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ABSTRACT

Stochastic Dominance Bounds on Option Prices in the Presence of Transaction Costs:
An Empirical Approach

Michal Czerwonko

This paper investigates the multi-period upper bound on the European call price in the
presence of transaction costs derived by Constantinides-Perrakis (2002). Numerical
results verifying an assumption of the monotonictity of wealth of the call writer in the
underlying asset on which the Constantinides-Perrakis (2002) model relies are derived,
and it is shown that the assumption is satisfied for relatively small ratios of stock to
option account. The classic second order stochastic dominance argument is applied to the
dynamic trading in discrete time in the S&P 500 options under the portfolio selection
criteria in the presence of transaction costs. It is shown that the improvement in expected
utility does occur under the prescribed investment policy in the S&P 500 calls whose
prices exceed the bound. Under the lognormality of the S&P 500 price process, the
quantitative improvement in expected utility is derived.

1ii



TABLE OF CONTENTS

LIST OF FIGURES ...ttt asss s et enn v
LISTOF TABLES ...ttt ees et es st e et vi
LIST OF FREQUENTLY USED SYMBOLS. ..., vii
L INIFOAUCTION .ottt ettt e nnas l
2. LIterature REVIEW .....c.ccm ettt et ve s 2
3. Methodology and Data ... e 21
3.1 Portfolio Optimality Conditions in the Presence of Transaction Costs .................. 27
3.2 The Monotonicity of Wealth in Stock Price .......c.ccovciimmeiiil 36
3.3 Estimation of Violations of the Upper Bound on the Call Price...........c.ccccoceeeeo. 41
3.4 Improvement in Expected UtHITY .....cocoveiiiiiiiniiieeeeeeree e 45
3.5 Portfolio Composition and Improvements in Expected Utility........cccoceveinnnnne. 54
L RESUILS « ottt 57
5. Concluding ReMATKS ......covveriiiereceeei et e 74
REFEIENCES ..ottt ettt e e e s e e e be e e s e bnees 76
APPENAICES ..ttt ettt st et s st et se e bR b e e s e e e s e beanenas 79

v



LIST OF FIGURES

FIGUIE L e e e bt e b s s aaeas 35
FRUIE 2 ettt ettt st e es et st e e e o s s e e e e semanesins 54
FIGUIE 3 .ttt et s e e st s s estesse e seme et e e e e s maneas 67
FIGUIE 4 ..ottt se s s s s sa s ab e s e nnen 68
FIGUIE 3 oottt ettt et se s e se s e ses s e e s e s aaae e 69
FIGUIC 6 .ottt et st e s e s e s mt s s s e e e e s n e s smeeean 70
FIGUIE T ettt sttt sce s et s s s s e e s s snees 71
FIGUIE 8 .ottt s e s s s s e e n e asees 72
FIGUIC T ettt st e e e s nas 73



LIST OF TABLES

TTaDIE Lo ceceeeeeeeeeeeesesssssesasensasssreaaee s e vnsrusensssssnnsssmmassssessssmnantrosssonsnnans 45
TADIE 2.t eeeeeeeeeeenreeses e ns e e e e s e n s e e st s s e e s ra s e e e se e e e e e e e s e e e e et e e s e e e e s e renaaans 58
T 3o vernveesaseasesssssesasessrssssaaesesnsnsssrrsnrsrsnansmananan e esaeeeaareeaaaas 60
TADLIE ..ot eeeee et er et et sese s s s aesesee s s s s srasasnra e e s e s e s e easseesanren 61
DI S eeertevvvesssssrreaesesesssnsrassssssasessssnnsnsssasmeenenn e neeaerareseaeneonanans 62
TADIE Ot eeee et eeeer s nnseeesrnssses s aseasressnseeeane s e e e s e nmaser e e et e s e ena s e e ranaeans 62
T T oot eeee et evteeesee e aar e s eeesssnsesssseeessnssbsaeaeaae e s s e e reneeeaeeeeee e aen e nnnateeas 63

vi



LIST OF FREQUENTLY USED SYMBOLS

p denotes estimated or true expected return on an index.

o denotes estimated or true stock volatility.

R denotes the riskless return.

r denotes the riskless rate.

S. S; denotes the current period stock price.

K denotes the exercise price of an option.

X. X, denotes the current period dollar value of the holdings in the riskless bond.

y. ¥: denotes the current period dollar value before transaction costs of the holdings in

the risky asset.

vii



1. Introduction

Constantinides and Perrakis (2002, 2002a) derived stochastic dominance bounds on the
prices of European and American contingent claims in the presence of transaction costs
for a multi-period economy. In this thesis we exploit empirically their stochastic
dominance results with traded call options on S&P 500. Specifically, we examine the

violations of the upper bound on the European call price.

To measure the improvement in expected utility, first we compute the optimality
conditions of the portfolio of a representative investor before he assumes a position in the
derivative. Such conditions were established in the literature of the optimal portfolio

selection in the presence of transaction costs.

The model of Constantinides and Perrakis imposes a monotonicity condition involving
the minimum number of shares held by a representative investor before the improvement
in expected utility can occur. We verify the satisfaction of this condition using simulated
data. Last, we apply classic second order stochastic dominance to measure the
improvement in expected utility of wealth resulting from trading in the S&P 500 options

whose prices violate bounds derived in Constantinides and Perrakis (2002).

The remainder of the thesis is organized as follows: Part 2 reviews the literature of option
pricing in the presence of transaction costs, Part 3 describes the methodology, Part 4

presents empirical results, Part 5 summarizes and closes.



2. Literature Review

Transaction costs destroy the “benchmark’™ Black-Scholes (BS, 1973) option pricing
model. The continuously adjusted riskless hedge becomes ruinously expensive no matter
how small transaction costs might be because of the infinite variation of diffusion
processes (Leland, 1985, Merton, 1989). In this review we present several attempts to
incorporate transactions costs into the option-pricing model by considering discretized
versions of that model relying on arbitrage such as Leland (1985) Boyle and Vorst
(1992). In a similar vein, the notion of option super-replication will be introduced by
reviewing Bensaid, Lesne, Pagés and Scheinkman, (1992) and Perrakis and Lefoll
(1997). The arbitrage-based approaches suffer from a major theoretical drawback: the
presence of transaction costs establishes a region of the risky to riskless asset proportion
(the no transaction region) within which it is optimal to refrain from trading (Magill and
Constantinides, 1976, Constantinides, 1979). The notion of super-replication was
introduced to model such a region, but the solution that it provides is not empirically

meaningful.

The expected utility approach introduced the optimal portfolio selection problem in the
presence of transaction costs into the pricing of derivatives. Here we review
contributions of Davis, Panas and Zariphopoulou (1993) and Constantinides and
Zariphopoulou (1999, 2001) from the area of option pricing under the expected utility
approach, and those of Constantinides (1986), Norman and Davis (1990) and Dumas and

Luciano (1991) related to optimal portfolio selection in the presence of transaction costs.

(28]



As our focus is on the contribution of Constantinides and Perrakis (2002, 2002a), we
relate their results to previous work of Perrakis (1986), Perrakis and Ryan (1984),
Ritchken and Kuo (1988), Ritchken (1985) and Levy (1985), whose results are similar to
those of Constantinides-Perrakis (2002). Finally, note that the area of derivative pricing
in the presence of transaction costs also encompasses the pricing of American options,

which is omitted in this review.

Leland (1985) considered the stock process over a small (but noninfinitesmal) time
interval At. Under the assumption that AS/S is normally distributed with zero mean it

follows that:
E\ASS- =ag2ArIT. @2.1)

Leland (1985) defines a modified variance that accounts for transactions cost at each

AS—‘ /O'ZAI]
S (2.2)

= o[l +2ky2/ 7 1 oAL].

revision opportunity:

G = 0'3[1+2kE

Define C as the Black-Scholes call price with this modified volatility. The modified self-
financing replicating strategy of the Black-Scholes type with the modified volatility will,
for small At, yield an expected terminal value equal to the call payoff inclusive of
transaction costs; furthermore, the hedging errors (including transaction costs) will

almost surely approach zero as At tends to zero.



Cis also the upper bound on the call price, as arbitrage profits can be made by writing
the option and buying the portfolio replicating the long call'. The lower bound (the short

call) can be similarly obtained by reducing the variance by the same amount of

02kv2/7m / Ar. These bounds are not a satisfactory result as they create a Catch 22: if
the revision interval tends to zero, the variance explodes resulting in trivial bounds equal
to the current stock price and the Merton (1973) lower bound [S - Ke™]*; if the time

interval is large, the hedging errors nullify the riskless arbitrage oportunities.

Boyle and Vorst (1992) incorporated transactions cost into the binomial model. They
extended the results of Merton (1989), who had provided the solution for the two-period
tree, into the multi-period setting. Without transaction costs, a self-financing portfolio
hedging a long call in one period will become NSu + RB (NSd +RB) if the stock goes up
(down). In the presence of transaction costs, the portfolio value has to include the
transactions cost of restructuring k|N-Ny|Su and k|N-N,|Sd (assuming k =k, =ks). As it
can be shown that N, < N < N,, we get:

NSu(l+k)+BR=NSu(l+k)+8B,, 23
NSd(l-k)+BR=N,Sd(1-k)+B,.

This system of equations has always a feasible solution, and the portfolio at the origin of
the stock process can be found recursively starting from the call payoff at the expiration.
For Su > K and Sd < K we have:

NSu(l+k)+ BR=Su(l+k)-K, (2.4)
NSd(1-k)+ BR =0. -

' The riskless hedge of the BS model has to be adjusted to the quantity of stock equal to the delta of é .



For the short call replication the system will become:

NSu(l-k)+BR=NSu(l-k)+B,,
NSd(1+k)+BR=N,Sd(1+k)+B,.

n
N

The solution to this system is now feasible only by restricting the parameters of the
binomial process:

R(I+k)<u(l-k), d(1+k)SR(1-k). (2.6)
Unfortunately, for a large number of binomial steps, u, d and R all tend towards 1
whereas k remains unchanged. Eventually, for a sufficiently dense partition, the
restrictions (2.6) will be violated. In addition, the terminal stock value must not fall into
the interval [K/(1+k), K/(1-k)]; otherwise, the optimal action of the option holder cannot

be determined.

Boyle and Vorst (1992) also found the limiting form of the value of the replicating
portfolios. They found that this limit was equal to an expected option payoff under a
risk-neutral distribution tending to a lognormal diffusion with an adjusted variance, as in
Leland (1985).

G =0 [l+2k/oAt]. (2.7)
The Leland adjustment in (2.2) was, however, smaller than that of Boyle and Vorst, by a

factor v2/7 , or app. 0.8. The Boyle-Vorst adjustment results in a slightly higher upper
bound than Leland’s (1985). The lower bound, where the variance has to be reduced by
the same amount of 2kc /At is not reliable due to the fact that the model restrictions

(2.6) become violated before the process approaches diffusion. On the other hand, the



Boyle and Vorst (1992) model has the advantage over the Leland (1985) model that it

produces arbitrage profits provided the binomial model restrictions are satisfied.

Bensaid, Lesne, Pages and Scheinkman (BLPS, 1992) introduced the notion of option
super-replication, i.e. they formulated a dynamic programming problem with the
objective of minimizing the initial cash position necessary to cover the restructurings of
the portfolio at each node of the binomial tree and the terminal option payoff. They also
introduced an economically important distinction between the cash-settled” and physical

delivery options.

Let (N, B) denote a portfolio with N shares of the underlying and B$ of the riskless asset.
At the expiration date T the portfolio replicating the long call position must hold (1, -K)
if St>K, (0, 0) otherwise for physical delivery options, and (0, [St - K]") for cash settled
options®. The final objective is to minimize the portfolio value at the origin of the
binomial tree. The BLPS program minimizes recursively the cash value including the
transaction costs of restructuring at each node, potentially creating a path dependence of
the final solution since the number of shares at each node depends on the inherited
amount of stock. The path dependence is, however, avoided as a consequence of
specifying terminal conditions depending on the delivery terms. Like Boyle and Vorst
(1992), BLPS failed to provide a solution when the terminal stock price falls into the

interval [K/(1+k), K/(1-k)], and for the case when conditions (2.6) are violated®.

* This is the case of index options.

? For the short position, the signs assume the reciprocal values.

* They assumed that the exercise policy at expiration is a predetermined function of the terminal stock price
and ignored the dependence of the optimal exercise policy on the holder’s objectives.



Perrakis and Lefoll (1997) provided an algorithm deriving a portfolio that hedges the
short option position perfectly when either St lies within the interval [K/(1+k), K/(1-k)]
or the conditions (2.6) are violated. In the case of short options, Perrakis and Lefoll
(1997) showed that the optimal hedging portfolio contains either O or (-1, K/R) positions,
depending on whether (S — K/R) is less than or grater than zero. This rather trivial

solution is inevitable when the size of the binomial tree becomes large.

Several papers have undertaken the problem of continuous-time super-replication of
European contingent claims in incomplete markets’. The results are, however, not
satisfactory: a portfolio containing one share of stock turns out to be, in the presence of
transaction costs, the only solution dominating the call payoff. This result was first
conjectured by Davis and Clark (1994) and later proved analytically in Soner, Shreve and
Cvitanié (1995). Cvitani¢ and Karatzas (1996) derived a stochastic control representation

of the problem.

We now turn to the portfolio selection problem under transaction costs. Constantinides
(1986) derived a closed-form solution for an infinite horizon investment problem with
proportional transaction costs for the two-asset portfolio consisting of the riskless bond
and a risky asset with a natural interpretation of a mutual fund account’. The
Constantinides (1986) result was based on earlier findings of Magill and Constantinides
(1976) and Constantinides (1979). The former had conjectured, and the latter proved that

the no transaction (hereafter NT) region is a cone, and the optimal investment policy is

5 See Cvitani¢, Pharm. Touzi, (1999) for a non-technical summary.
® The solution for a two-asset problem without transaction costs was found by Merton (1969, 1971).



simple in the presence of transaction costs. The NT is determined by two boundaries A
and A, 1> L denoting proportions of y/x such that for A > y/x 2 A itis optimal to refrain
from transacting. The simple investment policy stipulates transacting to the closest
boundary of the NT region for y/x > A or y/x < A . Constantinides (1986) made a
simplifying assumption regarding the optimal consumption policy, by stipulating that
consumption comes from the bound account at a constant rate B, and presented an
argument that the loss of derived utility due to this assumption is small. Under his

assumption, in the NT region the account dynamics follow:

dx = rxdt —cdt = rxdt — Pxdt 2.8)
dy = udt +odw -

where © denotes the Wiener process.

Constantinides (1986) solved a dynamic control problem of maximizing the derived

(power) utility with the boundary conditions established by the simple investment policy:
Vix,v: ﬂ/_lz] = max Eo'fe""u(c(t))dt =max EOJ.e"”y"c’ (t)dr , (2.9)
Q 0

where c(t) denotes consumption at t, p is the impatience (time discount) factor, and Eg is
the current time expectation over the Wiener process o (the time subscripts have been
suppressed for brevity). The derived utility satisfies the Bellman equation’. Here we
present several properties of the NT region derived by Constantinides (1986):

A. Transaction cost increases broaden the NT region, with a decreasing sensitivity of the

bounds to the transaction cost rate as the rate increases.

