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Abstract

Animation and Formal Verification
of Real-Time Reactive Systems
in an Object-Oriented Environment

Darmalingum Muthiayen

Real-time reactive systems are characterized by their continuous interaction with their en-
vironment through stimulus-response behavior. The safety-critical nature of their domain
and their inherent complexity advocate the use of formal methods in the software devel-
opment process. TROMLAB development environment supports a process model adequate
for dealing with the complexity of reactive systems. The foundation of the TROMLAB en-
vironment is the Timed Reactive Object Model (TROM), which combines object-oriented
and real-time technologies.

Simulation is essential in the behavioral analysis of real-time reactive systems; animation
allows a visualization of the simulation process. A rigorous trace analysis of simulation
scenarios provides insight into the behavior of the collaborating entities in the configuration.
This supports validation of systems designed incrementally and iteratively in the software
development life-cycle. Moreover, safety-critical systems need to be verified for adherence
to stringent safety and liveness properties.

The scope of this thesis is two-fold. We first present an animation tool supporting
simulation of reactive systems described in the TROM formalism. We include formal spec-
ifications of the functionalities of the simulator in VDM specification language. We then
introduce a methodology for formal verification of TROM subsystems. The novelty of the
- methodology lies in the formal verification approach embedded within an object-oriented
framework. The simulator and the verification methodology conform respectively to the

operational and logical semantics of TROMs.
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Chapter 1

Introduction

Real-time reactive systems are tncreasingly used in control
systems in a wide array of domains including telecommu-
nications, air traffic control, nuclear reactors, robotics, and
medicine. The safety-critical nature of the application do-
main and the intrinsic complezrity of such systems call for
a formal development environment supporting validation and
verification. TROMLAB is an environment which is being
built to support a software development process model ade-
quate for reactive systems. The contribution of this research
is in the form of an animation tool supporting validation and
a methodology for formal verification of real-time reactive sys-
tems.



1.1 Real-Time Reactive Systems

The distinctive feature of a reactive system is the continuous interaction between the sys-
tem and its environment. The system receives and sends messages through a hardware
interface consisting of sensors and actuators, giving rise to stimulus-response behavior. The
sequence of interactions depends on several factors, the most influential being the level of
coupling between the entities in the environment. In the case of real-time reactive systems.
stimulus-response behavior is regulated by timing constraints. Nuclear reactors and air traf-
fic control systems are typical examples of safety-critical systems involving concurrency and
synchronous communication between actuators, reactors and reactive entities. Common to
all these applications is the notion of reactive behavior, wherein the relationship between
input and output over time, complex sequencing of events and the way they constrain the
computations are described.

Several factors contribute to the complexity of a real-time reactive system. These in-
clude largeness, criticality, concurrency, and the time-dependent nature of the real-world
processes they control. The requirements of large reactive systems are generally difficult
to comprehend, maintain, and modify. The complexity due to requirements permeates into
several layers of detail, and if not properly understood and tackled will lead to faulty design
causing very unpredictable and catastrophic system failures. This type of complexity can-
not be avoided and should be resolved. Another type of complexity arises due to modeling,
and software design. The language of specification and design must be clear, easy to learn
and use, precise and formal, amenable to express changes and to inspect the consequences
of actions and interactions. In the design, the level of coupling among system components
must be low and the length of the shortest description, which indicates the amount of infor-
mation required to understand the product, must be small. In other words, to quote Parnas
[Par93], a system can be considered complex if its shortest useful description is relatively
long. Hence, the purpose of design and documentation must be to minimize this complexity,
especially when faced with complex requirements.

Interactions among system and environmental entities in a reactive system can be quite
complex to describe; an entity can interact with several other entities during a certain
interval of time to evoke a time-constrained behavior at a future time interval, if certain
environmental conditions are met. That is, such interactions exhibit non-determinism in
time, control, and interaction. During the development stages such requirements must
be understood by the development team, who in turn should ensure the presence of these
properties in the system and demonstrate it to users. Consequently, the specification method

should support all activities in a life-cycle model - requirements to specification, design,



Formal Model
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Software Unit

Figure 1: Process model for developing complex reactive systems.

prototyping, validation, and verification. Since a real-time reactive system for safety-critical
applications, such as avionics, require on-line verification and validation, the specification
language should be such that the design can be subjected to a formal analysis at any
stage. That is, debugging. simulation, and verification should be made possible within the

development framework.

1.2 Research Goals

Our goal is to build a software development environment supporting modeling, design. val-
idation. and verification of real-time reactive systems. The complexity of reactive systems
advocates the use of a formal framework with tool support for the design and experimenta-
tion processes. The overall objective of this research is to aid the development of real-time
reactive systems supported by a formal object-oriented approach. This thesis makes two
significant contributions towards achieving the above goals: (1) animation tool; and (2)
verification methodology. The process model shown in Figure 1 aids an incremental and
iterative development process. The animator, the brain child behind this process, is also
the catalyst in reducing design complexity.

We give an overall view of the research with a brief description of TROMLAB develop-

ment environment in Section 1.2.1. In Section 1.2.2, we emphasize the contribution of this



thesis with an outline of animation and formal verification of real-time reactive systems
described in Timed Reactive Object Model (TROM) [Ach95].

1.2.1 TROMLAB Software Development Environment

TROMLAB is an object-oriented software development environment for reactive systems,
supporting the process model shown in Figure 1. The model was introduced by Achuthan
[Ach95]; it has been adapted to incorporate mechanized formal verification. The process

model incorporates an iterative development approach, the benefits of which are well-known

for:
e reducing risks by exposing them early in the development process.
e giving importance to the architecture of the software unit, and
o designing modules for large-scale software reuse.

In this process model, we first formalize the requirements and the environment model of
the system, then design a formal model of the software, and use iterative development to
validate the system, verify requirements and integrate the components. The model supports
the development of complex real-time reactive systems described using TROM.

The environment provides a two-pronged strategy to contain complexity: the ob ject-
oriented framework for modeling reactive systems supports iterative system design and
minimizes design complexity; the animator and the verification system provide the tool
support necessary for validating design against requirements and verifying time-dependent
properties during the evolution of design. The TROM formalism has a three-tiered structure
which supports modeling real-time reactive systems using object-oriented techniques. It
allows encapsulation of characteristics inherent to reactive systems in class descriptions,
inclusion of abstract data types in the model described, and incremental configuration of
reactive systems using objects. subsystems, and links. The specification environment of
TROMLAB allows users to develop syntactically and semantically correct TROM classes.
models describing the behavior of reactive objects. The design environment supports an
incremental development of systems built on TROM objects and other subsystems. The
facilities provided support design debugging, simulating a computational step and analyzing
its consequences, and verifying invariant properties of an evolving design at different stages

of the design process.



1.2.2 Animation and Formal Verification

An important goal of animating the simulation process is to facilitate design-time debug-
ging, and validating design against requirements. Simulation allows observing the behavior
of a system through a trace analysis of the simulated scenarios. Animation allows visualiza-
tion of interactions among entities in the system under development, through a graphical
user interface. The configuration of formally specified subsystems are validated, and tim-
ing constraints and properties are verified during the simulation process. Trace analysis
of simulation scenarios provide invaluable insight into the behavior of the objects in the
configuration, the subsystems incorporated, and the reactive system as a whole.

A simulation model should be capable of detecting faults in the design of a system. Such
a model introduces predictability for properties that have to be maintained in the future.
Sufficient information is required in the validation tool to verify properties and deduce rea-
sons for a specific behavior. The history of event traces allows the user to roll the simulation
clock backward to detect and fix faults in the design. The simulation process is also capable
of predicting the behavior in order to analyze the properties that have to be maintained in
the future. Consequences of refinements, changes to event occurrences, and time constraints
can be analyzed before changes to the design are agreed upon. Incorporating a reasoning
system in the simulation environment allows the use of deduction to verify properties of
the system under development, based on the history of computational steps. Thus both
validation and verification facilities are integrated in one toolset. Consequently, it becomes
much easier to understand the behavior of the system under development during design
evolution. The development environment provides facilities for modular design of TROM
classes. modular composition of objects to build subsystems, and analysis capabilities which
combine simulation and verification.

Reactive systems in safety-critical contexts need to adhere to stringent safety and live-
ness properties. A safety property entails that something wrong will never happen, while a
liveness property implies that something good will eventually happen. Formal verification
of such properties provides the assurance required for critical systems. A methodology for
formal verification of TROM-based systems needs to conform to the logical semantics of the
TROM model. The methodology proposed allows verifying properties in a systematic man-
ner. Axioms are derived from the class specifications and subsystem configurations, and
the property to be verified is expressed as an invariant assertion on the state of the system.
The underlying object-oriented nature of the model allows for the verification process to
be carried out in a modular fashion, thus dealing with the inherent complexity of reactive
systems. The methodology can be related to the higher-order logic of PVS [ORS92].



1.3 Thesis Outline

Chapter 2 describes the TROMLAB software development environment. It briefly sketches
the stages in the process model supported by TROMLAB. It then outlines the TROM formal-
ism, including the computational model based on its operational semantics. A generalized
version of the Train-Gate-Controller system is used as a case study to illustrate the for-
malism and the operational semantics. Chapter 2 also includes a brief description of the
animation and verification features of TROMLAB. It concludes with a review of related
works. Chapter 3 discusses the functionalities of the animation environment, including
simulation and validation. It then describes the design of the animation tool, including its
architecture and components. It also includes an outline of the components designed to
support TROM. Chapter 4 presents a formal specification of the simulator in VDM specifi-
cation language. It also shows how this exercise helped to validate the simulation algorithm
so as to faithfully conform to the operational semantics of TROM. Chapter 5 gives an intro-
duction to formal verification of real-time systems, including a description of mechanized
verification. It includes an outline of the semantics of the since operator, and its relation
to absolute times. It then introduces a methodology for formal verification of TROM-based
systems. It also explains the steps leading from TROM axioms to proving safety properties.
Chapter 6 illustrates the verification methodology using the Train-Gate-Controller example.
It includes a detailed description of the proof steps. Chapter 7 concludes the thesis with an

outline of its contribution and the future goals.



Chapter 2

TROMLAB Environment

T he development environment provides facilities for modular
design of TROM classes, modular composition of objects to
build subsystems, and analysis of system behavior, combin-
ing simulation and verification. Simulation helps to debug
the design and validate design against requirements. Con-
sequences of refinements, changes to event occurrences, and
time constraints can be analyzed before changes to the design
are brought out.



2.1 Introduction

This chapter gives a detailed description of the TROMLAB software development environ-
ment. Section 2.2 outlines the stages in the process model supported by TROMLAB. Section
2.3 gives an informal description of the TROM formalism, including its syntax. It also out-
lines the operational semantics on which the simulator is built, and the logical semantics on
which the verification methodology is based. As a case study, we illustrate the model us-
ing a generalized version of the Train-Gate-Controller system. Section 2.4 briefly sketches
the animation tool and Section 2.5 introduces the verification methodology. Section 2.6

concludes the chapter with the related work.

2.2 Process Model

The process model shown in Figure 1 defines the series of software engineering stages that we
follow to the development of real-time reactive systems. Iterative development, incremental
design, and application of formalism through the different stages of development are the
virtues of this process model. Following the paths in Figure 1, one can understand the
orderly progress of development activity. The first step is to identify and formalize the
desired properties of the physical environment, the context in which the final system is
to operate. A formal environmental model is constructed by further abstracting these
properties. Following this, a formal model of the software unit controlling the reactive
system is designed. This stage involves identifying functional and timing requirements and
producing their formal descriptions.

The desired properties of a reactive system are usually not expressible as the behavior
of the software unit alone, instead they are statements about the cooperation between the
software unit and the environment. Hence, to guarantee acceptable behavior of the software
unit, a set of environmental behavior on which the software unit can rely has to be given.
Therefore, a formal model of a reactive system is composed of a model of the software unit
and a model of the environment in which it is embedded. Such models are called closed
system models, since they are completely self-contained [Lam91]. In contrast, open system
models do not define the behavior of the environment.

The benefits of formal methods in reactive system development are many-fold. The
constructs in a formal specification language have well defined meanings. Any term other
than the ones provided in a formal specification language is required to be defined by the
specifier. Formal specifications can be subjected to formal deductions. Due to these reasons,

imprecision, ambiguities, and inconsistencies in the requirements can be removed. Within



a formal framework, it is possible to conduct a rigorous analysis of software requirements
for detecting safety-related software errors in embedded systems before their deployment.
Formal specifications of component descriptions, interface descriptions, time dependent con-
trols, and protocols for object collaborations break the complexity barrier in system design,
and enable rigorous system reviews through validation, and verification.

The formal model of the reactive unit is not implemented until several iterations of
design, as depicted in Figure 1, take place. The cycle involves the three stages: design
validation, redesign (if necessary), and formal verification. Validation is done through sys-
tem simulation, the central piece of an animation tool in the process model. Simulation
uses only the formal model to generate observable behaviors, and hence is independent
from any implementation decisions. Consequently, the behaviors can be directly related
to requirements for their satisfaction. If flaws due to incorrect functionalities and/or in-
consistent timed behavior are noticed during system simulation, the process model allows
redefining the formal model of the reactive unit. After redefinition and redesign, the system
is simulated again for validating requirements. This iterative process continues until only
acceptable behaviors are observed in the formal model of the software unit.

System verification takes place at the next stage of the process model. This stage just
precedes the implementation of the system. The desired system properties are formalized
into two important kinds: safety properties, and timeliness properties. Formal verification

of these properties is done using a methodology related to PVS [ORS92].

2.3 TROM Formalism

The three-tier structure of the object-oriented methodology introduced by Achuthan [Ach95]
is shown in Figure 2 [Ach95]. The formalism is sufficiently expressive for modeling reactive
systems. The benefits derived from the object-oriented techniques include modularity and
reuse, encapsulation. and hierarchical decomposition using inheritance. Encapsulation in
reactive systems is meaningful in associating attributes, properties, logical assertions, and
timing constraints with specific classes of entities. Large and complex systems can be
developed incrementally by composing, verifying, and integrating subsystems.

The three tiers independently specify system configurations, reactive objects, and ab-
stract data types, by importing lower-tier specifications into upper tiers. TROM is a hi-
erarchical finite state machine augmented with ports, attributes, logical assertions on the
attributes, and time constraints. The middle-tier formalism specifies reactive objects as
TROM classes. Abstract data types are specified as LSL (Larch Shared Language) [GH93]
traits in the lowest tier, and can be used by objects modeled by TROM. The upper-most tier
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Figure 2: Overview of TROM methodology [Ach95].

specifies object collaborations, where each object is a TROM. The communication mech-
anism between TROM objects is based on synchronous message passing which is assumed
to occur at a port associated with the TROM. Message passing involves an event and un-
derscores an activity which takes an atomic interval of time. A reactive object modeled in

TROM is assumed to have a single thread of control.

2.3.1 TROM Syntax

The structure and behavior of a TROM can be described either textually or visually. The
TROM model incorporates the essential features for describing reactive entities. A TROM
is a hierarchical finite state machine augmented with attributes, logical assertions on the
attributes. and time constraints. The TROM object has a single thread of control, and
communicates with its environment through ports, by synchronous message passing. The
ports represent access points for bidirectional communication between the objects. The
port-type of a port determines the messages that are allowed at the port. A TROM can
have several port-types associated with it, and several ports of the same port-type. An
event represents an activity taking an atomic interval of time, while an action represents
an activity taking a non-atomic time interval of finite duration. At any instant, a TROM
exhibits a signal representing either a message, an internal activity, or idleness. A signal
describes the occurrence of an event at a specific time instant, at a specific port [Ach95].

Informally, an object defined in TROM consists of the following elements:

¢ A set of events partitioned into three sets: input, output and internal events. The

10
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Figure 3: Components of a TROM [Ach95].

input and output events represent message passing and are suffixed by the symbols ?

and !. respectively.

A set of states: A state can have substates. An initial state is marked by the symbol

*

A set of typed attributes: The attributes can be of one of the following two types:
(i) an abstract data type signifying a data model; (ii) a port reference type.

An attribute-function defining the association of attributes to states. For a com-
putation associated with a transition entering a state, only the attributes associated

with the state are modifiable and all other attributes will be read-only.

A set of transition specifications: Each specification describes the computational
step associated with the occurrence of an event. A transition specification has three
assertions; a pre- and a post-condition as in Hoare logic, and a port-condition specifying
the port at which the event can occur. The assertions may involve the attributes, and

the keyword pid (port-identifier).

11



o A set of time-constraints: Each time constraint specifies the reaction associated
with a transition. A reaction is the firing of an output or an internal event within a
defined time period. Associated with a reaction is a set of disabling states. An enabled

reaction is disabled when the object enters any of the disabling states of the reaction.

Figure 3 [Ach95] illustrates the components of a TROM. An external stimulus instigating
an incoming interaction results in an input event at a port constrained by the port-condition
for the transition. Every event gives rise to a computational step, updating the state of the
object and its attributes. Only active attributes, as determined by the attribute functions,
can be updated by the computation. A computational step may result in the enabling of
a time-constrained reaction, the disabling of an outstanding reaction, and the firing of an
outstanding reaction in the form of a transition. The firing of a reaction may lead to the
generation of an output event at a port specified by the port-condition.

Several forms of non-determinism are supported by the TROM model. Control non-
determinism is supported by allowing valid choices in the transition to be fired in a given
state. A port-condition can allow a choice in the port at which an event associated with the
transition to be fired can occur. An object can thus select the entity with which it wants to
interact from its environment, supporting interaction non-determinism. A time constraint
specifies minimum and maximum time delays between the enabling of a reaction and its
firing, allowing a range of time instants at which the reaction can occur: this supports
timing non-determinism. The computation associated with a transition, as specified by
the post-condition, can be involve non-deterministic constructs, supporting computation
non-determinism.

The patterns of interactions between entities in a system can be specified by the port-
conditions. Several real-time features are supported by the model, including minimal and
maximal delays, exact occurrences. and periodicity of event occurrences. Timing constraints

are encapsulated, and an input event cannot be constrained.

2.3.2 TROM Operational Semantics

The status of a TROM captures the state in which the TROM is at that instant, the value
of the attributes at that instant as reflected in the assignment vector, and the timing
behavior of the TROM as specified in the reaction vector. The reaction vecior associates a
set of reaction windows with each time constraint, where a reaction window represents an
outstanding timing requirement to be satisfied by the output event or the internal event

associated with the time constraint. When the reaction vector is null, the TROM is in a

stable status.
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The occurrence of an activity, stipulated by an interaction with the environment or by
an internal transition, leads to a change in the status of the TROM. The current state of a
TROM, its assignment vector, and its reaction vector can only be modified by an incoming
message. by an outgoing message, or by an internal signal. The status of a TROM is thus
encapsulated, and cannot be modified in any other way.

A computational step [Ach95] of a TROM is an atomic step which takes the TROM
from one status to its succeeding status as defined by the transition specifications. Every
computational step of a TROM is associated with a transition in the TROM; and every
transition is associated with either an interaction signal, or an internal signal, or a silent
signal. A computational step occurs when the TROM receives a signal and there exists a
transition specification such that the following conditions are satisfied: the triggering event
for the transition is the event causing the signal; the TROM is in the source state or a
substate of the source state of the transition specification; the port-condition is satisfied if
the signal is an interaction; and the enabling condition is satisfied by the assignment vector.
The effects of the computational step are: the TROM enters the destination state or the
entry state of the destination state of the transition specification; the assignment vector
is modified to satisfy the post-condition; and the reaction vector is modified to reflect the
firing, disabling, and enabling of reactions. The status of a subsystem is the set of statuses
of the TROM objects in the subsystem. The computation of a TROM is a sequence of
computational steps.

Each computational step is associated with a transition in the state machine of the
TROM. Any transition leaving the current state of the TROM object can define the com-
putational step, provided the assignment vector satisfies the enabling condition. Thus, the
source state of the transition can be the current state of the TROM, or a superstate of the
current state. After the transition is taken, the current state will be the destination state
of the transition, or its entry state if it is a complex state. The port at which an interaction
occurs must satisfy the port-condition associated with the transition, thereby constraining
the objects with which the TROM can interact at that instant.

A computational step causes time-constrained responses to be activated or deactivated.
If the constrained event of an outstanding reaction is the event associated with the tran-
sition, and the time of occurrence of the event associated with the transition is within the
reaction window of the outstanding reaction, then the reaction is fired. If the destination
state of the transition associated with a computational step is a disabling state for an out-
standing reaction, then the reaction is disabled. Whenever a reaction is time-constrained
by the transition associated with the computational step, the reaction is enabled. Several

reactions can be either fired, disabled, or enabled in a computational step. The operational
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semantics ensures that time cannot advance past a reaction window without either firing
or disabling the associated outstanding reaction.

The behavior of a TROM is described by the infinite sequences of computational steps it
can undergo. The computation of 2 TROM is a sequence of alternating statuses and signals,
where the transition between each pair of successive statuses is described by a computational
step. If the sequence of steps is finite, then the terminating status is a stable status. The
time progresses as the computation proceeds.

The factors determining whether a TROM is well-formed are:

o There is at least one transition leaving every state, thus barring the TROM from

having a final terminating state.

e if there is more than one transition leaving a state, then the enabling conditions of

the transitions should be mutually exclusive.

o Before a TROM starts executing, the values of only the active attributes in the initial
state are specified; the values of the dormant attributes are undefined. An attribute
will acquire a value only when it reaches the first state in which it is active. It is
therefore necessary to ensure that an attribute which is dormant in the initial state

becomes active in some state before the attribute is used.

e Every computational step in a TROM results in some computation of the TROM.

2.3.3 TROM Logical Semantics

The logical semantics is expressed using a set of axioms that can be used to verify the
requirements properties of a system. The axioms for a TROM object can be obtained by
substituting its status information into the arguments of the axioms. The resulting set of
axioms and the synchronization axioms are subsequently used in the verification process.
We first state the axioms informally: next, we give formal descriptions for some of them,

and then derive these axioms relevant to the Train object.

1. Atomic-event aziom:
There can be at most one event occurring in a TROM at any time instant. Also, an

event can occur only at one port at any time instant.

2. Silent-event aziom:
The occurrence of the silent event tick at any instant precludes the occurrence of any

other event in the TROM at that instant.
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10.

State-hierarchy aziom:
When a TROM is in a substate of a state @, the TROM is also in the state 6. Similarly,
when a TROM is in a complex state 8, the TROM is also in at least one of the substates

of 6.

State-uniqueness aziom:
A TROM cannot be in more than one state at any instant, unless the states have a
hierarchical relationship. Thus, a TROM can be in two states only if one state is a

substate of the other.

. Initial-state aziom:

A TROM has a unique initial state which is atomic. At the initial instant, a TROM

is in the initial atomic state.

Initial-attribute aziom:
At the initial instant, the attributes of 2 TROM satisfy an initial formula. This initial
assertion is the maximal property satisfied by the attributes at that instant. such that

any other assertion satisfied by the attributes is implied by the initial assertion.

Dormant-attribute aziom:

An attribute is dormant in a certain state if the attribute is in the complement of the
set of attributes obtained from the attribute function for that state. The value of a
dormant attribute in a certain state cannot be modified as long as the TROM is in

that state.

Occurrence ariom:

For an event e to occur at a port p; of a TROM. the TROM must be in the source state
of a transition labeled by the event e, such that the port-condition of the transition
is satisfied by the port p;, and the enabling condition is satisfied, at the time of

occurrence of that event.

Transition aziom:
The occurrence of an event results in a state transition to the destination state or the
atomic entry state of the destination state, and the post-condition of the transition

specification is satisfied in the destination state.

Persistence aziom:
For each state of a TROM, when no event causing a transition to leave that state
occurs, the TROM does not change state and the value of attributes active in that

state does not change.
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11. Time constraint azioms:
The reactive behavior of a TROM is defined by the following set of axioms.

