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ABSTRACT

Stochastic Mechanics and Reliability of Composite Laminates based on

Experimental Investigation and Stochastic FEM

Shashank M Venugopal

This work concerns the stochastic mechanics and reliability of composite laminates. The
reliability of notched composite laminates is evaluated based on the average stress over a
certain characteristic distance from the notch edge and the strength of the corresponding
un-notched laminate. Laminates exhibit stochastic variations in mechanical and material
properties. In practice, it is very difficult to achieve a perfect circular profile during the
drilling operation on a composite laminate and also there is a possibility that the driven
hole is offset from the desired coordinates. These imperfections affect the reliability of
the laminate. In the present work the perturbation in the radius of the hole is modeled
using a hypotrochoid variation and further, the location of the hole centre is modeled
using a Gaussian random variable. Tests on laminate coupons show that the un-notched
strength also has a stochastic distribution. Accordingly, the characteristic length to be
used in design follows a stochastic distribution. Therefore, in order to achieve a design
with a required reliability and safety, (i) the stress analysis of the notched laminate has to
be conducted based on a stochastic approach, (ii) the strength distribution and its
probabilistic parameters have to be determined based on a number of tests, and (iii) the
reliability analysis has to be conducted. Two-dimensional stochastic finite element

analyses of notched symmetric cross-ply [0/ 90]4, and angle-ply [02 I+ 45]2: composite

laminates are conducted. A comprehensive experimental investigation is carried out to
determine the strength values of the laminates subjected to tensile load. Average stress
criterion is used to predict the characteristic length values of the laminates. The
distributions of the strength and characteristic length of laminates with symmetric cross-
ply [O/ 90]4, configuration are determined by testing 25 samples of notched and 25
samples of un-notched laminates. In a similar manner, tests on angle-ply laminate

[0, /-*_-45]2Sare conducted. Stochastic simulation is performed on the laminates by

subjecting them to uniaxial, biaxial, shear and bending loads. Probabilistic moments of

il



the stress parameters that are of interest are found out for the so-called controlled hole
and uncontrolled hole laminates. The reliability indices for the two laminate

configurations are calculated by combining the stochastic finite element analysis and the

test results.
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Chapter 1

Introduction

1.1 Composite materials and structures

Carbon Fibre Reinforced Plastics (CFRP) are used extensively in aircraft structures as
they give high stiffness and strength with lower weight. Typical composite components
of aircraft are wings and parts of fuselage. Wing ribs and intermediate spars are typical
sub-structures, which can be built of CFRP. Cutouts are introduced in these structures for
lightening the component. Introduction of holes leads to stress concentrations in addition

to lowering the buckling load and load carrying capability.

Improvement in flight performance is one of the most important criteria in the design of
aerospace structures. Weight reduction measures, coupled with compliance to strength,
stiffness and stability requirements are important. Investigators have long been in search
of materials that have less weight as well as sufficient strength and stiffness to withstand
aerodynamic loads experienced by a structure in various flight conditions. Fibre
reinforced composite materials have been found to have promising properties in this
regard. These materials are being used extensively in the production of various aircraft

components and their use is increasing day-by-day. This is due to the fact that they have a



very high strength-to-weight ratio, higher damage tolerance, better manufacturability and

lesser number of joints compared to conventional materials.

Composites have also found many applications as advanced engineering materials, and
they are effectively employed in various structural systems such as automobiles and
power plants. In recent years, composite materials have become widely recognized as a
viable construction material too. The safety and reliability of these systems are dependent
on the design of the constituent components. These components are often subjected to
complex service loading conditions, in which two or three dynamic or static principal

stresses may exist.

The composite laminate design process typically involves optimization of

the following four parameters:

1. Ply (or lamina) material
2. Ply thickness,
3. Ply orientation, and

4. Stacking (or lay-up) sequence.

The true optimization of a composite laminate, simultaneously considering the coupling
effects of the four design parameters mentioned above, is a mathematical challenge in
structural optimization. Characterization of deformation of composite laminates is not
trivial and simulations need to be accompanied by experimental verification before

various laminate theories can be used with confidence.



Carbon fibre composite materials are sensitive to open holes, defects, and low-velocity
impact damage that can significantly reduce their stiffness and strength properties. To
develop structures, which are more damage-tolerant, it is necessary to understand how the
damage is caused and how it can affect residual performance. Many investigations of
open holes and impact damage in carbon fibre composites are based on testing of small

laminates rather than structural elements or full-scale structures.

To utilize these advanced materials to their fuil potential, the establishment of the
strength criterion is important. Considerable efforts have been devoted to recent
developments of strength/failure criteria for anisotropic materials [1]. Some of the
currently existing anisotropic strength criteria are only extensions of isotropic yield

criteria.

1.2 Cutouts in composites

Stress concentrations exist in all structures. It is an extremely important issue in both
homogeneous isotropic and heterogeneous composite materials, because the point at, or
near, the maximum stress concentration is normally the location of initial failure. Because
of the importance of stress concentration problems, engineers must know how to analyze
it, to predict failure and strength, and develop methods to reduce the effects of stress
concentration. Stress concentration in a structure can be caused by many factors and they

are listed below:

1) Openings

2) Discontinuous linear and smooth geometry



3) Joints which include bolted joints, bonded joints and other mechanical joints
4) Voids and damage due to material fabrication
Solutions to many issues related to stress concentration in laminated composites are still
in the early stages of development. For instance, there are no criteria capable of
predicting failure under a broad range of general stress states. A good design
methodology in the presence of stress concentration in composite structures is also

deficient.

It is a known fact that composite materials are widely used in structural components that
withstand important mechanical loads. The design of these components requires the
precise knowledge of the mechanical behavior of the material used. This is generally
obtained from mechanical tests performed on composite coupons (tension, compression,
shear, etc.). However, the preparation of these coupons very often requires some cutting
operations (cutting coupons from a panel, machining notches, drilling holes, etc.). These
tend to create damage on the cut surfaces. Since the failure of most of these coupons
tends to initiate at the free surfaces, the cutting conditions are a possible source of
strength reduction at the coupon level. Also, standards tend to contain limited information

in terms of specimen cutting.

1.3 Literature review

In stress concentration analysis, it is significant to consider the open edge stress field.
Analytical solutions are available in the literature with different degrees of mathematical
complexity. Many of them considered only certain shapes of holes and few cases of

loading. Muskhelishvili [2] principally developed a complex variable method for solving



boundary value problems in two-dimensional elasticity for an isotropic elastic solid.
Lekhnitskii [3] gave solutions for stresses around different shapes of holes using the
series method. These shapes are more approximate. Savin’s [4] approach by conformal
mapping is much simpler. Green [5] has given solutions for stress concentration problems
in isotropic and aelotropic plates. The first analytical solution for multi-layered composite
laminates with a circular hole has been given by Greszczuk [6]. Greszczuk obtained the
failure strength and location of failure based on Hencky-Von Mises theory using the
equations given by Fischer [7]. Hayashi [8] considered an arbitrary shape of hole in
CFRP laminate. This solution is based on a series approach. Jong [9] adopted a variant of
Lekhnitskii's [3] series method and the stress functions are determined by Cauchy
integrals. Elaborate results are given for square, rectangular and circular holes in CFRP
laminates of various geometry considering uniaxial, biaxial and shear stresses. Hwu [10]
gave a solution to consider circular, elliptical, oval, square and pentagonal shaped holes
in anisotropic plates. These shapes are approximate since Hwu [10] employed the same
mapping function as that of Lekhnitskii [3]. Hufenbach er al. [11] gave a solution for the
case of an elliptical hole in an anisotropic plate under uniaxial tension at different angles.
The effects of hole geometry, fibre orientation and angle of loading on stresses around
the hole are studied. Daoust and Hoa [12] gave the solution for a triangular hole in an
anisotropic plate. This solution considers any ratio of base length and height of the
triangle. Ukadgaonker and Rao [13] have extended Daoust and Hoa’s [12] solution for

multi-layered plates and considered several cases of in-plane loading.

Theocaris and Petrou [14,15] considered triangular, and rectangular holes in isotropic

plates. The stress distribution around these holes is determined considering singular



points at the rounded comers and the results were verified by the method of caustics.
Ukadgaonker and Awasare [16-18] gave solutions for elliptical hole in anisotropic plate
and also for triangular, and rectangular holes in isotropic plate. Simha and Mahapatra
[19] studied the perturbation of mean boundary stress and its root mean square value due

to evolution of shape.

Many of the solutions cited for non-circular holes involve tedious algebra and in many
cases, the results are given without detailed procedure. The series method employed in
different solutions is more involved. It is felt that a solution based on simple
mathematical approach is needed to consider any shape of hole in multi-layered plates
and several cases of in-plane loading. Such a solution will be useful to study the effect of
hole geometry, type of loading and laminate geometry on stress distribution around the

hole.

A cutout may provide a passage for hydraulic lines, avionic harnesses, and on a larger
scale, an access door in an aircraft fuselage. The presence of multiple layers as well as the
anisotropy of the material system establishes a new challenge in terms of optimizing the
cutout geometry. Many other researchers have conducted work on single and elliptical
cutouts and to name a few: Cheng [20], Shastry and Rao [21], Tan [22-23], Lin and Ueng

[24], Fan and Wu [25].

By definition, a Finite-Width Correction (FWC) factor is a scale factor, which is applied

to multiply the notched infinite-plate solution to obtain the solution for the notched finite-



plate. FWC for anisotropic and orthotropic laminates containing a central elliptical

opening has been derived and is presented in reference [26].

Very few experiments have been conducted for the residual strength of fibre-reinforced,
resin-matrix-laminated composites containing elliptical openings. In an article written by
Rowlands er al. [27] a boron epoxy laminate containing a large elliptical opening with
major and minor diameters was tested. There is no indication that the opening size effect
was investigated and no prediction has been reported. In another review by Awerbuch
and Madhukar [28], the entire issue has been to discuss the residual strength of
orthotropic laminates containing a circular hole or a straight crack under uniaxial normal

load.

Several experimental techniques are available in the literature [29-32] for studying the
shear response of composite laminates such as cross-sandwich beam test, off-axis
coupon, splitting test, solid-rod torsion, rail shear tests, etc. Both the analytical
investigation conducted by Whitney et al. [31] and the numerical analysis by Herakovich
et al. [32] have shown that a state of uniform shear stress is obtained at a short distance

away from the free edges of the two-rail shear specimen.

A lot of literature is available for in-plane loading problems and very few solutions are
found for the bending case. Some of the important solutions known for the isotropic case
involve, the solutions of Goodier [33] and Reissner [34] for thin plates and the solutions
of Naghdi [35], Lee and Conlee [36] and Chen and Archer [37] for thick plates. Based on

thin plate theory, Lekhnitskii [3] and Savin [4] gave the formulation of stress



concentration (due to hole) problems for the anisotropic case. Lekhnitskii [3] gave the
results for a circular hole in plywood plate. In addition to the results for various shapes of
holes in isotropic plate, Savin [4] gave detailed equations for an elliptical hole problem.
Based on Stroh formalism, Hwu [10] gave the solution for in-plane loading and in-plane
bending of anisotropic plates with holes. No other solutions are found for the anisotropic

case except those of Lekhnitskii and Savin [4] for circular or elliptical hole problems.

1.4  Failure criteria for composite materials

The main objective of stress analysis is strength prediction. Stress analysis can be
pursued with many different methods. They all require physical boundary conditions in
the form of traction, displacement or both to solve for unknowns. For most failure
criteria, a few basic strength parameters are defined and evaluated experimentally first,

then they are used to predict the failure of a material in general stress or strain state.

Thus, after the stress distribution calculation, the point of interest should be examined
with a failure criterion to determine whether the composite material will fail or not.
Considerable efforts have been devoted to the formulation of composite material failure
criteria and to their correlation with experimental data, but no criterion has been fully
adequate. The analyses of the Hoffman [38], Fischer (7], and Cowin [39] theories show
that they are valid only for special cases. This limits their direct application to general

materials.

Composites have inherent scatter in elastic and strength properties. The analysis of

structures, whether subjected to random or deterministic external loads, has been



developed mainly under the assumption that the structure’s parameters are deterministic
quantities. In a significant number of circumstances, this assumption is not valid, and the
probabilistic aspects of the structure need to be taken into account.

In the last twenty years the powerful finite element method has undergone various
new developments to incorporate these random effects, and is now termed as Stochastic
Finite Element Method (SFEM). The developments in this field are reviewed by
Contreras [40], Vanmarcke and Griguriu [41] and Yamazaki, Shinozuka and Dasgupta
[42]. The stochastic finite element method is capable of dealing with random structural
properties described by random fields very efficiently. Ganesan [43] developed a new
finite element formulation to analyse the self-adjoint and non-self-adjoint structures with
more than one parameter behaving in a stochastic manner using the virtual work method.
Ganesan and Pondugala [44] have developed an effective finite element analysis

methodology for evaluating the stochastic J-integral of laminated composites.

1.4.1 Average stress criterion

Average stress criterion was developed to generalize failure criterion and is applied to
fibre-reinforced composites with a circular cutout. The purpose of a material failure
criterion is to establish a theoretical margin of safety that has been validated by
experiments. Obtaining the open edge stress field is necessary before a failure criterion of
composite material is applied. However, the open edge stress field is complicated because
numerous factors influence open edge stress distribution. Understanding the factors that
contribute to open edge stress fields is of critical importance in analyzing composite

laminates.



In the cases where stress gradients exist, very few failure criteria have been developed for
composite materials. Strictly speaking, the criterion of Waddoups-Eisenmann-Kaminski
[45], the Whitney-Nuismer’s [46] point stress criterion, the average stress criterion, the
point strain criterion and the average strain criterion are valid only for unidirectional
composites. These criteria have been widely used to predict the notched strength of
laminated composites with very good results. They should be considered as models rather
than failure criteria because they do not take into account the details of the complex

failure mechanisms.

L5  Scope and objective of the thesis

[n reality, it is difficult to achieve a perfect circular profile in notched laminates. Also
there is a high probability that the driven hole is offset from the desired coordinates.
These facts would eventually lead to a non-uniform stress distribution near the hole edge.
This variation in the stress distribution caused as a result of hole eccentricity and
imperfection in the notch geometry is due to a single hole. It is a fact that a typical
F-16XL aircraft has millions of tiny holes (2,500 holes over an area of 10 sq. feet) and
there exists a possibility that a series of holes drilled over an area, might generate a
multiple effect of the variation in the stress distribution over the region. This calls for a
study of stress state on the boundary and at a distance away from a nearly circular,
eccentric hole in an orthotropic laminate, subjected to uniform loading condition. Thus a
better understanding of the behaviour of stress parameters of composite laminates leads
to a reliable design and safer operation of mechanical components. As the spatial

properties of a composite laminate are random in nature, it is inevitable to quantify the
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stress concentration in the composite laminates based on a stochastic approach. Further
the stochastic variation in material properties of the laminate is incorporated in the finite

element analysis to determine the nodal displacements and hence the nodal stresses.
The primary objectives of the present thesis are:

(1) To develop a combined experimental and stochastic finite element analysis
methodology for the stress concentration analysis of composite laminates which

incorporates the probability distributions of material and geometric parameters;
(2) To develop a corresponding MATLAB® code which is easy to use and more flexible,

(3) To calculate the stochastic characteristics of the stress parameters of composite
laminates for both the so-called controlled hole and uncontrolled hole laminates;
(A controlled hole laminate exhibits the stochastic variation in the material
properties over the laminate but does not exhibit the geometric variation around the
circumference of the hole and hole eccentricity. An uncontrolled hole laminate takes
into account the stochastic variation in material properties over the laminate, the

geometric variation around the circumference of the hole, and hole eccentricity.)

(4) To determine an effective design parameter that can be used to determine the best

laminate configuration for a particular load application;

(5) To compute the reliability of composite laminates based on Gaussian distribution

using equivalent stress and the stress experienced by the un-notched laminate.
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1.6 Organization of thesis

The present chapter gives an over-view of composite laminates, includes a brief literature
survey covering also the topic of probabilistic stress concentration effects studied using
finite element method. It also highlights the criteria, which have been employed in the

present thesis work. The last section provides the scope and objectives of the thesis.

Chapter 2 briefly describes the theory and formulation involved in the calculation of
stress distribution due to a circular opening in isotropic plates and orthotropic
laminates using the finite element method. Orthotropic laminates are analyzed using the
stochastic finite element analysis. A two-dimensional, 8-node isoparametric element is
used to model the laminates considering the stochastic variation in material properties.
The MATLAB® software is made use of, which performs the stress concentration

analysis of the mechanical component.

Chapter 3 applies the concepts of First order shear deformation theory (FSDT) or
equivalently the Mindlin plate bending theory to analyze the laminates under out-of-plane
loading. Finite element analysis is first developed for isotropic plates, which involves the
aspect of transverse shear deformation. Theory is then extended to orthotropic laminates
and accordingly the computer program is also modified. Nodal displacements and

stresses are calculated and a thorough program validation is carried out.

Chapter 4 highlights the need for calculating the value of characteristic length in
composite laminates and a description of the Average stress criterion. A detailed

procedure of the manufacturing technique and testing of composite laminates is provided.
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Explanation of the micro structural study using optical microscope is provided and a

check for delamination in the laminate is made. Analysis results for [O/ 90]4, and
[O2 /£ 45]2: laminates subjected to tensile loads are presented. Testing is performed on 25

samples of notched and 25 samples of un-notched laminates considering both the

configurations. Finally the value of characteristic length a, is calculated.

Chapter 5 is completely devoted to simulation of the behaviour of controlled hole and
uncontrolled hole laminates using the stochastic finite element methodology. Both these
cases are analyzed considering [O/ 90]45 and [02 /x 45]2: laminate configurations.
Simulation is performed on laminates by subjecting the same to uniaxial, biaxial, shear
and bending loads. From the simulation process, probabilistic quantities of the stress
parameters that are of interest are found out. Useful conclusions are drawn from the

results, which reflect the behaviour of a laminate configuration.

Chapter 6 deals with the reliability of notched composite laminates. Probability
distributions for the stress parameters are determined using Gaussian distribution method
for both the laminate configurations. Reliability is calculated for laminates with
controlled and uncontrolled circular opening. Finally the variation of the reliability with

change in the applied load has been determined and presented.

The thesis culminates with chapter 7, providing the conclusion of present thesis work and

some recommendations for future work.
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Chapter 2

Stochastic Finite Element Analysis of Notched Plates

2.1 Introduction

Metals and fiber reinforced composite laminates find wide applications in mechanical,
aerospace, underwater and automotive structures. Cutouts of different shapes will be
made into the plates for practical reasons. In order to predict the structural behavior of
these laminates with some degree of assurance, a detailed study of the effects of hole
geometry, type of loading and laminate geometry on the stress distribution around the
hole is necessary. The present chapter deals with problems related to the determination of
stresses in plates weakened by an opening and deformed by forces applied to the middle
plane. Mechanical components are bound to have some irregularities such as holes,
grooves, and notches or other kinds of discontinuities. Any such discontinuity alters the
stress distribution and causes an increase of stresses in places near the opening. These
discontinuities are called stress raisers and the regions in which they occur are called

areas of stress concentration.

Study of stress concentration effect in anisotropic laminates is much more complicated
than that for isotropic plates, because of the directional anisotropy. As the closed form

solutions exist only for very few cases it becomes difficult to analyze the stress
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concentration in all practical situations. Thus in this chapter, stress concentration factors
for isotropic and anisotropic materials are found out using a numerical method which

results in an approximate solution.

A detailed description of the finite element formulation is provided in this chapter. A
study on the minimum number of elements to be used in the finite element mesh to
achieve results, that will be close enough to the exact solution, is made. A MATLAB®
code is developed which inherits the concept of finite element method to determine the
stress concentration in a notched laminate. In order to validate the correctness of the
program, few examples are considered and the results are compared with exact and

ANSYS® solutions.
2.2 Finite element formulation for isotropic plates

An eight-noded two-dimensional isoparametric element is employed to analyze the stress
concentration effect in the plates subjected to in-plane loadings. Elements of this type are
termed as serendipity elements and is shown in Figure 2.1. The interpolation or shape

functions for this element with local co-ordinates, ? and ? are [47]

1 )
Z(' +&E N1+ nn, \EE, +nn, —1) ; i=1,234

e i-r )+ T4 i-27) 5 i=5678

The node numbering and local co-ordinate system used for the present element are

represented in Figure 2.1.
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X
Figure 2.1 (a) Parent Element (b) Global Element

In the plane stress case a two-dimensional stress state exists in the x-y plane when the

stresses o_,7_ and r_ are equal to zero. The stresses along the direction of the

thickness (z-direction) can be ignored. Considering only the x and y directions, the

matrices of displacements and strains can be expressed as

{u} = {u} and {e}= £, (2.2)
v 3
},,r_v
respectively, in which
L (2.3)
oox oy Yy ox
The stresses and strains are related by
{o}=[EKe} 2.4)

in which the matrix representing the stresses is given by
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2.5)

For linear elastic plane-stress conditions, the elasticity matrix also known as the

constitutive matrix or the stress-strain matrix, relating the strains to the stresses is given

by
1 v 0

[E]=(1_EV2) v 1 0 (2.6)
0 0o (l;v)

in which £ and v are the Young’s modulus and the Poisson’s ratio respectively.

The element displacements can be expressed as
fuf = [V]{a} @7

in which the matrix of the shape functions is given by

@ |M 0 N, 0 .. .. N O
V] - : (2.8)
0O N 0 N, .. .. 0 N
and the displacement vector is given by
@ ={u, v, u, v, e ug  veh (2.9)

The details about the strain-displacement matrix and Jacobian matrix are presented in

Appendix-A.
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The element stiffness matrix can be written as

K(c’) - I[B(e)]T[EIB(e)]dV(C) (2.10)
V(f)

in which

dVy,, =h|J|dEdn 2.11)

where h is the thickness of the element.

The stiffness matrix coefficient linking nodes i and ; in any element (e) is given by

NGAUS NGAU.
K'= > Z[B}:’ [E9][BE] b 1| de dp (2.12)
r=| s=1

in which NGAUS represents the order of Gauss quadrature for numerical integration. The

elements of the stiffness matrix of each element can be numerically evaluated as

(e) NGAUS NGAUS ¢)
Ke'=Y Y 1lg,.n, ) W, (2.13)

q=1  p=l

in which

) (2.14)

NGAUS NGAUS [

T;}e') B(e)] [E(e)] [B(e)]

r=| 5= l

In the above, (?,,?,) represents a sampling position and W, and W, are the weighting
factors. If ‘g’ is the uniformly acting load along the edge of length L of an element (e),

the nodal loads can be expressed as
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Equivalent load at the left node 1

Equivalent load at the central node ; = ﬁ 4

Equivalent load at the right node 1

The flowchart for the computation of the element stiffness matrix, nodal loads and nodal

displacements is given in Figure 2.2. The main MATLAB® program is given in

Appendix-B.
1

1. Number of elements | | GETDAT+ ) { GETARR I
2. Number of nodes
3. Degrees of freedom GET INPUT

per node
4. Nodes per element 2)
5. Order of Gaussian

integration. ESTABLISH NODAL
6. Stress state CONNECTIVITY - ELCON

v

3)

Start loop over no.
of elements

4
Compute element stiffness
matrices and simultaneously
assemble them into the
global stiffness matrix

(3)

Repeat
over the
number of
elements

(6)

[N I

Material properties
Nodal connectivity
data

Global nodal co-
ordinates

Compute the global load vector (FORCE),
apply the boundary conditions,
solve for nodal displacements (BCSOLVE)
and compute the stresses (STREPS)

Figure 2.2

19

Flowchart for 2-D FEA and computation of displacements and stresses




2.2.1 Application 1: Isotropic quarter-plate analysis

For validating the program an isotropic plate with a hole diameter of 5.1 mm,
length of 75.8 mm, width of 18.95 mm and thickness of 2 mm is used. It is to be noted,
that the dimensions of the plate used in the present analysis, are based on the dimensions
employed in the composite laminate analysis. These dimensions are used in testing the
composite laminate under uniaxial tensile mode which has been discussed in chapter 4.
Again, the dimensions used for composite laminate testing is based on the previous work
[1]. Thus care has been taken to maintain a uniformity in dimension. Because the plate is

symmetric about its axes analysis is carried out for a quarter-plate that is shown in

Figure 2.3.
P
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0.04 .
omsk 0 18 | 27 |xla1
€
omb &8 1 17 | 26 |33]a
7
005k 16 S |32(39
) 15 A 31438 ’é‘
0.} B &
S| S
5 14 23 |0
0015} 37_
1 13 2 |x|36
om <
3 12 21 28|35
0.005 | <
2 11 | 0 ;
1 ) A
& ams 4 4 am ¥l
1 JIIL
W2 (m)

Figure 2.3  Finite element mesh, boundary conditions and loading for a quarter
isotropic plate
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A total of 53 elements are used to mesh the plate. Material properties assumed are as
follows: Young’s Modulus E is 210 GPa and Poisson’s ratio u is 0.3. Uniformly
distributed load of 1.5 x 10° N/m is applied on the top edge of the plate and appropriate
boundary conditions are imposed as depicted in Figure 2.3. Accordingly, in the ANSYS®
package an attempt has been made to generate approximately the same number of
elements, so that, the results of ANSYS® and MATLAB® program results can be

compared.

Tables 2.1 and 2.2 give the nodal displacements and stresses respectively near the hole
and at the boundary of the plate. It is clear that the MATLAB® program results are in

close comparison with the ANSYS® results.

GLOBAL NODE | MATLAB® RESULTS ANSYS® RESULTS
Boundary u (mm) v (mm) u (mm) v (mm)
131 0.0203 0 0.0232 0
15 0.0202 0.1346 0.0197 0.137
45 0.0101 0.1349 0.0117 0.137
82 0 0.0711 0 0.073
90 0 0.1376 0 0.137
Near the hole
162 0.0080 0 0.00921 0
166 0 0.0281 0 0.0221
157 0.0005 0.0305 0.00488 0.0235

Table 2.1

Table 2.2

Displacement values for an isotropic quarter-plate

GLOBAL NODE | MATLAB” RESULTS ANSYS® RESULTS
Near hole and sigma x sigma y sigma x sigma y

boundary (GPa) (GPa) (GPa) (GPa)

154 0 1.96 0 1.80

82 0.00852 0.743 0.00852 0.727

15 0.000224 0.749 0.000224 0.750

90 0.000224 0.749 0.000224 0.750

45 0.00371 0.750 0.00361 0.750

Stress values for an isotropic quarter-plate
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The above values are also compared with the closed form solution. As per the references
[48] and [49], taking any point at a distance ‘r’ from the centre of the hole, the normal

stress at that point from the exact theory is given as follows :

and in the polar co-ordinate form it can be expressed as,

0',,=2 l—a: +g l—a: 1—3a,h cos 260
2 re 2 r- r-

2 4
O =%(l +a—2]—%(l +3‘:—4Jc0529

r
(2.18)

where o is the applied stress, ‘a’ is the distance measured along x-axis and ‘r’ is the

radius of the hole. It is seen that the maximum stress occurs at = ’% . Thus
o, =o(l-2c0s26) =30 = 2.25x 10° N/m*

It is seen from the Table 2.1, that, the displacement values obtained from MATLAB® and
ANSYS® results have a close comparison. On comparing the stress values between
MATLAB® and ANSYS® results from Table 2.2, it is observed that there is a variation of
8.1% relative to MATLAB® results. Again on comparing the MATLAB® results with
exact results, there is a variation of 14.7%. This variation in the value can be reduced by

suitably increasing the number of elements in the finite element mesh.