" The detailed solution follows in Part 3.



B. Transaction cost increases shift the region towards the risk-free asset.

C. The relative width of the NT region is insensitive to the risk aversion and to the
variance of the rate of return whereas the absolute width increases in the variance, and
decreases in the risk aversion.

D. Transaction costs weakly decrease the consumption rate.

Norman and Davis (ND, 1990) considered transaction costs directly entering into the
dynamic optimization problem®. Define auxiliary variables L(t) and U(t) as, respectively,
the cumulative purchases in [0,t] (U(0), L(0) = 0). Setting dL(t) = I(t)dt and dU(t) = udt
and suppressing time subscripts, the portfolio dynamics becomes:

dx = xrdt — cdt — (1 + k)Idt + (1 = k, Judt,

(2.10)
dv = yudt + oydw + Idt —udr .

The derived utility to be maximized is one""u(c(t))dt. ND solved the dynamic
0

optimization problem for power and logarithmic utility functions. Given the initial
endowment (X, y), the triplet maximizing the value function is (¢*,L",U"). The
impatience factor has to satisfy p > y[r+ (n - r)* 2> (1- v)]; otherwise unbounded

growth of discounted utility is possible. ND assumed r<p <r+(l-7Y)c", stipulating
that holding long positions in both assets is optimal rather than shortselling or borrowing.
ND reduced the problem to one variable by normalizing the y value to one, in which
representation the stochastic process of y is passed onto x. This normalization makes it

possible to deal with a redefined value function ¥(x) = V(x, 1)9.

* In the Constantinides (1986) formulation they appear only in the boundary conditions.
% By the homogeneity of V we have V(x, y) = y"¥(X/y)



Having proved that the NT region is a wedge in x and y coordinates, ND argue that it
suffices to find (x,, x2) satisfying y/x, =X and y/x, =A , given thaty = I, to fully
determine the NT region'o. ND did not find a closed form solution for (x,, x2); deriving
the NT region involves a numerical solution of a set of two ordinary differential
equations in unknown auxiliary functions f(x) and h(x). The boundary conditions of this
set make it possible to derive x; and x,. Having y fixed at one, it establishes the NT

region.

The optimal consumption policy derived by ND for power utility takes the form:

_BAGTY) gy
(L=7)f(x/y)

¢ (x,y)=
Numerical results derived by ND suggest that the optimal consumption rate may vary
over a range of nearly two to one within the NT region: however, while comparing this
result to Constantinides (1986) ND do not quantify how much of derived utility is lost by
the simple consumption policy. The shape of the NT region as a function of the

transaction cost rate found by ND shows that their results are not qualitatively different

from those of Constantinides (1986).

Dumas-Luciano (1991) considered a dynamic portfolio choice under transaction costs of
an investor who maximizes the derived utility of consumption taking place upon the

liquidation of the portfolio holdings at some future time T. This assumption results in

just two controls of the dynamic programming problem: (X, L), the upper and the lower

' The two rays forming the NT region pass through the origin of the (x. y) plane.

10



bound of the NT region. Dumas-Luciano (1991) considered a limiting case as the
liquidation time T tends to infinity. They assumed the discount factor to be endogenous
to the problem, i.e. they solved for the discount factor for which the partial derivative of
the value function w. r. to time is zero. Dumas-Luciano (1991) results differed from
those of Constantinides (1986) first, in that the NT region was found to be considerably
wider: second. no shift towards the riskfree asset was found for increases in the
transaction cost rate. The latter result Dumas-Luciano (1991) attributed to consumption

not taking place” before the liquidation time T.

Zariphopoulou (2000) presented a non-technical summary of the expected utility method.
The method is based in some sense on classical principles of stochastic dominance
adapted to accommodate dynamic trading. Define the value function V of a holder of
bond and stock accounts and the value function J of an owner of similar holdings save for

writing one European derivative with maturity at T and payoff g(St):

V[_\',y,S'[] = Eo_“e_p"r-”u(c(s))db' .

t

.
Jlx, v,8,1]= Eol:J.e"’u(c(s))ds+e""V(xT -g(S; ),yT,ST,T)}. (2.12)

The reservation state-dependent write price h is defined as the quantity making the writer

indifferent between receiving the price and writing the derivative, or not undertaking any

action at all. For all states,ﬁ satisfies:

V(x,v,S,0)=J(x+h(x,v,5,0),v.8,1). (2.13)

"' Constantinides (1986) assumed consumption taking place from the bond account at a constant rate.

Il



In frictionless markets, h can be found independently from wealth, and it coincides with

the Black-Scholes price. In the presence of frictions, as shown in Constantinides and
Zariphopoulou (1999), (2.13) cannot hold for all states if the dependence of his
removed. This leads to the definition of a universal write price C:

V(X v,S.0) < J(x+C(S,1), v,5.1). (2.14)
By a similar argument, Zariphoupoulou derives an expression defining the reservation

purchase price C:

Vix,y,5.0)<J(x-C(S,1),¥,5.1). (2.15)

Before proceeding further with the derivative pricing under the expected utility approach,
let’s mention its important limitation regarding the number of modeled risky assets. As
Magill and Constantinides (1976) pointed out, m risky assets imply 3™ transaction (Buy,
Sell, NT) regions whereas there are no models establishing the portfolio optimality
condition for more than one'?. This restriction confines the method to assets interpreted
as the market portfolio or an index as in Davis, Panas and Zariphopoulou (1993) and
Constantinides and Zariphopoulou (1999). On the other hand, Constantinides and
Zariphopoulou (2001) circumvented the restriction and presented results for multiple

risky securities, but at the cost of restrictions on preferences and portfolio holdings.

Davis, Panas and Zariphopouiou (1993) considered the problem of pricing long

derivatives in the presence of transaction costs by applying a utility maximization

2 Davis and Norman (1990) mentioned that it might be feasible though difficult to obtain results for two or
three risky assets.



approach within the framework developed by Norman and Davis (1990), but for
exponential rather than power utility. In their approach the Buy, Sell and NT regions
determine the optimal stock transactions of the writer. ~ Q; can be obtained by solving
an appropriate partial differential equation numerically. The call write price derived by
Davis at al (1993) clearly is a function of both risk aversion and the initial wealth of the
writer, as it linearly varies with the risk-aversion coefficient, and the initial wealth enters
(2.16) through the value function. Numerical results were presented for a given risk

aversion coefficient y.

A different approach than in Davis at al (1993) was applied by Constantinides and
Zariphopoulou (1999). Their objective was to find write prices that depend only on S
and t, the common variables to all investors. Given the objective, the call write price will
be the minimum price satisfying:

J(x+C(S.T.t), v.t) 2V (x, v,1), (2.17)
for a sufficiently general class of utility functions. Constantinides and Zariphopoulou
(1999) did not assume any specific form of the utility function apart from some regularity
assumptions. Since the shape of the NT region cannot be found under such general
assumptions, Constantinides and Zariphopoulou (1999) assumed the NT region to be a
convex subset of the non-negative quadrant of the (x, y) plane. The derived upper bound
does not depend on the investors’ initial portfolio but does depend on the preferences.

Numerical results were not presented.

13



Constantinides and Zariphopoulou (2001) examined an investment environment with
several risky assets. Contingent claims all expiring at the same time T are allowed to be
American, exotic or path dependent. The portfolios considered by Constantinides and
Zariphopoulou (2001) may contain riskless asset, stocks and derivatives. A portfolio
initially worth $1 has been constrained at time zero to hold only the riskless asset. The
portfolio payoff h(t, T) has been constrained to be non-negative at any exogenously
given liquidation time t. Further restrictions apply to the power utility function: the risk
aversion coefficient, y has to lie in an open interval (0, 1). Under the above set of
assumptions, the J-value function will exceed the V-value function at time zero unless the
following relation holds:

E{e™™ [h(z,T)} -1} <0, (2.18)

where p is the impatience factor.

We illustrate the result (2.18) by the following lower bound on the price of a European
put:

P2 E{[(K-5.)T|S,}"" . (2.19)

Before presenting the Constantinides-Perrakis (CP, 2002) results that form the basis of
our own study, we review briefly the early results on option bound in incomplete markets
that are closely related to the CP methodology. In the absence of transaction costs the CP
results coincide with the results of these earlier studies, for which three different

approaches have been presented.

14



Perrakis and Ryan (1984) derived one-period discrete-time option bounds later extended
to multi-period setting in Perrakis'® (1986). The derived bounds are functions of the stock
and exercise prices, the riskless rate of interest, the time to maturity and the entire
distribution of stock returns. The derivation uses a set of Rubinstein (1976) assumptions:
the single-price law of markets, frictionless, Pareto-efficient financial markets, rational,
time additive tastes, weak aggregation. An assumption specific to Perrakis and Ryan
(1984) stipulates that the conditional mean marginal utility is non-increasing in the one-
period stock price change Y. The derivation of the bounds compares the terminal payoffs
of three portfolios consisting at t of: i. One share of stock at price S,, ii. One call and S,-C
in riskless bond, iii. S/C call options. The relative dominance of expected payoffs of the

aforementioned portfolios establishes the lower and upper bound on the call option:

E(S,.K) =S5, + S S; " l:— K +J.0K F(w—S,)dw:l ,(2.20)

4

C(S,.K)=maxi0, S, + R K+ [ F(ov—5)dw|t. (2.21)
t 4 0 r

where F(.) denotes the cumulative distribution function of Y, Y& [-S,,0).

To make it clear that the Perrakis and Ryan (1984) upper bound is equivalent to Levy
(1985), Ritchken (1985) and, as we present further in the text, to Constantinides and
Perrakis (2002) bounds, we re-express (2.20) by replacing the cumulative distribution

function by the density function. It follows:

— S o
= - 2.20'
C(S,.1) 5 1 EIY] J'K_S, (S, +y-K)f(y)dy,(2.20"

" Also. bounding the stock process from below and above in Perrakis (1986) resulted in tightening of the
bounds derived in Perrakis and Ryan (1984).

15



where f denotes the density function of the change in the stock price. In this formulation,
it is apparent that the call upper bound is the expected call payoff discounted by the

expected stock return.

Ritchken (1985) derived single-period option bounds in incomplete risk-averse markets
by solving a linear programming problem'*. The upper bound on the call price coincided
with the Perrakis and Ryan (1985) upper bound whereas the lower bound derived by

Ritchken (1985) was tighter.

Levy (1985) derived an upper and a lower bound on European options coinciding with
those of Ritchken (1985) by an explicit application of the second order stochastic
dominance arguments in a single-period context. Levy’s bounds were derived in discrete
time and as such can incorporate market imperfections, as investors do not have to revise

their portfolios continuously.

The derivation of the bounds relies on a theorem regarding the second order stochastic
dominance (SSD) of risky portfolios containing riskless asset (SSDR). Let X and Y be
random variables whose cumulative distributions are F and G, respectively. Then X

dominates Y if and only if:

I[G(t) -F(v)]dt>0 (2.22)

for all z, with the strict inequality for at least one zy, z, € (—e0,z]. The theorem, proven

by Levy and Kroll (1978) states that if there is at least one a for which a portfolio whose

" Ritchken and Kuo (1988) generalized single-period linear-programming results into multi period setting.
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return is X, =aX + (1 —a)R SSD dominates a portfolio whose return is Y, = aY + (1 -

a)R , then the entire set {X,} dominates the set { Yq}.

The call price for which the investment in the call does not SSDR dominate the
investment in stock establishes the lower bound on the call price C = max[0,C, ]:
L&
C,=S- K/R—E-(—_g(s, — K)f(S;)dS; , (2.23)
where f(St) denotes the density of the terminal price of the underlying asset and p.is the
return on the underlying asset for which the investment in the call does not exceed the
riskless return. The derived bound is tighter than the Merton (1973) lower bound since

the integral is never positive; it coincides with the Ritchken (1985) lower bound.

Deriving the smallest call value for which the investment in the stock does not SSDR
dominate the investment in the call establishes the upper call bound:

— S -
C=53 [ (S - K £(S7)dS; . (2.24)

The upper bound has a straightforward interpretation as the expected call payoff
discounted by the expected return on the underlying asset. It is the same as the Perrakis-

Ryan result.
CP derived bounds for a multi-period economy for European cash-settled options by

extending stochastic dominance arguments to incorporate transaction costs. Proposition 1

and Proposition 6 establish, respectively, at any time t prior to option expiration T, the
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upper bound on the reservation write price of a call E(Sl,t) and the lower bound on the

reservation purchase price of a put P(S,,t) '3,

1+k,
-k,

C(S,.0) =

=t

T-1 -
(Hk,) E[(S; =K)"|S,1,t<T -1 (2.25)
and

C(S,.T)=[(1+5,)S, - KT,

+k, | S

s

where R = E{[lﬁ-f’—“]g’—i | S,:l is one-period conditional mean return with the
reinvestment of deterministic dividends that yield §; in period s.
-k (F o)
P(S,.0) 21—1\_2(1_[12‘ J E[(K-5;)"|S,1. t<T -1 (2.26)
+ 'l =

and

P, .T)=[K-S.T,

where R, = El:(l +3, )%

s

SS} is the one-period conditional mean return.

The upper (lower) bound on the call (put) price is the expectation at time zero of the
option payoff with the actual probability distribution of the stock price at T discounted by
the return on the underlying asset inflated (deflated) by the round-trip transaction costs.
Attractive features of (2.25) and (2.26) are that the bounds are independent from the

frequency of trading, as the transaction costs enter only once, and that the bounds can be

'3 Results presented here include corrections for dividends added in Constantinides and Perrakis (2002a).
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derived for any given arbitrary distribution of the stock price, provided that the first

moment exists.

The derivation of the bounds stipulates that investors hold the riskless bond and one
primary risky asset, which constraints the bounds applicability to index options. The
proof of Proposition 1 compares the derived utility of an investor holding an optimal
portfolio composed of the two primary assets and the derived utility'® of an investor with
similar holdings with an added short position in one call option. The position is
composed of one short call sold at the upper bound, with the proceeds invested in the
underlying asset: it entails zero initial cost. For a finite investment horizon T'(T' 2T), CP
demonstrated that the derived utility J of the call writer has to be larger or equal than the
derived utility V of an investor with identical holdings save for the position in the
derivative'’. The argument of an increase in derived utility applied in the proof together
with the assumption that the utility function is concave and increasing establishes the
Proposition 1 upper bound as a stochastic dominance result. The link with previous

stochastic dominance results is clear once we observe that the term
-1\
(HR‘_) E[(S; —K)"|S,] in the Proposition 1 upper bound is, by the definition of the

expected call payoff, the upper bound on the call price derived by Perrakis and Ryan

(1984) and re-derived by different arguments by Levy (1985) and Ritchken (1985).

' The utility function itself is plausibly assumed to be increasing and concave.
'7 The proof of Proposition 6 applies a similar argument with the zero-net-cost position composed of one
long put purchased by shorting stock.
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By the definition of the Proposition 1 upper bound, a risk-averse investor subject to the
monotonicity of wealth condition can improve his expected utility by adding to his
portfolio the zero-net-cost position in the derivative priced at or above the call bound. In
our study we exploit this bound (2.25) in order to measure the improvement in expected
utility by the definition of second order stochastic dominance (2.22) with the cumulative
distribution functions of the returns of investors without and with the derivative, from
(2.22). To achieve this, we need first to identify violations of the bound within traded
European-style call options on some broad index, say S&P 500. As the portfolios have to
be optimized before any trading in the derivative occurs, we apply the portfolio
optimality conditions in the presence of transaction costs presented in Constantinides
(1986) and Davis and Norman (1990). For both the above steps, the true return
distribution of the underlying asset (the S&P index) is required. We proxy this true
distribution by the distribution derived from historical data. The details of our

methodology are provided in Part 3.



