + by (A y(O) + pA,y, (£) £ B,)
+bfp2(—Afy(2)(t) + /’A/y?)(t)) +b/p| (—Afym(t) +M/Yf-l)(t)) +bfpo (_Aj}’(t) +/‘Afyr k- B/)
+b Fp,(z)(t) + b, Fo (0) + by F o (1) + b F, 20 +b mF,,,“’ (0)+b 0 Fop (0) (5.15)

p2 pl

So, the Eq. 5.15 can be simplified into the following form,

a,y () +a,y? () +a,y® () + a,y (1) + ay(0)
=Ry O+ ryP () + 1y () + b0 F, () + by Fo (D +e(t, FP FP  F2FP) (5.16)

where a, =a,, a,=a,, a,=a,+b,,4,+b, A +b,A, a=a+b

ptl

2 A4 +b,4,+b,4,,
8, =0, +b A+ A, +b A, r,=p (b4 +b, A +b,4),
n=p 0,4 +b,A4, +b,A), r,=u (b4, +bpod, +b,04.), 1y =E(bpB, +byB, +b,B,),

D P ) g @ M @ )
e(t,Fp(,),F,f,),F,ff’,F,ff))=rib+b,p2Fp, (D +b, F, (O +by, F () +by, F o (0).

Remark A: The term e(t,F, FY ,F, FP)is the lumped uncertain element in Eq. 5.1; Its upper

pt *" pt 2

bound is assumed to be known, i.e.," e(t, F;:’,F;",F:;’,Fp‘f” " <p@).
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5.2.1 Design Control Law

Proceeding in the usual fashion, define the switching surface o(f) € R

o, (1) $5,,(8) + 5., (1) + 5,5,(£) + 5,.x,()

a(t)=(a'(t)J=S-X(t) ( 16, (0) + 5,3, (8) + 5,5, () + 5,.%, (t)] 0 (5.20)

where S e R*™, X()eR'™, 5,, Sz Sz Sis Sap» Sms Sap» S, are  positive  coefficients
respectively, x,(¢), x,(¢), x,(¢), x,(t) are the state variables in Eq. 5.1.
Similar to Chapter 4, a tuning error o, is defined:

c,(t)y=0,(t)—¢-sat (‘—f—'gl), (i=1, 2) (5.21)
£

where £ is an arbitrary positive constant, sat(-) is the saturation function and o(¢f)is the sliding

surface defined by Eq. 5.20.

Differentiating o (¢) with respect to time ¢, and substituting Eq. 5.2 and 5.3, one has

x,(t)

o.'(t)—ac(t) x(t) = [ 12 53 514) J.ez(t) (5.22)
n Sn Sy S )| %)
X, (x)

The above state variables are chosen as:

x () =y(), x,(t)=x,(t), x3(t)=x,(t), x,(t) =x;(). Therefore

()

. 60'(1) S, Sy Sy || (@)

o= x(0) = (Szx Sn Sy )}’(x) (5.23)
Q(x)

where Y,(t) =,y ) +ny +ny. (1), e(t)=e(t, FP ,FY , FP,FD),

pt 2" pt
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Qx) =L y(1) - 2L YV (1) =2 y D (1) 2 yP (1) + = (Y,(t)+e(t))+b£ F,)+= ) F,. ().

a, a4 a, a, a, a, a,

Each element of the sliding surface o(f) is

. a a- o
o1(t) = (s, =5y '(—1—-‘1—)}’“)([) + (S =8, =)y ) + (53 — Sy —a_—)y“)(t)
+ s

as
a b, P, b,
- Sy a_—y(t) + Jis (Y. (1) +e(t)) + sy, —=—v,(t)+ 5,y =—g,(v,(1))
as as as. as
b . p b
TSy, et S v,(t) + sy _—prgf(V/(f)) (5:24)
as as
* a ao» 9 a
G 2(t) = (S5 =Sy =)y V() + (55 = S0y =) YD) + (555 = 54y =)y (1)
as as as
;O S 24 blpo b, b'po
=Sy, =—y)+ =Y (1) + e(t) + 5,, —= v, (1) + s, =g, (v, (1))
as as as as
b b
+ 5, s P s V() + sy, L-g (v, (1) (5:25)
a.a as

where b, =K ,b,,, b,, (V) = Kb, Ky and Krare the stiffness of the each piezoactuator.

The above equation can be transformed to the matrix form as follows

(:8} ) (j:: jy(n(t) + (i: Jy(z)(t) +(j:]ym(t) + (j: Jy(t) +(j‘; )yﬁ”(t) +(i:}y:n(t)

vi) (M, M, &)
+ A y.(6) + s e(t) + Sy I B (5.26)
4, 4, N N v,(0)) \ M, M, )\g,,)
a a a:z a:
where An =8 =S = A‘.’l =8y TSy = A\2=Slz-sn = Au:Sn_sz-t ="
as aa as as
a as Qo Qo S,.7,
Au =8 TS = A'u Sy = Sy =", AN =S = Au S2s =" A15 =& H
fl 4 as 4 as
S,.7, S, S, 8147 S_ I S s
Azs=_£-’ A=+, e ==, A|7=|—4°a A4y = 7—40, AIS_#’ Azs-—us
4 4 4 as as as as
N 5110,0 P, S13bpopy 524b:poP: N S24bfpop[
11 = i L] 2= - ’ 21 - ] 2 = - 2
as as as as
S14D1po 5135 o $24D1p0 524D o
M, =—, == M, =—, n= =
as a as as
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- A'n e Au 3 An - AM - Axs > Aus e An
Dﬁn = = = = = = =
e 4 (4,J’ % (AJ’ K (Ag)’ “ (AJ’ * (AJ’ “ (4) “ (A:,]

9 - A“ Y NH Nl: 37 _ Mn Mlz _ vz(t) _ g.,)
Aﬂ_(Azs} N_[Nu Nn)’ M_(‘wzx Mzz} V(t)—("/(t)} g(V)_(g/(v/)J.

In terms of the above definitions, the Eq. 5.26 can be rewritten as:

o(t) = Ay (6) + AyD(6) + AyP(0) + Ay(e) + AyP () + Ay () + Ay, (1) + Ae(t)

+Nv(t) + Mg(v). (5.27)

Define 6,=N 4, 6,=N"4, 6,=N 4, 6,=N 4, 6,=N 4, 6,=N 4, 6,=N 4.
6eR™ (i=1,2 3, 4,5 6, 7).

For the designs of the control laws, the following assumptions concerning the systems and

hysteresis are required,

Assumption 1:

There  exist positive scalars gq,, q,, q;, such that ||y +2)|<q, | y¥ O,
1y + D)<, 1| y (@Ol and [y + 1) < g,y ()] -

Assumption 2:

There exist known constants b and b such that the control gain b,,in Eq. 5.16 satisfies

pOmin pQmax

prO € I.blp0min ’blpOmax ] :

There also exist known constants b, and b,, . such that the control gain b,,in Eq. 5.16

satisfies b, € lb  p0min > O pomax J

Assumption 3:

85



There exist known constants p, . and p,__ such that the control gain p,in Eq. 5.16 satisfies

p: € tmin’pnnlxl'

There also exist known constants p, . and p, . such that the control gain p, in Eq. 5.16 satisfies

p/e /min’pfmaxl'
Assumption 4:

<6.<0,. Vief,r}}, where 6,

imax imin

Define e Q, =1{9:6 and 6, . are known real numbers.

Assumption 5:
InEgs. 5.2and 5.3, || g (v)|[€ p,, p,is constant.

With respect to the plant and hysteresis models subject to the assumptions, the following control

law and adaptation mechanism are presented:

v(t) =—k_a(®)+6,(y" () +8, )y )+ 8,y (1) + 8,y +8,(0) || yP ) | +8, () | Y () |

5 . o
+6,(O | y@) || +k sat(%)] (5.28)
where w(f)eR*™; k,, k° are constant positive gains; 6. = proj (8,,—7,®,)

(i=12,3,4,5 6,7), proj(--) is a projection function defined as
0 if (6, > 0,y and y,, < 0) or (6, <0, and y,, > 0)
proj(6,,~y,w,) =1~ 7,0, if Opin <0, <0, ) 0r (6, >0, andy,0,20)  (5.29)

or 8, <0, andyw, <0)

Define &, (1) =0,()y" (1), @,(")=0,@)y?(@), @) =0,V @), @,0)=0,)¥0),

as0) =0, YO, os) =0,y O, @, @) =0c,0)]yOI;
and scalars y,(i =1, 2, 3, 4, 5, 6, 7) are coefficients selected by the designers.
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5.2.2 Stability Analysis of the System

To establish global bound, a Lyapunov function candidate for the system in Eq. 5.1 is defined as:

/(0= 3(0/No, O+ S -@O-0Y GO -0+ 3-C0-4.0Y GO0} 630

Case 1: when || o(¢) |[< & , the derivative ¥(r)exists for all o(r), whichis V(¢)=0.

Case 2: When| o(¢) ||> €, using Eq. 5.27 and the fact ¢ = 4, , one can obtain:
V()= N o+ S-G0-6) 1+ 3160 -4.60Y 8]
=% =¥

=3 @00 01+ 3-B0-4..8Y 01+ 0N (A" + £y 0+ By + Ay

-

+ A YO () + AP () + 4.y, (6) + Ae(t) + Nv(1) + Mg(v)) (5.31)

As a projection function, (5,. -m0,) proj(6.,rm,) < @ —m 6 )r.@,, m;is positive scalars. Then

V) <o (0y" +0.97 +0y7 +0,y+0,. " +6,y. " +0,y + N Ase(?))

+0] (W) + N Mg(m)+0, (8, -0)y" + (8, -0,)y™ +(6,-6,)y"

+(B0,-0)y+(0,- 281 y* | +©8, - 4.0 | y" | +(8, = 4,611 ¥ )

ST OV +0,7 + 6,y +6,y+64, || ¥ || +6,4, 1 " [ +6,, Il | +N Ase(t))
+o, (V) + N Mg(v))+ o, (6, -6)y" +(8, -6,)y® +(8, -6,)y®
+(8, =0,)y + (05 —0.8) 1| y© | +Bs — 4,0 1| y¥ | +(8; - 4:6,) 1 ¥ )

<ol (N dse(t)+ N Mg(v) -0, (k. o) +8 y" () + 8,y )

+8y7(0)+0,y+ 0,11 YOO +6, 1 y ) || +6, | y©) +k'sat(—‘:-»

+0, 0y +6,y7 +6,y° +8,y+6,1 y* | +6, 1 y" 11 +6, | ¥ II)

< —o;rkr o(t)— a,rk'sat(%) +o] (N'l Zs@([) + .]V_lﬁg(v))

<-0k o,(t)-0, ksat (%) +0’ (N dse(t) + N Mg () (5.32)
As the definition in Eq 521, o(r) € R and sar(Z) = [sa,("n_(‘)) san 22 )J ’

t
£ &€ €
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)-k" =l o, || -£ (5.33)

So o k'sat(Z) = (o] +|o
£

Eq. 5.32 can be rewritten as:
Veys—o ko)~lloT 1k +Io] I-IN 1 Asll-lle@) I +1 M1 -[ gD (5.34)

In the Assumption 5 and the Remark A, ||g (v} ||I< p, and [e(r)| < p(¢) are assumed.