(a) Activation ariom:

A reaction is activated when a transition triggering the reaction occurs.

(b) Constrained-event aziom:

A trigger event is necessary for the occurrence of a constrained event.

(c¢) Enabling aziom:
The necessary conditions for a reaction enabled at time ¢ to remain enabled in
the succeeding time ¢’ are: (1)the constrained event should not occur at time
t, since the occurrence of the constrained event will fire the already enabled
reaction; (2) the reaction is not disabled at time t’.

(d) Disabling aziom:
An enabled reaction will no longer remain enabled if the constrained event of the
reaction is disabled due to the TROM entering into some disabling state.

(e) Firing azriom:
An enabled reaction is fired by the occurrence of the constrained event. Since
the firing of the reaction satisfies an enabled reaction, the reaction will no longer
remain enabled.

(f) Prohibition ariom:
If a reaction is enabled then the constrained event should not occur during the
minimum delay period from the time of activation.

(g) Obligation aziom:
I an enabled reaction is not disabled within the maximum time bound after the
time of activation, then the constrained event should be fired at some time within
the maximum time bound from the activation instant.

(h) Validity aziom:
A reaction involving a constrained event e can be enabled at time ¢ only if the
triggering event f has occurred at time ¢, such that ¢ is within the maximum

time bound from the activation instant ¢,.

2.3.4 Case Study: Railroad Crossing Controller

We illustrate TROMLAB capabilities through a generalized version of the railroad crossing
problem [HL94]. In this section we illustrate the TROM formalism for this problem. In the
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Figure 4: A complex railroad crossing system.

TROM Train [@C]

Events: Near!C, Ezit!C, In, Out [ Train|  Pom:@C )
State: 51, 52,53, 54 Near!C [er]
Attributes: cr:@C 5. " S2
Attribute-function:

51,53, 54— {}: S2+ er: ExitlC In
Transition Spec: 6 [x>2]

Ry : (51, 82); Near!(true); true => cr’ = pid: (x<6] &

Rz : (52,53); In; true = true; [x<4]

R3 : (53,.54); Out; true = true; Out

Ry : (54.51); Ezit!(pid = cr); true = true; L S4 S3 )

Time-constraints:
(Ri.In.[2.4],{})
(R, Exit.[0.6], {})

Sl: idle S2: toCross
$3: cross S4: leave

end Port: @C > Controller

Figure 5: Class specifications for Train.

generalized version considered here. more than one train can cross a gate simultaneously.
probably through multiple parallel tracks, as shown in Figure 4; a train can independently
choose the gate it will cross, probably based on its destination. The entities interacting in
the system are trains, controllers, and gates. The specifications of TROM classes and their
state diagrams are shown in Figures 5, 6, and 7. The LSL trait describing the data model
Set is available in [GH93].

A train sends the messages Near (Exit) to a controller indicating that it is approaching
(exiting) the gate. The train triggers the internal event In within a window of 2 to 4 time
units after sending the Near message, and sends the Exit message within 6 time units from

sending the Near message. A controller sends the messages Lower (Raise) to the gate it is
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TROM Controller [@P,QG]
Events: Near?P, Ezit? P, Lower' G, Rasse!G
State: «C1,C2,C3,C4
Attributes: inSet : PSet;

Traits: Set[@P, PSet] /[* Link to LSL tier */ (" - @P, P )
AttributeﬁEnction: ] Ct:_nmoll_er_l Pors: @F. @G gar?P
Cl— {}; C2,C3,C4 — {inSet}; Near?P
Transition Spec: Ci* z ;=0
Ry : (C1, C2); Near?(true); . {inSet]
true => inSet’ = insert(pid, inSet); Raise!G wer!G
R (C2, C2), (C3, C3); Near?(—(pid € inSet); [u<t]
true => inSet' = insert(pid, inSet); Exit?P ear’P
Ra:(C2, C3); Lower!(true); true = true; -
Ry : (C3.C3); Erit?(pid € inSet); Ca Exit’lP
(size(inSet) > 1) = inSet’ = delete(pid, inSet); 4 u:=0 [inSet )
Rs : (C3, C4): Ezit?(pid € inset); Cl: idle C2: activate
(size(inSet) = 1) => inSet’ = delete(pid, inSet); C3: monitor C4: deactivate
Re : (C4, C1); Raise!(true); true = true; Ports: @P —> Train, @G > Gate

Time-constraints:
(Ry, Lower,[0,1],{})
(Rs, Raise,[0.1],{})
end

Figure 6: Class specifications for Controller.

controlling, indicating that the gate has to be lowered (raised). The Lower message is sent
by the controller within 1 time unit from receiving the Near message while in the idle state:
the Raise message is sent within 1 time unit from receiving the Exit message from the last
train leaving the crossing. The gate triggers the internal event Down within 1 time unit from
receiving the Lower message from the controller, and triggers the internal event Up within
a window of 1 to 2 time units after receiving the Raise message. The safety requirement is
that whenever a train is crossing a gate, the gate must be closed. In addition, the controller
must be monitoring the gate at that point. For the system to operate properly, the gate
must eventually be raised, and must remain so for a certain period of time before it is
lowered again.

The system configuration specification defining the Train-Gate-Controller system is ob-
tained by composing instances of the TROM classes, as shown in Figure 8. The Include
section is optional, and is used to import other subsystems. A TROM object is defined
in the Instantiate section; the cardinality of ports and the value of any active attribute in
the initial state of the TROM is specified in the definition. The Configure section defines
links between the different ports of the TROM objects in the subsystem and in the included
subsystems, allowing interactions between the objects. Only compatible ports can be linked.
such that an event sent at one port is acceptable as an input event at the other port at
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TROM Gate [@S]
Events: Lower?S, Raise?S, Doun, Up
State: +G1, G2, G3, G4
Transition Spec:
Ry : (G1, G2); Lower?(true); true => true; Up |[[v>1] & Down

G2

Rz : (G2, G3); Down; true => true; y<l]
R3 : (G3, G4); Raise?(true); true —> true;
Ry : (G4, G1): Up; true = true; Raise?
Time-constraints: G3
(R, Doun, [0.1), {}) 4 v:=0 )
(Ra. Up,1.2].{}) G1: opened G2: toClose
end G3: closed G4: toOpen
Port: @S --> Controiler
Figure 7: Class specifications for Gate.
Gate o o o Gate
SCS TrainGateSystem 1 n
Include: S [3
Instantiate:
Ai,..., Am :: Train[@C : n].Create() G G
By, ..., By ::Controller[@P : m,@G : 1]. Create()
Ci,...,Cn ::Gate[@S : 1].Create() Contrlollcr ¢ Congollcr

Configure: P
Vi€l...m, j€El...n
4,.@c, — B,.@p,
B,.@g — C,.G@5 C C

end

Train ® o o Train
1 m

Figure 8: System configuration specification for Train-Gate-Controller system.

the same time. One-one, one-many, and many-many relationships between objects of the
TROM classes can be specified. For instance, there is a many-many relationship between
trains and controllers, and a one-one relationship between controllers and gates.

A system configured with two trains, two controllers and two gates will have the following
ports and links: each train will have two ports of the same type referring to controller; each
controller will have two ports of the same type referring to train and one port referring
to gate; each gate will have one port referring to controller; one gate is linked to only
one controller and this is achieved by linking the unique port of the gate to that port of
controller referring to gate; each train is linked to both controllers and this is achieved by
linking the two ports of that train to one port referring to train in each controller. Thus.
the system configuration description is succinct and expressive.

Let us consider one step of computation of the subsystem with two trains, one controller

and one gate. When there are no events. no train is crossing a gate and hence the controller
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is idle and the gate is open. From the model shown in Figures 5, 6, and 7, notice that a
gate is open until it receives the message Lower from the controller. The message Lower is
output by the controller only after the message Near is received from a train. That is, the
whole system remains idle until a train approaches the gate causing the output event Near
to occur in the train. Now, the status of the system changes: the train is in state S2 (to
cross). the controller is in state C2 (activate) and the gate is in state G1 (Opened). Suppose
that within the next 2 time units, the other train outputs the message Near. In this case,
during the next computational step, the value of the attribute inSet in state C2 (activate)
or C3 (monitor) of the controller will reflect the fact that there is one more train to cross.
The state of the controller will then be either C2 or C3 (depending on whether the message
Lower has been sent to the gate), and the state of the gate will be either G1 (opened) (if the
message Lower has not yet been received from the controller), or G2 (toClose) or G3 (closed)
(if the message Lower has already been received). Notice that in this case the controller will
be in the state C4 (deactivate) only when both trains will have sent the message Exit to the
controller. The value of the attribute inSet is adjusted each time the controller receives a
message from a train. The gate will receive the message Raise only when no train is in the
crossing. The other scenarios and successive computational steps can be simulated following

the operational semantics [Ach93].

2.4 Animation Tool

The specification environment includes a grammar [Ta096] supporting the formal descrip-
tion of TROM classes and system configurations. The editor facilitates the specification of
a reactive system in the TROM formalism. The TROM specification of a reactive object
is presented as a class definition. A class definition follows strictly the formal definition of
TROM [Ach95]. Type-checking facilities are provided by a static analyzer [Ta096] incorpo-
rating an interpreter. The interpreter performs lexical and semantic analysis on the class
definitions, and on the specification of system configurations. While parsing the input spec-
ifications, the interpreter constructs an internal representation of the data. This abstract
syntax tree is subsequently used by the interpreter for semantic analysis, by the axiom
generator to instantiate the axioms for a TROM object, and by the simulator to access the
static components of a TROM object. The semantic analysis of the specifications allows a
rigorous static inspection of the data types involved in the TROM classes and subsystems.

The development environment is supported by a simulator, an axiom generator, a verifi-

cation manager and a graphical user interface. Animation of the simulation process is done
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through the graphical user interface, allowing visualization of the state transitions. De-
bugging facilities include freezing the simulation and activating the validation tool. When
simulation is frozen, the user can interact with the process to inject input events, and query
the behavior of the system being simulated. The user can walk through the event trace and
examine the history of the simulated scenario, roll back to an earlier instant in time and
restart from that point. Due to environmental changes, requirements of a real-time reac-
tive system may evolve throughout the life of a system. Registering requirements, relating
requirements to objects that are affected by it, and knowing the relationship among the
requirements are important to the development process. The user interface, which includes
a browser, controls the visualization process for both the static and dynamic aspects of
requirements, specifications, and objects. Besides providing the standard set of user inter-
face functionalities, it will expose the visual images of TROM objects and their interactions
during the simulation process. This part of the tool is under development, and hence we
do not discuss it further.

The reactive formalism is such that incremental compilation of classes. although pos-
sible, becomes laborious. As such, after error correction or making changes to existing
specifications, the specifications must be recompiled. Specifications for the data structures
in the lowest tier, that is, LSL [GH93] traits, are compiled separately and checked for con-
sistency and adequacy using Larch syntax analyzer. The traits are stored in a library and
can be imported by TROM classes. TROM classes, forming the middle tier, are compiled
individually, and independently of the other tiers. Adding a new state, event, attribute,
transition specification, or time constraint can be done incrementally, involving static and
semantic analysis of the relevant class only. Redefining the system configuration from the
upper-most tier involves a recompilation of the System Configuration Specification (SCS)

only; the specifications from the other tiers need not be recompiled in such cases.

2.5 Formal Verification Methodology

The axiom generator uses the logical semantics of the TROM objects and the system con-
figuration to generate a set of axioms for the specific problem being simulated. This set of
axioms may have to be supplemented by additional axioms on the temporal properties of
time intervals. At any instant during simulation, the set of axioms can be instantiated by
copying the status of the system into the arguments of the axioms. This will reduce the
axioms to a set of propositions, which can then be reduced in a decidable way to produce
an answer to a query. These axioms can thus be used by the simulator for on-line anal-

ysis of system behavior. TROMLAB environment supports formal verification to be done

21



interactively. When this phase is completed, the axioms generated by the axiom generator
can be reduced to propositions and used to deduce whether or not a property stated as a
proposition at an instant is a consequence of the history of system status. The user must
build a set of sufficient axioms, and follow the strategy explained in Chapter 5.

The verification methodology allows proving that a TROM-based system satisfies a prop-
erty. Axioms are derived from the class specifications to describe the transition specifica-
tions, and the time constraints. We include other axioms to specify synchronized messages
from one TROM object to another. The property is expressed as an invariance on a logical
assertion about the state of the system. The axioms are translated into inequalities over ab-
solute time variables. We include lemmas over the same variables to express the invariance

assertions. We then prove the lemmas using the axioms expressed in absolute times.

2.6 Related Work

The building blocks for developing reactive systems in TROMLAB environment come from
TROM formalism [Ach95]. Timed extensions of IO automaton such as Time Constrained
Automata [TMM88] and TRA [Bes91] provided the basic inspiration for the work on TROM.
However, there are some key differences: (1) TROM is grounded on very specific structural
framework built on object-oriented (00) paradigm; (2) TROM is not restricted to design
systems that are only input-enabled; and (3) The notion of hierarchical states, associating
attributes (and their abstract types) to abstract states through attribute function, and
inheritance and subtyping are novel and new in TROM.

The other works related to state-based modeling of reactive systems are Objchart
[GM93], Disco [JKSSS90], TRIO++ [MSP94], and ROOM [SGWY94]. Among them. ROOM
supports OO in a true sense and comes close to our modeling approach. Disco and Objchart
do not support specification of real-time constraints. TRIO++ emphasizes expressing the
requirements specification of real-time systems using OO principles. However, the language
lacks important OO concepts such as subtyping relationships between classes, the notion
of concurrency and message passing between objects, and above all lacks the facility to
describe system models. In spite of the apparent closeness of our model to ROOM, which is
based on Actors [Agh86], there are important differences: (1) ROOM allows the specifica-
tion of only two types of timing constraints: latency, and service times. These constraints
are more biased towards an implementation. Specification related timing constraints such
as stimulus-response, response-response constraints cannot be specified. (2) A major draw-
back of ROOM is its restricted applicability to input-enabled systems [LT87]. (3) Operation
descriptions in ROOM use concrete state variables. Consequently, assignments to them are
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biased to implementation. (4) There is no data abstraction facility in ROOM and no formal
semantics is given. Consequently, rigorous validation and verification methods do not exist
for reactive systems implemented under ROOM methodology.

Recognizing that tools are essential to comprehend the behavior of complex systems,
several tools have been proposed for the development of reactive systems. The two notable
ones are STATEMATE [HLN*90] and SIP [FS93]. STATEMATE is based on the statechart
[Har87] formalism. The formal semantics of statecharts allows execution of a system speci-
fied using a statechart. The tool uses graphic displays to show the transformations of the
statechart during simulation; it also incorporates debugging functionalities. SIP simulates
the behavior of reactive systems specified using statecharts; SIP uses the reasoning system
FRAPPE to deduce answers to questions about the behavior of the system during simula-
tion. The development tool in TROMLAB environment differs from the above two tools in

several important ways:

¢ Our tool supports an object-oriented approach to reactive system development. None
of the above systems reap the full benefits of the object-oriented and iterative ap-

proaches to software development.

¢ The TROM object-oriented methodology has a formal operational and logical seman-

tics, thus promoting validation and verification.

o The design specification supported by the tool is three-tiered: the top most tier consti-
tutes System Configuration Specification (SCS), which describes object interactions;
the middle tier gives the detailed specification of the objects extracted from the prob-
lem domain as described in the requirements; the lowest tier specifies the data abstrac-
tions used in the class definitions of the middle tier through Larch Shared Language,
one of the languages of Larch [GH93].

The significant differences among TROMLAB, ObjecTime, STATEMATE, and SIP are

shown in Table 1.

[ | Object-orientation | Data abstraction | Simulates execution of |

ObjecTime v - implementation

Statemate - - formal specification
SIP - - formal specification

TROMLAB Vv v formal specification

Table 1: Tools supporting development of reactive systems.
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Chapter 3

Animation Tool

A major issue in designing reactive systems is understanding
the behavior of the system under development. The complez-
ity of reactive systems makes an enumeration of all possible
scenarios in the behavior of such a system impractical. Simu-
lation allows observing the behavior of a system through trace
analysis of the simulated scenarios. Animation provides a
graphic visualization of interactions among the entities. An
important goal of animating the simulation process is to facil-
itate design-time debugging, and validation of system design
against requirements.
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3.1 Introduction

This chapter describes the functionalities and design of the animation tool. Section 3.2
outlines the simulation process, and the experimentation, debugging, and validation facil-
ities for TROM-based systems. It includes outlines of the analysis process for simulated
scenarios, the analysis of static components, and feedback on object behavior. Section 3.3
sketches the design of the tool, including its architecture and components. Section 3.4 de-
scribes the modules designed to support each of the three tiers in the TROM methodology,

and its operational semantics.

3.2 Functionalities

The basic operation is the simulation of a computational step of the system built on TROMs.
The necessary condition is that the events appear in non-decreasing order of their activation
times in the simulation event list. The event list is the backbone of the simulator. During
the simulation process, the clock can be frozen before handling the next event from the
event list. The state of the system at this point and the histories accumulated during the
simulation of computational steps up to this point can be inspected, and analyzed for the
causes of the current system status. The user may use this information to correct errors
in the design of the TROMs and the subsystem. The user can make changes to the not
yet simulated aspects of the system, such as modifying transition specifications or timing
constraints. Under certain conditions, the simulation can be restarted from the latest frozen
clock instant without recompilation of the TROM specifications.

To contain complexity, the user may interactively conduct design validation by simulat-
ing a single computational step and analyzing the causes of unexpected results. By going
backwards through the history maintained by the simulator, the user can debug the design
making use of the requirements and the knowledge about the expected behavior. This is
in contrast to using an automated reasoning system as in SIP [FS93]. To support design
evolution, events can be injected interactively during simulation; logical assertions on the
transition specifications can be specified to simulate a scenario. At any time, the user can

roll back to analyze the evolution of system status and simulate corrections in the design.

3.2.1 Simulation

The simulator can be activated only if the specifications have been successfully type-checked.
The pace of the simulation process can be set to a slow mode so that systems where events

occur within fractions of a second can be simulated. Similarly, the pace can be increased
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so that systems where events occur at a slow pace can be simulated. Thus, the user can
experiment with the system under development to ensure proper and timely scheduling
of events. The facilities also allow the user to ensure that deadlines are met and race
conditions avoided by the system. Thus, a system can be validated to satisfy stringent
timing requirements.

While simulating a system, the user can interact with the toolset to inject a simulation
event, and analyze its consequences. Similarly, the histories of the simulation events store
sufficient information to allow the user to roll-back through the simulation process, and
examine the trace of the simulated scenario, or to continue the simulation from a certain
point in time. Facilities are included to allow the user to analyze the trace of the scenario.
The user can examine the status of the system or of TROM objects in the system, at any
point in the trace of the scenario. At any point in time, the user can freeze the clock
and activate the validation tool to inspect the status of the system and the events in the

simulation event list.

3.2.2 Design Debugging and System Validation

Timing constraints stated in the requirements are mapped to design without knowledge
about their consistency. Inconsistent timing constraints can lead to deadlock configurations
and violation of safety and liveness properties. The simulation process does not algorithmi-
cally detect a deadlock. However, if no input event has been scheduled for a pre-determined
period of time, we can draw exactly one of the following conclusions by examining the status
of the TROMs at this point:

e the reaction vector is a null vector, and all the events in the event-list have been
handled: the system has entered a stable state, and all timing constraints have been

satisfied:

e the system cannot progress, since two synchronized TROMs are mutually waiting
for each other to enable an event causing the next transition to occur: the state of
the event-list and the state of the reaction vector for the TROMs in the system are

irrelevant in this case; the configuration of the system introduces deadlock.

When a deadlock configuration is identified, the user iterates through the validation process
to redesign the formal model of the software uﬁit, until the behavior of the system conforms
to the requirements.

At each step in the simulation, the satisfaction of safety properties at that instant can

be checked. If the safety properties continue to hold at successive simulation steps until
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the system reaches its stable state, the user can infer with some confidence that the system
is safe over the histories simulated so far. However, the system cannot be declared to be
absolutely safe, since safety properties have not been verified for all possible scenarios. To
demonstrate that a safety property holds for all scenarios, we need the help of a theorem
prover. When there is violation of a safety property at a simulation step, the history of
the computational steps can be analyzed to determine the causes of error. The design
must then be corrected before restarting the simulation. Incremental changes to timing
constraints that deviate from their original specifications but retain safety property may

also be attempted as part of the simulation process.

Debugging Facilities
Debugging facilities provided include the following operations:
e continue the simulation process,
e display the current simulation time,
e display the status of the system,
o display the status of a subsystem.
e display the status of a TROM,
e display the simulation event list,
e inject a simulation event,
e roll-back to a given point in time,
e activate the query handler,
e activate the trace analyzer,

e terminate the simulation process.

Trace Analysis of Simulation Scenario

The facilities provided for trace analysis of simulation scenarios include displaying the fol-

lowing dynamic information:
¢ simulation events which have triggered a transition.

e simulation events which have not triggered a transition,
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e simulation events which have not yet been handled,
e simulation events which have occurred during a certain period,
e simulation events which have triggered a transition for a given TROM.

e simulation events which have triggered a transition for a given TROM during a certain

period,
e status of the system simulated at a given point in time,
e status of a subsystem at a given point in time,

o status of a TROM in the system at a given point in time,

Analysis of Static Components during Simulation

Query handling facilities provided include functions to display the following static informa-
tion about a specified TROM:

e Abstract Syntax Tree,

e transition specifications,

e transition specifications with its current state as source,
e transition specifications with a given state as source,

e transition specifications with a given state as destination.
e transition specifications triggered by a given event,

e time constraints,

e time constraints for a given triggering event,

e time constraints for a given constrained event,

In addition, the user is allowed to terminate the simulation process at any point in time, and
also to switch between the simulation and debugging processes. The specifications for the
Train-Gate-Controller system, and a sample run of the simulation process for the system,

are included in Appendix C.
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3.3 Design

The design of the animation tool is object-oriented; several objects interact with each other
to simulate TROM-based systems. The main components include an editor, an interpreter. a
graphical user interface, an axiom generator, and a simulator incorporating a validation tool.
Objects in the simulator are designed to support the three-tiers of the TROM formalism,
namely LSL traits, object models, and system configurations, as well as the operational
semantics on which the simulator is built. Objects composing the validation tool support
trace analysis of simulation scenarios, query handling, and debugging. Other objects are

used for time management and consistency checking.

3.3.1 Object-Oriented Architecture

The design components of the tool are shown in Figure 9. To conform faithfully to the TROM
formalism, the design of the tool is based on object-oriented principles. The interpreter,
with the use of the editor, permits static analysis of TROM classes that are input to the
simulator. The interpreter also constructs an internal representation of each TROM class
and the subsystem configuration. It is the user’s responsibility to prepare the specifications
of TROM classes and subsystems, and their refinements according to the grammar on which
the syntax analyzer is built. The user interface provides the necessary help to link the textual

descriptions to their visual equivalents.
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The simulation toolset consists of a simulator, a time manager, a consistency checker, a
validation tool, and other objects to support the TROM formalism. During the simulation
process, the simulator interacts with the LSLLibraryManager and the LSLLibrarySupport
to create instances of traits defined in the LSL library, and to evaluate functions introduced
in the traits. The simulator also interacts with the aziom generator to instantiate the
axioms for a TROM object according to the logical semantics. The simulator “decorates”
the Abstract Syntax Tree before starting simulation so that data connected to an aspect of
the tree can easily be accessed through pointers during the process. It uses the data stored in
the Abstract Syntax Tree for the class specifications and system configuration specifications
to create and initialize the system to be simulated. The simulator also incorporates member
functions providing access to the status of the system during simulation. These functions
will be used by the graphical user interface to derive time charts portraying the behavior

of the system in the simulated scenario.