3. Methodology and Data

We consider a multi-period economy in which each investor makes sequential investment
decisions at discrete trading dates t (t =0, 1...,T"), where the terminal date is finite.
Before the option is introduced, an investor may hold long or short positions in a stock
(with a natural interpretation of an index) and/or in a zero-coupon risk-free bond. The
bond trades do not incur transaction costs. At date t, the stock pays cash dividends 6,S, ,
where the dividend yield parameters §, are assumed to be deterministic and known to the
investor at time zero. We assume that the support of S;is (0,°°) and that the successive
rates of return on the stock are independently distributed with conditional mean return

known to the investor at time zero:

R’ = E[(H(SM)%IS,:I . (3.

!

We define the conditional mean return with the dividend reinvested in stock, net of

transaction costs:

RS =E P i':'-|s, . (3.2)
L+k ) S,

The distinction between R® and R? is negligible provided the dividend yield and the

transaction cost rate are of the order of a few percent.

At t, the investor enters with x, dollars in the bond account and with y /S, ex dividend

shares of stock. The investor increases (decreases) the stock dollar holdings from y; to

y, + v, by decreasing (increasing) the bond account from x, to X, — v, —max[k,v,,—K,v ],



where k; (k,) is the proportional cost of buying (selling) of the risky asset. In our

empirical work we assume k, =k, =k . The investment decision variable v, is

constrained to be measurable with respect to the information set available at t.

Given v,, the bond account dynamics are:

X, ={x, —v, —max[ky, —kV,]}R+(y, + v,)d'—‘gg’—*‘, r<T' -1,(3.3)

:
and the stock account dynamics are:
Vo =, +v)S,., /S, . 34)
At the terminal date, the stock account is liquidated. The net worth is defined as:
W, = xp. + v — max{—k vk, v.]. 3.9)
The investors’ objective is to maximize E[u(W;)]. Even though this objective
realistically represents the objective of a financial institution, the results are extendible to
the case where consumption takes place at each trade date:; this extension will be
presented further in this chapter. The utility function, u(.), is plausibly assumed to be
concave and increasing in (X, y) and defined for both positive and negative terminal
worth. The value function of an investor is defined recursively for t <T —1:
Vix,v, )=

5 3.6
max, EI:V[{x, ~v—max[kyv,—k,v]}R + (y, +v)-‘>—”§g—”‘,(y, +v)%—*l,t+ljl S,} (30)

t H

and

V(x,y,T") =u(x,. + y;. — max[—k,v.,—k. v, ]) .

9
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Next, a European-style, cash settled option is added to the investment opportunity set.
The option expires at T, T <T'. The value function of an investor holding a position in

the derivative is defined as:

J(x.v, 1) =

3.7
max, E[J({x, — j—max[k, j,—k. j1}R + (y, +j)%,(y, +j)%%'—,t+l)|5,} G-
and
J(x,v,8,T)=V(x+g(8),y.T),
where g(S) is the terminal option payoff at the expiration T. Note that the optimal

investment decision j, of the J-investor may well differ from the optimal decision v, of the

V-investor.

For the multi-period economy, Constantinides-Perrakis (CP, 2002) state in the

Proposition | the upper bound on the reservation write price of the call option:

L+£,
1-k,

_ r-t _ \!
C(S,.t)= [HRf] E[(S; -K)"|S,],1<T -1 (3.8)

and
C(S,; . T)=[(1+5,)S, —KT".

Under the assumption of the lognormal process of the stock price, the term
-1 . \7!
{HRf ) E[(S; — K)" | S,] in the Proposition | becomes the Black-Scholes (1973)

model with the true expected return R} replacing the riskless rate. In our empirical work

we assume identically distributed expected ex dividend stock returns and identical



deterministic dividend yields & for each time period. This simplifies the notation in

Proposition 1 by defining R =R¥=R5=... =R$. Under this new notation we have:

E(S,,t) ={(L+k)/(1-k)}E[(S; - K) |S,]/RST" AT -1 (3.8)
and

C(S,. T)=[(1+5)S, —KT".

The proof of the Proposition 1 relies on the key property that the marginal utility is non-
increasing in the stock price, which is preserved under the assumption of the
monotonicity of wealth: the wealth at timet < T (including the payoff of the derivative) is
a non-decreasing function of the stock price. Whereas intermediate trading may result in
the violation of the monotonicity, increasing the initial wealth relative to the position in
the derivative can make the probability of such violations arbitrarily small. Adding a

zero-net-cost position in one (without a loss of generality) call option consisting of a
short call and E(Sl,t)/(l+ k,) shares transforms the V-investor into the J-investor. The
investor’s expected utility increases at t by adopting the zero-net-cost position if, and
only if:

J(x,y+C(S,.0) /(1 +k).t) >V (x,y.1). (3.9)
In equilibrium, we must have:

J(x,v+C(S,.0) /(1 +k),1) SV (X, v,1). (3.10)

The CP proof exploits the condition that if the call write price exceeds the bound stated in

Proposition 1, the equilibrium condition (3.10) is violated. The induction proof finds that



the equilibrium condition holds at T by the definition of the bound. The demonstration

that if Proposition 1 holds at t it also holds at t-1 is much more difficult. The proof shows

that the difference A, of derived utilities of the J and V investors is nonnegative unless

the reservation write price of the call is less than or equal to the bound given in (3.8).
This result is derived by imposing the optimal policies of the V-investor onto the J-
investor. This condition will remain valid for the remainder of our study. Hence, in what
follows the J-investor will have the same holdings as the V-investor save for the added
zero-net-cost position in the derivative. Note that if this imposed suboptimality of the j

decision variable is relaxed then the Proposition 1 result is strengthened.

The key argument of the proof explores the concavity of the value function in the dollar

value of the stock account. This, combined with the monotonicity assumption implies
that the function M ={y + vi; + E[(ST = K)*ISe.1 /(1 —=k2) Rg™“™" }SUSei — C /(L +ky)is
increasing in the stock price, while the partial derivative of V with respect to the second

argument is decreasing. Demonstrating thatA, >0 implies A, ; 20 completes the

induction proof of Proposition 1.

The definition of the bound in (3.8) implies that the frequency of trading does not enter
the CP Proposition 1. The bound does depend, however, on the monotonicity
assumption. On the other hand, the likelihood of a violation of the monotonicity
assumption clearly depends on the optimal policy of the V-investor, which in turn
depends on the wealth of the call writer. Hence, we need to find how restrictive the

condition is, or, how much wealth is needed to assure the satisfaction of the monotonicity



assumption. More to the point, we need to find the number of shares (= N, ) that the J-

investor must hold at the time of writing one call option at or above the Proposition 1
upper bound so as to bring down almost to zero the likelihood of the violation of the
monotonicity assumption. Within the account dynamics described by (3.3) and (3.4),
only the decision variable v remains unobservable. As already shown in Part 2, the
presence of transaction costs establishes a region of the y to x proportions within which it
is optimal to refrain from trading. Hence, we need to find how the no transaction

(hereafter NT) region is defined.

We apply the Constantinides (1986) methodology to find A and X, that are, respectively,
the lower and the upper bound of the NT region. The Constantinides (1986) method
assumes a simple consumption policy under which a constant proportion of the bound
account is consumed every period. By the author’s assertion, the loss in derived utility
due to the assumption is small'®. Also, the time horizon of the Constantinides (1986) is
infinite. We consider that it is plausible to assume the final investment horizon T'is
“much” longer than the derivative expiration time T; hence we consider the infinite

horizon model as appropriate for the problem at hand.

The optimal simple investment policy of trading to the closest boundary A or A when we
fall outside the NT region and the simple consumption policy at the constant rate B from
the bond account, will fully determine the decision variable v of the V-investor. Because

of the imposed suboptimality of the J function, the above holds true also for the J-

'8 George Constantinides in personal communication has confirmed the small impact of the simple
consumption policy assumption on derived utility.



investor. In section 3.1 we combine the account dynamics in the multi-period economy

with the simple investment and consumption policies.

The remainder of this part is organized as follows: Section | presents the derivation of
the parameters of the NT region by the Constantinides (1986) methodology and the
impact of the additional assumptions of this methodology on the assets dynamics and the
derived utility in the muiti-period economy, Section 2 focuses on the J-investor holdings
satisfying the monotonicity of wealth in the share price assumption of Proposition I,
Section 3 deals with the estimation of the distribution of the S&P 500 (hereafter S&P or
the Index) return and its application in a search of violations of the Proposition | upper
bound among the traded Index options, Section 4 applies the second order stochastic
dominance (SSD) arguments to measure the improvement in expected utility resulting
from the addition of the zero-net-cost position in the call option violating the Proposition
1 upper bound to the V-investor’s portfolio, Section 5 specializes the results in examining
the relation of the portfolio composition to the improvement in expected utility. We use

the SAS system and the Maple software to obtain numerical results.

3.1 Portfolio Optimality Conditions in the Presence of Transaction Costs

Merton (1969, 1971) solved the two-asset optimal investment problem in complete

markets for the power utility function'®. Under the following condition:

p>ylr+(u-ry/c*(l-y)}, (3.1.1)

' Merton (1969, 1971) presented a more general solution applicable to the HARA class of utility functions.
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where p is the impatience (discount) factor, y < [, y # 0 is the risk aversion coefficient,

the optimal y to x proportion is:

-1
;.'=[ “",][1_ “”,] .(3.1.2)
-y} -y’

Note that the condition (3.1.1), which also applies to the portfolio selection problem with

transaction costs, is automatically satisfied for y <0.

Under the assumption of a simple consumption policy stipulating consumption at a
constant rate from the bond account, Constantinides (1986) solved a similar to Merton

(1969) dynamic control problem of maximizing the derived (power) utility:
Vix.v:B,A,A] = max Eofe'”zt(c(t))clt = max E(,J‘e"”y'lcy (r)de, (3.1.3)
[ 0

where c(t) denotes consumption at t, B =c/x is the parameter of the simple consumption

policy, Eq is the current time expectation over the Wiener process . In the NT region,

both risky and riskless assets follow:

dx = rxdt —cdt = (r - B)xdr
dy = puydr + ovdw .

G.1.4)
By virtue of the simple consumption and the simple investment policies, the dynamic
programming problem controls are (3, L,X )- The derived utility function V(x, y;, L,X)

satisfies the Bellman equation. Substituting ¢ =fx we getm:

(Be) 1y +(r = B)xV, + wyV, + (07 12)y*V, - pV =0, A< y/x<A.(3.15)

*® Subscripts denote partial derivatives.



It can be shown that V is homogenous of degree v in x and y. The boundary conditions

are set by the simple investment policy outside the NT region of trading to the closest
boundary:

(L+k)V, =V,, vx<4i, (3.1.6)
and

(L-k)V, =V, y/x=1. (3.1.6)

Based on the homogeneity argument and the continuity of derivatives of the value

function, the following general solution can be obtained:

_ Y
V(x,v:B.A,A) = ——ﬂ———(.t7 ly +AX ™y + A X vy, 3.1.7)
p-y(r-PB)

where (A, A,) are free parameters and (s,, s2) are the roots of:
(615> +(u—-0>12-r+B)s—[p-y(r-P)1=0. (3.1.8)

Substituting the value function (3.1.7) into the boundary conditions (3.1.6) and dividing
by x"yields a pair of equations in Aj, Aj:

A+k)[1+ A Y —s)A" + A (Y —s)A" 1= As A" + Asa A (3.1.9)
and

A=k)l+ AT -s)A" + AT -s)A 1= A5 A" + A5, A" . (3.1.92)
Constantinides (1986) proved that from the triplet of maximizing controls (B, L,X ), (L,X)
are independent from (X, y), given that f3 is set to be independent from (x, y) by the
assumption of the simple consumption policy, and that the same pair (A,A) that satisfies

the necessary optimality condition of A, also satisfies the same conditions for A,. Fora

numerical solution, (3.20) and (3.20a) yield an expression for A (3, L,X ). Then,



A B, L,X)/[p —v(r—B)] has to be maximized with respect to (A, ). The same pair also
maximizes V(x,y;p, L,X). Constantinides (1986) defines:

V(x. v, B) = maxV(x.y:B:4,4), (3.1.10)

and maximizes V(x,y,p) w.r.to B at the value of y/x =" corresponding to the optimal
portfolio proportions for the Merton (1971, 1969) two-asset optimal investment problem,

which implies A <A’ <A . By substituting A" into the value function we get:

17 =x7—p—_—y—€-;—:—ﬁ—)(1/}' + AL+ ALY L (B

Because of the homogeneity of V of degree yin x and y, taking the partial derivative of
(3.1.11) w. r. to the consumption rate f§ will yield the first order condition for the
optimality of the value function independent from (x, y). This, together with the

optimality conditions for A, in (A, ) results in three equations with three unknowns
B, A

—yr= B Y =
lo=1(r=P)T" 35 =0,

_ 0A,
—v(r- 23 -0, 3.1.12
[po-y(r-PB)] 7 ( )

v _

ﬁ_o.

The above set of equations can be solved for (p, L,X) numerically. Like Constantinides

(1986), we assume the impatience factor p to be equal to the riskless rate r.
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However, the method presented above does not apply to assets with dividend payouts as
in the case of an index. Assuming continuous deterministic dividend yield at the rate d,

the assets’ dynamics now become:

dx = (r — B)xdr + dydt

(3.1.13)
dv = uvdt + ovdw .

For (3.1.13), the resulting Bellman equation has no known closed-form solution®'. To
apply the adjusted value function (3.1.7) in the case of dividends, we approximate the
bond account dynamics by substituting in (3.1.13) instead of y the value of x multiplied

by A", the optimum y to x proportion inclusive of dividends without transaction costs:

-~ -1
(1-y)o~ (I-y)o~

The approximate bond dynamics are:

dc=(r— B +h)xdr, (3.1.14)

whereh = 81",

We now prove an auxiliary result.

Proposition. Define V° as the value function solving the dynamic optimization problem
in the case of dividends under the approximate bond account dynamics (3.1.14). We

have, instead of (3.1.7):

J 7 ﬁ]’ p Y5, .5 V=5 5+ '
Vi(x,v; B.A,A) = (X Ty +AX ™y + A X 7T y), (31T
g p—y(r—PB+h) e ”

*! A review of the dynamic programming literature has revealed that a closed form solution to the Bellman
equation rarely exists. See Fleming (1975).
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where (s;, s2) are the roots of:

f(s)=(@*12)s* +(u-06*12-r+B-h)s—-[p-y(r=B+h)]=0, (3.1.8)
and (A}, A,) are free parameters derived from substituting the adjusted value function
(3.1.7°) into the boundary conditions (3.1.6) as in the case of assets’ dynamics without

dividends.