While defines k" =k 2| N ||(l| 4s || -p(t)+ | M || -p,) . We can yield

max

Vey<—k o, IF ~ll o7 -kt [N 11 s [l e |+ 111 g 1)
<—k |lo,(0)IF Vo> e (5.35)

Based on the above analyses and proof, the following theorem regarding the stability of the closed-

loop system described by Egs. (5.2), (5.3), (5.16) and (5.28) can be established.

Theorem: For the plant in Eq. (5.1) subject to Assumptions 1-3 and Remark A, the robust adaptive

controller specified by Eq. (5.28) ensures that all the closed-loop signals are bounded and the state

variable y(f)converges to zero for V¢ >¢,.

5.3 Simulation Results

In order to eliminate the chatter in metal cutting processes, the adaptive controller developed in
Eq. 5.28 is introduced into the system in Eq. 5.1. The parameters involved in all equations in the
simulations are listed in Table B. Fig. 5.3 shows the dynamic response of the metal cutting system

in Eq. 5.1 combined with the control law in Eq. 5.28; Fig. 5.4 illustrates the dynamic response of

the main cutting force F_(¢) during the cutting process; Fig. 5.5 represents the dynamic response
of the thrust force F,(r) during the cutting process; Fig. 5.6 plots the dynamic response of the feed

force F,(t) during the cutting process.
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Figure 5.3 Response of dynamic system with the control law

Dynamic Response of main cutting Fc during cutting process

H : :
a5 ag2 Q.025 0.03 0.035 0.04 0.045 0065
Time (sec.)

Figure 5.4 Response of main cutting force F_(r) during cutting process
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Figure 5.5 Response of thrust force F,(t) during cutting process
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Dynamic response of feeding force Ff during cutting process
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Figure 5.6 Response of feed force F (¢) during cutting process

From Fig. 5.3 through Fig. 5.6, the simulations of the turning system with the adaptive control
laws in Eq. 5.28 show clearly that the proposed adaptive controllers can significantly suppress the

chatter during the metal cutting processes.

5.4 Summary

In this chapter, in order to suppress the chatter in the metal cutting processes, two piezoactuators
are introduced the system; the metal cutting process is modeled as a class of uncertain linear
system with the hysteretic characteristic and time lag; two adaptive control laws for the
suppression of chatter in the system are designed; the simulation results show that the designed

control laws significantly eliminates the chatter effect in the metal cutting process.
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Chapter 6

Chatter Suppression for the Controlled System with 2-D Model

and Independent Piezoactuator

Introduction — in the metal cutting system with two degree-of-freedom, a piezoactuator is
introduced for the regulation of the displacement between the cutting tool and workpiece. The
closed-loop dynamic of the metal cutting system involving two-dimensional force model is
presented. The piezoactutor, the structure of which is independent from the tool holder, exhibits
the hysteretic characteristics. For overcoming the chatter, the adaptive control law is presented.

The simulations for the dynamic performances of this system with a piezoactuator are shown.

6.1 Dynamic Model of Turning Process

The schematic model of the metal cutting system with two degree-of-freedom and two-
dimensional force models is illustrated in Fig. 6.1. The dynamic cutting process is demonstrated in
the magnified contact parts of workpiece and cutting tool. The work focuses on the type A of
chatter that is normal to the cutting surface of work-piece. Considering the structure of the
piezoactuator as an independent free mechanical body with the cutting tool, the structural turning

system may be represented as in Fig. 6.1.
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A-A = S1
Workpiece (m) 1= —

A . . \:/";‘\\ N
Y ‘ Piezoactuator Cunlng Tool ‘F/c L \al

Figure 6.1 Schematic model of turning system with independent

piezoactuators and 2-D force models

In Fig. 6.1, the dynamic process of above metal cutting system can be described with a linear

second order function as following:

™ 0o |4y < o (D) (L
cos «, dt 2 ] COs dr || cosa, ()’.J
0 L 2 0 ¢ || s 0 £ N\
cosa, \ dr? cos a, )\ dt cos «,
_[cose, s'ina, F L[ cosa, F 6.1)
cosa, sina, \ F,) \cosa,) °
F,=m, dt:” +F, (6.2)

where y,, y,represent the relative displacements between the tool and workpiece normal to
machined surface in each degree-freedom directiqn; m, c,, k, are the equivalent mass, equivalent

damping coefficient and equivalent spring stiffness of vibration structure respectively in each
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direction S1 or S2; F,, F, are the thrust and main cutting forces exciting the structure;

F,represents the force generated by the piezoactuator; F, is reaction force between the

piezoactuator and workpiece; @,, @, are geometrical angles of models of vibrations of structure

relative to a line normal to machined surface; the definition of the y ,(#)1s given in the section 3.6

in Chapter 3; mis an equivalent mass of the piezoactuator.

The closed-loop dynamic system of the metal cutting system in turning with a piezoactuator and a

adaptive control law designed in next section is illustrated as following:

Y)Y — vV = .+ Yp(t)
Z——(—)> CtrLaw Jeathe F —+- — ! ———:‘j——— L— l/m,»—p()
Piezoactuator I - Y+
h— kp ~ Cp e
. : 2 i-
_M_ Fo — - . —l—__
. ; § B —— cos a2 - A == - -—
Cutting Process R F
Uo - - Sinal \___ _ o
Y - uw - - -sin a2 . \,\i" Gi(s) — Y(t)
+F—— Fety — . + 7
I I . - .cosal - /;t"' G2(s) — _
- T Teosar Machine Structure .
Fd(t) Dynamics

Primary Feedback

Regenerative Feedback (Time Delay)

g(s)

Figure 6.2 Block diagram of turning system with the piezoactuator and controller

According to the analyses in Eq. 3.4 in Chapter 3, the force F, generated by the piezoactuator is

defined as:

F,(v) =K, (p-v(t)+g(() (6.3)
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where K,, is the stiffness of the piezoactuator, v(t) denotes as the applied voltage, other parameters

are defined in Chapter 3.

6.2 Adaptive Controller design

Based on the mathematical model of the closed-loop dynamic system described in Eq. 6.1, the

control law will be designed in order to suppress the chatter effect in the metal cutting process.

Based on Eq. 6.1, we can transform and calculate it further as follows:

2 d*y (t
m dA0, 6 dAO, Ky ) cosa,F @) +sina, F () + cosa, (F,0) -m, “220)
cosa, dt’ cosa, dt cosa, dt-
cosa F (s)+sina, F.(s)+cosa, F.(s) —cosa 5)s®
yl(s)= 1 l() 1 c() 1 v( ) lmpyp( )S (6,4)
m c, k,
T+ s+
cosa, cosa,  cosq,
m_ &y, ¢ dy.0 k d’y,(t)

,(t)=cosa,F,(t)+sina,F.(¢t) +cosa,(F,(t)—m 8
cosa, dt’ cosa, dt cosa, y:(1) £ ) (E0-m, dr’ )

cosa,F, (s)+sina,F,(s) +cosa,F,(s)—cosa,m y (s)s*
y.(s)= Lt (6.5)
m c, k,
st —2 g+ 3
cosa, cosa,  cosa,

The combination of Egs. 6.4 and 6.5 yields

cosa, F,(s) +sina,F,(s) + cosa,F, (s)—cosam,y,(s)s"
m c, k,
s+ s+
cosa, cosq,  cosq,

y(S) =y,(s)+y2(s) =

N cosa,F,(s) +sina,F (s) + cosa,F, (s) —cosa,m,y, (s)s?
m c, k,
ST+ s+
cosa, cosa, cosq, (6.6)

Y(S)(m, 5% +c,, 5 +k Nmps® +cps+ky)
= (cosa, F,(s) +sina, F,(s) +cosa, F,(s) —cosaym,y ,(s)s* Ymys® + 8 +kyy)

+(cosa, F,(s) +sina, F,(s) + cosa, F, (s) —cosa,m,y ,(s)s* )(my s* + ¢, 5+ k;,) (6.7)
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where
m c
th = s 1 = s
cosa, cosa,

my, = ’
cosa,

For simplicity, rewrite Eq. 6.7 as:

y(s)a,s® +a,5’ +a,s* +as+a,)=
(F () + F,(s))b,,5* +b,5+b,,) + F.(s)b,,5* +b,,5+b

o)=Y, (8)s*(m, s +m s+m,,) (6.8)
where

0

a, =mym,, a=C \Muy+Cy,yMy, Gy =k My+ky,m, +¢,Crn, a =kycy +kpey, ay=kjky

bl

2 = Cosam, +cosa,m,, b, =cosac., +cosa.c,, b, =cosak,+cosa.k,

b., =sinam,, +sina,m,, b, =sinac, +sina,c,, b, =sinak, +sina.k,

m,, =(cosa,m, +cosa,m, )m,, m, =(cosac., +cosa,c,)m,. m, =(cosa,k, +cosa,k, )m,

By the inverse Laplace transformation, one can obtain.

a, y M) +a;y? (1) +a,y P (1) +a,y" (1) + ap y(t)
=b,p2F;‘2’(t)+b FOW)+b F () +b,F. P @) +b,F.V () +b 4 F.(t)

iplt p0
+b,, F, 2 (1) + 5, F Y (0) + b, F,(t) = (m, ) () + m 5y (0) + m ,, 2 (0)) (6.9)

Based on the analyses in Chapter 2, the uncut chip thickness u(t):

u(t) =u,(t)—y)+pu-y(t~1) (6.10)

where 4 is the overlapping coefficient, t is time delay of the system, y(t) is the displacement

Due to the effect of hysteresis between the forces and uncut chip thickness, the forces are

F(6) = pu(t) + g,(u(t)) = p,(u,(t) = y(t) + - y(t = 7)) + &, (14 (1) = y(&) + p1- y(t ~ 7)) (6.11)
F.(t) = pu(t) + g (u(®) = p.(u,(t) = y(O) + g~ y(t = 7)) + 8. (4, (¢) = y(O) + - y(t = 7)) (6.12)

To simplify the above Equations, the corresponding backlashes can be simplified as:

F,(0)=Aut)£B, = 4,(u,()~y() + p-y, () £ B, ==A,y(0) + A, p1- . (1) £ B, (6.13)
F()=Au) B, = A, ()~ y(O)+ -y, ()2 B, =~A.y(O)+ A.p- y, (1) £ B, (6.14)
where y ()= y(t-1); B, = Au,(t) £ B,, B, = A.u,(t) + B, ; other parameters are defined in Egs.

2.14 and 2.15.
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Substitute Egs. 6.13 and 6.14 into Eq. 6.9, the dynamic system is

a,y () +a;y? () +a,y P () + a,y (6) + a,y(t)

= b, (—A4,yP () + 1A, yP (1)) + b,y (=4, YV () + pd, y O () + B, (~A,Y(0) + 4,y (£) £ B,)

+ by (A YD () + gAY () + by (=AY (O) + pA, YO () + b,o (~ A, y(0) + Ay, (1) £ B,)
+b,,F, 2O +b, F, " (0) + 5,0 F, ()= (m, .y (6) + m;y P (6) + m, y P (1))

The above equation can be simplified as

a,y () +a,y®(6) + a,y® (1) + @,y (1) + a, ¥ (t)
=ry2W+ryl () +ry, (O +b, F () + 26y, y0 ) +e(t, FV, FD) (6.15)

a, =a,, Z:a +b,,4, +b,4_, a——a +b,4,+b,A_, a_=a +b,,A4 +b 4

pt2 prl e pt0 @ "c?

ro=p (b4 +b,A), r=pb,4+b,4A), r,=u (b,04, +b,44,), r., =%(b,B, +b,B,),

1% cl® ¢

e (LFPFM)=b,,F 7 (0)+b, F,0), (6,5, 50,y =~(m, y" () + m,y O (0) + m, .y (0) +r.,.