22



2.2.2 Stress concentration effects in complete isotropic plate

As an exercise a complete plate analysis is also performed. Similar dimensions and
material properties are considered for the analysis. It can be observed from Tables 2.3
and 2.4, that, although the displacements are higher in the complete plate analysis when

compared to a quarter-plate results, the stresses generated near the hole edge remains the

same.
GLOBAL NODE | MATLAB® RESULTS | ANSYS® RESULTS
At the boundary u (mm) v (mm) u (mm) v (mm)
9 0.0231 0.136 0.0234 0.129
17 0.0198 0.273 0.0197 0.274
75 0 0.276 0 0.274
140 -0.0198 0.275 -0.0197 0.276
132 -0.0231 0.137 -0.0234 0.131
Near the hole
173 -0.0085 0.136 -0.0092 0.136
181 0 0.110 0 0.109
157 -0.0085 0.136 -0.0092 0.136
165 0 0.161 0 0.163
Table 2.3 Displacement values for a complete isotropic plate
GLOBAL MATLAB” ANSYS”®
NODE RESULTS RESULTS
At the sigma y sigma y
boundary (GPa) (GPa)
9 0.755 0.751
22 0.753 0.761
35 0.755 0.765
75 0.747 0.749
141 0.749 0.737
Near the hole
173 1.991 2.040
157 1.991 2.040
149 0.777 0.767
106 0.772 0.765
132 0.775 0.750
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Table 2.4 Stress values for a complete isotropic plate

Nodal displacements and stresses calculated using the finite element formulation are
compared with the closed form and ANSYS® solutions. From Table 2.3 it is clear that the
nodal displacement values are varying within 1% of the ANSYS® result. Figure 2.4
shows a comparison of nodal stress values between MATLAB® program result and

ANSYS® result.

Comparison of stress values y
- 23 204
(3 2 x
3 1.991 A B
§ 1.5 1
§ 1 0.755 0.761 0.751
a2 — — L g
% 0.5 - 0.765 0.753 0.751
] v T T
173 35 2 ]
Node number
L—Q—Ansys results —&— Matlab resuits

Figure 24  The distribution of o, along AB

It is clear from Figure 2.4 that o, is large near the hole edge along AB and decreases as

we approache the plate side. On noticing the stress value at the plate sides which is
0.747 GPa, it is almost equal to the applied stress on the plate which is 0.75 GPa. Also
from Table 2.4 and Figure 2.4, it can be observed that the stress concentration factor
calculated using the MATLAB® program result is varying between 1-2% of that of the

ANSYS® solution.
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23 Stress concentration effects in composite laminate

The stress analysis of an infinite-width anisotropic laminate containing a central cutout is
derived using a complex variable method [3] as given in the following. Closed-form
solutions are obtained in the case of a laminate containing an elliptical or circular opening
and subjected to in-plane loading. The derivation is pursued on the basis of a
superposition method. The present section follows and summarizes the analysis presented

in reference [3]. The total laminate stresses along 1-2 axes can be expressed as,

c, =0, +0; i=126 (2.19)
where

o, is the component as a result of the circular opening stress field

o

o, is the component as a resuit of the uniform stress field

i

The details of the derivation are given in an earlier work [50]. For clarity the procedure is

presented in Appendix-C.

The total stress and displacement fields are the summation of circular opening stress field

and uniform stress field. The uniform stress field is

o

ol =0, cos’ @
o; =0,sin’ @ (2.20)
T, =0, Sin@cosy

where o, is the applied stress and the total stress and displacement fields are
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o, =0, +0; i=126
u, =u; +u; i=12 (2.21)

where v, =uand u, =v

The exact solution of the stress distribution in an infinite orthotropic composite laminate
with an elliptic or circular opening [3] can also be found out using the following

expression:

r —

—p,(1—ip,A)
LY —l—uf?f(yﬂlyz —l—uf?»z)

Hy —H, pl(l—l'},lzl)

+

N — )

iy (2.22)

. o i b
where o (x,0) is the normal stress distribution along AB as shown in Figure 2.4. A =— ;
: a

X = . . P . . .y . .
Y=—; o, is the stress applied at infinity; ‘a’ is the major axis dimension; ‘b’ is the
a

minor axis dimension. For a circular opening a = b. Also g, and u, in equation (2.22)

are solutions of the characteristic equation:
ayn ' =2a,04° +(2a,, +ay )y’ ~2a,u+a, =0 (2.23)

and
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[ E
K, =< E, -2v_+2 E, + |—==-2v_ -2 E,
21\ G, ' E, G, E,
5 (2.24)
LA I N P PP Ny L2
S2 w y Go E'VJ

where E ,E,,G . and v, are the effective laminate normal moduli, shear modulus and

Poisson’s ratio respectively. x and y are parallel and transverse to the loading direction.

2.3.1 Finite-width correction factor (FWC) for composite laminates

Finite-width correction factor is a scale factor which is applied to multiply the notched
infinite-plate solution to obtain the solution for the notched finite plate. According to the
definition of the FWC factor stated above, and an assumption that the normal stress
profile for a finite plate is identical to that for an infinite plate except for an FWC factor,

the following relation is obtained:

X1 67(x0)=0,(x0) (2.25)
K: |

K, . i : . .
where —L is the finite width correction factor; K, denotes the stress concentration
T

factor at point A (in Figure 2.4) along x-axis for a finite-width plate and K; for an

infinite-width plate. The parameter o, is the normal stress acting along y-axis for a
finite-width plate and o is the normal stress acting along y-axis for an infinite-width

plate.
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For orthotropic laminates containing a central circular hole, the derivation of the FWC
factor is based on an approximate stress analysis. The solution for the inverse of the FWC

factor is given by [1]:

- , 2
K7 3(1-2a/w) +1[2_a MJ(K; _3{1_[_25 M) J (2.26)

K: 2+(1-2a/w) 2

where M is the Maginification factor, defined as:

\/1 _g[m - 1:' -1
) 2+(1-2a/w)
M= (2.27)

2(2a/w)*

Also the SCF of an infinite orthotropic plate, K, is defined by:

2 A A'n —'AZ

K7 =l+\/—( Ay Ay — A, +—MJ (2.28)
A66 2A66

where 4;,i,j=1,2,6 denote the effective laminate stiffness values. Axes 1 and 2 are

parallel and transverse to the loading direction respectively.

2.3.2 Equivalent elasticity matrix for composite laminates [S8]

The laminate constitutive equation for a composite laminate is given by:
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[N, [ 4, A, Ay B, B, By rgf ‘
N, Ay Ay B,, By || &’
4 No [ [ T Ay symm Bes 4},2" r (2.29)
M, B, B, By : Dy Dy, Dyllk,
M, By, By Dy, Dy || &,
M| |symm By symm Dy || k. |

In a concise form we can represent the above equation as,

{A]: } =[; ﬂ{i} 2.30)

where
n _k

A; = Qij(h,‘ —hy_,) (Axial stiffness) (2.31)
k=1
&t

B, = > 0, (h,: ——h,f_l) (Axial-bending coupling stiffness) (2.32)
“ k=l
I &

D, =3 0, (h? -k}, ) (Bending stiffness) (2.33)

k=1

with i,j = x, y, s = 1,2,6. Further Q.j" denotes transformed reduced stiffness coefficient.
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Figure2.5  Multilayer laminate with co-ordinate notation for individual plies

In the case of a multilayer laminate the total force and moment resultants are obtained by
summing the contributions from all layers. Thus for the laminate with n plies as shown in

Figure 2.5, the force and moment resultants can be written as

N.l’ o‘(
n 5
Nop=2" o, ¢ d (2.34)
N, e,
: )k
and
M.( O-\'
n he :
M, =" o, zd (2.35)
M' rarpge S 1"
o w )

2.3.3 Equivalent elastic constants [58]

In-plane forces for symmetric laminates, for which the axial-bending coupling stiffness

B, are zero, can be written as

N, Ay A4, Al e
N, p=|A4, Ap A&l (2.36)
N AIG A26 A66 }’(r)\

xy

Inversion of the equation (2.36) gives

0
&, a, a, a,l||N,

0

E, (= Gy Gy {1V, (2.37)
0

Vo A Gy, Qg |IN
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in which [a] is the extensional laminate compliance matrix, which is the inverse of the

corresponding stiffness matrix, [4], as given below:

[a]=[A]" (2.38)

The average laminate stresses can be defined as

o, =—* o,=——, and r_ = p (2.39)

N N, N,
T h h

in which 4 1s the laminate thickness.

So equation (2.37) can be rewritten in terms of average laminate stresses as

fo B
P
gl ha,, ha, ha, N
) v=|ha, ha, hay 4—hi=oi, \ (2.40)
Vo ha,, ha, hag N i
3 =Z'“
[ A ")

By superposition of the three loadings o, o,, and r the following strain-stress

relation can be obtained in terms of engineering constants.
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The equivalent elasticity matrix [E] for a composite laminate can be calculated by

inverting equation (2.37) as

O hay,, ha, ha, " &

10, t=|hay, hay hay| {& (2.42)
i ha,, ha,, hag | |y,

Tn.J

Now comparing equation (2.42) with equation (2.4) for calculating the elasticity matrix

[E], one gets

ha,, ha,, ha,
[E]=|ha,, ha,, ha, (2.43)
ha,, ha, hag

It is to be noted that, the elasticity matrix for the composite laminate thus obtained will be

incorporated in the finite element formulation. Accordingly the equation (2.43) will be

used in equation (2.12) for the finite element analysis.

2.4  Stochastic finite element analysis of composite laminates



Most modern mechanical systems possess a high degree of structural complexity.
Therefore, when their behavior is to be predicted under various loading and
environmental conditions, advanced analytical and numerical techniques are required. In
the case of composite laminates, significant randomness in their material properties are
present due to the variations in fiber volume fraction, void content, fiber orientation
angles in various plies, thickness of the lamina, etc. introduced during the manufacturing
processes. As a result, tests on a single material specimen provide a specific value for
each material parameter and mechanical property. However, when a number of
specimens are tested, randomly distributed values are obtained for the same material
property. Therefore, the analysis of laminates has to be performed based on a
probabilistic approach. When finite element analysis is performed based on a stochastic
approach such that a stochastic description can be provided for both the material
parameters and the response of the laminates, the resulting FEA is termed as Stochastic
Finite Element Analysis (SFEA). The remainder of this chapter is devoted to the stress

analysis of notched composite laminates based on a stochastic approach.

2.4.1 Stochastic field modeling of material parameters

The material properties are modeled in terms of two-dimensional stochastic processes
that have zero mean. To this end, the procedure employed in the earlier works [51,52] is

used here. Further, for the purpose of clarity, the procedure is presented in detail.

Material properties of NCT-301 as obtained from laboratory experiments are presented in
Table 2.5. They are used to describe the stochastic processes that correspond to the

Young’s moduli, Poisson’s ratio and shear modulus. Sample realizations are obtained at
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each Gauss point in the finite element mesh. Using the generated sample realizations of
material properties at each Gauss point, the stochastic elasticity matrix, [E], is calculated
for each Gauss point. The stochastic elasticity matrix thus generated is incorporated in the
determination of the element stiffness matrix. The flow chart for computing the stochastic

fields of the elastic constants is given in Figure 2.6.

Ave. exp. shear

p eter E\(GPa) | E,(GPa)| v,, v, |Gy, (GPa) strength (GPa)
Mean value 113.9 7.985 |0.020| 0.29 3.130 0.0333
Standard dev. | 0.019 0.041 | 0.086]0.031 | 0.040 0.0025

Table 2.5 Composite material properties [51]

Variations of the material properties such as the Young’s modulus, Poisson’s ratio and
shear modulus are brought about using a fluctuating component a(X) associated with a
material property, which has a zero mean. For instance, the stochastic field of the
Young’s modulus in the fiber direction (£)) is expressed as given in equation (2.68) and a

similar procedure is applicable to £, G, vi2, va1, ply orientation angle and ply thickness.

E =El+a(X)] ; Efa(x)]=0 (2.44)
The auto-correlation function is given by [53]

R, (&)= Ela(X)a(x +¢&)] (2.45)
where X = [x, y]T indicates the position vector and & = [5_‘,5}, ]T represents the separation

vector between two points X and (X +&). It is a fact that each material property is

considered to vary at each Gauss point. Thus, if n represents the number of finite
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elements present in the structure, and m represents the order of Gauss quadrature, then
there are N (equal to n x m) material property values associated with the structure.
Consider only the fluctuating component of the homogeneous stochastic field, which is
used to model the material property variations around the expected value. These N values

a;,=a(X;) (i=123...N) are correlated random variables with zero mean. Also Xi

corresponds to the location of each Gauss point. Their correlation characteristics can be
specified in terms of the covariance matrix C,, of order N x N, whose i/ component is

given by

¢, =Covlaa,|=Elaa,|=R, ij=1..N (2.46)

in which &, = (X =X ,) is the separation distance between the Gauss points / and j. Now

a vector {a} = [a1 a, a, .. a, ]T can be generated by
la} =[L|{Z} (2.47)
in which {Z}=[Zl Z, Z, .. Z N]T is a vector consisting of N independent

Gaussian random variables with zero mean and unit standard deviation, and [L] is a lower
triangular matrix obtained by the Cholesky decomposition of the covariance matrix [Cyq].

Thus,

[LIL] =[C,,] (2.48)

Once the Cholesky decomposition is accomplished, different sample vectors of {a} are
easily obtained by generating different samples for the Gaussian random vectors {Z}. The

correlation properties of the stochastic field representing the fluctuating components of
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material properties are expressed using the Markov correlation model, also known as the
First-order autoregressive model. The choice of this model in this work is due to its wide

use in the literature [54].
2.4.2 Markov model

The first- order autoregressive correlation model or the Markov model is given by

d

R,(&)=0] exv[— (@H (2.49)

in which o, is the standard deviation of the stochastic field a(X) and further 4 is a
parameter called the correlation length, which is defined such that the correlation is
negligible when d is large. The stochastic field a(X ) represents the deviatoric
components of the material property with autocorrelation function as given in equation

(2.49). The stochastic field a(X') for each Gauss point is represented by the value of ag of

a(X) at the Gauss point Xg of the structure i.e., a, = a(X . )

The Young’s modulus along the fiber direction can now be assumed to have a

distribution as given by the vector {a} and can be represented by

E,=E,(+a,) (2.50)

g

where E,; is the value of the Young’s modulus in the fiber direction at a Gauss point.
Moreover, E\,, is the mean value of the Young’s modulus in the fiber direction and is

taken from the Table 2.5. Similarly, the other material properties are represented by

36



Young’s modulus in the transverse direction, E,, = E,, (l +b, ) (2.51)
1-2 directional Poisson’s ratio, v,,, =v,,, (1 +cg) (2.52)

(1+d,) (2.53)

12m

Shear modulus, G,,, =G

in which E,, is the mean value of the Young’s modulus in the transverse direction and
further, v,,,, and G,,, are the mean values of the 1-2 directional Poisson’s ratio and the

shear modulus respectively.

It should be noted here that the standard deviations of a,, b, ¢, and d, represents the
coefficients of variation of the material properties Eq, Ez, ?12¢ and Gz Also the
variation of the ply orientation angle, ?, and the ply thickness 7, are evaluated in a

manner similar to equations (2.50 — 2.53) as

0, =0,(1+e,) (2.54)

g

t, =t {1+ 1,) (2.55)

in which ?, and ¢, are the mean values of the ply orientation angle and ply thickness
respectively. The assumption of Gaussian distribution implies the possibility of
generating negative values for the material properties. In order to avoid this difficulty, the
values of the random variable, ag, in the case of Monte-Carlo simulation are confined to

the range

-l+e<a,<l-¢ (2.56)

where e is a very small perturbation parameter.
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2.43 Programming the stochastic finite element analysis

Using the test data of the material properties provided in Table 2.5, the stochastic
processes that correspond to the Young’s moduli, Poisson’s ratio and shear modulus are
determined according to equations (2.51 - 2.53) and further, sample realizations at each
Gauss point in the finite element mesh are obtained. A similar procedure applies to
@ and ¢. Using the generated sample realizations of material properties at each Gauss
point the stochastic elasticity matrix, [E], is calculated for each Gauss point. The
stochastic elasticity matrix thus generated is incorporated into the equation (2.12) for the
element stiffness matrix. The flow chart for computing the stochastic fields of the elastic

constants is given below in Figure 2.6.
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Figure 2.6  Flow chart used for the calculation of stochastic material properties based
on stochastic field modeling, and stiffness matrix

2.4.3.1 Application 1

If we consider the irregularity in hole shape and offset of hole from the central
coordinates, it is not possible to exploit the symmetry of a plate by modeling only half or

quarter portion of the plate for the analysis, since the stress distribution will not be
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uniform over the entire laminate. Thus it calls for the analysis of a complete plate. A
laminate with [i 45]“ configuration having a width of 37.9 mm, length of 151.6 mm and
a hole diameter of 5.1 mm at the center of the laminate is considered for the analysis.
Ply thickness is assumed to be 0.125 mm. The material properties are taken from
Table 2.5. A uniformly distributed load of 0.8 x 10° N/m is applied over an edge of the
plate acting along the Y-axis. Choice of the load value is based on the experimental

results obtained for [0,/ 45]2: laminate. Since we lack information regarding the

ultimate load a [+45],, laminate might take, a factor of safety on the ultimate load of
[0, 7+ 45],, laminate is considered and thus a 0.8 x 10° N/m uniformly distributed load

value is imposed on the lamiante. Finite element mesh used for the MATLAB® program
is shown in Figure 2.9. Standard commercial ANSYS® package is used for comparing the
results obatined from MATLAB® program. In the ANSYS® package, a similar model
with nearly the same number of elements in the finite element mesh is generated using
SOLID46 element and analyzed. SOLID46 is a layered version of the 8-node structural
solid designed to model layered thick shells or solids. A set of sample nodal
displacements realized using the stochastic approach is listed in Table 2.6. Corresponding
nodal stress values developed near the boundary and hole edge of the plate based on

MATLAB®, ANSYS® and exact solutions are listed in Table 2.7. Stress concentration

factor for [i 45]4, ply configuration is shown in Figure 2.8c. Also Figure 2.8a represents

a displacement value comparison made at random nodes and Figure 2.8b shows the stress

distribution along x-axis in the region near hole edge.
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Figure 2.7 Finite element mesh, boundary conditions and loading for a complete
laminate

GLOBAL NODE | MATLAB® RESULTS | ANSYS® RESULTS
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At the Boundary u (mm) v (mm) u (mm) v (mm)

9 0.0449 0.240 0.0445 0.231
17 -0.0435 0.507 -0.0430 0.482
75 -0.0031 0.509 -0.0033 0.483
140 -0.0219 0.499 -0.0564 0.485
132 -0.0421 0.238 -0.0449 0.234

Near the hole edge along AB

173 0.0198 0.236 0.0041 0.236
181 -0.0098 0.222 -0.0019 0.216
157 -0.0014 0.234 -0.0039 0.234
165 -0.0145 0.255 -0.0004 0.250

Table 2.6 Displacement values obtained using 300 simulations

Comparison of displacement values for [+-45]4s
laminate atrandom nodes

o
o

Displacement
'v' (mm)

© oo o
N W s

O«
o o
.

9 17 75 140 132 173 181 157 165
Node number
—e— Matlab —8— Ansys

Figure 2.8-a The displacement values around the boundary and hole region

GLOBAL NODE MATLAB® ANSYS”® EXACT
Near hole edge along sigma y sigma y sigmay

AB and (GPa) (GPa) (GPa)

boundary

173 0.778 0.784 0.761

157 0.775° 0.779 0.761

149 0.478 0.488 0.460

106 0.447 0.451 0.418

132 0.398 0.399 0.403

Table 2.7 Sample values of stress obtained in the simulation

* Mean value of maximum stress obtained using 300 simulations
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Figure 2.8-b The values of stress o, around the hole region

Stress cancentration factar for [i 45]‘, laminate
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Figure.2.8¢ Ratio of values of o corresponding to notched and unnotched laminates

Simulation is carried out over 300 laminates and the results are shown in Tables 2.6 and
2.7 and Figures 2.8a and 2.8b. Data corresponding to the maximum stress value of each
and every laminate is acquired and further the mean, standard deviation and coefficent of
variation values are calculated. Accordingly the mean value of maximum stress at node
157 1s 0.775 GPa and the corresponding standard deviation value is 0.0229 GPa. The
corresponding coefficient of variation is 0.02954. It can be seen that the stress value for

node number 173 in Table 2.7 is almost the same as that for node 157 as this node is
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placed symmetric to the node 157 which in tumn is exactly placed on the hole edge. On
comparing the results from Tables 2.6 and 2.7 and Figures 2.8a and 2.8b, the present

results are in good correlation with the closed form and ANSYS® results.

24.3.2 Application 2

As another example [55] we consider a laminate of configuration [O /£ 45L made of a

graphite-epoxy material having the material properties as follows:

E, =141GPa;FE, =9.44GPa;G,, =5.18GPa;v, =031
The boundary conditions and a uniformly distributed load of 1.5 x 10° N/m as expressed
in section 2.4.3.1 for application 1 are borrowed for the current analysis. Table 2.8 gives
details about the stress values obtained at 300th simulation. For node number 157 the
mean value of maximum stress obtained using 300 simulations is shown in the table with
an asterix. It is clear from Figure 2.9a, that the stress values obtained from MATLAB®

nearly matches with exact and reference solutions. Stress concentration factor for

[0 /x 45L ply configuration is shown in Figure 2.9b.

GLOBAL NODE | MATLAB” EXACT REF. [55]
Near Hole and sigma y sigmay sigma y
Boundary (GPa) (GPa) (GPa)
157 562 5.78 5.94
149 2.36 2.30 2.33
106 2.18 2.09 2.11
119 2.07 2.037 2.06
132 2.02 2.019 2.01

Table 2.8

45

Sample values of stress obtained in the simulation
* Mean value of maximum stress obtained using 300 simulation
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Figure 2.9-a The values of stress o, around the hole region
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Figure 2.9-b  Ratio of values of o, corresponding to notched and unnotched laminates

Results are compared with exact and reference results [55] and found to have a good
match. Mean, standard deviation and coefficent of variation values are calculated for the
maximum stress value based on the data collected over 300 simulations. Accordingly the
mean value of maximum stress is 5.628 GPa as denoted for node 157 and the standard

deviation value is 0.2043 GPa. Coefficient of variation attained for the laminate is
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0.0363. Comparing the stress concentration factor values from Figures 2.8c and 2.9b, it
can be observed that laminate [i 45]4, has a lower SCF value as opposed to [O I+ 45L

laminate. Considering the coefficient of variation value for the laminates, [O/i 45L

laminate exhibits more variation when compared with [+ 45, laminate.

25 Conclusions and discussions

A detailed analysis of stress concentration effects in isotropic plates under plane stress
condition subjected to uniaxial tensile load is conducted using a MATLAB® program.
Utilizing the symmetry of the plate, a quarter plate analysis is carried out. Results are
presented in the Tables 2.1 and 2.2 and the finite element mesh adopted is shown in

Figure 2.3. A complete plate analysis is also performed.

Finite element formulation for composite laminates is given in sections 2.3 and 2.4 and is
implemented. Necessary modifications are made in the MATLAB® program written for
isotropic case. Normal stress distribution around the circumference of a hole in an infinite
orthotropic sheet under the in-plane loading is presented. The output includes the stress

distribution along the axis perpendicular to the loading direction.

The fundamental solution is derived from the consideration of resultant force equilibrium
in the loading condition. The present approach assumes that the normal stress, o (x,0)
across the net section of a finite-width plate is proportional to that of an infinite-width
plate by a factor called Finite Width Correction factor (FWC). Thus FWC is used to
multiply the infinite-plate solution to obtain the stress distribution of a finite-plate. The

basic theory is improved significantly by multiplying the opening-to-width ratio, 2a/W,
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by a magnification factor ‘M’. Stochastic variations in material properties over the
laminate are established using Markov model and sample realizations of the material
properties at every Gauss point are obtained. Now the entire analysis is performed for a
number of plates and the mean and standard deviation values of maximum stress near the

hole edge are computed.

Application problems involving laminates of différent ply configurations are analyzed

and stress concentration factor for each case is calculated.

It is to be noted that in the case of composites, SCF is not only the parameter of
consideration for prediction of failure of notched laminates. Thus, the measure of strength
for a composite laminate with a circular cutout needs a more complete description of the

stresses near the hole. This is discussed in detail in chapters 4 and 5.
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Chapter 3

Stochastic Finite Element Analysis of Plate Bending

3.1 Introduction

[sotropic and composite materials find wide applications in transportation and other
construction industries because of their superior properties. Generally plates of large size
will be used in these applications and holes will be made into these plates for practical
reasons. Often, the stress concentration is a serious concern to the designer and the stress
distribution around holes must be known to predict the failure strength. Structurally
efficient designs of these structures have to be developed based on a thorough
understanding of the response to fundamental loading conditions. Efforts have been made
to analyze the lateral deformations of isotropic and symmetric composite laminates
subjected to different types of uniformly distributed static loadings based on Mindlin

theory.
Of all the shear deformation theories available, first-order shear deformation theory

(FSDT) is the one most commonly used in modeling of thick plates. When normality

assumption is not used i.e. plane sections remain plane but not necessarily normal to the
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longitudinal axis after deformation, then transverse shear strain is not zero. Therefore
rotation of a transverse normal plane about the y-axis is not equal to e This theory is
X

commonly known as “Mindlin plate theory or First-order shear deformation theory”.

In the thin plate problem transverse shear deformation is neglected, and deformation is
completely described by a function w=w(x,y), where lateral displacement w and
coordinate z are perpendicular to the plate [55]. In particular, the assumption that u and
v displacements are linear functions of the :z co-ordinate proves to be completely
inadequate for predicting the gross laminate response. Thus a higher order theory was
developed based on the work given in reference [57] and the result is the First-order shear
deformation theory (FSDT). The FSDT considers the aspect of transverse shear
deformation in the laminate and thus can be implemented when thick components are
encountered. For composites having a high ratio of E,, /G, and a width to thickness
ratio less than 10, radical departure from classical or Kirchhoff’s theory has been
demonstrated [58]. A pictorial description, illustrated in Figures 3.1 and 3.2 highlights the

differences between Kirchhoff’s theory and First-order shear deformation theory.

zZw w

‘[ o xu
h,
2

Figure 3.1  Thin plate theory (Kirchhoff Plate Theory)
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Figure 3.2  Mindlin Plate Theory

3.2 Formulation of plate bending analysis for isotropic plates

The formulation used in the present work has been described in reference [47] and for a

better understanding details are given in the following.

