Essays in liquidity

Sébastien Galy

A Thesis
in
The Department of Finance of

The John Molson School of Business

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy (Ph.D.) at

Concordia University

Montreal, Quebec, Canada

April 2003

© Sébastien Galy, 2003



i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre référence

Our file Notre référence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts fromit Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadia

0-612-78622-6



ABSTRACT

Essays in Liquidity

Sébastien Galy, Ph.D.

Concordia University, 2003

Derivatives markets can quickly become illiquid in periods of high uncertainty. Neither
the source of this illiquidity nor its implications are well understood. First, this thesis shows that
hedgers’ trades have an adverse impact on the futures price creating effectively an endogenous
transaction cost increasing in times of uncertainty and acting as the source of illiquidity in these
markets. Second, illiquidity is shown to strengthen the wealth effect, which has been proven to be
too weak empirically to explain the behavior of prices. The wealth effect is the mechanism
through which changes in investors’ wealth impact their attitude towards risk. As investors lose
wealth, they become more risk averse and ask for a higher compensation to hold a risky asset
thereby decreasing its price. Third, illiquidity is shown to potentially explain the shape of the
implied volatility function not only as a function of moneyness but also of the options’ volume or
open interest. These results are derived from models, where producers maximize their expected
utility derived from their profits. They seek to hedge the uncertain price at which they will sell
their product in the future. They can use futures or put options to re(iuce this price risk but must
pay speculators, defined as having no position in the underlying asset, a premium. This premium
disappears normally as trades are assumed to be too small to matter and the risk of trading
perfectly shared. Both of these assumptions are relaxed to derive the illiquidity transaction costs

and its implications.
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LIST OF SYMBOLS

ENDOGENOUS ILLIQUIDTY TRADING COSTS FROM RISK SHARING

is used over variables that are uncertain
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G is the number of producers of commodities
N is the number of speculators
W is the investor’s initial wealth
q is the amount produced by a given producer
P is the price of this good
is its certain cost per unit
is the number of futures contracts sold by the producer to hedge
is the futures price
T is the futures expected risk premium
S is the amount held of the non-marketable good
R, is the return on the non-marketable good
o is the degree of risk aversion
C is the investor’s consumption
U (6 ) is the investor’s utility
é is the aggregate demand for the production good
n, is the price elasticity
M is a constant controlling the importance of the random demand shock 5 p
5 d is a random demand shock
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ILLIQUIDITY AND THE WEALTH EFFECT
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is the number of producers of commodities

is the number of speculators

are the profits from production

is the investor’s utility function for j =1,...,e0

is the investor’s instantaneous utility function for j =1,...,00
is the investor’s preference for time

is the degree of non-separability of preferences

is the marginal rate of substitution

is the elasticity of the marginal rate of substitution

is the price elasticity of futures contracts

is the investor’s degree of risk aversion

is the investor’s degree of risk aversion based on his utility V(r,, ;)
is the investor’s degree of risk aversion based on his instantaneous utility
is the investor’s degree of prudence

is the amount produced at time 0

is the price of that good

is the quantity of futures contracts

is the price of the futures contract

is the cost of production at time O

Illiquidity and the Graph of the implied volatility Functions
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INTRODUCTION

The results of empirical research on futures and options markets suggest strongly that the
next step in the research on derivatives pricing is to address the actual microstructures or trading
in these markets. In this thesis, I link the microstructure literature with the risk-sharing literature,
which addresses the hedgers’ needs to share their risk. The microstructure literature shows how
the trading mechanism of a given asset impacts its price by creating endogenously an illiquidity
trading cost generally in the form of a bid-ask spread. However, this approach, which is based on
imbalances of supply and demand, cannot be extended to derivatives that are priced almost
exclusively using equilibrium models. More recently, illiquidity trading costs have been added
exogenously to equilibrium models to study their impact on the investors’ decisions. 1 derive
endogenously an illiquidity trading cost in an equilibrium model by linking the microstructure
literature with the risk sharing literature. To achieve this, [ introduce a new trading mechanism
that accounts for the fact that hedgers enter the derivatives markets to share their risks with other
hedgers and speculators. The results that are derived from this potentially explain several
empirical puzzles concerning the distribution of futures prices and the shape of the implied
volatility as a function of the options’ strike price and volume. Detailed explanations of the
results achieved in this thesis are explained in what follows.

Derivatives markets can quickly become illiquid in periods of high uncertainty. Neither
the source of this illiquidity nor its implications are well understood. First, this thesis shows that
hedgers’ trades have an adverse impact on the futures price creating effectively an endogenous
transaction cost increasing in times of uncertainty and acting as the source of illiquidity in these
markets. Second, illiquidity is shown to strengthen the wealth effect, which has been proven to be
too weak empirically to explain the behavior of prices. The wealth effect is the mechanism

through which changes in investors’ wealth impact their attitude towards risk. As investors lose



wealth, they become more risk averse and ask for a higher compensation to hold a risky asset
thereby decreasing its price. Third, illiquidity is shown to potentially explain the shape of the
implied volatility function not only as a function of moneyness but also of the options’ volume or
open interest.

This thesis shows how, theoretically, illiquidity creates an endogenous transaction cost
increasing with the variance of the spot price and the volume of trades in the futures market
generated by hedging pressures. High uncertainty represented by high volatility in the spot
market drives out liquidity in the futures market the larger the trades. This transaction cost comes
from the trader’s inability to share risk freely with the rest of the futures market. Even in its
absence, futures markets will be illiquid if its price setting mechanism allows for multiple prices.
This suggests that a single price mechanism increases liquidity in the futures markets by forcing
the sharing of risks, abstracting from traditional trading costs that would create effectively a bid-
ask spread. These conclusions are derived assuming that the investor’s degree of risk aversion
does not increase as they lose wealth. This assumption is relaxed in the second paper.

Investors’ attitudes towards risk and the resulting impact on prices in financial markets
are determined by changes in their wealth. This wealth effect, however, provides a poor
explanation of the mean, skewness and kurtosis of the observed distribution of futures prices
especially in the derivatives market for reasonable values of the degree of risk aversion. The
second paper shows that illiquidity in the futures market, modeled endogenously as a trading
cost, increases the strength of the wealth effect for the same degree of risk aversion. The resulting
distribution of futures prices presents a more pronounced left fat tail and left skewness than
would have been implied by the wealth effect alone. This model is extended in the third paper to
consider the impact of illiquidity on put options.

Illiquidity in the put option’s market can potentially jointly explain the empirical puzzles
concerning the graph of the implied volatility as a function of moneyness and as a function of the

volume or open interest. Illiquidity proves to be closely related to volatility in the underlying spot



price for options close to or at the money. It can therefore be partially controlled by hedging the
Vega risk of a change in volatility. This could explain why Bollen and Whaley (2002) found that
abnormal returns from selling put options disappear when controlling for Vega risk. Put options,
as well as futures contracts, are priced using the technique of changes in the subjective
probability measure normally reserved for risk neutral pricing. In addition, we explore how
changes in the hedging period, size of the cash good being hedged and profits change the demand

for put options and futures contracts.



REVIEW OF THE LITERATURE

Iliquidity is studied within the microstructure literature and the asset pricing literature. In
this thesis, we try to explain known empirical puzzles in the pricing of derivatives by linking the

illiquidity literature with the risk sharing literature in incomplete markets.

L. ILLIQUIDITY IN THE MICROSTRUCTURE AND ASSET PRICING LITERATURE:

The microstructure literature is based on market makers who match the supply and
demand of a given security. This creates transaction costs whose properties measure' the degree
of illiquidity in that market. The asset pricing literature takes a more macroeconomic approach by
using models of equilibrium. These equate the supply and demand of a given security and take
illiquidity as given instead of generating it from the markets’ microstructures.

In the microstructure literature, the market maker provides immediacy in the market by
holding stocks in inventory to cover imbalances in the buy and sell orders of traders. He sets bid-
ask spreads to cover his costs and risks of trading with investors. Risk is assumed away as the
market maker is typically assumed to be risk neutral. Demsetz (1968) introduced order-
processing costs, while Garman (1976) posited inventory costs as the main source of costs for the
market maker. Glosten and Milgrom (1985) show how trading costs can appear endogenously by
introducing trades from potential insiders who may have an information advantage (see O’Hara
(1994) for a comprehensive review of the microstructure field).