P b

where a, =a

39

Remark A: The term e (¢, F?, F")is the lumped uncertain element in Eq. 6.1, its upper bound is

assumed to be known, i.e., ” e (t, FP,F™M) " < p(t).
6.2.1 Dynamic Estimate of z(,y.",y.”, y)

The value of disturbance z(,y%”,yS",y.")in Eq. 6.15 will be estimated dynamically. The detailed

P b
calculation can be referred to Appendix A. Based on Appendix A,
z.(t) = w, (1)b(D) . (6.16)
where z,(f) is denoted as the estimate of z(£,y,",5.",y\"); the definitions of w;(t), 5(8), 0 refer

to Appendix A.

6.2.2 Design Control Law

The state variables x(f) € R* of the system in Eq. 6.1 are defined as following:

x ()= y(0), x,()=%,(0), x3() =%,(1), x,(6) =%(r).
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Define the switching surface as:
o(®)=S-x(t) =s5;x, (1) + 5,%,(£) + 5, %;(t) +5,x,(t) =0 6.17)

where S e R™, x(t)e R™, s,,5,,5;,5, are positive coefficients respectively, x,(f), x,(t), x,(?),

x,(¢) are the state variables of the system in Eq. 6.1.

) , where £ is an arbitrary

A tuning error o, is defined as follows: o, (t) = o (t) - € - sat (U (t)
£

positive constant vector, saf(-) is the saturation function, o(t) is the sliding surface.

Differentiating o (¢) with respect to time ¢, and substituting Eq. 6.3, one can obtain

a.'(t) = ag(’);(t) =5,y V) + s,y )+ 5,3 () + 5,y ()

X

= (s, — s, a: )y () + (s, - s, gz)y(:)(t)_*_ (s, - s, as )y (1)

as as aas

=5, SRy () F 2y )+ Ry )+ ey, (1) + 2, (1) + e(1)
as as

+ 8, b'ﬁ P v(t) + s, b_""’ g(v(t)) (6.18)
a. as

where b, = K b, K, is the stiffness of the piezoactuator in Eq. 6.3.

Define N = —= (N>0), 6, =N(s, ~s, f—'), 6, =N(s, —s, f—z), 6, =N(s; —s, gi),
50, P as as as

ao Sy A S,
9_‘ =N(—S4)_—95 =N'..—r2, 66 =N=—I‘l, 97 =N—.=—r0.
as as as as

For the designs of the control law, the following assumptions concerning the system and hysteresis

are required as follows:

Assumption 1:
There exist positive scalars g, ¢,, g5, such that |y®P@¢+7)l<q |ly®WI,

15°¢ +2) 1< g, 1 @ lland e+ 7)< gy -
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Assumption 2:

There exist known constants b and b

1p0Omin

such that the control gain b,,,in Eq. 6.15 satisfies

1p0max >

b0 € Bpomin »

tp0min *~1p0max J

Assumption 3:

There exist known constants p_. and p_. ., such that the control gain pin Eq. 6.18 satisfies
PE [pmin7pmm<]’ .

Assumption 4:

Define 6eQ,={6:0_ <6, <6, _Vie {L,r}}, where 6, and 6,__ are known real numbers.

imin imax

Assumption 5:

In Eq. 6.3,

g(v())| < p,, p, is a constant.

With respect to the plant and hysteresis models subject to the assumptions, the following control

law and adaptation mechanism are presented:

v(t) =Tk a(@)+8 ()y" )+ (1)y® (1) +8,(t)y® (6) +8,()y(1)

+ 9“5 (t)"ym (t)" + 0‘6 (t)"y(l) (t)" + é, (t)"y(t)ll + k'sat(—o—-‘g)')]

(6.19)

where k,, K are constant positive gains; with 6, = proj (8 Vi)

4

(=12,3,4,5,6,7), proj(-,)is a projection function as follows

0 if (6, > 6, andy,w, <0) or (8, <6, and y,0, > 0)
proj(6,,~v,0,) ={-7,®, if @i <0, <B,3) or (8, > 6, and y,0, 2 0) (6.20)
or 8, < 6., and y,@; <0)
where &,(1) =0,(0)y" (1), @,() =0,)y?®), @,(1) =5,y (O), @,(t) =0,

o;()=0,01y* O, o5()=0,O YO, @) =0, yO)l,
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and scalars y,(i=1, 2, 3, 4, 5, 6, 7)are chosen by the designers.

6.2.3 Stability Analysis of the System

A Lyapunov function candidate for the system in Eq. 6.1 is defined as:
l 2 3 1 ~ B =7 l ~ 2
V= ;[NO’,‘(!) + g[y—(ﬁi 0-6)1+ ;[7—(9, (- q,»_ﬂ.»)']} (6.21)

Case 1: when | o(t) |< ¢, the derivative v (2) exists for all o(¢), which is v (1)=0.

Case 2: when | o(t) |> €, using Eq. 6.18 and the fact & = &, , one can yield

V()< Vo, 6+ 316,00 -0)81+ S 16,00 -0..6)6))

=3 - 0,0-0)61+ 310,00 -4.8)0)+ 0,60) + —5() (622)

L e +z.()

+ ar(ely(l) +ezy(z) +63y(3) +6,y +95yr(2) +96yr“) +6,y. b
Ipop

)

As a projection function, it can obtain that (6, —-m,8,)proj(6,,r.@,) <0, -m6,)r.@,, m; are
positive scalars, then

e(t) +z,(t)
b, P

ro, () + g + 0,8, ~6,)y® +(8, -8,y +(@, -6,)y®
P

Vi) <o, (ﬁly“) + Glym + Hsym +6,y+ Bsyr(z) + Géy,“) +6,y, + )

+0,-6,)y+0, ~4.8) 11 y” | +8, = 0.9 " 1| 48, = 0,6 | ¥ I (6.23)
According to the assumption I, we can get

’ 2 2 e(t)+z,(t
P50, + 8.5 +6,5° +6,y +0.0,1 57 1+4.8,1 7 1 +,6, |yl + X2

)
b, p
+a, (V) +%g(v(t»> +0,(8,-6,)y" +(8, -6.)y® + (@, -8,)y™> + (8, - 8,)y
+(8; —q.0) 11y | +(85 — 4.0) 1l y© | +(8; - 3,8, ¥ )
e(t)+z,(t)  g(v ~ ~ ~ -~ = ~ ~
501( b p + gp ))'*'O':V(t)'*‘a':(aly(]) '*'02}’(2) '*'93}’(3) +94y+95 I y(z) I +96 "}’(I) I +07 tyID
ipo
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e(t)+z, (¢ v ~ ~ o, ~ ~ ~ ~ ~
Sax‘; £U+g;5+mwym+%¢”+%¢”+%y+%H¢”WWAWmHH%HHD
po

~o,(kc+0y" +0 y® +8,y* +4 96|y + Gz + & sar (== ()))

) G([' : —%%M)
p b, P
<-k U,z(t)-a,k'sat( ot ))+ (— g(v)+M)
, P by P
s-k o/ () -lo k" +] o, I(;!g(v)l*"liq;,—lﬂ) (6.24)

In the assumption 5 and the Remark A4, | g(v)|< p, and |e(t)|< p(¢t) are defined and =z, (f) is

H+z
dynamical estimate of z(¢,y", ", y\”). While k" =k, 2 l( L. +M) is defined,
’ p ipo
t z. (¢t 2
/05,0 0-lo ot 10,1120 B Dy s ko?  viewbe  629)
1p0

Based on the above analyses and proof, the following theorem regarding the stability of the closed-

loop system described by Eqgs. (6.3), (6.15) and (6.19) can be established.

Theorem: For the plant in Eq. (6.1) subject to Assumptions -5 and Remark A, the robust adaptive

controller specified by Eq. (6.19) ensures that all the closed-loop signals are bounded and the state

variable y(t) converges to zero for Vr>¢,.

6.3 Simulation Results

In order to eliminate the chatter in the metal cutting processes, the adaptive controller developed in
Eq. 6.19 is introduced into the system in Eq. 6.1. The parameters in the simulations of the dynamic
performance of the metal cutting system are listed in Table C. Fig. 6.3 shows the dynamic

response of the metal cutting system in Eq. 6.1 combined with the control law in Eq. 6.19; Fig. 6.4
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illustrates the steady-state error between the desired value and actual response of the system in Eq.

6.1; Fig. 6.5 plots the dynamic response of the main cutting force F_(f) during the cutting process;
Fig. 6.6 represents the dynamic response of the thrust force F,(¢f) during the cutting process; Fig.

6.7 plots the dynamic performance of the piezoactuator during the cutting process.
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Figure 6.3 Response y(t) of dynamic system with the control law

«107 Errar of the dynamic system in steady state

Amplitude of Vibration (m)

.1 bkt i i i "y I 1 n
0.02 sex] 0.04 a.0s 0.06 Q.07 0.08 0.09 0.1

Time (sec.)

Figure 6.4 Steady-state error of the dynamic system with the control law
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Figure 6.5 Response of main cutting force F,(t) during cutting process
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Dynamic response of thrust farce Ft during cutting procass
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Figure 6.6 Response of thrust force F,(¢)during cutting process
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Figure 6.7 Displacement of the controlled piezoactuator during cutting process

From Fig. 6.3 through Fig. 6.7, the simulations of the dynamic performance of the system with the

adaptive controller show clearly that the proposed adaptive controller can significantly suppress

the chatter during the metal cutting processes.

6.4 Summary

In order to suppress the chatter in the metal cutting with two degree-of-freedom and two-

dimensional force models, a piezoactuator independent from the tool holder is introduced into the

system; the metal cutting system is modeled as a class of uncertain linear system with hysteresis

and time lag; An adaptive control law for the system is presented; The simulation results show that

the designed control law significantly eliminates the chatter effect in the metal cutting process.
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Chapter 7

Chatter Suppression for the Controlled System with 3-D Model

and Independent Piezoactuators

Introduction — in the metal cutting system with two degree-of-freedom and two piezoactuators,

the structures of which are independent from the tool holders. are introduced for the regulation of
the displacement between the cutting tool and workpiec. The closed-loop dynamic of the metal
cutting system involving three-dimensional force models is presented. The piezoactutors exhibit
the hysteretic characteristics. To suppress chatter in the system, two adaptive controllers are
designed. The simulations for the dynamic performances of this system with two piezoactuatos are

shown.