From the Figure 3.2, displacements of any point ‘P’ in the plate can be described as,

u=u,—z0 (x,y),v=yv, -20.(x, ), w=w,(x,y) (3.1)

where

(x2,v, w) are the displacements of a point ‘P*,8, and , are the rotations of the transverse

normal about the “y’ and ‘x’ axes respectively. It is to be noted that the displacements ‘u’
and ‘v’ that result from bending due to the transverse load have been considered to be
negligible in the case of isotropic plates (that are not subjected to any in-plane loadings)
and thus will not participate in the formulations to come. The sign convention, geometry,

moment and shear force resultants for a plate element are given in the Figure 3.3.
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Figure 3.3  Moment and shear force resultants for a homogeneous linearly elastic
plate element

In the following analysis a three-degree of freedom (d.o.f) system is considered which
accounts for each and every node, one translation, ‘ w’ in the direction of z-axis and two

rotations € and 6, about ‘y’ and ‘x’ axes respectively as shown in Figure 3.4. If
represented as rotation vectors by the right-hand rule, 6, and €, point in the -y and +x

directions, respectively. The program has the capability to take care of more general
shapes as an isoparametric element is used for the analysis. In order to evaluate an
integral numerically, the concept of three-point Gauss quadrature is utilized.

y

T
i

(O —>"
g

w; »r

Figure 3.4  Co-ordinate system, deflection and rotations about the axes

51



3.2.1 Bending stiffness matrix for isotropic material

Stresses produce the following bending moments and transverse shear forces as shown in

Figure 3.3:
hi2 hi2 hi2

M,= [ozax M= [ozd M = [r,zdx (32)
-hi2 ~hi2 ~h:2
hi2 hi2

0, = |r.d= 0,= [r.d (3.3)
~ht2 -h:2

The moments are expressed in terms of moment per unit length and shear forces as forces

per unit length.

Now, let x and y be the principal directions of the material. Stress o, is considered
negligible in comparison with 0,0 and . The strain-displacement relations of

Mindlin plate theory can be expressed as follows,

29 y_rv = _z(gt.v + 0;'..()

XX

=20, y.=w, -8, (34)

v .y

u=-z0. ¢

X
v=-z0, ¢

y:“ = w..( —0.!

Accordingly the stress-strain relation for isotropic materials can be expressed as,
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(a1 [EE EE 0 o0 o0 -( —z6.x )
o,| |[EEE, 0 0o of -:z6.
rxy =10 0 ny 0 0 - :(0: ¥ +aj.x) (3-5)
T, 0 0 0 G, 0 -6 +w,s
(7= [0 0 O 0 G, —-G+w: )
where
E=£-E_-_F sqc-—£_ (36)
' v 1-v° 2(1+v)

where F is the elastic modulus and v is the Poisson’s ratio.

The moment-curvature relation is obtained by substitution of equation (3.4) into equation

(3.5) and the result into equations (3.2) and (3.3):

{M}=-[ Dm i{x} (3.7

Accordingly the [ Dy ] matrix can be derived as follows:

M, w2 | O
M, = I o, |zdz (3.8)
M_ | ",

Substitution of the stress terms from equation (3.5) into equation (3.8) we have

M,| ,,|Ex E 0 -z0, .
M,|=[|E E. 0 -20,, |-z (3.9)
My,| ™0 o G |-:20..+86,.)
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0, hi2 G. 0|[6,-w,
[Q,] ) _hj.,[ 0 GJ[Q - WJJ‘Q (3.10)

The shear stiffness terms G_h and G_/ in equation (3.10) are replaced by G.h/12
and G_h/1.2 in order to permit the parabolic distributions of 7, and r_, to be replaced
by uniform distributions. Thus the factor (1/1.2) attached with G.h and G_h is termed

as shear correction factor. Assembly of the equations (3.9) and (3.10) yields

M.l [ 0 0 | 6. )
M, [D;] 0 0 8.y
M, |=- 0 0 Gv+6. « (3.11)
0, 0 0 0 G_.h/12 0 8 -w,,
ol o 0o 0 o G.nz| B-w.)
~ I —
[D.w ] {’(}
where {K} is the curvature matrix. For isotropic material [D,‘ ] matrix can be represented
as:
D vD 0
[D]=|w D 0 (3.12)
0 0 (- v)?
where
Eh’

D= . 3.13
121—v?) -13)
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3.2.2 Stiffness matrix for isotropic plate

The starting point for formulating an element stiffness matrix is an expression for strain

energy U. With ‘A’ denoting the area of the plate at the mid-surface,

l hi2 ;
U=2 j () [E){€)dzdA (3.14)

-h/2

where {¢}" =[¢, ¢ Yo Y. 7], and the individual strains are stated in terms of

.V

displacements. Integration through the thickness yields
1

U =;J‘{K}T[DM]{K}dA (3.15)
~ A4

where [ D,, ] and {x} are the bending stiffness and curvature matrices. Since all the d.o.f

are present at every node, the same shape functions N; are used to interpolate w, 6, and

0y that is,
wl M 0 0w
6.1=210 N 0|6
.| 7|0 0 N6
(3.16)
wy = [N {d}
where N is the number of nodes per element and {d}= [w,,H.‘,,G‘,, ........ wy,0..0., 1.

Curvature matrix {« } is stated as:
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[ G ]
a.y
{K}=|6.v+6.«|=[0]{u} (3.17)
@ — W,y
| 6~ W.x J
where
[ o dox 0 ]
0 0 d/oy
[el=] O d/dy dfox (3.18)
-dloy 0 1
| -d/ox 1 0 |
Thus
{x} =[B]{d} (3.19)
and
0 N, O 0 Ny, 0]
0 0 N, 0 0 N,
[B]=[0][N]=] O N\, N, 0 Ny, N, (3:20)
- Nl.y 0 N, Ns.y 0 Ny
L Nl..t NI 0 _NS..r N8 0 J
Finally the strain energy and the elemental stiffness matrix are obtained:
U= d) k) (321)
(3.22)

[k]=[(B1"[D, ][BldA
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It can be regarded that the stiffness matrix of a Mindlin plate element is composed of a

bending stiffness term [k,] and a transverse shear stiffness term [k, ]. Thus equation

(3.20) can be split into two parts as:
[B]1=[B,]1+[B,] (3.23)

[B,,] is associated with in-plane strains ¢_,£ and y_ and is obtained by setting rows 4
and 5 of [B] to zero. [B,] is associated with transverse shear strains 7-and y_, and is

obtained by setting rows 1,2 and 3 of [B] to zero. The shape functions N; are expressed in

terms of isoparametric co-ordinates & and 7.

The elemental stiffness matrix would be

(k1= [(8,1 (D, 18, )44+ [(8,1 [D,, 1[8,1dA (3.24)
‘ Wl - TS I
where dA=Jd&dn (3.25)

and J is the Jacobian determinant.

3.2.3 Nodal force calculation

It has been shown in reference [47] that the application of a load on the laminate will not
generate equal amount of load on each and every node on the plate. In that case all
application problems involving different kinds of loading, have to be dealt with

separately and nodal forces have to be calculated. When a distributed lateral load or a
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moment load is acting on an element, then the respective element nodal loads can be

calculated as follows:

fo=[Ngda  fo =[N .Mdy [, =[N M_dr (3.26)
4

where i = 1,2...8, ‘q’ is the intensity of uniformly distributed load, M, and M , are

prescribed boundary values of moments imposed over the plate. As an illustration, forces
exerted at the nodes due to the application of uniformly distributed load is given in

equations (3.27) and (3.28),

Sra34 ==(1/3)q}J]| (3.27)
and
Siors =(4/3)g)J] (3.28)

a7
4 7| 3
M
&
) > L
8 5
15 2
fart

Figure 3.5 Eight-node plane isoparametric element in the local co-ordinate system

Finally the minimum number of simulations in the stochastic analysis is determined

considering each of the stress components. The procedure is based on the flow-chart
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presented in Figure 2.6. Application problems involving the calculation of mean and

standard deviation values of the stress components are given in the following.

3.2.4 Program validation for isotropic case

To check the correctness of the program, an example is considered which involves the
analysis of an isotropic square plate of length (a) 0.12m and thickness (h) 0.012m
subjected to simply supported condition [59]. When a plate with a ratio of length to

thickness a/h = 10 is considered, then the plate can be considered to be a thick plate. The
bending stiffness matrix [ D,, ] for an isotropic plate is obtained using equation (3.11) in

section 3.1.1.

Closed form solution

Navier solution for simply supported rectangular plates [60] subjected to uniformly
distributed load is considered for comparing the results obtained from FEM solution. The
final form of the equation (3.29) shown below is achieved using a rapidly converging
series, which gives a reasonably approximate result by taking only the first term of the

series. Thus the maximum deflection at the centre of the plate, would be:

4 4 4
= 2 200041672 (3.29)
T D
where
D =ER /12(1-v?) (3.30)
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Representing it in the non-dimensional form:
w=w, Eh’x10%/a'q (3.31)

Assuming (Poisson’s ratio) 'v’as 0.3, (Young’s Modulus) ‘E’ as 200GPa, (shear
modulus) ‘G’ as 80GPa and (intensity of distributed load) ‘q’ as 18.5MPa, the
maximum displacement of the plate, non-dimensional form of the maximum

displacement w obtained from closed form and FEM solutions are tabulated in Table 3.1

as follows.
Reference Meanw_, (m) Mean w
Navier solution -0.000492 -4.432
Matlab (FEM) -0.000461 -4.153
Ref. [59] -0.000498 -4.770
Table 3.1 Mean values of maximum displacement and non-dimensional maximum

displacement

It has been shown in reference [59] that the 9-node rectangular element gives virtually the
same results as the exact solution considering full (3 x 3 Gauss rule) integration. As seen
from Table 3.1, maximum deflection obtained from MATLAB® program is varying by
6.3% from the Navier solution. This variation in the value can be attributed to the fact
that an 8-noded isoparametric element produces less accurate results as compared to a
9-noded rectangular element. At the same time the thickness of the plate and the finite

element mesh employed will also contribute to the variation in the result.

3.3 Formulation of plate bending analysis for composite laminates

The present formulation uses a five-degrees of freedom (d.o.f.) system at each and every

node, with displacements in ‘u« * and * v 'directions, one translation ¢ w’ in the direction of
p
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z-axis and two rotations &, and &, about ‘y’ and ‘x’ axes respectively. Sign conventions

similar to those expressed in section 3.1.1 are retained.

The displacement field of the laminate in the first order shear deformation theory, is
given by,

u(x,y,z)=u, —z6 _(x,y)

v(x,y,z)=v, — z6,(x,y) (3.32)
w(x, y,2) = w,(x,y)

Linear strain-displacement relation is given by,

Ou Ov ov Ou ow ov ow Ou
E =6, = Vo=t Ve St Ve =+ (3.33)

ox oy 'Y ox oy T oy oz ox 0Oz
Substituting equation (3.32) in equation (3.33) we have;

o6
£, =i(uo —:Q):—al—l"——z—":a;’ -z0, =€l -zk, (3.34)
S Ox ' ox ox - ' :

Similarly we have,
£, =¢€,-20, =¢) -zKk, (3.35)
Vo =Ve—20,,+0, )=yl —zx, (3.36)
Ve =W, —0, (3.37)
Ve = W0, (3.38)

The ply stiffness matrix coupling the stress and strain matrices can be expressed as,
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-0'.:‘ Fén Qz Q; 0 0 -(81 )
o,| [@n On Oy 0 0 |s,
T |=|0y On O3 0 0|7, (3.39)
Tl |0 0 0 O, Osl7.
_rx_ L 0 0 0 §54 QSJ\}IRJ

where Q.l. are the transformed reduced stiffness coefficients of the ply.

3.3.1 Bending stiffness matrix for composite laminate

Proceeding in a similar way as described in section 3.1.1, stiffness matrix [D,, ] for the
composite laminate can also be deduced. The force and moment resultants N, and M,

are defined as

hi2
(VoM,)= [o,(La)d= (i=126) (3.40)

-h:2

The resultants (N,,M ,.,Q,,) can be expressed in terms of the strain components as

follows:

N, =A,e]+Bk, (i,j=12,6) (3.41)
M, =B,e’+Dk, (i,j=126) (3.42)
Q. =4,¢; (/=45 (3.43)
0, = 4;,€] (j=4)5) (3.44)
where

o

o o o . _ _
gla =€.:’ & TE, & =}/“.,€: =},_‘:’€; =y;r’kl _Kr’kl =K, and k() =K.

Further 4,

;- B; and D, are the laminate stiffness coefficients given by,
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hi2
D, = [0,0.z2)z (j=126)

=-hr2

A

i

B,

,i’

Thus the force and moment resultants can be written as

1
J
1

N, 4, 4, 4, B, B, By, 0 0 fl&
N.v A, A, Ay By By By 0 0 3;
N x¥ Ay Ay A By By By 0 0 ly ﬂ
M, |8y By, By D, D, Dy 0 0 |«
M, B, By, By D, Dy Dy 0 0 K,
Mx_v By, By, By Dy Dy Dy 0 0 K,
0. 0 0 0 0 0 0 F, F 7\
i 0. ] Lo 0 0 0 0 0 F, Fs | 7~ |

e

[DM ] {k}

(3.45)

(3.50)

where [D‘,,] corresponds to the stiffness matrix associated with a composite laminate.

Since the shear correction factor K is also associated with the composite material, the

coefficients F; where i, j = 4,5 are given by:

Fy=K A, Fs=K, A,; F, =K, Ag,; Fis =K, A

(3.51)

It is to be noted that, if a symmetric laminate configuration is considered then the matrix

[B] is a null matrix.

3.3.2 Stiffness matrix for composite laminate

The stiffness matrix is derived as presented in section 3.2.2. Accordingly we can express

the displacements in terms of the interpolation functions as follows:
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Thus,

[, ] 'N. 0 0 0 O0Tu,]
v, |0 N 0 0 0|y,
w,[=X10 0 N 0 0w,
6.1 'lo o o N. o0]8,
6, (0 0 0 0 N6,

which is of the form,

fu} =[V]a}

and matrix {d } is given by,

{dy=lu, v, w, 0,0 ooty v, w, 0,0, |7
Also the matrix {k} can be expressed as,

{k }zm = [B ]8x40 {d }4o.x|
Matrix [B] can further be expressed as,

{k }le = [a]sxs [N ]5.\'40 {d }40xl

(3.53)

(3.54)

(3.55)

(3.56)

Equation (3.57) represents the [6] matrix employed in equation (3.56);



- -
9 0 0 0 O
Ox
0 9 0 0 O
Oy
I 0 0 O
oy ox
0 0 O 9 0
[o]= x (3.57)
0 0 0 0 —
Oy
0o 0 0o 2 92
dv Ox
0 O 9 0 -1
%
0 O 9 -1 0
i ox i
Thus the matrix [B] is given by:
N, 0 0 0 0 N, 0 0 0 0 |
0 N, 0 0 0 0 Ny, O 0 0
Nl.,\' Nl.x 0 0 0 NS.y NS.x O 0 O
[B] 0 0 0 N, 0 0 0 0 N, 0 3.58)
o 0o o o N, 0 0 0 0 N, G-
0 0 0 N, N, 0 0 0 Ny, Ny,
0 0 N, 0 =N 0 0 Ny, 0 =N
| 0 0 N, -N, 0 0 0 Ny -Ng 0]
The elemental stiffness matrix can be written as shown in equation (3.59):
(k1= (181 (D, 1[BldA (3.59)
4
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3.3.3 Program validation for composite laminate

The MATLAB® program developed in this chapter is now demonstrated through an
application to a composite square laminate. Accordingly a cross-ply laminate of
configuration [O/ 90]24: having dimensions of 0.12 m x 0.12 m is employed. The ply
thickness is chosen to be 1.25 x 107 m, which makes the total thickness of the laminate to
be 0.012 m. Thus the length to thickness ratio (a‘h) is 10. It is subjected to a uniformly

distributed load ‘q’ of intensity 18.5 MPa . The shear correction factor K is set to a

value of (5/4).

The bending stiffness matrix [D,, ] for the composite laminate is calculated using

equation (3.50) in section 3.2.1. Using the test data on elastic constants of the composite
material, presented in Table 2.5, the stochastic field realizations of all the material
properties are obtained at each Gauss point. In the present thesis, a three-point Gaussian
numerical integration is used as it gives the most accurate results. Considering any typical
element in the structure, nine different sample realizations of each of the stochastic
processes are generated corresponding to the nine Gauss points in the element. Figure 3.6
depicts the geometry, finite element mesh, boundary condition and loading used for the
present analysis. Accordingly we have 16 elements thus developing 16 x 9 Gauss points.
Table 3.2 gives a comparison of nodal displacement values between the MATLAB®
program results and closed form solution. The last column of the table provides the

variation in their values.
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Figure 3.6  Geometry, finite element mesh, boundary conditions and loading for the
[0/ 90]24, laminate

Closed form solution:

In determining the deflection at any point in the laminate, when subjected to uniformly

distributed load, equation (3.60) is used [61,62]:

w=(R“b‘/7r‘)Zqu i 51n4(m47a/a)51r1(n7z_v/b) _ (3.60)
(D,(m” +n"R*)+2(D,, +2D)m n"R"]

m=! n=|

where

R = a/b (ratio of length to width)
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164 (.61)

2
x-mn

9on =

where g is the intensity of uniformly distributed load.

Upon substituting the appropriate values for the variables in equation (3.60), the closed
form solution is obtained and the values are shown in Table 3.2. The finite element
solution obtained from the MATLAB® program is also shown in the same table.
Expressing in non-dimensional format we have the closed form and FEM results as
presented in Table 3.3 in the last column. Equation (3.62) is used in finding out the non-

dimensional values.

w,. E,h’x10’ (3.62)

ga®

w=

In Table 3.2, nodal displacement at the centre of the laminate (node 33) corresponds to
the mean nodal deflection value at 300 simulations, and all other nodal deflection values
correspond to 300th simulation. The mean maximum deflection obtained over 300
simulations is presented in Table 3.3 and its non-dimensional form value is also given. It
is observed that the MATLAB® program result for mean maximum deflection of a
cross-ply laminate subjected to uniformly distributed load under simply supported
condition differs from the closed form solution by 7.4%. It can be concluded that the

obtained results are in good agreement with the closed form solution.
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n: :l:ee : Worax. clased form Woax fem % Variation
11 -0.00072 -0.00074 2.95
19 -0.00181 -0.00197 8.42
26 -0.00238 -0.00252 7.25
32 -0.00236 -0.00252 722
33 -0.00256 -0.00275 7.42
34 -0.00234 -0.00252 7.23
41 -0.00185 -0.00188 1.59
44 -0.00072 -0.00075 2.96

Table 3.2 Comparison of nodal deflection values for the [0/90],,, laminate subjected

to uniformly distributed load under simply supported condition
* Mean value of maximum deflection

Reference Mean max. Non-dimensional mean
deflection maximum deflection
Wi () w
Ref. [61] -0.00256 -0.8381
Matlab (FEM) -0.00275 -0.8934
Table 3.3 Comparison of mean maximum deflection and non-dimensional mean

maximum deflection values

3.3.4 Line load and four-point bending analyses

The program developed is extended further to illustrate few more application problems,
performed on a composite laminate. The analysis involves a symmetric cross-ply
laminate of 96 layers having a configuration of [O/ 90),., . The dimensions of the laminate
are considered to be 0.12 m in length, 0.12 m in width and 0.012 m in thickness.
Figure 3.7 shows the finite element mesh employed in modeling the laminate and
application of line load over the laminate. Laminate is subjected to a uniformly

distributed load of 2 MPa.
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Figure 3.7  Geometry, finite element mesh, boundary conditions and loading for the
[0 / 90]24: laminate

3.34.1 Line load analysis results

MATLAB® program results are listed in Table 3.4 which gives the displacement values at
the nodes specified over the laminate as shown in Figure 3.7. These values are plotted
with respect to the node numbers and resulting graph is shown in Figure 3.8. Mean
maximum deflection value as calculated by conducting the simulation over 300 laminates
is 0.00727 m acting in a direction opposite to the z-axis. Its standard deviation and

coefficient of variation values are 0.000143 m and 0.0196 respectively.

70



Global node | Nodal Displacement
number (m)
29 0.00000
30 -0.00237
31 -0.00448
32 -0.00609
33 0.00727
34 -0.00609
35 -0.00449
36 -0.00237
37 0.00000

Table 3.4 Displacement values for the [0/ 90],,, laminate
* Mean maximum displacement value

Line load results
Node number

31 2 3 3 35 36 37 38

o

0.00237\ / 0.00237

-0.00448 -0.00449

[}
[
N
o
8

&
g
N o
/’

Displacement (m)
& &
g§ 8

-0.00609 -0.00609

-0.00727

&
8

Figure 3.8  Plot of node number vs displacement for line load
3.3.4.2 Four-point bending analysis results

Considering the same laminate configuration of [0/90],,, , dimensions and imposition of

load as employed in section 3.3.4, displacement values obtained in the four-point bending
analysis are listed in Table 3.5. A graph is plotted with displacement versus node number
as shown in Figure 3.9. It is to be noted that the nodal force estimation for the four-point
bending analysis assumes the same formulation as described for line load analysis. It is

observed that the mean value of maximum displacement is 0.0094 m acting in a direction
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opposite to the z-axis. Accordingly the standard deviation and coefficient of variation are

0.000193 m and 0.0205 respectively.

Global node Nodal Displacement
number (m)
29 0.0000
30 -0.0037
31 -0.0069
32 -0.0085
33 -0.0094*
34 -0.0084
35 -0.0069
36 -0.0037
37 0.0000

Table 3.5 Four-point bending analysis results for the [O/ 90]24s laminate
* Mean maximum displacement value

Four-point bending
Node number
28 29 30 3t 32 33 34 35 36 37 38

0 - &

T T T T
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I -0.0037, -0.0037
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\’/
-0.0094

Displacement (m)

0.009
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Figure 3.9  Plot of node number vs displacement for four-point bending

From the line load analysis and four-point bending analysis results, it is clear that, the
deflection of the laminate takes a parabolic path. The former case results in sharper
deflection at the centre of the laminate where the application of the load is imposed. In
the later case a smooth deflection curve can be seen, as the points of application of load

are at a distance away from the centre of the laminate along the x-axis.
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3.4 Conclusions and discussions

The stochastic finite element method based on Markov correlation model is utilized for
the probabilistic analysis of composite laminates in which mechanical properties have
uncertainty and variability. The first-order shear deformable plate element is employed.
Considering the randomness in the material properties the statistics of displacements,

strains and stresses, are determined.

A MATLAB® program has been developed to calculate the mean nodal deformations and
stresses for a plate without a hole subjected to out-of-plane uniformly distributed load.

Program is capable of handling both isotropic and composite material analyses.

Example problems are addressed in section 3.4 to compare the results obtained from the
program. Results are found to be in excellent agreement with the reference solutions, thus

confirming the validity of the formulation and program.

As an extension of the work described in previous sections, a stochastic finite element
investigation of the effects of holes on the stress distribution in symmetric composite
laminates subjected to bending moments is conducted in chapter 5. Accordingly, stresses
around a circular hole are determined for laminates with different types of loading and

stacking sequences.
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Chapter 4

Experimental Characterization of Composite Laminates

4.1 Introduction

The presence of holes is well known to be a serious design problem and a major cause of
structural failure. Traditional engineering solutions to this problem either involve massive
reinforcements around the hole, which are often expensive in terms of weight and cost, or
shape contouring to alleviate the effects of the hole, which is not always possible. In
practical situations, it is difficult to achieve a hole with a perfect circular profile in
composite laminates during the drilling operation. Also the problem of hole being offset
from the desired co-ordinates is encountered. Because of the above-mentioned reasons, a
study of stress concentration at the hole boundary and the stress distribution at a distance
from the hole boundary in finite elastic plates subjected to uniform uniaxial and biaxial
loads have to be conducted. Information about stress concentration factor provides the
designer with useful worst-case information regarding the influence of the uncertainty in

the hole shape on the resulting stress concentration factor.

Before actually delving into the problem, it is important to make a note that, direct

application of the mechanics of metallic structures to fiber reinforced composite
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laminates would produce some abnormal results, such as hole-size effect. These
anomalies apparently stem from the fact that, the methodology for metallic structures is
based on the conditions at a point on hole the boundary, while the strength of a perforated
composite laminate seems to be related to the in-plane elastic stresses within a region
defined by the characteristic length a, adjacent to the hole boundary. Thus SCF itself is
not an adequate measure of strength for a composite laminate containing a circular hole.
Also, previous analyses [46,63] have shown that in the case of composite laminates,
stress concentration decreases more gradually away from the hole for a large hole than

for a small hole.

As the characteristic length value varies from one laminate configuration to another, it
becomes necessary to conduct experiments on all the selected laminate configurations.
On an average, 25 samples of notched and another 25 samples of un-notched laminates
are tested, for each laminate configuration, in the present work. At this stage we consider
a failure criterion to calculate the characteristic length. Accordingly we have two major

criteria [1]:

1) Point stress criterion

2) Average stress criterion

A brief description of the two criteria and the appropriate selection of the criterion follow

our discussion.
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4.2 Point stress criterion

The point stress failure criterion [1] assumes that failure occurs when the stress, o, at

some distance 4, away from the opening is equal to or greater than the strength of the

un-notched laminate. A pictorial representation is shown in Figure 4.1.

Y‘}
1 t[ot
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R T .x
2a
d

YYvVYY Y

Figure4.1  Graphical representation of the point stress criterion

Mathematically an equation can be expressed as follows:
0,(x,0) | ,_g.q =0T, 4.1)

where

o, is the un-notched strength of the laminate and ‘R’ is the radius of the opening.

[n the point stress criterion, it is considered that a larger volume of material is subjected
to high stress in the case of the plates containing a larger hole. Therefore, instead of
considering the stress at a point, the average stress criterion considers the average stress

over a characteristic length. Further details are provided in the next section.
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Also the choice of analysis, either micro mechanics or macro mechanics, is based on the
consideration as to whether an improvement is to be made in terms of design and material
of unidirectional laminate or for a structural design improvement. It is a known fact that
in composite laminates it is highly impossible to know exactly the degree of
inhomogeneity, and the distribution and locations of fibers. Variability in test data is
basically due to these reasons in addition to human error and machine misalignment.
Averaging the measured strength data can reduce the effects of these factors. Thus it is

logical to adopt the macro structural study rather than the micro structural study.

4.3 Average stress criterion

According to this criterion [1], it is assumed that the laminate would fail when the normal

stress averaged over some length a,of a notched specimen, away from the opening edge
and on the axis normal to the applied load, reaches or is greater than the strength of an

un-notched specimen (o, ).

R+a,

L Jo,(x0kx 20, (4.2)
a, R ’
where

‘R’ is the radius of the hole, a, is the characteristic length value, o, is the un-notched
strength of the laminate and o;.(x,O) is the approximate solution for the stress

distribution in orthotropic notched plate [55].
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Figure4.2  Graphical representation of average stress criterion

It is to be noted that, for the sake of convenience, the term ‘Average stress’, as used in

most of the references is replaced by the term ‘Equivalent stress’.

Considering the case of an orthotropic plate containing a hole, the approximate solution

[1] is given by equation (4.3):

o,(x,0) =§{2 + (%) + 3@)4 ~(kr - 3{5@)6 - 7@)6” where x> R (4.3)

where

2 | 2 — Al
K: =l+ \/A”A'n —Ap 4“'/'1L4::—‘_‘—Ii (4.4)
AZZ - i 2A66

K7 denotes the stress concentration factor at the edge of the hole; A;.i,j=12,6 are the
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components of the in-plane stiffness matrix with axes 1 and 2 parallel and transverse to

the loading direction respectively.

Substituting equation (4.3) into equation (4.2) and considering the case when the left

hand side terms of equation (4.2) equal right hand side terms we have:

LA U ) Nt 4.5)
o, 2-& & +(K7 -3, -6)) o,
where
R
& —R+a0 (4.6)

and o is the ultimate strength of notched laminate.