Insider trading and its accompanying cost, as described by Glosten and Harris (1985), is

probably the main reason why single underlying stock futures have had little success, as they

! Kyle (1984, 1985) introduced the two traditional properties of illiquidity: tightness measured by the bid-
ask spread and depth measured by the ability to make a trade without seeing the bid or ask move against
oneself. Other measures exist in practice such as volume, volatility or for example the average daily ratio of
absolute stock return to dollar volume used by Amihud (2002).



allow a leveraged bet by an insider. Simons® reported in 2001 that only two out of seven
exchanges have had any success with single underlying stock futures. In the United States, this
potential for manipulation of single stock futures markets led in part to the 1982 Shad Johnson
agreement between the CFTC and the SEC preventing the introduction of single underlying
futures. Therefore, most active futures markets are based almost exclusively on either a financial
index or a commodity and suffer comparatively less from manipulation and insider trading than
individual stocks. In addition, manipulation by squeezing the underlying spot market is difficult
because of their large size, with some notable exceptions such as the attempted manipulation of
the copper market by a trader from Sumitomo during 1995 and 1996. Bid-ask spreads are in
practice generally quite small in commodity and index futures markets under normal conditions
but are known to increase significantly when these markets come under stress.

Inventory costs are non-existent by definition in futures market as a futures contract is
created and reversed without the need to hold it in reserve for delivery. Hence, there is no need to
ask for a premium to cover such a cost. However, there may be a cost in transferring risk to a
party unwilling to bear it, as in the case considered in this paper, especially as it is a leveraged
position. In the Nikkei 225 index futures contracts traded on the SIMEX, Kim, Ko and Noh
(2000) find that asymmetric information costs are very small and that inventory costs, the holding
of undesired risky positions, account for a very large proportion of the bid-ask spread®. Hasbrouk
(2002) finds a decomposition of long-run price volatility into trade and non-trade related
components. He finds that trades in the pork belly, Euro and British pound futures contracts on
the Chicago Mercantile Exchange account for about one half of their volatility.

Theoretically, in addition to the microstructure literature, the asset pricing literature

studies illiquidity at a more macroeconomic level by taking illiquidity as exogenous and using

*> Howard Simons, 24/01/2001, What is the Future for Single Stock Futures, Street.com

3 Chueh and Yen (2002) find that order processing costs and asymmetric information costs are equally
important to explain the bid-ask spread of the Nikkei 225. Neither paper considers all three sources of costs
at the same time.



equilibrium models equating supply and demand. For example, Ericsson and Renault (2001) price
bonds with liquidity and credit risk assuming that illiquidity is an exogenous random trading cost.
This approach is philosophicélly different from the microstructure literature as illiquidity is not an
endogenous result of microstructures and the price is determined by equilibrium of supply and
demand or equivalently arbitrage, as markets are implicitly assumed to be complete. Jacoby,
Fowler and Gottesman (2000) use this approach to derive a liquidity-adjusted version of the
Capital Asset Pricing Model (CAPM). They find results suggesting that the measure of the bid-
ask spread has an impact on both expected returns and systematic risk and find some empirical
evidence of this in their 2002 paper. Acharya and Pedersen (2002) develop a four beta CAPM
with persistent illiquidity and study its impact on the investors’ decision-making. This paper
shows that illiquidity trading costs can be created endogenously by relaxing the assumption that
markets are incomplete and that risk can be shared costiessly.

Empirical and theoretical work on illiquidity in the stock market does not transfer fully to
most active futures market with some exceptions. Empirically, under the notion of commonality,
Hasbrouck and Seppi (2001) find, for example, that there is empirical evidence that a given
market cannot freely absorb trades when most stock markets are heading in the same direction. If
market risk is defined as the risk of a price change, then commonality is the interaction between
illiquidity and systematic market risk. Speculators who have lost a large part of their marketable
wealth in a market downturn may become more unwilling to become the counterparty to a new
futures trade without compensation, creating larger transaction costs.

In addition to the methodological difference between the microstructure literature and the
asset pricing literature, there is no agreement on a single definition of liquidity. For example,
O’Hara (1994) defines liquidity as the ability to trade essentially costlessly, while Ericsson and
Renault (2001) define illiquidity as the discount incurred for the immediacy of a trade. This paper
adopts the definition of Friend and Blume (1975), which includes that of O’Hara (1994).

Hliquidity is the inability of traders to buy or sell any quantity at no cost. Order processing



transaction costs, as in Constantinides (1986) and Amihud and Mendelson (1986), are not
considered nor are delays in transactions brought about by market closures. The two traditional
pillars of microstructures, inventory costs and asymmetries of information, are not considered.
Yet illiquidity will be generated as an endogenous trading cost from the inability of traders to
share a common risk perfectly. Each trade requires a transfer of risk to another trader for the
payment of a transaction cost. The bid-ask spread is therefore generated endogenously as is the

case when insider information is introduced.

2. THE RISK SHARING LITERATURE

In this thesis, we study illiquidity in equilibrium, linking the illiquidity literature with the
risk sharing literature in incomplete markets. Risk sharing is concerned with the possibility for
economic agents to exchange risks through financial markets, using derivatives as risk transfer
vehicles. In the asset pricing literature, Dumas (1989) shows that when investors have different
degrees of risk aversion and suffer a common risk, they must share the aggregate risk. Wang
(1994) considers investors that are heterogeneous both in their investment opportunities and
access to information. In the absence of information asymmetries, according to Wang (1994),
selling by an investor increases the volume and decreases the price, increasing its expected return,
as the asset’s expected payoff has not changed. This leads other investors to buy the asset so that
its price may remain independent of its volume. Risk sharing becomes of interest only if investors
cannot correctly assess the asset’s expected payoff. This happens when investors have
heterogeneous beliefs as in Detemple and Murphy (1994) or asymmetries of information as in
Wang (1994). Risk sharing will change depending on the source of the friction, such as non-
insurable labor income shocks in Constantinides and Duffie (1996), and frictions or constraints
imposed on the investors, such as the lower bound imposed by Grossman and Zhou (1996) on the
hedger’s wealth which forces them to hedge so as to respect it. This sharing of risks creates a

demand for derivatives to shift risk between those who are willing to take on more of risk for a



premium and those who must reduce their risk. Risk sharing comes under the broad denomination
of ‘portfolio insurance demand’ in the derivatives literature.

In the derivatives literature, risk sharing among heterogeneous investors creates therefore
a role for derivatives as risk transfer vehicles. Grossman and Zhou (1996) studied such an
exchange of risk in complete markets and continuous time where one type of hedger is
constrained not too lose a given fraction of his initial wealth, creating an asymmetric need to
share risk and hence a demand for put options. Franke, Stapleton and Subrahmanyam (1998)
show that the degree to which investors face non-hedgeable background risks, such as labor
income shocks or shocks to non traded assets, determines the exchgnge of risks. Finally, Bates
(2001) considers the sharing of crash risk or negative stock market jumps and shows that it
explains partially why stock options tend to overpredict volatility and the risk of a price jump.

When markets are incomplete, i.e. traders do not have enough uncorrelated assets to
hedge all risk sources (Harrison and Pliska (1983) and Duffie and Huang (1985)), the sharing of
risks is hampered. In such a context, the supply and demand of financial assets is imperfectly
elastic as pointed out for example by Leisen (2002), which implies therefore a transfer of risk
when trading. Leisen pointed out that derivatives would not be traded if the price of their
underlying asset at the next trading date is assumed locally normal and markets are incomplete.
Magill and Quinzii (1995) following Keynes (1930) define market incompleteness as a failure of
the market to coordinate activities as all futures contract trades cannot be made at a
predetermined price due to frictions. This creates a demand for cash to hedge against price
uncertainty in addition to futures. The portfolio insurance demand literature extends this result to
show that it creates a demand for options.