7.1 Dynamic Model of Turning Process

The schematic model of the metal cutting system with two degree-of-freedom and three-
dimensional force models is illustrated in Fig. 7.1. The dynamic cutting process is demonstrated in
the magnified contact parts of workpiece and the cutting tool. The work focuses on the type A of
chatter that is normal to the cutting surface of the workpiece. Considering the structures of the
piezoactuators as an independent free mechanical body with the cutting tool, the structural turning

system may be represented as in Fig. 7.1.
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Figure 7.1 Schematic model of turning system with independent

piezoactuators and 3-D force models

In Fig. 7.1. the dynamic process of the metal cutting system can be described with a linear

second order function as following:

2 3
o0 [dn) (L g Yau) (LA
cosa, de? +| €05 dr || cose y,]
0 m Q 0 ¢ | D 0 k, 34
cosa, \ 4r? cosa, J\ dt cosq, (7.1)
F)
_[cosaysin B sine,  cosa, cos B F‘ L[ cosa sinf  cosa,cos B\ F,
- cosa,smf -sina, cosa,cosf) ° cosa,sinf cosa,cos )\ F,,
Y,
d’y,
F,=F,-m, dtlﬂ . (7.2)
dly ; i 4 . ‘
Fy=F,-m, dt: (7.3)
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where y,, y,represent the relative displacements between the cutting tool and workpiece normal
to the machined surface in each degree-freedom direction; m, c,, k;are the equivalent mass,
equivalent damping coefficient and equivalent spring stiffness of the structure in each direction;

F,, F,, F, are the thrust, main cutting and feed forces; F,,, F, represents the forces generated

by the two piezoactuators in both directions of thrust and feed forces; F,, F, is reaction forces

between the piezoactuators and workpiece in both the directions of the thrust and feed forces;

a,, a,are geometrical angles of the structure model related to a line normal to the machined
surface; the definition of the y,(¢). y, (¢)is given, which represent the displacements in both
directions of the thrust and feed forces, in the section 3.6 in Chapter 3; m ,is the equivalent mass
of each of the piezoactuators.

With respect to the Egs. 7.1, 7.2 and 7.3, the schematic of the closed-loop system with the adaptive

controllers designed in next section is illustrated in Fig. 7.2.

-

According to the analyses in Eq. 3.4 in Chapter 3, the forces F,, F resulted from the

piezoactuators in two directions are given as follows:
Fa) =K, (p,-v,()+g,(, 1) (7.4)
Fg(v):Kp/(P/'V/(’)+g/(vf(t))) (7.5)

where K, and K,r are the stiffnesses of the two piezoactuators; v(t), v(t) are denoted as the applied

voltages; other parameters are defined in Chapter 3.
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7.2 Adaptive Controller design

Based on the mathematical model of the closed-loop system described in Eq. 7.1, the control laws

will be designed in order to suppress the chatter effect in the metal cutting process.

Based on the Eq. 7.1 through Eq. 7.3, we can transform and calculate it further as follows:

d*y,(t k
m y‘,( ) -5 4 7,() +——y,(t) =cosa, sin BF,(t) +sina, F,(t) + cosa, cos BF ()
cosa, dt” cosa, dt cosa,

2 2

+cosa, sin B(F, —m i—yi')+cosar cos B(F, —m ﬁ)
! v P d[: ! of 4 d[z (76)

d*y,(t , dy(t k, . .
i y;( ) P VA0 +———y,(t) = cosa, sin BF,(t) —sina, F,(t) + cosa, cos fF  (t)
cosa, dt* cosa, dt cosa, ) : N

2

d: d
+cosa,sin B(F, -m y,"' )+ cosa, cos B(F, —m —y,—”—) 7.7
) fodr : s
The combination of Eq. 7.6 and Eq. 7.7 yields
(7.8)

Y(s) =y, (s)+ ¥, (s)

cosa, sin fF,(s) + sina, F(s) +cosa, cos BF, (s)

where y,(s) =
m ) Cl kl
s+ s+
cosa, cosq, cosq,
: 2 2
N cosa, sin B(F, (s)—m,s”y, (s)) +cosa, cos B(F,(s)—m, sy, (s))
m_ ‘i k, ’
S™+ S+
cosq, cosa, cosa,
cosa, sin fF, (1) —sina, F, (1) + cosa, cos BF (1))
y:(s) =
m , c, k.
st ——5+—3
cosa, cosa, cosa,
cosa, sin B(F, (s)—m s’y ,(5)) + cosa, cos B(F,,(s)~m,s*y . (5))
m c, k,
T ——5+—=
cosa, cosa, cosQ,

Eq. 7.8 can be rewritten as
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Y($)my 5%+, + Ky Y(MpS® + x5 +hyy)
= (cosa, sin fF,(s) +sina, F,(s) + cose, cos BF ,(s) +cosa, sin B(F, (s) - mpszyp, ()
+cosa, cos B(F, () —m,s>y , (S)) X (My5* + €S + kyy)

+(cosa, sin fF, (t) —sina, F_(t) + cosa, cos BF (1) + cosa, sin B(F,, (s) - mpszyp, ()

+cosa, cos B(F,(s) - mpszypf (s))) x (mns2 +c,s+k) (7.9
where
m c k m c k
m, = s = I s ku = l s My= s €y = 2 s kzg = &
cosa, cosa, cosa, cosa, cosa, cosa,

For simplicity, Eq. 7.9 can be rewritten

y(s)a,s* +a;s’ +a,s® +ais+ay) =(F,(s)+ F, (s))b,,s* +b,5+b,,)

pal
'*'Fc(s)(bczs2 +bcls+bc0)+(Fj (S)'*'~’:‘\f(5))(b/pz~‘5'2 +bfpls+bpr)
~Vu (s)(mms4 +mp,333 +mp,4.<>'3)—y‘,,/(s)(mpﬁs4 +mpfss3 +mp/432) (7.10)
where

a,=mymy, ay=cymytcpmy, @ =k Mytkymy +6,0n,  a=kjCy +kyney,  a, =k ky
b,, =cosa,sin f-m,, +cosa,sinf-m,, b, =cosqsinf-c, +cosa,sinf-c,,

b,, =cosa,sin B-k,, +cosa.sinf -k,

b, =sinam,, —-sina,m,, b, =sina,c., —sina.c,, b, =sinak. -sina.k,

b,, =cosa, cosf-m, +cosa,cosf-m,, b, =cosa cosf-c, +cosa,cosf-c,,

b,, =cosa, cos k., +cosa, cosf-k,,

m,, =(cosa,m,, +cosa,m,)sinfB-m,, m,; =(cosac,, +cosa,c,)sinf-m,,

m,, =(cosak,, +cosa.k,)sinf-m,,

m, , =(cosa,m,, +cosa,m, )cos fm,, m,; =(COsQ,cy, +COSA,C; )COS fm,,

m,., =(cosak,, +cosa,k, )cos fim,.
The inverse Laplace transformation of Eq. 7.10, one can obtain

a y (O +a,y P () +a,y P O +ayP () + a.y()

= b, F; () + b, F (1) + 5,0 F, (1) + b, F 2 () + b, F." (1) + by F (1)

+b F, PO +b, F, (1) + b, F, () +b,,F, 7 () +b,,F," (6) +b,,F,(¢)
+b,,F () + b, F, () +b, F (t) = (m,, y5 () + m,, y$ (1) + m,,y 2 (1))

m o pt

=(my yy (O +my () +m,,y0 ) (7.11)

1p0
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Based on the analyses in Chapter 2, the uncut chip thickness u(t) is expressed as

u(t) =, (V)= y(1) + - (¢~ 7) (7.12)

where u is the overlapping coefficient, and r is time delay of the system, y(t) is the displacement.

With respect to the hysteresis relationships between the forces F(f) and uncut chip thickness u(r),

the forces are

F (1) = pu(t) + g,(u(t)) = p,(u,(6) = y(t) + 1y (t = 7)) + &, (1, (£) = y(1) + py(1 — 7)) (7.13)
F (t) = pu(t) + g (u(t)) = p.(u, (1) = y(O) + s (t = 7)) + 8. (4, (1) = y(1) + 0t ~ 7)) (7.14)
F ()= pu(t)+g,(u(t)) = p(u,(t) = y(O) + py(t = 7)) + g, (=y(t) + (¢ — 7)) (7.15)

To simplify the above equations, the corresponding backlashes can be simplified as,

F,(t) = Au(t) £ B, = 4,(uy() = y(O) + -y, )£ B, = =4, y(0) + A, u-y. (1) £ B,
F ()= Au(t) 2 B, = A (ug(0) = y(O) + pt-y, (1)) £ B, ==A y()+ A p-y. (1) £ B, (7.16)

F (0)=Au()tB, = A, (uy ()= y(O)+pu y. () EB, =—A, y()+ A, u-y. (1) £ B,
where y ()=y(t-7), B, =d4u,()tB;; B, =Au,(t)£B.; B,=4Au,(t)xB,; other

parameters are defined in Eq. 2.14 and 2.15.

In term of Eq. 7.16, Eq. 7.11 can be rewritten as follows:

a yt () +a,y? (1) +a,y?(t) +ay® () +a,y(t)

=b,, (=4 Y () + Ay (1) + b, (=AY @) + pA Y () + b, (=4 y () + 14y (1) £ B)

+ 0. (A7) + pd y ) + b, (=AY (O + el Y () + b0 (A y() + pd.y, () £ B)

+b,, (=4, YO0 + 24,y () + b, (A Y ) + 1A, Y () + b (A, y(0) + pd, y, (1) £ B))
+b,.F, () + b, F, " (0) +b,,F, (1) +b,.F, " () + b, F, " (t)+b,,F, ()

/

(4

_ 4 3)
(mpl-lypl

(O +m, y () +m, Y= (m, ., () +m,y () +m,,y (1)) (7.17)
Further,

a,y (1) + 3y (1) + ay? (1) + a,y" (6) + a,y(1)
=ry 2 (O)+ry (O + 1.y, (O + b F (1) + b F () + 2, (6,55, ¥y, v ) + 2,6, ¥ v, vy
+e(t,F?,FO,F F) (7.18)
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where Z =a,, a,=a,, Z =a, +b,,4,+b,,4, +b,4,, Zl—=al +b, A4, +b,4,+b,4,,
a, =a, +b,0Ad, b, A, +b A, 1, =p (b, A4 +b,,A, +b,4), r=p(b,4+b,4, +b,4),
ro=p (b4 +b,, A, +b,A), r,=%(0b,B8 +b,B),

5y Ve V) = =(m, y O+ m, y () +m,.y, () £,

2L Yy Vi Vi ) ==y i O+ myy (O + my. v () £ 6,0,

e (LE,FD F R FD) = by F0 (04 b, F, 0+ b, F 2 (0 + by, F 7 (0.

ve % v 2

4 ,,0) 4

Remark A: The term e (¢, F,, F" . F,” F")is the lumped uncertain element in Eq. 7.1, its upper

v 2T v

bound is assumed to be known, i.e., ” e (t. Rf”,[iﬁ”,]{}”, E}”) " <p@).

7.2.1 Dynamic Estimate of z(¢,y,".y}". ;")
The value of disturbance z(r,y%, v, »%)) and z(t, ¥, . v,/ v, ) in Eq. 7.18 will be estimated

dynamically. The detailed calculation can be referred to Appendix B. Based on Appendix B,

- - zel(t) — _ Wzo([)bl(a)
;y(r)—( ([))—wz(r)-(wu b, (B)J (7.19)

el

where z,(r) is the estimate of z(¢, ", ¥\, ;") : the w,(¢), b,(9), b,(d)and O refer to Appendix B.

7.2.2 Design Control Law

Define the switching surface o(¢) € R** for the system as:

o(t) = (O-l (’)) =S X(0) =[Sllxl () +5,%,(0) + 5355 (0) + 51, % (t)) -0 (7.20)

o,(t) S (0) + 592X, (1) + 5550, (8) + 55,%, (1)
where S e R™, X(1) € R™: 5. S Si;3- Siy- Sas Saas Sy Say are positive coefficients; x,(1).

x,(1), x,(t), x,(r)are the state variable of the system in Eq. 7.1.