The two unknowns i.e. the un-notched strength o, and the characteristic length a,are

determined experimentally. The procedure is to first obtain a set of un-notched and

notched strengths from the experiments and subsequently substitute them into the

equation (4.5) to solve for a, .

4.4  Experiments on notched and un-notched composite laminates

In the following sections, details as to the selection of laminate configuration, specimen
preparation and dimensions of the specimen for uniaxial tensile testing are provided.
Tensile testing is carried out on 25 samples for each case of un-notched and notched

laminates and for each configuration.
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Laminate configuration:

Extensive use of 0°, 90° and +45° ply orientations in the laminate configuration has
been made in the previous works [1]. Symmetric cross-ply laminates and quasi-isotropic
laminates are used in the present study as they are employed in many practical

applications. Based on these facts, testing is carried out on laminates with [0, /+ 45]23

and [0/ 90],, configurations.

Specimen preparation:

A thick aluminum plate is used to support laminates during curing. Release agent is
applied over the cure area of the plate for permanent tool release. Preparation of the cure
assembly begins by placing resin damping material around the perimeter of the cure area
on the aluminum plate. Once the release agent applied over the aluminum plate dries, fill-
in sub-laminates are placed and subsequently two layers of peel ply are stacked over the
fill-in sub-laminates. This is to ensure that, after curing in the autoclave, the laminate
could easily be separated from the fill-in sub-laminate. The purpose of peel ply is also to
isolate the excess resin from the aluminum plate. A sheet of porous Teflon fabric is added
to allow the resin to flow away from the laminate to the bleeder material. Two sheets of
paper bleeder are then placed on the assembly to absorb the majority of the excess resin
from the laminate. A large section of synthetic fiber breather material is placed over the
cure assembly and beneath the surface of the vacuum plate to allow gases to vent away
from the assembly. On the vacuum plate around the perimeter of the cure assembly,
vacuum bag sealant is placed. Finally, a large section of bagging film, with a quick

disconnect vacuum valve attached, is placed over the assembly and pressed onto the
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sealant. A cross-section of typical lay-up prepared for autoclave processing is shown in

Figure 4.3
————— Vacuum bagging film
PO, > Beetbe: fly
I > Bleeder ply
IS > D) ply
- N ...

EEpesaTEERTeuDEnES —» Peel ply
e s # Release agent

[

i — Tool
Figure 4.3  Typical cross-section of the lay-up

An electrically heated autoclave is used to cure the laminate. The laminate is cured
according to the manufacturer's specifications. Full vacuum of 28 in. Hg is drawn over
the cure assembly and the bag is inspected for leaks. The entire assembly is then placed
in the autoclave and the door is closed and secured. The cure cycle adopted for NCT-301

graphite/epoxy composite material is depicted in Figure 4.4.

4

145° }-

104°%

Temperature (°C)

>

fe————»] Time
% hr 1 hr

Figure 4.4  Cure cycle for NCT-301 graphite/epoxy composite material

The cure cycle is a two-step process. The laminate is heated from room temperature to

104° C and it is held at this temperature for a period of 30 minutes (first dwell). The
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purpose of the first dwell is to allow the entrapped air, water vapor or volatiles to escape
from the matrix material and to allow a matrix flow, resulting in the compaction of the
part. Afterwards, the temperature is again increased to 145° C and held constant for one
hour (second dwell). The cross-linking of the resin takes place and the related material
properties are developed during the second dwell. A constant pressure of 60 psi is
maintained inside the autoclave throughout the processing time. Later the laminate is
cooled to room temperature at constant rate and post-cured for ten hours. Finally the
laminate is removed from the aluminum plate. Excess resin on the laminate is trimmed
off with a circular sander using medium grit sand paper. Laminate thus prepared is cut to
the required size using the diamond cutter. A drilling operation is performed to prepare a
notched laminate. The center point of the coupon is located and using the center punch a
mark is made at the desired co-ordinate. Using the HSS drill bit, without the coolant, a

drilling operation is performed. A laminate with a hole is shown in Figure 4.5.

Basis for the specimen dimensions:

Since there are no ASTM standards for the tensile testing of anisotropic materials with
notch, we refer to the works of Tan S.C [1] and Nuismer, R.J. and Whitney J.M. [64] who
have conducted studies on plates with circular openings for different laminate
configurations. Accordingly, they have come to a conclusion that, the ratio of diameter to
width of the plate (2a/W) should lie between 0 and 0.4. Otherwise, the stress
concentration factor tends to deviate from the exact value for regions away from the hole.
This is true, as the theory is developed to find out only the maximum stress around the
hole region. Based on these considerations, we have set the dimensions of the coupon as

follows: width as 37.9 mm, gauge length as 180 mm and hole diameter (2a) as 5.1 mm.
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Figure4.5  Sketch showing a section taken at the hole region of the specimen and a
resin block covering the cut out region
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4.5 Micro structural study

Before conducting the test, specimens are checked for any defects, such as, delamination
and voids. These defects are developed as a result of uneven rolling while laying up the

plies, poor vacuum bagging, improper pressurization in furnace during curing and so on.



To observe these defects, a micro structural study is conducted. As most of the defects
are expected to occur at the hole region, a cross-section is taken accordingly at this
region. Since the specimens for micro structural study are quite small, the region of
interest is immersed in a bowl containing resin. It is heated to 80°C in a furnace for
nearly 40 minutes, which evaporates all the moisture content present in the resin and is
allowed to cool down at room temperature. This in-turn creates a bigger surface and
hence a better grip for polishing. Now the surface generated is polished with the grinding
operation. [nitially it is treated with 200 grit SiC paper and subsequently with SiC papers
that have 300, 600, 800 grit levels. It has to be noted at this point, that, while grinding the
specimen, care is taken to maintain a perfect horizontal surface. Finally polishing is done
using diamond paste to obtain a very smooth surface for micro structural analysis. Two
specimens from each of the configuration are studied for any defects under an optical
microscope by setting a magnification factor of 100x. In all the specimens, a slight
delamination is observed near the hole region (CUT1) as shown in Figure 4.6. It is quite
obvious that these defects are due to the drilling operation. Figures 4.6 and 4.7 show the

images captured for [0, /+45], and [0/90],, laminate configurations using the Clemex
Vision Software, which is connected to the optical microscope. It is observed that, for a

[0, /£45],, laminate configuration the delamination occurs mostly between the +45° and

-45° layers. Delaminations of length 500 um and width 40 um are measured. It is felt that
a delamination area of 500 pm x 40 pum is small when compared with the overall area of

the laminate and thus it is not that significant. Also the delamination caused, will not

contribute to a change in the experimental value obtained. Observing Figure 4.7 for

[0/90],, laminate a slight delamination in between the 0° layers is noticed. It is to be
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noted that any delaminations observed near the periphery of the hole (CUT1) would

continue in the circumferential region of the opening.

0 0 +45-45 0 0 +45-45 -45+45 0 0 45+45 0 O

Figure 4.6  Cross-section of [0, /+45], laminate observed under a microscope having
a magnification of 100x.

09 0 9 0 90 0 9 90 0 9 0 9 0 9 O

Figure 4.7  Cross-section of [0/90],, laminate observed under a microscope having a
magnification of 100x.

4.6 Uni-axial tensile testing of composite laminates

Experiments are conducted on MTS machine having a loading capacity of 25 tons. For
our application laminates are loaded at a speed of 25 Ib/sec. Readings are recorded online
automatically at every one-second interval till failure. Equipments used while testing is

shown Figure 4.8a.
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(a) Experimental set-up

(b) Before failure (c) After failure

Figure 4.8 The tensile testing of laminate coupons

Figure 4.8a shows the set-up for the tensile testing of laminate coupons. Also
Figures 4.8b and 4.8c depict the pre-failure and post-failure states of a notched laminate
under test. Ultimate loads experienced by notched and un-notched laminates of both the
ply configurations are listed in tables to follow. The ultimate failure is defined as the state

when the specimen abruptly loses its load-carrying capability and cannot recover.
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4.6.1 Experimental resuits for [0/ 90]4, laminate
Table 4.1 lists the experimental results for [0/ 90]4, laminate with a circular opening. An
effort has been made to control the width and hole diameter of the laminate to a constant

value of 37.9 mm and 5.1 mm respectively.

Specimen Width Diameter Ultimate Ultimate
No. (mm) (mm) load (Ib) stress (GPa)
2H 37.59 5.08 9867 0.6754
3H 37.90 5.08 9282 0.6293
4H 37.78 5.08 9316 0.6340
SH 36.99 5.08 9584 0.6684
6H 37.33 5.08 9732 0.6613
TH 37.96 5.08 9406 0.6366
8H 37.56 5.08 9482 0.6496
9H 37.69 5.08 9577 0.6535
10H 37.66 5.08 9110 0.6222
11H 37.86 5.08 9450 0.6415
12H 37.86 5.08 9214 0.6255
13H 37.92 5.08 8968 0.6077
14H 37.96 5.08 9486 0.6420
15H 37.54 5.08 9536 0.6537
16H 37.83 5.08 9817 0.6670
17H 3743 5.08 10223 0.7032
18H 37.89 5.08 9284 0.6297
19H 37.96 5.08 9482 0.6417
20H 38.08 5.08 9276 0.6255
21H 37.97 5.08 9312 0.6300
22H 37.09 5.08 9382 0.6522
23H 37.14 5.08 8928 0.6197
24H 37.46 5.08 9136 0.6279
25H 37.24 5.08 9582 0.6630
26H 37.66 5.08 9678 0.6610

Table 4.1 Experimental results for [0/ 90] ., laminates with a circular opening

It is to be noted that all the specimens tested in tensile mode belong to the same lot viz.
Lot-1. Specimen number 1 is used to prepare an un-notched sample. The notation ‘H” in

the specimen numbering represents, that a hole is present in the laminate. The mean
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ultimate load and mean ultimate stress values achieved for a notched [0/90],, laminate

are calculated from Table 4.1 and they are 9444 1b and 0.6448 GPa respectively.

Specimen Width Ultimate Ultimate stress

No. (mm) load (Ib) (GPa)

1 38.35 15591 0.9042
27 37.53 13929 0.8255
28 37.70 14195 0.8374
29 37.27 15857 0.9463
30 37.83 15139 0.8901
31 37.68 14025 0.8278
32 37.72 16114 0.9501
33 37.65 15735 0.9295
34 37.72 16639 0.9811
35 37.45 16702 0.9919
36 37.74 16234 0.9567
37 37.68 16122 0.9516
38 37.16 15998 0.9575
39 37.73 16454 0.9699
40 37.30 16505 0.9841
41 37.66 16488 0.9737
42 37.83 17818 1.0476
43 37.84 15807 0.9291
44 37.47 17446 1.0355
45 37.75 16582 0.9770
46 37.26 13004 0.7762
47 36.75 16789 1.0161
48 38.12 16668 0.9725
49 38.39 16876 0.9777
50 37.42 17626 1.0476

Table 4.2 Experimental results for [O/ 90] ., laminates without a circular opening

In Table 4.2, specimen number 1 is taken from Lot-1 and all other specimens are taken
from Lot-2. This is to ensure that samples from all lots behave in a consistent manner and
produce results that are consistent among themselves. Columns 3 and 4 of Table 4.2
represent the ultimate load and ultimate stress that each sample has experienced. Thus,

the mean load and mean stress values are 16058 1b and 0.9462 GPa respectively.
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Figure 4.9  The typical failure of [O/ 90]4; notched laminate. Sample before and after
failure is shown

Figure 4.10 The typical failure of [O/ 90] ;, un-notched laminate. Sample before and
after failure is shown

From Figures 4.9 and 4.10 we can make out that the failure of notched and un-notched

[0/ 90]4: laminates take place in a direction perpendicular to the loading direction and

across the circular cutout. This is due to the presence of 90° ply in the laminate

configuration. Failure begins with the matrix cracking followed by fiber breakage.
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4.6.2 Experimental results for [02 /x 45]2; laminate

Table 4.3 lists the experimental results for [02 /x 45]2: laminate with a circular opening.

Due attention was given to control the width and hole diameter of the laminate to

constant values of 37.9 mm and 5.1 mm respectively.

Specimen Width Diameter | Ultimate | Ultimate stress

No. (mm) (mm) load (Ib) (GPa)
1H 37.71 5.08 12554 0.8536
2H 37.05 5.08 11286 0.8084
3H 37.54 5.08 12379 0.8461
SH 37.71 5.07 11749 0.7988
6H 37.57 5.08 11259 0.7688
TH 37.78 5.07 12764 0.8660
8H 37.70 5.08 11396 0.7751
10H 37.45 5.08 12858 0.8549
11H 37.68 5.08 11554 0.7863
12H 37.60 5.08 12203 0.8325
14H 37.65 5.07 11734 0.7993
16H 37.54 5.08 11825 0.8082
17H 37.82 5.08 12474 0.8453
18H 37.54 5.08 12383 0.8463
19H 37.78 5.08 12380 0.8399
20H 37.51 5.08 12490 0.8544
21H 37.13 5.08 12163 0.8419
22H 37.02 5.08 11574 0.8039
23H 37.69 5.08 11546 0.7855
24H 37.46 5.08 12564 0.8608
25H 37.32 5.08 10055 0.6919
26H 37.32 5.08 12613 0.8679
27H 37.41 5.08 10988 0.7540
28H 37.33 5.08 11939 0.8213
29H 37.22 5.08 11235 0.7755

Table 4.3 Experimental results for [O2 /x 45]2: laminates with a circular opening

The mean ultimate load and mean ultimate stress values achieved for a notched

[0, /2 45],, laminate are calculated from Table 4.3 and they are 12093 Ib and 0.8272 GPa

respectively.
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Specimen Width Ultimate Ultimate
No. (mm) Load (Ib) stress (GPa)
1 37.75 16590 0.9774
2 37.33 16392 0.9766
3 37.06 17828 1.0699
4 37.79 16609 0.9775
6 37.88 16666 0.9785
7 37.69 17825 1.0519
8 37.72 16728 0.9863
9 37.48 17664 1.0482
10 36.75 16637 1.0069
11 37.60 16887 0.9989
13 37.12 15854 0.9499
14 37.23 16195 0.9675
15 37.10 16011 0.9598
16 37.44 16327 0.9699
17 37.55 16420 0.9726
20 37.35 17160 1.0218
21 37.36 16566 0.9862
22 37.85 16745 0.9840
23 37.74 16983 1.0008
25 37.77 16735 0.9854
26 37.34 16148 0.9618
27 37.43 16216 0.9636
28 37.45 16110 0.9567
29 37.51 17128 1.0156
30 37.64 17082 1.0094

Table 4.4 Experimental results for [02 /% 45]2; laminates without a circular opening

Columns 3 and 4 of Table 4.4 represent the ultimate load and ultimate stress that each
sample has experienced. Thus, the mean ultimate load and mean ultimate stress values for

an un-notched [02 /£ 45]2: laminate are 16520 Ib and 0.9784 GPa respectively.
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Figure 4.11 The typical failure of [O2 /+ 45]25 notched laminate. Sample before and
after failure is shown

Figure 4.12  The typical failure of [0, /+ 45]23 un-notched laminate. Sample before and
after failure is shown

From Figure 4.11 it is clear that the failure of a notched [0, /+ 45]25 laminate takes place

approximately at an angle of 45° from the horizontal axis. Similar observation can be

made from the rest of the samples tested. Due to the presence of +45° ply and -45° ply
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along with 0° ply, a better reinforcement in terms of resistance to the application of load
1s established, thereby accepting higher loads as opposed to a [O/ 90]4, laminate.
Observing Figure 4.12, the un-notched [0, /+ 45]2: laminate fails in a region close to the

center of the laminate but not exactly at the center. It is to be noted that some samples

failed near the tab region during the test and those data are not taken into account.

Figure 4.13 distinguishes clearly the failure modes of [O2 /£ 45]25 and [0/ 90]4: notched

laminates.

Figure 4.13 The typical failures of [02 /i-45]2:and[0/ 90],, notched laminates
respectively

4.7  Characteristic length (a,) calculation

As mentioned in section 4.2, in order to find out the characteristic length value of a
laminate, a set of un-notched and a set of notched strength values have to be found out.

Tables 4.1 to 4.4, list the ultimate stress values obtained experimentally for different
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laminate configurations considering both notched and un-notched laminates.
Characteristic length o, is found using equation (4.5). For example from Table 4.1,

considering specimen number 10, the ultimate stress value for a notched laminate of
[0/ 90),, configuration is 0.6222 GPa. Now from Table 4.2, for specimen number 29, the
ultimate stress value for an un-notched laminate of the same configuration is 0.9463 GPa.
These values are used in equation (4.5) to calculate the corresponding value of

characteristic length of the [0/9014, laminate. A similar procedure is adopted for the
[O2 /+ 45]23 laminate configuration also. Sub-routine A0CAL.m given in Appendix-D is
used to calculate the value of the characteristic length. Sample values of a,can be

calculated for each laminate coupon in a similar manner.

Table 4.5 lists, a series of characteristic length values for [0/ 90]45 laminate coupons. It is

x

. O . . .
to be noted that the ratio —¥ (ultimate stress value of a notched laminate to ultimate
o

o

stress value of an un-notched laminate) on the left hand side of the equation (4.5) is very
sensitive when used to calculate the value of characteristic length for any laminate
configuration. The value of characteristic length depends mainly on the experimental
results obtained for notched and un-notched laminates. The ensemble mean and standard
deviation values of the characteristic length are 4.44 mm and 1.392 mm respectively and

they are shown in Table 4.6 along with the coefficient of variation (C.0.V) value.
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Serial No. a, (mm)
1 6.39
2 7.04
3 6.80
4 5.02
5 6.23
6 7.34
7 4.42
8 4.93
9 3.37
10 3.60
11 3.74
12 3.45
13 4.10
14 4.18
15 4.27
16 5.51
17 2.82
18 4.59
19 2.87

20 3.57
21 2.24
22 3.57
23 3.58
24 4.28
25 331

Table 4.5 Values of characteristic length a, obtained for [O/ 90]45 laminate

Laminate Mean a, Std. dev. C.0.v

configuration (mm) (mm)

[0/90],, 4.44 1392 | 03135

Table 4.6  Statistics of characteristic length a, for [0/ 90]4, laminate

Table 4.7 gives the values of characteristic length for [0, /+ 45),, laminate coupons. The

ensemble mean and standard deviation values obtained from Table 4.7 are 10.63 mm and
2.21 mm respectively. These values and the corresponding coefficient of variation value

are listed in Table 4.8.
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Serial No. a, (mm)
1 12.58
2 11.03
3 8.44
4 10.18
5 8.15
6 10.66
7 8.16
8 10.06
9 13.78
10 11.53
11 12.30
12 12.70
13 12.36
14 12.32
15 13.58
16 11.78
17 13.63
18 4.88
19 8.10
20 8.86
21 11.90
22 11.61
23 8.28
24 9.57
25 9.40

Table 4.7 Values of characteristic length a, obtained for [0, /+ 45]25 laminate

Laminate Mean qa, Std. dev. C.0.vV
configuration (mm) (mm)
[0, /45],, 10.63 221 0.2079

Table 4.8 Statistics of characteristic length a, for [0/90],, laminate

Comparing the coefficient of variation values from Tables 4.6 and 4.8, it is clear that, the

value of characteristic length of [0, /% 45]2; laminate configuration is more consistent as

compared to[0/90],, laminate configuration.
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It is important to highlight that the values of characteristic length obtained are based on
different combinations of ultimate stress value of notched laminate to ultimate stress
value of un-notched laminate obtained experimentally. This means to say that, the
notched laminate numbered 1H in Table 4.3 need not be considered together with the un-
notched laminate numbered 1 in Table 4.4 to find out the value of characteristic length. In
certain situations, it is observed that considering a similar pair of laminates in Tables 4.3
and 4.4 may result in a higher value of characteristic length, which is not feasible, as it
might have exceeded the half width dimension of the laminate. Thus, the program
developed, checks for the value of characteristic length and compares it with the half
width dimension. If the value of characteristic length exceeds the half width dimension,
then a different pair of ultimate stress values is chosen and the value of characteristic
length is found out. The procedure is continued till it is within the half width dimension

value.
4.8 Conclusions and discussions

It is clear from the test data that [0, /% 45]25 laminate has the capability to withstand
more loads in both notched and un-notched cases, when compared with [0/90]4,
laminate configuration and hence a higher value of a, is attained. This is evident from

the Tables 4.1, 4.2, 4.3 and 4.4.

The two configurations used in the experiments are fiber dominated laminates.
Microscopic study is conducted on both the laminates by taking a cross-section exactly at

the hole region and details are given in section 4.5. The failure modes of [O/ 90],, and
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[02 /+ 45]2: laminates under tensile load are depicted in Figures 4.9, 4, 10, 4.11, 4.12 and
4.13. It is observed that [0/ 90]4: laminate undergoes a failure in a direction that is
exactly perpendicular to that of the application of the load i.e. at 0°, while the failure
takes place at an angle of 45° in [02 /£ 45]2: laminate considering x-axis as the reference.
In the tensile testing, specimens fail with total separation. In both the notched laminate

configurations, failure occurs at the weakest region i.e. at the circular cutout area. The

gross strength of the specimen is the ultimate load divided by the total cross-sectional

area of the specimen.

The value of characteristic length thus obtained will be used to find out the equivalent
stress value. Further simulation is carried out to calculate the mean and standard
deviation values of the equivalent stress parameter. A stochastic analysis of the laminates
subjected to different types of loading, boundary conditions and laminate configurations
addressing both the cases of controlled and uncontrolled hole laminates is conducted in

chapter 5.
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Chapter 5

Stochastic Simulation of Notched Composite Laminates

5.1 Introduction

A need for implementing the simulation process in the present work arises due to the fact
that there is significant randomness in the stress distribution, which is ascribed to the
material and geometric properties of the composite laminate. Variations in the material
properties occur due to the variations in the properties of the constituent fibers, matrices
and interfaces, in the orientation of the fibers, in the void content and in the ply thickness.
These variations are quite unavoidable and most of them are induced during
manufacturing. Although composite materials have attractive features, such as high ratios
of strength-to-weight and stiffness-to-weight, they are easily damaged when they are
machined. A typical damage is delamination, which can occur when fiber reinforced
composite laminates are drilled. This in turn creates an irregularity around the
circumference of the hole and hence a geometric variation results. Because of the above
stated unpredictable variations, a study on stress distribution near the hole edge of the
laminate is conducted. The MATLAB® program developed is capable of handling the

probabilistic distributions of these variations and calculates the stresses over the laminate.
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The MATLAB® program developed in chapter 2 is used in the current analysis, of course
with an addition of subroutine A¥GSTR.m and suitable modifications in the main
program MODIFYSTIFPS.m which is given in Appendix-E. The generalized program
thus developed is capable of accepting any laminate configuration, geometry and number
of laminates to be analyzed. In this chapter, two stress parameters i.e. equivalent stress
and maximum stress values, which are considered to be the prime design parameters, are
calculated. Section 5.2 is completely devoted to the calculation of equivalent stress

parameter o, and the subroutine AVGSTR.m achieves the objective by calculating the

equ
equivalent stress value for each and every laminate and stores them automatically into a
MATALB® file. Simultaneously the maximum stress developed in the laminate due to the
application of a load is also collected and stored in the same file. Depending on the type
of the laminate configuration, a corresponding MATALB® file name is created. For

example, if a [0/ 90]4: laminate is analyzed, then the MATALB® file name would be

SIGMA090.m.

Considering practical situations, two categories of notched laminates are analyzed:

(1) Controlled hole laminate (CHL)

(2) Uncontrolled hole laminate (UCHL)
In a controlled hole laminate it is assumed that the geometric variation and eccentricity of
the hole do not exist while the uncontrolled hole laminate takes into account the above
variations, which can exist in any practical application. Accordingly, for the uncontrolled
hole laminates, appropriate equations are taken from reference [65], which express the
imperfection around the hole boundary in the form of an algebraic equation. Using the

Gaussian random value generating function, the coordinates associated with the
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circumference of the hole are varied and thus eccentricity in the hole is achieved. An
acceptable tolerance for the eccentricity of the hole from the central co-ordinates is fixed.
These equations are introduced in section 5.4. First order auto regressive correlation
model or Markov model is employed, to bring in the stochastic variation of the material
properties, which has been already discussed in section 2.4 of chapter 2 and used in the

flowchart in Figure 2.6.

The following ply configurations are analyzed for controlled and uncontrolled hole
laminate cases:

(1) Symmetric angle-ply laminate [0, /% 45]25

(2) Symmetric cross-ply laminate [O/ 90]4,
It is a fact that the stress distribution in the laminate varies depending on the type of load
imposed on the laminate. Thus an extensive study on controlled and uncontrolled hole
laminates subjected to the application of different types of load is carried out. In the
present work, laminates are subjected to the following load types:

(1) Uniaxial load

(2) Biaxial load

(3) Shear load

(4) Bending load
In the chart below, program layout is delineated which explicitly shows the equivalent
and maximum stress parameters being calculated for controlled and uncontrolled hole
laminate subjected to in-plane or out-of-plane load for any laminate configuration under

consideration.
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Figure5.1 MATLAB® program layout

Since the simulation is performed over a number of laminates, adequate provisions are
made in the program to calculate the equivalent and maximum stresses for each and every
laminate. Simulation is carried out, till the fluctuations in the equivalent and maximum
stress parameter values culminate. Standard deviation and hence the coefficient of

variation are calculated based on the mean value obtained.

5.2 Explanation for equivalent stress calculation

In Figure 5.2, only a portion of the mesh is shown and elements that contribute to the
stress distribution are highlighted. Common node numbers 157,149 and 106 belong to

elements 40 and 41, and nodes 106,119 and 132 belong to elements16 and 18.
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Figure 5.2  Equivalent stress calculation

From the MATLAB® program stresses are calculated at the Gaussian points. Nodal

stresses in turn are found out using the stresses that contribute to the corresponding

nodes.

The stress value at any node is expressed as

O node i =bo +0,X; -+-b2x,.2 +b3x,.3 +b4x,.4 (5.1
where

X; =X|rwdei - Xlnode 157

and

i =157,149,106,119 and 132

Stresses at nodes 157,149,106,119 and 132 are calculated using this equation. Expressing

in the matrix form:
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- - — —T - —
Ois7 1 1 1 1 1 b,
Oy X B X X X b,
T 2 2 2 2 2
[)’]z Owe | = ["] [b] =15 X X3 X, X b, (5:2)
3 3 3 3 3 b
O X X Xy Xy X 3
4 4 3 4 4 b
| O3z [ 5 X X Xy X5 | | Dy |

From the above equations, constants of the vector [b] are calculated. Substituting back
into the base equation, we obtain a general expression for the stress distribution. Using
the average stress failure criterion, equivalent stress over the characteristic length is
calculated. Sub-routine AVGSTR.m is written for this purpose and is called, whenever a

new laminate analysis is conducted during the simulation process.