3.3.2 Simulator Model

Objects in the dynamic model of the simulator include an event handler, a reaction win-
dow manager, an event scheduler, a consistency checker, and a time manager. The event
handler takes an event which is due to occur and detects a transition which the event will
trigger, taking into consideration the status of the TROM object receiving the event and
the enabling and port conditions of the transition specifications. The event handler then
updates the status of the relevant TROM object, and passes control to the reaction window
manager. This module will actuate the computational step to handle the transition, thus
causing reactions to be fired. disabled, and enabled. Whenever a reaction is enabled or dis-
abled it sends a message to the event scheduler to schedule or unschedule a corresponding
event. The event scheduler causes an enabled event to occur at a random time within the
corresponding reaction window. It schedules output events through the least recently used
port, using a round-robin algorithm. It also synchronizes input events with corresponding
output messages directed towards TROM objects linked through ports.

The consistency checker ensures the continuous flow of interactions by detecting deadlock
configurations. It uses a time-stamp on the occurrence of simulation events to identify a
possible cycle in the sequence of transitions allowed by the specifications. The time manager
maintains the simulation clock, updating it regularly. It allows setting the pace of the clock
to suit the needs of analysis of simulation scenarios. It also allows freezing the clock while

analyzing the consequences of a computation.
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3.3.3 Validation Tool

The validation tool consists of a debugger, a trace analyzer, and a query handler. The
debugger supports system experimentation by allowing the user to examine the evolution
of the status of the system throughout the simulation process. It also supports interactive
injection of a simulation event at any point in the simulation process, and simulation roll-
back to a specified point in time. The trace analyzer includes facilities for a thorough
analysis of the simulation scenario. It gives feedback on the evolution of the status of the
objects in the system, and on the outcome of the simulation events. Thus, the behavior
of the system being simulated can be analyzed periodically. The query handler allows
examining the data in the Abstract Syntax Tree for the TROM class to which the ob ject
belongs. supporting analysis of the static components during simulation.

The simulation can be run in debugging mode, in which case the process is frozen when
all the events occurring at a point in time have been handled. At this point the user is
allowed to activate the debugger, to continue the simulation, or to terminate the process.
When the debugger is activated, the user can examine the status of the system, or the
individual statuses of the TROM objects, inspect the data stored in the Abstract Syntax
Tree, and examine the trace of the simulated scenario. Functionalities include inspecting
the status of the system at specific points in time, and the status of the simulation event
list. The user can inject an event to observe the behavior of the system during simulation.

or roll-back to a point in time, and continue the process from that point.

3.4 Supporting TROM

The design of the simulator supports the features of the TROM formalism. and faithfully
conforms to the operational semantics. The ObjectModelSupport module supports the spec-
ification of TROM classes and the evaluation of logical assertions included in the transition
specifications. The SubsystemModelSupport module creates subsystems by instantiating in-
cluded subsystems, TROM objects, and port links. It also initializes the statuses of the
TROM objects and defines the lists of ports for each ob ject. The LSLLibraryManager sup-
ports the creation of instances of data structures defined as traits in the LSL library. The
LSL LibrarySupport provides facilities for calling functions defined in the traits, and for their
execution. This forms the operational implementation of LSL traits.
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Figure 10: Class diagram describing TROM object model.

3.4.1 Object Model Support

To contain the comple;;ity of the design of the simulator, dynamic data is separated from
static data. The status of a TROM, comprising of its current state, assignment vector
and reaction vector, constitutes dynamic information specific to the TROM object. These
information, together with the port lists of the TROM object, are captured by the data
members of a class from which all TROM objects are created. Static data representing
information shared by all TROM objects of a particular class include sets of port types,
events. states, attributes, transition specifications, time constraints, attribute functions.
and LSL traits. These are encapsulated in a class definition; each TROM class is described
by an instance of this class, representing the Abstract Syntax Tree for the TROM class. The
tree is used to instantiate TROM objects, and to access the static data during simulation.
Every object of a TROM class has access to the corresponding instance of the Abstract
Syntax Tree. Thus TROM objects of the same class share one copy of logical assertions
on attributes and timing constraints on reactions. Encapsulating the characteristics of a
TROM in a class supports inheritance, allowing a TROM class to inherit the characteristics
of another TROM class. Figure 10 shows the class structure for the TROM, using OMT
notation [RBP*91]. Figure 22 of Appendix A gives a detailed class diagram for TROM.
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Figure 11: Class pattern for complex system development.

3.4.2 Subsystem Model Support

The Subsystem Model includes a set of TROM objects, a set of included subsystems, and
a set of port links to configure interaction between the TROM objects. These data are
encapsulated in the Subsystem class using recursive aggregation for the included subsystems.
Port links are established between TROM objects in the subsystem and with TROM objects
in included subsystems. This supports incremental development of larger subsystems using
available components. Figure 11 shows the class structure for the Subsystem model, using
OMT notation [RBP*91]. Figure 23 included in Appendix A gives a detailed class diagram
for the Subsystem model.

We use recursive aggregation to support the inclusion of other subsystems in a sub-
system, so that each included subsystem has its own sets of TROM ob jects, included sub-
systems, and port links. As supported by the formalism, TROM objects that are part of
different subsystems in a system, can be linked through port links. A port link is defined
as a pair of TROM-port tuples, where each tuple points to the TROM ob ject, and the port
through which it is linked. Recursive aggregation of subsystems supports the incremental
development of the system, while the TROM objects provide modular decomposition, and
the port links provide module interaction. Subsystems can be simulated independently of

each other before being incorporated into a larger system.

3.4.3 LSL Trait Specification Support

The lowest-tier in the TROM methodology supports the inclusion of abstract data structures
in the TROM class descriptions. This feature is supported in the simulation toolset by an
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Figure 12: Class diagram for Simulation Event object model.

LSL library defining several traits representing data structures. The traits are initially
defined in Larch Shared Language, and analyzed for consistency using the Larch syntax
checker. The specifications can be translated into Larch/C++ class interface specifications
before deriving an implementation. A TROM class can import a trait included in the library
to specify an abstract data structure.

The LSL library can be augmented with new trait definitions, whenever new data rep-
resentations are required by a system. The two objects, LSLLibraryManager and LSLLi-
brarySupport need to be maintained so that each new definition included in the library is
properly represented. The LSLLibraryManager and LSLLibrarySupport allow the creation
of instances of the traits. and the evaluation of functions introduced by the traits. This
generic methodology supports the definition and execution of any abstract data structure
which may be required in the system under development. The behavior of these data

structures can thus be better understood.

3.4.4 Simulation Based on TROM Operational Semantics

While simulation goes forward in time, debugging requires that past actions and their effects
be saved for analysis. Keeping this in mind, we have modeled the Simulation Event as shown
in Figure 12, where each simulation event is associated with the computational step that
it causes. This enables us to roll back to any previous state of the system, and examine
the status of the TROM objects. Figure 24 included in Appendix A gives a detailed class
diagram for the Subsystem model.
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The occurrence of a simulation event causes a computational step in the computation
of 2 TROM as defined by Achuthan [Ach95]. The simulator handles the event so that the
status of the TROM object to which the event is directed, is modified in compliance with
the computational step it is causing. Thus, the statuses of the objects in the system reflect
the computation of the TROMs. In Chapter 4, we describe the simulation algorithm, and

its conformance to the operational semantics of TROM.



Chapter 4

Formal Specification of Simulator

T he VDM specification language includes a wide array of
constructs in its grammar, supporting refinement of speci-
fications. A formal specification of the functionalities of a
software system such as the simulator provides insight into
the intrinsic functions of the system. Errors in the design
can be detected at an early stage, and an implementation of
the specifications in a high-level language can be easily de-
rived.
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4.1 Introduction

We have specified the operations of the simulator in the VDM specification language
[Gro95a]. In a first set of specifications, the operations are written as implicit operations.
An expression and pre- and post-conditions express what is achieved by the operation. In a
second version, most of the operations are rewritten as ezplicit operations, wherein a state-
ment and pre- and post-conditions specify the behavior of the operation. The operations
can be used to derive an implementation in a high-level language. Section 4.2 describes
the algorithm used by the simulator. Section 4.3 outlines the steps followed in the formal
specification exercise. Section 4.4 describes how this process has helped us to validate the
functional model of the simulator, so that it faithfully conforms to the TROM operational

semantics.

4.2 Simulation Algorithm

The algorithm given in Figure 13 represents the steps in the simulation of a system. The
TROM specifications are first type-checked, and the classes pre-processed. If the specifica-
tions are syntactically and semantically correct, we create the system to be simulated. This
involves instantiating TROM objects, subsystems, and port links. We then initialize the
status of the system, giving initial values to the attributes of the TROM ob jects. The next
step is to schedule internal events which originate from the initial state.

At this point, the simulator starts to handle the simulation events from the simulation
event list. As long as there is no event whose occurrence time is equal to the value of
the global clock, we increment the clock and do nothing. When a simulation event is due
for handling. the simulator gets the corresponding transition specification, and handles the
transition accordingly. It saves the current state of the TROM object and its assignment
vector in the history of the simulation event. It then handles the transition according to
the “handle-transition™ operation given in Figure 16. The transition can cause reactions to

be fired, disabled. or enabled. according to the semantics of the computational step.
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begin /* simulation algorithm */
type-check TROM class and subsystem specifications
preprocess TROM classes to be used in simulation
get label of Subsystem s to simulate
instantiate Subsystem s
instantiate Subsystems included in Subsystem s
instantiate TROM objects for each Subsystem
create PortList for each PortType for each TROM object according to port cardinality
initialize current state and assignment vector of each TROM object
configure PortLinks for each Subsystem
initialize SimulationClock
schedule unconstrained internal events from initial state for each TROM object
for all SimulationEvent se in SimulationEventList sel
begin /* at this stage SimulationClock can be frozen and debugger activated */
while Simulation Clock < occur time of SimulationEvent se
begin
increment SimulationClock /* using machine clock */
end
while exists SimulationEvent se and SimulationClock == occur time of se
begin /* handle SimulationEvent se */
get TROM object trom accepting SimulationEvent se from Subsystem s
get TransitionSpec ts triggered by SimulationEvent se
/* update history of SimulationEvent se */
save current state of TROM object trom in EventHistory of se
save assignment vector of TROM object trom in EventHistory of se
/* update status of TROM object trom */
change current state of TROM object trom to destination of TransitionSpec ts
or to entry state of destination state of TransitionSpec s if a complez state
change assignment vector of TROM object trom according to postcondition of ts
/* handle transition specified by TransitionSpec ts */
for all TimeConstraint tc in list of TimeConstraints for TROM object trom

begin
if constrained event of TimeConstraint tc == label of SimulationEvent se
begin
for each ReactionWindow rw in reaction subvector associated with tc
begin

if SimulationEvent se occurs within ReactionWindow rw
begin /* fire reaction according to TimeConstraint tc */
remove ReactionWindow rw from reaction subvector ass. with tc

insert ReactionHistory rh in EventHistory of se according to rw
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end
end

end
if current state of TROM object trom is in set of disabling states of ic

begin /* disable reaction according to TimeConstraint tc */
for all ReactionWindows rw in reaction subvector associated with fc

begin
remove ReactionWindow rw from reaction subvector assoc. with ic

insert ReactionHistory rh in EventHistory of se according to rw
unschedule disabled SimulationEvent in SimulationEventList sel

if constrained event of TimeConstraint fc is an output event

begin
remove disabled SimulationEvent scheduled for synchronization
end
end
end
if label of TransitionSpec ts == transition label of TimeConstraint ic
begin /* enable reaction according to TimeConstraint Zc */
insert new ReactionWindow rw in reaction subvector associated with tc
insert ReactionHistory rhk in EventHistory of se according to rw
/* schedule new simulation event - internal/output event */
insert new SimulationEvent se? in SimulationEventList sel
using LRU Port of PortType of constrained event of tc
and random time within ReactionWindow rw
end
end
schedule unconstrained internal event from current state for TROM Object trom
if constrained event of TimeConstraint ic is an output event
begin /* identify linked TROM object for synchronization */
get PortLink pl from Subsystem s linking the two TROM objects
/* schedule new simulation event - input event */
insert new SimulationEvent sed in SimulationEventList sel,
using portlink pl, for synchronization
end
get next SimulationEvent se from SimulationEventList sel
end
end

end /* simulation algorithm */

Figure 13: Simulation algorithm implementing TROM operational semantics.
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4.3 VDM Specifications

The formal specification process has helped us to clearly understand the functionalities of
the simulator and derive programs based on the specifications. The data types in VDM
correspond to the TROM components defined in Section 2.3. The semantics of the TROM
model are captured by invariants on data types and on the state of the system. Based on
the data types, the VDM state of the simulation model is defined to include the subsystem
being simulated, a sequence of simulation events, a set of LSL trait definitions, and a global
clock. The functional model of the simulator is specified by a number of VDM operations
and functions. A full description of the VDM-SL specifications is included in Appendix
B. The specifications are available from IFAD VDM examples repository [AM96b]. The
formal specification of the simulator has provided insight into its functionalities, allowing

us to eliminate errors in its design.

4.3.1 Data Types and TROM Representation

The data types described in the specification represent the components of the TROM model.
They have been designed to conform to the model, so that an implementation can be derived
directly from the specifications. Each component of 2 TROM is specified as a data type;
similarly, each component of a system configuration specification is specified as a data type.
Invariants are included to allow semantic analysis of the specifications. Figure 14 shows the

data type for Time Constraint, and its invariant.

TimeConstraint::label : String
transition : TransitionSpec
constrainedevent : Event
timebounds : Reaction Window
disablingstates : State-set
reactionwindows : Reaction Window-set

inv mk- TimeConstraint(label, transition, cevent, thounds, dstates, rwindows) A
(((cevent.type = INTERNAL) V (cevent.type = OUTPUT)) A
(Vv rwe € rwindows -
((rw.uppertimebound - rw.lowertimebound) =
(tbounds.uppertimebound - tbounds.lowertimebound))));

Figure 14: VDM data type specification for a time constraint.
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state system of
SUBSYSTEM : Subsystem
SIMULATIONEVENTLIST : SimulationEvent*
LSLLIBRARY : LSLTraitDefinition-set
CLOCK : N

end

Figure 15: VDM state of the simunlation model.

4.3.2 State of the Model and its Invariants

The state of the model include the system being simulated, a global clock, a sequence of
simulation of events. and a set of LSL trait definitions. The invariants on the state of the
system specify the semantics of the TROM formalism. Based on the data types, the VDM
state of the simulation model is defined as shown in Figure 15.

The state of the model includes the system being simulated, a sequence of simulation
events, a set of LSL trait definitions, and a global clock. The invariants on the state of the

model assert the following conditions:
e there exists TROM objects in the subsystem or in the included subsystems.
e there exists port links, to allow communication between the TROM ob jects,
e the event-list is ordered according to the activation time of the events,

e there can be only one event accepted by a TROM at any time instant (single thread

of control),
e any event in the list is accepted by a single TROM,
e each LSL trait used by a TROM is defined in the set of LSL trait definitions,
o the event-list is initially non-empty, and

e the global clock is initially 0.

4.3.3 Functions and Operations

The functional model of the simulation tool is specified by a number of VDM operations
and functions. The simulator operation initializes the global clock, schedules internal events
which are not time-constrained and which trigger transitions from the initial state, and
handles all the events in the simulation event list. It freezes the clock to handle all the
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handle-transition: Trom x SimulationEvent x TransitionSpec 2 ()
handle-transition(trom, se, ts) A
(for all tc € trom.timeconstraints
do (if tc.constrainedevent.label = se.eventlabel
then (for all rw € tc.reactionwindows
do (if se.occurtime > rw.lowertimebound A
se.occurtime < rw.uppertimebound
then (update-history-fire-reaction(trom, se, tc, rw);
fire-reaction(trom, se, tc, rw) )
else skip))
else skip;
if trom.currentstate € tc.disablingstates
then (for all rw € tc.reactionwindows
do (update-history-disable-reaction(trom, se, tc, rw);
disable-reaction(trom, se, tc, rw) ))
else skip;
if ts.label =tc.transition.label
then (update-history-enable-reaction(trom, se. tc, ts);
enable-reaction(trom. se, tc, ts) )
else skip ))
pre (se.occurtime = CLOCK )
post (CLOCK = CLOCK );

Figure 16: VDM specifications for “handle-transition™ operation.

events due at that time, and then ticks the clock until the next event needs to be activated.
The handle-transition operation fires reactions which have been previously enabled, disables
reactions associated with a time constraint when the TROM enters a disabling state, and
enables reactions caused by the simulation event.

The functions include procedures which do not modify the state of the model, while the
operations include procedures which modify the state of the model. The functional model of
the simulator includes event handling, reaction window management and event scheduling.
While conforming to the TROM operational semantics, event handling includes updating the
history of the events in the simulation scenario. The objects composing the functional model
of the simulator include an event handler, a reaction window manager, an event scheduler,
and a time manager. When the event handler processes a computational step according to
the transition fired, the reaction window manager updates the reaction vector in the status
of the TROM object, and requests the event scheduler to schedule or unschedule events as
required. These operations have been included in the formal specifications, allowing an easy

derivation of an implementation.
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4.4 Conformance to TROM Operational Semantics

The simulator as specified in VDM conforms to the operational semantics of TROM given
in Section 2.3.2. We establish this claim by showing that the “handle-transition” operation
is consistent with the semantics of a computational step as defined in [Ach95]. A similar
approach can be followed to show consistency of other operations and functions in the formal
specifications.

The “handle-transition” operation, which specifies a computational step, is most fun-
damental in the functional model of the simulator, and its formal specification is shown in
Figure 16. The handle-transition operation fires outstanding reactions, disables reactions
associated with a time constraint when the TROM enters a disabling state, and enables
reactions time-constrained by a transition. We show that the “handle-transition” opera-
tion is consistent with the operational semantics by first explaining the implementation-
dependent operations which update the history of the computational step. We then fo-
cus on the statements which specify the firing, disabling, and enabling of reactions. The
operations “update-history-fire-reaction”. “update-history-disable-reaction”, and “update-
history-enable-reaction” update the fields of the simulation event being handled, so that the
outcome of the transition is saved. These operation do not affect the status of the TROM
objects in the system. The other operations which are used by the “handle-transition™
operation include “fire-reaction”, “disable-reaction”, and “enable-reaction”.

Each time constraint has an associated reaction subvector, which includes the outstand-
ing reaction windows corresponding to the constrained event. To fire a reaction, we first
access the reaction subvector associated with the time constraint which constrains the event
being handled. If the occurrence time of the simulation event being handled is within a reac-
tion window from the reaction subvector, the “fire-reaction” operation removes the reaction
window from that reaction subvector. When the TROM object enters one of the disabling
states for a time constraint, the “disable-reaction” operation removes all the reaction win-
dows from the reaction subvector associated with that time constraint. Finally, when the
transition being handled is associated with a time constraint, the “enable-reaction™ opera-
tion adds a reaction window to the reaction subvector of that transition. This conforms to
the notion of computational step as defined in the operational semantics. We conclude by
saying that the “handle-transition™ operation is consistent with the operational semantics
of TROM.
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Chapter 5

Formal Verification Methodology

When a system is developed it is desirable to demonstrate that
the system satisfies safety, liveness, and time-bounded prop-
erties. Proving that such properties are satisfied by the sys-
tem is crucial in the development of dependable safety-critical
systems. There is no known formal verification technique for
reactive systems designed on object-oriented principles. Our
effort ts probably the first attempt. The formal methodology
we introduce applies to verification of systems described in
the TROM formalism. A future goal is to mechanize the ver-
ification process using the PVS specification and verification
system as a back-end.



5.1 Introduction

This chapter includes a review of formal verification techniques for real-time systems. Sec-
tion 5.2 describes the steps in verifying safety and liveness properties, and how the ver-
ification process can be mechanized using an automated reasoning system. It includes a
brief introduction to PVS, a prototype verification system which can be used for specifi-
cation and verification of real-time systems. It also describes how real-time behavior can
be formalized with a computational model. Section 5.3 describes the notion of duration
used in specifying properties, and axioms. It includes an outline of the semantics of the
since operator introduced by Shankar [Sha93c], and the relationship between the since op-
erator and absolute times. Section 5.4 introduces our methodology for formal verification

of TROM-based systems, detailing the steps in proving safety properties.

5.2 Verification of Real-Time Systems

Real-Time systems use time to ensure that tasks are scheduled in a timely manner, deadlines
are met, processes are synchronized, and race conditions are avoided [Sha93c]. In addition,
systems in safety-critical contexts have to satisfy crucial requirements. Verification implies

proving that these requirements are satisfied.

5.2.1 Verifying Safety and Liveness Properties

Real-time systems used in safety-critical contexts have to adhere to strict safety and live-
ness properties. A safety property represents an assertion that something bad will never
happen, while a liveness property represents an assertion that something good will eventu-
ally happen. Such properties can only be established by a rigorous analysis of the system
under development, using sound mathematical proofs. However, this exercise can be very
expensive in terms of effort and time.

To demonstrate that such requirements are met, the real-time behavior of such systems
has to be formalized. A computational model describing the attributes of a reactive sys-
tem is needed to support formal verification. Several approaches have been proposed for
formal verification of real-time systems. Among these, SIP [FS93] uses the reasoning sys-
tem FRAPPE to deduce the properties of a real-time reactive system through simulation.
Ostroff [Ost94] proposes TTM/RTTL as a framework for specifying and verifying real-time
reactive systems. The basis of TTM/RTTL is a reachability analysis of the possible states

of the system to analyze its behavior.



5.2.2 Mechanized Verification Using an Automated Reasoning System

Mechanical assistance in the form of a theorem prover has been proposed for formal ver-
ification. An automated reasoning system needs to provide both an expressive logic and
powerful automation to be able to support mechanical verification. The specification sys-
tem should provide a sound logic allowing clear and abstract specifications. The strategies
provided should be sound and readable for difficult theorems. A verification system can
detect flaws in the design at an early stage, thus reducing the costs of remedying faulty
systems.

PVS [ORS92] is a specification and reasoning system, which allows the mechanical
checking of specifications. It supports an expressive logic with a powerful proof checker.
We further discuss PVS in the next section, and show how our methodology is influenced

by the computational model used for verification in PVS.

5.2.3 PVS - A Prototype Verification System

PVS [ORS92] consists of a specification language based on higher-order logic, and an in-
teractive proof checker that uses powerful arithmetic decision procedures. It includes a
parser, a pretty-printer, and a type-checker, allowing the development of specifications in a
concise and consistent manner. The logic of PVS is strongly typed, with a rich type system.
The specifications are written as parameterized theories, with constraints attached to the
parameters. The types in a specification also can have constraints attached to them. The
language allows the definition of abstract data types, predicate subtypes, and dependent
types. The proof checker supports the efficient development of proofs. It implements a set
of powerful primitive inference rules, and a mechanism for composing these rules into proof
strategies. This is useful in composing frequently used patterns of rules into a single step.

The PVS system also allows rerunning proofs.

5.2.4 Formalizing Real-Time Behavior with a Computational Model

In Shankar’s computational model [Sha93b], a state is a mapping of program variables to
values, a trace is an infinite sequence of states, and a program variable maps a given state
to the value of the variable in that state. Time is a special program variable whose value is
not modified by a program. A behavior is a trace where the value of Time is non-decreasing
and eventually increases above any bound. A rooted behavioris a behavior where the initial
value of Time is 0. A program identifies a set of rooted behaviors: a specification also
identifies a set of behaviors. A program satisfies a specification if the set of behaviors given
by the program is a subset of the behaviors identified by the specification.
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A state predicate is a predicate on states; an atomic action is a binary relation between
states. A program is described in terms of an initialization state predicate and a sequence
of atomic actions. In any behavior satisfying a given program, the initial state must satisfy
the initialization predicate, and each pair of adjacent states must satisfy one of the atomic
actions of the program. An invariance assertion is a state predicate which is invariant over
a behavior; that is, it holds of each state in the behavior. It is typical to use induction
over the states of an arbitrary behavior satisfying a program, to show that the program
satisfies an invariant. Time-bounded versions of certain liveness properties can be expressed

as invariance assertions.