Proof. Under (3.1.14), the Bellman equation by Ito’s lemma becomes:

(B 1y +(r=B+mxV? + VP +(0712)y'V3 - pV® =0, A<y/x<i. (3.15)
If we substitute the value function (3.1.7') and its appropriate partial derivatives into
(3.1.5") and simplify, we obtain A, (y/x)™ f(s)) + A2 (y/x)** f(s2) = 0, where f(.) is as
defined in (3.1.8"). Since for (3.1.5") to hold we must have f(s|) = f(s2) = 0, the equation

(3.1.8') follows immediately. Substituting the value function V? into the boundary
conditions (3.1.6) and dividing by x yields the same pair of equations (3.1.9) for (A,, A»)

as in the no-dividend case, QED.

The inclusion of dividends shifts the NT region towards the risky asset since augmenting
the expected risky return by the value of § in the expression (3.1.11") for 1" increases
this number, which in turn enters the value function V® maximized w. r. to B, as in the

case without dividends.

To obtain numerical results, we solve numerically for:



[p—y(r—ﬁ+h)}"g—“§=o,
A

[p—y(r—ﬂ-i-lz)]"g—%: . (3.1.12)
v

Y =0.

Since for the remainder of our study we examine exclusively a dividend-paying asset, we

further refer to (3.1.12") in what follows as the adjusted Constantinides method.

The last complication with finding the NT region arises from the assumed positive
weights on both assets included in the value function (3.1.5) or its adjusted form (3.1.5").
For a given risk aversion coefficient y, a solution to (3.1.12") may or may not exist with
positive™ weights on both assets depending on the remaining problem parameters. In
particular, the estimated risk premia of the S&P return would produce a solution to
(3.1.12") for high y only for borrowing (negative x) in most cases of the Index returns
examined in sections 3.3-3.5. Finding systematically a negative weight on the riskless
asset would contradict generally accepted equilibrium conditions since it implies that
additional utility can be derived at the margin by borrowing and investing in the risky

£21

asset (Kocherlakota, 1996, Mehra-Prescott 1985). Hence, we search for a “reasonably
highz3 y for which we can find (A, X) for positive (x, y) for the “majority” of the

estimated risk premia. The Maple software has been used to obtain the numerical results

upon pre-testing the code™ by replicating the Constantinides (1986) results.

* Constantinides (1986) provided adjustments for negative weights on either asset: replace y with -y in
(3.1.7) if y is negative, replace x with —x and B with - in (3.1.7) if x is negative.

 In fact. there is little agreement among economists regarding the permissible range of y. See
Kocherlakota (1996) for a survey.

** The code is given in Appendix 1.
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Here, we combine the adjusted Constantinides method and the multi-period economy.
This requires adjustments of the bond account dynamics (3.3) to the simple consumption
policy at the constant rate p per period™. In the considered sequence of events, the
consumption at t + | takes place immediately after cash dividends and interest have
accrued to the portfolio and immediately before the trading decision v, (. Similarly to the
continuous bond account dynamics, we proxy for the dividend accrual rate per period™
byh=461".

X, =L+ h)(1 - B)x —v, —max(ky,~k,v,]}R, t<T' 1. (3.3)

Under the simple consumption policy, the V and J value functions (3.6) and (3.7)
incorporate an additional control, the consumption rate parameter .

V(ix,v,)=

(ﬂr )7 Sr«l
max{——+ E| V| {x,(1+ h)(1- B)—v —max[ky,~k,v]}R,(y, + V)L, 1 +1 || §,
LY S (.6)

and

V(. v, T') =u(x. + yp —max[=k vp..—ky v ]) .

J(x, y,0)=

. (ﬁ‘-[)‘/ . . A : Srvl
max —y—+E J| {x,(1+ h)Y1 - B) - j —max[ky,—k.v]}R,(v, + J) s Jg+1]S,
' : (3.7

and

* We hope that the same notation in what follows regarding both the period and annual rates will not

confuse the reader.
3 - . . . . - P
*6 However, in our discrete time numerical work presented later in the text, we consider a more realistic

approach regarding dividends.
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J(x,v,8.T)y=V(x+g(5),y.T).

By combining the assets dynamics in the multi-period economy (3.3") and (3.4) with the

simple investment policy, we have:

(v, +v)[x,(1+ )= B)+v,(I+k)]=A, vix<i,
v, =0, vixe[A,A], (3.L.15)
(v, +v) /L. (1+ )1 - B)+v,(—k,)]= A, vix>A.

Figure 1

The NT region and portfolio dynamics in (x, y) coordinates. The solid lines represent the boundaries of the
region, the dashed line represents the Merton line, and the irregular curve represents the stochastic portfolio

process.
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Last, we present several remarks regarding the portfolio dynamics in the NT region
applicable also to later sections. Figure 1 may be helpful”’. We approximate the
expected slope of the line joining any two points on the irregular curve of the stochastic
portfolio process by (1 + u)/(1 + r+h)(1 — B), where h =3A". For plausible parameter

values, this quantity is close to one. This implies that a portfolio originally situated at the
upper boundary A of the NT region will tend in time towards the area inside the region if
the value of A “significantly” exceeds one, thus implying in expectations no sales from
the stock account after a “sufficiently” long period of time. The Constantinides (1986)

results and our numerical work imply that a value of X lower than one can be found as a
result of low values of the risk aversion coefficient y or for other parameter values for
which it is plausible to assume a significant portfolio shift towards the riskfree asset, but

which rarely can be observed in the market data we deal with in later sections. A value

of A lower than I fora portfolio at the upper boundary of the NT region would imply

frequent sales from the stock account.

3.2 The Monotonicity of Wealth in Stock Price

Recall from the induction proof of the Proposition 1 (CP) that the following expression
representing the net value of assets of the J-investor as a function of the stock price has to

be monotone increasing in the stock price S, by the monotonicity assumption:

M =y, +[C(S, .t = DI+ k)1S, /S, —C(S,.0)[(1 +k). (3.2.1)

7 We represent a three-dimensional problem with this figure.
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where E(S(,t) isgiven by (3.87), y, =y, S/S,,and y _, =Yy, ..S_/S, ..+ Vv,
Substituting for y, into (3.2.1) yields the partial derivative w. r. to S, of the first two parts
of M. By substituting the maximum of the partial derivative of -(-I.(Sl,t) in S,, which
is(1+k,)/(1-k,), we derive the following sufficient condition for the preservation of the

monotonicity:

aﬁ_M's[y,_l +C(S, 1= DIA+k)S,, =1U(1-k) >0, (3.2.2)

as.

where y,_, = N__S,_, and N, denotes the number of shares optimally held at t.

Note that if the investor holds att-1 N, >1/(1-k,) the monotonicity assumption is

automatically satisfied, since the derivative of E(S‘, t) can never exceed this number. To

derive numerical results, we simulate paths of the Index price via Monte Carlo

simulations according to a discretized geometric Brownian motion model (Hull, 2002):
S, =S _expl(u—-0c3/2)Ar +oe.[Ar ],(3.2.3)
where € is a random sample from N(0,1), At is the length of an assumed revision

interval in years, is the expected ex dividend return on the Index. Random numbers

from a standard normal distribution were obtained through a SAS pseudo-random

number generator leaving all the results readily replicable.

At time t =0, we form two portfolios, both containing Ny shares of the [ndex, Ng> 1.
The dollar value of the riskless asset at t = 0 is determined by y /x, = A (yo/xo =4) for

the portfolio formed at the upper (lower) boundary of the NT region. We assume that the
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boundaries of the NT region remain unchanged throughout the life of an option.
Dividends accrue to the bond account at the rate & per period and the investor consumes
at the rate B per period from this account. Immediately before a revision we have™:

¥y, =N_S, and x, =(1-B){[x,_, - v,, —max(k,v,_,~k,v,_ JJR+N_ 385}, t=1...T. Let
x',and y', denote the dollar value of, respectively, the bond and stock accounts

immediately after the adjustments due to the simple investment policy have taken place.
For each revision opportunity, at the prevailing Index price, the V-investor makes the

following adjustments:

LIf y/x > A:
AN, =-v /S, = (v, = Ax)/ S,[1+ A(l~k.)],
N.=N. -AN, (3.2.4)
-vll = NISI M
X, =x +ANS, (1~k).
i, If y/x<A:
AN, =v, /S, = (Ax, - v.)/S, [1+ A+ k)],
N, =N, +AN,,
(3.2.4a)
y'l= N!SI r

X'=x —ANS,(1+k).

iii. If A> y/x> A the investor does not trade.

Recall that the call upper bound E(S,,t) under the lognormal process of the Index price is

given by the same expression as the Black-Scholes (1973) model multiplied by the

* This formulation implies that consumption takes place right after receiving the interest and cash
dividends.
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round-trip transaction costs with the expected return on the Index (including the

reinvestment of dividends) Rg replacing the riskless rate. It follows:

C(S,,1)=Co = 3’“/’? i [See ™ TN(d,) - Ke TN (d,)] ,
d, =(In(S,/K)+(R, =8+ 12XT 1))/ 6T -t , (3.2.5)

d,=d -oNT -1 ,
where t = 1 ... T denotes the time of a current revision opportunity and N(.) denotes the

standard normal cumulative distribution function (CDF).

Att = L, for each path of the stock price, we check for: a) N, >1/(1-k.), b) g_sl\i> 0,

where B_M is given by (3.2.2). If at least one of the conditions a) and b) holds we assign

t
the value of 0 to a counting function, otherwise the counting function assumes the value
of I. Att=2 ... Tif at least one of the conditions a) and b) holds, the counting function
assumes the value of the function at t-1, otherwise the counting function assumes the
value of 1. Aggregating the counting function across all the paths for each portfolio
revision yields at t the estimate of the probability of the event that at any t' (0<t'St),
the monotonicity assumption has been violated. We set the controlling variable to be the
ending probability of the monotonicity violation. A gradual increase in the number of
shares at t = 0 will result in the estimate of N for which the mean ending probability of
the monotoncity assumption violation at the option expiration T approaches zero. The
decision variable, v, is determined as shown in (3.2.4), to keep the portfolio inside the NT
region. The selected problem parameters presented further in this section result in a

width of the NT region that precludes any of the two portfolios from reaching a bound of
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the NT region other than the point in which the portfolio process has originatedm. Since
this finding assures non-positive (non-negative) v, for the portfolio formed at the upper
(lower) bound of the NT region, it is clear that the number of shares satisfying the
monotonicity assumption has to be higher (lower) for the portfolio formed at the upper
(lower) bound of the NT region. This implies that the case of a starting point at the upper

boundary of the region is the only interesting one for the purpose of our study.

50,000 paths of the Index price were simulated. The expected cum dividend return, the
dividend yield and the riskless rate remain fixed at, respectively, 0.11, 0.02 and 0.05. We
apply 31 and 45 days to maturity. For an increase in the time to maturity, by the

argument presented at the end of section 3.1 regarding the relation of the sales from the
stock account to A, we expect the ending probability of a monotonicity violation increase

significantly less for A > | than for A < 1. We use values of the standard deviation of
return of 0.15 and 0.20, transaction costs parameters of the underlying of 0.5% and 1%,
moneyness of an option ranging from 0.9 to 1.05 and finally, we assume that the J-
investor can revise his portfolio 1 or 3 times a day. An increase in the volatility, ceteris
paribus, is expected to cause an increase in the ending probability of a monotonicity

violation in two ways: first, a higher volatility increases the likelihood of sales from the

stock account to revert to the upper bound of the NT region; second, via a decrease in A
it causes sales of bigger fractions of shares to reach the bound. A decrease in the
moneyness, ceferis paribus, is expected to cause an increase in the ending probability of a

violation, as smaller fractions of shares can be deposited on the stock account from the

* This occurs because the width of the NT region is large with respect to the observed variability in the
risky asset per transaction period. This was also a characteristic of the data in our empirical work.
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proceeds of the short sale of a call. Last, an increase in the frequency of intraday trading,
ceteris paribus, is expected to cause an increase in the ending probability of violations.
At the same time, we also estimate the mean proportion of shares that has to be sold from

the original holding to adjust to the portfolio optimality condition®.

3.3 Estimation of Violations of the Upper Bound on the Call Price

Having derived the conditions for assuring the monotonicity of wealth assumption, we
measure the improvement in utility resulting from adopting zero-net-cost positions in call
options violating the Proposition | bound and adding them to the holdings of the V-
investor. As the natural interpretation of the underlying asset in the Proposition 1 is an
index, we use as our data base Chicago Mercantile Exchange (CME) data containing
intraday quotes on European-style S&P options31 for the period January 1990 — August
1996 (with the exception of April 1991 — December 1991, for which the data is missing)
for calls with 31 and 45 days to maturity violating the Proposition | and intraday S&P
quotes for the same period. The search is based on fitted lognormal distributions of 31-

and 45-day returns on the Index assumed to proxy for the true return distribution.

We assume that the subjective distribution of the Index returns of a representative
investor’” is estimated from the past data. Hereafter we refer to data and/or results for 31
(45) days to expiration as to the Set 1(2) for short. We obtained 71 (72) sampling dates

for the Set | (2). As estimating the distribution of the gross return on the Index would

* A pertinent SAS code is given in Appendix 2.

3! The investigated options conform to the cash settlement method assumed by CP model.
32 A similar though nonparametric methodology was applied by Jackwerth (2000).
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lead to spurious results due to the variability in the riskless rate, we estimate risk premia
rather than the log relative of the S&P value. Under the geometric Brownian model for

the Index price we have:

log%f—‘--r ~ d{(e—%-)’l',.a,/fJ, i=12, (3.3.1)

0
where 6 denotes the estimated expected market risk premium and r denotes the observed
riskless rate. Given the well-documented instability in the distribution of returns on the
stock market (Black, 1986, Rubinstein, 2000), we vary the number of 31 (45) day periods
used to obtain estimates by going backward from the day prior to observing call data for
the Set [ (2) to find estimates both satisfying 6 > 0 and conforming to lognormality. To
test for the lognormality of the estimated market risk premium, we apply the Kolmogorov
D-test. The test uses the highest absolute difference between the normal cumulative
distribution function with the estimated parameters and the empirical cumulative
distribution function. The difference is assigned a value D taken from the A-Kolmogorov
distribution. A high value of D leads to rejection of the null of normality. We proceed
further with only those sampling dates for which the p-value for rejection of the null is
0.1 or larger, after checking for consistency of the test results with the Shapiro-Wilk and

Anderson-Darling normality tests.

In the course of searching for the optimal number of periods for the density estimation,
we faced the following trade-off: the number of observations yielding the maximum
number of estimated distributions conforming to lognormality (50 and 40 for Sets | and
2, respectively) brought about several negative market risk premia, while an increase in

the number of periods brought an increase in the number of departures from



lognormality. Settling for a middle ground, we apply 72 3 1-day periods and 50 45-day
periods for the Set 1 and Set 2, respectively> . While in our choice there are no negative
market risk premia, on the other hand the number of distributions conforming to
lognormality is lower than its observed maximum, thus reducing the sample of options
available for our study. Daily S&P returns were obtained from the CRSP tape, daily 3-
month T-bill rates were obtained from Bloomberg. SAS Insight software has been used

to estimate the parameters of the distributions and to perform the tests.