A tuning error o, is defined as following:

o, (t)=0c,(t)-¢-sat (L“;L)")’ Ci=1, 2) (7.21)

where £ is an arbitrary positive constant; saf(-) is the saturation function; o(f)is the sliding

surface.
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Differentiating o (¢) with respect to time ¢, one can obtain

50
o'_(t)_ad(t) Y(t) = ( le :'13 ju] :z((i)) (7.22)
) - x,(x)

The above state variables are chosen as follows:

x, (1) = ¥(t), x,(t) = x,(t), x5(t) =x,(¢). x,(t) =%;(¢t). Therefore

y )
: _60'([) Sz Sz Sy yu)(t)
o) ox (t)—{szl S 53 S:4J y )
£(x) (7.23)

where ¥, (1) =,y () + ry" +ry (0); e(t) =e(t. P . FS  Fy)  FyY);

Q)= -2 y(0) - 2Ly () -2 yP () - = ")(1)+bf" Fo )+ 'io F, (f)+;(Yr(1)
a-l

a, aJ a4 614 a, a,

+e(t)+z,,()+z,,(0);
z,(t)and z,,(r) are denoted as the estimates of z,(¢. ),y ys)) and z,(1, ¥\, ¥4, Vi) -

Derivation of each element of the sliding surface o (¢)is

G()= (s, =S Sy DU+ (5 = 50 L)y D) + (55 - 5, =)y (1)
aa a a s
—0 Sy blpa P,
-5, =—y()+ =Y. () +e()+ z,,(0)+ z,,(1)) + 5, —= v, (1)
a s a s as
b b, b ..,
bsy g (v (1) + sy Py (s, g (v, (1) (7.24)
a3 (43 [ .
: a 12 2 as 3
O-l([)=(53| —Sz; —_l')_v(”([)'i'(szz _Sn f——_).y(.)([)"!'(5::, _SZJ = ).,V()([)
a aa as;
a blpo pl
-5, = = )+, 1) + 5, —= v, (1)
aa as a g
b, b b
+ 5, g (v, (1) + Sa ””';—pfv,(:) + 5, L—g, (v, () (7.25)
as as ay

where b,, = K ,b,4, b,,(v) = K ;b,.,, Ky and Kprare the stiffness of the each piezoactuator.

The Egs. 7.24 and 7.25 can be transformed to the matrix forms:
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(oo (2o (oo (o (ho

Als - Nll v (t) Ml[ MP gl(v[)
+ (Azs J(e(t) +z,()+z,,(0))+ ( Ny, J(» y (r)) ( M,, J( g, )J (7.26)

a a, az
where 4, =5, -5, =—, 4, =5, —S.,=—, A,=5,~-5,=—, A4A,=5,-5,=,
a as as 614
as as ao Qo Sl A A
A,=s,-5, =, Ay=s,-5,,=—. A, =-5,=—, A, =-5,,=—, 4,===, 4,=-=,
as as a; as as as
S, RPN o AN ¢ R o S S.
1471 2 —_ o - s - 23
Ag=2f g 2Bl g ey B ey oS
as as as as as as
Sb,.p sub.,p Syb,, P Sybo. D
14%po &1 Y pot? f U po Py MY potd f
a, as as as
) 5.,b 5y,b 5,0
14~ 14 24~y 24
M, =28 M, =2y, =y, =
as as as ay
We define:

‘_4"‘ _ ,,{” , —4'1- _ A, i 4—3 _ Ay, . I - ‘Till . I - f!u . Z _ Ay 4—7 _ A,
"lzl ‘4:1 "1:3 "lzl "!:5 Alﬁ A:7

—_— A — N N, — M M., v, (¢

4, = V= u Vi .M = My Mp () = (t) . g(v
Ay N, N, M, M, v, (r)

In terms of the above definitions, Eq. 7.26 can be rewritten

N’
1]
TN
o
~ n
~~ ~
= =
vv
Se——

o (0) = AYO(1) + Ly (0) + Ay (1) + Ay() + Ay D (1) + Ay0 (1) + Ay, ()
+ A (e(t) + 2,(1) + 2, (1)) + Nv(t) + Mg(v) . (7.27)

Define =N 4. 8,=N"A, 6,=N 4, 6,=N 4, 6,=N A4, =N 4, 0.=N 4.
For the designs of the control law, the following assumptions concerning the system and hysteresis

are required as following:

Assumption [:

There exist positive scalars ¢, ¢q,, g5, such that || y®P@¢+0)|<q | y*®)],

170 +2)l< g, | Y@l and [y + 2] < g, |y0)]
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Assumption 2:

There exist known constants 5 and b

1pQmin

such that the control gain b,,,in Eq. 7.18 satisfies

1p0 max

b, <|p

1pOmin *

b pomax J There also exist known constants b, . and b, such that the control gain

p0

b, in Eq. 7.18 satisfies b, € (b, ousB0m |-

Assumption 3:

There exist known constants p, and p, such that the control gain pin Eq. 7.4 satisfies

p, € [p,mm, p,m]. There also exist known constants p,,, and p, . such that the control gain p, in

Eq. 7.5 satisfies p, € I,P/mm’[)/.ml-
Assumption 4:

Define e Q,=1{9:6

imin

<6 <0, Vie{l.r}}, where __ and 6 __ are known real numbers.

1max

Assumption 3:
InEq. 74 and 7.5, g(v) =[g,(v) g, ()] and || g (W)II< p,, p, is constant.

With respect to the plant and hysteresis models subject to the assumptions, the following control

laws and adaptation mechanisms are presented:

w(0) =k a(t) +6,()y" () +0.()y (1) + 6,()y" (1) + 8,(0) y (1)

= . = ~ . ot
+O,) 1 YOO+, 1y O +6:(D | () || +k Sat(—g)] (7.28)
where k., k* are constant positive gains; 8 ; = proj (67,,— 7:®,;), proj(-,)is a projection
function defined as
0 if(é,. >0, and y,o, <0) or (5,. <8, and y,@; > 0)
proj (8,,~y,,) ={- 7@, if @p <6,<86,,)o0r 8, >8,, and y,w, 20) (7.29)

or 0,<6_. and y,0, <0)
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where @,(1)=0,(1)y* (1), @,()=0,O)y?®), o,1)=0,0)y70), @) =0,O)y(),

o;(O)=0,01y? O, o@)=c,01y"Ol. o.@)=c,0ly0l, s, R™,
scalars y, (i=1, 2, 3, 4, 5, 6, 7) are coefficients chosen by the designers.

7.2.3 Stability Analysis of the System

A Lyapunov function candidate for the system is defined as:

/() =561 N0, 0+ S-0,0-0) QO -0+ S0 ~9.6Y G000} (130

Case 1: when |o(1)] < £. the derivative V(1) exists for all o(¢), which is V(1) =0.

Case 2: whenj o(?) ||> £, using Eq. 7.26 and the fact ¢ = o, one can obtain
V() =0V o+ S-@0)-6) 41+ S=-G0)-q..8) 6]
=y, =¥,

Lol 15 ol os > N RS BTIRYE) a1
=§[7_(9,([)_6,) 9,]+I=ZS[7_(Hi([)_qi-46i) 0i]+a-l N (Axy ([)+A:y ([)+A;y ([)+A~ly(t)

i

+ Ay D)+ Ay () + A,y (0) + Ag(e(t) + 2, (1) + 2,, (1)) + Nv(t) + Mg(v)) (7.31)

As a projection function, it can obtain that (éi -m8,)proj(0.,rm ) <(@ —m, 0 )r.@,, m; are positive

!

scalars. Then,
) < G 0" 0,0 0,0 +0,y+ 0,0, + 0,0 " + 0,y + N As(el) + 2L, () + =, (1)
+o, () + N Mg() +a, (6, =6,y ™ +(8, - 0,)y +(6, -0,)y
+(8, =0,)y + 05 —q,05) | v | +(05 = 4:,05) 1|y || +(6; —;0-) | v )
<o/ Oy +6,57 +6,37 +6,y+ 60,05 | ¥ 40,4, | ¥ 146,4, | yI+N " As(e(0) + 2, (1) + 7,,(1)))
+0, () + N Mg)+0," (@, -6,)y" + (8, —8,)y? + (8, —6,)y"
+(8, =0.)y+ s - 9,0) | Y 1| +(8, — ,0) 1y | +(8; - 4:6,) | ¥ )
<oT (N As(e(t) +2, () + 2,0+ N Mg)-a,” (k o(®)+8 y* () +8. y® ()
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—~ - - -— -~ . a‘
+8,y0 () +0,y+65 | YOOl +6, | YO ) | 46, || y(1) || +k sat(;))
+0, OyV +0,y7 +6,y7 +8,y+ 0, || y* || +6, | y 1 +6, || ¥ II)
<-0,"k o(t)-0, k" sat(Z)+ oT (N~ As(e(t) + 2, (t) +z.,(0)) + N Mg(¥))
: Py

-~

<-0,"k o,()-0"k sat(Z)+ T (N ds(e(t) +z,(t) +z,(1) + N Mg(v))  (7.32)
: £

Based on the definition in Eq. 7.20, it leads to O',rk'sal(%) =(o|+|o.)-£ o Ik (7.33)

So Eq. 7.32 can be rewritten as:

. s g
viys-k_ lio,Ol -llo/ Ik (7.34)

ST TN A A - e@) || +20() + 22 @)+ 1L M {1 -1 () 1D

In the Assumption 3 and the Remark A. || g(v) |I< p, and [le(+)]| < p(¢) are assumed. While defines

=k AN (1 s [|-p0) + 2, () + 2, (O)+| M || -p,) , one can obtain

V) <k 1o, =167 |-kt ol 1-0 N 10 s 1L e | +20 () + 21 3 -1 g0 D)

<~k |lo,OF Vie@) > e (7.35)
Based on the above analyses and proof, the following theorem regarding the stability of the closed-

loop system described by Eqgs. (7.4), (7.5), (7.18) and (7.28) can be established.

Theorem: For the plant in Eq. (7.1) subject to Assumptions 1-3 and Remark A, the robust adaptive

controller specified by Eq. (7.28) ensures that all the closed-loop signals are bounded and the state

variable y(t)converges to zero for Vi 2>1¢,.

7.3  Simulation Results

In order to eliminate the chatter in the metal cutting processes, the adaptive controller in Eq. 7.28

is introduced into the system in Eq. 7.1. The parameters involved in all above equations in
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simulation are given in Table D. Fig. 7.3 shows the dynamic respbnse of the metal cutting system
in Eq. 7.1 combined with the control law in Eq. 7.28; Fig. 7.4 illustrates the steady-state error
between the desired value and actual response of the system in Eq. 7.1; Fig. 7.5 plots the dynamic

response of the main cutting force F.(t) during the cutting process; Fig. 7.6 represents the
dynamic response of the thrust force F,(¢f) during the cutting process; Fig. 7.7 plots the dynamic

performance of the piezoactuator during the cutting process; Figs. 7.8 and 7.9 illustrate the

performances of the two piezoactuatos in both the thrust-direction and the feed-direction during

the cutting process.

x 10"’ Response of the dynamic system, 3-0, independent piezo, under the adaptive contraller
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Figure 7.3 Response of dynamic system with the control law
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Figure 7.4 Steady-state error of the dynamic system with the control law
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Figure 7.5 Response of main cutting force F(¢) during cutting process
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Figure 7.6 Response of thrust force F,(¢)during cutting process
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Figure 7.8 Displacement of the controlled piezoactuator in the thrust-direction
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Figure 7.9 Displacement of the controlled piezoactuator in the feed-direction

From Fig. 7.3 through Fig. 7.9, the simulations of the dynamic performance of the system with the
adaptive controllers show clearly that the proposed adaptive controllers can sigificantly suppress

the chatter.