® An initialization assertion has the form initially{P}, where the state predicate P

represents the initial state of the system.
® An invariant assertion on the state predicate P is stated as invariant{ P}.

To prove that invariant{ P} holds of a program with initialization predicate init and atomic
actions 5;, we show that init O P and that the Hoare assertion {P}S;{P} holds for each

atomic action S;.

5.3 Notion of Duration

We use the since operator in deriving the time-constraint and synchronization axioms, and
in specifying invariance assertions for the safety property. We also use atomic actions to
specify the program representing the subsystem. These axioms and actions are used in
the proof of the invariance assertions to establish the correctness of programs that exhibit

real-time behavior.

5.3.1 Semantics of since Operator

The value of since for a given predicate at a given state in a program execution, is the time
that has elapsed since the predicate last held. It is similar to the punch operator introduced
by Carruth and Misra [CM92] as an extension to Chandy and Misra’s Unity logic [CM88]:
punch operates on assertions and records the absolute time at which the assertion last went
from being false to true. since is also similar to the duration operator introduced by Maler,
Manna, and Pnueli [MMP91]; the value of duration for a given formula at any state s is the
largest time duration ending in s for which the formula has continuously held.

Additional axioms are needed to capture real-time behavior.

o The initial value of | P | for any state predicate P is 1.
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initially{| P | = 1}, for all P. (init)

¢ If P is true in the precondition of an atomic action, then the value of | P | in the

postcondition is equal to the delay for the action.
{r = Time AP} S {| P |= Time - r}, for all P.

e If P is false in the precondition of an action, then the value of | P | in the postcondition
is got by adding the delay for the action to the precondition value of | P |.

{r=TimeAt =|P|A-P} S {| P|=t+(Time - r)}, for all P.

5.3.2 Relationship between since and Absolute Times

State Predicate Absolute time at which
the predicate becomes false
P tp
Q@ to
PAQ tpag
Pv @ tpvq
PA=Q tPA-Q
|PI<z tipi<s
[(|PI<z)I<y Y(Pi<o)I<y
4 ‘g fq »
—
P TRUE FALSE TRUE FALSE
Q TRUE FALSE TRUE FALSE
—
PAQ TRUE FALSE TRUE FALSE
PVQ TRUE FALSE TRUE FALSE
—
‘bhg pve ‘pAg ‘pv q

PA—gq
Figure 17: Absolute times at which a predicate becomes false.

In our attempt to prove the lemmas representing the invariance assertions, we transform
the formulas that use the since operator for the specification of durations in state predicates
into inequalities over real-time variables. The time-constraint and synchronization axioms,

and the lemmas are rewritten in terms of absolute times. Any predicate formula of the form

P D since(Q) < z
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where P and @Q are state predicates, can be transformed to the linear inequality

t-tg<rz

where predicate P is true at time ¢, and g is the absolute time prior to ¢ when predicate

@ was last true. For a predicate formula of the form

P D since(Q) - since(R) < =

we get by similar reasoning the inequality

lr - tg<«z

for all values of ¢ such that predicate P is true at time £, and to and tgp are respectively

the absolute times prior to ¢t when predicates Q and R were last true. Similar inequalities

can be derived for other boolean operators. All formulas in the invariance assertions are of

these two kinds.

Shankar [Sha93b] introduces several lemmas regarding invariants and the behavior of

the since operator. We show the relationship between the since operator and absolute times

in the invariants that follow. We rewrite the invariants over the since operator in terms

of the absolute times at which the predicates become false. The variables P and Q@ in the

statements below range over state predicates, as represented in Figure 17.

e INV1.1:

- INV2.1:

e INV1.2:

- INV2.2:

e INV1.3:

- INV2.3:

e INV14:

- INV2.4:

INV1.5:

- INV2.5:

e INV1.6:

{lUP[<2)I<yD|P|<z+ y}

Yipisolsy = tPigz Yy = e+ 2+ y
{IPv@QI|<min(]P[,|Q)}

tpvQ = max(tp,tQ)
{IPvQI=|P|VIPVvQl=Q]}

tpv@ =tp Vipvg = Ig
{{PAQI=|P|VIPA-QI|=| P}

lPaQ = 1lp Vipa~g = tp
{max(| P, | Q) <|PAQ|}

tpa@ = min(tp.tg)

{IPISIPAQI}
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— INV2.6: tp 2 tpaQ
o INV1.7: {IQIKIPAQI}

- INV2.7: lg 2 tpag

5.4 A Methodology for Formal Verification

Our approach to verification is to prove that a program based on the specifications of
TROM classes and subsystems satisfies the safety properties for the correct functioning
of the system. We derive axioms from the timing constraints and from the synchroniza-
tion messages specified as external events in the TROM class specifications. We represent
transition specifications as atomic actions, that is, binary relations on system states, tak-
ing into consideration the enabling condition, the port-condition, and the post-condition
for the transition. We specify the property to be verified as an invariance assertion for a
state predicate; the state predicate is sometimes rewritten as a conjunction of simpler state
predicates to facilitate the proof. We then attempt to prove the lemmas representing the
invariance assertions. In proving an invariance assertion, we rewrite the formulas having
state predicates involving durations as inequalities over real-time variables.

In verifying a TROM subsystem, we consider the state of the system as the statuses of all
TROMs in the subsystem, including the current state of each TROM, its assignment vector,
and its reaction vector. For each TROM class, we define a higher-order function which
takes a system state and a TROM object, and returns the status of the TROM object in
that state of the system. We derive atomic actions to represent the transition specifications
of the TROM class, taking into consideration the synchronization of messages. We also
derive axioms based on the timing constraints of the TROM class and on the synchronized

messages.

5.4.1 Deriving Axioms from Class Specifications

Each possible transition in the state of the system is represented by an atomic action,
that is, a binary relation on two system states. A transition specification representing
an internal event is translated into an atomic action describing a change of status for
only one TROM object; the statuses of all other TROMs in the system remain unchanged.
When considering transition specifications representing erternal events, an atomic action
describes a change of status for a TROM sending the message and for 2 TROM receiving the
message. This may lead to several actions representing an event, since the TROM sending

the message as an output event may do so in several different statuses, and the receiving
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TROM may accept the message as an input event in several different statuses, as represented
by different transition specifications in the TROM class specification. The port-condition,
enabling-condition, and post-condition of the transition specifications are included as boolean
expressions in the action. The post-conditions will embody any change in the assignment
vector of the TROMs involved in the action. The reaction vector of each TROM is updated
in the action, according to the TROM operational semantics.

We use the since operator to express durations in state predicates when translating
timing constraints and synchronization messages into axioms. The since operator is also
used to specify durations for properties stated as bounded-time properties. We also use
time charts representing interactions between TROM objects in deriving time-constraint and
synchronization axioms. The time charts give a graphical representation of the transitions
and the synchronization messages, together with the corresponding timing constraints.

We can derive time-constraint axioms from the specifications of the timing constraints
as follows: An upper time bound on the firing of a transition is represented as a constraint
that if the TROM is in the source state of the transition, then the time elapsed since the
event triggering the transition was enabled is less than the upper time bound. A lower
time bound on the firing of a transition is represented as a constraint: if the TROM is
in the destination state of the transition, then the time elapsed since the event triggering
the transition was enabled is greater than the lower time bound. Other axioms can be
included to capture the same properties in other states of the TROM prior to entering the
source state or after exiting the destination state of the particular transition, based on the
duration since a specific occurrence of an event. Alternatively, the constrained-event axiom
(11:ce) and the transition axiom (9:TR) from the logical semantics (see Appendix B) can
be used. Assume that for a TROM A, an event f triggers the event e according to the

constrained-event axiom (11:ce)
Occur(e, pi, t) — Occur(f,p;,t.) N Within(t,,1,u,t)

Since every event is associated with a transition, and the transition axiom (9: TR) specifies
the source and destination states for the transition, we can derive from axiom (9:TR) of

Appendix B the following two axioms:

Hold(s3,t) A Occur(e,pi,t) A Meet(t,t') — Hold(sq,t')
Hold(sy.t,) A Occur(f,pj,t,) A Meet(t,,t.) — Hold(s,,t’)

In writing these axioms we have assumed that the post-conditions for the transitions hold.

If s; = s3. then we reason that when the TROM A is in state sq, the duration between the
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instances when TROM A was at s; and s; lies in the interval [/, u]. Consequently, we write

the axioms using since:
A = 54 D since(A = s1) - since(A = 8) > [
A =84 D since(A=s,) - since(A=s)< u

If s, # s3, then for each state between s; and s3 (as described in history), we write the
above axioms. In addition, the above axioms remain valid for every state following s, in
the history of A. Some of these axioms are redundant, as we shall see in the next section.

We derive synchronization axioms from the transition specifications for external events,
and synchronized messages. For each synchronized message, the two TROMs sharing the
synchronized action enter a particular status at the same time, and the duration since the
occurrence of that event will be the same for both TROMs as long as they both remain in
the respective statuses. In addition, this assertion will hold as long as there is no other
synchronized message between the two TROMs. This fact can be expressed by additional
axioms. These axioms can be written from the synchrony axiom (SY), and the transition
axiom (9:TR). For each external event, we initialize the synchrony axiom, and for each pair
of synchronized TROMs we instantiate the transition axiom from the logical semantics, for
both TROMs.

As described above, the axioms generated from the class specifications conform to the
logical semantics of TROM. Consequently, the axiomatization basis for our verification

methodology is sound.

5.4.2 Time Charts and Lemmas

A time chart specifies the status of the system at various time points measured absolutely,
during the simulation process. The horizontal axis represents absolute times from 0 to in-
finity. In the vertical axis, we show the different TROM objects in the system configuration.
We can thus show the status of the system at significant time points. A coordinate in the
time chart represents the status of a TROM object at that point. The status of the system
at any time ¢t is obtained by taking all the coordinates on a vertical line drawn through the
point ¢ on the horizontal axis.

If b; and b; denote two vertical lines through the absolute times i, and j, where j > 1,
such that the status of a TROM object at time i is the same as the status of the TROM
object for all time points k, where i < k < 7, then any property of the TROM object that
was true during this duration can be expressed using since as well as absolute times.

For example, if a predicate P is true at time ¢ > i, and P implies that another predicate

Q was last true at time 7, then we can express this assertion as
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P D since(Q) < z, where z =j - i.

5.4.3 Proving Properties

We specify the property to be verified as a predicate on the state of the system, that is,
the statuses of the TROMs in the system. The predicate can be rewritten as a conjunction
of simpler predicates. For each predicate, we include a lemma to verify the invariance
assertion for that predicate on an arbitrary behavior of the system. In the proof steps for
the lemma, we translate the formulas which use the since operator into inequalities over real-
time variables. A program representing an arbitrary behavior of the system will satisfy the
invariance assertions representing the property predicate. We also introduce other lemmas
representing invariance assertions on the program to simplify the proof steps.

The axioms and lemmas are expressed as linear inequalities involving variables which
denote the significant instances of changes in statuses of the TROM objects. The property to
be proved is expressed as another linear inequality. Thus, we restate a lemma representing
a property as a linear inequality over the same variables. We then have to prove a linear

inequality from a set of given linear inequalities representing axioms.
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Chapter 6

Verification: A Case Study

We illustrate the formal verification methodology with a case
study. We use the railroad crossing ezample to show the steps
in proving a safety property. We introduce time charts to in-
dicate how the arioms and lemmas can be written as inequal-
ities with variables on absolute times.
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6.1 Introduction

This chapter shows how the methodology can be applied to prove a safety property for
the Train-Gate-Controller system. Section 6.2 describes the transition actions, the time-
constraint axioms, and the synchronization axioms for a simple version of the Train-Gate-
Controller system. Section 6.3 describes how the safety property can be expressed as in-
variance assertions on the state of the system. Section 6.4 shows the steps in proving the
lemmas representing the safety property. We describe how time charts are used to derive the
axioms, and translate formulas involving the since operator into inequalities over absolute
times, in specifying invariance assertions. We include the atomic actions and the axioms
derived, and show the proof steps for the lemmas. Section 6.5 concludes the chapter with
a detailed description of the proof for a generalized version of the Train-Gate-Controller

system.

6.2 Axioms

In this section we show how the axioms derived from the TROM specifications can be used in
the formal verification of a simple version of the Train-Gate-Controller system. The system
we describe consists of one train, one controller, and one gate. The safety requirement is
that whenever the train is in the crossing, the gate is closed and the controller is monitoring.
Since we have only one train, one controller, and one gate, the assignment vector and the
reaction vector of the TROM objects become irrelevant in specifying safety properties; they
are omitted in the specification of the actions. Since each TROM class is instantiated only
once. we do not need higher-order functions to access the status of the objects. In the
configuration of the subsystem, we have one port-link between the train and the controller,
and one port-link between the controller and the gate. Figure 18 shows the state transition
diagram for the TROMs in the system. Figure 19 shows the time chart, including all the

possible transitions, the synchronization messages, and the timing constraints.

6.2.1 Transition Actions, Time Constraint and Synchronization Axioms

Transition Actions

¢ ACTS3.1: Train approaches crossing and sends Near message to controller.

— A 89, 81 : train(sg) = idle A train(s;) = toCross A
controller(sg) = tdle A controller(s;) = activate A

gate(s1) = gate(so)
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Figure 18: State transition diagram for Train-Gate-Controller system.

e ACT3.2 : Train enters crossing - internal event In.

— A s, 81 : train(sg) = toCross A train(s;) = cross A
controller(sy) = controller(sy) A gate(s;) = gate(sg)

¢ ACT3.3 : Train leaves crossing - internal event Out.

= A sg, 8 : train(sg) = cross A train(s;) = leave A

controller(s,) = controller(sg) A gate(s;) = gate(sp)

ACT3.4 : Train sends Exit message to controller and becomes idle.

— A 59,8 : train(sg) = leave A train(s;) = idle A
controller(sp) = monitor A controller(s,) = deactivate A

gate(s;) = gate(sg)

ACT3.5 : Controller sends Lower message to gate and starts to monitor crossing.

— A o, 51 : controller(sg) = activate A controller(s,) = monitor A
gate(sg) = opened A gate(s,) = toClose A

train(sy) = train(sg)

ACT3.6 : Controller sends Raise message to gate and becomes idle.

— A Sg, 81 : controller(sg) = deactivate A controller(s,) = idle A
gate(sg) = closed A gate(s;) = toOpen A

train(s;) = train(sg)

ACT3.7 : Gate closes - internal event Down.
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— A 50,51 : gate(sg) = toClose A gate(s;) = closed A

controller(s;) = controller(sy) A train(s,) = train(so)
o ACT3.8 : Gate opens - internal event Up.

— A so, 51 : gate(sg) = toOpen A gate(s,) = opened A

controller(s;) = controller(sg) A train(s,) = train(sg)

Time Constraint Axioms

¢ TC_AX4.1 : Train starts to cross (internal event In) within window of 2 to 4 time

units after sending Near message to controller.

— TC_AX4.1.1 : A s:train(s) = cross D

since(A sg: train(sg) = idle)(s) > 2
— TC_AX4.1.2: A s:train(s) = cross D

since(A sg: train(sg) = tdle)(s) -

since(A s : train(s;) = toCross)(s) > 2

TC_AX4.1.3: A s:train(s) = leave D
since(A sp:train(sg) = idle)(s) -
stnce(A s; : train(s;) = toCross)(s) > 2
— TC_AX4.1.4: A s:train(s) = toCross D
since(A sp: train(sg) = idle)(s) < 4
— TC_AX4.1.5: A s:train(s) = cross D
since(A sq:train(sg) = idle)(s) -
since(A sy : train(s;) = toCross)(s) < 4
— TC_AX4.1.6 : A s:train(s) = leave D
since(A sg:train(sg) = idle)(s) -

since(A sy : train(s;) = toCross)(s) < 4

o TC_AX4.2: Train sends Exit message to controller within 6 time units after sending

Near message to controller.

— TC_AX4.2.1: X s:train(s) = leave D
since(A sg: train(sg) = idle)(s) < 6

¢ TC_AX4.3: Controller sends Lower message to gate within 1 time unit after receiv-

ing Near message from train.
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— TC_AX4.3.1: A s:controller(s) = activate D
since(A sg : controller(sg) = idle)(s) < 1

- TC_AX4.3.2: A s:controller(s) = monitor D
since(\ sp : controller(sq) = idle)(s) -
since(A sy : controller(s;) = activate)(s) < 1
— TC_AX4.3.3: )\ s: controller(s) = deactivate D
since(A sp : controller(sy) = idle)(s) -

since(A s; : controller(s;) = activate)(s) < 1

e TC_AX4.4: Controller sends Raise message to gate within 1 time unit after receiving
Exit message from train.

— TC_AX4.4.1: X s: controller(s) = deactivate D
since(A sg : controller(sp) = monitor)(s) < 1

- TC_AX4.4.2: )\ s: controller(s) = idle D
since(A sg : controller(sg) = monitor)(s) -
since(A s; : controller(s;) = deactivate)(s) < 1
— TC_AX4.4.3: A s: controller(s) = activate D
since(A sp : controller(sg) = monitor)(s) -

since(A s; : controller(s,) = deactivate)(s) < 1

e TC_AX4.5 : Gate closes (internal event Down) within 1 time unit after receiving
Lower message from controller.

- TC_AX4.5.1: X s:gate(s) = toClose D
since(A s : gate(sq) = opened)(s) < 1

~ TC_AX4.5.2: X s:gate(s) = closed D
since(A s :gate(sg) = opened)(s) -
since(A s : gate(s;) = toClose)(s) < 1
- TC_AX4.5.3: ) s:gate(s) = toOpen D
stnce(A g : gate(sg) = opened)(s) ~
since(A s; : gate(sy) = toClose)(s) < 1

¢ TC_AX4.6 : Gate opens (internal event Up) within window of 1 to 2 time units

after receiving Raise message from controller.

~ TC_AX4.6.1: A s:gate(s) = opened D
since(A sp: gate(sq) = closed)(s) > 1
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— TC_AX4.6.2: A s:gate(s) = opened D
since(A so: gate(sg) = closed)(s) -

since(A s, : gate(s;) = toOpen)(s) > 1

— TC_AX4.6.3: A s:gate(s) = toClose D
since(A sg: gate(sg) = closed)(s) -

since(A s : gate(s;) = toOpen)(s) > 1

— TC_AX4.6.4: A s:gate(s) = toOpen D
since(A sp: gate(sg) = closed)(s) < 2

— TC_AX4.6.5: A s:gate(s) = opened D
since(A sp: gate(sg) = closed)(s) -

since(A s : gate(s;) = toOpen)(s) < 2

— TC_AX4.6.6 : A s: gate(s) = toClose D
since(A sg: gate(sg) = closed)(s) —

since(A sy : gate(s;) = toOpen)(s) < 2

Synchronization Axioms

1. SYN_AXS5.1 : Near message from train to controller

e States entered concurrently:

e Axioms:

— SYN_AX5.1.1: ) s:

— SYN_AX5.1.2: ) s

— SYN_AX5.1.3: ) s

— SYN_AX5.1.4: ) s:

train = toCross, controller = activate

train(s) = toCross A controller(s) = activate D
since(A sg:train(sg) = idle)(s) =
since(A sy : controller(s,) = idle)(s)
train(s) = toCross A controller(s) = monitor D
since(A sg:train(sg) = idle)(s) =
since(A s : controller(s,) = idle)(s)
train(s) = cross A controller(s) = monitor D
since(A sg :train(sg) = idle)(s) =
since(\ s; : controller(s;) = idle)(s)
train(s) = leave A controller(s) = monitor D
since(A sg :train(sg) = idle)(s) =

since(A s; : controller(s;) = idle)(s)

2. SYN_AXGS5.2 : Exit message from train to controller

o States entered concurrently:

train = idle, controller = deactivate
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¢ Axiom :
— SYN_AXS5.2.1 : A s:train(s) = idle A controller(s) = deactivate D
since(A sg : train(sg) = leave)(s) =

since(A s : controller(s,) = monitor)(s)
3. SYN_AXS5.3 : Lower message from controller to gate

e States entered concurrently: controller = monitor, gate = toClose

e Axioms :

— SYN_AXS5.3.1 : A s:controller(s) = monitor A gate(s) = toClose D
since(A sp : controller(sg) = activate)(s) =
since(A s; : gate(s;) = opened)(s)

— SYN_AXS5.3.2 : X s:controller(s) = monitor A gate(s) = closed D
since(A g : controller(sg) = activate)(s) =
since(A s : gate(s;) = opened)(s)

— SYN_AXS5.3.3 : XA s:controller(s) = deactivate A gate(s) = closed D
since(A o : controller(sg) = activate)(s) =

since(A s : gate(sy) = opened)(s)
4. SYN_AXS5.4 : Raise message from controller to gate

e States entered concurrently: controller = idle, gate = toOpen

¢ Axiom :
— SYN_AXS5.4.1 : A s:controller(s) = idle A gate(s) = toOpen D
since(X sg : controller(sg) = deactivate)(s) =

since(A sy : gate(s;) = closed)(s)

6.2.2 Axioms in Absolute Times

We use the following notation in expressing the axioms in absolute times. The subscript i
in a variable for absolute time indicates that the gate is being closed for the i-th time. As
illustrated in Figure 19, all events occurring when the gate is being closed for the i-th time
are subscripted with i. Table 2 gives the absolute times at which an event occurs in the
simple version of the Train-Gate-Controller system.

We illustrate this with the following example. The axioms given below are rewritten

using absolute times.

60



Event

Absolute Time

Description

Near
Lower
Down
In
Out
Exit
Raise
Up

a;
b;
Ci
d;
€;
fi
gi
h;

Message from train to controller
Message from controller to gate
Internal to gate
Internal to train
Internal to train
Message from train to controller
Message from controller to gate
Internal to gate

Table 2: Absolute times at which the events occur.

TC_AX4.1.2: X s:train(s) = cross D

since(A sp:

train(sg) = idle)(s) -

since(A s :train(s;) = toCross)(s) > 2

TC_AX4.1.5: XA s:train(s) = cross D

since(A sp:

train(sg) = idle)(s) -

since(A sy :train(s;) = toCross)(s) < 4

TC_AX4.1.2:d; -a; >2,Vz:d;<z<e¢

TC_AX4.1.5: d; -

6.3 Safety Property

a; <4, Vr:di<z<e;

We specify the safety property for the simplified version of the Train-Gate-Controller system,

and give the state predicates whose conjunction is equivalent to the safety predicate. An

invariance assertion is used for each predicate; we include the proof steps for the lemmas

representing the invariance assertions.

¢ Safety Property:

— When the train is crossing, the gate is closed and the controller is monitoring.

e Invariance Assertions:

1. The gate is already closed when the train starts to cross.

2. The gate remains closed while the train is crossing.

3. The controller is already monitoring when the train starts to cross.
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Figure 19: Time chart for Train-Gate-Controller system.

[t

- The controller remains monitoring while the train is crossing.

- The controller is not deactivated before the train leaves the crossing.

w

[=2]

. The gate is not raised before the controller is deactivated.

- The gate is not raised before the train leaves the crossing.