We gauge the performance of the estimated distributions by aggregating a standardized

variable z =[pg, —u}/c, where p, is the realized return on the Index throughout the life

of an option violating the Proposition | upper bound, and pand o are the estimates of the

parameters of the Index return distribution, the former resulting from adding the
estimated risk premium to the current period riskless rate. The test cannot confirm the
appropriateness of the method applied to search for violations of the Proposition 1 upper
bound; however, finding a z value significantly greater than zero would indicate that the

observed violations may have resulted from biased estimates of the parameter values.

Restating Proposition | under the assumed stochastic process for the Index price with

assumed deterministic dividends throughout the life of an option, we have:

C(S,.0)=Co = ((:_*:%[soe‘=‘”" N(d,)~Ke™ ™" N(d.)],
d, =[In(S,/ K)+(R; ~§ +0* 12T V6T, , (3.3.2)

d,=d, -0\, ,i=12,

% Note that the total length of time to estimate the parameters of each density function is approximately
equal for both sets.
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where Sy denotes the Index price contemporaneous to the observed call price, 8 denotes
the realized dividend yield till the option expiration, Rs =6 + r + 8/(1 + k), where 0 is the
estimated risk premium and r is the observed 3-month T-bill rate at time zero, o is the

estimated volatility of the S&P return, N(.) denotes standard normal cumulative

distribution function. Finding a call bid quote (Cy) greater than Co indicates a violation
of the Proposition | upper bound. For our analysis, we set k = 0.005, which is assumed
to realistically approximate the cost of trading in the Index. Daily dividend yields on the

[ndex were obtained from Bloomberg.

Since the CME option tape records ask (bid) flags only if an ask (bid) is lower (higher)
than its immediate predecessors for a given strike price, we enrich the data set by
recovering flags by concluding that if, for a given strike, a non-flagged quote is higher
(lower) than its immediate predecessor, the quote is an ask (bid). Table 1 below presents
basic quantitative characteristics of the CME option data. Upon finding call quoted
prices at bid, we proceed further only with those that can be matched within 10 seconds
with an S&P quote. As a safeguard against misreading flags, we compare proportions of

violating calls for the original and the recovered data™.

* See Appendix 3 for pertinent SAS codes.
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Table 1
CME Call Data (Calls at Bid)

31 Days to Expiration 45 Days to Expiration
(71 sampling dates) (72 sampling dates)

Year Original Recovered  Total Original Recovered Total
1990 392 415 807 238 188 426
1991 111l 66 177 161 97 258
1992 326 372 698 157 138 295
1993 279 434 713 214 177 391
1994 311 421 732 230 177 407
1995 286 506 792 257 226 483
1996 235 482 717 195 227 422

Total 1940 2696 4636 1452 1230 2682

3.4 Improvement in Expected Utility

To measure the improvement in expected utility resulting from the added zero-net-cost
position in the call violating the CP upper bound, we apply the second order stochastic
dominance (SSD) arguments. SSD does not require stronger assumptions than increasing
and concave utility. We assume that the trading decisions, of the V- and J-investors are
determined by the portfolio optimality conditions derived by the adjusted Constantinides
(1986) method with the inputs of the parameters of the estimated S&P return distribution,
the observed current period riskless rate, and the dividend yield at the option expiration.
Hence, we form the portfolios of the V- and J-investors within the NT region and
simulate their returns by means of Monte Carlo simulation of the model (3.2.3)
conditional on the validity of the estimated distribution derived by the method described
in section 3.3. The J-portfolio will consist of the V-portfolio holdings plus one zero-net-

cost position based on a call option whose price has violated the Proposition 1. To satisfy
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the monotonicity assumption, we consider portfolios containing at least the minimum
value for Ny that corresponds to an insignificantly small probability of violation of the

assumption as derived by the methodology presented in 3.2.

We make several assumptions simplifying our numerical work. First, we fix the NT
region for the life of an option at the boundaries derived for the set of parameters
observed or estimated at time zero. Second, we set dividends to arrive each day in equal
dollar amounts per one share dr=06SspAt , where 8 and Sgp are, respectively, the dividend
yield realized at the option expiration T, and the closing S&P price at T. Third, we invest

dividends at the riskless rate observed at time zero.

Under the suboptimality conditions of trading imposed on the J-investor, the quantitative
difference between the j and v decision variables may result only from a change in the
proportion of y to x caused by the inclusion of extra shares at t = 0. To underscore this
difference®, in what follows we keep j as denoting the trading decisions of the J-investor,

even though they are derived by the same optimality criteria as the v trading decisions.

In model 3.4.1 we derive at T values of the V and J portfolios inclusive of the value of
the consumption stream accrued from t = 1 to t = T to compare expected utilities of the
V- and J-investors. We compound the intermediate consumption until time T with the
discount rate p, which is assumed to be equal to the riskless rate observed at time zero™®.

Since for the numerical derivation of expected utility, consumption is not distinct from

% The difference is small, given that the number of extra shares is of the order of a few percent.
36 Alternatively, we can discount expected utilities at T to derive the improvement at time zero.
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the bond account holdings, we do not separate it in model (3.4.2) below. This
representation will simplify the derivation of several analytical approximations later in

this section and in 3.5.

Under the numerical simplifications above, we specify the assets dynamics with the
simple consumption and investment policies:

x, =(=-{lx,, — v, —max(k,v,_,,—k.v_)IR+N, d;},
vo=N_S_, (3.4.1)
t=1..T.

The decision variable v and the portfolio adjustments due to the simple investment

policy37 are determined as shown in (3.2.4).

Let Ryt and N, k = v, j denote, respectively, the holding period returns and the number
of shares held at the call expiration T. To include the transaction costs into the portfolio
return, thus making Rt comparable to Rjr, we compute the returns by applying the
liquidating values of the V- and J-portfolios at time zero and at the option expiration T,
inclusive of compounded consumption. Let A denote the y to x proportion right before
the zero-net-cost position has been adopted by the J-investor at time zero, and let

n, =C,/S, (1 +k,) denote the number of extra shares acquired by the J-investor with the

proceeds from writing one call option.

%7 In the considered sequence of events, the portfolio adjustments occur immediately after consumption has
taken place
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R = Y {v, —max[ky,,~k,]}R" ™ + D, + N, S, (1-k)

R, = :
T N,S,(1—k+1/1)
%R = Y {j, — max{k,j,,~k.j,]IRT " +D, + N S, (1= k) =[Sy +d, = KT
R, = :
o N, Sy(l—k+1/1)
(3.4.2)
X =NySy/ A,

D, =Y N, dR"™",
Ni=Ny+ > v,18,,

N,=Ny+ng+ jlS, k=vj, i=12,

where R; is the riskless return observed at t = 0 for the expiration time T;, dr denotes an
equal in each period dividend payment per one share, Dy is the dollar value at T; of
dividends arriving in a portfolio throughout the life of an option. The first term in the
numerator of the expressions for Ry, in (3.4.2) above implies we measure the value at T;
of the bond holdings at time zero. The next two terms, however, subtract (add) the values
at T; of any changes due to the bond account dynamics incurred in the course of the life

of an option.

To derive returns at the option expiration, we apply (3.4.2) to 200,000 price paths of the
Index simulated through the discretized geometric Brownian motion model (3.2.3) to
which we apply the distribution parameters estimated by (3.3.1). The Index value was
simulated starting from the price contemporaneous to each of the observed violations

included in a representative sample described later in this section.
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In the numerical applications, we sample the rates of return on the J- and V-portfolios at

the option expiration:

e =—logRy .
t

k=v,ji=l,2.

(3.4.3)

Although the Constantinides-Perrakis (2002) are “stochastic dominance” results insofar
as they apply to all risk-averse utility functions, their link with the traditional stochastic
dominance approach to portfolio selection is less clear. The traditional approach®®
compares the probability distribution of the terminal wealth of two alternative portfolios.
An SSD relation of one portfolio by the other requires that an integral condition such as
(3.4.5) below holds for all values zg in the distribution domain. Here we demonstrate that
the CP results are in fact an application of the traditional SSD relations, modified to

incorporate the intermediate trading and transaction costs.

Let Fi , k = v, j denote the cumulative distribution functions of the portfolio rate of
return. Having obtained the terminal stock prices from the Monte Carlo simulation and

the rates of return by (3.4.2), we estimate Fy at the discrete intervals n as follows:

ﬁ‘kw =my/M;_, (3.4.4)

m,. .. Swn,
where w =-80, -79, ..., 89,90, n=0.01, MST is the number of simulated paths of the

Index price, k = v, j. The covered interval of the observed return satisfies for its lower

% E.g. Hadar-Russel (1969), Hanoch-Levy (1969), Levy-Kroll (1979); see Levy (1992) for a survey.
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(upper) bound F, =0(1). Setting the same variable of integration for both investors, we

measure the improvement in expected utility’ :
H(z)=["(F,-F)z. (345)

[t also follows that H(ee) (alternatively, the value of H at which F, = F;= 1) is the
expected excess return across all the states. For the J-investor portfolio to show SSD
over the V-investor portfolio H(zo) must be nonnegative for all zo. A sufficient condition
for this is that F, and F; cross only once at some stock price denoted by S3, since F, is
clearly above F; for “small” values of zo. We demonstrate that such a single crossing
holds under some simplifying assumption and verify it empirically in our results without

these simplifying assumptions.

We estimate H(zg) by numerical integration via the trapezoid approximation:

A)=Hm= Y (Ap +8,,00/2, (3.4.6)

w==79

where A, | = E, - [ij and —79 £s<90. By the SSD argument, finding a non-negative

vw

H for each s will provide evidence for the improvement in expected utility from

adopting the zero-net-cost policy.

To evaluate the stock price SJ for which the excess return of the J-investor turns
negative, in the theoretical discussion below we simplify model (3.4.2) by setting the
decision variables v and j to zero, which implies disregarding the transaction costs of the

intermediate restructuring of the portfolios. Alternatively, we may assume that the

It is apparent that (3.4.5) must be non-negative for all z, to satisfy the SSD condition (2.22).
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cumulative sums of the v- and j-terms in (3.4.2) are equal and cancel out. To justify this
assumption, we measure the excess return under the simplified model over the full model
(3.4.2) applied to the J-investor whose portfolio is set at the upper boundary of the NT
region, where the sales from the stock account and the resulting transaction costs are the
highest in the region. We found that this number is of order 0.1% annually or lower*®
implying that the difference in excess return due to transaction costs of the V-investor
over the J-investor by the full model (3.4.2) is even smaller, thus justifying its neglect in
computing Rg , the excess retumn of the J-investor. Under the simplifying assumptions
for model (3.4.2) we have:

X,R + N,[S;(1-k)+ D]

R = ~
N, Sy(l—k +1/4)
R = X,R +(Ny+ny)[S;(1-k)+ D]-[S; +d, - KT i (3.4.7)
j NS, (I—k +1/2)
R =R g =lStU=R+DI-IS; +d = K" 5

s NS, (L—k +1/4)
where D is the dollar value at T; of dividends per one share accruing in a portfolio
throughout the life of an option. By inspection of (3.4.7) we note that the excess return of
the J-investor reaches its maximum at St= K — dr and decreases afterwards. It is positive
(negative) to the left (right) of the unique terminal stock price:

S?=(K~-d, +n,D)I[L-(1-k)n,]. (3.4.8)
This value is independent from the initial wealth. Hence, this result demonstrates that the

improvement in expected utility will occur approximately independently from the initial

*® Results are presented in Part 4.
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wealth*!, provided that the monotonicity of wealth in the stock price is satisfied. Note

also that large values of ng inherent to calls with high moneyness can more than
compensate the J-investor for the high risk of the exercise provided it shifts S}
sufficiently to the right in terms of the true distribution of the Index. Even though
approximate, the critical value of S does not depend on the assumed stock process and

can be derived by an investor ex ante. For instance, one can apply a different stochastic

process of the Index price than the Brownian motion to estimate the likelihood*? of the

terminal price lying to the left of SJ.

S3 will also uniquely determine the portfolio return for which the excess return is zero.
By substituting the expression (3.4.8) for S; in (3.4.7) we derive the unique portfolio
return R°for which Ryr =Ry, which, like the critical stock price S7, is also

approximately independent from the initial wealth:

0 —
0 R L300 +D 5 349

TRk UA)  S(A-k+UA)

To derive the numerical results** we consider two cases: i. The V and J portfolios are

situated at the midpoint of the NT region in terms of the y/x proportion by setting
A=A+ A)2 in (3.4.2),ii. The V and J portfolios are situated at the upper boundary of

the NT region. For case ii., we apply 1 and 9 portfolio revisions per day and derive the

41 The return difference Rg does, however, depend on the initial wealth.
** Note. however, that the NT region and the optimal policy will no longer be the same.
# See Appendix 4 for pertinent SAS codes.



difference in the improvements in expected utility due an increase in the revision

frequency.

Case ii. causes a complication concerning the asset proportions. Consider that adding the

zero-net-cost position to a portfolio already containing the y/x proportion A would cause
the investor to sell the extra shares by virtue of the optimal investment policy. As a
solution, we set the y/x proportion so that the acquisition of the zero-net-cost position
brings A to r exactly. Itimplies A = NO)T/(N0 +n,), to be substituted in (3.4.2) for case
ii. We use returns derived by (3.4.2) to estimate by (3.4.6) the improvement in expected
utility as defined by (3.4.5). Section 3.5 deals with the impact of changing the portfolio

composition on improvements in expected utility.

We demonstrate below numerical results in four representative cases for each maturity: i.
Low moneyness, low violation (LL), ii. Low moneyness, high violation (LH), iii. High
moneyness, low violation (HL), iv. High moneyness, high violation (HH). We define

the violation size as the ratio of the observed call price C, to the Proposition | upper

bound Co. A subscripti =1, 2 to LL, LH, HL and HH refers to the corresponding option
set. We anticipate any expected utility maximizer to prefer case HH to any other

regardless of risk preferences.
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3.5 Portfolio Composition and Improvements in Expected Ultility

In this section we examine the contribution to the improvement in expected utility of the
portfolio composition of the V- and J-investors. This improvement depends on the
number of shares Ny at time zero per one zero-net-cost position strategy represented by
the writing of one call option, as well as on the proportion of risky to riskless asset y/x.
Here we examine separately these two factors. We vary Ny to measure the resulting
improvements in expected utility due to the first factor, and measure the effects of the

second factor by comparing improvements in expected utility derived for portfolios
situated within the NT region for A = A+ A)/2 and for A = NOX/(NO +n,), the two cases

of our empirical work discussed in the previous section.

Figure 2

The excess return of the J-investor Rg as a function of the terminal stock price. The interval of the terminal
stock price represents “almost™ the entire distribution. The lower curve to the left of the crossing point with
the X-axis S represents the R of an investor whose wealth at time zero has increased by a factor of two

relative to an investor represented by the upper curve.

|
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=
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The approximate independence of the result (3.4.8), the value S‘} for which the excess
return R is zero, from the initial wealth means that the point where the CDF of the J-
investor’s return crosses from below its equivalent for the V-investor would not change if
the initial number of shares Ny per one zero-net-cost position increases. We consider the
quantitative impact of an increase in No on the improvement in expected utility. Figure 2
may be helpful. It is apparent that the expected excess return is positively (negatively)
related to the area between each curve and the X-axis to the left (right) of the crossing
point with the X-axis S}. From the definition of Rg in (3.4.7) it can be easily seen that
increasing the number of shares N by a factor decreases proportionally both areas by its
reciprocal. Since stochastic dominance implies that the area to the left of SJ is larger
than the area to the right, the gains in expected utility resulting from an increase in the
number of shares to the right would never exceed the losses to the left of S7. In terms of
the cumulative distribution functions of returns of both investors from which we derive
improvements in expected utility, an increase in Ng will turn clockwise the CDF of the J-
investor return around the point we proxy for byR?, decreasing the areas between the
CDF curves of the J- and V-investors in a similar way and proportion as shown in Figure
2 for the excess returns. Hence, we expect that increasing the initial number of shares Ng
by a factor will decrease the improvement in expected utility approximately by its
reciprocal. In our numerical results, we derive the improvement in expected utility for

increases in Ny for the representative set of options described in the previous section.