3. EMPIRICAL PUZZLES
Risk sharing and market microstructures are only beginning to appear in the field of

derivatives. Researchers are increasingly looking if the nature or structure of exchanges can



explain known limitations in current pricing models, specifically the graph of the implied
volatility as a function of the strike price and volume. The graph of the implied volatility
decreases monotonically as a function of the strike price or moneyness. Judd and Leisen (2002)
report that fixed maturity plots of a call option’s open interest across strike prices peaks for the at-
the-money contract. Bollen and Whaley (2002) find that the time variation (term structure) of the
implied volatility of an option series is directly is a function of net buying pressure from public
order flow using S&P500 index put options and twenty individual stocks. Net buying pressure is
defined as the number of contracts traded at or above the prevailing bid/ask midpoint less the
number of contracts traded below the prevailing midpoint. Finally, Bates (2001) studies a market
where negative jumps (crashes) can occur. Less crash-averse investors insure the more risk-
averse through the options market. Bates finds that heterogeneity amplifies the impact of jumps
(crashes). Option prices then predict as in the data that option prices overpredict volatility and
jump risk due to the wealth effect. Finally, This paper shows that net buying pressure creates
illiquidity in the derivatives market in the form of an endogenous illiquidity trading cost that
amplifies the wealth effect. This can potentially explain empirical puzzles related to the graph of
the implied volatility functions as a function of moneyness, volume or open interest and time

structure.



ENDOGENOUS ILLIQUIDITY TRADING COSTS FROM
RISK SHARING

ABSTRACT

In general, index and commodity futures markets are considered to be highly
liquid. Yet these markets can quickly become illiquid in periods of high uncertainty.
So far, there exists no theoretical explanation as to why liquid futures markets can
become illiquid in these periods of high uncertainty. This paper shows how,
theoretically, illiquidity creates an endogenous transaction cost increasing with the
variance of the spot price and the volume of trades in the futures market
generated by hedging pressures. High uncertainty represented by high volatility in
| the spot market drives out liquidity in the futures market the larger the trades. This
transaction cost comes from the trader's inability to share risk freely with the rest
of the futures market. Even in its absence, futures markets wili be illiquid if its price
setting mechanism allows for multiple prices. This suggests that a single price
mechanism increases liquidity in the futures markets by forcing the sharing of
risks, abstracting from traditional trading costs that would create effectively a bid-

ask spread.
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1. INTRODUCTION

In general, index and commodity futures markets are considered to be highly liquid. Yet
these markets can quickly become illiquid in periods of high uncertainty characterized by high
volatility in the underlying spot market. Illiquidity is a risk common to financial markets as
typified by the 1987 stock market crash. Financial institutions used portfolio insurance programs
that automatically sold stocks as their prices were dropping thereby reducing these institutions’
exposure to further drops in the stock price. The combined selling pressure is considered one of
the reasons for the large amplitude of the crash and forced financial institutions to sell positions
far below market values. As this example shows, illiquidity or the inability of traders to buy or
sell any quantity at no cost, rises drastically in periods of high uncertainty. While this mechanism
is widely recognized in practice, it remains poorly understood in theory.

This paper shows how long traders are forced to pay above the market-clearing price and
short traders are forced to accept below the market-clearing price in the futures market, when
their trades are not negligible and the market-clearing price corresponds to the case of negligible
trades. Trading creates therefore an endogenous cost that increases the more uncertain the spot
market is and the larger the trade. Intuitively, each trade is a transfer of risk from an investor
unwilling to bear it to another one willing to take it at a cost. Equivalently, a short trade is a shift
of the supply curve to the right and a long trade is a shift of the demand curve to the right
creating, by their impact on the price, effectively a trading cost.

Typically, these trading costs disappear when deriving the equilibrium price that equates
the aggregate supply and demand of futures. The implicit assumptions, that will be relaxed, are
that the futures price is independent of the trade’s size and that the risks that motivate the trades
are perfectly shared. Risk is perfectly shared in the sense that the trading costs compensating the

risk transfers, disappear in the aggregation of each investor’s trades to find the market-clearing

11



price. This could mean, for example, that for each hedger wanting to reduce his risk there is a
speculator looking to increase his, so that in the aggregate there is no trading cost arising from
risk sharing. This result of illiquidity arising from risk sharing is confirmed by showing that even
small trades can be illiquid if the futures market does not force risk sharing by imposing a single
trading price.

These trading costs are derived from the traders inability to share risk freely irrespective
of the trade’s size when markets are incomplete. Harrison and Pliska (1983) and Duffie and
Huang (1985) defined markets as incomplete if traders do not have enough uncorrelated assets to
hedge all risk sources. This forces investors to share risk when trading, as the risk free replication
of the traded asset is no longer possible. Equivalently, the supply and demand for the traded asset
is no longer perfectly elastic as pointed out by Scholes (1972) and therefore each trade or shift in
the supply and demand curves implies the previously discussed payment of a risk premium or
trading cost that would not be present if they were perfectly elastic. The concept of illiquidity is
therefore equivalent to the inelasticity of supply and demand. The notion of market
incompleteness is compounded by the presence of a non-marketable good that cannot be
replicated and a finite supply of speculators willing to absorb any hedging pressure in the futures
market. Thus, this trading cost is a compensation for risk shifting when markets are incomplete.

To show how this endogenous trading cost can arise, I assume that the size of the trade
depends on the market price in the investor’s optimization problem. This has some similarities
with assuming that the price of a good depends on the quantity produced in a manufacturer’s
optimization problem, as would be the case for oligopolies. As is well known, the profits
generated by their pricing power attract other manufacturers until the profits disappear in the limit
and the market becomes one of perfect competition. This supposes of course that manufacturers
do not interact strategically.

The fact that one party must initiate an action before the other one reacts is introduced by

assuming that hedgers are the ones initiating the trades and that speculators enter the futures
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market attracted by the premiums or transaction costs offered to shift risk to them. Hence, the
assumption of perfect risk sharing is relaxed, as it is now costly. In the futures market, the number
of traders is limited and each trader acts as a manufacturer so that imperfect competition
translates into an inelastic demand as well as inelastic supply. Instead of producing goods, they
produce ‘bads’ as they offer risks that other traders will not accept without compensation. Traders
therefore have the opposite of pricing power, a production or trading cost.

Hliquidity appears as an endogenous trading cost compensating for the sharing of risks
measured here by the spot market volatility. It is different from the trading cost generated by the
microstructure literature on insider trading. In this literature, the market maker covers himself
against the risk of insider trading by offering a bid-ask spread. An investor must therefore buy
and sell his asset from the market maker at a different price creating effectively a trading cost.

A typical critique of illiquidity modeled as a trading cost is that it is in essence nothing
more than a trading cost model. Adding an extra source of risk or trading cost linearly to the
derivatives’ expected return is not considered a major improvement. However, in this model, the
trading cost is derived endogenously from a definition of liquidity. The illiquidity trading cost
does appear as an extra source of risk or trading cost but adds richness to the futures expected
return by introducing the expected spot volatility and th¢ futures’ volume. Finally, a critique is
that illiquidity as defined in this model is market risk®. Indeed illiquidity is an overlooked facet of
market risk. Shifts in the price created by changes in the supply and demand curves are
introduced directly in the price setting mechanism, in addition to using the fact that hedgers must
initiate trades first before speculators can enter to take advantage of the premium or trading cost
offered.

Confirming that illiquidity can be generated by the inability to share risk freely, we find

that futures markets can be illiquid without assuming that the futures price depends on the

* Market risk is defined as the risk of losses due to movements in market prices. It represents therefore the
risk associated with movements in the supply and demand of the asset considered.
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quantity traded. It suffices that the market clearing mechanism allows for multiple prices. Each
futures trade has then potentially a different price dependent on its size and the volatility in the
spot market. This suggest that a market clearing mechanism, generating a single futures price,
makes the market more liquid by forcing the investors to share risks. The conclusion abstracts, of
course, from traditional trading costs that would othe?wise generate a bid-ask spread and

therefore multiple prices.

2. PREVIOUS WORK ON LIQUIDITY

Illiquidity is studied within the microstructure literature and the asset pricing literature.
The microstructure literature is based on market makers who match the supply and demand of a
given security. This creates transaction costs whose properties measure’ the degree of illiquidity
in that market. The asset pricing literature takes a more macroeconomic approach by using
models of equilibrium. These equate the supply and demand of a given security and take
illiquidity as given instead of generating it from the markets’ microstructures.