-]

6.4 Proof Steps

Safety Property as Invariance Assertions
e Proof Steps for the Invariance Assertions:

— LEMMAG.1 : The gate is already closed when the train starts to cross.
* Lemma : A s:train(s) = cross D
since(A sg:gate(sg) = toClose)(s) >
since(A s :train(s;) = toCross)(s)
= (z-¢)>(z-d;),Vz:di<z<eg
= ¢; < d;
* Proof :
1. TC_AX4.1.2: di -a; >2
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2. From (1) : di -2>a;

3. TC_AX4.3.2: b —a; <1

4. From (3) : b -1<a;

5. From (2) and (4): bi-l<a;<d; -2
6. From (5) : bi<d; -1

7. TC_AX4.5.2: ci~-b<1

8. From (7) : < b +1

9. From (3) : bi+1<a;+2

10. From (8) and (9) : ci<b+l<a;+2
11. From (10) : c;<a;+2

12. From (3) : a; +2 < d;

13. From (11) and (12) : c<a;+2<d;

14. From (13) : ¢ < d;

— LEMMAG.2 : The gate remains closed while the train is crossing.

* Lemma : A s: train(s) = leave D
since(A sg: gate(sg) = toClose)(s) >
since(A sy :train(s,) = toCross)(s)
= (z-¢)>(r-di),Vz:e; <z < f;
= ¢; < d;
* Proof : Similar to proof of LEMMAG.1

— LEMMAG6.3 : The controller is already monitoring when the train starts to

Cross.

*+ Lemma : A s: train(s) = cross D
since(A sg: controller(sg) = activate)(s) >
since(A sy : train(s;) = toCross)(s)
= (z-b)>(z-d;),Vz:d;i<z<e¢g

= b; < d;
* Proof :
1. TC_AX4.1.2: di -a;, >2
2. From (1) : d -2>a;
3. TC_AX4.3.2: b; ~a; <1
4. From (3) : b; - 1< a;
5. From (2) and (4) : b -l<a;<d; -2

64



6. From (5) : bi<d; -1
7. From (6) : b; < d;
— LEMMAG.4 : The controller remains monitoring while the train is crossing.
* Lemma : X s: train(s) = leave D
since(A sq : controller(sy) = activate)(s) >
since(A s; : train(s;) = toCross)(s)
= (z-b;)>(r-d),Vz:e,<z<f;
= b; < d;
* Proof : Similar to proof of LEMMAG.3
— LEMMAG.5 : The controller is not deactivated before the train leaves the
crossing.
* Lemma : A s: controller(s) = deactivate D
stnce(A sp : train(sg) = cross)(s) >
since(A sy : controller(s;) = monitor)(s)
= (z-¢€)>(z~-fi).Vz.fi<z < g;
=> € < f;
* Proof : (Invariance Aziom)
1. ACT3.3, ACT3.4: Exit message is sent after internal event Out.
2. SYN_AXS5.2 : train sends Exit message to controller.
— LEMMAG.6 : The gate is not raised before the controller is deactivated.
* Lemma : )\ s:gate(s) = toOpen D
since(A sp : controller(sq) = monitor)(s) >
since(A sy : gate(s;) = closed)(s)

= (z-fi)>(z-¢i),Vr:9; <z <h

= fi<gi
* Proof :
1. TC_AX4.4: 0<gi-fi<l1
2. From (1) : fi<gi

— LEMMAG.7 : The gate is not raised before the train leaves the crossing.
* Lemma : X s:gate(s) = toOpen >
since(A sg : train(sg) = cross)(s) >
since(A s; : gate(s;) = closed)(s)
= (z-€)>(z-g). Vr:gi<z<h
= ¢; < g;
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+ Proof :
1. A s:gate(s) = toOpen D since() so: train(sp) = cross)(s) >
since(A sy : controller(s;) = monitor)(s)

=(z-€)>(z-f),Vz,g;<z<h

= e < f;
2. Proof of (1) is similar to proof of LEMMAG.5
3. From (1) : & <f;
4. LEMMAG.6 : fi<gi
5. From (3) and (4) : € < fi<gi
6. From (5) : € <g

This completes the verification of safety property for the simple case of one train, one

controller, and one gate.

6.5 Verifying a Generalized Railroad Crossing System

In this section, we describe how the verification methodology can be applied to a generalized
version of the Train-Gate-Controller system. We use the time-chart in Figure 21 to illustrate
the possible scenarios in the system. Considering the system introduced in Figure 8, it is
observed that each controller is independent of the other controllers. Similarly, since a
gate is controlled by a single controller, we can assert that each gate is independent of
the other gates. We can therefore verify the safety property for one controller-gate pair,
while considering all the trains in the system. Since all objects of the Gate class have
the same characteristics, and similarly, all objects of the Controller class have the same
characteristics. we can conclude that if an arbitrary controller-gate pair operates safely.
then all the other controller-gate pairs are safe.

As shown in Figure 21, when the controller is in the idle state, and it receives the Near
message from a train (illustrated by train {4 in the figure), it enters the activate state.
When the controller receives a subsequent Near message from any other train, it will be
either in the activate state (trains #, and ¢3 in the figure), or in the monitor state (train #
in the figure), and it will remain in the respective state. The count of the number of trains
in the crossing is obtained from the attribute inSet (defined in the Controller class), which
represents an instance of the Set trait holding the port id’s for messages received from trains.
The controller remains idle as long as inSet is empty. It the Controller is in the monitor
state, the controller is deactivated only when inSet becomes empty. In the inequalities that

follow, the subscript i indicates that the gate is being closed for the i-th time.
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Figure 21: Time chart for generalized version of Train-Gate-Controller system.

The axioms characterize the behavior of a general Train-Gate-Controller system. That
is, the axioms remain independent of the number of trains, controllers, and gates. The only
constraint is that there is a one-to-one correspondence between a controller and the gate
controlled by it. Assuming that there are n trains in the system, we denote them with the
labels #;,t;,t3,...,t,. Then, without loss of generality, we may assume that the controller
receives the Near message from train ¢; (illustrated by train t; in the figure) while it is in the
idle state, where #; is the first train to approach the crossing. It receives the Near message

from trains t; when it is either in the activate state or in the monitor state, where

1<j<n A j#k
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Similarly, we may assume that the controller receives the Exit message from train ¢, (illus-
trated by train ¢, in the figure) causing the attribute inSet to become an empty set, and
a transition to the deactivate state, where t;+ is the last train to leave the crossing. The

controller receives the Exit message from trains ¢ when it is in the monitor state, where
1<j'<Sn A J#K

Table 3 gives the absolute times at which an event occurs in the generalized version of

the Train-Gate-Controller system.

Event | Absolute Time | Description

Near tja; Message from train j to controller
Near a; Controller goes from idle to activate
Lower b; Message from controller to gate
Down Ci Internal to gate

in tid; Internal to train j

QOut tje; Internal to train j

Exit tifi Message from train j to controller
Exit i Controller goes from monitor to deactivate
Raise gi Message from controller to gate

Up h; Internal to gate

Table 3: Absolute times at which the events occur in generalized system.

Therefore,
a; =ta; AN tia;>a;, Vje{z]|1<z<n}

where g; represents the value of a at the i-th gate closing, and t;a; represents the time at
which train j starts approaching the gate to cause the event of the i-th gate closing. From

axioms 4.3.2 and 4.5.2, we have
ci<a;+2
From axiom 4.1.2, we have
di -a;>2 A tid; - t;a; > 2, Vie{z|1<z<n}
From these inequalities, we can prove that
tidi >¢;, Vje{z|1<z<n}

We have thus shown that all the trains enter the crossing only after the gate is closed.

Similarly, we show that the gate remains closed as long as there is at least one train in
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the crossing. As shown in Figure 21, the controller goes in the deactivate state only when
the last train leaves the crossing (illustrated by train f; in the figure). When the controller
receives an Exit message from any other train, it remains in the monitor state (trains tq, t3
and ¢ in the figure). Note that the last train to leave the crossing can be any one of ¢, t;.

t3, and t4. Therefore,
f=twfi A Gfi<fi, Vi€{z[1<z<n}
From axiom 4.4, we have
fi<gi
From these inequalities, we can prove that
tifi<gi, Vie{z|1<z< n}

We have thus shown that the gate enters the state toOpen only after all the trains have left
the crossing. The cases illustrated by trains #;, t, ¢3 and {4 in the figure capture all the
possible scenarios both for trains entering and for trains leaving the crossing. This completes
the verification of safety property for the generalized version of the Train-Gate-Controller

system.
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Chapter 7

Conclusions and Future Work

We have introduced two components of TROMLAB software
development environment supporting a process model for real-
time reactive systems. We described the design and function-
alities of an animation tool to allow modeling, design, specifi-
cation and validation, and presented a methodology for formal
verification of safety and liveness properties. Future goals in-
clude eztending the animation tool to support inheritance, a
graphical user interface, a methodology for mechanized ver-
ification, and ertending the TROM formalism to encompass
multimedia and hybrid systems.
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7.1 Conclusions

The thesis has made two important contributions for the development of real-time reactive

systems:

e simulation within TROMLAB development environment, supporting the enhanced it-

erative process model; and
e verification methodology for TROM-based systems.

The process model supports formalization of requirements while the features, controls, and
environmental properties may keep changing. The primary advantage of this model is its
support for incremental system development without sacrificing rigor.

The TROMLAB development environment supports the development of real-time reac-
tive systems based on TROM formalism [Ach95], and incorporates ob ject-oriented design
principles and formal verification related to PVS [ORS92]. The real benefit of formalizing
a design is that it makes automatic analysis possible. TROMLAB environment incorporates
a specification language, a type-checker, an interpreter, a simulator, an axiom generator,
validation and verification tools, and a visual interface.

The grammar of the specification language is based on the TROM formalism. While be-
ing concise, it supports the description of timing constraints, transition specifications with
logical assertions, abstract data structures, system configurations allowing object collab-
oration and synchronization. The interpreter performs syntactic and semantic analysis of
TROM class and subsystem configuration specifications, allowing strong type-checking. The
simulator supports the validation of TROM subsystems; it includes facilities for debugging
the specifications, and for analyzing the trace of the simulated scenario. The axiom gen-
erator instantiates the axioms for TROM objects, allowing formal analysis of the behavior
of the system under development. We have designed and implemented the interpreter, the
simulator, and the axiom generator.

We have also introduced a methodology for the formal verification of TROM subsystems.
The methodology has been illustrated for verifying safety properties of a generalized railroad
crossing problem. We aim at mechanizing the verification process, using the PVS reasoning
system as a back-end.

The contributions of this work include the execution of formal specifications without
implementation. The simulator also supports execution of LSL traits to observe their be-
havior. When used in industrial contexts, this approach reduces maintenance and revision
costs due to design errors, thereby promoting the dependability of the system and an overall

reduction of development costs in the life-cycle of the system.
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TROMLAB environment allows:

e various levels of abstraction for the reactive entity, the reactive system, and the data

structures;
o design-time debugging and system validation; and

e formal verification to guarantee safety.

7.2 Future Work

Some of the important directions for future work are the following:

¢ A graphical user interface is necessary to visually project the simulation process. In
addition the user interface will include a browser linking the vast amount of informa-
tion, such as TROM objects, subsystems, initial requirements, revisions made on the
designs, specifications at LSL layer, simulated scenarios, and verification steps. The
work in this direction is in progress. The user interface, when completed, will connect

all the components and stages of TROMLAB environment.

¢ The verification methodology should be mechanized and there is good justification
for doing this. It is also quite challenging to mechanize the verification methodology
described in this thesis. The usefulness of PVS as a back-end engine should be inves-
tigated. Some preliminary work in this direction has already been completed. This

work will be taken up by me as part of my doctoral work.

* TROM formalism may have to be extended and enriched to meet the modeling re-
quirements of hybrid and multimedia systems. TROMLAB capabilities need to be
extended to accommodate systems built on this extended TROM formalism. Once

again, I will take this up as part of my doctoral work.

¢ There is no object-oriented language to handle real-time features in the design. I will
explore a two-pronged approach here - to study language design issues for implement-
ing TROM based systems, and to study means of decoupling TROM functionalities

and their real-time constraints into different layers of implementation.

* A static analyzer can be used for detecting deadlock and some mechanized assistance
included for verifying safety properties. We are working towards achieving these in

the following manner:
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— An axiom generator will automatically translate the internal representation of a
TROM specification into a set of axioms describing the behavior of the TROM.
The axioms are to be encoded in the specification language of PVS [ORS92].
These axioms, based on events, states, attributes, transitions, timing constraints,
synchronization, and port links, follow from the axiomatization given in [Ach95].
The computational steps of TROMs are specified as predicates on states of the
system, while timing constraints are specified as axioms. Translating TROM
specifications into PVS specifications makes use of the computational model and

the since operator introduced by Shankar [Sha93b].

— Safety properties for the system being developed are specified as predicates on
the state of the system. Invariance assertions, lemmas, and theories are used to

verify the safety properties using the PVS verification system.
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Appendix A

Class Diagrams in OMT Notation

T he OMT (Object Modeling Technique) notation allows de-
scribing object-oriented designs using class diagrams and
state diagrams. The object model, the functional model, and
the dynamic model of a system can be represented in this no-
tation. We use detailed class diagrams to illustrate the design
of the TROM, Subsystem, and Simulation Event classes.
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TROM

CLASS DIAGRAM

lnbel:

trom_class : String

current state : *State
asgn_vector : AssignmentVector
reaction_vector : ReactionVector
port_list list : PortsList

statics : *“TROM_AST

history : *SimulationEventList

label( : String

trom_class() : String
list_of_port listQ : PortsList
current_state() : *State
asgn_vector() : AssignmentVector
reac_vector() : ReactionVector
set_current_state(*State)
init_current state()
init_sssignment_vector()
init_reaction_vector()

ast() : *TROM_AST

history( : *SimulationEventList

AR
porttype : PortType
cardinality : Int
port_list : PortList
Iru_port : *Port
num_ports_tried : int

get_lru_port() : *Port

get_port(String) : *Port

get_trial_count( : int
init_trial_countQ

increment_trial count()

attribute_type : Int
attribute name : String
attribute ast : *Attribute AST

port_id : String

set_port_{d(String)

trait_ast : *Trait AST

rsubvec(*TimeConstr): *SubVector

time cons : *TimeConstraint

time_cons() : *TimeConstraint
rw_list() : ReactionWindowList

upper_time_bound : int
reaction : *SimulationEvent

time_within_rw(int) : bool
scheduled reaction() : *SimEvent

i

Figure 22: Detailed class diagram illustrating TROM object model.

83



include_list : SubsystemList
trom_list : TromList
portlink _list : PortLinkList

label() : String

includes( : SubsystemList

troms() : TromList

portlinks() : PortLinkList
add_subsystem(*Subsystem)
add_trom(*Trom)
add_portlink(*PortLink)

get_included _subsys(String) : *Subsystem
get_trom_object(String) : *Trom
get_linked_tromporttuple(*TPT) : *TPT
in_stable_state() : bool

displayQ

SUBSYSTEM

OBJECT MODEL

current_state : *State
asgn_vector : AssignmentVector
reac_vector : ReactionVector
port_list_list : PortsList

statics : *TROM_AST

history : *SimulationEventList

label() : String

trom_class() : String
list_of_port_list() : PortsList
current_state() : *State
asgn_vector() : AssignmentVector
reac_vector() : ReactionVector
set_current_state(*State)
init_current_state()
init_assignment_vector()
init_reaction_vector()

ast() : *TROM_AST

history() : *SimulationEventList

tromport2 : *TromPortTuple

tromportl() : *TromPortTuple
tromport2() : *TromPortTuple

Figure 23: Detailed class diagram illustrating Subsystem object model.
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trom : *Trom

occur_time : Int

port : *Port

history : *EventHistory
rendez_vous : *SimulationEvent

set_rendez_vous(*SimulationEvent)
disable_event()

event_outcome : EventOutcome
state_prior_to_transition : *State

outcome() : EventOutcome
state_prior_to_transition() : *State
asgnv_prior_to_trans() : AsgnVector
consequenc() : ReactionHistoryList

< ’ L5k N1
timecons : *TimeConstraint
rwindow : ReactionWindow

outcome : ReactionQutcome

time constraint() : *TimeConstraint
react_window() : ReactionWindow
outcome() : FIRE | DISABLE | ENABLE

SIMULATION EVENT

OBJECT MODEL

Figure 24: Detailed class diagram illustrating Simulation Event object model.
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Appendix B

VDM Specifications

T he specification language of VDM (Vienna Development
Model) incorporates several constructs allowing formal speci-
fication, and refinement. We have provided two sets of speci-
fications for the functionalities of the simulator in VDM-SL.
In the first version (Section B.1), we use implicit operations
to describe the steps in the simulation. We then rewrite most
of the operations using ezplicit operations (Section B.2). Pre-
and post-conditions are included to specify the effect of the op-
erations on the state of the system. This ezercise has allowed
us to ensure that the simulator conforms to the operational
semantics of TROM. We have derived an implementation in
C++ from the formal specifications.
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B.1 Specification of Simulator Using Implicit Operations

module TROM

exports all
definitions
types

1.0 PortType ::label : String
.1 cardinality : N
.2 portlist : Port”
-3 inv mk-PortType (label, cardinality, portlist) &
4 (cardinality = card elems portlist);

2.0 Event ::label : String
.1 type : EventType
2 poritype : PortType
-3 inv mk-Event (label, type, porttype) &
4 (((type = INTERNAL) A (porttype.label = "NULLPORT")) v
.5 ((type = INPUT) A (portiype.label # "NULLPORT")) v
.6 ((type = OUTPUT) A (porttype.label # "NULLPORT")));

3.0 State ::label : String
1 type : State Type
.2 isinitial : B
3 substates : State-set
4 inv mk-State (label, type. isinitial, substates) &
.5 (let ezists-entry-state : State-set — B
6 ezists-entry-state (substates) &
7 ((3!'s € substates - (s.isinitial = true)) A
.8 (Vs € substates -
.9 (((s-type = SIMPLE) A (s.substates = {})) v
.10 ((s-type = COMPLEX) A (ezists-entry-state (s.substates)))))) in
11 (((type = SIMPLE) A (substates = {})) v
12 ((type = COMPLEX) A (ezists-entry-state (substates)))));

4.0 Attribute :: label : String
.1 type : String;
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0 LSLTrait:: trawtlabel : String
.1 traittype : String
2 elementtypes : String™;

6.0 AltrFunction :: stat : State

.1 attributes : Attribute-set:
7.0 TransitionSpec:: label : String
.1 sourcestate : State

destinstate : State

1o

3 triggerevent : Event
4 portcondilion : B
.5 enabcondition : B
6 posicondition : B;
8.0 TwmeConstraint :: label : String
.1 transition : TransitionSpec
.2 consirainedevent : Event
.3 timebounds : Reaction Window
4 disablingstates : State-set
.5 reactionwindows : Reaction Window-set
-6 inv mk-TimeConstraint (label, transition, cevent. thounds, dstates, rwindows) &
T (((cevent.type = INTERNAL) V (cevent.type = OUTPUT)) A
.8 (V rw € rwindows -
9 ((rw.uppertimebound — rw.lowertimebound) =
.10 (tbounds.uppertimebound — tbounds.lowertimebound))));

9.0 EventType = INPUT |INTERNAL|OUTPUT:
10.0  StateType = SIMPLE | COMPLEX;

11.6  Reaction Window :: lowertimebound : N
.1 uppertimebound : N

-2 inv mk-Reaction Window (lowertimebound, uppertimebound) &

3 (lowertimebound < uppertimebound);

12.0  Port ::label : String;
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18.0

PortLink :: tromporttuplel : TromPortTuple
tromportiuple2 : TromPortTuple

inv mk-PortLink (tromporttuplel, tromporttuple2) &
(tromporttuplel.tromlabel # tromporttuple2.tromlabel);

TromPortTuple :: tromlabel : String
portlabel : String;

Simulation Event :: eventlabel : String
tromlabel : String
portlabel : String
occurtime : N

eventhistory : [EventHistory];

EventHistory :: triggeredtransition : B
tromcurrentstate : [State]
assignmentvector : [token]

reactionshistory : Reaction History-set:
ReactionHistory :: timeconstraint : TimeConstraint
reactionwindow : Reaction Window
reaction : Reaclion;

Reaction = FIRED | DISABLED | ENABLED;

LSLTraitDefinition :: label : String

paramets : String”;

String = char™;
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Trom ::

label : Siring

tromclass : String

porttypes : PortType-set

events : Event-set

states : State-set

attributes : Atirtbute-set

Isltraits : LSLTrait-set
atirfunctions : AttrFunction-set
transitionspecs : TransitionSpec-set
titmeconstraints : TimeConstraint-set
currenistate : State

assignmentuvecior : token
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12 inv mk-Trom (label. tromclass, porttypes, events, states, attributes, Isftraits, attrfunctions,

13 transitionspecs, timeconstraints, currentstate, assignmentvector) &
.14 (¥ ptl, pt2 € porttypes -

.15 (ptl.label = pt2.label = ptl1 = pt2)) A

.16 (Vel, e2 € events -

A7 (el.label = e2.label = el =e2)) A

.18 (Vsl,s2 € states -

.19 (sl.label = s2.label = sl =s2)) A

.20 (V al, a2 € attributes -

.21 (al.label = a2.label = al = a2)) A

.22 (Virl, tr2 € Isltraits -

.23 (trl.traittype = tr2.traittype = trl = tr2)) A

.24 (Vafl.af2 € attrfunctions -

.25 (afl.stat = af2.stat = afl=af2)) A

.26 (Visl, is2 € transitionspecs -

.27 (isl.label = ts2.label = ts1 = 152)) A

.28 (Vicl, tc2 € timeconstraints -

.29 (tcl.label = tc2.label = tcl = ic2)) A

.30 (Ve € events -

.31 (3 pt € porttypes - (pt = e.porttype))) A

.32 (3!'s € states -

.33 (s.istnitial = true)) A

.34 (3!'s € states -

.35 ((currentstate = s) V (substate-of (currentstate, s)))) A

.36 (V a € atiributes -

.37 ((3! pt € porttypes - (pt.label = a.type)) Vv

.38 (3! tr € Isltraits - (tr.traitiype = a.type)))) A

.39 (Vir € Isltraats -

.40 (V el € elems {r.elementtypes -

41 ((3! pt € porttypes - (pt.label = el)) V

42 (3! tr2 € Isltraits - (tr2.traittype = el))))) A

.43 (V af € attrfunctions -

44 ((3!'s € states - ((s = af .stat) V (substate-of (af .stat, s)))) A
45 (VY afa € af .attributes -

46 (3! a € attributes - (a = afa))))) A

47 (V ts € transitionspecs -

.48 ((3's € states - ((s = ts.sourcestate) V (substate-of (is.sourcestate. s)))) A
.49 (3! d € states - ((d = ts.destinstate) v (substate-of (ts.destinstate, d)))) A
.50 (3! e € events - (e = ts.triggerevent)))) A
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(V tc € timeconstraints -
((3'ts € transilionspecs - (ts = tc.transition)) A
(3! e € events -
((e = tc.constrainedevent) A
((e.type = INTERNAL) V (e.type = OUTPUT)))) A
(V ds € te.disablingstates -
(3's € states - ((s = ds) V (substate-of (ds, 5)))))));

Subsystem :: label : String
tncludes : Subsystem-set
troms : Trom-set
portlinks : PortLink-set

inv mk-Subsystem (label, includes, troms, portlinks) &
(Vsl.s2 € includes -
(sl.label = s2.label = sl =s2)) A
(let tncluded-subsystem : String x Subsystem-set — B
included-subsystem (subsystemlabel, subsystems) &
(3!'s € subsystems -
((s.label = subsystemlabel) v
(included-subsystem (subsystemlabel, s.includes)))) in
(— included-subsystem (label, includes))) A
(Vtroml, trom2 € troms -
(troml.label = trom2.label = troml = trom?2)) A
(let included-trom : String x Subsystem-set — B
included-trom (tromlabel. subsystems) &
(3!'s € subsystems -
(! trom € s.troms -
(trom.label = tromlabel)) v
(included-trom (tromlabel, s.includes)))) in
(Virom € troms -
(— included-trom (trom.label, includes)))) A
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(let linked-trom : Trom PortTuple x Trom-set — B
linked-trom (iptuple, troms) &
(3! trom € troms -
((trom.label = tptuple.iromlabel) A
(3! pt € trom_porttypes -