[n the controlled hole laminates, only the spatial material properties are varying, while
the geometric properties and value of characteristic length are held constant. On the other
hand, uncontrolled laminates experience both the material and geometric property
variations and thus the value of characteristic length also varies based on Gaussian
distribution. Fluctuations in the material properties are expressed using stochastic

processes as explained in chapter 2.
5.3  Case 1: Controlled hole laminate analysis

This section aims at analyzing the response of [0, /+ 45]2: and [0/90],, laminates that

have stochastic variation of material properties and under the application of uniaxial and
biaxial load conditions. Simulation is carried out and the resulting plots are shown in

subsequent sections.
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5.3.1 Uniaxial load on [02 /+ 45]23 controlled hole laminate

Analysis is performed on a laminate having a width of 37.9 mm, length of 151.6 mm and
ply thickness of 0.125 mm. Finite element mesh utilized for the laminate analysis is
shown in Figure 2.7. The material properties are taken from chapter 2, Table 2.5. The
mean ultimate tensile load at which the specimen fails as recorded from the tensile testing

experiment for [02 I+ 45]ZI notched coupons is used for the simulation. In the following

analysis, a factor of safety of 1.2 is assumed on the failure load of the notched sample.
Accordingly, a uniformly distributed load value of 1.35 MN/m is applied on the laminate
in the direction parallel to the y-axis. The influence of the number of simulations, within
the range of 1 to 300 on the probabilistic moments i.e. the mean value and variance and

hence the standard deviation of the equivalent stress (O'eq") and maximum stress (o, )

parameters has been studied. The vanations in the mean values and standard deviation
values with the number of simulations for the two parameters have been presented in

Figures 5.3-a — 5.3-d. The abbreviation used for controlled hole laminate is CHL.

Mean equivalent stress vs No. of simulations for {02/+-45)2s
C H L under uniaxial load condition
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Std. dev. of equivalent stress vs No. of simulations for
[02/+45)2s C H L under uniaxial load
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Figure 5.3  Stress analysis of [O2 /j:45]25 controlled hole laminate subjected to

uniaxial load: (a) mean values of equivalent stress, (b) standard deviation values of
equivalent stress, (¢) mean values of maximum stress, (d) standard deviation values of
maximum stress.
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5.3.1.1 Observations

Simulation is carried out on a controlled hole [O2 I+ 45]2: laminate subjected to

uniaxial load. Our main aim is to see that the mean value of any stress parameter does not
change with further increase in the number of simulations. From Figure 5.3-a it is

observed that after 150 simulations the mean value of equivalent stress (am) converges

to a constant value of 0.691 GPa. In the first 100 simulations, fluctuation is high, but as
the number of simulation approaches 200 a steady state mean equivalent stress value is

achieved. This implies that a minimum of 200 samples of [0, /+ 45]2; configuration under

uniaxial load need to be simulated to achieve a mean equivalent stress value.
Corresponding standard deviation value also has some variation in the first 100
simulations and attains a constant value at 200 simulations. This can be observed from

curve in Figure 5.3-c gains a steady

Figure 5.3-b. Similarly, the maximum stress(o,,, )
state after 150 simulations and the corresponding mean maximum stress value is
1.241 GPa. Accordingly, the standard deviation value for maximum stress parameter
almost reaches a constant value at about 150 simulations as can be seen from
Figure 5.3-d. The initial variation of values in the first 150 simulations can be attributed
to the stochastic variation in the material properties induced using the Markov correlation
model. Comparing the mean equivalent stress and mean maximum stress curves from
Figures 5.3-a and 5.3-c respectively, it is clear that, both the trajectories almost follow the
same path. A similar observation can be made when a comparison is sought between the

standard deviation of equivalent stress curve and standard deviation of maximum stress

curve as shown in Figures 5.3-b and 5.3-d.

107



53.2  Uniaxial load on[0/ 90]4I controlled hole laminate

The geometry, material properties and the finite element mesh for the laminate as
described in section 5.3.1 are retained for the analysis. The mean ultimate tensile load
obtained from the tensile testing experiment for [O/ 90]4: notched coupons as shown in
Table 4.1, chapter 4 is used as a reference load for the simulation. A factor of safety of
1.2 1s assumed on the failure load of notched sample. Accordingly, a uniformly
distributed load value of 0.92 MN/m is applied on the laminate in the direction parallel to
the y-axis. All the d.o.f. corresponding to the nodes lying on the lower edge of the

laminate are constrained as shown in Figure 2.7.

The variations in the mean values and standard deviation values with the number of
simulations for equivalent stress and maximum stress parameters have been presented in
Figures 5.4-a— 5.4-d.

Mean equivalert stress vs No. of simuations for [0/90)4s
C H L under uniaxial load
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Figure 5.4

Std. dev. of equivalent stress

Std. dev. of max. stress
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Stress analysis of [0/90],, controlled hole laminate subjected to uniaxial

load: (a) mean values of equivalent stress, (b) standard deviation values of equivalent
stress, (c) mean values of maximum stress, (d) standard deviation values of maximum
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5.3.2.1 Observations

From Figure 5.4-a it is observed that the mean value of equivalent stress (am) converges

nearly at 200 simulations attaining a constant value of 0.7877 GPa. High fluctuation in
the values is observed in the first 100-150 simulations. The mean equivalent stress value
initially attains a high value of 0.798 GPa and gradually reduces as the number of

simulations increases. Thus a reverse trend can be noticed in the [0/90]4: laminate when
compared with [02 /£ 45]21 laminate considering the equivalent stress parameter. The

standard deviation curve also displays variation up to 150 simulations and attains a
constant value of 0.0196 GPa at 200 simulations as shown in Figure 5.4-b. The maximum

stress(o,,, ) curve in Figure 5.4-c gains a constant value at about 200 simulations and the

corresponding mean maximum stress value is 1.227 GPa. Vanation of standard deviation
value for maximum stress parameter is shown in Figure 5.4-d. On examining the overall
trend of the curves, as pointed out in section 5.3.1.1, both the mean equivalent stress and
mean maximum stress curves from Figures 5.4-a and 5.4-c respectively, attain a high
value at the beginning, fluctuates rapidly between 50-100 simulations and attain a

constant value at about 200 simulations.

In order to have a better understanding of the behavior of the laminates under
consideration, Table 5.1 is prepared which clearly brings out a comparison of mean
values of stress parameters, their standard deviation values and the values of coefficient
of variation. Coefficient of variation is calculated by taking a ratio of standard deviation

value to the corresponding mean value of the stress parameter.
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Mean Mean Std.
value Std. CcCoVv value | dev.of cov
) UDL No. of max dev. of | of max. | ofequ. | equ. of equ.
Laminate of max. stress stress stress stress

Type MN/ | simulat | Stress stress (0' ) (GPa)
m ions | (o max ) (GPa) au
[0,/245], | 135 | 150 | 1241 | 0.0313 | 0.0252 | 0.6914 | 0.0169 | 0.0244
[0 / 90]4: 1.06 200 [.227 | 0.0329 | 0.0268 | 0.7877 | 0.0196 0.0248
Table 5.1 Mean values, standard deviation values and coefficient of variation values

of the parameters calculated for both laminate configurations for a controlled hole
laminate under uniaxial load condition

From Table 5.1 we observe that:

1) Configuration [0, /i45]2: can bear a higher load in comparison with[0/90],,.

Accordingly the mean value of maximum stress for the former configuration is high.

2) The [0,/+ 45]2J laminate requires less number of samples to be simulated to achieve a
mean value of stress when compared to [0/ 90]45 configuration as the stresses

converge at 150 simulations for [0, /% 45]2: configuration and at 200 simulations for

[0 / 90] ., configuration.

3) From Table 5.1, observing the values of coefficient of variation for both the laminate

configurations, it can be concluded that the deviation is slightly more in [0/ 90]4,

laminate as compared with [O2 /x 45]2: laminate.
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4) It can be noticed from Table 5.2, that although the mean maximum stress value for

[0, 1+ 45]23 laminate is high when compared with [0/90],, laminate, mean equivalent
stress value for [02 /+ 45]25 laminate is less as opposed to [O/ 90]4S laminate. This is

due to the reason that the equivalent stress value is obtained by taking a stress
averaged over a large value of characteristic length, and the corresponding value is

10.63 mm and the value of characteristic length for [0/90],, laminate is 4.44 mm.

5) As per the average stress criterion, the equivalent stress should be less than or equal
to the strength of un-notched laminate. Accordingly both the laminate configurations

display an equivalent stress value, which is well within the failure load limit.
5.3.3 Biaxial load on controlled hole laminate

It is recognized that, the internal damage in the laminate and its progression are affected
by loading condition. Thus the material response under biaxial load is different from that
under uniaxial load. Loading condition can significantly reduce the stiffness and strength
properties of the laminate. The loading condition can also significantly reduce the

reliability of the laminate.

The failure process under biaxial loading conditions has not yet been fully understood.
Development of appropriate and accurate failure criterion for biaxial loading case is an
on-going research activity. In determining the stress distribution in a composite laminate
subjected to a biaxial load, it has been shown [1] that better results can be achieved using
the first-ply failure criterion or lamina-based fibre failure criterion applied in conjunction

with the models such as the point strength model or minimum strength model. In these
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models, the strength distribution is analyzed point-by-point along the characteristic curve,
which is at a distance of the value of characteristic length. Two points on this
characteristic curve lie on the x-axis. In this regard, the value of characteristic length
(along x-axis) is considered to be independent of the loading condition for the laminate

configuration and thus it is assumed to be the same as in the case of uniaxial loading [1].

In the present thesis work, the main objective is to quantify the effects of randomness in
hole geometry, eccentricity, and material properties on the reliability of the laminate. For
this purpose, the equivalent stress calculated based on the characteristic length is used as
the parameter. The reliability is related to the probabilistic parameters of the equivalent
stress parameter. Information about the probabilistic parameters of the equivalent stress
parameter corresponding to the uniaxial load case and the biaxial load case would help to
understand how the reliability of the laminate is affected by the loading condition. To this
end, a study has been conducted in the present work to analyze the effect of stress
distribution due to biaxial loading near the hole edge and along the x-axis on the
equivalent stress based on the average stress criterion itself. As mentioned before, two
points on the characteristic curve lie on the x-axis. Thus the present analysis is applicable
to these two points. In this regard, the value of characteristic length (along x-axis) is
considered to be independent of the loading condition for the laminate configuration and
thus it is assumed to be the same as in the case of uniaxial loading. As mentioned before,
a similar assumption has been used in reference [1]. The load value imposed in uniaxial
load case is used in the biaxial load case also and the analysis is performed. When a
laminate with cutout is subjected to biaxial loading, the direction of the

failure-propagating plane depends on the stress ratio and the lay-up configuration of the
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laminate [1]. The stress ratio adopted in our case is o, :co, =1:1. The case of a biaxial

load is analyzed considering a square plate, rather than a rectangular plate. Figure 5.5

depicts the finite element mesh, boundary conditions and application of load on the

laminate.
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Figure 5.5 Boundary condition and finite element mesh for a square plate subjected

to biaxial load

Table 5.2 shows the values of characteristic length employed for both the laminate

configurations.
Laminate a,
configuration (mm)
[0,/ 45], 10.63
[0/90],, 4.44
Table 5.2 The value of characteristic length for the laminates
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5.3.4 Biaxial load on [0, /+45],_ controlled hole laminate

Analysis is performed on a square laminate having a dimension of 151.6 x 151.6 mm".

Since the ply thickness is considered to be 0.125 mm, the [0,/%+45],. laminate

containing 16 layers, has a thickness of 2 mm. The finite element mesh utilized for the
laminate analysis is depicted in Figure 5.5. A factor of safety (F.O.S) of 1.2 on the
ultimate load of notched sample, as assumed in the previous cases is employed and
simulation is performed. The application of the load on the laminate is shown in

Figure 5.5. Since, stress ratio of o :o, =1:1 is used, we have same amount of load

(1.35 MN/m) acting along the positive x and y-directions. Probabilistic quantities such as,
mean, standard deviation and coefficient of variation for equivalent and maximum stress
parameters are obtained from the simulation and the variations in the mean values and
standard deviation values with the number of simulations for the two parameters have

been presented in Figures 5.6-a — 5.6-d.
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Std. dev. of equivalent stress vs No. of simuations for

[02/+-45)2s C H L under biaxial load
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Figure 5.6  Stress analysis of [O2 /x 45]2: controlled hole laminate subjected to biaxial

load: (a) mean values of equivalent stress, (b) standard deviation values of equivalent
stress, (c) mean values of maximum stress, (d) standard deviation values of maximum
stress.
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5.3.4.1 Observations

It can be observed from Figure 5.6-a, that, there is a considerable amount of fluctuation in

the mean value of equivalent stress (am) in the first 100 simulations. Subsequently the

variation decreases as the number of simulation reaches 250 and finally converges at 300
simulations attaining a constant value of 0.7927 GPa. Noticing the standard deviation
curve in Figure 5.6-b, we can make out that the influence of the number of simulations on
the standard deviation values does not get reduced to the same order as that of the mean
values, with the increase in number of simulations. But the variation is not predominant
and due to the time considerations in the analysis the value is considered to be
0.0172 GPa. The maximum stress(o,_ ) curve in Figure 5.6-c follows the same trend as
the mean equivalent stress curve and gains a constant value at 300 simulations and the
corresponding mean maximum stress value is 0.9670 GPa. Variation of standard

deviation value for maximum stress parameter is shown in Figure 5.6-d.

On comparing the mean value of maximum stress(o,, ) developed in uniaxial and

biaxial loading cases, for the same amount of load along the y-axis, a lesser value of

maximum stress (o, ) is generated in the case of biaxial loading, a reduction of the
order of 274 MPa. But there is an increase in the mean value of equivalent stress (o;q" ),

and it is of the order of 101.3 MPa. The variation in the value is due to the stochastic
variation in the material properties and due to the addition of load in the x-direction along

with the existing load in y-direction.

117



5.3.5 Biaxial load on [0/ 90]4, controlled hole laminate

In order to do a comparison of the stress values, a similarity in the condition of material
properties, geometry, finite element mesh and boundary conditions is assumed for the

analysis.

The variations in the mean values and standard deviation values with the number of
simulations for equivalent stress and maximum stress parameters have been presented in

Figures 5.7-a — 5.7-d.
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Mean maximum stress vs No. of simuiations for
[0/90}4s C H L under biaxia! load

0.84 —— -
£ o834 ¥ —
£ _ \ -
© . P
%&oazs o
E ~ -» N
S 0.822 +—k
s 7
2 .
0.816 -
0 50 100 150 200 250 300
No. of simuations
—&— Mean maximum stress
[ )
Std. dev. of maximum stress vs No. of simuations for
[0/90]4s C H L under biaxial load
0.047
£
g
EO
‘S w 0.031
]
=
T w0023
=
n
0.015
0 50 100 150 200 250 300
jr”ﬂg:gfsirruaﬁorsi o
—&— Std.dev. of maximum stress
@

FigureS5.7  Stress analysis of [0/ 90]4, controlled hole laminate subjected to biaxial

load: (a) mean values of equivalent stress, (b) standard deviation values of equivalent
stress, (c) mean values of maximum stress, (d) standard deviation values of maximum
stress.

5.3.5.1 Observations

It is clear from the Figures 5.7-a and 5.7-c that the mean values of equivalent stress (am)

and the maximum stress values never converge with the increase in the number of
simulations. High fluctuation in the values is observed up to 150 simulations. Later on the

amount of variation reduces but never attains a constant value. Further increase in the
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number of simulations would lead to a convergence in the value. Because of the time
constraint, investigation on the exact number of simulations at which a steady state is
achieved is not pursued and the value corresponding to 300 simulations is considered for
further discussion. Thus the mean value of equivalent stress is 0.6936 GPa and mean
value of maximum stress is 0.827 GPa. Also a reverse trend can be noticed in the

[0/ 90]4: laminate case when compared with [0, /+ 45]2: laminate. The standard deviation

curve for equivalent stress in Figure 5.7-b gains a high value of 0.023 GPa during the first
10 simulations and reduces to a value of 0.018 GPa and again rises. This means that a
complete correlation between the previous value of standard deviation and the current
value of standard deviation is still not achieved. Variation of standard deviation value for

maximum stress parameter is shown in Figure 5.7-d.

Table 5.3 shows the mean value of the stress parameters, their standard deviation values
and values of coefficient of variation. This aids in the study of response of the laminates

under the application of biaxial loads.

Mean Mean Std.
UDL No value Std. C.O.V | valueof | dev.of | C.O.V
Laminate of' of max. | dev. of | of max. equ. equ. of equ.
Type MN/ | simulat | stress max. stress stress stress | stress

m ions (amu ) stress (Gequ ) (GPa)
(GPa) | (CP) (GPa)

[0Z /+ 45]2, 1.36 300 0.967 0.024 0.025 0.792 0.017 | 0.021
[0/ 90]4, 1.06 300 0.827 0.030 0.037 0.693 0.018 | 0.027

Table 5.3 Mean values, standard deviation values and coefficient of variation values
of the parameters calculated for both laminate configurations for a controlled hole
laminate under biaxial load condition with the stressratioas o, : o, =1:1
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From Table 5.3 we observe that:

(1)  Configuration [0,/+45],, can bear a higher load in comparison with[0/90],, .
Accordingly the mean value of maximum stress for the former configuration exceeds the
latter by 150 MPa. Similar observation can be made for mean value of equivalent stress
of [O2 I+ 45]2: laminate, which exceeds by 99 MPa that of [0/ 90]45 laminate.

) From Table 5.3, observing the values of coefficient of variation for both the
laminate configurations, it can be concluded that the deviation is slightly more in
[0/ 90],, laminate as compared with [02 /% 45]2; laminate.

3) In biaxial load case, a considerable reduction in the mean value of maximum

stress (0,,.) from that of the uniaxial load case is observed for both the laminates.
Reduction of the order of 274 MPa is noticed in [0, /+ 45]2: laminate and 400 MPa in the

case of [0/90]45 laminate.

54 Case 2: Uncontrolled hole laminate analysis

The application of systematic inspection of an uncontrolled hole laminate is performed.
As it is highly impossible to achieve a perfect hole at the desired coordinates, it calls for
an analysis to check for the change in the mean value of equivalent stress over the
characteristic length and the mean value of maximum stress near the hole edge. Based on
reference [65], a hypotrochoid variation in the hole shape is considered and the equation

for vanation is given by:

g(#)=wcos(k +1)8 (5.3)
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where the value of k is 7 (a non-negative integer). The equation is expanded in a power of
w which is equal to 0.01. Here @ is the angle at which a node is created on the circle
while developing a finite element mesh. Substituting the values for the variables in the
above equation, a set of g(@) values is obtained. It is by this factor the radius of the

circular opening will be varying. Maximum tolerance for eccentricity of the hole is of the

order of (;16) * inch. Gaussian random values are generated and these values control the

movement of the hole depending on the number of the nodes associated with the hole.
Modifications in the circular opening are reflected in subroutines MESHREFINE.m and
MESHCIRCULAR.m. Figure 5.8 given below, shows a portion of the finite element mesh

representing the eccentricity and irregularity of the hole shape.

Figure 5.8 A portion of the finite element mesh representing the eccentricity and
irregularity in the hole shape.

It is to be noted that, in the case of uncontrolled circular opening, as the hole location is
not fixed, the value of characteristic length ceases to remain constant. Assuming the

variation in the characteristic length to follow a Gaussian distribution, a series of values
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are generated for the characteristic length a, using the sub-routine DISAO.m in the

MATLAB® program. Sub-routine DISAO.m in turn uses a MATLAB® sub-function:
[R] =a+ (b-a) * rand (m, n) 54

where ‘rand’ is the sub-function, ‘a’ and ‘b’ are the maximum and minimum limits of the
value of characteristic length respectively, ‘m’ is the number of rows of Gaussian random
numbers to be generated and ‘n’ is the number of columns to be realized. In the present
case ‘m’ is assigned a value equal to the number of laminates to be analyzed and ‘n’ = 1,

giving matrix [R] a dimension (m*n).
5.4.1 Uniaxial load on [02 /x 45]2; uncontrolled hole laminate

In order to compare the behavior of a controlled hole laminate with an uncontrolled hole
laminate, the plate geometry, laminate configurations, boundary conditions and
application of load for an uncontrolled hole laminate are kept the same as that for a
controlled hole laminate. But it is to be noticed, that the finite element mesh close to the
hole boundary assumes new co-ordinate values based on the tolerance value set.

Referring to Tables 4.6 and 4.8, it is clear that the value of characteristic length a, will

not remain constant all the time. Assuming a Gaussian distribution variation, the value of

characteristic length a, can be varied and the probability distribution achieved is

presented in Figure 5.9.
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f(x) probability density function

12
Characteristic length ao

Figure 5.9  Gaussian distribution curve for the value of characteristic length a,

considering [02 /* 45]2: configuration

The MATALB® program developed generates as many values of characteristic length as

there are number of simulations and these values are based on the Gaussian distribution

method.

Mean value of equivalent stress vs No. of simulations for
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Std. dev. of equivalent stress vs. No. of sinulations for
[02/+-45]2s UCHL under uniaxial load
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Mean value of maximum stress vs. No. of simulations on
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Figure 5.10 Stress analysis of [0, /+ 45]25 uncontrolled hole laminate subjected to

uniaxial load: (a) mean values of equivalent stress, (b) standard deviation values of
equivalent stress, (¢) mean values of maximum stress, (d) standard deviation values of
maximum stress.
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5.4.1.1 Observations

From Figure 5.10-a it is observed that fluctuation in the mean value of equivalent stress
persists till 250 simulations and attains a steady value of 0.847 GPa at 300 simulations.
The final value achieved is almost close to the initial value experienced. The maximum

stress (o, ) curve in Figure 5.10-c gains a steady state after 150 simulations though a

slight variation is observed at 200 simulations and correspondingly the mean maximum
stress value is 1.385 GPa. But the curve in Figure 5.10-c traces a reverse path when
compared with the curve in Figure 5.10-a. It is to be noted that in addition to the
stochastic variation of material properties, variations in the value of characteristic length
and geometry of the hole also exist. Apparently these unpredictable parameters contribute
to a prolonged and non-uniform variation in the pattern. But the trend remains the same
when a comparison is made between the standard deviation of equivalent stress curve and

standard deviation of maximum stress curve as depicted in Figures 5.10-b and 5.10-d.
5.4.2 Uniaxial load on [0/ 90]“ uncontrolled hole laminate

Figure 5.11 shows the Gaussian distribution curve for the value of characteristic length

a, for [O/ 90]4: laminate. Following distribution is achieved by supplying values from the

Table 4.5. It can be noticed that the curve has a minimum value of 2.24 mm and

maximum of 7.04 mm as can be made out from Table 4.5 also.
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Figure 5.11 Gaussian distribution curve for the value of characteristic length
a, considering[0/90],, configuration
Maintaining similar conditions as expressed for [0/90]4, controlled hole laminate,

simulation is carried out to achieve mean equivalent and mean maximum stress values for

the uncontrolled hole laminate. The corresponding plots are shown in Figure 5.12.

Mean equivalent stress vs No. of simulations for
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Std. dev. of equivalent stress vs No. of simulations for
[0/90]4s UCHL under uniaxial load
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Figure 5.12  Stress analysis of [0/ 90]4: uncontrolled hole laminate subjected to uniaxial
load: (a) mean values of equivalent stress, (b) standard deviation values of equivalent
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stress, (c) mean values of maximum stress, (d) standard deviation values of maximum
stress.

5.4.2.1 Observations

It is observed that the mean value of equivalent stress (0},,..) converges at 300 simulations

ending with a value of 0.808 GPa as shown in Figure 5.12-a. But observing Figure 5.12-c
for mean maximum stress parameter even after 300 simulations a steady state is not
achieved. Correspondingly the standard deviation value from Figure 5.12-d also
fluctuates and never reaches a convergence. Due to time constraint, values attained at 300

simulations are considered for further discussion.

Table 5.4 distinguishes the mean values of stress parameters, their standard deviation

values and values of coefficient of variation. As an observation, we can make out that the

value of coefficient of variation obtained for [02 /+ 45]21 laminate considering the mean
equivalent stress parameter is less as against [0/ 90]4: laminate. This means that the
variation for [0/ 90]4, laminate is high and varies more than 100% when compared with
[O2 /x 45]25 laminate. When mean maximum stress parameter is considered the variation
is minimal and the value of [0/90],, laminate exceeds that of [0, /+ 45]25 laminate by

0.72 %.
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Mean Mean Std.
UDL No value Std. coyv value | dev. of Ccov
Laminate of |ofmax.| dev.of | ofmax. | ofequ. | equ. of equ.
Typ e MN/ simulat stress max. stress stress stress stress

m ions | (Tma stress (aew ) (GPa)
GPa) | (GP2) (GPa)
[0,7+45], | 135 300 | 1.385 | 0.0381 | 0.0275 | 0.847 | 0.0423 | 0.0499
[0/90],, | 1.06 | 300 | 1.296 | 0.036 | 0.0277 | 0.808 | 0.0900 | 0.1113
Table 5.4 Mean values, standard deviation values and coefficient of variation values

of the parameters calculated for both the laminate configurations for an uncontrolled hole
laminate under uniaxial load condition

To study the amount of variation the uncontrolled hole laminate would generate on the
stress parameters, Table 5.5 is prepared, highlighting the mean values of the stress

parameters obtained for controlled hole and uncontrolled hole laminates.

Controlled Hole Uncontrolled Hole
Mean max. Mean Mean Mean
Laminate stress value equivalent maximum equivalent

type (o—m‘ ) stress value stress value stress value
GPa) | (0 ) GPD) | (04 )GP) | (0.5 )GPa)

[0, /x45],, 1.2411 0.6914 1.385 0.847

[O/ 90]4; 1.0266 0.7877 1.296 0.808

Table 5.5 Comparison of mean maximum and equivalent stresses corresponding to

controlled and uncontrolled hole laminates under uniaxial load

On comparing the mean value of maximum stress for controlled and uncontrolled hole

laminates with [0, /£ 45]2I configuration, an increase of 143.9 MPa in the later case can

be observed. This increase in the stress value is attributed to the irregularity of hole shape

and eccentricity of the hole. The cause for the increase in the stress can be reasoned as
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follows; when the circular opening moves closer to the laminate edge, in the process of
maintaining a uniform stress distribution along the axis perpendicular to the loading
direction, a higher stress value is attained near the hole edge. It is of utmost importance to

consider this extra stress developed while designing the laminates.

The increase in the mean value of maximum stress achieved through simulation, accounts
for only one hole driven in the laminate. But in practical applications, series of holes
would be driven to have a good fixity of the parts in union. In such conditions, a

multiplied effect of the severity in stress can be expected. Similar trend is observed
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(2) Conirolled hole laminate
(®) Uncondrolled hole laninate

Figure 5.13  Explanation for the increase in equivalent stress value
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when comparing equivalent stress parameter. An increase of the order of 155.6 MPa in
the uncontrolled hole laminate is sighted. A logical reason for the equivalent stress to be
higher in case of uncontrolled hole laminate can be explained with Figure 5.13 given

below.

As expressed in section 5.4, the value of characteristic length in uncontrolled hole
laminate is changing as per the Gaussian distribution. When compared with a fixed value
of characteristic length of the controlled hole laminate, a higher, lower or a similar value
of the characteristic length is expected in uncontrolled hole laminate during the
simulation. Considering, a similar value of characteristic length for the uncontrolled hole
laminate, it is clear from the Figure 5.13, that, due to the eccentricity of the hole, area A2

under integration for the second laminate has increased when compared with the area Al

for controlled hole laminate. Thus the equivalent stress for uncontrolled laminates ., is
more when compared with controlled hole laminate o, . This leads to a higher value of

equivalent stress in case of uncontrolled hole laminate. Accordingly an increase of the

order of 155.6 MPa in case of [0, /+ 45]2: laminate is observed.