In the microstructure literature, the market maker provides immediacy in the market by
holding stocks in inventory to cover imbalances in the buy and sell orders of traders. He sets bid-
ask spreads to cover his costs and risks of trading with investors. Risk is assumed away as the
market maker is typically supposed to be risk neutral. Demsetz (1968) introduced order-
processing costs, while Garman (1976) posited inventory costs as the main sourcelof costs for the

market maker. Glosten and Milgrom (1985) show how trading costs can appear endogenously by

> Kyle (1984, 1985) introduced the two traditional properties of illiquidity: tightness measured by the bid-
ask spread and depth measured by the ability to make a trade without seeing the bid or ask move against
oneself. Other measures exist in practice such as volume, volatility or for example the average daily ratio of
absolute stock return to dollar volume used by Amihud (2002).
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introducing trades from potential insiders who may have an information advantage (see O’Hara
(1994) for a comprehensive review of the microstructure field).

Insider trading and its accompanying cost, as described by Glosten and Harris (1985), is
probably the main reason why single underlying stock futures have had little success, as they
allow a leveraged bet by an insider. Simons® reported in 2001 that only two out of seven
exchanges have had any success with single underlying stock futures. In the United States, this
potential for manipulation of single stock futures markets led in part to the 1982 Shad Johnson
agreement between the CFTC and the SEC preventing the introduction of single underlying
futures. Therefore, most active futures markets are based almost exclusively on either a financial
index or a commodity and suffer comparatively less from manipulation and insider trading than
individual stocks. In addition, manipulation by squeezing the underlying spot market is difficult
because of their large size, with some notable exceptions such as the attempted manipulation of
the copper market by a trader from Sumitomo during 1995 and 1996. Bid-ask spreads are in
practice generally quite small in commodity and index futures markets under normal conditions
but are known to increase significantly when these markets come under stress.

Inventory costs are non-existent by definition in futures market as a futures contract is
created and reversed without the need to hold it in reserve for delivery. Hence, there is no need to
ask for a premium to cover such a cost. However, there may be a cost in transferring risk to a
party unwilling to bear it, as in the case considered in this paper, especially as it is a leveraged
position. In the Nikkei 225 index futures contracts traded on the SIMEX, Kim, Ko and Noh
(2000) find that asymmetric information costs are very small and that inventory costs, the holding
of undesired risky positions, account for a very large proportion of the bid-ask spread’. Hasbrouk

(2002) finds a decomposition of long-run price volatility into trade and non-trade related

S Howard Simons, 24/01/2001, What is the Future for Single Stock Futures, Street.com

7 Chueh and Yen (2002) find that order processing costs and asymmetric information costs are equally
important to explain the bid-ask spread of the Nikkei 225. Neither paper considers all three sources of costs
at the same time.
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components. He finds that trades in the pork belly, Euro and British pound futures contracts on
the Chicago Mercantile Exchange account for about one half of their volatility.

Theoretically, in addition to the microstructure literature, the asset pricing literature
studies illiquidity at a more macroeconomic level by taking illiquidity as exogenous and using
equilibrium models equating supply and demand. For example, Ericsson and Renault (2001) price
bonds with liquidity and credit risk assuming that illiquidity is an exogenous random trading cost.
This approach is philosophically different from the microstructure literature as illiquidity is not an
endogenous result of microstructures and the price is determined by equilibrium of supply and
demand or equivalently arbitrage, as markets are implicitly assumed to be complete. Jacoby,
Fowler and Gottesman (2000) use this approach to derive a liquidity-adjusted version of the
Capital Asset Pricing Model (CAPM). They find results suggesting that the measure of the bid-
ask spread has an impact on both expected returns and systematic risk and find some empirical
evidence of this in their 2002 paper. Acharya and Pedersen (2002) develop a four beta CAPM
with persistent illiquidity and study its impact on the investors’ decision-making. This paper
shows that illiquidity trading costs can be created endogenously by relaxing the assumption that
markets are incomplete and that risk can be shared costlessly.

Empirical and theoretical work on illiquidity in the stock market does not transfer fully to
most active futures market with some exceptions. Empirically, under the notion of commonality,
Hasbrouck and Seppi (2001) find, for example, that there is empirical evidence that a given
market cannot freely absorb trades when most stock markets are heading in the same direction. If
market risk is defined as the risk of a price change, then commonality is the interaction between
illiquidity and systematic market risk. Speculators who have lost a large part of their marketable
wealth in a market downturn may become more unwilling to become the counterparty to a new
futures trade without compensation, creating larger transaction costs.

In addition to the methodological difference between the microstructure literature and the

asset pricing literature, there is no agreement on a single definition of liquidity. For example,
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O’Hara (1994) defines liquidity as the ability to trade essentially costlessly, while Ericsson and
Renault (2001) define illiquidity as the discount incurred for the immediacy of a trade. This paper
adopts the definition of Friend and Blume (1975), which includes that of O’Hara (1994).
Illiquidity is the inability of traders to buy or sell any quantity at no cost. Order processing
transaction costs, as in Constantinides (1986) and Amihud and Mendelson (1986), are not
considered nor are delays in transactions brought about by market closures. The two traditional
pillars of microstructures, inventory costs and asymmetries of information, are not considered.
Yet illiquidity will be generated as an endogenous trading cost from the inability of traders to
share a common risk perfectly. Each trade requires a transfer of risk to another trader for the
payment of a transaction cost. The bid-ask spread is therefore generated endogenously as is the
case when insider information is introduced.

The paper is organized as follows. In section 3, the theoretical model is presented and the
trading costs are derived by relaxing the assumption that the quantity traded is independent of its
price. In section 4, the equilibrium demand and supplies are aggregated across investors.
Depending on the aggregation assumptions, liquidity is a property of equilibrium or

disequilibrium.

3. THE DEMAND FOR FUTURES CONTRACTS AND ILLIQUIDITY

TRADING COST

I assume a one period model where at the beginning of the period, uncertain end of
period variables are noted by ~. There are three groups of utility maximizing agents, G producers
of commodities and N speculators, both with utility functions that exhibit Constant Absolute Risk

Aversion (CARA), as well as M risk averse consumers whose preferences remain unspecified.
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The G+N, i=1,.,G,...,G+ N, producers and speculators may have different degrees of risk

aversion &, . Uncertainty exists at the beginning of the period and disappears at the end.

The agent consumes C of the single type of non-durable good produced in the economy.
He starts with an initial wealth W and generates revenue from producing g of the non-durable
good sold at the price P for the certain cost per unit 4. As both price and quantity are uncertain
the agent sells & futures contracts to hedge against the uncertainty in his expected revenues of
production. The futures contracts delivery period coincides with the one period needed to produce
and then sell the good. The producer agrees today to sell in one period a production good for the

fixed price f . He is therefore selling in advance his production to hedge himself. It is assumed
that agents hold S of the non-marketable commodity R, making markets incomplete. Markets

are also incomplete if there are more sources of risk than assets to hedge them with. The agent is

said to be a hedger if he is actually producing the good and a speculator otherwise (g =0).

Speculators have a fixed cost 7 of entering into the futures market so that it can be reasonably
assumed that speculators do not all enter into the futures market as it is too expensive for some to
enter. The agent is assumed to leave no wealth at the end of the period (no bequest). He therefore
consumes all his remaining initial wealth with his revenue from production and his holdings of

the non-marketable good.

¢

_{ W(B-h)+(f~P)+SR,  ForaHedger 0

W—t+(f-p)E+SR, For a Speculator
A classic requirement is that the hedger be at least as risk averse as the speculators. The hedger
wants to reduce his exposure to price changes in his production good by using futures because he
is risk averse and has a large price risk to hedge. However, the speculator (a hedge fund for

example) has no such risk and would enter into such a contract only if he gained from it.
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Each investor maximizes the expected utility of his consumption C . They prefer higher
returns and dislike increasing the variance of their consumption. The relative importance of return

versus variance is controlled by the parameter &, which controls the degree of risk aversion.
~ o ~
U=E(C)——2—Var(C) )

The agents make decisions at the beginning of the period on their consumption, quantity of
. futures and of non-marketable goods. These decisions are rational as defined by Muth (1961) and
Lucas (1973, 1976). Agents use all available information to make their decisions and perceive the

true probability of events.
3.1 THE CONSUMPTION-PRODUCTION GOOD MARKET

Deriving the equilibrium in the spot or consumption good market gives results of little
interest, so that in practice the dynamics of the spot market is assumed as in Tien (2002). This
approach is more appropriate for liquid financial spot goods. We follow Hirshleifer (1988, 1989)

in assuming a demand curve for the physical commodity introducing the demand shock as a
single source of risk. The aggregate demand é for the production good is imposed exogenously

and is an indirect representation of the consumer’s preferences. The consumers in the aggregate
are assumed to pay less when more of the consumption good is produced. Mathematically, the log
of the consumers’ demands when aggregated is assumed downward sloping as a function of the

price of the production-consumption good p .