(3! p € elems pt.portlist - (p.label = tptuple.portiabel))))),
linked-subsystem : TromPortTuple x Subsystem-set — B
linked-subsystem (tptuple, subsystems) &

(3!'s € subsystems -
(((linked-trom (tptuple, s.troms)) A
(= linked-subsystem (iptuple, s.includes))) v
((— linked-trom (tptuple, s.troms)) A
(linked-subsystem (tptuple, s.includes)))) A
(Vs2 € {su | su: Subsystem - su € subsystems A su # s} -
((— linked-trom (tptuple, s2.troms)) A
(— linked-subsystem (tptuple, s2.includes))))) in
(V pl € portlinks -
((((finked-trom (pl.tromportiuplel, troms)) A
(= linked-subsystem (pl.tromporttuplel, includes))) v
((— linked-trom (pl.tromporttuplel. troms)) A
(linked-subsystem (pl.tromporttuplel, includes)))) A
(((linked-trom (pl.tromporttuple2, troms)) A
(— linked-subsystem (pl.tromporttuple2, includes))) v
((— linked-trom (pl.tromporttuple2, troms)) A
(linked-subsystem (pl.tromporttuple2, includes)))))))
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23.0 state sysiem of
1 SUBSYSTEM : Subsystem
.2 SIMULATIONEVENTLIST : SimulationEvent”

3 LSLLIBRARY : LSLTraitDefinition-set

4 CLOCK :N

.5 inv mk-system (subsystem, simulationeventlist. Isllibrary, clock) &
.6 (let contains-trom : Subsystem — B

7 contains-trom (subsys) &

.8 ((subsys.troms # {}) v

.9 (3's € subsys.includes - (contains-trom (s)))) in

.10 contains-trom (subsystem)) A

q1 (let coniains-portlink : Subsystem — B

12 contains-portlink (subsys) &

13 ((subsys.portlinks # {}) v

.14 (3's € subsys.includes - (contains-portlink (s)))) in
.15 contains-portlink (subsystem)) A

.16 (Vi.j € inds stmulationeventlist -

a7 (i =7) A

.18 (simulationeventlist (i) = simulationeventlist (j))) v
.19 (1<)

.20 (simulationeventlist (1).occurtime <

.21 simulationeventlist (j).occurtime)) V

.22 (t>5)A

.23 (stmulationeventlist (i).occurtime >

.24 simulationeventlist (j).occurtime)))) A

.25 (Vsel, se2 € elems simulationeventlist -

.26 (((sel.occurtime = se2.occurtime) A (sel.tromlabel # se2.tromlabel)) v
27 (sel.occurtime # se2.occurtime))) A
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.28 (let accepted-by-trom : SimulationEvent x Subsystem — B

.29 accepted-by-trom (se, subsys) &

.30 (3! trom € subsys.troms -

31 ((trom.label = se.tromlabel) A

.32 (3!e € trom._events -

.33 ((e.label = se.eventlabel) A

.34 (3! pt € trom.porttypes -

.35 ((pt = e.porttype) A

.36 (3! p € elems pt.portlist -

37 (p-label = se.portlabel)))))))) in

.38 let accepted-by-subsystem : Simulation Event x Subsystem — B

.39 accepted-by-subsystem (se, subsys) &

.40 (3!'s € subsys.includes -

41 ((((accepted-by-trom (se, s)) A (- accepted-by-subsystem (se,s))) Vv
.42 ((= accepted-by-trom (se. s)) A (accepted-by-subsystem (se.s)))) A
43 (Vs2 € {su | su:Subsystem - su € subsys.includes A su # s} -
44 ((— accepted-by-trom (se, s2)) A

45 (= accepted-by-subsystem (se, s2)))))) in

46 (V se € elems simulationeventlist -

A7 (((accepted-by-trom (se. subsystem)) A

48 (— accepted-by-subsystem (se, subsystem))) v

.49 ((— accepted-by-trom (se, subsystem)) A

.50 (accepted-by-subsystem (se, subsystem)))))) A

.51 (let exists-Isltrail : Subsystem — B

.52 exists-Islirait (subsys) &

.53 ((Vtrom € subsys.troms -

.54 (Vir € trom.Isltrauts -

.55 (3 traitdef € Isllibrary - (traitdef.label = tr.traitlabel)))) A
.56 (Vs € subsys.includes - (erists-Islirait (s)))) in

.57 (ezxists-Isltrait (subsystem)))

.58 init mk-system (subsys, simeventlist, Isllib, clock) & simeventlist FIAclock=0
.59 end
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get-trom-object (tromlabel : String, subsystem : Subsystem) trom : [ Trom]
post ((irom € subsystem.troms A trom.label = tromlabel) v
(3!'s € subsystem.includes -
(trom = get-trom-object (tromlabel. 5))) v

(trom = nil )) ;

get-transition-spec (from : Trom, se : SimulationEvent) ts : [ TransitionSpec]
pre (trom.label = se.tromlabel)
post (((ts € trom.transitionspecs) A

((trom.currentstate.label = ts.sourcestate.label) Vv

(substate-of (trom.currentstate. ts.sourcestate))) A

(is.triggerevent.label = se.eventlabel) A

(is.poricondition = true) A

(ts.enabcondition = true)) v

(ts =nil )) ;

substate-of : State x State — B

substate-of (substate, complezstate) &
(substate € complezstate.substates v
(3's € complezstate.substates -

(s.-type = COMPLEX A substate-of (substate, s))))
pre (complezrstate.type = COMPLEX) :

get-eniry-staie (complezstate : State) entry : State
pre (complezstate.type = COMPLEX)
post (3!'s € complezstate.substates -
((s.1stnitial = true) A
((s.type = SIMPLE A entry = s) V
(s.type = COMPLEX A entry = get-entry-state (s))))) ;

get-initial-state (trom : Trom) initial : State
pre (trom.stales # {})
post (3!s € trom.states -
((s.isinitial = true) A
((s-type = SIMPLE A initial = s) v
(s.type = COMPLEX A initial = get-entry-state s
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29.0 get-linked-tromport-tuple (tupleA : Trom PortTuple, subsystem : Subsystem)
.1 tupleB : [TromPortTuple]

to

post ((3! pl € subsystem.portlinks -
((pl-tromporttuple] = tupleA A pl.tromporttuple2 = tupleB) v
(pl.tromporttuple2 = tupleA A pl.tromporttuplel = tupleB))) Vv
(3!'s € subsystem.includes -
(tupleB = get-linked-tromport-tuple (tupleA. s))) vV
(tupleB =nil )) :

- T TN

30.0 enists-in-subsysiem : Trom x Subsystem — B

.1 enists-in-subsystem (trom, subsys) &

o

(trom € subsys.lroms V
(3! subsystem € subsys.includes -

(ezists-in-subsystem (trom, subsysiem))))

pre ((subsys.troms # {}) V (subsys.includes # {})) ;

2 I N

31.0 gel-unconstrained-internal-event (trom : Trom) event : [Event]

—

post ((3 ts € trom.transitionspecs -

o

((1s.sourcestate = trom.currentstate) A
(ts.triggerevent.type = INTERNAL) A
(— constrained-event (trom, ts.triggerevent)) A

(event = ts.triggerevent))) v

= RTINS

(event = nil )) :

32.0 constrained-event : Trom x Event — B

constrained-event (trom. event) &

'
—

1o

(3 tc € trom.timeconstraints -

w

(tc.constrainedevent = event))

pre (even! € trom.events) ;

-

33.0  get-simevent-indez (se : SimulationEvent, se-list : SimulationEvent") indez : N,

v
—

pre (se € elems se-list)

o

post (se-list (indez) = se) ;

34.0  get-random-time-within-rw (rw : Reaction Window) time : N

-1 post ((time > rw.lowertimebound) A (time < rw.uppertimebound)) ;



35.0
1
2

operations

36.0

o

N

get-lru-port (portlist : Port™) port : Port

pre (portlist # [])
post (port € elems portlist)

simulator : () = ()

simulator () &

(del 1:N;:=1;
wnatialize-simulation-clock() ;
schedule-unconstrained-internal-events-from-initial-state() :
while (1 <len SIMULATIONEVENTLIST)
do (while (CLOCK < SIMULATIONEVENTLIST (i).occurtime)
do (update-simulation-clock() ):
while ((i < len SIMULATIONEVENTLIST) A
(CLOCK = SIMULATIONEVENTLIST (i).occurtime))
do (handle-event(SIMULATIONEVENTLIST (i)):
t:=1i+1)))

12 pre ((SIMULATIONEVENTLIST #[]) A

13
.14
.15
.16
A7
.18
.19

(Vse € elems SIMULATIONEVENTLIST -
((se.occurtime > CLOCK) A
(se.eventhistory = nil ))) A
(Vtrom € {trom | trom : Trom - ezists-in-subsystem (trom, SUBSYSTEM)} -
((trom.currentstate = get-initial-state (trom)) A
(Vic € trom.limeconstraints -
(tc-reactionwindows = {})))))
post ((SIMULATIONEVENTLIST #[]) A
(SIMULATIONEVENTLIST (len SIMULATIONEVENTLIST).occurtime =
CLOCK) A
(Vse € elems SIMULATIONEVENTLIST -
((se.occurtime < CLOCK) A
(se.eventhistory # nil ))) A
(Vtrom € {trom | trom : Trom - ezists-in-subsystem (trom, SUBSYSTEM)} -
(Vtc € trom.timeconstraints -

(tc.reactionwindows = {})))) ;
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37.0 handle-event : Simulation Event =~ ()

1  handle-event (se) &

2 (del trom : [Trom],

3 ts : [ TransitionSpec];

4 trom : = get-trom-object (se.tromlabel, SUBSYSTEM);
.5 if trom = nil

6 then return

7 else skip:

8

9

ts := get-transition-spec (trom, se);

if ts = nil
.10 then (update-history-notransition(trom, se, ts))
11 else (update-history-assignment-vector(trom, se, ts) ;
12 if ts.postcondition = false
13 then (update-history-notransition(trom, se, ts) )
.14 else (update-history-transition(trom. se. ts) ;
.15 update-trom-current-state(trom. se, ts) ;
.16 handle-transition(trom, se, ts) ;
17 schedule-unconstrained-internal-event(trom, se) })))

.18 pre (se.occurtime = CLOCK)
.19 post (CLOCK = CLOCK) ;
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38.0 handle-transition : Trom x SimulationEvent x TransitionSpec - ()

.1 handle-transition (trom, se,ts) &

.2 (for all tc € trom.timeconstraints

3 do (if tc.constrainedevent.label = se.eventlabel

4 then (for all rw € tc.reactionwindows

3 do (if se.occurtime > rw.lowertimebound A

.6 se.occurtime < rw.uppertimebound

T then (update-history-fire-reaction(irom, se, tc, rw) ;
.8 fire-reaction(trom. se. tc, rw) )

9 else skip))

.10 else skip:

11 if trom.currentstate € tc.disablingstates

12 then (for all rw € tc.reactionwindows

13 do (update-history-disable-reaction(trom. se. tc, rw) ;
14 disable-reaction(trom, se. tc, rw)))

.15 else skip:

.16 if ts.label = tc_transition.label

A7 then (update-history-enable-reaction(trom. se, ic, ts) :

.18 enable-reaction(trom. se, tc. ts) )

.19 else skip))

.20 pre (se.occurtime = CLOCK’)
.21 post (CLOCK = CLOCK) :
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39

40.

41

.0

L2 T N RR

0

o

.0

v

W

wn

o

. .
- ()

n

update-trom-current-state (irom : Trom, se : SimulationEvent, ts TransitionSpec)

pre (is.posticondition = true)

post (((1s.destinstate.type = SIMPLE) A
(trom.currentstate = ts.destinstate)) v
((ts.destinstate.type = COMPLEX) A

(trom.currentstate = get-entry-state (ts.destinstate)))) ;

update-history-assignment-vector (trom : Trom, se : Simulation Event, ts :[ TransitionSpec))

pre (is # nil )

post (se.eventhistory._assignmentvector = trom.assignmentvector) ;

update-history-notransition (trom : Trom, se : SimulationEvent, ts : [TransitionSpec))
pre ((ts = nil ) V (s.postcondition = false))

post ((se.eventhistory.triggerediransition = false) A
(se.eventhistory.tromcurrentstate = nil ) A
(se.eventhistory.assignmentvector = nil ) A

(se.eventhistory.reactionshistory = {})) :

update-history-transition (trom : Trom, se : SimulationEvent, ts - TransitionSpec)
pre (Is.postcondition = true)

post ((se.eventhistory.triggerediransition = true) A
(se.eventhistory.tromcurrenistate = trom.currenistate) A
(se.eventhistory.assignmentvector = trom.assignmentvector) A

(se.eventhistory.reactionshistory = M :
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43.0 update-history-fire-reaction (trom : Trom. se : SimulationEvent,
.1 tc : TimeConstraint, rw : Reaction Window)

to

pre ((fc.constrainedevent.label = se.eventlabel) A
(rw € tc.reactionwindows) A
(se.occurtime > rw.lowertimebound) A

(se.occurtime < rw.uppertimebound))

o v o W

post (3 rh € se.eventhistory.reactionshistory -

.
-1

((rh.timeconstraint = tc) A
(rh.reactionwindow = rw) A
(rh.reaction = FIRED))) ;

o

44.0  update-history-disable-reaction (trom : Trom, se : SimulationEvent,
.1 tc : TimeConstraint, rw : Reaction Window)

to

pre ((trom.currentstate € tc.disablingstates) A

3 (rw € tc.reactionwindows))
4 post (3rh € se.eventhistory.reactionshistory -
.5 ((rh.timeconstraint = tc) A
.6 (rh.reactionwindow = rw) A
.7 (rh.reaction = DISABLED))) ;
45.0 update-history-enable-reaction (trom : Trom, se : Stmulation Event,
-1 tc: TimeConstraint, ts : TransitionSpec)
2 extrd CLOCK:N
-3 pre (ts.label = tc.transition.label)
4 post (let ru : Reaction Window be st
3 rw = mk-Reaction Window ({c.timebounds.lowertimebound + CLOCK’.
-6 tc.timebounds.uppertimebound + CLOCK) in
.7 (3 rh € se.eventhistory.reactionshistory -
.8 ({rh.timeconstraint = tc) A
.9 (rh.reactionwindow = rw) A
.10 (rh.reaction = ENABLED)))) ;
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46.0 fire-reaction (trom : Trom, se : Simulation Event,

1 tc : TimeConstraint, rw : Reaction Window)

to

pre ((fc.constrainedevent.label = se.eventlabel) A
(rw € tc.reactionwindows) A
(se.occurtime > rw.lowertimebound) A

(se.occurtime < rw.uppertimebound))

o o W

post (rw ¢ tc.reactionwindows) ;

47.0 disable-reaction (trom : Trom, se: SimulationEvent,
.1 tc: TimeConstraint, rw : Reaction Window)
2 extrd SUBSYSTEM : Subsystem
3 wr SIMULATIONEVENTLIST : SimulationEvent”

4 pre ((trom.currentstate € tc.disablingstates) A

(rw € tc.reactionwindows))

o

6 post ((rw & tc.reactionwindows) A

.
-1

(let se2 : SimulationEvent be st

.8 se2 = get-enabled-simevent (trom, tc) in

.9 (((tc.constrainedevent.type = INTERNAL) A

.10 (SIMULATIONEVENTLIST =

.11 [SIMULATIONEVENTLIST (i) | i € inds SIMULATIONEVENTLIST -
12 SIMULATIONEVENTLIST (i) # se2])) v

.13 ((tc.constrainedevent.type = OUTPUT) A

14 (let tromporttuple : [ Trom Port Tuple] be st

.15 tromporttuple = get-linked-tromport-tuple

.16 (mk-TromPortTuple (se2.tromlabel, se2.portlabel),

a7 SUBSYSTEM) in

.18 (let se3 : Simulation Event be st

.19 se3 = get-enabled-simevent-synch (tromporttuple, tc) in

.20 SIMULATIONEVENTLIST =

.21 [SIMULATIONEVENTLIST (i) | i € inds SIMULATIONEVENTLIST -
.22 SIMULATIONEVENTLIST (i) # se2 A

.23 SIMULATIONEVENTLIST (i) # se3])))))) :
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48.0 enable-reaction (trom : Trom, se : StmulationEvent,
1 tc : TimeConstraint. ts : TransitionSpec)
ext rd CLOCK :N
rd SUBSYSTEM : Subsystem
wr SIMULATIONEVENTLIST : SimulationEvent”

o

- W

o

pre (ts.label = tc.transition.label)

.6 post (let ru : Reaction Window be st
rw = mk-Reaction Window (tc.timebounds.lowertimebound + CLOCK ,

-8 tc.timebounds._uppertimebound + CLOCRK’) in
.9 (let port : Port be st

.10 port = get-lru-port (tc.constrainedevent.portiype.portlist) in
.11 (let occurtime : N be st

.12 occurtime = get-random-time-within-rw (r) in

.13 (let se2 : SimulationEvent be st

.14 se2 = mk-Simulation Event

15 (tc.constrainedevent.label, trom.label, port.label, occurtime.nil ) in
.16 ((rw € tc.reactionwindows) A

17 (se2 € elems SIMULATIONEVENTLIST) A

.18 (((tc.constrainedevent.type = OUTPUT) A

.19 (let tromporttuple : [TromPort Tuple] be st

.20 tromporttuple = get-linked-tromport-tuple

.21 (mk-TromPortTuple (se2.tromlabel. se2.portlabel),
.22 SUBSYSTEM) in

.23 (((tromporttuple # nil ) A

.24 (let sed : Simulation Fvent be st

.25 se3 = mk-Simulation Event

.26 (se2.eventlabel, tromporttuple .iromlabel,

.27 tromportiuple.portlabel, se2.occurtime.nil ) in
.28 (se3 € elems SIMULATIONEVENTLIST))) v

.29 (tromportiuple = nil )))) v

.30 (tc.constrainedevent.type = INTERNAL))))))) :
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49.0  get-enabled-simevent (trom : Trom, tc : TimeConstraint) se : Simulation Event
.1 extrd CLOCK :N
2 rd SIMULATIONEVENTLIST : SimulationEvent®

-3 pre (ic € trom.timeconstraints)

4 post ((se € elems SIMULATIONEVENTLIST) A
.5 (se.eventlabel = tc.constrainedevent.label) A
.6 (se.tromlabel = trom.label) A

.7 (se.occurtime > CLOCK) A

.8 (se.eventhistory = nil )) :

50.0 get-enabled-simevent-synch (tromporttuple : TromPort Tuple,
1 tc: TimeConstraint) se : SimulationEvent
.2 extrd CLOCK :N
3 rd SIMULATIONEVENTLIST : SimulationEvent®
-4 post ((se € elems SIMULATIONEVENTLIST) A
.5 (se.eventlabel = tc.constrainedevent .label) A
.6 (se.tromlabel = tromportiuple.tromlabel) A
T (se.occurtime > CLOCK') A
.8 (se.eventhistory = nil )) ;
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51.0 schedule-unconstrained-internal-events-from-initial-state ()
.1 extrd CLOCK:N
.2 rd SUBSYSTEM : Subsystem

.3 wr SIMULATIONEVENTLIST : Simulation Event™

4 pre CLOCR =0

.5 post ((CLOCK =0) A

.6 (Vtrom € {trom | trom : Trom - ezists-in-subsystem (trom, SUBSYSTEM)} -
7 (let event :[Event] = get-unconstrained-internal-event (trom) in

.8 (((event # nil ) A

.9 (let se : Simulation Event be st

.10 se = mk-Simulation Event

.11 (event.label, trom.label, "NULLPORT", CLOCK, nil ) in
.12 ((se € elems SIMULATIONEVENTLIST) A

13 (let i : N; be st

.14 SIMULATIONEVENTLIST (i) = se in

.15 (Vse2 € elems SIMULATIONEVENTLIST -

.16 (let 7 : N; be st

17 SIMULATIONEVENTLIST (5) = se2 in

18 <)V

.19 (event = nil ))))) :
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52.0 schedule-unconstrained-internal-event (trom : Trom, se : Simulation Event)
1 extrd CLOCRK :N
.2 wr SIMULATIONEVENTLIST : SimulationEvent”
3 pre ((se € elems SIMULATIONEVENTLIST) A (se.tromlabel = trom .label))
4 post (let event : [Event] = get-unconstrained-internal-event (trom) in
.5 (((event # nil ) A
-6 (let 7 : Ny be st
.7 J = get-simevent-indezr (se, SIMULATIONEVENTLIST) in
.8 (let se2 : SimulationEvent be st
.9 se2 = mk-SimulationEvent
.10 (event.label, trom.label. "NULLPORT", CLOCK ,nil ) in
a1 (SIMULATIONEVENTLIST =
.12 [SIMULATIONEVENTLIST (i) |
13 t €inds SIMULATIONEVENTLIST -1 < j]™*
14 [se2] 7
.15 [SIMULATIONEVENTLIST (i) |
.16 t €inds SIMULATIONEVENTLIST -i > j])))) V
A7 (event = nil ))) ;

53.0 mnitialize-simulation-clock ()
.1 extwr CLOCK :N
.2 post CLOCKR =0 ;

54.0 update-simulation-clock ()
.1 extwr CLOCR :N

post CLOCK = CLOCK +1

to

end TROM
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B.2 Specification of Simulator Using Explicit Operations

module TROM
exports all

definitions

types
functions

1.0 get-trom-object : String x Subsystem — [Trom]

-1 get-trom-object (tromlabel, subsystem) &

o

(let trom : [Trom] be st

.3 ((trom € subsystem.troms A trom.label = tromlabel) v
4 (3!'s € subsystem.includes -
5 (trom = get-trom-object (tromlabel, s))) v
.6 (trom = nil }) in
.7 trom);
2.0 get-transition-spec : Trom x SimulationEvent — [TransitionSpec)
.1 get-transition-spec (trom, se) &
2 (let ts : [TransitionSpec] be st
3 (((ts € trom.transitionspecs) A
4 ((trom.currentstate.label = ts.sourcestate.label) v
.5 (substate-of (trom.currentstate, ts.sourcestate))) A
.6 (ts.triggerevent.label = se.eventlabel) A
.7 (ts.portcondition = true) A
8 (ts.enabcondition = true)) v
.9 (ts = nil )} in
.10 is)

11 pre (trom.label = se.tromlabel) ;

3.0 substate-of : State x State — B

substate-of (substate, complezstate) &

—

X

(substate € complezstate.substates vV
3 (3! s € complezstate.substates -
4 (s.type = COMPLEX A substate-of (substate. s))))

pre (complerstate.type = COMPLEX) :

o
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4.0

.
—

o

®» N o b e w

5.0

.
—

oW e

o

.
-]