For the effect of an increase in A, the y to x proportion, we generally expect to find a

positive change in the improvement of expected utility as A increases. An approximately
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sufficient condition for a positive change in the improvement of expected utility across

all the states as A increases is a shift to the right of the quantity R°® as defined by (3.4.9).

We derive a condition on the number of shares ng purchased with the proceeds from
writing one call option for a positive shiftin R° to occur. By inspection of the partial

derivative of R® w. r. to A, which is equal to

SR, , (K=d; +n,D)I-K)
A [-(1-K)n, R

- - . ~ , we observe that this quantity is
S,(l-k+1/A)A" (I-k+L/A)A"

monotone increasing in no . Hence, finding no for which the partial derivative of R® w.r.

to A is zero (=n*) sets a critical value above which R° increases for an increase in A.

. A .
By solving for n*, we get:

i _SR+d,-K D

", =12, (35.1)
S,R(-k) 1-k

This result is approximately independent from the initial wealth, provided the

monotonicity condition is satisfied.

We derive the numerical results for the set of representative options described earlier for
portfolios with A = NJ/(NO +n,) and A= (A +1)/2, and compare the improvements in

expected utility.

56



4. Results

Table 2 below presents the estimates for the mean ending probability of the monotonicity
violation. This probability is positively related to the volatility and to the transaction cost
rate. The sensitivity to these variables; however, increases in the moneyness and/or in the
initial number of shares No. The impact of the trading frequency on the increase in the
mean ending probability is of a lower order. The mean ending probability decreases
rapidly, as expected, with increases in the moneyness; however, for low Ny at the low
moneyness values this sensitivity vanishes. The numerical results in Table 2 imply that
the mean ending probability as a function of the moneyness, is concave for the low and
convex for the high moneyness. In Table 2, we observe a decrease in the mean ending
probability to almost zero for the initial number of shares Nq of approximately equal to

1.075.

A comparison of the results in Table 2 for 31 days to maturity with those for call
maturing in 45 days, provides evidence for the relatively low sensitivity of the mean
ending probability to the time to maturity. The *‘threshold” initial number of shares for
which the mean ending probability approaches zero has not changed with an increase in
the time to maturity, save for the case of the lowest moneyness, the highest volatility and

the highest transaction cost rate, where we observe this probability of the order of 10%.

A percentage decrease in the number of shares held at the option expiration derived in

this step to proxy for the effects of the dynamic trading, ranges from 1.55% to 2.69%.
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Table 2

Mean Ending Probabilities of the Monotonicity Violation

T =45 days T =31 days
No n [S/K Pr* Pr** Pr* Pr**
=020 o0=0.15 | =020 0=0.15 | 6=0.20 ¢=0.15 | =020 o0=0.15

090 0.7289 05906] 0.6473 04712 0.6659 049100 0.5689 0.3593

3 095 0.7246 05638 0.6343 04126 0.6146 0.3314] 0.4483 0.1298

1.0o| 0.3828 0.1322] 0.2611 0.0555| 0.1433 0.0166( 0.0730 0.0038

1035 1.05] 0.1000 0.0104 0.0577 0.0030f 0.0158 0.0003] 0.0063 0.0000f
090 0.7026 05668 0.6216 0.4463] 0.6325 04619 05369 0.3324

1 095 0.6929 0.5271] 05961 0.3582] 0.5328 0.2493] 0.3560 0.0881

1.0 03120 0.0994 0.2056 0.0388 0.0995 0.0097] 0.0470 0.0021

1.05f 0.0739 0.0065| 00415 0.0017] 0.0094 0.0001] 0.0033 0.0000]

090 0.3699 0.1264f 0.3089 0.0789] 0.2503 0.0219 0.1797 0.0045

3 095 0.2075 00120 0.1287 0.0035] 0.0452 0.0001] 0.0206 0.0000

1.00f 0.0359 0.0004f 0.0192 0.0000f 0.0029 0.0000f 0.0010 0.0000

1.050 1.05f 0.0042 0.0000] 0.0019 0.00000 0.0000 0.0000{ 0.0000 0.0000
090 0.3465 0.1121] 0.2881 0.0598 0.2194 0.0124] 0.1426 0.0025

1 095 0.1581 0.0071] 0.0944 0.0021; 0.0283 0.0001] 0.0113 0.0000

1.0of 0.0252 0.0001] 0.0126 0.0000f 0.0017 0.0000{ 0.0006 0.0000

1.05{ 0.0026 0.0000f 0.0012 0.0000f 0.0000 0.0000j 0.0000 0.0000

090 0.1077 0.0003] 0.0631 0.0001f 0.0139 0.000@ 0.0053 0.0000

3 095 0.0132 0.0000f 0.0063 0.00000 0.0004 0.00000 0.0002 0.0000

1.00| 0.0010 0.0000f 0.0004 0.0000f 0.0000 0.0000; 0.0000 0.0000

1075 1.05f 0.0000 0.0000f 0.0000 0.0000f 0.0000 0.0000f 0.0000 0.0000
090 0.0789 0.0002 0.0439 0.00000 0.0077 0.00000 0.0026 0.0000

1 095 0.0083 0.0000f 0.0039 0.00000 0.0002 0.0000f 0.0001 0.0000

1.000 0.0007 0.0000f 0.0002 0.0000( 0.0000 0.0000f 0.0000 0.0000

1.05) 0.0000 0.0000f 0.0000 0.0000f 0.0000 0.0000f 0.0000 0.0000

0.90| 0.0044 0.00000 0.0019 0.0000f 0.000I 0.00000 0.0000 0.0000

3 0.95] 0.0002 0.0000{ 0.0001 0.0000¢ 0.0000 0.00000 0.0000 0.0000

1.00{ 0.0000 0.0000f 0.0000 0.0000( 0.0000 0.0000{ 0.0000 0.0000

1.100 1.05) 0.0000 0.0000f 0.0000 0.00000 0.0000 0.00000 0.0000 0.0000
090 0.0028 0.0000f 0.00I1 0.00000 0.0000 0.00000 0.0000 0.0000

1 095 0.0001 0.0000( 0.000I 0.00000 0.0000 0.00000 0.0000 0.0000

[.00{f 0.0000 0.0000f 0.0000 0.0000f 0.0000 0.0000( 0.0000 0.0000

1.05] 0.0000 0.0000f 0.0000 0.0000( 0.0000 0.0000f 0.0000 0.0000

*k=1% *Kk=05%

T is the time to expiration, Ny is the number of shares held at t = 0, n is the number of revisions per day.
S/K is the option moneyness, k is the cost of trading in the underlying index, ¢ is the volatility of an index.
Other parameters are as follows: expected ex dividend rate of return 0.11, dividend yield 0.02, riskless rate

0.05. For ¢ = 0.20 and k = 1% (0.5%) the upper bound of the NT rcgionxis 0.742 (0.736) and the
consumption rate B is 0.088 (0.089). For ¢ = 0.15 and k = 1% (0.5%), the upper bound of the NT

region A is 1,935 (1.894) and the consumption rate f§ is 0.122 (0.124). The risk aversion coefficient y is —6.
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Tables 3 and 4 below present the data used to search for violations of the Proposition 1
upper bound. The lognormality criterion applied to select observations reduced the
sampling dates available to study for the Set 1 (2) from 71 (72) to 27 (28). The presented
distribution estimates confirm the instability of the distribution since a difference
between sampling dates of, say, two months may result in the difference in market risk
premia of the order of 2%. In this regard, a more stable parameter for small time

differences is the Index volatility.

We observed in total 147 (209) violations of the Proposition 1 upper bound at 7 (11)
sampling dates for the Set 1 (2). The z-statistics applied to control for possible estimation
biases resulting in spurious violations is 0.09 (0.06) for the Set [ (2), and 0.08 for the data
aggregated for dates when violations were observed. [n neither case are the z-statistics

significantly different than zero.

Table 5 below present descriptive statistics regarding the proportions of the call quotes,
which are in violation of the Proposition 1 upper bound. The proportions of options
included in the sample of violations with the original and recovered flags for bids are
similar: thus indicating the appropriateness of the method used to recover the bid flags.
In Table 5 we observe that the proportion of violations for the Set 2 is more than twice as
big as the proportion for the Set 1. This may be caused by a higher degree of mispricing

of options with longer maturity, larger errors of the distribution estimates, or both.
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Table 3

Characteristics of Data Used to Search for Violations of the Proposition | Upper Bound for 31-day to

Expiration CME S&P 500 European Call Options

Date D-stat. p-value o 8-o’2 z Yield T-biil Rate

910116 0.085 >0.15 0.1794 0.0395 2.687 0.0328 0.0612 20
910213 0.077 >0.15 0.1842 0.0613 0.131 0.0324 0.0602 l
920219 0.089 >0.15 0.1723 0.0452 0.071 0.0300 0.0393 n.a.
920320 0.093 0.121 0.1841 0.0414 -0.117 0.0300 0.0413 n.a.
920415 0.086 >0.15 0.1585 0.0352 -0.391 0.0300 0.0369 n.a
920819 0.068 >0.15 0.1590 0.0275 0.192 0.0293 0.0313 n.a.
920916 0.081 >0.15 0.1650 0.0312 -0.469 0.030! 0.0293 n.a
921021 0.052 >0.15 0.1578 0.0233 0517 0.0290 0.0296 n.a.
930120 0.090 >0.15 0.1490 0.0290 -0.012 0.0285 0.0306 n.a.
930421 0.087 >0.15 0.1580 0.0098 0.090 0.0280 0.0286 n.a
931222 0.057 >0.15 0.1207 0.0503 0.322 0.0265 0.0311 n.a.
940119 0.075 >0.15 0.1178 0.0556 -0.549 0.0269 0.0303 n.a.
940216 0.078 >0.15 0.1136 0.0422 -0.219 0.0270 0.0334 n.a.
940316 0.076 >0.15 0.1076 0.0450 -1.783 0.0285 0.0358 n.a.
940420 0.087 >0.15 0.1147 0.0258 0.787 0.0279 0.0382 12
940615 0.086 >0.15 0.1036 0.0390 -0.580 0.0283 0.0421 n.a.
940817 0.092 0.133 0.1020 0.0333 0.335 0.0274 0.0468 n.a
940921 0.088 >0.15 0.1091 0.0392 0.127 0.0278 0.0490 n.a
941019 0.080 >0.15 0.1067 0.0386 -0.720 0.0279 0.0503 n.a.
950118 0.084 >0.15 0.1031 0.0329 0.754 0.0272 0.0587 n.a.
950215 0.083 >0.15 0.1123 0.0367 0.582 0.0266 0.0589 n.a.
950322 0.089 >0.15 0.0987 0.0304 0.786 0.0259 0.0588 3
950419 0.094 0.116 0.1068 0.0366 0.783 0.0254 0.0576 n.a.
950621 0.086 >0.15 0.0993 0.0434 0.474 0.0242 0.0557 n.a.
960214 0.083 >0.15 0.1225 0.0513 -0.740 0.0220 0.0492 1
960619 0.082 >0.15 0.1233 0.0607 -1.156 0.0225 0.0522 66
960717 0.079 >0.15 0.1190 0.0423 1.247 0.0223 0.0525 +H

D-statistics is Kolmogorov-Smirnoff test statistics for normality, p-value is for rejection of Hy for
normality, o is the estimated standard deviation of the estimated market risk premium 0. T-bill rate is 3-
month T-bill rate, z = [, — p)/o . where psp and p are, respectively. the realized and the estimated

expected S&P returns throughout the option life. n represents the number of found violations of the
Proposition 1 upper bound for a given date.
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Table 4

Characteristics of Data Used to Search for Violations of the Proposition I Upper Bound for 45-day to
Expiration CME S&P 500 European Call Options

Date D-stat. p-value G 8- o /2 z Yield T-bill Rate n

900103 0.0885 >0.15 0.1676 0.0573 -1.400 0.0332 0.0786 n.a.
900705 0.0881 >0.15 0.1558 0.0618 -1.630 0.0352 0.0792 n.a.
900808 0.0975 >0.15 0.1747 0.0543 -1.467 0.0380 0.0763 1
901003 0.0902 >0.15 0.1621 0.0377 0.238 0.0373 0.0739 Il
901107 0.1067 >0.15 0.1708 0.0341 1.277 0.0365 0.0731 94
901205 0.0980 >0.15 0.1565 0.0438 0.029 0.0364 0.0720 10
910130 0.1125 0.113 0.1805 0.0480 1.351 0.0324 0.0637 n.a.
940302 0.0722 >0.15 0.0979 0.0464 -1.356 0.0285 0.0353 15
940406 0.1045 >0.15 0.1150 0.0383 0.260 0.0279 0.0365 n.a.
940504 0.1007 >0.15 0.1175 0.0303 0.268 0.0277 0.0411 n.a.
940601 0.0560 >0.15 0.1019 0.0368 -0.340 0.0283 0.0427 1
940907 0.0883 >0.15 0.1168 0.0363 -0.427 0.0278 0.0465 n.a.
941005 0.1111 0.124 0.1152 0.0295 0.340 0.0279 0.0508 n.a.
941207 0.0634 >0.15 0.1059 0.0258 0.710 0.0282 0.0583 28
950104 0.1065 >0.15 0.1181 0.0288 1.002 0.0272 0.0586 n.a.
950308 0.0969 >0.15 0.1074 0.0352 1.241 0.0259 0.0592 1
950405 0.1030 >0.15 0.1132 0.0335 0.365 0.0254 0.0583 n.a.
950705 0.1047 >0.15 0.1086 0.0419 0.431 0.0239 0.0564 n.a.
950906 0.1091 0.140 0.1032 0.0405 0.687 0.0231 0.0548 n.a.
951004 0.1125 0.113 0.1108 0.0350 0.698 0.0226 0.0544 n.a.
951206 0.1135 0.104 0.0978 0.0387 -0.534 0.0225 0.0546 2
960103 0.0829 >0.15 0.1064 0.0494 0.962 0.0213 0.0518 n.a.
960131 0.1114 0.122 0.1194 0.0463 0.066 0.0220 0.0505 n.a.
960306 0.0871 >0.15 0.1012 0.0523 -0.482 0.0219 0.0501 44
960403 0.0736 >0.15 0.1023 0.0626 0.333 0.0211 0.0513 11
960508 0.0953 >0.15 0.1100 0.0553 0.695 0.0213 0.0511 15
960605 0.0998 >0.15 0.0994 0.0633 -1.953 0.0225 0.0521 16
960703 0.0622 >0.15 0.0962 0.0646 -0.554 0.0223 0.0522 7

D-statistics is Kolmogorov-Smirnoff test statistics for normality, p-value is for rejection of H, for
normality, o is the estimated standard deviation of the estimated market risk premium 8, T-bill rate is 3-

month T-bill rate for a given date, z = [, — puj/c , where psp and p are, respectively, the realized and the

estimated expected S&P returns throughout the option life, n represents the number of found violations of
the Proposition 1 upper bound for a given date.
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Table 5
Number and Proportion to All Observed Quotes of Violations of the Proposition 1 Upper Bound

Set of Options

1 2
Quotes, Total 1592 1032
Quotes, Original 654 545
Quotes, Recovered 938 487
Violations, Total 147 209
Pr, Total 0.092 0.203
Pr, Original 0.086 0.217
Pr, Recovered 0.097 0.187

The descriptive statistics regarding the moneyness and the violation size in Table 6 below

do not indicate significant differences between the sets. The large mean of the violation

size for the Set | is an effect of a few far-out-the-money outliers. Generally, the violation

size is decreasing in the moneyness, which is presented in Figure 3 below, in which the

violation size is measured as the logarithm of C,/Co. This finding is consistent with the

volatility smile literature since far from the money calls generally exhibit larger violation

size* than at- or in-the-money options.