In(Q) = In(M$,) +1, In(p) 3)

19



The negative slope 17, <0 is the price elasticity and the intercept In(M& 1) is the overall level

of aggregate demand. M 1is a constant controlling the importance of the random demand shock

~

0, . The aggregate demand is therefore uncertain at the beginning of the period.

This market is assumed to be competitive, so that when maximizing the utility (2) of the
producer over his production, given his wealth constraint given in (1), the usual condition of
pricing the good at the marginal cost is found. In this case, it is the expected spot good price that
equals a fixed marginal cost /.

Ep=h )
In equilibrium the aggregate supply from the G producers each selling their output g equals the

aggregate demand for that good (3), so that

In(G7) = In(M$,) +1, In(p)

GG =MS(p)" )
This equation can be rearranged to have the price of the consumption good as a function of its

supply in equilibrium.

1 1
ﬁ:(%)” =k(%]”, k>0 ©)

The price of the consumption good is a decreasing function of the production and an increasing
function of the demand shock. There are therefore two sources of risk in the model, the demand

shock and the return on the non-tradable asset.

3.2 THE FUTURES MARKET

The agent maximizes his utility (2) under a budget constraint (1) by deciding on his

holdings of the non-marketable good S and his holding of futures contracts & . The equations for
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the optimal allocation of the non-marketable good (7) and the futures contract (8) for each agent
are given by:

E(R,)=a(SVar(R,)) + Cov((p - h)§ + &7, R, ) (7)

7 =, (EVar(®) + Cov(#, (5 - ) + §,Cov(#, R, ) 8)
Where, 7 = Eft = E( p— f ) is the expected premium asked to hold the futures contract rather

than the spot or consumption-production good. As the futures contract is of only one period and
the spot good is assumed not traded by others until it is sold, the premium does not take into

account changes in the prices of the spot and futures markets in the meantime.

3.3 HEDGING DEMAND

The commodity producers sell futures to hedge their production by locking in, at the
beginning of the period, the price at which they will sell the good at the end of that period. At the
end of the period, the price of one unit of good hedged “naively” with one futures contract would

be f—p+p=f,if the end of the period coincides with the delivery date of the futures

contract. In a mean-variance setting, the commodity producer still hedges by going short but with
a different hedge ratio of futures contracts to commodity goods as his purpose is not only to
minimize his risk as measured by variance, but also maximize his returns as measured by the

expectation. Rewriting equation (8), denoting each agent by the index i, we can isolate the

number of futures contracts &, .
T ~ ~ =
——Cov((p—h)q + SR, ,7)

a,

=t 9
¢ Var(7) @

As the speculator is defined as having no position in the underlying commodity ¢ =0 and risk

aversion «; >0 that may be smaller than that of hedgers, it follows from equation (9) that he

21



will be long in futures contracts if he expects a premium for doing so and he has no holdings of
the non traded good. Now that the individual demand and supply for futures contracts have been
derived, these must be aggfegated across investors to find the volume and price in equilibrium.
Note that the supply or demand of futures is inelastic in this incomplete market economy. First,
however I will show that relaxing the assumption that a trade in the futures market has no impact

on the futures price creates an illiquidity trading cost.

3.4 ILLIQUIDITY AS AN ENDOGENOUS TRADING COST

Until now, we have assumed implicitly in the optimization that the size of the futures

trade was of a negligible size so that the price of the futures contract S was unaffected by the
size of the trade. Now that we relax this assumption, the futures price f(£) will now behave

differently in the investor’s optimization problem. The optimization technique makes an
incremental change in the investor’s futures contracts position such that there is no positive
incremental change to his utility. This differentiation technique is the mathematical representation
of the following trading strategy: the investor enters the futures market and trades futures
contracts such that he maximizes his utility.

As the futures price depends on the number of futures contracts the investor will trade,

the value of a portfolio of futures contracts £(f(£)—~ p) when traded or equivalently optimized,
given in equation (10), will be equal to the futures premium f(£)— P . the difference between

the futures price of a spot sale and its value at maturity when the position is closed out plus an
additional term. Using the derivation rules, the optimization or equivalently trading of the futures

portfolio is:

a[gl(fgi)_ﬁ)]zf(gl)_ﬁ_i_(g(i(gg;?_) : :7%‘4-(%(5;2)6[ (10)
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The term on the right in equation (10) was not present before as we had assumed that the
futures price was independent of the futures position. Note that the term on the right

(OF (£,)/9& ¥, is further simplified as the spot price at the delivery date is expected and assumed

not to provoke a natural price squeeze®. In other words, the spot market is assumed liquid. It is
straightforward to verify that the futures premium under this relaxed assumption will equal the

previous in equation (8) plus this additional term in expectation:
T+ (af(éi )/9E, )fi =q, (cﬁiVar(ﬁ) + Cov(Z,(p —h)q) + S,Cov(, EM )) (11)
The additional term that appears on the right TC, = (3f (§,)/9&,)&, is a trading cost. It

equals the change in the futures price brought about by trading multiplied by the quantity of
futures traded. Graphically, selling (buying) is a shift to the right of the supply (demand) curve
creating a downward (upward) pressure on the price. A seller (buyer) will therefore get (pay) a
premium below (above) the market price at which supply equals demand when trades are
assumed as before in equation (8) to be too small to matter. This trading cost is endogenous as it
depends on the investor’s preferences. Note that if markets were complete, there would be no
such illiquidity trading cost, as the slope would be equal to zero.

In the derivatives and asset pricing literature, this trading cost, when considered, is
imposed exogenously (Jacoby, Fowler and Gottesman (2000) or Acharya and Pedersen (2002)).
In this paper, the trading cost is created endogenously in the futures market. The expected trading
cost of delivering the spot good is ignored so as not to introduce the problems of illiquidity in the
spot market. However, this trading cost better known as a natural squeeze could be derived from
equation (6).

This approach is different from the microstructure literature as in Glosten and Milgrom
(1985). Trading does not involve explicitly a market maker who provides a service of immediacy

at a cost covered by the bid-ask spread at which traders can buy and sell. It is a model of

8 Proof 5 considers the delivery risk of an illiquid spot market at delivery.
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equilibrium rather than one of matching buy and sell orders. The cost of trading considered here
does not come from insider trading, inventory costs or order processing costs, but from the
inability to share risk costlessly. In addition, microstructure models assume that the market maker
is risk neutral so that he would absorb the transfers of risk without cost.

As the slope in equation (10) of the trading cost is not known, it is derived from equation
(8). In that equation, the size of the trade was assumed implicitly to be too small to matter. We

use the fact that a large trade is an aggregation of smaller insignificant ones. The producer’s
trading cost (TC,) equals therefore his risk aversion multiplied by the volatility of the spot and

the size of the trade.
TC; = (af(gi)/aéi )6, = (Z,.Var(ﬁ)(gi (12)

See proof 1 in the appendix for more details

Intuitively, volatility represents a measure of risk, which is shared when trading. Risk
aversion measures the sensitivity to that risk while the trade size gives the trader’s overall
exposure to that risk. As the spot market becomes more volatile, there is more risk being passed
around than investors willing to take it cheaply depending on the trade size and risk aversion of
the investor.