®

6.0

—

to

& o W

© o =y

. .
o o

2 I )

get-entry-state : State — State

get-entry-state (complezstate) &
(let entry : State be st
(3!'s € complexstate.substates -
((s.isinitial = true) A
((s.type = SIMPLE A entry = 5) v
(s.type = COMPLEX A entry = get-entry-state (s))))) in
eniry)
pre (complezstate.type = COMPLEX) ;

get-initial-state : Trom — State

get-initial-state (trom) &
(let initial : State be st
(3's € trom.states -
((s.istnitial = true) A
((s-type = SIMPLE A inttial = s) v
(s.type = COMPLEX A initial = get-entry-state (s))))) in
initial)

pre (trom.states # {}) ;

get-linked-tromport-tuple : Trom PortTuple x Subsystem — [TromPort Tuple]

get-linked-tromport-tuple (tuple A, subsystem) 2
(let tupleB : [TromPortTuple] be st
((3! pl € subsystem.portlinks -
((pl.-tromporttuplel = tupleA A pl.tromporttuple2 = tupleB) v
(pl-tromporttuple2 = tupleA A pl.tromportiuplel = tupleB))) v
(3!'s € subsystem.includes -
(tupleB = get-linked-tromport-tuple (tupleA, s))) V
(tupleB = undefined )) in
tuple B);

exisis-in-subsystem : Trom x Subsystem — B

exists-in-subsystem (trom, subsys) &
(trom € subsys.troms Vv
(3! subsystem € subsys.includes -

(ezists-in-subsystem (trom, subsystem))))

pre ((subsys.troms # {}) V (subsys.includes # {})) ;
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8.0 get-unconstrained-internal-event : Trom — [Event]

-1 get-unconstrained-internal-event (trom) &
(let event : [Event] be st

to

3 ((3ts € trom.transitionspecs -

4 ((ts.sourcestate = trom.currentstate) A

.5 (ts.triggerevent.type = INTERNAL) A

6 (— constrained-event (trom. ts.triggerevent)) A
T (event = ts.triggerevent))) v

.8 (event = undefined )) in

9 event):

9.0 constrained-event : Trom x Event — B

-1 constrained-event (trom. event) &

.
(3]

(3 tc € trom.timeconstraints -

3 (tc.constrainedevent = event))

-4 pre (event € trom.events) :

106.0  get-simevent-inder : StmulationEvent x SimulationEvent” — N,

-1 get-simevent-indez (se, se-list) &
(let inder : N; be st

,
[1%]

3 (se-list (indez) = se) in
4

indez)

o

pre (se € elems se-list) ;

11.0  get-random-time-within-ru : Reaction Window — N

-1 get-random-time-within-rw (rw) &

.2 (let time : N be st

.3 ((time > rw.lowertimebound) A (time < rw.uppertimebound)) in
4 time):

12.0 get-lru-port : Port® — Port

1 get-lru-port (portlist) &

2 (let port : Port be st

3 (port € elems portlist) in
4 port)

pre (portlist # [])

o
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operations

13.0  stmulator: () = ()

.
—

'
[

W

o w

.
-]

®

simulator () &

(del t: Ny :=1;
inttialize-simulation-clock() ;
schedule-unconstrained-internal-events-from-initial-state() ;
while (1 < len SIMULATIONEVENTLIST)
do (while (CLOCK < SIMULATIONEVENTLIST (i).occurtime)
do (update-simulation-clock() );
while ((z < len SIMULATIONEVENTLIST) A
(CLOCK = SIMULATIONEVENTLIST (i).occurtime))
do (handle-event(SIMULATIONEVENTLIST (1)) ;
t:=1+1)))

12 pre ((SIMULATIONEVENTLIST # [J) A

(Vse € elems SIMULATIONEVENTLIST -
((se.occurtime > CLOCK) A
(se.eventhistory = nil ))) A
(Vtrom € {trom | trom : Trom - ezists-in-subsystem (trom, SUBSYSTEM)} -
((trom.currentstate = get-initial-state (trom)) A
(V tc € trom.timeconstraints -

(tc.reactionwindows = {})))))

post ((SIMULATIONEVENTLIST #[]) A
(SIMULATIONEVENTLIST (len SIMULA TIONEVENTLIST).occurtime =
CLOCRKR) A

(Vse € elems SIMULATIONEVENTLIST -

((se.occurtime < CLOCK) A
(se.eventhistory # nil ))) A

(Vitrom € {trom | trom : Trom - ezists-in-subsystem (trom. SUBSYSTEM)} -

(Vic € trom.timeconsiraints -

(tc.reactionwindows = {})))) ;
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14.0 handle-event : SimulationEvent = ()

.1 handle-event (se) &

(del trom : [ Trom],

3 ts : [ TransitionSpec];

4 trom := get-trom-object (se.tromlabel, SUBSYSTEM );

.5 if trom = nil

to

.6 then return

T else skip:

.8 ls := get-transition-spec (trom. se):

.9 if ts = nil

.10 then (update-history-notransition(trom, se.ts) )

1 else (update-history-assignment-vector(trom, se, ts) :
.12 if ts.postcondition = false

.13 then (update-history-notransition(trom. se, ts) )
.14 else (update-history-transition(trom, se, ts) ;

.15 update-trom-current-state(trom. se, ts) :
.16 handle-transition(trom, se, ts) :

A7 schedule-unconstrained-internal-event(irom, se) )))

.18 pre (se.occurtime = CLOCK)
.19 post (CLOCR = CLOCK) :
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15.0 handle-transition : Trom x SimulationEvent x TransitionSpec = ()

.1 handle-transition (trom, se, ts) &

1)

(for all tc € trom.timeconstraints

3 do (if tc.constrainedevent.label = se.eventlabel

4 then (for all rw € fc.reactionwindows

.5 do (if se.occurtime > rw_lowertimebound A

.6 se.occuriime < rw.uppertimebound

7 then (update-history-fire-reaction(trom., se, tc, rw) ;
.8 fire-reaction(trom. se, tc, rw))

.9 else skip))

.10 else skip:

11 if trom.currentstate € tc.disablingstates

12 then (for all rw € tc.reactionwindows

.13 do (update-history-disable-reaction(trom. se, tc, rw);
.14 disable-reaction(trom. se. tc. rw) ))

15 else skip:

.16 if ts.label = tc.transition.label

a7 then (update-history-enable-reaction(irom, se, tc. ts) ;

.18 enable-reaction(trom, se, tc, ts))

.19 else skip))

.20 pre (se.occurtime = CLOCK)
21 post (CLOCKR = CLOCK) ;
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16.0

to

N
(&)

18.0

o

W

o

19.0

to

[ N

update-trom-current-state (trom : Trom, se : SimulationEvent, ts TransitionSpec)

pre (is.postcondition = true)

post (((is.destinstate.type = SIMPLE) A
(trom_currentstate = ts.destinstate)) v
((ts.destinstate . type = COMPLEX) A
(trom.currentstate = get-entry-state (is.destinstate)))) ;

update-history-assignment-vector (trom: Trom, se :StmulationEvent, ts :[ TransitionSpec])

pre (is # nil )

post (se.eventhistory.assignmentvector = trom.assignmentvector) :

update-history-notransition (trom : Trom, se : SimulationEvent, ts : [TransitionSpec))
pre ((ts = nil ) V (ts.postcondition = faise))

post ((se.eventhistory.triggerediransition = false) A
(se.eventhistory.tromcurrentstate = nil ) A
(se.eventhistory.assignmentvector = nil ) A

(se.eventhistory.reactionshistory = {})) :

update-history-transition (trom : Trom, se : SimulationEvent, ts : TransitionSpec)
pre (is.postcondition = true)

post ((se.eventhistory.triggerediransition = true) A
(se.eventhistory.iromcurrentsiate = trom.currentstate) A
(se.eventhistory.assignmentvecior = trom.assignmentvector) A

(se.eventhistory.reactionshistory = {})) :
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update-history-fire-reaction :
Trom x SimulationEvent x TimeConstraint x Reaction Window - 0

update-history-fire-reaction (trom, se. tc, rw) &
insert-rhistory(se, mk-ReactionHistory (tc, rw, FIRED))
pre ((ic.constrainedevent.label = se.eventlabel) A
(rw € tc.reactionwindows) A
(se.occurtime > rw.lowertimebound) A
(se.occurtime < rw.uppertimebound))
post (let rh = mk-ReactionHistory (tc, rw, FIRED) in
(rh € se.eventhistory.reactionshistory)) :

update-history-disable-reaction :

Trom x SimulationEvent x TimeConstraint x ReactionWindow - O

update-history-disable-reaction (trom, se, tc, rw) &
insert-rhistory(se, mk- ReactionHistory (tc, rw, DISABLED))
pre ((from.currentstate € tc.disablingstates) A
(ru € tc.reactionwindows))
post (let rh = mk-ReactionHistory (tc. rw, DISABLED) in
(rh € se.eventhistory.reactionshistory)) :

update-history-enable-reaction :

Trom x SimulationEvent x TimeConstraint x TransitionSpec = ()

update-history-enable-reaction (trom, se, tc. ts) &
(del rw : Reaction Window:;
ruw := mk-Reaction Window (tc.timebounds.lowertimebound + CLOCK .
lc.timebounds.uppertimebound + CLOCK');
insert-rhistory(se. mk-ReactionHistory (tc, rw, ENABLED)) )

pre (is.label = tc.transition.label)

post (let rw = mk-Reaction Window (ic.timebounds.lowertimebound + CL OCH,
tc.timebounds.uppertimebound + CLOCK) in
(let rh = mk-ReactionHistory (tc, rw, ENABLED) in
(rh € se.eventhistory.reactionshistory))) ;
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fire-reaction : Trom x SimulationEvent x TimeConstraint x Reaction Window - 0]

fire-reaction (trom, se, tc, rw) &
remove-rutndow(tc, rw)
pre ((ic.constrainedevent.label = se.eventlabel) A
(rw € tc.reactionwindows) A
(se.occurtime > rw.lowertimebound) A

(se.occurtime < rw.uppertimebound))

post (rw & tc.reactionwindows) ;

disable-reaction : Trom x SimulationEvent x TimeConstraint x Reaction Window 2~ O

disable-reaction (trom. se, tc, rw) &
(dcl se2 : SimulationFvent,
sed : StmulationEvent,
tromporttuple : [ Trom Port Tuple];
remove-rwindow(ic, rw) :
se2 := get-enabled-simevent (trom, tc):
if tc.constrainedevent.type = OUTPUT
then (tromporttuple : = get-linked-tromport-tuple
(mk-TromPortTuple (se2.tromlabel. se2.portlabel),
SUBSYSTEM);
se3 := get-enabled-simevent-synch (tromporttuple, tc);
remove-simevent(se3) )
else skip:

remove-simevent(se2) )

pre ((from.currentstate € tc.disablingstates) A

(rw € fc.reactionuindous))

post (rw & tc.reactionwindows) :
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enable-reaction : Trom x SimulationEvent x TimeConstraint x TransitionSpec = O

enable-reaction (trom, se, tc,ts) &
(del rw : Reaction Window;
rw := mk-Reaction Window (tc.timebounds.lowertimebound + CLOCK ,
tc.timebounds.uppertimebound + CLOCK);
mnsert-rwindow(tc. rw) ;
schedule-enabled-reaction(trom. tc, ts, rw) )
pre (ts.label = tc.transition.label)
post (let rw : Reaction Window be st
rw = mk-Reaction Window (tc.timebounds.lowertimebound + CLOCK,
tc.timebounds.uppertimebound + CLOCK) in

ruw € ic.reactionwindows) ;

schedule-enabled-reaction :
Trom x TimeConstraint x TransitionSpec x Reaction Window = ()

schedule-enabled-reaction (trom, tc, ts. rw) &
(dcl port : Port,
occurtime : N,
se2: SimulationEFvent,
se3 : SimulationEvent,
tromporttuple : [ TromPort Tuple];
port := get-lru-port (ic.constrainedevent.porttype.portlist);
occurtime : = get-random-lime-within-rw (rw);
se2 := mk-Simulation Event
(tc.constrainedevent.label, irom.label, port.label, occurtime, nil );
tnsert-stmevent(se2) ;
if {c.constrainedevent.type = OUTPUT
then (tromporttuple : = get-linked-tromport-tuple
(mk-TromPortTuple (se2.tromlabel. se2.portlabel),
SUBSYSTEM);
if tromporttuple # nil
then (se3 := mk-Simulation Event
(se2.eventlabel, tromporttuple . tromlabel,
tromportiuple.portlabel, se2.occurtime, nil );
insert-simevent(se3) )
else skip)
else skip)

pre ((ts.label = tc.transition.label) A (rw € tc.reactionwindows)) ;
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27.0 get-enabled-simevent (trom : Trom, tc : TimeConstraint) se : SimulationEvent

.1 extrd CLOCK :N
rd SIMULATIONEVENTLIST : SimulationEvent*

.3 pre (ic € trom.timeconstraints)

4 post ((se € elems SIMULATIONEVENTLIST) A
5 (se.eventlabel = tc.constrainedevent.label) A
.6 (se.tromlabel = trom.label) A

i (se.occurtime > CLOCR) A

.8 (se.eventhistory = nil )) ;

28.0 get-enabled-simevent-synch (tromporttuple : Trom Port Tuple,
1 tc : TtmeConstraint) se : Simulation Event
.2 extrd CLOCK :N
.3 rd SIMULATIONEVENTLIST : SimulationEvent®

4 post ((se € elems SIMULATIONEVENTLIST) A
.5 (se.eventlabel = tc.constrainedevent.label) A
.6 (se.tromlabel = tromporttuple.tromlabel) A
7 (se.occurtime > CLOCK) A

.8 (se.eventhistory = nil )) ;

29.0  schedule-unconstrained-internal-events-from-initial-state : () — ()

-1 schedule-unconstrained-internal-events-from-initial-state () &

2 (dcl event : [Event].

.3 se : Simulation Event;

.4 for all trom € {trom | trom : Trom - erists-in-subsystem (trom, SUBSYSTEM)}
5 do (event := get-unconstrained-internal-event (trom);

.6 if event # nil

7 then (se := mk-SimulationEvent (event.label, trom.label.

.8 “NULLPORT",CLOCRK nil );

.9 SIMULATIONEVENTLIST := [se]”~ SIMULATIONEVENTLIST)
.10 else skip))

11 pre (CLOCK =0)
12 post (CLOCK =0);
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schedule-unconstrained-internal-event : Trom x SimulationEvent = ()

schedule-unconstrained-internal-event (trom, se) &
(dcl event : [Event],
se2 : Simulation Event,
7 :Ny;
event : = get-unconstrained-internal-event (irom):
if event # nil
then (se2 : = mk-Simulation Event (event.label, trom.label,
“NULLPORT", CLOCK ,nil );
J := get-simevent-indez (se, SIMULATIONEVENTLIST):
SIMULATIONEVENTLIST :=
(SIMULATIONEVENTLIST (i) |
t €inds SIMULATIONEVENTLIST -i < j]7
[se2] ™
[SIMULATIONEVENTLIST (i) |
1 € inds SIMULATIONEVENTLIST -i > j])
else skip)

pre ((se € elems SIMULATIONEVENTLIST) A (se.tromlabel = trom.label))
post (CLOCK = CLOCK) :

insert-simevent : Simulation Event = ()

insert-simevent (se) &
SIMULATIONEVENTLIST :=
[SIMULATIONEVENTLIST (i) |
1 €inds SIMULATIONEVENTLIST -
SIMULATIONEVENTLIST (i).occurtime < se.occurtime] 7~
[se] ™
[SIMULATIONEVENTLIST (i) |
t €inds SIMULATIONEVENTLIST -
SIMULATIONEVENTLIST (i).occurtime > se.occurtime]

pre (se & elems SIMULATIONEVENTLIST)
post (se € elems SIMULATIONEVENTLIST) ;
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32.0 remove-simevent : Simulation Event — ()

.1 remove-simevent (se) &

2 (del j : Ny:

3 J := get-simevent-indez (se, SIMULATIONEVENTLIST);
4 SIMULATIONEVENTLIST :=

.5 [SIMULATIONEVENTLIST (i) |

6 1 € inds SIMULATIONEVENTLIST -i < j] ™

.
-1

[SIMULATIONEVENTLIST (i) |
8 i € inds SIMULATIONEVENTLIST - i > j])

9 pre (se € elems SIMULATIONEVENTLIST)
.10 post (se & elems SIMULATIONEVENTLIST) ;

33.0 nsert-rwindow (ic : TtmeConstraint, rw: Reaction Window)
.1 pre (rw € tc.reactionwindows)

-2 post (ic.reactionwindows = tc.reactionwindows U {rw}) ;

34.0 remove-runndow (ic : TimeConstraint, rw : Reaction Window)
.1 pre (rw € tc.reactionwindows)

-2 post (Ic.reactionwindows = tc.reactionwindows \ {rw}) ;

35.0 nsert-rhistory(se : SimulationEvent. rh : ReactionHistory)
.1 pre (rh & se.eventhistory.reactionshistory)

-2 post (se.eventhistory.reactionshistory = se.eventhistory.reactionshistory U {rh}) ;

36.0 remove-rhistory (se : SimulationEvent, rh : Reaction History)
-1 pre (rh € se.eventhistory.reactionshistory)

post (se.eventhistory.reactionshistory = se.eventhistory.reactionshistory \ {rk}) :

)

37.0 initialize-simulation-clock : () = ()

initialize-simulation-clock () &

CLOCK :=0;

.
—

to

38.0  update-simulation-clock : () = ()

-1 update-simulation-clock () &
2 CLOCK := CLOCKR +1

end TROM

120



Appendix C

Simulation Example

T he animation tool has been ezercised to simulate the Train-
Gate-Controller system. The input includes the description
of the LSL trait Set, the TROM class and system specifica-
tions, and the initial list of simulation events. The output
includes the teztual description of the status of the system
and the simulation event list. Whenever an event is handled,
the display includes a detailed description of the operation
representing the computational step. We include the input
and output of the simulation run in sections C.1 and C.2
respectively.
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C.1 Simulation Input for Train-Gate-Controller System

Trait: Set(e, S)

Includes: Integer, Boolean

Introduce:
creat: -> S;
insert: e, S -> S;
delete: e, S ~> S;
size: S -> Int;
member: e, S -> Bool;
isEmpty: S -> Bool;
belongto: e, S -> Bool;

end

Class Train [@C]
Events: Near!C, Exit!C, In, Out
States: *S1, S2, S3, S4
Attributes: cr:QC
Attribute~function: S1 -> {}; S2 -> {cr}; s3 -> {}; sS4 -> {};
Transition-Spec:
R1: <51,52>; Near(true); true => cr’ = pid;
R2: <52,S3>; In; true => true;
R3: <83,84>; Out; true => true;
R4: <sS4,51>; Exit(pid = c¢r); true => true;
Time-Constraints:
TCi: (R1, In, [8,16], {});
TC2: (R2, Exit, [0,8], {});

end

Class Controller [OP, ©G]

Events: Near?P, Exit?P, Lower!G, Raise!G
States: *C1, C2, C3, C4
Attributes: inSet:PSet
Traits: Set[QP, PSet]
Attribute-function: €1 -> {}; C2 -> {inSet}; €3 -> {inSet}; C4 -> {inSet};
Transition-Spec:

R1: <C1,C2>; Near(true); true => inSet’ = insert(pid, inSet);

R2: <C2,C2>,<C3,C3>; Near(NOT(belongto(pid, inSet)));

true => inSet’ = insert(pid, inSet);
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R3:
R4:

R5:

R6:

<C2,C3>; Lower(true); true => true;

<C3,C3>; Exit(belongto(pid,inSet)); (size(inSet) > 1) =>
inSet’ delete(pid, inSet);

<C3,C4>; Exit(belongto(pid,inSet)); (size(inSet) = 1) =>
inSet’ = delete(pid, inSet);

<C4,C1>; Raise(true); true => true;

Time-Constraints:

TC1

: (R1, Lower, [0,4]1, {});

TC2: (RS, Raise, [0,4], {3});

end

Class Gate [@S]

Events

States

: Lower?S, Raise?S, Down, Up
: *G1, G2, G3, G4

Transition-Spec:

Ri:
R2:
R3:
R4:

<G1,G2>; Lower(true); true => true;
<G2,G3>; Down; true => true;
<G3,G4>; Raise(true); true => true;
<G4,G1>; Up; true => true;

Time-Constraints:

TC1:
TC2:

end

SCS TCG

(R1, Down, [0,4], {});
(R3, Up, [4,8]1, {});

Instantiate:

t1:
t2:
t3:
ci:
c2:
gi:
g2:

:Trainf@C:2]3;
:Train[@C:2];
:Train[Q@C:2];
:Controller[QP:3,€G:1];
:Controller[@P:3,0G:1];
:Gate[®s:1];
:Gate[0S:1];

Configure:
t1.0C1 <-> ¢1.QP1;
£1.€C2 <-> ¢2.0P1;
t2.Q0C1 <-> ¢1.QP2;
t2.0C2 <-> ¢2.QP2;
t3.0C1 <-> ¢1.€P3;
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t3.
.0G1 <-> g1.@S1;

cl

c2.

end

SEL:
Near,
Near,
Near,

end

€C2 <-> c2.0P3;

€G1 <-> g2.0S1;

ti, C1, 3;
t2, C2, 5;
t3, C1, 7;
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C.2 Simulation Output for Train-Gate-Controller System

Starting TROMLAB Environment.
Type Checking Specifications. Please wait...
Specifications type-checked.

Start simulation? (y/n): y

Please enter system label: TCG
Starting Simulation of Subsystem TCG

Set debugger mode? (y/n): n

Normal/increased/decreased clock pace (n/i/d): n

Set time-—out period (time units - default 20): 20

Scheduling Sim Event: Near Trom: c1 Port: P1 Time: 3
History:

Event Outcome: NOTYET_HANDLED
Scheduling Sim Event: Near Trom: c2 Port: P2 Time: 5
History:

Event Outcome: NOTYET_HANDLED

Scheduling Sim Event: Near Trom: ci Port: P3 Time: 7
History:

Event Outcome: NOTYET_HANDLED

Current Simulation Time: O
Subsystem status:
Subsystem label: TCG
Trom Status: Trom-label: t1 Trom-class: Train Current-state: Si
AssignmentVector:
Attribute label: cr Atcribute type: PORT_TYPE
Port~ID: NULL
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : KULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Trom Status: Trom—-label: t2 Trom-class: Train Current-state: S1
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
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Port-ID: FULL
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Trom Status: Trom—-label: t3 Trom—-class: Train Current-state: Si1

AssignmentVector:

Attribute label: cr Attribute type: PORT_TYPE
Port-ID: NULL

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Trom Status: Trom-label: ci Trom-class: Controller
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value: NULL-SET
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Trom Status: Trom-label: c2 Trom-class: Controller
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value: NULL-SET
ReactionVector:

ReactionSubVector: TimeConstraint: TCi : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Current-state: C1

Current—-state: C1

Trom Status: Trom-~label: g1 Trom-class: Gate Current-state: G1

AssignmentVector: NULL-VECTOR

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Trom Status: Trom-label: g2 Trom-class: Gate Current-state: G1

AssignmentVector: NULL-VECTOR
ReactionVector:
ReactionSubVector: TimeConstraint: TC1i : NULL-VECTOR

ReactionSubVector: TimeConstraint: TC2 NULL-VECTOR

Subsystem TCG is in stable state.
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Simmlation Event List:

Sim-Event 1: Event: Near Trom: t1 Port: C1 Time: 3
History:

Event Outcome: NOTYET_RAEDLED

Sim-Event 2: Event: Near Trom: c1 Port: P1 Time: 3
History:

Event Outcome: NOTYET_BANDLED
Sim-Event 3: Event: Near Trom: t2 Port: C2 Time: 5
History:

Event Outcome: NOTYET_HANDLED

Sim~Event 4: Event: Near Trom: c2 Port: P2 Time: 5
History:

Event Outcome: NOTYET_HANDLED

Sim-Event S: Event: Near Trom: t3 Port: C1 Time: 7
History:

Event Outcome: NOTYET_EANDLED

Sim~Event 6: Event: Near Trom: c1 Port: P3 Time: 7
History:

Event Outcome: NOTYET_HANDLED
End of Simulation Event List.