7.4 Summary

In order to suppress the chatter in metal cutting system with two degree-of-freedom and three-
dimensional force models. two piezoactuators independent from the tool holder are introduced into
the system with the hysteresis and time lag; two adaptive controllers for the system are presented;
the simulation results show that the designed control law significantly eliminates the chatter effect

in the metal cutting processes.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, the work is focused on the self-exited vibrations, namely chatter, which is one of the
main industrial problems in the metal cutting processes. The obvious characteristics of chatter are
the small amplitudes and high frequencies, therefore, the active controllers providing the forces
onto the cutting system to overcome the chatter effect are required. Recently, because of
possessing many advantage properties, the piezoactuators are widely applied in the positioning
control in the metal cutting systems. In order to suppress chatter in the metal cutting processes,
particularly in turning, the robust adaptive controllers are designed by using the piezoactuators.
Furthermore, it is necessary to investigate thoroughly over the turning structures, the dynamic
cutting processes, and the relationships between the cutting forces and uncut chip thickness. The
accurate and practical mathematical models concerning above physical processes are required so

as to implement the system control for the purpose of the chatter suppression.

In this thesis, rather than using the commonly accepted linear models, the relations between the
cutting forces and uncut chip thickness are treated as nonlinear hysteretic characteristic models,
which have been proved to give a better description between the cutting forces and uncut chip

thickness.

The machine structures are described as the classes of the uncertain systems with two degree-of-

freedom, the hysteretic characteristics of relations between the cutting forces and uncut chip
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thickness, and time delay output feedback. With respect to the different machining conditions, the
metal cutting processes also are divided into two-dimensional force and three-dimensional force

models.

The piezoactuators have been introduced in the metal cutting systems as the positioning control
elements. The piezoactuators also display hysteretic behaviors of the relationship between the

applied voltage and the deflection of the piezoactuator due to the voltage.

In generally, the work concentrates on the suppression of the type A of chatter in metal cutting
processes in turning; construction of the four different dynamic structures of the metal cutting
processes in terms of the cutting force models and piezoactuators’ mechanical structures; building
the nonlinear dynamic models of the piezoactuators; designing the robust adaptive control schemes
with respect to the different dynamic structures of the metal cutting processes; theoretical proving
the global stability of the controlled systems with the corresponding control laws; calculation and
plot of the simulated dynamic performances of the metal cutting systems with proposed adaptive

control laws.

8.2 Future Work

8.2.1 Phase Difference Effect on Chatter

The analyses on the stability of the metal cutting processes show that a phase difference between
the vibration at an angular position of a workpiece’s revolution and that at the same position of the

previous revolution always occur for successive revolutions of the workpiece by the regenerative
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effect [46]. However, so far, very few investigations, which describe the experimental

characteristics of the phase difference in the metal cutting processes, have been published.

The phase difference has been considered to be directly reiated with the patterns of the chatter
marks, which creating the different time delays relating to uncut chip thickness and likely varying
from clockwise to counterclockwise along the feed. No systematic relation between the cutting
conditions and the phase difference has been investigated currently. Nevertheless, some
experiments show that the phase difference become constant at a value between 30 and 90 degrees
following fluctuations after the excitation. The phase difference may increase or decrease during
the fluctuation periods. What extent the effect of the phase difference on chatter and the reasons
that the phase difference becomes a fixed quantity after sufficient growth of the amplitude of

chatter are not obvious at present and will be studied in the future.
8.2.2 Damping Forces Acting on the Workpiece

In turning processes, not only there exists the nonlinearity caused by the cutting tool jumping and
disengaging from the workpiece due to the vibrations between the cutting tool and workpiece, but
also the other nonlinearity due to the cutting process damping caused by the interference of the

tool flank with the machined surface (shown in Fig. 8.1).

It is seen that the clearance angle b between the tool flank and the machined surface varies when
the cutting tool travels along the machined surface undulation. At position A (shown in Fig. 8.1),
the clearance angle b is equal to the tool clearance by. However, the clearance angle b becomes
smaller at position B and gets even smaller at position C when the cutting tool travels in the
downward direction. With the decrease of the clearance angle b, the interference of the tool flank

with the machined surface will generate the additional damping force in both degree-freedom
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directions of Y and X. However, the interference of tool flank with the machined surface does not
occur at position D, where the slope of machined surface is positive. As a result, the additional

damping force will not be generated when the cutting tool travels in the upward direction.

Since the additional damping force as pointed out by Moriwaki and Iwata [47] is introduced into
the dynamic systems, while the clearance angle b becomes smaller than the tool clearance angle,
the equations of the dynamic systems supplied in preceding chapters would be updated. As a
result, the clearance angle b becomes smaller so as to increase the process damping value. Due to
the increase of damping at low cutting speeds, the system stability is greatly increased. Some
experiments show that the additional damping force strongly influences the cutting stability at low
cutting speeds. This phenomenon has been observed by Tlusty and Ismail [5]. However, it has to
be pointed out that further investigations of the process damping is still required in order to model

the process damping force more accurately.

Cutting tool

Workpiece

Figure 8.1 Variation of clearance angle b in the cutting process
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8.2.3 Type B of Chatter

Referring to the Fig. 1.5, when relative stiffness in one direction A is small but in the direction B is
large, Type A4 chatter occurs. The opposite relative stiffness conditions between cutting edge and

workpiece result in Type B chatter

In some papers published presently, it has been commonly assumed that chatter can exist in either
the direction A4 or the direction B referring to Fig. 1.5, but not in both at once. This means that two
types of chatters are always distinguished depending on whether the chatter amplitudes fall in the
direction of the tool shank or in the direction of the workpiece velocity. Accordingly, these will be
named Typy 4 and Type B chatter respectively. Type B chatter is the more complicated form than
Type 4 chatter and has been shown in [4] that the incremental thrust-component expression for
Type 4 chatter is a special case of the equivalent expression for Type B chatter. In [4], there are a
series of mathematical analyses concering Type B chatter and the relation of Type 4 and Type B8

chatters under orthogonal cutting conditions.

To construct the dynamic models of the metal cutting processes and suppress the self-exited
vibrations, the effect of Type B chatter on the finish of machined workpiece surfaces will be took
into account along with Typy A chatter, and Type B will be also treated as one of the main aspects

influencing uncut chip thickness.
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Appendix A: The Estimate of Disturbance z(,y!",y,y*) (scalar)

The uncertain system in Eq. 6.15 is as following:

Zyﬂl (t) + a_]'yu) (t) + Zy(zl (t) + Zym ([) + Z}’(t)

=ry (@) +ry (@) +ry () +b,F (t) + z(t, yiyD yl) +et, F",F"")

=ry @) +nyt @) +ny, () +b,, F ) +b, F () +b,,F.(0) + 21,y y2, pi) . (a.1)
where all coefficients in Eq. a.l are defined in Eq. 6.15; the uncertain disturbance z(z) will be

estimated approximately.

Assumption: The disturbance z(¢)is bounded; its upper and lower bounds are unknown.

In terms of Eq. a.1, we define

a@)=(a,0' +2,0' +2,0' +ad+a, -rd -rd-r) b@) =b,d +b,d+b,, W)=F.(1),

- _Z(f,)’i,“,}",,“d’f') — _ r = _
2(1) = o) . ¥0=0@) vy, e=01).

where & is the differential operator, y(¢) and v(¢)are the output and input respectively.

The uncertain system in Eq. a.l can be rewritten as following:
a(@)7(t) = bE)W(1) + 2(t)) (a.2)
where 7 is the order of a(3), m is the order of 5(9), thusn=4; m=2.

Motivated by the formulation of the state observer for a possibly unstable system, we introduce a

monic second order Hurwitz polynomial £(3)

BEYO+)’ _ (5,:0° +b,0+b, )0+ )’ (23)
b b, |

r

(@)=

where y is a positive constant; b, =b,,.

Now rewriting Eq. a.2 as

=2 T@-T@) b b 4
c y(t) 0 y()+ Grn) () + Grwy 2(t) (@4)
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Multiplying both sides of Eq. a.4 with (8 +y) yields

cf(8)-a(d) — b, b, .
@0+ D G O Gy (a-3)

E3(0)+Eyp() =b,

The proposed formulation can be summarized in the following.

Stepl: based on Eq. a.5, —Z(¢) is estimated.

l
@+y)”

Motivated by the formulation of the Luenberger-type state observer, consider the dynamical

system described by

_p S0)-a @) - b,
Z50)+ ) = b oy O Ty MO (a.6)
¥(t) = y(t,) =0 (a.7)

where w,(¢) is a signal to be determined, y(¢) is the solution of the Eq. a.7.

Combining Eq. a.5 and a.7, yields

ZAF(t) +EAF(t) =b,{ )z(t) w(8)} (a.8)

(0+

where Ay = 5(t) - y(¢), it can be seen that, If the signal w,(¢)can be formulated such that A}(t) and

! z(t).
v)

Ay(¢) are very small, then w,(z) can be regarded as the approximate estimate of s

In this research, the formulation of w,(f) is motivated by the variable structure method and the

adaptive control technique. By adaptively updating the upper bound C . =C, of ‘Zg-l—_lw)ﬁz(t) ,

the signal w,(r) is considered as

b,z((1) - ¥(t)) (a.9)
+ 96, ’

w, (1) =C, ()

where &,(=2x10~"")is a small positive constant, C,(r)is updated by the following adaptive

mechanism
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26,C,

ép=lrpo-yo]  po-3o]>

0 otherwise

(a.10)

where C, (¢, ) can be chosen as any small positive constant, z, is a positive constant.

1
z(2).
(G+vw) )

Thus, w(¢)is the approximate estimate of

Step 2: L —z(t) ( r=2 )is estimated by using w(¢) based on trivial Eq. a.ll

@+y)™

d l - 1 - l -
't ((a )r-l z(t)) (a )r—l Z(t) (a ),_1 (t) (a )

Corresponding to Eq. a.11, Eq. a.12 is considered

W,(t) + (1) = wy (1) (a.12)

where w,(¢) is signal to be determined, w,(¢) is the solution of Eq. a.12, w(z,)=0.

By mimicking the formulation of the first step, w,(¢)is chosen as

w(£) —w (1) (a.13)

YT P

where 8, is a small positive constant, C,(¢) is updated by the following adaptive mechanism

. - . " 25,C,
& @y =110 =W ) zflw,(t)—w.(z)|>\/—~w—; @.14)
0 otherwise

where C,(t,) can be chosen as any small positive constant, g, is a positive constant.

‘l—,-,f(’) , L&, Z(8) = w,y (1) .

w,(t) is the approximate estimate of
(@+v)

Therefore Z(6)b() = 2(t, ¥, y&, ™).
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Appendix B: The Estimate of Disturbance :z(;,y,y*,y®) (vector)
PP o 1Yo 1Y

The uncertain system in Eq. 7.18 rewritten as following:

a y () +a,y? () +a,y? (1) +a,y" (1) +a,p(t)
F"@)+b F (1)

pLT v ®0"

=ry P (@) +ry" (@) +r,y, () +b,,F, (1) +b

3 )

+brp:er"n(z) + b/mF.rrm(t) +bmoF-r (t) + =t ([’—V:)’yw ’yw

3) 3

Y+z, 8y )Yy ) - (b.1)
where the all coefficients in Eq. b.1 are defined in Eq. 7.18; and uncertain disturbance

2(1) = (z, (IS Vi Tl T2 (5 VS y;’))r will be estimated online.
Assumption: the disturbance z(¢) is bounded; its upper and lower bounds are unknown.