A similar explanation can be given for [0/90],, configuration also. An increase by an

amount of 269 MPa for maximum stress and 20.7 MPa in equivalent stress is observed
for the uncontrolled hole laminate. Magnitude of the change in mean value of equivalent

stress for [0/90],, configuration is not significant when compared with [0, /i'45]2:

laminate.
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5.4.3 Biaxial load on [02 /£ 45]2, uncontrolled hole laminate

All the conditions expressed in section 5.3.3 are maintained in the present analysis also.
But in addition to these conditions, the variation in the geometry around the hole, the hole
eccentricity and Gaussian variation in the value of characteristic length are also imposed.
Figure 5.14 depicts the mean stress parameters and their standard deviation values

obtained based on these variations.

Mean value of equivalent stress vs. No. of simulations for
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Mean value of maximum stress vs. No. of simulations for
[02/+-45]2s UCHL under biaxial load
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Figure 5.14 Stress analysis of [0, /*45], uncontrolled hole laminate subjected to

biaxial load: (a) mean values of equivalent stress, (b) standard deviation values of
equivalent stress, (c) mean values of maximum stress, (d) standard deviation values of

maximum Stress.

5.4.3.1 Observations

It is seen from Figure 5.14-a to 5.14-d that all the plots attain a constant value at 150
simulations itself. Commenting on the values of coefficient of variation corresponding to
the mean equivalent stress and mean maximum stress parameters we see that the

variation is slightly higher in the latter case, exceeding the former by 27.4%.
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5.4.4 Biaxial load on [0/90]4, uncontrolled hole laminate

The vanations in the mean values and standard deviation values with the number of

simulations for the two stress parameters have been presented in Figures 5.15-a - 5.15-d.
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Std. dev. of maximum stress vs No. of sir_nulations
for [0/90]4s UCHL under biaxial load
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Figure 5.15  Stress analysis of [0/90],, uncontrolled hole laminate subjected to biaxial

load: (a) mean values of equivalent stress, (b) standard deviation values of equivalent
stress, (c) mean values of maximum stress, (d) standard deviation values of maximum

stress.
5.4.4.1 Observations

Convergence in the [0/90],, laminate case is achieved at 300 simulations, which is nearly
after 100 simulations more than the [0, /+ 45]2: laminate case. All the plots exhibit a high

fluctuation in the first 150 simulations. Further increase in the number of simulations
increases the correlation between the previous value and the current value and
convergence occurs. Figure 5.15-a shows the variation of the mean equivalent stress
parameter with the number of simulations. The fluctuation in the value can be attributed
to the stochastic variation of material properties and the geometric variation in the
laminate. Convergence of mean equivalent stress occurs at 0.6973 GPa and
corresponding standard deviation at 0.0211 GPa. Similarly the mean maximum stress
converges at 0.839 GPa and its standard deviation at 0.0201 GPa. Table 5.6 gives a
detailed listing of values of the stress parameters under consideration. Observing the

values of coefficient of variation corresponding to the mean equivalent stress and mean
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maximum stress parameters, we see that there is an increase in the fluctuation in the

former case by 25.5%.

Mean Mean Std.
UDL No value | Std.dev. | CO.V | value | dev.of | C.O.V
Laminate of. of max. | of max. | of max. | of equ. equ. | of equ.
Type MN/ | simulat | Stress stress stress | stress | stress | stress

m ions (Umu ) (GPa) (Uequ ) (GPa)
(GPa) (GPa)

[O2 /* 45]25 1.35 200 1.013 0.0263 0.0259 | 0.7933 | 0.0265 | 0.033
[0790],, | 106 | 300 | 0.839 | 00201 | 0.0239 | 0.6973 | 0.0211 | 0.030

Table 5.6 Mean values, standard deviation values and coefficient of variation values
of the parameters calculated for both the laminate configurations for an uncontrolled hole
laminate under biaxial load condition: stress ratio used ¢, :0, =1:1

Difference in the values of stress parameters developed considering a controlled hole

laminate and an uncontrolled hole laminate is well understood by observing Table 5.7.

Controlled Hole Uncontrolled Hole
Lami Maximum | Equivalent | Maximum | Equivalent
aminate Str €SS | stress value | stress value | stress value | stress value
e R o) | o) | ewm) |
Gmax Gequ o-max thu
(GPa) (GPa) (GPa) (GPa)
[02 /+ 45]2; o.:0, =11 0.9066 0.7557 1.013 0.7933
[0/90],, oo =11 | 0.8272 0.6936 0.8391 0.6973
Table 5.7 Comparison of mean maximum and equivalent stresses corresponding to

controlled and uncontrolled hole laminates under biaxial load

Following discussions can be put forth from Table 5.7:

1) On observing the results for [0, /+ 45]23 laminate, maximum stress value for an

uncontrolled hole laminate exceeds that of controlled hole laminate by an appreciable

amount of 106.4 MPa.
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2) The trend of increase in the mean value of maximum stress for uncontrolled hole

laminate from that of controlled hole laminate by 11.9 MPa is observed for [0/ 90]4,

configuration also.

3) The mean value of equivalent stress in uncontrolled hole case increases by 3.7 MPa

for [0/90],, laminate, while it is 37.6 MPa for [0, /45],, configuration.

In the next section, a controlled hole laminate subjected to uniformly distributed shear

load is analyzed.
5.5  Shear analysis of notched composite laminates

The lack of understanding, concerning the response of composite laminates containing
discontinuities under shear loading is obvious. It has been shown [1] that a better result
can be achieved in determining the stress distribution for a composite laminate subjected
to a shear load based on the minimum strength model (MSM). As explained in section
5.3.3, the MSM analyzes the strength distribution over the laminate, point-by-point along
the characteristic curve, which is at a distance of the value of characteristic length. The
value of characteristic length (along x-axis) is considered to be independent of the
loading condition for the laminate configuration and thus it is the same as in the case of

uniaxial loading [1].

Due to the unavailability of the experimental test data concerning the ultimate shear load-
bearing capacity of the notched laminate and un-notched laminate, it is not viable to

adopt the average stress criterion to predict the failure of laminates. Thus, maximum
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stress failure criterion is used which assumes that failure occurs when any one of the
stress components in the local co-ordinate system reaches, or is greater than, its

corresponding strength value.

A study has been conducted in the present work to determine the maximum shear stress
developed in the laminate near the hole edge due to the application of the shear load. This

value can be used in the maximum stress criterion.

In the present analysis of composite laminates subjected to a shear load, one must
calculate the stresses developed in each and every layer individually. Accordingly, the
nodal values through the thickness are functions of the in-plane coordinates (x, y) as
shown in Figure 5.16. Each layer of the laminate can be treated either as a mathematical
or a physical layer, giving the flexibility to the analyst to treat several physical layers as a
sub-laminate wherever necessary and model delaminations, ply terminations, ply splits

and so on.

The in-plane displacements and strains (£,&,,¥,.) are continuous through the thickness

of the laminate. Thus the mid-plane strains calculated, would be the strains for the entire
laminate. But the in-plane stresses (o,,0,,7, ) will be discontinuous through the
thickness of the laminate. Thus the stresses are found out individually for each and every
ply separately. To the existing MATALB® program files, two more sub-routines are
added i.e. EMODPS.m and STRESSH.m. Sub-routine EMODPS.m generates an elasticity
matrix for a ply angle in the laminate and STRESSH.m calculates the nodal stresses for

each and every layer in the laminate.
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5.5.1 Shear analysis of [O/ 90L, controlled hole laminate

In the present analysis, a square [O/ 90]4, composite laminate of dimensions

151.6 x 151.6 mm” and material properties described in Table 2.5 is employed. A positive
shear load of 0.886 x 10° N/m is applied on the laminate and the stochastic finite element
analysis is carried out on a controlled hole laminate. It is to be noted that in all further
cases, the above parameters are maintained the same. MATLAB® program is aimed at
calculating the stresses acting in the fiber and transverse directions using the Gauss point
stresses obtained over the entire laminate. Figure 5.16 represents the boundary conditions

employed in the analysis.
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Figure 5.16 Boundary condition and shear load imposed on a square plate.
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The ply numbering starts from the bottom layer as represented in Figure 2.5 and the first
layer is 0° ply as numbered along the vertical axis. Since the analysis is based on the
global co-ordinate system as shown in Figure 5.16, the first ply would actually be 90°
ply. Stochastically simulated data are presented in Figure 5.17. The mean value of

maximum shear stress and its standard deviation are shown in Table 5.8.
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Figure 5.17 Stress analysis of [O/ 90]4, controlled hole laminate subjected to shear
load: (a) mean value of maximum shear stress, (b) standard deviation value of maximum
shear stress.
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5.5.1.1 Observations

Convergence in mean value of maximum shear stress occurs at about 200 simulations.
The mean value of maximum shear stress developed in the laminate is 0.0372 GPa as
shown in Figure 5.17-a. As per the maximum stress criterion, this mean value of
maximum shear stress should be less than the average shear strength value of the
laminate determined experimentally and it is observed [51] to have a value of
0.0333 GPa. It is seen clearly that the mean value of maximum shear stress obtained from
the MATLAB® simulation exceeds the experimentally determined average shear strength
value by a greater margin. Thus the laminate is not in the safe design limits. This implies
that in the shear load analysis a higher factor of safety has to be imposed on the

application of load value.

Reducing the load value by 20 %, which gives a uniformly distributed load value of
0.7088 x 10° N/m, the simulation is carried out. Accordingly the mean value of maximum
shear stress and the standard deviation value observed are 0.02954 GPa and 0.005 GPa
respectively. Since the mean value of maximum shear stress is below the experimental

average shear strength value of 0.0333 GPa, the design is now safe.

5.5.2 Shear analysis of [O2 I+ 45]2: controlled hole laminate

Stochastic analysis is carried out on a [0, /+ 45]25 laminate. All the relevant parameters

considered during the analysis of a [O/ 90]4, laminate are retained in the present analysis.

Figure 5.18 shows the stochastic variation of mean and standard deviation values of the

shear stress parameter.
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Mean value of max, shear

Std. dev. of max.

From Figure S5.18-a,

Mean value of max. shear stress vs No. of simulations for
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is taken as the final value, which is 0.0084 GPa.
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Figure 5.18  Stress analysis of [0, /+ 45]2: controlled hole laminate subjected to shear

load: (a) mean value of maximum shear stress, (b) standard deviation value of maximum
shear stress.

comparing the mean value of maximum shear stress
(0.0306 GPa), with the experimentally determined average shear strength value [51] of
the laminate (0.0333 GPa), it is clear that, the mean value of maximum shear stress is
barely within the limits. Figure 5.18-b shows the standard deviation curve for the shear

stress parameter. Since the variation is small, the value corresponding to 200 simulations



5.6  Shear analysis of uncontrolled hole laminate

5.6.1 Shear analysis of [0/ 90]4, uncontrolled hole laminate

As in the previous cases, the effects of the stochastic variation of the material properties
and geometric variation on the notched laminate are studied considering an uncontrolled
hole laminate subjected to shear load. A layer-wise stress analysis is carried out and the
mean value of maximum shear stress developed in the laminate is determined using the
simulation process. Figure 5.19 shows the variation of the mean value of maximum shear
stress and its standard deviation over the number of simulations under the application of a

UDL value of 0.7088 x 10° N/m.
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Std. dev. value of max. shear stress vs No. of simulations
for [0/90]2s UCHL under shear load
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Figure 5.19 Stress analysis of [0/ 90]4, uncontrolled hole laminate subjected to shear
load: (a) mean value of maximum shear stress, (b) standard deviation value of maximum
shear stress.

5.6.1.1 Observations

From Figure 5.19-a, we notice that, after the initial non-linear trend, at about 150
simulations the mean value of maximum shear stress tries to gain a constant value and
thus a slight linearity in the curve can be observed. Convergence is achieved at 200
simulations thus attaining a value of 0.0316 GPa and corresponding standard deviation
value is 0.0035 GPa. Since the experimentally determined average shear strength value
[51] (0.0333 GPa) is high compared to the mean value of maximum shear stress, the

laminate is in the safe design limits.

5.6.2 Shear analysis of [02 /£ 45]2: uncontrolled hole laminate

In the following section, the variations of the mean values and standard deviations of the
shear stress parameter with the number of simulations are discussed. Accordingly Figure

5.20 shows the variation of the parameter for a [0, /% 45]2: laminate.
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Mean value of max. shear stress vs No. of simulations for
[02/+-45)2s CHL under shear load analysis
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Figure 5.20 Stress analysis of [0, /% 45]% uncontrolled hole laminate subjected to
shear load: (a) mean value of maximum shear stress, (b) standard deviation value of shear
stress.

5.6.2.1 Observations

It is clear from Figure 5.20-a that the convergence of mean value of maximum shear
stress occurs at 0.0309 GPa and correspondingly the standard deviation assumes a value
of 0.0084 GPa. It can be observed from Table 5.8, that the uncontrolled hole symmetric

angle-ply [0, /% 45]2; laminate has a higher value for both the mean and standard
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deviation of the shear stress parameter. The mean value of shear stress is within the limits

of experimentally determined shear strength value [51] of the laminate.

Controlled hole laminate Uncontrolled hole laminate
Lami Mean max. Std. dev. of Mean max. Std. dev. of
a’[x‘nmate shear stress max. shear shear stress max. shear
ype value stress value value stress
(6,..) (GPa) (GPa) (c...)(GPa) | value(GPa)
[0/ 90]4, 0.02954 0.005 0.0316 0.0035
[O2 /x 45]2: 0.030 0.008 0.030 0.008
Table 5.8 Comparison of mean and standard deviation values of maximum shear

stress corresponding to the controlled and uncontrolled hole laminates.

5.7  Bending analysis of composite laminates

The characterization of deformation of composite laminates is not a trivial task and it
calls for a simulation process. For the deformation of laminated structures, the layerwise
distribution of mechanical properties in the thickness direction leads to the fact that
displacement and transverse-stress fields are continuous, but their derivatives with
respect to the thickness co-ordinate at layer interfaces are discontinuous. Modeling of this
phenomenon remains a challenging problem. Failure to capture these characteristics will
result in unreasonable predictions of stress and strain fields in the analysis of multi-
layered composite structures. The evaluations of stress and strain predictions through the
laminate thickness, which are critical in the analysis of structural integrity, demand more

accurate analysis methods.

The MATLAB® program developed for the bending analysis of a composite laminate is
used in the following work for the purpose of simulation. In section 3.2.4.2 an application

problem involving the 4-point bending analysis of a composite laminate without a notch
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is discussed. But in the following sections, simulation is carried out on notched
composite laminates. Thus the existing program has been modified to analyze the stress
distribution over the laminate due to the presence of a notch. Since we lack experimental
results, pertaining to the maximum bending load a laminate can assume, it is not possible
to extend the work based on the average stress criterion. As mentioned in section 5.5, we
adopt the maximum stress criterion and determine the in-plane stresses developed in the
local axes of the laminate due to the application of an out-of-plane load. Simulation is
carried out on symmetric cross-ply [0/9014, and angle-ply [02 /% 45]25 laminate
configurations. It is to be noted that the formulation employs 5 d.o.f. at each and every

node.

5.7.1 4-point bending analysis of [O/ 90]4, controlled hole laminate
In the present analysis, a square cross-ply [0/ 90]4, notched laminate of dimensions 151.6

x 151.6 mm” is subjected to 4-point bending. Two edges of the laminate are completely
fixed, thus all the d.o.f. associated with the nodes lying on the two edges of the laminate
assume a zero value. Application of the 4-point load (two uniformly distributed line
loads) is symmetric about the notch boundary. Since the ultimate load bearing capacity of
the laminate is not known, on an arbitrary basis, a uniformly distributed load of 2 MN/m
is applied. All the in-plane stress component values are calculated and the stress
parameter that is found critical on comparing with the experimentally determined
strength value [51] is further analyzed. Thus the probabilistic quantities are calculated
concerning the stress in the transverse direction (in 1-2 plane), as the chance of failure of

the laminate is more in this direction. Figure 5.21 gives the variation of the mean and
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standard deviation values of the in-plane stress along the transverse direction (in 1-2

plane) at the critical location.

Mean value of stress vs No. of simulations for
[0/90]4s CHL under 4-point bending load
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Figure 5.21 Stress analysis of [O/ 90]4, controlled hole laminate subjected to 4-point
bending: (a) mean values of maximum stress in transverse direction, (b) standard
deviation values of maximum stress in transverse direction.

5.7.1.1 Observations

It is observed that the stress in the transverse direction near the hole edge is high in the
first ply of the [0/ 90]4: laminate. It is clear that the top most layer experiences a
compressive stress and bottom most layer a tensile stress. The mean value of maximum
stress in transverse direction converges at about 200 simulations and the value is

0.0051 MPa. Accordingly the standard deviation value is 0.00097 MPa. It is clear that,
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the values attained are extremely low in comparison with the experimentally determined
strength in the transverse direction, which is 48.28 MPa. This means to say that, a higher

amount of load in the transverse direction can be imposed over the laminate.

5.7.2  4-point bending analysis of [0, /+ 45]2: controlled hole laminate

In the present analysis, the uniformly distributed load is assumed to have a value of
2 MN/m. It is the same value as set for the case of [0/90],, controiled hole laminate. The

probabilistic quantities are calculated and their variation is depicted in Figure 5.22.
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Figure 5.22  Stress analysis of [02 I+ 45]2, controlled hole laminate subjected to 4-point

bending: (a) mean values of maximum stress in transverse direction (b) standard
dewviation values of maximum stress in transverse direction.

§.7.2.1 Observations

It is observed in the [02 /% 45]2: laminate also, that the maximum stress occurs near the

hole edge and in the first ply of the laminate. From Figure 5.22-a it is clear that the

maximum stress value in the transverse direction for the [O2 /% 45]2: laminate converges

at about 200 simulations attaining a value of 0.0356 MPa. It is observed that the

maximum stress value in the case of [0,/ 45]2; laminate exceeds that of the [0/90],,

laminate for the same amount of load by nearly 7 times. It is evident that, in the bending

mode, a cross-ply [0/90],, laminate can resist more amount of transverse load when
compared with an angle-ply [02 /i45]2: laminate. The standard deviation for the

maximum stress in transverse direction as shown in Figure 5.22-b is found to be 0.00036

MPa.
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5.7.3  4-point bending analysis of [O/ 90]4, uncontrolled hole laminate

Simulation is performed on uncontrolled hole laminate to check the influence of the
geometric variations on the stress values in the plies. Figure 5.23 gives the variation of

the stress values in the transverse direction.
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Figure 5.23  Stress analysis of [0/90],, uncontrolled hole laminate subjected to 4-point

bending: (a) mean values of maximum stress in the transverse direction, (b) standard
deviation values of stress in the transverse direction.
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5.7.3.1 Observations

It is clear that the mean value of maximum stress in transverse direction converges at 200
simulations assuming a value of 0.0051 MPa. It can be seen from Table 5.9 that the
achieved mean and standard deviation of maximum stress value in transverse direction
for an uncontrolled hole laminate is same as in the case of controlled hole laminate. Thus

it is evident that the geometric variations of the hole in a [0/ 90]“ laminate will not affect

the stress distribution over the laminate due to the application of a 4-point bending load.

5.7.4  4-point bending analysis of [O2 /* 45]25 uncontrolled hole laminate

The influence of the number of simulations on the probabilistic moments of stress in

transverse direction has been studied for an uncontrolled hole [O2 /% 45]:; laminate and is
shown in Figure 5.24.
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Figure 5.24  Stress analysis of [O2 /+ 45]2, uncontrolled hole laminate subjected to 4-

point bending: (a) mean values of maximum stress in transverse direction, (b) standard
deviation values of maximum stress in transverse direction.

5.7.4.1 Observations

Simulation is carried out on an uncontrolled hole [0, /i45]ZI laminate subjected to

4-point bending load. From Figures 5.24-a and 5.24-b it is observed that both the curves
follow a similar trend. The fluctuations persist even after 200 simulations for both the
quantities. A drastic increase in the mean value of the maximum stress is noticed at about
200 simulations. This is true for the standard deviation value also. But for further
discussions, values corresponding to 200 simulations are taken as the convergence value.
Thus the mean value of maximum stress in transverse direction is 0.0677 MPa and

standard deviation value is 0.00234 MPa.
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Controlled hole laminate Uncontrolled hole laminate
Mean value of Std. dev. Mean Std. dev. value
) max. stress in | value of max. | Vvalue of max. of max. stress
La’;mnate transverse stress in stress in in transverse
ype direction transverse transverse direction
(O nas ) (MPa) direction direction (MPa)
(MPa) (G e ) (MPa)
[O/ 90]4, 0.0051 0.00097 0.0051 0.00115
[0, /% 45]2, 0.0356 0.0035 0.0677 0.00234
Table 5.9 Comparison of mean value of maximum stress in transverse direction

corresponding to the controlled and uncontrolled hole laminates under 4-point bending

Comparing the values from Table 5.9, the difference in the maximum stress values

corresponding to controlled and uncontrolled hole [0/90]“ laminate is not significant.
But an uncontrolled hole [0, /% 45]2: laminate exhibits a higher stress value as opposed

to a controlled hole[0, /+ 45]2: laminate.

5.8 Conclusions and discussions

In this chapter a thorough numerical investigation is performed on notched composite
laminates to study their behavior using random fields for different material and physical
properties to determine the probabilistic quantities of the stress parameters. Analysis is

made for two laminate configurations: a symmetric cross-ply [0/90]“ and an angle-ply

[0, /£ 45]2: laminate respectively.

In each of the laminate configurations, two separate cases of notched laminates are dealt
with: controlled hole and uncontrolled hole laminate cases. Controlled hole laminates

exhibit only the stochastic variation of material properties over the laminate, but
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uncontrolled hole laminate contains both stochastic variation of material properties as
well as geometric variation of the hole. In addition to these variations, an eccentricity of
the hole is also assumed. Accordingly the value of characteristic length for the laminate
follows a stochastic variation, which is brought about using Gaussian distribution

method.

Simulation results showed that, as the number of iterations is increased, a better
convergence of the probabilistic quantities is achieved. It is also shown that the mean and
standard deviation values converge in between 200 to 300 simulations for both the

configurations.

Different load conditions are imposed on the laminates i.e. uniaxial tensile load, biaxial
load, shear load, and bending load. The probabilistic quantities for the stress parameters
are calculated. Equivalent stress value is found out by averaging the stresses over the
value of characteristic length obtained through a number of tests conducted on both the

laminate configurations in the uniaxial load case.

Since the ultimate tensile load value for un-notched laminate is known for both the
laminate configurations [0/90],, and [0, /% 45]2:, average stress criterion is employed to
find out the equivalent stress values for both the uniaxial and biaxial load cases. But the
above-mentioned criterion is not viable for shear and bending analyses. Thus, maximum
stress criterion is used in shear and bending analyses and accordingly the stress
parameters are calculated and compared with the experimentally determined strength

values of the laminate.
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Considering the cross-ply [0/ 90]4, laminate configuration, the equivalent stress and
maximum stress values of the uncontrolled hole laminate under uniaxial and biaxial load
conditions exceed the corresponding values of the controlled hole laminate. Observations
indicate that, the mean value of maximum shear stress determined under shear load and
mean value of maximum stress in the transverse direction determined under bending load

also show a similar trend. Similar conclusions can be derived for [O2 /* 45]2: laminate

configuration also. The increase in the stress value is attributed to the geometric variation
of the hole, eccentricity of the hole and variation in the value of characteristic length,
which are the additional features that an uncontrolled hole laminate exhibits in addition to
stochastic vanation of material properties. Further the reliability indices for both the

laminate configurations are found out and are presented in chapter 6.
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Chapter 6

Reliability Analysis of Notched Composite Laminates

6.1 Introduction

Composite structures can develop local failures or exhibit local damage such as matrix
cracks, fiber breakage, fiber-matrix debonds, and delaminations under fundamental
loading conditions such as tensile, compressive, shear, bending and twisting which may
contribute to their failure. It is shown in the previous chapter that the performance of a
composite laminate with an opening differs from one laminate to another laminate
configuration under various loading circumstances. Thus it becomes necessary to choose
the best laminate configuration for a specific loading condition. At the same time
decision has to be taken on reliability of the laminate for worthiness of intended
application. “Reliability is defined [66] as the probability that a component or device or

system will achieve a specified life without failure under a given loading .

It is to be noted that in order to evaluate the reliability of any structure, two parameters
are required, for instance, one representing the strength and the other representing the

stress developed due to the external loading. In the present case, equivalent stress(c,,, )

and maximum stress (o__ ) of a notched laminate are used as parameters for evaluating

max
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the probabilistic reliability of anisotropic laminates with respect to stress applied (o, )

over an un-notched laminate.
6.2 Strength distribution of composite laminates

The analysis and design of composite structures require the input of reliable experimental
data. One of the major objectives of testing composite materials is the determination of
the un-notched and notched laminate strength values and hence the exact distribution of

characteristic length data for individual laminates.

Probability distribution arises from experiments where the outcome is subject to chance.
The nature of the experiment, dictates which probability distribution may be appropriate
for modeling the resulting random outcomes. In the present work, the Gaussian
distribution method is used to generate probability density function (PDF) for the stress
parameters and hence to calculate the reliability. Probability density function is the basic
tool for codifying and communicating uncertainty about the value of a continuously

varying variable. This information together with the distribution of the (o,,, ) obtained

using the stochastic finite element analysis can then be used to determine the reliability of

the laminate.
6.3 Stress distribution in notched laminates

The main purpose of stochastic analysis when both the parameters i.e. equivalent stress

(o, ) and applied stress on un-notched laminate (o) are involved, is to determine the

equ

reliability considering both the distributions which are known at a critical location in the
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component. The distributions followed by each of these two representatives might be

quite different from each other and they can be represented as

F=Al,_.s, ) and F, =By, s, ) (6.1)
in which 4 and B represent the two different distributions followed by (o, ) and the

(o, ) respectively.

6.4 Gaussian distribution

The Gaussian distribution is a very important statistical distribution. [t is an
approximation to the distribution of values of a characteristic. The exact shape of the
normal distribution depends on the mean and the standard deviation of the distribution.
The standard deviation is a measure of spread and indicates the amount of departure of
the values from the mean. All normal distributions are symmetric and have bell-shaped
density curves with a single peak and tails go to infinity at both ends. The probability

density function of the normal distribution is given by [67].

1
oN2x

exp('("“f 20%) ,—0< X< (6.2)

flx)=

where
M 1s the mean value

o 1s the standard deviation

We have here two populations, a population of strengths and a population of stresses. If
we assume that both are normally distributed, there is a possibility that the forward tail of

the stress distribution may overlap the rearward tail of the strength distribution and the
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result is some failures. To determine the reliability, we combine both populations, and

compute the standardized variable z,. Corresponding standardized variable z, is,

Ho, " Ho o
zg=t= 2 (6.3)
o o, +°'<ra,..,..,,.
where

M, is the mean value of stress applied over the un-notched laminate, H,,,, .. Is the

mean value of equivalent stress or the mean value of maximum stress of a notched

laminate, o, is the standard deviation value of the applied stress over the un-notched

laminate and o is the standard deviation value of the equivalent stress or

equ / max

maximum stress of a notched laminate.

Entering the value z, in Table A-10 [67] the area under the normal distribution curve
corresponding to the combined population is found out. Equation (6.3) enables us to
determine the standardized variable z, corresponding to any desired reliability. Life of
the laminate is recognized as a random variable, and the reliability function is related to

the standardized variable by,

R=1-z, (6.4)

161



6.5 Reliability calculation

In this chapter two laminate configurations i.e. [0/90],, and [02 /£ 45]2, are analyzed by
subjecting them to uniaxial load condition. To have a better understanding on the load
bearing capacity of the laminates, how reliable and safe the design is, laminates are
loaded with different values of factor of safety on the ultimate load and stochastic

simulation is performed.