The illiquidity trading cost is associated with the variance of the spot price. Illiquidity is
therefore linked to variance, something that had to be assumed previously as in Bangia, Diebold,
Schuerman and Stroughair (1998). Illiquidity is also associated with volume when all trades are
aggregated, a result common to the microstructure literature (i.e. Roll (1984)). Finally, Ericsson
and Renault’s (2001) assumption that illiquidity-trading costs are dependent on the number of

traders in the market is verified here.
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4. AGGREGATION AND MARKET CLEARING IN THE FUTURES

MARKET

Market clearing mechanisms have been extensively studied especially in the stock market
(see O’Hara (1994)). Specialist or market makers provide immediacy but at the cost of a bid-ask
spread that will depend heavily on insider trades and inventory costs. In the case of futures
markets, most major markets are based on indices or physical commodities leaving little leeway
for insider trading and inventory costs are non-existent by definition. There are however fees to
cover the access to electronic platforms, such as GLOBEX in the Chicago Mercantile Exchange,
and minimal delays in executing trades physically on the floor.

The aggregation mechanism that is proposed here is based on a variant of the Walrasian
auction that clears supply and demand in much of economics. The Walrasian auctioneer
aggregates the demand and supply of futures to find a market-clearing price and adjusts the price
until supply equals demand. This mechanism is the one used implicitly when equating any supply
or demand curve to find the equilibrium or market-clearing price in that market and is therefore
the foundation of equilibrium economics. The fact this mechanism does not exist explicitly in
practice has not limited its dominance outside the microstructure literature.

In this model, the auctioneer starts with the clearing market price of a Walrasian auction
that assumes implicitly that all trades are negligible. He has now available a schedule of the
supply and demand linking the price each would like to pay for a given quantity of futures. A
trade, assumed to be non-negligible, shifts the supply (demand) curve. Equivalently, a trade
moves the market in price and quantity. The auctioneer then must find those willing to take that
trade on the demand (supply) curve at a discount (premium). Hence, risk shifting is introduced in
the market clearing mechanism, where volatility is the risk being shifted from one party to a

futures contract to another. This variant of the Walrasian auction recognizes therefore that one
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party must initiate a trade and offer a compensation for others to accept the trade. Shifts in the
supply or demand curve are therefore introduced directly in the price setting mechanism. As the
Walrasian auction is just the equilibrium of supply and demand, this variant of the Walrasian
auction is the equilibrium of supply and demand after the seller or bu};er has initiated a trade,
shifting the supply curve when he sells and the demand curve when he buys.

We aggregate the investors’ demands and supplies of futures contracts. In equilibrium,
each contract has two parties, so that the aggregate net supply or demand must be equal to zero
and the market is said to clear. From this, we derive the price of futures in this classical Walrasian
auction equilibrium. The first two sections study a market where trades are assumed too small to
have an impact on the price before relaxing this assumption in the last section. We will see that
the type of aggregation will have a very important impact on risk sharing and liquidity. First, the
usual aggregation with a single futures clearing price is derived and illiquidity disappears in
equilibrium. Then, the assumption of a single price is relaxed to see that risk sharing is forced in
the usual aggregation and that otherwise illiquidity exists when markets are in equilibrium. This
shows that the market mechanism chosen to match supply and demand in the futures market has a

direct impact on the liquidity in that market.
4.1 AGGREGATION AND CLASSICAL MARKET CLEARING EQUILIBRIUM

The individual hedging demand and supply were defined in equation (9). These must be

aggregated to find the equilibrium price of the futures contract. In equilibrium, the demand and

A

supply of futures contracts must balance out. Summing them up for the N positions of

speculators (hold no position in the underlying asset) and G hedgers,

N+G

§§=0 (13)
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Noting that the first of the i investors are hedgers and the others speculators and assuming that
there is a unique futures price such that the futures market is cleared, then the premium can be

separated into two components.

G NG
7t =Cov( B.( B—h)G )Y, +Cov( B, R, ) D08, (14)
This equation is very similar to the Capital Asset Pricing Model of Hirshleifer (1989) and Mayers

(1973, 1976). The futures premium is made up of a non-systematic risk that depends on the
market return (ﬁm) and hedged production ((p—h)g ). Clearly the futures premium is

independent of the futures trades so that illiquidity is not present in this model. Now that we have
shown the classical Walrasian auction equilibrium as a benchmark, let us consider what happens

when a single futures price is not imposed to clear the market.

4.2 AGGREGATION IN ALTERNATIVE MARKET CLEARING EQUILIBRIUM

The equilibrium was derived by implicitly assuming that the futures price was unique.
The equilibrium or clearing price is therefore forced in the aggregation process. This fact is
illustrated in the following example.

Assume that the equilibrium in the futures market is determined by the exchange of
futures premiums’ between investors. Summing the demands in equation (9) would not be helpful
as the futures’ premium and risk aversion cannot be separated. Hence, I sum each investor’s
premium in equation (8) and impose there the market clearing condition of equation (13).

Consider a market with two hedgers (i =1,2) one short and one long in the commodity,

but otherwise identical except for their risk aversion. Then imposing the market clearing

? the difference between the price at which they will buy and sell the spot good
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condition of equation (13) on the premium equation (8), the aggregate premium is different from

zero and depends on the volume of trade:

fi= = (@~ EVar(P) + (@, - a,)(Cov(B, (5~ ) + $,Cov(B, Riy) (15)
See proof 2 in the appendix for more details

As can be seen from equation (15), there is no such thing as a single futures price in equilibrium
f, = f, #0 if the producers differ only on their risk aversion ¢, # 0, when sharing a common
commodity price risk. Rather there are several prices as if a market maker was present. Each
futures price is determined by the size of the trade or potential trade.

Now assume that both hedgers have the same risk aversion, then the total premium equals
zero. Hence, in that case all risk is transferred via the premium and there is a unique price for the
futures contract. More generally, assuming different degrees of risk aversion and this type of
equilibrium shows how agents transfer risk to others. This approach provides an interesting way
to introduce illiquidity in equilibrium as arising from the limitation in the ability to transfer risk
by trading. Unsurprisingly, the risk transfer takes a very similar form to the transaction cost
derived in equation (12). Let us generalize our argument.

By aggregating among consumers without assuming that the futures’ price is unique and
independent of the aggregation, we obtain a liquidity premium since it depends on the quantity of
futures traded in equilibrium. Let us aggregate the premiums of the long and short traders of
equation (8) in this alternative equilibrium, impose the market clearing condition (13) and assume
that the variance and covariances of the premium are the same for all agents, then the aggregate
premium transfer is:

N, N, N, N, Ny N,
i) —;(ﬁ ) =Var<ﬁ>[§a.-éi - 2a(2§ + Y& H+

k=Lk#j

(16)
N, N, - G

[Zaij - ZaiSi ]Cov(ﬁ, Ry)— Zai (Cov(p,(P - 1))
=t i=1 i=1

See proof 3 in the appendix for more details
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Where the index i represents the N, short traders, j and k the N, long traders. Iiliquidity

disappears in equilibrium if investors have the same degree of risk aversion (see proof 3).
Irrespective of this, there will be no single futures price clearing the market as there is a risk
exposure to the spot market and non-marketable good that remains unshared. This equilibrium
could be characterized as one of imperfect in the market for risk sharing.

In practice, this means that choosing a single price market forces the sharing of risk. A
futures market would naturally evolve to one of market makers otherwise who can offer different
quantities at different prices creating liquidity costs without the added benefit of immediacy
offered in the stock market. It also means that the larger the amount of futures contracts one
wants to sell, the more costly it can be. Now that we have shown that illiquidity can exist in
equilibrium even for atomistic'® trades, let us consider a variant of the classical Walrasian auction

where trades are no longer assumed atomistic.

4.3 AGGREGATION AND MARKET CLEARING EQUILIRBIUM WITH
TRADING COSTS

Let us consider the impact of illiquidity transactions costs in the aggregate. The market
clearing mechanism is a variant of the Walrasian auction. First the auctioneer observes the prices
at which each would be willing to buy or sell and finds a market—c-learing price assuming that
trades are atomistic. When a trade of non-negligible size is made, the supply (or demand) curve
shifts. The auctioneer finds the price that will clear the market given this shift. Using this
mechanism, we derived the illiquidity trading cost in equation (12) for a single investor.

When trades are large, the futures premium is no longer defined by equation (12). The

investor’s optimization problem introduces a trading cost (see equation (10)) for the producers.