In terms of Eq. b.1, we define

2(0)=(a:0' + 2,0 +a0* +ad+a, -nd-rd-n),

b(3) =(b,(3) b,(d))= (b,,zal +b,0+b,, b,,0° +b,,,,a+bm) , 7O =0(@® y.@),
1

W=b0 vo) =E0 Fof. 20=%9 Lo, =0 ).

b,(9)

where & is the differential operator, y(r) and v(r)are the output and input respectively.

For simplicity, the Eq. (b.1) can be written as follow,
a(0)y(r) =b(0)(v(r) + z(1)) (b.2)

where n is the order of @(d), m is the order of 5(d), thusn=4; m = 2.

Motivated by the formulation of the state observer for a possibly unstable system, we introduce a

monic second order Hurwitz polynomial f(3)

1@=06® b, (a)((a ) Ox) ] (63)
where b, =(b, b,) =(b,, b,.) . w isa positive constant.
Eq. b.2 is rewritten as: ¢ y(t) = Ef(af)%a;i(a)— y(t) +( 3 f"’/’)z @ i’;,)z )(V(t )+2(1)) (b.4)
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Multiplying both sides of Eq. b.4 with (6 + ) yields

TO-2O) 515, 5, )y O (.5)

Z(0)@ +v) @+y) (@+y)

E V() +Eupe) =

where Z(3)=(,(8) 5,(8))-(1/b, 1/b,) .

The proposed formulation can be summarized in the following.

Stepl: based on the Eq. b.5, —1—IE(t) is estimated.
(@+w)~

Motivated by the formulation of the Luenberger-type state observer, consider the dynamical

system described by

Lo Ef()-ad) - w(t)

eV = F@)+(b, b Gep) MO (o)
() = y(t,) (b.7)

where w,(¢) = (w,(t) w,,(¢))" is a signal to be determined, y(r) is the solution of Eq. b.6.

Combining Eq. b.5 and b.6, yields

Z A7)+ Eua(0) = b, b,z){(a:y/) 20 - w O} (6.8)

where Ay =y(r)-y(¢), it can be seen that, If the signal w,(¢) can be formulated such that A'y(t) and

Ay(t) are very small, then w, (r) can be regarded as the approximate estimate of

z,(2)
(0+y)

The formulation of w,(z) is motivated by the variable structure method and the adaptive control

, ( j=0,), because z(t)e R**.

, the signal w,(z) is

technique. By adaptively updating the upper bound C =G of ‘(a f(t))r-l
r- l v .

considered as:

w (t)=(w.o(z)J=cl(z)_E(f(z); YO, __COEGO-y0) (bJ ®.9)
b.(70) =3O+, [b.(F0) - TN+ 6, \bua

w,, (2)

where &, (= 2x10~"~*) is a small positive constant, C,(¢)is updated by the following adaptive law
1 1
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=1t ||y(z) yof  #po-yo|> w/ (.10)

otherw:se

where C,(1,) can be chosen as any small positive constant, y, is a positive constant.

Thus, w,, (¢) is the approximate estimate of —-—l—l; ;@) ( j=0,1).
G+y)”

Step 2: %E(z) ( i=2)is estimated by using w,(¢) based on Eq. b.11:
(@+v)

1
. _ =1, (b.11
dt((6+ )™ Zo+ @ u/) 0= @+y) © )

Corresponding to Equation above, Eq. b.12 is considered
(O + 9, (6) = w,(0) (.12)

where w (r)=(w,(t) w,()f is the signal to be determined, w,_,(t)=(%, oo(6) W,..,()f is the
solution of Eq. b.12, w,_(z,)=0.

By mimicking the formulation of the first step, w,(z) is chosen as

(w, () = w,())C, () (b.13)

w2 (0= [w.(0) = w,0)]| + 8, °

where &, is a small positive constant, C,(r) is updated by the following adaptive mechanism

- , _ 25,C,
O =ltmo-w0]  iwe-we]> \/;— (b.14)

0 otherwise

C

[

where C,(¢,) can be chosen as any small positive constant, y, is a positive constant.

w, (7) will be the approximate estimate of G Z(t),i.e., wy, () =Z,(1), (j=0,1) .

1
+y)""

4) (81]

Therefore, z,(t, )%, ¥y, y) =5,(8)z,; 2,y vy Yy ) =b,(9)Z,.
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Appendix C: Sliding Surface Design for the Dynamic System with

Two-Dimensional Forces

The equivalent system in Eq. 4.14 is as follow

. (0 1 0 0 (0
O Lo 0 1 o [["O) o
=0 0 0 o 1 | 0 | ue)= dxe)+ Bugo). (c.1)
O A UL
. -=2 =2 = -=2|\{x( =
x.‘(l) \ a, a, a, a.‘) () \a‘ Y,
where u(t) = F (¢).
We concentrate on the case of linear sliding surface, o(x(¢)) = Sx(r), where S =(s, s, s, 5.)s
and x(t) =(x,(t) x,() x() x@).
The method of the quivalent control produces the following system further
x(t) = (I - B(SB)" §) Ax() (c:2)
Provided o(x(z,)) =0 for some ¢,
Sy .__a,
In terms of Eq.c.1 and c.2, SB=—=~, SB"'=———,
a4 S‘b'PO
Then Eq. c.2 :an be rewritten as following
0 0o 1 0 0 01 0 o0
— 1o o o 1 o[y o 1 o
()= 1—‘;‘ Ofs, s, s sJ}{ 0 0 0 I :8=0 0o o0 1 %0 (c.3)
LA RN | s B PR
i a, Na a & a) eSS
Subject to o(x) =0, solving for x,(¢) yields
£,(0) = = (5,5,(0) + 5,5, (1) + 5,5, (1) (c4)
S

4

The reduced order equivalent linear time-invariant system.
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%, ()

0 1 0 |(x@)
x@|=| 0 o0 I |- %) L =4-X() (c.5)
0] (-2 & 20

4 S-l S

3

To see how control design might be accomplished, supposed one of the design constraint requires

the spectrum of the equivalent system be { -100, -100, -100 }; the desired characteristic
polynomial is

IM,(1)=2+3x1022* +3x10* A +10°

(c.6)
The characteristic polynomial of the equivalent reduced order system given in Eq. ¢.5 is
T,(1) =det(U - A)=A' + 227+ 22 1+ 22 .7
s, s, s,

Without loss of generality, define s, = 1. Then oefficients of like powers of A, produces the set of
S={x10° 3x10* 3x10* 1.

Hence the sliding surface of the equivalent system is as following:

x, (1)

a(x(t))=(IXIO° 3x10* 3x10° l)- ;zgi . (c.8)
3

AQ)
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Appendix D: Sliding Surface Design for the Dynamic System with

Three-Dimensional Forces

The equivalent system in Eq. 5.16 is as follow

(0 1 0 0) (0 0

xx(t) O O l 0 xl(t) 0

. b o

OILbo 0 0 1 [|BO 2 0 ey =axe) + Buo.

x,(t) - = = —is0 ]

N a, q, a. a, b,

*0) |77 Tz Tn a0 o =

3 K a; a; a; aJ \ a‘ (d.l)

F
where u(r) = [:'((i))) = (F" Ei))] .

We concentrate on the case of linear 3-dimensional sliding surface, o(x(t)) = Sx(¢) , where

s=($u . S“J’and ) =0 £ x0O o).
KY S

. S

2 2 3 p}

The method of equivalent control produces the following equivalent system further

x(2) = (I - B(SB)" S) Ax(1) (d.2)
Provided o(x(¢,)) =0 for some ¢,
In terms of Eq. d.1 and d.2, Then
S:J - su
SB =(‘V"b' Sub,] . sgt=| Bs°b As-b, |,
S:an Subz - __S” Su
As-b, As-b
b b
where b ==, b =%, As=s,5,-5,5,-
a, a,
0 1 0 0
0 0 1 0
Hence ..X(I)= 0 SuSy — 8,5y SuSy = 5,8, 0l-x() (d'3)
As As
0 SuSy — 8555, SiSy ~5ySy 0
As As

Subject to o(x) =0, solving for x,(¢) and x,(t) yields
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sl) sll . ‘xl(t) — Sll sll . xl(t) (d 4)
S, S5, ) \x, () - S, S, ) \x () )

i.e., (I, (t)J - _L[Snsz: =55y SuSy TSuSa J'(XI (t)] (d'S)
x;(t) As\s,s,, =85Sy 58, TS5y, x:(t)
The reduced order equivalent linear time-invariant system.
. 0 1 - -
x.l (t) =1 5,8, — 5,5, SuSn =SSy (xl (t)) =4 'X(I) ' (d.6)
x, (1) As As x, (1)

For simpiicity, let us choose As=s,5, —5,,5,, =1. Specifically, choose s,=2,

]-f(t) =A4-%@) . (d.7)

S14 =5, =5, =1.Then x(:):(
Sy =S Sn TS,

To see how control design might be accomplished, supposed one of the design constraint requires

the spectrum of the equivalent system be { -100, —200}; the desired characteristic polynomial is

I1,(A) = A* + 3004 + 20000 (d.8)
The characteristic polynomial of the equivalent reduced order system given in Eq. d.8 is
,(A) =det(A - A) = 2 + (5, =S, )A+s, -5, . (d.9)

Then coefficients of like powers of 4, produces the set of §

0 1 0 -1)|[s,|_{ 300 (d.10)
1 0 -1 0 {20000 )

One solution of Eq. d.10 is s,, =100, s,, =10, 5, =-100, 55, =—20.