Table 6

Mean Size of Violation of the Proposition | Upper Bound and Mean Moneyness

Panel A: Set |
N Mean Std Dev.  Minimum Maximum
Co/Co 147 0.907 6911 0.005  83.876|
SovK 147 0.971 0.023 0.876 1.015
Panel B: Set 2
N Mean Std Dev. Minimum Maximum
Co/Co 209 0.240 0.294 0.002 1.759
So/K 209 0.970 0.031 0.877 1.061

* Recall that the Proposition 1 upper bound is a constant volatility model.



Table 7

Representative Sample of Options

Case Date c 8-ol2 Yield T-bill Rate Index K
LL, 960619 0.1233 0.0607 0.0225 0.0522 66404 71000
LH, 960717 0.1190 0.0423 0.0223 0.0525 63471 67500
HL, 940420 0.1147 0.0258 0.0279 0.0382 44071 44500
HH, 960717 0.1190 0.0423 0.0223 0.0525 63612 64000
LL, 941207 0.1059 0.0258 0.0282 0.0583 45058 48000
LH, 901003 0.1621 0.0377 0.0373 0.0739 31140 35000
HL, 941207 0.1059 0.0258 0.0282 0.0583 45259 45500
HH, 901107 0.1708 0.0341 0.0365 0.0731 30755 31000

Case Co Co Co/Co SoyK Co/So A X
LL, 70 63.17 1.208 0.935 0.001 2.287 5.823
LH, 140 635.61 2.134 0.940 0.002 1.641 3.266
HL, 530 526.32 1.007 0.990 0.012 0.905 1.694
HH, 1170 991.34 1.280 0.994 0.018 1.641 3.266
LL, 70 65.58 1.067 0.939 0.002 1.735 3.664
LH 65 29.92 2.173 0.890 0.002 0.541 1.268

HL 860 830.20 1.036 0.995 0.019 1.735 3.604
HH, 1030 881.07 1.269 0.992 0.033 0.326 1.085
Case (A+1)2 § y Xm Xu RS RY
LL, 4.055 0.580 79685 19651 13684 1.0580 1.0601
LH, 2.454 0.218 76165 31043 23321 1.0473 1.0506
HL, 1.300 0.124 52885 40697 31219 1.0146 1.0157
HH, 2454 0.218 76334 31112 23372 1.0218 1.0231
LL, 2.700 0.247 54070 20029 14757 1.0498 1.0525
LH, 0.905 0.157 37368 41313 29470 1.0625 1.0719
HL, 2.700 0.247 54311 20119 14823 1.0238 1.0249
HH, 0.706 0.132 36906 52312 34015 1.0236 1.0270

o is the estimated standard deviation of the estimated market risk premium 6, T-bill rate is 3-month T-bill
rate. Index represents S&P 500 prices contemporaneous to observed violations of the Proposition | upper

bound. Landiare. respectively, the upper and the lower bound of the NT region. B is the optimal

consumption rate. The risk aversion coefficient y is 6. y is the dollar value of the Index in a portfolio at
time zero containing 1.2 shares of the Index. x,, (x,) is the dollar value of the riskless asset at time zero in a

portfolio satisfying at time zero y/x =(L+X)/2 (y/x = x). R% (RY) is the critical portfolio return as

derived by (3.4.9) for a portfolio satisfying at time zero y/x =(L+X)/2 (y/x = 1)
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We now turn to the numerical results for the improvement in expected utility. Table 7
above presents the data and partial results for a representative sample of options. Graphs
of the improvements in expected utility plotted in Figure 4 and Figure 5 below indicate
that for high-moneyness options violating the Proposition 1 upper bound (cases HL and
HH), the maximum possible improvement in expected utility far exceeds this derived
from adopting the zero-net-cost in low-moneyness calls. This expected result appears
also in potential SSD relations; for instance, Case HH, in Figure 4 below, Panel (a)
clearly exhibits a SSD over all the other cases. On the other hand, the graph of the
improvement in expected utility in case HL, crosses both graphs of the low moneyness

cases.

Note that Case HH., in Figure 4, Panel (a) does not second order dominate Case HL, since
the graphs cross. For an increase of the risky to riskless asset proportion, however, Case
HH. exhibits SSD over Case HL,, as observed in Fig 5, Panel (b). We explain this result
by a change in the critical return R” as derived by (3.4.9). due to a change in the asset
proportion. For the midpoint portfolio, R® is larger for Case HL, than for Case HH
(1.0238 to 1.0236, respectively), as seen in Table 7 while this relation becomes reversed
at the upper boundary of the NT region with the corresponding values for R? respectively
of 1.0249 and 1.0270. Note that for Case HH, clearly dominating Case HL, the critical
portfolio return R is larger than for Case HL, irrespective of the assets proportion.

By annualizing the critical portfolio return R? (3.4.9) we obtain a value that corresponds

to the portfolio rate of return where the improvement in expected utility becomes a
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decreasing function. For instance, these annualized values of R° for Cases HL, and HH,

are, respectively, 0.2020 and 0.2190 for a portfolio satisfying at time zero y/x = A.
These analytical values are similar to the simulated portfolio rates of return that can be

read from the Fig 5, Panel (b).

As seen in Table 7, the critical portfolio return R increases for all the cases in the
representative sample of options for an increase in the risky to riskless asset proportion A.
This corresponds to a positive change in the improvement in expected utility as A
increases, derived by model (3.4.2) and represented in Fig 6. Note that the magnitude of
this change is significantly larger for the options representing the high-moneyness cases.
The results presented in Table 7 and Figure 6 provide evidence that an investor whose
portfolio exhibits a higher risky to riskless asset proportion has more of an incentive to
adopt the zero-net-cost policy. We do not provide results for a critical value for the
number of extra shares n* as derived by (3.5.1) bought with the proceeds from writing
one call option; this is because this value proved to be negative for all the cases, which
means an automatic increase in the improvement of expected utility for an increase in A.
We hypothesise that we could obtain a meaningful critical value for n* for far-in-the-

. .. . Kl
money calls, which are missing in our sample*

Figure 7 presents an example of a change in the improvement in expected utility due to a
change in wealth. The improvement decreases in proportion to increases in wealth.

Figure 8 represents the loss in expected utility due to transaction costs. The low

*5 The highest observed moneyness for either sample is app. 1.01.



magnitude of this loss provides justification to the analytical approximate results (3.4.8),
(3.4.9) and (3.5.1). Finally, the low magnitude of the difference in the improvements in
expected utility due to increased trading frequency presented in Fig 9 provides evidence
that this improvement is relatively insensitive to the trading frequency. This result is
expected, since any decrease in the improvement in expected utility of the J-investor
might occur only because of an increase in the proportion of the risky to riskless asset
proportion X due to the inclusion of the extra shares at time zero. Since this increase is

small, the results for the improvement in expected utility show little change at the higher

trading frequency.
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Figure 3

The Size of Violations of the Proposition 1 Upper Bound versus Moneyness. The X-axis represents the S/K
ratio, the Y-axis represents log(C,/Co) . where C, is the observed call price, and Co is the Proposition |
upper bound. Panels (a) and (b) represent, respectively, options maturing in 31 and 45 days.
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Figure 4

The improvement in expected utility H(z) resulting from adopting the zero-net-cost position in a call option
violating the Proposition | upper bound for the representative set of options for portfolios satisfving y/x =
(L+X)/2 estimated by models (3.4.2) and (3.4.6). Panels (a) and (b) represent. respectively. options
maturing in 31 and 45 days. The original number of shares Ny is 1.2. X-axis represents the observed
portfolio return simulated by the Monte Carlo model (3.2.3).
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Figure 5

The improvement in expected utility /(2) resulting from adopting the zero-net-cost position in a call option
violating the Proposition | upper bound for the representative set of options for portfolios satisfying v/x =

A estimated by models (3.4.2) and (3.4.6). Panels (a) and (b) represent. respectively, options maturing in
31 and 45 days. The original number of shares Ny is 1.2. X-axis represents the observed portfolio return
simulated by the Monte Carlo model (3.2.3).
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Figure 6

The difference in the improvements in expected utility H(z) resulting from adopting the zero-net-cost
position in a call option violating the Proposition | upper bound for the representative set of options
between portfolios satistying y/x = (A+X)/2 and y/x = & estimated by models (3.4.2) and (3.4.6). Panels

(a) and (b) represent. respectively. options maturing in 31 and 45 days. The original number of shares Ny is
1.2. X-axis represents the observed portfolio return simulated by the Monte Carlo model (3.2.3).
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Figure 7

The impact of a change in the original number of shares Ny on the improvement in expected utility
H () resulting from adopting the zero-net-cost position in a call option violating the Proposition | upper

bound for the representative set of options for portfolios satisfying y/x = X estimated by models (3.4.2) and
(3.4.6). Panels (a) and (b) represent. respectively, options maturing in 31 and 45 days. The selected case
represents high moneyness and high violation. X-axis represents the observed portfolio return simulated by

the Monte Carlo model (3.2.3).
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Figure 8

The loss in expected utility /(z)due to transaction costs caused by portfolio revisions for the

representative set of options for portfolios satisfying y/x = A estimated from the from the difference in the
cumulative distribution functions of models (3.4.2) and (3.4.7) by model (3.4.6). Panels (a) and (b)
represent, respectively, options maturing in 31 and 45 days. The original number of shares Ny is [.2. X-
axis represents the observed portfolio return simulated by the Monte Carlo model (3.2.3).
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Figure 9

The difference in the improvements in expected utility A (Z) resulting from adopting the zero-net-cost
position in a call option violating the Proposition | upper bound for the representative set of options

between portfolios satisfying y/x = A for an increase in the portfolio revision frequency from [ t0 9,
estimated by models (3.4.2) and (3.4.6). Panels (a) and (b) represent, respectively. options maturing in 31
and 45 days. The original number of shares Ny is 1.2. X-axis represents the observed portfolio return
simulated by the Monte Carlo model (3.2.3).
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5. Concluding Remarks

The results presented in this thesis confirm that the Constantinides-Perrakis model does
not impose “much” stronger restrictions on the wealth of the call writer than the well-
established finding that hedging one derivative in the presence of transaction costs
requires holding the same number of units of the underlying asset. Our empirical
findings provide evidence that the stochastic dominance argument in the Proposition |
upper bound results in the traditional SSD relation in the presence of dynamic trading in
discrete time. The result of a clear second order stochastic dominance of the J-investor
holdings over the V-investor for options priced almost exactly at the Proposition 1 upper
bound raises a question if the bound can be further tightened: for instance, by specifying

the J-value function.

The CP methodology represents a pricing mechanism since every risk-averse investor
whose wealth satisfies the monotonicity condition*® agrees with its results. As such, it
can be applied to pricing index options in emerging markets, for which no organized

derivatives markets exist.

The research presented in this thesis has apparent extensions. First and foremost, the
methodology presented here can be applied to the lower bound on the European put (CP

Proposition 6), which is also a stochastic dominance result. Second, some modifications

“The condition imposed on wealth is not restrictive since financial intermediation removes concerns
regarding a “sizable” wealth necessary to engage in trading described in this thesis.



are also worth exploring; for instance, the sensitivity of both the empirical and analytical

results presented here to an increase in the transaction costs rate can be examined.

The Constantinides-Perrakis (2002) model can accommodate other processes than the
lognormal that was assumed in this: mixed jump-diffusion, GARCH or stochastic
volatility. For those processes, however, the improvement in expected utility cannot be
quantified with theV-function used in this thesis. New theoretical work w. r. to the value
function is required to derive numerical results under the above processes of the

underlying asset.

The method used to derive the improvement in expected utility is applicable without
modifications whenever the anticipated distribution is lognormal, regardless of whether it
is the past data that is used to derive the distribution estimates. For instance, this method
can be applied if superior private information, such as analyst recommendations exists,

provided that lognormality can be reasonably assumed.
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Appendices

Appendix 1: Maple Code for the Derivation of the NT Region.

restart;r:=.03932:q:=r:m:=.0845:v:=.0148:d:=.0302:g:=-6:

k:=0.005:
egl:=(1l+k)*(l+al*(g-sl)*1ll*sl+a2*(g-
s2)*1ll1*s2)=al*sl*11"(sl-1)+a2*s2*11~(s2-1):
eqg2:={(1-k)*(l+al*(g-sl)*12"sl+a2* (g-
s2)*127s2)=al*sl*12"(sl-1)+a2*s2*12" (s2-
l):a:=solve{{egl,eq2}, {al,a2}):
al:=subs(a,al): a2:=subs(a,a2):
al_l1l:=diff(al/(g-g*(r-b+h)),b11):
al_l2:=diff(al/(g-g*(r-b+h)),12):
val:=(b*g) *(1l/g+al*(1"sl)+a2*(1°s2))/{(g-g*(r-
b+h)):val_b:=diff(val,b):

l:=((m+d-r)/ ((1-g)*2*v)) / (1-{(m+d-x) / ((1-g) *2*Vv) ) ) ;h:=1*d:

s2,sl:= solve(v*s"2+(m-v-r+b-h) *s-{g-g* (r-b+h))=0,s):

sol:=fsolve({al_1ll,al_12,val_b}, {11=.5*1,12=1.5*1,b=.15}, {1

1=0.3*1..0.90*1,12=1.2*1..2.2*1,b=.07..0.45});val_b;

Appendix 2: SAS Code Simulating Stock Paths, SAS Code Deriving Estimates for the

Likelihood of the Monotonicity violation.

libname out 'u:\mczerwonko\thesis\results';
data check;

do const=1 to 500;

output;end; run;

data check; set check;

call symput('m',trim(left(put(const,8.)))) ;run;
%put m= ***xgm***.