Current Simulation Time: 1
Current Simulation Time: 2

Current Simulation Time: 3

Handling Sim Event: Near Trom: t1 Port: C1 Time: 3
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: ti Trom-class: Train Current-state: S1
AssignmentVector:

Attribute label: cr Attribute type: PORT_TYPE
Port-ID: NULL
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: R1 Source: Si1 Destin: S2 Trigger Event: Near
Enabling Reaction - Time Constraint:
Label: TC1 Transition: R1 Constrained Event: In Bounds: [8,16]
Scheduling Sim Event: In Trom: t1 Port: NULLPORT Time: 19
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History:
Event Outcome: NOTYET_HANDLED

Current Simulation Time: 3

Handling Sim Event: Kear Trom: c1 Port: P1
History:
Event Outcome: NOTYET_BANDLED

Active Trom: Trom-label: ci Trom-class: Controller
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value: NULL-SET )
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Triggering Transition:

Time: 3

Current-state: Ci1

Label: R1 Source: Ci Destin: C2 Trigger Event: Near

Enabling Reaction - Time Constraint:

Label: TCi Transition: R1 Constrained Event: Lower

Scheduling Sim Event: Lower Trom: c1 Port: Gi
History:

Event Outcome: NOTYET_HANDLED

Scheduling Sim Event: Lower Trom: gi Port: Si1
History:

Event OQutcome: NOTYET_HANDLED

Current Simulation Time: 3

Handling Sim Event: Lower Trom: ci1 Port: G1
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: ci Trom—-class: Controller
AssignmentVector:

Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value:

Port-ID: P1
ReactionVector:

ReactionSubVector: TimeConstraint: TCi : [3,7]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
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Triggering Transition:
Label: R3 Source: C2 Destin: C3 Trigger Event: Lower

Firing Reaction - Time Constraint:
Label: TC1 Transition: R1 Constrained Event: Lower Bounds: [0,4]

Current Simulation Time: 3

Handling Sim Event: Lower Trom: gi Port: S1 Time: 3
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: g1 Trom-class: Gate Current-state: G1

AssignmentVector: NULL-VECTOR

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Triggering Transition:

Label: R1i Source: G1 Destin: G2 Trigger Event: Lower

Enabling Reaction — Time Constraint:

Label: TC1 Transition: R1 Constrained Event: Down Bounds: [0,4]
Scheduling Sim Event: Down Trom: g1 Port: NULLPORT Time: 3
History:

Event Outcome: NOTYET_HANDLED

Current Simulation Time: 3

Handling Sim Event: Down Trom: gi Port: NULLPORT Time: 3
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: gi Trom-class: Gate Current-state: G2

AssignmentVector: NULL-VECTOR
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : [3,7]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: R2 Source: G2 Destin: G3 Trigger Event: Down
Firing Reaction -~ Time Constraint:
Label: TC1 Transition: R1 Constrained Event: Down Bounds: [0,4]

Current Simulation Time: 3

Current Simulation Time: 4
Current Simulation Time: 5
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Handling Sim Event: Near Trom: t2 Port: C2
History:
Event Outcome: NOTYET_HANDLED

Time: &

Active Trom: Trom-label: t2 Trom-class: Train Current-state: Si

AssignmentVector:

Attribute label: cr Attribute type: PORT_TYPE
Port-ID: NULL

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : EULL-VECTOR
ReactionSubVector: TimeComstraint: TC2 : NULL-VECTOR

Triggering Transition:

Label: R1 Source: S1 Destin: S2 Trigger Event: Near

Enabling Reaction - Time Constraint:
Label: TC1 Transition: R1 Constrained Event: In

Scheduling Sim Event: In Trom: t2 Port: NULLPORT

History:
Event Outcome: NOTYET_HANDLED

Current Simulation Time: §
Handling Sim Event: Near Trom: c2 Port: P2

History:

Event Qutcome: NOTYET_HANDLED
Active Trom: Trom-label: c2 Trom-class: Controller
AssignmentVector:

Attribute label: inSet Attribute type: TRAIT_TYPE

Trait type: PSet Trait name: Set

Trait value: NULL-SET

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL~VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Triggering Transition:

Bounds: [8,16]
Time: 17

Time: 5

Current-state: Ci1

Label: R1 Source: C1 Destin: C2 Trigger Event: Near

Enabling Reaction ~ Time Constraint:

Label: TCt1 Transition: R1 Constrained Event: Lower

Scheduling Sim Event: Lower Trom: c2 Port: Gi1
History:

Event Outcome: NOTYET_HANDLED

Scheduling Sim Event: Lower Trom: g2 Port: Si
History:
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Event Outcome: NOTYET_HANDLED

Current Simulation Time: 5

Handling Sim Event: Lower Trom: c2 Port: Gt Time: §
History:
Event Outcome: NOTYET_EANDLED

Active Trom: Trom-label: c2 Trom-class: Controller Current-state: C2
AssignmentVector:

Attribute label: inSet Attribute type: TRAIT_TYPE

Trait type: PSet Trait name: Set

Trait value:

Port-ID: P2

ReactionVector:

ReactionSubVector: TimeComstraint: TC1 : [5,9]

ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:

Label: R3 Source: C2 Destin: C3 Trigger Event: Lower
Firing Reaction - Time Constraint:

Label: TC1 Transition: R1 Constrained Event: Lower Bounds: [0,4]

Current Simulation Time: 5

Handling Sim Event: Lower Trom: g2 Port: Si1 Time: §
History:
Event Qutcome: NOTYET_HANDLED
Active Trom: Trom-label: g2 Trom-class: Gate Current-state: G1
AssignmentVector: NULL-VECTOR
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: R1 Source: G1 Destin: G2 Trigger Event: Lower
Enabling Reaction - Time Constraint:
Label: TC1 Transition: R1 Constrained Event: Down Bounds: [0,4]
Scheduling Sim Event: Down Trom: g2 Port: NULLPORT Time: 5§
History:
Event Outcome: NOTYET_HANDLED

Current Simulation Time: 5
Handling Sim Event: Down Trom: g2 Port: NULLPORT Time: 5
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History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: g2 Trom—-class: Gate Current-state: G2

AssignmentVector: NULL-VECTOR

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : [5,9]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Triggering Transition:

Label: R2 Source: G2 Destin: G3 Trigger Event: Down

Firing Reaction - Time Constraint:

Label: TC1 Transition: R1 Constrained Event: Down

Current Simulation Time: §
Current Simulation Time: 6
Current Simulation Time: 7

Bounds: [0,4]

Handling Sim Event: Near Trom: t3 Port: Ci1 Time: 7
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: t3 Trom-class: Train Current-state: Si

AssignmentVector:

Attribute label: cr Attribute type: PORT_TYPE
Port-ID: NULL

ReactionVector:

ReactionSubVector: TimeComstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Triggering Transition:

Label: R1 Source: S1 Destin: S2 Trigger Event: Near

Enabling Reaction - Time Constraint:
Label: TC1 Transition: R1 Constrained Event: In

Scheduling Sim Event: In Trom: t3 Port: NULLPORT

History:
Event Outcome: NOTYET_HANDLED

Current Simulation Time: 7
Handling Sim Event: Near Trom: ci Port: P3

History:

Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: ci Trom-class: Controller
AssignmentVector:
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Bounds: [8,16]
Time: 19

Time: 7

Current-state: C3



Attribute label: inSet
Trait type: PSet
Trait value:

Port-ID: P1

ReactionVector:

ReactionSubVector: TimeConstraint: TCi :

ReactionSubVector:

Triggering Transition:

Attribute type: TRAIT_TYPE

Trait name: Set

TimeConstraint: TC2 :

NULL-VECTOR
NULL-VECTOR

Label: R2 Source: C3 Destin: C3 Trigger Event: Near
Current Simulation Time: 7
Current Simulation Time: 8
Current Simulation Time: 9
Current Simulation Time: 10
Current Simulation Time: 11
Current Simulation Time: 12
Current Simulation Time: 13
Current Simulation Time: 14
Current Simulation Time: 15
Current Simulation Time: 16
Current Simulation Time: 17
Handling Sim Event: In Trom: t2 Port: NULLPORT Time: 17
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom~label: t2 Trom-class: Train Current-state: S2
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C2
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 :

ReactionSubVector: TimeConstraint: TC2 :

Triggering Transition:

Label:

R2 Source: S2

Destin: S3

Firing Reaction - Time Constraint:

Label:

TC1 Transition: Ri1

Enabling Reaction - Time Comstraint:

Label:

TC2 Transition: R2
Scheduling Sim

History:

Event: Exit Trom: t2
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[13,21]
NULL-VECTOR

Trigger Event: In

Constrained Event: In

Constrained Event: Exit

Port: C1

Bounds: [8,16]

Bounds: [0,8]
Time: 21



Event Outcome: NOTYET_HAKDLED

Scheduling Sim Event: Exit Trom: c1 Port: P2 Time: 21
History:
Event Outcome: KEOTYET_HANDLED

Current Simulation Time: 17

Handling Sim Event: COut Trom: t2 Port: NULLPORT Time: 17
History:
Event Outcome: EOTYET_HANDLED
Active Trom: Trom-label: t2 Trom-class: Train Current-state: S3
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C2
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : [17,25]
Triggering Transition:
Label: R3 Source: S3 Destin: S4 Trigger Event: Out

Current Simulation Time: 17
Current Simulation Time: 18

Current Simulation Time: 19

Handling Sim Event: In Trom: ti1 Port: NULLPORT Time: 19
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: ti1 Trom-class: Train Current-state: S2
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : {11,19]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: R2 Source: S2 Destin: S3 Trigger Event: In
Firing Reaction -~ Time Constraint:
Label: TCt Transition: R1 Constrained Event: In Bounds: [8,16]
Enabling Reaction - Time Constraint:
Label: TC2 Transition: R2 Constrained Event: Exit Bounds: [0,8]
Scheduling Sim Event: Exit Trom: ti Port: C1 Time: 23
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History:

Event Outcome: NOTYET_HANDLED

Scheduling Sim Event: Exit Trom: ci1 Port: P1 Time: 23
History:

Event Outcome: NOTYET_HANDLED

Current Simulation Time: 19
Handling Sim Event: Out Trom: t1 Port: NULLPORT Time: 19
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: ti Trom-class: Train Current-state: S3
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : [19,27]
Triggering Transition:

Label: R3 Source: S3 Destin: S4 Trigger Event: Out

Current Simulation Time: 19

Handling Sim Event: In Trom: t3 Port: NULLPORT Time: 19
History:
Event Outcome: ROTYET_HANDLED
Active Trom: Trom-label: t3 Trom~class: Train Current-state: S2
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : [15,23]

ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:

Label: R2 Source: S2 Destin: S3 Trigger Event: In
Firing Reaction - Time Comstraint:
Label: TC1 Transition: R1 Constrained Event: In Bounds: [8,16]
Enabling Reaction - Time Constraint:
Label: TC2 Transition: R2 Constrained Event: Exit Bounds: [0,8]
Scheduling Sim Event: Exit Trom: t3 Port: C1 Time: 23
History:
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Event OQutcome: NOTYET_HANDLED

Scheduling Sim Event: Exit Trom: ci1 Port: P3 Time: 23
History:

Event Outcome: NOTYET_HANDLED

Current Simulation Time: 19

Handling Sim Event: COut Trom: t3 Port: NULLPORT Time: 19
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: t3 Trom-class: Train Current-state: S3
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR

ReactionSubVector: TimeConstraint: TC2 : [19,27]
Triggering Transition:

Label: R3 Source: S3 Destin: S4 Trigger Event: QOut

Current Simulation Time: 19
Current Simulation Time: 20

Current Simulation Time: 21

Handling Sim Event: Exit Trom: t2 Port: C1 Time: 21
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: t2 Trom-class: Train Current-state: S4
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C2
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : [17,25]
Simulation Event was not handled.
Scheduling new Simulation Event at another port.

Scheduling Sim Event: Exit Trom: t2 Port: C2 Time: 21
History:

Event Qutcome: NOTYET_HANDLED

Scheduling Sim Event: Exit Trom: c2 Port: P2 Time: 21
History:
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Event Outcome: NOTYET_HANDLED

Handling Sim Event: Exit Trom: t2 Port: C2 Time: 21
History:
Event Outcome: EOTYET_HANDLED
Active Trom: Trom-label: t2 Trom-class: Train Current-state: S4
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C2
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeComnstraint: TC2 : [17,25]

Triggering Transitionm:

Label: R4 Source: S4 Destin: 51 Trigger Event: Exit

Firing Reaction - Time Constraint:

Label: TC2 Transition: R2 Constrained Event: Exit Bounds: [0,8]

Current Simulation Time: 21
Current Simulation Time: 21
Handling Sim Event: Exit Trom: c2 Port: P2 Time: 21
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-~label: c2 Trom-class: Controller Current-state: C3
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value:
Port-ID: P2
ReactionVector:
ReactionSubVector: TimeConstraint: TCi : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: RS Source: C3 Destin: C4 Trigger Event: Exit
Enabling Reaction - Time Constraint:

Label: TC2 Transition: RS Constrained Event: Raise Bounds: [0,4]
Scheduling Sim Event: Raise Trom: c2 Port: Gi Time: 23
History:

Event Qutcome: KOTYET_HANDLED

Scheduling Sim Event: Raise Trom: g2 Port: Si1 Time: 23
History:



Event OQutcome: NOTYET_HANDLED

Current Simulation Time: 21

Current Simulation Time: 22

Current Simulation Time: 23

Handling Sim Event: Exit Trom: ti
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: ti1 Trom-class:

AssignmentVector:

Port: C1

Time: 23

Train Current—-state: S4

Attribute label: cr Attribute type: PORT_TYPE

Port-ID: C1
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 :
ReactionSubVector: TimeConstraint: TC2 :
Triggering Transition:
Label: R4 Source: S4 Destin: Si

Firing Reaction - Time Constraint:

Label: TC2 Transition: R2 Constrained Event: Exit

Current Simulation Time: 23

Handling Sim Event: Exit Trom: c1
History:
Event Outcome: NOTYET_HASDLED

Active Trom: Trom-label: ci Trom—-class:

AssignmentVector:

Attribute label: inSet Attribute type:

Trait type: PSet Trait name: Set
Trait value:
Port-ID: P3
Port-ID: P1
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 :
ReactionSubVector: TimeConstraint: TC2 :
Triggering Transition:
Label: R4 Source: C3 Destin: C3

Current Simulation Time: 23
HBandling Sim Event: Exit Trom: t3
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NULL-VECTOR
[19,27]

Port: P1

Controller

TRAIT_TYPE

NULL-VECTOR
NULL-VECTOR

Port: C1

Trigger Event: Exit

Bounds: [0,8]

Time: 23

Current—-state: C3

Trigger Event: Exit

Time: 23



History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: t3 Trom-class: Train Current-state: S4
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeComstraint: TC2 : [19,27]
Triggering Transition:
Label: R4 Source: S4 Destin: Si1 Trigger Event: Exit
Firing Reaction - Time Constraint:
Label: TC2 Transition: R2 Constrained Event: Exit Bounds: [0,8]

Current Simulation Time: 23
Handling Sim Event: Exit Trom: c1 Port: P3 Time: 23
History:
Event Outcome: NOTYET_BANDLED
Active Trom: Trom-label: ci Trom-class: Controller Current—-state: C3
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value:
Port-ID: P3
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: RS Source: C3 Destin: C4 Trigger Event: Exit

Enabling Reaction - Time Constraint:

Label: TC2 Transition: RS Constrained Event: Raise Bounds: [0,4]
Scheduling Sim Event: Raise Trom: c1 Port: G1 Time: 24
History:

Event Outcome: NOTYET_HANDLED

Scheduling Sim Event: Raise Trom: gi Port: S1 Time: 24
History:

Event Outcome: NOTYET_HANDLED

Current Simulation Time: 23
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Handling Sim Event: Raise Trom: c2 Port: Gi

History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: c2 Trom-class: Controller
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value: NULL-SET
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : [21,25]

Triggering Transition:

Time: 23

Current-state: C4

Label: R6 Source: C4 Destin: C1 Trigger Event: Raise

Firing Reaction - Time Constraint:

Label: TC2 Transition: RS Constrained Event: Raise

Current Simulation Time: 23

Bounds: [0,4]

Handling Sim Event: Raise Trom: g2 Port: S1 Time: 23
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: g2 Trom-class: Gate Current-state: G3

AssignmentVector: NULL-VECTOR

ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Triggering Transition:

Label: R3 Source: G3 Destin: G4 Trigger Event: Raise

Enabling Reaction — Time Comstraint:

Label: TC2 Transition: R3 Constrained Event: Up

Scheduling Sim Event: Up Trom: g2 Port: NULLPORT

History:
Event Outcome: NOTYET_HANDLED

Current Simulation Time: 23
Current Simulation Time: 24
Handling Sim Event: Raise Trom: c1 Port: G1

History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: ci Trom—-class: Controller
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Bounds: [4,8]
Time: 28

Time: 24

Current—-state: C4



AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set
Trait value: NULL-SET
ReactionVector:
ReactionSubVector: TimeConstraint: TC1i : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : [23,27]
Triggering Transition:
Label: R6 Source: C4 Destin: C1 Trigger Event: Raise
Firing Reaction - Time Constraint:
Label: TC2 Transition: RS Constrained Event: Raise Bounds: [0,4]

Current Simulation Time: 24

Handling Sim Event: Raise Trom: gi Port: si Time: 24
History:
Event Outcome: NOTYET_HANDLED
Active Trom: Trom-label: gi Trom-class: Gate Current-state: G3

AssignmentVector: NULL-VECTOR
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Triggering Transition:
Label: R3 Source: G3 Destin: G4 Trigger Event: Raise
Enabling Reaction - Time Constraint:
Label: TC2 Transition: R3 Constrained Event: Up Bounds: [4,8]
Scheduling Sim Event: Up Trom: g1 Port: NULLPORT Time: 31
History:
Event Outcome: NOTYET_HANDLED

Current Simulation Time: 24

Current Simulation Time: 25

Current Simulation Time: 26

Current Simulation Time: 27

Current Simulation Time: 28

Handling Sim Event: Up Trom: g2 Port: NULLPORT Time: 28

History:
Event Qutcome: NOTYET_HANDLED
Active Trom: Trom-label: g2 Trom~-class: Gate Current-state: G4

AssignmentVector: NULL-VECTOR
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ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeComstraint: TC2 : [27,31]

Triggering Transition:

Label: R4 Source: G4 Destin: G1 Trigger Event: Up

Firing Reaction - Time Constraint:

Label: TC2 Transition: R3 Constrained Event: Up Bounds: [4,8]

Current Simulation Time: 28
Current Simulation Time: 29
Current Simulation Time: 30
Current Simulation Time: 31

Handling Sim Event: Up Trom: g1 Port: NULLPORT Time: 31
History:
Event Outcome: NOTYET_HANDLED

Active Trom: Trom-label: gi Trom-class: Gate Current-state: G4
AssignmentVector: NULL-VECTOR
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : [28,32]

Triggering Transition:

Label: R4 Source: G4 Destin: G1 Trigger Event: Up

Firing Reaction - Time Constraint:

Label: TC2 Transition: R3 Constrained Event: Up Bounds: [4,8]

Current Simulation Time: 31

Current Simulation Time: 32

Activate Debugger? (y/n): y

Query menu:

Return to simulation.

Display current simulation time.
Display system status.

Display subsystem status.
Display TROM status.

Display simulation event list.
Inject simulation event.

Roll-back to given time.

@ ~N OO W N = O

Activate query handler.
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9. Activate trace analyzer.

10. Terminate simmlation.

Select menu item: 9
Query menu:
0. Return to debugger.
1. Display simmlation events causing transition.
2. Display simulation events causing no transition.
3. Display simulation events not yet handled.
4. Display simulation events for given period.
5. Display simulation events for given Trom.
6. Display simulation events for given Trom & period.
7. Display system status at given time.
8. Display status for given subsystem & time.
9. Display status for given Trom & time.

10. Terminate simmlation.
Select query number: 8

Please enter subsystem label: TCG

Please enter time-point: 15

Subsystem label:TCG
Subsystem status at time 15:
Trom-label: ti Trom-class: Train State: S2
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : [11,19]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Trom-label: t2 Trom-class: Train State: S2
AssignmentVector:
Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C2
ReactionVector:
ReactionSubVector: TimeConstraint: TC1 : [13,21]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Trom-label: t3 Trom-class: Train State: S2
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AssignmentVector:

Attribute label: cr Attribute type: PORT_TYPE
Port-ID: C1

ReactionVector:

ReactionSubVector: TimeConstraint: TCi : [15,23]
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Trom-label: ci Trom-class: Controller State: C3
AssignmentVector:

Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set

Trait value:

Port-ID: P3
Port-ID: P1
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Trom~label: c2 Trom~-class: Controller State: C3
AssignmentVector:
Attribute label: inSet Attribute type: TRAIT_TYPE
Trait type: PSet Trait name: Set

Trait value:

Port-ID: P2
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR
Trom~label: gi Trom-class: Gate State: G3
AssignmentVector: NULL-VECTOR
ReactionVector:
ReactionSubVector: TimeComstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL~VECTOR
Trom-label: g2 Trom-class: Gate State: G3
AssignmentVector: NULL-VECTOR
ReactionVector:

ReactionSubVector: TimeConstraint: TC1 : NULL-VECTOR
ReactionSubVector: TimeConstraint: TC2 : NULL-VECTOR

Query menu:
0. Return to debugger.

1. Display simulation events causing transition.
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Display simulation events causing no transition.
Display simulation events not yet handled.
Display simulation events for given period.
Display simulation events for given Trom.

Display simulation events for given Trom & period.
Display system status at given time.

Display status for given subsystem & time.

Display status for given Trom & time.

10. Terminate simulation.

Select query number: O

Query menu:

Return to simulation.

Display current simulation time.
Display system status.

Display subsystem status.
Display TROM status.

Display simulation event list.
Inject simulation event.
Roll-back to given time.
Activate query handler.

Activate trace analyzer.

. Terminate simulation.

Select menu item: 8

Query menu:

O 0 N O 0O b W N = O

[
o

Return to debugger.

Display Trom AST.

Display transitions for given Trom.

Display transitions from current state.
Display transitions from given state.

Display transitions to given state.

Display transitions by given event.

Display time constraints for given Trom.
Display time constraints for a trigger event.

Display time constraints for a constrained event.

. Terminate simulation.



Select query number: 2

Please enter Trom label: ci

Transition Label: R1 Source: Ci
Transition Label: R2 Source: C2
Transition Label: R2 Source: C3

Transition Label: R3 Source: C2
Transition Label: R4 Source: C3

Transition Label: RS Source: C3

Transition Label: R6 Source: C4

Query menu:

Display
Display
Display
Display
Display
Display
Display
Display

© 0 N O 0 W N - O

Display

[
o

Return to debugger.

Trom AST.

transitions

Destin:
Destin:
Destin:
Destin:
Destin:
Destin:

Destin:

for given Trom.

c2
c2
c3
c3
c3
Cc4
C1

transitions from current state.

transitions
transitions

transitions

from given state.

to given state.

by given event.

time constraints for given Trom.

Trigger
Trigger
Trigger
Trigger
Trigger
Trigger
Trigger

time constraints for a trigger event.

time constraints for a constrained event.

Select query number:

Query menu:

© 0 ~N O O » W N = O

. Terminate simulation.

Return to simulation.

Display system status.
Display subsystem status.
Display TROM status.
Display simulation event list.
Inject simulation event.
Roll-back to given time.
Activate query handler.
Activate trace analyzer.

Display current simulation time.
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Event:
Event:
Event:
Event:
Event:
Event:

Event:

Near
Near
Near
Lower
Exit
Exit
Raise



10. Terminate simulation.

Select menu item: 10

Simulation completed.

Exiting TROMLAB Environment.
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