7, + LaVar(®,E, =, (EVar(®,) + Cov(®,, (p - b)) + S,Cov(,, R,))) (17)

19 A trade is said to be atomistic if it is too small to have any impact on the market.
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I,=1 if i is a producer (hedger) and 0 otherwise (speculator)

If the trade was of negligible size, the trading cost would disappear and the equation would revert
to equation (12) where trades were small. From equation (17), the demand for futures is therefore:

(L-1,)Var(% )¢, =£—L—Cov((ﬁ—h)21'+5iﬁM,ﬁi) (18)

i

To find the equilibrium, we aggregate the demand across investors and impose the market
clearing condition of a single price. As only the producers are initiating trades by selling futures,
they shift risk, measured as a function of the spot variance, to the other investors. For these

investors to accept these sales, they must pay a discount in the form of a trading cost.

G G N+G -
n= %[Var( P (=E)+ Y, Cov((P— . P) + Y, S,Cov(P, R,y )} (19)
i=1 i=1 i=1

N+G
k =( 2——— is the average tolerance in the futures market
=1 &

See proof 4 in the appendix for more details

The futures contract’s risk premium is a function of the covariance of the spot price respectively
with the revenue generated by sales and the position in the non-marketable asset as was the case
without the illiquidity transaction cost in equation (14). The illiquidity transaction cost 7C,
defined for a single investor in equation (12), creates a risk premium (20) measured by the

volatility of the futures premium and the number of trades that hedgers use to shift risk to

speculators.
G

TC =Var(p)Y | (20)
i=1 .

The illiquidity premium under these preferences is therefore the volume of futures multiplied by
the variance of the spot market. In practice, only the volume of speculator’s trades should be
considered, as long hedgers will have opposite liquidity trading costs. Hence, it is the volume of

trades generated by hedging pressures (trades for which there is no hedger as a counterparty) that
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generates in practice illiquidity trading costs. The illiquidity trading cost is therefore defined by
equation (21).
TC =Var(p)*xFuture's volumeof trades by hedging pressure 20

Illiquidity changes the way risk is shared by the market, as risk premiums are now a
nonlinear function of risk aversion (% ), while it was in equation (14) a linear one. Risk is now
~ equally deflated by the average measure of risk tolerance in the market. The less risk tolerant
investors are, the bigger the futures’ premium will be.

The illiquidity premium deflates even more the futures’ premium, as hedgers must offer a
discount to speculators to accept the shift in risk embedded in the trade. Speculators act therefore
implicitly as market makers by buying futures contracts from the hedgers in exchange for a
transaction cost. These transaction costs create in effect an ask price. If long hedgers were present
we would therefore have a bid-ask spread.

Risk transfers are therefore more complex when taking illiquidity into account. Illiquidity
increases the futures’ premium and makes it depend on the trade size and the expected volatility
of the spot market. The dynamics of the futures return are therefore richer with illiquidity. The
natural question is how could we manage this risk. While this is not the point of this paper, there
are ways to at least reduce that risk ex-ante. One might in practice cut a large futures trade into a
series of smaller ones. One could also use options on the underlying spot good to cover against
the expected adverse movement in the futures price due to illiquidity in the underlying spot
market at delivery.

Using CARA preferences in a one period model has the advantage of showing clearly
how illiquidity creates an endogenous transaction cost without order processing and inventory
costs or asymmetries of information. This comes at a cost. Under these preferences, risk aversion
remains constant irrespective of the investors’ wealth. In a more general utility setting, one would

anticipate in a crash, a greater unwillingness from speculators to bear risk as they lose much of
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their wealth, with illiquidity compounding the wealth effect. Therefore, each trade should become
more costly as speculators become less willing to accept risk shifting from hedgers. In addition,

using a one period model does not allow for the risk in reversing a given position.
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CONCLUSION

Iliquidity is introduced in the optimisation or trading problem of the investor as an
inability to trade and share risk without changing the market price. This creates an endogenous
trading cost and bid-ask spread without the need for informational asymmetries, inventory or
order processing costs. This trading cost is a linear function of the variance of the spot market
multiplied by the volume generated by hedging pressures, making the futures price dynamics
richer. Mliquidity will exist in equilibrium even with very small trades if there is no price
mechanism to force market clearing at a single futures price confirming that risk sharing is a

source of illiquidity.
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ANNEX

Proof 1
T show that the slope of the demand curve for futures contracts df (£)/9& under the
constrained optimization (atomistic trade) is the same as the slope of (&,)/0&,; in the

unconstrained optimization where the futures price depends on the size of the trade (large trade).

N
Let the large futures trade & = L & jdj made by a given trader be the aggregate sum of

atomistic or negligible trades & ; taken by identical investors initiating a trade. Making a total

differential of the futures price when trades are large and thus a function of these atomistic trades,

I find that:

af(ﬁ)

R L 22)

Differentiating (22) as a function of the large trade and using the fact that each atomistic trade is

identical and therefore has the same slope df (£,)/d¢, , I find that:

af(f) J'Naf(é)dﬁ . af(é)J
d¢, dé

(23)

Integrating the small trades into the large one, we find that the slope for the large trade is the

* same as that for an atomistic or very small trade,

o E) _IE) J; & _YE) dE _HE)
0E  9E  dE 9 dE ¥

Using equation (8), and noting that the futures price is fixed at the beginning of the period, the

(24)

slope for the large trade equals therefore,

UAC)

3 =alVar() = aéVar(p) (25)
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Proof 2

I show that there is no unique price in the futures market even under the simplest setup
where the only difference between the one who buys the futures contract and the one who sells is
the degree of risk aversion.

Suppose that there are only two producers with exactly ‘opposite hedging needs one
selling a good and the other buying it, with different degrees of risk aversion, being otherwise

perfectly identical. It is straightforward to determine their expected futures premium as in

equation (8):
7, = o, (EVar(®)) + Cov(,, (B ~ §) + 5,Cov(@,. R,y) 26)
7, =00, (£ Var(%,) + Cov(i,, (h — P)@) + S,Con(#,, Ryy) 27)

From equation (8), the supply of futures is offered by producer 1 and demanded by producer 2.
The futures premium of producer 1 is therefore opposite to that of producer 2
(sign(m,) = —sign(r,)) . Using the futures premium definition, we can write,

T =0 (&Var(fl — P)+ Cov(f, — B,(F — )§) + $,Cov( f, = B, R, )) (28)

T, =062(<§2Var(1'3—f2)+ Cov(p "fzv(h_ p)g)+ SZCOV(ﬁ '"fstM )) (29)

Using the fact that the futures prices are determined at time 0, we can simplify further equations

(28) and (29),
7, =0, (EVar(p) — Cov(p, (B — W) $,Cov(B, R,y)) 30)
71, =0, (E,Var(B) + Cov(p, (h— P)3) + S,Cov(P, Ryy) 31)

Summing the supply (30) and demand (3!) equations, and using the assumption that both

producers hold the non-marketable good in the same amount, we find that:
7, + 70, = (€, + i, War(P) + (e, — o) Cov(B, (B — )§) + $,Cov(, By)) (32)

Using the clearing condition (£, + &, =0) and the definition of the premiums,
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fo~ £ = @ ~@)EVar(B) + @, - ){Con(5,( ~ W)+ 5,Cov(B, Byy) (33)

It can therefore be concluded that:

-F#0 if a #a, 34)
Hence, there is no unique futures price even in a very simplified model when the only difference

between the seller and the buyer is their risk aversion.