%macro seed;

$do i=1 %to &m;

seed&i=abs (int (120076573 *rannor({ (&i+1) **2+&1**3) ) -
int (383745455*rannor (&i*abs (&i1-&1i**2))));
%$end;%mend ;

%macro rand;

$do j=1 %to &m;
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call rannor(seed&j,x&j):;
X&j=abs (int (x&3*10000000)) ;
$end;%mend;

data out.randoml;keep k xl1-x&m;
$seed;

do k=1 to 300;

$rand;

output;

end;

run;

%$do k=1 %to &n;

call rannor(s&k, x&k);

$end; %mend;

%macro paths;

$do i=1 %to &nn;

data temp; keep x%eval (&1+0); set tmpl.randoml (ocbs=&n);
call symput('seed'||left(_n_),trim(left(x&i+0))) ;run;
$put seed3= *****rggeed3Fr**r*;
data path_%eval (&i) ; keep x1-x&n;
sl = &seedl ;

/ *More seeds*/

s405 = &seedd 05 ;

$randl;

output;

end;

run;

$end; %mend; %paths; run;

/* Code for estimating Pr of violations of the monotonicicy
assumption*/

/*% of paths used. ™’

%$let NP=50000;

/*N calls*/

%let NC=128;

/*N of max revisions to maturity*/

$let NDAYS=132;

libname out 'u:\mczerwonko\thesis\newjob\final';
%macro plain;

/*Computations of bounds/(1+kl) for all days for ail
calls.~

$let str=%sysevalf(1000/&moneyness) ;

$let xx=%sysevalf (&N*1000/&11);

/*Computation of bounds>*/

$do k=0 %$to &NDAYS;

c= (&NDAYS-&k+1)/{(3*365) ;x= &std*sqrt(c):;
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dl=( log{s&k/&str) + (.11*(1+.02/(1+&kk))-.02+&std**2)*C
y/x; d2= 4l - x;
ndl= cdf('GAUSS',dl); nd2= cdf('GAUSS',6d2);
e= s&k*exp(-1*0.02*c); f£= &str*exp(-
1*.11*(1+.02/(1+&kk) ) *c) ;
b&k= (e*ndl - £*nd2)/(1-&kk};
$end;
*beginning values for bond account, N shares, counting
funczoion~
£0=0;
N=&N;
XX=&XX;
$do j=%eval (3/&nrev) %to &NDAYS %by %eval(3/&nrev);
/*Derivative condition computation*/
cond= (N*s%eval (&j-3/&nrev) + b%eval (&j-
3/&nrev))/s%eval (&j-3/&nrev)-1/(1-&kk) ;
templ= N*s&j;
temp2= (xx*exp(0.05/(&nrev*365))+N*s&j*.02/ (&nrev*365))*(1-
&beta/ (&nrev*365) ) ;
check= templ/temp2;
if check gt &11 then do;
temp3=(templ -&ll*temp2)/(s&j*(1+&11* (1-&kk)));
N= N - temp3;
xx= temp2 + s&j*(1-&kk) *temp3;

end;

else do;
Xx= temp2;
end;

ne

(1

/~Counting function (cf) assumes the vaiue of 1 1f
previous period cf was 1%/

if £0=1 then £1=£0;

/* If not, the other conditions are checked*/

else do;

/* If both deriv. cond and N shares are violated, cf
assumes 1*/

if N le 1/(1-&kk) & cond le 0 then f1=1;

;* 1f cthe previous period cf was 0, and eithex derivative
or N shares was satisfied,

cf assumes 0*/

else £1=0;

end;

f0=£f1;

$if &3=90 %$then %do;

f31=f1; N31=N;%end;

$end;

f=£f1;

%mend ;
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%macro total;
$do ii=1 %to &NC;
/* ingesting inputs*/

data temp; set out.mon_inputs;

if 11l=. then delete;
if _n_=&ii then do;

call symput('std’', trim(left(std)));
call symput{'kk',trim(left(kk)));
call symput('ll’', trim(left(11)));
call symput('N', trim(left(n)));

call symput{'nrev', trim(left(nrev)));
call symput ('moneyness’',trim(left (moneyness)));
call symput('beta', trim(left(beta)));

end;
run;

/* launching macros computing Pr~/

%$if &std=0.2 %then %let vvv=highvol; %else %$let vvv=lowvol;

data t&ii; keep p3l nn3l p nn;

$plain;

nn3l + N31;

p3l1 + £31;
nn + N;

p + £;

if _n_ =&NP then do;
p31l=p31l/&NP;
nn3l=nn31/&NP;

p = p/&NP;
nn=nn/&NP;
output;

end;

run;

$end;

%smend ;

$total; run;
%macro handle;
%$do i=1 %$to &NC;
t&i

%end;

%smend ;

data out.mon; set %handle;

data out.mon; merge out.mon_inputs

un;

set out.stock_&vvv;

out.mon;run;



Appendix 3: SAS Code Recovering and Assigning Bid/Ask Flags and Matching Option

and Index Quotes, SAS Code Searching for Violations of the Proposition | Upper Bound.

LIBNAME outl ‘'u:\mczerwonko\thesis\raw\res3l';
%MACRO rawdata;

$DO i=0 %TO 6;

DATA ind9&i;

INFILE "u:/mczerwonko/thesis/raw/indS&i..csv"® DLM=','
FIRSTOBS=2 MISSOVER;

INPUT date itime ihour imin isec ival;

i_time= (ihour*60 + imin)*60 + isec;

mins= ihour*60 + imin;

PROC SORT data=ind9&i;

BY date mins;RUN;

DATA sel31_9&i;

INFILE "u:/mczerwonko/thesis/raw/op9&i..csv*® DLM=', '
FIRSTOBS=2 MISSOVER;

INPUT date otime hour min sec mat ab_cme $.1. strike price
cp Si. ;

DROP templ-temp3;

templ= lag(price);temp2=lag(date);temp3=lag(strike);
IF (ab_cme=',' & date= temp2 & strike= temp3) THEN DO;
IF (price GT templ) THEN ab='a‘;

IF (price LT templ) THEN ab='B'; END;

IF ab_cme NE *"," THEN n_cme + 1;

IF ab_cme NE ',' THEN ab= ab_cme; ELSE ab=ab;
IF ab NE * * THEN count + 1;

IF ab=" " THEN DELETE;

IF cp="C" & ab="A" THEN DELETE;
IF cp="P" & ab="B" THEN DELETE;
o_time= (hour*60 + min)*60 + sec;
mins= hour*60 + min;

lagmins= mins -1;

leadmins= mins +1; RUN;

$END; %MEND; %rawdata; RUN;
%MACRO name66 (name= , num= ) ;
$D0 k=1 %TO &num;

&name&k $END; %MEND;

%MACRO catch22;

%$DO 1i=0 %TO 6;

%$IF &i=0 %THEN $LET n= 2008;
%$ELSE %IF &i=1 $THEN $LET n= 410;
%$ELSE %IF &1=2 $%THEN $LET n= 1714;
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$ELSE %IF &1=3 %THEN $LET n= 1747;

%ELSE %IF &i=4 %THEN $LET n= 2054;
%ELSE $%IF &i=5 %THEN SLET n= 2009;
%$ELSE %IF &1i=6 %THEN $LET n= 1541;

%$DO j=1 %TO &n;

DATA temp&j ; SET sel3l_9&i (FIRSTOBS=&j OBS=&j);

DATA ptemp&j; SET temp&j; mins=lagmins;

DATA ftemp&j; SET temp&j; mins=leadmins;

DATA temp&j; SET ptemp&j temp&j ftemp&j;

PROC SORT; BY date mins;

DATA temp&j; MERGE temp&j ind9&i; BY date mins;

IF price NE .; diff= ABS(i_time - o_time);

PROC SORT; BY o_time;

PROC RANK DATA= temp&j out= rtemp&j ties=low; BY o_time;
VAR diff; RANKS punks; RUN;

DATA rtemp&j; SET rtemp&j; BY o_time; WHERE punks=1;

IF otime=lag(otime) THEN delete;

$END;

DATA outl.put_call9&i; KEEP date otime mat cp strike price
ival diff;

SET %nameé66(name= rtemp, num= &n); RUN;

$END; %MEND; %catch22; RUN;

libname job 'u:\mczerwonko\thesis\newjob';

libname final 'u:\mczerwonko\thesis\newjob\final';

%macro viol;

$do i=1 %to 2;

%$if &i=1 %then %let id=31; %else %$let id=45;

DATA a&i;keep date price ival strike bound viol moneyness
dyield rint3m ml stdl ab z;

set job.call&id.sel;

iadj= ival*exp(-1*dyield*&id/365) ;

dl= (log(ival/strike) + (1/.995-1)*dyield*&id/365 + mtl +
rint3m*&id/365 + stdtl*=*2) /stdtl;

d2= dl - stdtl;

N1l= CDF('GAUSS', dl);

N2= CDF('GAUSS', d2);

bound= (iadj*N1l - N2*strike*EXP(-1*((1/.995) *dyield*&id/365
+ mtl + rint3m*&id/365 + stdtl**2)))*(1.005/.995);

check= bound - price;

IF check LT 0O THEN viol = abs(check)/bound; ELSE viol=0;
moneyness= ival/strike;

DATA final.viol&id; set a&i;if wviol gt 0O;

if date ne lag(date) then id +1;if ab='B' then ncme+l;
proc sort; by date;
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data final.charv&id; keep date nviol dyield rint3m ml stdl
z;set final.viol&id; by date;

if first.date then nviol=0;

nviol+1l;

if last.date then output;

%$end;

%mend ;

$viol; run;

Appendix 4: SAS Code Deriving the Improvement in Expected Utility for the Portfolio

at the Upper bound of the NT Region.

/*30f paths-«.

%$let NP=200000;

/*number of shares held*/

%let ntrials=3;

/*Libraries used for input/output.=*/

libname job ‘'u:\mczerwonko\thesis\newjob';
libname final 'u:\mczerwonko\thesis\newjob\final';
/* Macro computing portfolio revisions and final returns.~™/
%macro Jjob;

N= &N + &fr;

NV= &N;

cj=0;cv=0;

%let coeff= %sysevalf ( (&N+&fr)/&12+&N*.995) ;
xx= (&N+&fr) *s0/&12;

XXV= XX;

$do j=1 %to &nn;

/*J-investor portfolio dynamics*:

templ= N*s&j;

temp2= (xx*&r + N*&divday)* (l1-&beta/365);
cj=cj*&r + (xx*&r + N*&divday) *&beta/365;
check= templ/temp2;

if check gt &12 then do;

temp3=(templ - &l2*temp2)/(s&j* (1+&12*.995));
N= N - temp3:;

XxX= temp2 + sS&j*.995*temp3;

end;

else do;
xx= temp2;
end;

/*V-investor portfolio dynamics*/



tempd= NV*s&j;

temp5= (xxv*&r + NV*&divday)*(1l-&beta/365) ;
CV=Ccv*&r + (Xxv*&r + NV*&divday) *&beta/365;

checkl= temp4/temp5;
if checkl gt &12 then do;

temp6=(tempd - &l2*temp5)/(s&j*(1+&12*.995));

NV= NV - temp6;

Xxxv= temp5 + sS&j*.995*temp6;
end;

else do;

xxv= temp5;

end;

$end;

jret=365/&nn*log((xx + cj + .995*N*s&nn+&divday-
max (s&nn+&divday-&str, 0)) / (sO0*&coeff) ) ;

vret=365/&nn*log((xxv + Cv +
.995*NV*s&nn+&divday) / (sO0*&coeff) ) ;
temp=jret - vret;

tempv= (&N-NV) /&N;

tempj= (&N+&f£r-N)/ (&N+&£fr) ;

%mend ;

/*Macro computing CDF's of the returns~*/

%macro cdf;

data cdf&id._&sss; keep dnj dnv excess jcdfl-jcdfl71 vedfl-
vedfl71 iretjl-iretjl71 iretvl-iretvl71l; set cdf;

excess+temp;

dnv+tempv;

dnj+tempj;

$do 1i=1 %to 171;

if jret le (&1-81)*.01 then jcdf&i
$end;

%do i=1 %to 171;

if jret gt (&i-81)*.01-.005 & jret
do:;

iretj&i+iret; nj&i+l; end;

%$end;

$do i=1 %$to 171;

if vret le (&1-81)*.01 then vcdf&i
%$end;

$do i=1 %$to 171;

if vret gt (&1i-81)*.01-.005 & vret
do;

iretv&i+iret; nv&i+l; end;

$end;

if _n_=&NP then do;
excess=excess/&NP;

dnv=dnv/&NP;

+ 1;

1t (&i-81)*.01+.005 then

+ 1;

lt (&1i-81)*.01+.005 then
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dnj=dnj/&NP;
%$do i=1 %to 17%;
jcdf&i = jcdf&i/&NP;

iret]j

§i = iretj&i/nj&i;

vedfsi = vedfs&i/&NP;
iretv&i = iretv&i/nvéi;

$end;

output; end;
%mend ;

/*Macro deploving a loop over all the above macrcs,

%macro total;
$do id=1 %to 8;

data

a; set final.sample;

divday=dyield*endind/365;
r=1l+rint3m/365;
if _n_=&id then do;

call
call
call
call
call
call
call
call
end;

symput ('nn', trim{(leftc(id2)));
symput ('r', trim{left(r)));

symput { 'divday', trim(left(divday)));

symput ('11',trim(left(11)));
symput ('12', trim(left (12)));
symput ('str', trim(left(strike)));
symput ('fr', trim(left(fr)));
symput ( 'beta’, trim(left (beta)));
run;

%do sss=1 %$to &ntrials;
%let N=%sysevalf(l.2*&sss);

data
%$Jjob;
run;
$cdf;
%$end;
$end;

cdf;set final.both_&id(obs=&NP) ;

%mend ;

$total; run;

%macro m;

$do sss=1 %to &ntrials;

data

final.up&sss;

set $do id=1 %to 8;
cdf&id._&sss %end;;

%end;

/*Macro selecting each fifth observation to produce

%mend; %m; run;

grapns*/
%macro kkk;

%$do i=1 %to 34;
véeval (1+5*%&1)

and



%$end;

$do i=1 %to 34;

j%eval (1+5*&1)

%end;

%$do i=1 %to 34;

d¥eval (1+5*&1i)

$end;

%do i=1 %to 34;

d%eval (1+5*&1)

$end;

$do i=1 %to 34;

i%eval (1+5*&1)

%$end;

%$do i=1 %to 34;
iretj%eval (1+5*&i)
%$end;

$do i=1 %$to 34;
iretv$eval (1+5*&1)
%end;

smend ;

/*Macro deriving the integral condition for che urilicy
improvement ~ /

%smacro int;

%$do i=1 %to 171;
v&i=ved£f&i;

%$end;

$do i=1 %to 171;
j&i=jcdf&i;

%$end;

$do i=1 %to 171;
d&i=v&i-j&i;

$end;

al=dl/2;

il=al;

$do i=2 %to 171;
a&i=(d&i + d%eval(&i-1))*0.005;
i&ki=sum(of al-a&i);
$end;

%mend ;

%macro short;

$do j=1 %to 8;

$do k=1 %$to &ntrials;
data qgg&k; keep %kkk;set cdf&j._&k;
$int;run;

proc transpose data=qqg&k out=za&k prefix=v&j._&k;run;
%$end;

data aa&j; merge _null_
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$do k=1 %$to &ntrials;
a&k %end;;
$end;

data final.up_revised;

merge _null_
$do i=1 %to 8;
aa&i %end;;
%mend ;
$short;run;
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