6.5.1 Reliability of [0/90],, laminate under uniaxial load

As an example, a [0/90],, laminate configuration is considered for the stochastic
simulation. Both the controlled and uncontrolled hole laminate cases are analyzed by
subjecting them to uniaxial tensile load. Probabilistic quantities such as mean and

standard deviation values of equivalent stress (o,,) parameter considered for the

judgment of failure of laminate are calculated. Section 6.4 provides a detailed description
of the calculation of reliability based on the Gaussian distribution method. Proceeding in
a similar manner, reliability is calculated for both controlled and uncontrolled hole

laminates and is presented in the last column of Tables 6.1 to 6.4.

The effect of decreasing the factor of safety on the area of interference, obtained by
superposition of distribution curves of equivalent stress and un-notched laminate strength
is shown pictorially in Figures 6.2 and 6.3. Figure 6.2 shows the distribution curves
developed for the two stress parameters at a factor of safety value of 1.2 for an

uncontrolled hole [0/90],, laminate subjected to uniaxial tensile load. Figure 6.3 shows
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the distribution curves developed for the two stress parameters at a factor of safety value

of 1.1 for an uncontrolled hole [0/90],, laminate.
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From Figures 6.1 and 6.2, it is seen that for a factor of safety of 1.2, the area of
interference between the two stress parameters is less than the area of interference when
factor of safety is 1.10. Thus by increasing the factor of safety, it is possible to make the
area of interference to be close to zero, thus preventing the failure that might be caused

while in use.

Table 6.1 lists the values associated with a controlled hole laminate and Table 6.2

contains the values pertaining to uncontrolled hole laminate. In these tables R, refersto

the reliability calculated using the equivalent stress parameter.

Factor of safety Load
(F.O.S) (MN/m) Hog (GPa) O on (GPa) Rm
1.45 0.886 0.6910 0.0323 99.99
1.20 1.060 0.7821 0.0114 99.08
1.15 1.113 0.8265 0.0189 95.45
1.10 1.160 0.8633 0.0235 87.70
1.05 1.219 0.9091 0.0249 70.19
1.00 1.280 0.9381 0.0393 55.17

Table 6.1 Reliability of [0/90],, controlled hole laminate under uniaxial load
condition

Factor of safety Load H.q,
1.45 0.886 0.7310 0.0405 99.65
1.20 1.060 0.8111 0.0931 88.11
1.15 1.113 0.8450 0.0885 81.86
1.10 1.160 0.8884 0.0948 69.50
1.05 1.219 0.9222 0.0725 60.26
1.00 1.280 0.9411 0.0362 53.59

Table 6.2 Reliability of [0/90],; uncontrolled hole laminate under uniaxial load
condition

Using the values from Tables 6.1 and 6.2, a plot of tensile load along x-axis and

reliability along y-axis is prepared and this is shown in Figure 6.3.
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Reliability comparison chart for [0/90)4s
under uniaxial load

99.99 99.08
95.45

90 N7 T—
a8.11 N\

8

Reliability (Percentage)

0.88 0.98 1.08 1.18 1.28 1.38
Tetlsi]e load (MN/m)

—e— Controlled hole laminate —#— Uncontrolled hole laminate

Figure 6.3  Plot of reliability curves for controlled and uncontrolled hole laminates for
[0/90],, laminate configuration

From Figure 6.3, it is evident that the reliability of the uncontrolled hole laminate has
reduced drastically from the controlled hole laminate case and is predominantly seen
between the factor of safety values of 1.45 and 1.05. Thus it is not advisable to consider
the ideal controlled hole laminate condition in practical applications subjected to uniaxial
tensile load. The geometry perturbation around the circumference of the hole, eccentricity
of the hole and stochastic variation in the material properties together enhance the
stresses around the hole region of the laminate. This in tumn increases the probability of
failure of the laminate. Thus, proper precautions are to be taken while designing a

symmetric [0/90],, laminate in tensile mode, as it fails much earlier than expected.
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6.5.2 Reliability of [0, /* 45]2: laminate under uniaxial load

The stochastic simulation is carried out on a laminate of [O2 /x 45]23 configuration.

Reliability is calculated by slowly increasing the uniaxial distributed tensile load acting
on the laminate. Analysis is carried out on both controlled and uncontrolled hole

laminates. Once again the mean and standard deviation values of equivalent stress (a,,, )

parameter are found out. Table 6.3 lists the probabilistic parameter values associated with
a controlled hole laminate and Table 6.4 contains the values obtained for uncontrolled

hole laminate.

Factor of safety Load

(FOS) (MN/m) Uy, (GPa) C o (GPa) R,
1.45 1.131 0.6726 0.0211 100.0
1.20 1.366 0.6914 0.0169 100.0
1.15 1.426 0.8500 0.0084 99.9
1.10 1.490 0.9217 0.0125 92.2
1.05 1.561 0.9667 0.0011 62.9
1.00 1.640 1.0287 0.0266 14.9

Table 6.3 Reliability of [02 /% 45]23 controlled hole laminate under uniaxial load
condition

Fos Y | et | He (GPa) | 0, (GPa) | R,
1.45 1.131 0.6930 0.0314 100.0
1.20 1.366 0.8470 0.0423 99.7
1.15 1.426 0.8943 0.0253 96.7
1.10 1.490 0.9763 0.0469 51.9
1.05 1.561 0.9914 0.0038 38.2
1.00 1.640 1.0297 0.0236 15.6

Table 6.4  Reliability of [0, /+ 45],, uncontrolled hole laminate under uniaxial load
condition
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Figure 6.4 depicts a plot of tensile load shown along the x-axis and reliability along the y-

axis. The values listed in Tables 6.3 and 6.4 are used in achieving the following plot.

Reliability comparison chart for [02/+-45]2s
under uniaxial load
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100 -
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Figure 6.4  Plot of reliability curves for controlled and uncontrolled hole laminates for
[O2 /* 45]2: laminate configuration

Observing Figure 6.4, it is clear that the reliability of the controlled hole laminate and the
reliability of the uncontrolled hole laminate assume a similar path till a uniformly
distributed load of 1.426 MN/m is reached. Later on, with the increase in load value, the
two curves diverge and this trend is observed till a load value of 1.561 MN/m is imposed
on the laminate. Increasing the load value further, both the curves indicate nearly the
same reliability. Also, it can be observed that the gradient of the reliability curve for
controlled hole laminate stabilizes after 1.426 MN/m load value and the variation follows
an almost linear trend. Contrarily the reliability curve for uncontrolled hole laminate
assumes a downward slope and with the increase in load attains a better reliability value.

Thus in the design of [O2 /* 45]2: laminate the region between 1.426 MN/m and 1.64
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MN/m load value is considered to be sensitive and care must be taken to include the

reduction in the reliability.
6.6 Conclusion and discussions

In the present chapter a reliability study is conducted on [0/90],, and [02 /+ 45]23

laminate configurations. A stochastic simulation is carried out on both the laminates
subjected to uniaxial and biaxial load conditions. A safety factor value is assumed on the
ultimate load bearing capacity of the laminate and stochastic finite element analysis is
carried out. The standardized variable calculation is made using Gaussian distribution
method and hence the reliability is found out. A series of reliability values are obtained
by varying the safety factor value. Following observation is made on both controlled hole

laminate and uncontrolled hole laminate cases.

From the Figures 6.3 and 6.4, we can see that for [0/90],, and [02 /x 45]ZI laminates
under uniaxial load mode, the uncontrolled hole laminate provides a lesser reliability as
against controlled hole laminate. The effect is more predominantly seen in [O2 /x 45]2:
laminate with a maximum reduction in the reliability by 40.3% over the load range. Thus
while designing the laminates precautions must be taken to consider this reduction in
reliability, which can be solely attributed to the geometric variation around the hole

region and to the eccentricity of the hole from the center. Further, the reliability

calculations can be extended to other load conditions employed in the present thesis.
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Chapter 7

Conclusions and Recommendations

In the present thesis work, stress distributions in notched isotropic plate and notched
composite laminate are determined using the stochastic finite element methodology. A
MATLAB® code is developed, which reflects the stochastic variation of the material
properties and imposes the geometric variation on the laminates. The program is capable
of handling both the in-plane and out-of-plane load analyses. First order shear
deformation theory is adopted to take care of the transverse shear deformation in the

laminates.

The flowchart of the program is shown in Chapter 2, which pertorms the in-plane
analysis for a number of simulated laminates and returns the mean and standard deviation
values of the stress parameter. Program validation is demonstrated using suitable example
problems on different laminates at appropriate stages. Similarly, the program validation is

performed for an out-of-plane load analysis in Chapter 3.

The present work considers two laminate configurations to study the stress concentration

effects on the notched laminates: Symmetric cross-ply laminate [0/ 90]4s and angle-ply
laminate [02 /x 45]_73. The value of characteristic length is calculated based on the

average stress criterion. An extensive experimental investigation is performed on notched
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and un-notched coupons subjected to uniaxial tensile test. Coupons are prepared using
NCT-301 graphite-epoxy and corresponding ultimate tensile load values are recorded. It
is observed that, the ultimate tensile load bearing capacity for an angle-ply laminate

[0 5 /£ 45] 5 is more in both notched and un-notched laminate categories when compared

with a cross-ply laminate [0/ 90]43 .

Stochastic simulation is performed on the laminates subjected to various loading
conditions viz. uniaxial load, biaxial load, shear load and bending load. The mean and
standard deviation of equivalent and maximum stress parameters are calculated for
uniaxial and biaxial load cases. It is found that, the uncontrolled hole laminate develops
higher stress values due to the presence of the geometric variation in the radius of the
hole and eccentricity of the hole from hole center in addition to the stochastic variation of
material properties. A layer-wise analysis is performed in shear and bending load cases,
as average stress criterion is not applicable. Thus maximum stress criterion is employed.
Shear stress and stress in the transverse direction are calculated for shear load and
bending load analysis respectively. It is observed that an uncontrolled hole laminate
possesses higher stress value as against controlled hole laminate in shear and bending

load analysis also. Observations indicate that, a [0/ 90]4s laminate can resist higher

bending load when compared with [0, /% 45 ] s laminate.

Finally in Chapter 6, reliability study is conducted. The Gaussian distribution is used to
model the distribution of a set of randomly distributed values. The distributions thus
obtained are used to compute the reliability of the orthotropic laminates under uniformly

distributed tensile load. The reliability graph depicting the variation in the reliability of
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the laminate with the change in the applied load is obtained for both controlled and

uncontrolled hole laminates. It is observed that the uncontrolled hole [0, /i45]_,s

laminate experiences a sudden reduction in the reliability value, when a factor of safety
of 1.15 on the ultimate load is imposed under uniaxial tensile load. But the reliability

curve for an uncontrolled hole [0/ 90]4S laminate runs almost parallel to the controlled

hole laminate but with a considerable reduction in the reliability value.

The thesis can be further extended on the following topics, which will constitute the
future research work:

* A three-dimensional model can be developed which offers better features in the
analysis and thus helps in arriving at a more accurate resulit.

* Analysis can be extended to different types of notch opening shapes in the
laminate such as elliptical and triangular shapes.

* Further, testing can be conducted on a laminate having a configuration of
[0/ 90/+ 45]_73 which brings in a combination of 0°,90°, and + 45° ply orientations.

* Reliability charts for the cases involving biaxial, shear and bending loads can be

developed.
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APPENDIX -A
ALl Finite element formulation for isotropic plates

The strain matrix for 2-D finite element formulation can be expressed as

{g}(e)z{@ o (@ ﬁ)}r(e)z[B](e){d}(e) ALl

+_
o odv \oy ox

in which the [B](’) matrix relates the element nodal displacements to the element

strains and is given by

IE

ox

[B]9 =] o [N]© (A1.2)
9
| Oy

&’lm@lm o

The derivatives of the shape functions are expressed in terms of the local co-ordinates

and they can be obtained by using the chain rule of partial differentiation as

ON, =6N,a_x+6N,.2
0§ ox o oy ¢
ON, =6N,.E+6N, 9
on 0x dn &8y dn

(AL.3)

The above expressions can be expressed in the matrix form as
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N [ax a9 (aw®

o0& o, 0 Ox
aN© [~ aﬁ af, aN'® (Al.4)

on on on oy

In the above, the matrix relating the derivatives of the shape functions with respect to
the local co-ordinates to the derivatives of the shape functions with respect to the

global co-ordinates is called as the Jacobian matrix of transformation and is denoted

by [/]. Thus the Jacobian of transformation is given as,

2 Q (e)
NI Jn|_|8E o&
b= % % L
on 0On

The components of the Jacobian matrix are calculated using the shape functions and

the nodal co-ordinates. For instance,

ax Num.ofNodes a N,'
Ju="s=

65 = L —a?x,. (Al 6)
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APPENDIX -B

MAIN PROGRAM FOR ISOTROPIC PLATES

clear all;
format long;

dummy=0; % To pass a dummy variable to GETDAT & GETARR

nelem=0; ndofn=0; node=0; ngaus=0; ntype=0; mmats=0; numnp=0; nstre=0; nstr1=0; props =0;
Inods = 0; coord = 0;

%% %%%%%%%%%%  GETDAT - Get are relevant scalar variables
[nelem,ndofn,nnode,ngaus,.ntype, mmats,numnp,nstre,nstr1 [=GETDAT(dummy);

%% %%%%%%%%%%  GETARR - Get all relevant data in Array from
[props,Inods,coord]=GETARR (dummy);

%% %% % %% %%%%%%%%%%%% ESTABLISH THE NODAL CONNECTIVITY
nevab=ndofn*nnode;

{Im,id] = ELCON(ndofn,nnode,nelem,numnp,Inods);

%%%%%%%%%%%%%% START COMPUTING THE STIFFNESS MATRICES
for ielem = 1 : nelem

matno(ielem) = 1;
end

globK = zeros(numnp*ndofn); % Initialize the Global "K" matrix.
for ielem = 1 : nelem % Loop over NELEM

Iprop = matno(ielem); % I[nitialize properties for that element.
%%%%%%%%%%%  Get the coordinates of each node in the element

for inode = 1 : nnode
Inode = round(abs(Ilnods(ielem,inode)));
for idime = 1 : ndofn
elcod(idime,inode) = coord(Inode,idime);
end
end

shape = zeros(8,1);

deriv = zeros(2,8);

Xxjacm = zeros(2,2);

cartd = zeros(2,8);

estif = zeros(nevab,nevab);

%%%% %% %% %% % %% %% %% %%%% Evaluate Elasticity Matrix for PLANE SITUATIONS
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[dmatx ] = MODPS(ntype,mmats,lprop,props);
thick = props(lprop.3);
%%%%% %% %% %% %% %% %% %%%%%%  Start GAUSSIAN INTEGRATION
kgasp = 0;
[posgp,weigp] = GAUSSQ(ngaus);
for igaus = 1 : ngaus % Loop over each Gauss point along "XZI" axis
% 1.e., horizontally, starting from left.
forjgaus =1 :ngaus % Loop over each Gauss point along "ETA" axis
% i.e., vertically, starting from bottom.
kgasp = kgasp+1;

%%%%%%%%%% Evaluate the Shape functions,derivatives,dvolu.. etc.

exisp = posgp(igaus);
etasp = posgp(jgaus);

[shape,deriv] = SFR2(exisp,etasp);
[xjacm,djacb,gpcod,cartd]=JACOB2(ielem.kgasp,ndofn,nnode,shape deriv.elcod);

dvolu = djacb*weigp(igaus)*weigp(jgaus);

if thick>0.0
dvolu = dvolu*thick;
end

%% %% %% %%%%%%%% Evaluate the 'B’ matrix and 'DB' matrices

[bmatx] = BMATPS(nnode,cartd);
[dbmat] = DBE(dmatx,bmatx);

%%%%%%%%%%%%%%  Calculate the element stiffness matrices
estif = estif + transpose(bmatx)*dbmat*dvolu;
end
end
%%%%% Endof GAUSSIAN INTEGRATION
%%%%%  Assemble the element stiffness matrices
[globK] = ASMBLK(ielem,nevab,Im,estif.globK);

end

%%%%  END OF ASSEMBLY FOR "estif” OF "ielem”
iRuns = 1;

%%%% Read the nodal loads and assemble into
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%% % %% Global Force Vector

[eload]=LOADPS(nelem,numnp,nnode,nevab.ndofn,ngaus,posgp,weigp,coord,lnods, matno,props,iRun
s);

[asmblF] = FORCE(nelem,nevab,lm,eload);

%%%%%%%%% Solve for Displacements
[displ,eldis] = BCSOLVE(asmblF globK,lm,nelem nevab,numnp,nnode,iRuns);

%%%%%%%% Solve for GAUSS POINT STRESSES

strsp=zeros(nstre,ngaus*ngaus,nelem);
sgtot=zeros(nstrl ,ngaus*ngaus,nelem);

[sgtot,strsp}=STREPS(nelem,matno,props,ntype,mmats,nnode,ndofn,coord,ngaus,nstre,nevab,nstrl .eld
is,Inods,iRuns);

%% %% % %% %% %% % %% % %6 % %% % %% %% %% %% % % % %% %6 % % % %% % % % %% % %% %
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APPENDIX-C

C1. Stress concentration effects in composite laminate

The solution for the o component can be written in the following form

o; =2Re[4(z, )+, (z, )] (C1.1)

7, = -2Rely, ¢,(z, )+/‘2¢2. (=)
where
4, and u, are the principal complex roots of a characteristic equation, and

¢, and ¢, are the corresponding complex potentials; the prime symbol denotes

differentiation with respect to z, and :z, respectively.

The componenets of displacements due to the circular opening field can be expressed

as:

u' = 2Re[p,¢,(21)+P3¢3(33 )]

(Cl1.2)
v' =2Re[q,4,(z,)+9,0,(z,)]
where
u"andv" are local displacements in the 1 and 2-axes, respectively and,
Py =anfy; +ay —agy, k=12
(Cl1.3)

a,,
g, =M, +—=—a, k=12
k
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where

a;,i,j=12,6 designate the laminate compliance with 1 and 2 axes being parallel to

the 1 and 2-axes of the opening respectively.

In equation (C1.2) ¢,and @, denote the derivatives of ¢ ,and ¢, with respect to z; and

z, respectively, and

- |1
bz, =ﬂ—'—“#-—‘z (Cl1.4)
1 2 1
¢3(33 =M&L (C1.5)
1~ Hy 6
where
o, sin
a, =- "7 ¢(asinqo—ibcos¢) (CL.6)
O, cos
b == (o(asin(a—ibcomp) (CL.7)
and
z Hyzf —at - ulb?
=t ‘/a* iZb A2 po12 (C1.8)
ad:
where
y=x+puy k=12 (C1.9)

Substituting equations (C1.4-C1.9) into equation (C1.1) yields

o, = g, Re{é‘x[—/‘f&{l_l +'u226342_l]}
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o; =5, Rels|[-8,4]" + 8,671}
rl.l = _o_-_v Re{§| [—4, 524'1-l + ,uzasgz-l ]}
u'=0, Rebl[pla-tgl-l - Pzasgz‘l]}

vi= E.v Re{Jl [q1§441-l _qlé‘Sé’Z-I ]}

where
asinp —ibcosg
o, =
H — 4
5, = co§¢ +’,u2 sir:(p7
Jz -a® ~ b’
5, = COSQ + 44, Sing

Vi -a® - 3’
0, =Ccos@+ i, sing

O; =Ccos@+ 4, sing
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APPENDIX-D

SUB-ROUTINE: AOCAL.m

%%%%%% %% %% %% %% %% % % %% %% % %% %% %% %% %
% Sub-routine to calculate the value of characteristic length %
%%%%%% %% %% %% %% %% %6 %% % %% %% %% % %% %% %

ChLen = zeros(25,1);
% [02/+45]4S EXPERIMENTAL OUTPUT RESULT

sigmaN = 1¢9*[0.8536
0.8084
0.8461
0.7988
0.7688
0.8660
0.7751
0.8549
0.7863
0.8325
0.7993
0.8082
0.8453
0.8463
0.8399
0.8544
0.8419
0.8039
0.7855
0.8608
0.6919
0.8679
0.7540
0.8213
0.7755); % Ultimate tensile stress of the notched laminate

sigO = 1€9%[0.9774

0.9766
1.0699
0.9775
0.9785
1.0519
0.9863
1.0482
1.0069
0.9989
0.9499
0.9675
0.9598
0.9699
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0.9726
1.0218
0.9862
0.9840
1.0008
0.9854
1.0094
0.9636
0.9567
1.0156
0.9618]; % Ultimate tensile stress of the un-notched laminate

fori=1:25
ratio = (sigN(i)/sigO(i));

dmatx = 1.0e+010 *[ 24120 1.7159 -1.5281
1.7159 8.5267 -1.5281
-1.5281 -1.5281 1.8767]; % Equivalent elasticity matrices.

t=0.002; % Laminate thickness
A= dmatx*t ; % Axial stiffness matrix
a=inv(A);
Ktinf= 1+ sqrt((2/A(2,2))*( sqrt(A(1,1)*A(2.,2)) - A(1,2) + ( A(1,1)*A(2,2) - A(1,2)"2)/(2*A(3.3)))) ;
% Equation 3.70 SCTan

R =0.00254; % Radius of the hole in meters
right=0;
for ao = 0.001 : 0.00001 : 0.1
if (right ~= ratio)
xzi= R/(R+ao);
Nu = (2*(1-xzi));
den = (2 - xzi™2 - xzi™4 + (Ktinf-3)*(xzi"6 - xzi"8));
right = Nu/den;
if (right > ratio)
ChLen(i) = ao ;

break,end
end
end
end
ChLen % Display all the values of characteristic length
mean({ChLen) % Mean of characteristic length value
std(ChLen) % Standard deviation of characteristic length value
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APPENDIX-E

MAIN PROGRAM FOR COMPOSITE LAMINATES

%%%%%%%%%%%%%%%%%%%%%%6%%% %% %% %% %%6%%% %% %% %% %% %% %% %%

%%%%%%%%%% MODIFYSTIFPS TO CALCULATE THE %%%%%%%
% %%%%%%%% DISPALCEMENT AND STRESSES FOR IN-PLANE AND  %%%%%%%
%% %%%%%%% OUT-OF-PLANE ANALYSIS %%%%%%%%%%%%

%%%%%%%%6%%6%%% % %% %% %% % %% %% %% %% %% % %% %% % % % %% %% %% %% %% %
clear all;

tic;

format long;

dummy=0; nelem=0;

ndofn=0; nnode=0; ngaus=0; ntype=0; nmats=0; numnp=0; nstre=0; nstr1=0; props = 0; Inods = 0;
coord = 0;

0 ¥* *kkEkk * 1|=*V/o
% SELECT THE TYPE OF ANALYSIS: %
%vvlwll *kkkRkkkkk¥ /6

k = menu (CHOOSE THE TYPE OF ANALYSIS'IN-PLANE ANALYSIS''OUT-OF-PLANE
ANALYSIS");

ifk—1
fprintf("\n WORKING ON OUT-OF-PLANE ANALYSIS \n);

m = menu('OPENING TYPE'CIRCULAR );

plyconfig = menu('PLY CONFIGURATION', [02/+-45]2S' [0/90]4S" [0/90/+-45]2S");

%% %% %% %% %%%% bendGETDAT - Get all relevant scalar variables  %%%%%%%%

nlami = 200;
for ilami = | : nlami
kgaus = 0;
{nelem,ndofn,nnode,ngaus,ntype,nmats,numnp,nstre,nstrl ntotg,aW_Ratio, WL _Ratio,ctnode]=
bendGETDAT(plyconfig);

fa = fopen('propgbend.m’,'w’);

fprintf{fa,\n\n\t\t\t \n');
fprintf(fa,' \t properties at each and every gauss point for bending’);
fprintf(fa,\n\t\t\t \n\n");

fprops,tetag,plytk,matno,propgbend,Inods,coord, EThetaPly.distriao] =
bendGETARR(nelem,ngaus,ndofn,nnode. ntotg,aW Ratio, WL_Ratio,ctnode,nlami,ilami,m,plyconfig);
save all;

fclose('all’);

nevab = ndofn*nnode;

globK = zeros(numnp*ndofn); % Initialize the Global "K" matrix for each element
B=zeros(nstre,numnp*ndofn);

b=zeros(nstre,ndofn*nnode);
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(lm,id] = bendELCON(ndofn nnode,nelem.numnp,Inods);

%%%% START COMPUTING THE STIFFNESS MATRICES %%%%%
for ielem = 1 : nelem % Loop over NELEM
%%%%%%  Get the coordinates of each node in the element %%%%%%%

for inode = 1 : nnode
Inode = round(abs(Inods(ielem,inode)));
for idime = 1 : (ndofn-3)
elcod(idime,inode) = coord(Inode,idime);
end
end

shape = zeros(8,1);

deriv = zeros(2,8);

xjacm = zeros(2,2);

cartd = zeros(2,8);

estif = zeros(nevab,nevab);

%%%%%%%  Start GAUSSIAN INTEGRATION  %%%%%%%%
kgasp =0; % Keep track over the gauss points in each element.

[posgp,weigp] = GAUSSQ(ngaus);

for igaus = | : ngaus % Loop over each Gauss point along "ZETA" axis
% i.e., horizontally, starting from left.
for jgaus = 1 : ngaus % Loop over each Gauss point along "ETA" axis

% i.e., vertically, starting from bottom.
kgasp = kgasp + |;
kgaus = kgaus + 1;
Iprop = matno(kgaus);
ThetaPly = tetag(kgaus,:);
thick = sum(plytk(kgaus,:));

exisp = posgp(igaus);
etasp = posgp(jgaus);

[wlbar,wbar,W matxA,matxB,matxD,matxF,Dmatx,bendEx] =
bendMODPS(ntype,nstre,nmats,lprop,propgbend, ThetaPly kgaus);

%%%%%% Evaluate the Shape functions,derivatives,dvolu  %%%%%%

[shape,deriv] = SFR2(exisp,etasp);
[xjacm,djacb,gpcod,cartd]=bendJACOB2(ielem,kgasp,ndofn,nnode,shape.deriv.elcod);
dvolu = djacb*weigp(igaus)*weigp(jgaus);

if thick > 0.0
dvolu = dvolu*thick;
end
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%%%% Evaluate the 'B' matrix and 'DB' matrices %%%%%

[bmatx] = bendBMATPS(nnode,cartd,shape);
[dbmat] = bendDBE(bendEx,bmatx);

%%%%%%  Calculate the element stiffness matrices %%%%%%% %
estif = estif + transpose(bmatx)*dbmat*dvolu;

%%%%%% End of GAUSSIAN INTEGRATION %%%%%%%
end
end
if ielem > 1
[B]=[B bmatx];
end

if ielem==1
[B]= [bmatx];
end

%%%  Assemble the element stiffness matrices %%%%

globK] = ASMBLK (ielem,nevab,lm,estif,globK);
end

%%%%%  END OF ASSEMBLY FOR "estif* OF "ielem" %%%%%%%%

foriRuns=1:3

%%%%%% Read the nodal loads and assemble into %%%%%
%%%%%% Global Force Vector %%%%%
[eload] =

bendLOADPS(nelem,numnp,nnode,nevab,ndofn,ngaus,posgp,weigp,coord,Inods,matno,props,iRuns,pl
yconfig);

[asmblF] = FORCE(nelem,nevab,lm,eload);
%%%%%  Solve for Displacements  %%%%%

[globK,FxdofData,Fxdof,temp!,displ,eldis] =
bendBCSOLVE(ndofn,coord,asmblF,globK,lm,nelem,nevab,numnp,nnode,iRuns,plyconfig);

%%%%% Solve for GAUSS POINT STRESSES  %%%%%

strsp=zeros(nstre,ngaus*ngaus,nelem);
sgtot=zeros(nstre,ngaus*ngaus,nelem);

sgtot,strsp J=bendSTREPS(nelem,matno,props.propgbend,tetag, ntype,nmats,nnode,ndofn.coord,ngaus,
nstre,nevab,nstrl eldis,Inods,iRuns);

end
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%** * s ** didiaditdiiit ittt %

% CALCULATION OF STRESSES IN INDIVISUAL LAYER UNDER BENDING LOAD %

% *EExhkRkEERERkEEE *k¥ FhEpEREERE kS *¥ Yo

% The displacement and strains are continuous through the thickness of the laminate.