Hence the sliding surface of the equivalent system is as following:

x (1)
o (x(2)) = 30000 500 2 1 ) x, (1) (d.11)
’ 10000 200 1 1) |x()]|
x, (1)
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Table A: Parameters of the Controlled System with 2-Dimensional Forces

Dependent Piezoactuator

and

(Unit system: kg, Ns/m, N/m)

ldentifiers Values Units Remarks
Cutting speed 80 M/min Working condition
Spindle speed 600 pm
Cutting width 3.0 mm
Work material S45C
m1 100.00 Kg Equivalent mass
cil 6320.00 Ns/m Damping ratio
k1 4.00E+07 N/m Spring stiffness
c2 7480.00 Ns/m Damping ratio
k2 5.60E+07 N/m Spring stiffness
oy 0.52 Radian Angle between axis Y and degree 1
ay 1.05 Radian Angle between axis Y and degree 2
At 4.5e(+6) N/m Slope of backlash for thrust force
Bt 25.00 N Distance in axis X for thrust force
Ac 3e(+6) N/m Slope of backlash for main cutting force
Bc 15.00 N Distance in axis X for main cutting force
T 2e(-3) Sec Time delay effect on uncut chip thickness
u 0.88 Overlapping factor
o(llel)) 1.0472 Up bounded of |[e]|
€ 1.35¢(-3) mm Desirable error
pdlgvil 1.2013-3.0450 The bound of g(u)
p 3.5e(+4)~5.5e(+4) N/m The slope of piezo’s deflection due to volatge
Bp 1.652e(+5)
kt 2.5¢(-5) The constant of the controller
k* by calculation
O1min -7.8e(-5) The minimal value of parameters 0,
O 1max -2.5e(-5) The maximal value of parameters 6,
B2min -4.5¢e(-5) The minimal value of parameters 8
O2max -0.5e(-5) The maximal value of parameters 02
O3min -3.5¢(-5) The minimal value of parameters 03
B3max -1e(-5) The maximal value of parameters 03
Oammin -5e(-4) The minimal value of parameters 64
B4max -1.5e(4) The maximal value of parameters 64
Osmin -6.55e(-5) The minimal value of parameters 85
Osmax 1.5¢(-5) The maximal value of parameters 05
O6min -4.05e(-5) The minimal value of parameters 65
Osmax -0.79¢e(-5) The maximal value of parameters 6g
B7min -0.5e(-4) The minimal value of parameters 6;
O7max 1.02¢(-4) The maximal value of parameters 8,




[The ratio of the force and deflection in the piezo,

K, -1.429e(+4) Lb/um referring to TS-H5-104
Uo 0.15 mm/rev Average or steady state uncut chip thickness
Qi=1,23 1.0 The coefficient of time delay in the assumption 1
Y1=1,23456.7 1.17 The coefficient of proj functions
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Table B: Parameters of the Controlled System with 3-Dimensioanl Forces and

Dependent Piezoactuators

KUnit system: kg, Ns/m, N/m)

Identifiers Values Units Remarks
Cutting speed 80 m/min Working condition
Spindle speed 600 pm
Cutting width 3.0 mm
Work material S45C
m1 100.00 Kg Equivalent mass
c1 6320.00 Ns/m Damping ratio
k1 4 .00E+Q7 N/m Spring stiffness
c2 7480.00 Ns/m Damping ratio
k2 5.60E+07 N/m Spring stiffness
oy 0.52 Radian Angle between axis Y and degree 1
o 1.05 Radian Angle between axis Y and degree 2
At 4 5e(+6) N/m Slope of backlash for thrust force
Bt 25.00 N Distance in axis X for thrust force
Ac 3e(+6) N/m Slope of backlash for main cutting force
Be 20.00 N Distance in axis X for main cutting force
Af 3.5e(+6) N/m Slope of backlash for feeding force
Bf 15.00 N Distance in axis X for feeding force
Angle between the direction along main axis|
B 0.3489 Radian of turning and the direction normal to
machining surface in Fig 5.1
Time delay(T) 2e(-3) Sec Time delay effect on uncut chip thickness
i 0.88 Overlap factor
p(llel 2.0200 Up bounded of [e]|
€ 1.5e(-3) mm Desirable error
p(ligdv)Il) 1.2013 - 3.045 The bound of gi(u)
p(ligdWID) 1.2013 - 3.045 The bound of g({u)
The slope of piezo’s deflection due to
Pt 3.5e(+6)~5.5¢(+6) N/m voltage in the thrust force direction
Bt 1.652e(+5)
The slope of piezo's deflection due to
Pf 3.5¢(+6)~5.5¢(+6) N/m voltagepin thg feeding force direction
Byt 1.652e(+5)
kt 2.5¢(-5) The constant of the controller
K= by calculation
O4min [-7.8e(-5), -7.8e(-5)]' R* The minimal value of parameters 6,
©1max [-2.5e(-5), -2.5e(-5)] The maximal value of parameters 0,
B2min [-4.5e(-5), -4.5e(-5)]' The minimal value of parameters 8,
B2max [-0.5e(-5), -0.5e(-5)] The maximal value of parameters 0.
O3min [-3.5e(-5), -3.5e(-5)] The minimal value of parameters 63
O3max [-1e(-5), -1e(-8)] The maximal value of parameters 03
B4min [-5e(-4), -5e(4)] The minimal value of parameters 64
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The maximal value of parameters 0,

B4max [-1.5e(-4), -1.5e(-4)]
Bsmin [-6.5e(-5), -6.5e(-5)] The minimal value of parameters 65
Bsmax [-1.2e(-5), -1.2e(-5)} The maximal value of parameters 0s
Bsmin [-3.08e(-5), -3.08e(-5) The minimal value of parameters 6
O5max [-0.79¢(-5), -0.79¢e(-5)]' The maximal value of parameters 65
B7min [-0.5e(-4), -0.5e(4)) The minimal value of parameters 6;
O7max [-1.341e(4), -1.341e(-4)]' The maximal value of parameters 07
The ratio of the force and deflection in the
Kt -1.429¢(+4), -1.429¢(+4) Lb/um piezo, referring to TS-H5-104
Average or steady state uncut chip
Ug 0.15 mm/rev thickness
10 The coefficient of time delay in the
Qi=1.23 : assumption 1
Y1=1.2.34.56.7 1.17 The coefficient of proj functions
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Table C: Parameters of the Controlled System with 2-Dimensional Forces and

Independent Piezoactuator

KUnit system: kg, Ns/m, N/m)

Identifiers Values Units Remarks
Cutting speed 80 M/min Working condition
Spindle speed 600 Rpm
Cutting width 3.0 mm
Work material S45¢
m1 100.00 Kg Equivalent mass of structure
c1 6320.00 Ns/m Damping ratio
k1 4.00E+07 N/m Spring stiffness
c2 7480.00 Ns/m Damping ratio
k2 5.60E+07 N/m Spring stiffness
o4 0.52 Radian Angle between axis Y and degree 1
) 1.0 Radian Angle between axis Y and degree 2
At 4.5e(+6) N/m Slope of backlash for thrust force
Bt 25.00 N Distance in axis X for thrust force
Ac 3e(+6) N/m Slope of backlash for main cutting force
Bc 20.00 N Distance in axis X for main cutting force
Mg 140 Gram Mass of the piezoelectric actuator
Time delay(T) 2e(-3) Sec Time delay effect on uncut chip thickness
u 0.88 Overlapping factor
p(llell) 5.0~17.0 Up bounded of [le]|
pdlg(WIiD 1.2013-3.0450 The bound of g(u)
€ 1.5e(-3) mm Desirable error
p 3 5e(+6)~5.5¢(+6) N/m The slope of pusgclataigﬂectlon due to
B 1.652¢(+5)
kt 2.5e(-5) The constant of controller
K= by calculation
O1min -7.8e(4) The minimal value of parameters 6,
O1max -2.5e(-4) The maximal value of parameters 0,
O2min -4.5e(-4) The minimal value of parameters 62
0, -0.5e(-4) The maximal value of parameters 62
Oamin -3.5e(-4) The minimal value of parameters 63
] -1e(-4) The maximal value of parameters 03
O4min -5¢(-3) The minimal value of parameters 64
Oamax_ -1.5¢(-3) The maximal value of parameters 04
Osmin_ -6.45e(-5) The minimal value of parameters 6s
Osmax_ 1.5e(-5) The maximal value of parameters 0s
O6min -4.05e(-5) The minimal value of parameters 6
Osmax -0.79¢(-5) The maximal value of parameters 05
B7min -0.5e(-4) The minimal value of parameters 6;
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O7max 1.02e(-4) The maximal value of parameters 67
The ratio of the force and deflection in the
Ky -1.429e(+4) Lb/um piezo, referring to TS-H5-104
Uo 0.15 Mm/rev Average or s::;dy state uncut chip
ickness
! 10 The coefficient of time delay in the
G123 : assumption 1
Y1=1,23.4.56.7 1.17 The coefficient of proj functions
b, 1 The parameters in appendix A
v 3~10 >0, determines the estimating speed
84 2.2x10* >0, determines the estimating precision
52 2.2x10*
50.0 >0, Chosen large enough to adjust the
X1 . estimated upper bounds rapidly
A2 50.0
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Table D: Parameters of the Controlled System with 3-Dimensional Forces and

Independent Piezoactuators

(Unit system: kg, Ns/m, N/m)
Identifiers Values Units Remarks
Cutting speed 80 M/min Working condition
Spindle speed 600 Rpm
Cutting width 3.0 mm
Work material S45¢c
m1 100.00 Kg Equivalent mass of structure
ci 6320.00 Ns/m Damping ratio
k1 4.00E+07 N/m Spring stiffness
c2 7480.00 Damping ratio
k2 5.60E+07 Spring stiffness
o4 0.52 Radian Angle between axis Y and degree 1
a; 1.05 Radian Angle between axis Y and degree 2
At 4.5e(+6) N/m Slope of backlash for thrust force
Bt 25.00 N Distance in axis X for thrust force
Ac 3e(+6) N/m Slope of backlash for main cutting force
Bec 20.00 N Distance in axis X for main cutting force
Af 3.5e(+6) N/m Slope of backlash for feeding force
Bf 15.0 N Distance in axis X for feeding force
my 140 Gram Mass of the piezoelectric actuator
Angle between the direction along main axis
B 0.3489 Radian of turning and the direction normal to
machining surface in Fig 7.1
Time delay (T) 2e(-3) Sec Time delay effect on uncut chip thickness
u 0.65 Overlapping factor
p(llel]) 2.0200 Up bounded of |le]|
€ 1.5e(-3) mm Desirable error
p(la.WIi) 1.2013 - 3.045 The bound of g,(u)
p(llgdv)Il) 1.2013 - 3.045 The bound of g(u)
The slope of piezo’s deflection due to
Pt 3.5¢(+6)~5.5¢(+6) N/m voltage in the thrust force direction
Bpt 1.652e(+5)
) The slope of piezo’s deflection due to
Pt 3.5¢(+6)~5.5¢(+6) N/m voltagepin th: feeding force direction
Ber 1.652e(+5)
kt 2.5¢e(-5) The constant of the controller
k* by calculation
B1min [-7.8e(-4), -7.8¢e(-4)]' R The minimal value of parameters 6,
O1max [-2.5e(-4), -2.5e(-4)] The maximal value of parameters 6,
O2min [-4.5e(-4), -4.5¢(4)] The minimal value of parameters 6,
O2max [-0.5e(-4), -0.5e(4)]' The maximal value of parameters 0,
B3min [-3.5e(-4), -3.5e(4)] The minimal value of parameters 63
B3max [-1e(-4), -1e(-4)] The maximal value of parameters 63
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O4min [-5e(-3), -5e(-3)I’ The minimal value of parameters 84
Bamax [-1.5e(-3), -1.5e(-3)} The maximal value of parameters 64
Osmin [-6.5e(-5), -6.5¢e(-5)] The minimal value of parameters 65
B5max [-1.2e(-5), -1.2e(-5)I' The maximal value of parameters 65
O6min [-3.08e(-5), -3.08e(-5) The minimal value of parameters 65
Osmax [-0.79¢(-5), -0.79e(-5)] The maximal value of parameters 65
O7min [-0.5e(-4), -0.5e(-4)] The minimal value of parameters 6;
O7max [-1.341e(-4), -1.341e(4)] The maximal value of parameters 8;
The ratio of the force and deflection in the
hind 1429e(24), -1.429e(*4) | Lbfum piezo, referring to TS-H5-104
Average or steady state uncut chip
U 0.15 mm/rev thickness
10 The coefficient of time delay in the
123 ) assumption 1
Y1=1,23456.7 1.17 The coefficient of proj functions
br 1,17 The parameters in appendix A
U} 3~10 >0, determines the estimating speed
84 2.2x10* >0, determines the estimating precision
s 2.2x10*
50.0 >0, Chosen large enough to adjust the
X ) estimated upper bounds rapidly
X2 50.0
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