% Thus the mid plane strains and displacements are the same for entire laminate.

% But the stresses vary through the thickness of the laminate. Thus the stresses are

% found out individually for each and every ply in the configuration. Files related

% to shear analysis :EMODPS,STRESSH :Maximum stress criterion is used for the analysis.

elestress = zeros(nstre,numnp*ndofn);

gsig = zeros(8,40); % gsig : Gaussian stress for an element
eldistrans = (eldis'); % to store the transformed matrix of elemental displacement values
strain=zeros(8,1); % to store the strain values obtained by [B] [d]

sigmal26 = zeros(8,1);

if (plyconfig == 1)
fprintf("n WORKING ON [02/+-45]2S \n');

ThetaPly=[0045-450045-450045-450045-450045-450045-450045-45 ..
0045-450045-450045-450045-450045-45-454500-454500-45450 ...
0-454500-454500-454500-454500-454500-454500-454500-454500-45
45001;

end

if (plyconfig = 2)

fprintf("\n WORKING ON [0/90]16S \n');

ThetaPly=[0900900900900900900900900900900900900900900900 ...
9009009009009009009009009090090090090090090090 ...
0900900900900900900900900900900900900900900900 90090 0];

end

if (plyconfig == 3)

fprintf("\n WORKING ON [0/90/+-45]2S \n');

ThetaPly=[09045-4509045-4509045-4509045-4509045-4509045-450 ...
9045-4509045-4509045-4509045-4509045-4509045-45-4545900 ...
-4545900-4545900-4545900-4545900-4545900-4545900-4545900 ...
4545900-4545900-4545900-4545900];

end

EThetaPly = [ThetaPly]*p1/180;
tlami;
for nplies = 1: max(size(ThetaPly))
% stresses and its orientation with respect to vertical axis are calculated in each and every layer

[bendEx] = EMODPS(nstre,EThetaPly,nplies);

[gsig,strain]= STRESSH(B,eldistrans,bendEx,nelem);
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% sub routine to find the gaussian stress for the elements in the mid plane.
gsig;

% this portion of the program calculates the stresses, layer wise using the gauss point stresses over the
entire Imainate

for ielements = 1: nelem
=4

m = cos(EThetaPly(nplies));
n = sin(EThetaPly(nplies)) ;

fstrsply(1,ielements) = m"2 * gsig(j,ielements) + n*2 * gsig(j+1.ielements) + 2*m*n *
gsig(j+2,ielements) ; % sigma 1 : stress in the fiber direction

fstrsply(2,ielements) = n"2 * gsig(j,ielements) + m"2 * gsig(j+1,ielements) - 2*m*n *
gsig(j+2,ielements); % sigma 2 : stress in the matrix direction

fstrsply(3,ielements) = -m*n * gsig(j,ielements) + m*n * gsig(j+ | .ielements) + (m"2 - n*2) *
gsig(j+2,ielements); % sigma 1 : shear stress in the ply

end
nplies;
maxstress = max(max(max(fstrsply(:,:))))

% represents the maximum stress in each and every layer of the laminate

if nplies > |
[elestress]=[elestress fstrsply];
end
if nplies=1
[elestress] = [fstrsply];
end
stress1(ilami, 1) = max(elestress(1,:)) % Maximum stress in fiber direction for a laminate
stress2(ilami, 1) = max(elestress(2,:)) % Maximum stress in transverse direction for a laminate

shearstress12(ilami, 1) = max(elestress(3,:)) % Maximum shear stress for a laminate

end
end

96*****##****##t#*#*#****t#*#***t#*#****t*

% OUTPUT FOR BENDING LOAD ANALYSIS

96#**##**#******##*****##**##*#***#t******

if (plyconfig = 1)
fprintf("\n print [02/+-45]2S \n');

fm = fopen('BPLYSTRESS0245.m’,'w");
fprintf(fm,’ \t local co-ordinate stresses for nlaminates');

fprintf{fm,\n \t STRESS 1 STRESS 2 SHEAR STRESS 12 \n');
fprintf{fm.\n \t —— ),

194



for i = 1: nlami
fprintf{fim,"n NLAMI : %d %I13.5f MN/m2 %I3.5fMN/m2 %I3.5{MN/m2 "', ...
1,stress1(i)/1e6,stress2(1)/1e6,shearstress12(i)/1e6);

end
save all;
fclose('all’);
end
R * *hhh

if (plyconfig = 2)
fprintf("\n print [0/90]2S \n");

fm = fopen(BPLYSTRESS090.m','w);
fprintf(fm,’ \t local co-ordinate stresses for nlaminates');

fprintf{fm,\n \t STRESS 1 STRESS 2 SHEAR STRESS 12 \n');
fprintf{fm,\n \t \n");

fori=1: nlami
fprintf(fm,"\n NLAMI : %d %I13.5fMN/m2  %I13.5f MN/m2 %13.5f MN/m2', ...
1,stress1(1)/1e6,stress2(i)/1e6,shearstress 12(i)/ 1e6);
end

save all;
fclose('all');

end

%vvvvv *EEREF **x *

if (plyconfig = 3)

fprintf("\n print [0/90/+-45]2S \n');

frm = fopen('BPLYSTRESS09045.m','w");

fprintf(fm,’ \t local co-ordinate stresses for nlaminates’);
fprintf(fm,\n \t STRESS 1 STRESS 2 SHEAR STRESS 12 \n');
fprintf(fm,\n \t \n");

for i = 1: nlami
fprintf{fm,"\n NLAMI : %d %I13.5fGN/m2  %I13.5fGN/m2 %I13.5f GN/m2', ...
1,stress1(i)/1e9,stress2(i)/1e9,shearstress12(i)/1e9);

end
save all;
fclose('all’);
end
%%%%%%% % %% %% % %% % % %% % %% %% %% %% % %

% END OF BENDING ANALYSIS %

%%%%%%%%%%%% %% % %% %% % %% % % %% %% %%

if k==2
fprintf("\n WORKING ON IN-PLANE ANALYSIS \n%;
m = menu ('OPENING TYPE'CIRCULAR );

plyconfig = menu(PLY CONFIGURATION','[02/+-45)2S",'[0/90]4S",[0/90/+-45]28");
seload = menu('LOAD TYPE',AXIAL ''BIAXIAL'SHEAR');
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fprintf("\n Spatial values of the Material are stored in "propg.m" FILE \n');
nlami = 300;

for ilami = 1 : nlami
kgaus =0; % Keep track over the gauss points in the entire structure.

%%%%% %% GETDAT - Get are relevant scalar variables  %%%%%%%

[nelem,ndofn,nnode,ngaus,ntype,nmats,numnp,nstre,nstrl ,ntotg,aW_Ratio, WL _Ratio,ctnode]=
GETDAT(plyconfig);

fg = fopen('propg.m','w’);

fprintf{fg,\n\n\t\t\t \n');
fprintf(fg,’ \t properties at each and every gauss point');
fprintf{ fg,\n\t\t\t \n\n');

[props,tetag,plytk,matno,propg,Inods,coord, EThetaPly,distriao] =
GETARR(nelem,ngaus,ndofn,nnode,ntotg,aW_Ratio,WL_Ratio,ctnode,nlami,ilami,m,plyconfig,
seload);

save all;

fclose('all');

%%%%%% ESTABLISH THE NODAL CONNECTIVITY %%%%%%

nevab = ndofn*nnode;
globK = zeros(numnp*ndofn); % Initialize the Global "K" matrix for each element
{Im,id] = ELCON(ndofn,nnode,nelem,numnp,Inods);

%%%%% START COMPUTING THE STIFFNESS MATRICES  %%%%%%
for ielem = 1 : nelem % Loop over NELEM

%%%%%%  Get the coordinates of each node in the element  %%%%%

for inode = 1 : nnode
Inode = round(abs(lnods(ielem,inode)));
for idime = 1 : ndofn

elcod(idime,inode) = coord(Inode,idime);

end

end

shape = zeros(8,1);

deriv = zeros(2,8);

xjacm = zeros(2,2);

cartd = zeros(2,8);

estif = zeros(nevab,nevab);

%%%%%%%%  Start GAUSSIAN INTEGRATION  %%%%%%%%%%
kgasp =0; % Keep track over the gauss points in each element.
[posgp,weigp] = GAUSSQ(ngaus);

for igaus = 1 : ngaus % Loop over each Gauss point along "ZETA" axis
% i.e., horizontally, starting from left.
for jgaus = 1 : ngaus % Loop over each Gauss point along "ETA" axis

% i.e., vertically, starting from bottom.
kgasp = kgasp + 1;
kgaus = kgaus + 1;
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lprop = matno(kgaus);
ThetaPly = tetag(kgaus,:);
thick = sum(plytk(kgaus,:));

%%%%%% Evaluate the Shape functions,derivatives,dvolu.. etc. %%%%%%%

exisp = posgp(igaus);

etasp = posgp(jgaus);

[dmatx] = MODPS(ntype,nstre,nmats, lprop,propg, ThetaPly kgaus);

[shape,deriv] = SFR2(exisp,etasp);

[xjacm,djacb,gpcod,cartd]=JACOB2(ielem kgasp,ndofn,nnode,shape,deriv,elcod);
dvolu = djacb*weigp(igaus)*weigp(jgaus); % volume calculation : t*j*ds*dt

if thick>0.0
dvolu = dvolu*thick;
end
%%%%%% Evaluate the 'B’ matrix and 'DB' matrices %%%%%% %%

[bmatx] = BMATPS(nnode,cartd);
[dbmat] = DBE(dmatx,bmatx);
%%%%%  Calculate the element stiffness matrices %%%%%
estif = estif + transpose(bmatx)*dbmat*dvolu;
%%%% End of GAUSSIAN INTEGRATION  %%%%%%
end
end

%%% Elemental B matrix i.e [bmatx] is stored in [B]. This matrix is appeneded by all the elements

if ielem> 1
[B]=[B bmatx];
end

if ielem==1
[B]= [bmatx];
end
%%%  Assemble the element stiffness matrices %%%

{globK] = ASMBLK(ielem,nevab,Im,estif globK);
end
%%%%% END OF ASSEMBLY FOR "estif" OF "ielem” %%%%%%%

foriRuns=1:3
%%% Read the nodal loads and assemble : Global Force Vector %% %
[eload] =

LOADPS(nelem,numnp,nnode,nevab.ndofn,ngaus,posgp,weigp,coord,Inods,matno,props,iRuns,seload,
plyconfig);

[asmblF] = FORCE(nelem,nevab,Im,eload);

%%%%%%%% Solve for Displacements %%%%%%%%
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[displ,eldis] =
BCSOLVE(ndofn,coord,asmblF,globK,lm.nelem,nevab,numnp.nnode,iRuns,seload,plyconfig);

%%%% Solve for GAUSS POINT STRESSES %%%%

strsp=zeros(nstre,ngaus*ngaus,nelem);

sgtot=zeros(nstrl ngaus*ngaus.nelem);
[sgtot,strsp]=STREPS(nelem,matno,props,propg,tetag,ntype,nmats,nnode,ndofnn,coord,ngaus,nstre,nev
ab,nstrl eldis,Inods,iRuns,plyconfig);

end

B;

eldis’;

%t*#***********t***#*#* *kk dkkkkkokkkkR kbl *% *%

% CALCULATION OF STRESSES IN INDIVISUAL LAYER UNDER SHEAR LOAD %
%7 * *kkk * * ki kk * * *

% The displacement and strains are continous through the thickness of the laminate.

% Thus the mid plane strains and displacements are the same for entire lamiante.

% But the stresses vary through the thickness of the laminate. Thus the stresses are

% found out indivisually for each and every ply in the configuration. Files related

% to shear analysis :EMODPS,STRESSH :Maximum stress criterion is used for the analysis.

elestress = zeros(nstre,numnp*ndofn);

gsig = zeros(3,16); % gsig = gaussian stress for an element
eldistrans = (eldis'); % to store the transformed matrix of elemental displacement values
strain=zeros(3,1); % to store the strain values obtained by [B] [d]

sigmal26 = zeros(3,1);

if (plyconfig = 1)

fprintf("\n WORKING ON [02/+-45]2S \n");
ThetaPly=[{0045-450045-45-454500-454500]; % w.r.t Y-axis
end

if (plyconfig == 2)

fprintf("n WORKING ON [0/90]4S \n");
ThetaPly=[090090090090900900900900]; % w.r.t Y-axis
end

if (plyconfig = 3)

fprintf("\n WORKING ON [0/90/+-45]2S \n');

ThetaPly =[09045-4509045-45-4545900-4545900); % w.r.t Y-axis
end

EThetaPly = [ThetaPly+90]*pi/180;
ilami;

for nplies = 1: max(size(EThetaPly)) % stresses and its orientation with respect to vertical axis
% are calculated in each and every layer

[Edmatx] = EMODPS(nstre, EThetaPly,nplies);
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% Sub routine to find the Gaussian stresses for the elements in the mid plane.
[gsig,strain]= STRESSH(B,eldistrans, Edmatx,nelem);

% this portion of the program calculates the stresses in fiber and transverse direction,
% layer wise using the gauss point stresses over the entire Imainate

for ielements = 1: nelem
=1

m = cos(EThetaPly(nplies));
n = sin(EThetaPly(nplies)) ;

fstrsply(1,ielements) = m”2 * gsig(j,iclements) + n*2 * gsig(j+1,ielements) + 2*m*n *

gsig(j+2,ielements) ; % sigma 1 : stress in the fiber direction

fstrsply(2,ielements) = n"2 * gsig(j,ielements) + m~2 * gsig(j+1,ielements) - 2*m*n *
gsig(j+2,ielements); % sigma 2 : stress in the trnasverse direction
fstrsply(3,ielements) = -m*n * gsig(j,ielements) + m*n * gsig(j+1,ielements) + (m"2 - n*2) *
gsig()+2,ielements); % sigma 12 : shear stress in the ply

end

nplies;

maxstress = max(max(max(fstrsply(:,:)))) % represents the maximum stress in each and every layer of
the laminate

if nplies > 1
[elestress]=[elestress fstrsply];

end
if nplies=—=1
[elestress] = [fstrsply];
end
stress | (ilami, 1) = max(elestress(1,:)) % Maximum stress in fiber direction for a laminate
stress2(ilami, 1) = max(elestress(2,:)) % Maximum stress in transverse direction for a laminate

shearstress12(ilami, 1) = max(elestress(3,:)) % Maximum shear stress for a laminate

end
96#**#**#**#******#*******#***#*******#********#*#*******************

% AVERAGE STRESS CALCULATION FOR UNIAXIAL AND BIAXIAL LOAD

O RESEbhkb kbbb bhkbhbhkkrkkbhkbrkrbtkddhbkkbiokkkkdrtkikkrihs

[sigavg] = AVGSTR(sgtot,coord,ngaus,nlami,ilami,distriao,plyconfig);
sigmavg(ilami, 1) = sigavg;

maxstress(ilami, 1) = max(max(max(sgtot)));

end

gétt#*#****##**####*#*##*#***#*#**##****

% OUTPUT FOR SHEAR LOAD ANALYSIS %

g%#**t****#****t*#*t*##******t####*##t**

if (plyconfig == 1)
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fprintf("\n print [02/+-45]2S \n");

fm = fopen('PLYSTRESS0245.m','w");

fprintf{fm,’ \t local co-ordinate stresses for nlaminates');
fprintf(fm,\n \t STRESS 1 STRESS 2 SHEAR STRESS 12 \n");
fprintf(fm,\n \t \n');

fori= 1: nlami
fprintf{fm,\n NLAMI : %d %13.5fGN/m2  %I13.5fGN/m2 %I13.5{GN/m2 ...
J,stress1(1)/1e9,stress2(i)/1€9,shearstress 12(i)/1e9);
end
save all;
fclose('all');
end

96*************#*******
if (plyconfig = 2)
fprintf("\n print [0/90]2S \n");

fm = fopen('PLYSTRESS090.m','w');
fprintf(fm,' \t local co-ordinate stresses for nlaminates');

fprintf{fim,\n \t STRESS | STRESS 2 SHEAR STRESS 12 \n');
fprintf(fm,\n \t \n');

fori= 1: nlami
fprintf(fm,"\n NLAMI : %d %I13.5fGN/m2  %I13.5fGN/m2 %13.5f GN/m2'...
Ji,stress1(i)/1€9,stress2(i)/1e9,shearstress 1 2(i)/1e9);
end

save all;
fclose('all');

end
96********#*************

if (plyconfig == 3)
fprintf("\n print [0/90/+-45]2S \n");

fm = fopen('PLYSTRESS09045.m’,'w’);
fprintf(fm,’ \t local co-ordinate stresses for nlaminates');

fprintf(fm,\n \t STRESS 1 STRESS 2 SHEAR STRESS 12 \n');
forintf(fm,\n \t \n');

for i = 1: nlami
fprintf(fm,"n NLAMI : %d %13.5fGN/m2  %13.5f GN/m2 %13.5f GN/m2'...
J,stress1(i)/ 1e9,stress2(i)/1e9,shearstress12(i)/ 1€9);
end
save all;
fclose('all');
end

96***t******#t*##*#****#*******##t#t###ti***

% OUTPUT FOR AXIAL AND BIAXIAL LOAD %

96*#*#*#t*********#*##*#*#t***t**t##t**t****
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if (plyconfig = 1)

fprintf("\n print [02/+-45]2S \n");

fm = fopen('SIGMAVG0245.m','w');

fprintf{fm,’ \t sigma average values for nlaminates');

fprintf(fm,\n \t SIGAVG-"sigavg" "maxstress" \n');
forintf(fim,\n \t w);

fori= I: nlami
fprintf{fm,\n NLAMI : %d %13.5f GN/m2  %13.5f GN/m2',i,sigmavg(i)/1€9,maxstress(i)/1e9);
end
save all;
fclose('all');
end
% EEEEkE
if (plyconfig = 2)
fprintf("\n print [0/90]4S \n");

fm = fopen('SIGMAVG090.m','w");
fprintf(fin,’ \t sigma average values for nlaminates');

fprintf{ fm,\n \t SIGAVG-"sigavg" "maxstress” \n');
fprintf(fm,"\n \t \n');

fori=1: nlami
forintf{fm,\n NLAMI : %d %I13.5f GN/m2  %13.5f GN/m2',i,sigmavg(i)/1e9,maxstress(i)/1€9);
end
save all;
fclose('all');

end
96#**#*#t*##*****##*****#***##**

if (plyconfig == 3)
fprintf{\n print {0/90/+-45]2S \n');

fm = fopen('SIGMAVG09045.m','w");
fprintf(fim,’ \t sigma average values for nlaminates');

fprintf(fm,\n \t SIGAVG-"sigavg" "maxstress" \n');
fprintf{fim,"\n \t \n');

fori = 1: nlami
fprintf(fm,\n NLAMI : %d %I13.5f GN/m2  %13.5f GN/m2',i,sigmavg(i)/ 1€9,maxstress(i)/1e9);
end
save all;
fclose('all');

AR AREE AL A Ll S L idd it 2L 22 22 2] 2

end
end
RunTime = toc
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%%% %% %% %% %% % %% %% % %% %% % %% %% %% %% %% % %% % %% % %% % % % % %o
% Program to calculate the equivalent stress over the characteristic length Y%
%%%% % %% % %% %% %% %% % %% %% %% %% %6 %% %% %% % %% %% %% %% %% % % % % % Yo

function [sigavg] = AVGSTR(sgtot,coord.ngaus,nlami,ilami distriao,plyconfig)

if (plyconfig == 1)
ao=0.01063; % AS OBTAINED FROM THE EXPERIMENT : FOR [02/+-45]2S
end

if (plyconfig = 2)
ao = 0.00444; % AS OBTAINED FROM THE EXPERIMENT : FOR [0/90]4S
end

if (plyconfig = 3)
ao = 0.00385; % AS OBTAINED FROM THE EXPERIMENT : FOR [0/90/+-45]2S
end

width=0.0379; radius =0.00255; sigavg=zeros(1,1); sigadd1=0; sigadd2=0; sigadd3=0; sigadd4=0;
sigadd|1 1=0; sigadd22=0; sigadd33=0; sigadd44=0; s=zeros(5,1);

o,
/0

% Two cases of Gauss order i.e 3 and 4 are considered
o/

if (ngaus=—=3)
n=1;

fork=1:5

if (k==1)

sigaddl = sgtot(2,9*k,41);
sigadd2 = sgtot(2,7*k,40);
s(k) = (sigadd]1 + sigadd2)/2;
end

if (k==2)

sigaddl = sgtot(2,3*k,41);
sigadd2 = sgtot(2,k*2,40);
s(k) = (sigadd1 + sigadd2)/2;
end

if (k==3)

sigadd1 1 = sgtot(2,k,41);

sigadd22 = sgtot(2,n,40);

sigadd33 = sgtot(2,n,18);

sigadd44 = sgtot(2,k,16);

s(k) = (sigadd11 + sigadd22 +sigadd33 +sigadd44)/4;
end

if (k==4)

sigaddl= sgtot(2.k,18);
sigadd2= sgtot(2,(k+2),16);
s(k) = (sigadd1 + sigadd2)/2;
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end

if (k==5)

sigadd1 = sgtot(2,(k+2),18);
sigadd2 = sgtot(2,(k+4),16);
s(k) = (sigaddl + sigadd2)/2;
end

end
x=[ s(1)
s(2)
s(3)
s(4)
s(5)];
y=[1 0 0 0 0
1 (coord(149,1)- coord(157,1)) (coord(149,1)- coord(157,1))*2 (coord(149,1)-
coord(157,1))*3 (coord(149,1)- coord(157,1))*4

1 (coord(106,1)- coord(157,1)) (coord(106,1)- coord(157,1))*2 (coord(106,1)-
coord(157,1))*3 (coord(106,1)- coord(157,1))"4

1 (coord(119,1)- coord(157,1)) (coord(119,1)- coord(157,1))*2 (coord(119,1)-
coord(157,1))*3 (coord(119,1)- coord(157,1))"4

I (coord(132,1)- coord(157,1)) (coord(132,1)- coord(157,1))*2 (coord(132,1)-
coord(157,1))"3 (coord(132,1)- coord(157,1))*4 ];

b = inv(y)*x ; % constants sigl = a0+al *x+a2*x"2+a3*x"3+ad*x"4
% Average stress criteria

Syms X

f=b(1,1) + b(2,1)*x + b(3,1)*x"2 + b(4,1)*x"3 + b(5,1)*x"4;

% To find the stress value at the characteristic length ao

sigavgl = (1/distriao(ilami}))* int(f,x,0.distriao(ilami));
sigavg=numeric(sigavgl);

end
0,

if (ngaus==4)
n=1;
fork=1:5 % Gauss order 4 ngaus

ifk=1
sigaddl = sgtot(2,16*k.41);

203



sigadd2 = sgtot(2,13*k,40);
s(k) = (sigaddl + sigadd2)/2;
end

ifk==2
sigadd11 = sgtot(2,6%k.41);
sigadd22 = sgtot(2,(k+7),40);
sigadd33 = sgtot(2,4*k,41);
sigadd44 = sgtot(2,(k+3),40);
s(k) = (sigadd1 1 + sigadd22 +sigadd33 +sigadd44)/4;
end
ifk=3
sigadd1l1 = sgtot(2,(k+1),41);
sigadd22 = sgtot(2,n,40);
sigadd33 = sgtot(2,n,18);
sigadd44 = sgtot(2,(k+1),16);
s(k) = (sigadd11 + sigadd22 +sigadd33 +sigadd44)/4;
end

ifk=—4

sigaddl1 = sgtot(2,(k+1),18);

sigadd22 = sgtot(2,(k+3),16);

sigadd33 = sgtot(2,(k+5),18);

sigadd44 = sgtot(2,(k*3),16);

s(k) = (sigadd11 + sigadd22 +sigadd33 +sigadd44)/4;
end

ifk=35
sigadd1 = sgtot(2,(k+4),18);
sigadd2 = sgtot(2,(k+7),16);
s(k) = (sigadd! + sigadd2)/2;
end
end

x=[ s(1)
s(2)
s(3)
s(4)
s(5)L;

y=[1 0 0 0 0

1 (coord(149,1)- coord(157,1)) (coord(149,1)- coord(157,1))*2 (coord(149,1)-
coord(157,1))*3 (coord(149,1)- coord(157,1))*4

1 (coord(106,1)- coord(157,1)) (coord(106,1)- coord(157,1))*2 (coord(106,1)-
coord(157,1))*3 (coord(106,1)- coord(157,1))*4

1 (coord(119,1)- coord(157,1)) (coord(119,1)- coord(157,1))*2 (coord(119,1)-
coord(157,1))"3 (coord(119,1)- coord(157,1))"4

1 (coord(132,1)- coord(157,1)) (coord(132,1)- coord(157,1))*2 (coord(132,1)-
coord(157,1)"3 (coord(132,1)- coord(157,1))"4 |;
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b= inv(y)*x ;
% Average stress criteria
syms x
f=b(1,1) + b(2,1)*x + b(3,1)*x"2 + b(4,1)*x"3 + b(5,1)*x"4;
sigavgl = (1/distriao(ilami))* int(f,x,0.distriao(ilami));
sigavg=numeric(sigavgl);

end

%% % %% %% %% % %% %% %% %% %% %% %% % % %% %% % % %% % % %% %%
% Program to determine the distribution of the value of characteristic length %
%% %% %% % %% %% %% %% %% % %% % %% %% % %% % %% %% %% %% %6 %% %

function [distriao] = DISAO(plyconfig,nlami);

m=nlami; % No. of rows of characteristic length values
n=1; % One column needs to be generated
distriao=zeros(nlami, 1);

if (plyconfig = 1)
fprintf("\n WORKING ON [02/+-45]2S \n');

MU =0.01063; % Mean value of the characteristic length

SIGMA =0.0022115; % Standard deviation value of the characteristic length
a=0.00488; % Minimum value of the characteristic length
b=0.01378; % Maximum value of the characteristic length

distriao = a + (b-a) * rand(m,n); % Distributed values of characteristic length
end

if (plyconfig = 2)
fprintf("\n WORKING ON {0/90]4S DISAO \n');

MU = 0.00444; % Mean value of the characteristic length

SIGMA =0.001392; % Standard deviation value of the characteristic length
a=0.00224; % Minimum value of the characteristic length
b=0.00734; % Maximum value of the characteristic length

distriao = a + (b-a) * rand(m,n); % Distributed values of characteristic length
end
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