Proof 3
This is a generalization of proof 2. I show that there is no unique price in the futures
market in this model. The futures market is illiquid in equilibrium if investors have different

degrees of risk aversion.
I consider first the premium asked by the N, short traders (35) and then that of the N,

long traders (36). It is straightforward to show as in equation (8) that the futures premiums of the

short and long traders are,

f, = B =0, EVar(5) — Cov(, (5 - @) - $,Cov(F, Ky,) (35)

B - £, =, EVar(5) - Cov(p, (5 - )3) ~ 5,Cov(p, Ky, ) (36)
Assuming that N, agents are short and N, are short, I sum both equations over their type of

agents,

NZ(f; -p)= Var(ﬁ)i &, —'i &; (Cov(ﬁ, (P - m)g) + S, Cov(p, EM )) (37)
i=1 i=1 i=1

Mz

N, Ny -
B~ f)=Var(® Y a,é, -3 o, (Cov(p, (B - @) + 5,Cov(B, R,,)) (38)
i=l i=1

Summing up the aggregate premiums (37) and (38), and noting that only the G hedgers have a

position in the spot good, I find that:
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N, N, it ¥
-y F-f) =Var(ﬁ>[2ai5i ¥ 2%51}*
i=1 J=1 i=l =

N, N B G
[Eajsj - Eaisi ]Cov(ﬁ, R,)— Zai (Cov(ﬁ, (p- h)‘?))
= i=t i1

(39)

N, N. N N.
Using the market clearing constraint 251 =—2§i =¢;= ——2.’; - sz on equation (39),
i=1

j=1 i=1 k=1k#j

i(f; - P) “i(ﬁ_ﬁ)zvar(ﬁ){gaigi _Iiaj{igi + NE&k}]‘*'

k=lk#j

(40)
N N, N G
[Xajsj ~Sas, :ICOV(Z;, R = e, (Covp. (5 -~ D))
i=1

=1 i=1
If risk aversion is constant, it is easy to see using equation (39) that the liquidity premium will
disappear (simply factor out the risk aversion parameter and apply the market clearing condition).
Prices will remain unequal because of differing exposure to the spot good and the non-marketable
asset as can be seen more clearly in equation (40). Hence, there will be no single futures price to

clear the futures market.

Proof 4

I find the futures premium when transactions are not assumed atomistic and the hedgers
initiate the futures trades.

Summing the individual futures demand given in equation (18) assuming a single

clearing futures price, I find that:
G N+G T A+G _

~Var(®)Y &, =Y —=Y Cov((p -G + SR, . 7,) 41)
i=l =1 & =t

Therefore, the futures premium, the expected difference between the buy and sell price for the

spot is:

G N+
n= %l:—- Var(fi)Eﬁi + fCov((ﬁ —h)q + SﬁM T ):| (42)

i=l1 i=l
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Noting that only hedgers have a position in the spot good since they produce it, equation 40)

further simplifies to:
1 G G N+G -
=l Var(F)Y &, + Y, Cov((p — WG, %)+ Y, S,Cov(Ryy . 7T,) (43)
i=1 i=1 i=1
The futures premium is therefore given by:

G G N+G -
n =%[_ Var(@),&, + Y, Cov((B~h)3, B) + Y, S,Cov(p. Ry, )} “4)
i=1 i=1 i=l

N+G
k =[ 2 —1—] is the average tolerance in the futures market
in1 &

Proof 5
I allow a natural squeeze in proof 4 by allowing in equation (11), the spot price to depend on the
quantity of futures traded, that is delivery is done in a spot market which is no longer assumed
liquid.

First, I derive the impact of the futures trade on the price of the spot good at delivery. The

natural squeeze or price pressure of delivery is found from equation (6):

- '
o  k{(g\n
=L (45)
g né\éd
This is introduced into the unrestricted version of equation (10).

I
EU-P _ o = (=P _» NN AT
aéi _f p+( ag }fi—ﬂ?+ Otivar(p) n~(5) éi (46)

It is straightforward to show that the investor’s problem when both the spot and futures market
are assumed illiquid gives the following futures premium:

1-n
n

7+ @E[ai var(5) - (k/nb &, /5 }
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=, (EVar(®) + Cov(i, (5 — b)§) + S,.Cov(#, R, ) 47)
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INTRODUCTION TO ILLIQUIDITY AND THE WEALTH EFFECT

Hedger’s trades have an adverse impact on the futures price creating effectively an
endogenous transaction cost increasing in times of uncertainty and acting as the source of
illiquidity in these markets. This trading cost assumes a utility with Constant Absolute Risk
Aversion so that the investor’s degree of risk aversion does not increase as he loses wealth. This
wealth effect is the mechanism through which changes in investors’ wealth impact their attitude
towards risk. As investors lose wealth, they become more risk averse and ask for a higher
compensation to hold a risky asset thereby decreasing its price. In the next paper, illiquidity is
shown to strengthen the wealth effect, which has been proven to be too weak empirically to

explain the behavior of prices.
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ILLIQUIDITY AND THE WEALTH EFFECT

ABSTRACT

Investors’ attitudes towards risk and the resulting impact on prices in financial markets
are determined by changes in their wealth. This wealth effect, however, provides a poor
explanation of the mean, skewness and kurtosis of the observed distribution of futures
prices especially in the derivatives market for reasonable values of the degree of risk
aversion. This paper shows that illiquidity in the futures market, modeled endogenously
as a trading cost, increases the strength of the wealth effect for the same degree of risk
aversion. The resulting distribution of futures prices presents a more pronounced left fat

tail and left skewness than would have been implied by the wealth effect alone.
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INTRODUCTION

Although illiquidity is recognized in practice as a major disrupting factor in the
functioning of financial markets, its theoretical foundation remains in doubt. This paper proposes
a model, with a very general utility framework, in which illiquidity results from the inability of
economic agents to share risk at no cost and takes the form of an endogenous trading cost whose
importance increases as financial markets come under stress. Illiquidity tends to strengthen the
wealth effect, which has traditionally been used to explain the behaviour of risk prices under
stress. The wealth effect is the mechanism through which changes in the investors’ wealth affect
their attitude towards risk and thus prices on the financial markets. This mechanism provides a
poor explanation (see Jackwerth and Brown (2001)) of the mean, skewness and kurtosis of the
observed distribution of prices especially in the derivatives market for reasonable values of the
degree of risk aversion. This paper shows that illiquidity in the futures market, modeled
endogenously as a trading cost, increases the strength of the wealth effect by acting as a risk
lever. Investors become more risk averse as their wealth falls and therefore ask for ever-higher
risk premiums to become the counterparty to a futures contract. With illiquidity, for any decline
in wealth, there is more risk to be shared and less willingness to assume it without a lower price
and thus a higher return. The increase in futures risk premiums, reflecting greater illiquidity
trading costs, is associated with a more pronounced left fat tail and left skewness in the
distribution of futures prices in a market dominated by short hedgers than would have been
implied by the wealth effect alone. Risk transfers are further studied using comparative statics.

Futures contracts are standardized instruments offered on organized markets. Investors
can use them to hedge their risk stemming from changes in the price of the good underlying the
contract, while speculators are willing to assume those risks in anticipation of a possible gain.
The risks from having a position in the underlying asset are shared through the futures market as

well as other derivatives markets. For example, a fast food chain can buy pork belly futures to
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hedge against the risk of an increase in the price of pork bellies, while a pork producer would sell
pork belly futures. If both the producer and the fast food chain need to hedge the same amount for
the same period, they could enter into a forward agreement, mimicking the futures contract
available on organized markets, to exchange pork bellies at a predetermined forward price. Their
risk is then defined as perfectly shared and there is no pressure on the futures market assuming
that their wealth is solely determined by the price of pork. However, should they have different
quantities to hedge, there will be a pressure'! on the futures price so as to attract speculators
willing to become the counterparty to the excess hedging supply or demand for futures. Hedging
pressures are therefore tr\ansfers of risks for a price.

The idea that these risk transfers are costly was considered in Galy (2002) by relaxing the
assumption that an investor can initiate a trade of a non-negligible size without having an impact
on the market price. This creates endogenously an illiquidity trading cost that increases with the
size of the futures trade and the volatility in the underlying spot price. This result was limited to
investors with utility functions that exhibit constant absolute risk aversion. This paper generalizes
this result by allowing the investor’s degree of risk aversion to change as a function of his wealth
thereby introducing the wealth effect. The trading cost increases with the size of the futures trade
and by, approximately, the volatility in the underlying spot price. Furthermore, adding illiquidity
to the wealth effect changes the distribution of futures prices.

Iiliquidity trading costs make the distribution of futures prices more fat in the left tail, left
skewed and dependent on the size of futures trades. If futures prices are above their expected
value (or arbitrage price), as implied mainly by the conditions prevailing on the underlying good
market, then speculators have little wealth at risk and are quite willing to bear that risk cheaply.
By contrast, as the underlying good or the rest of their portfolio loses some value, speculators
tend to ask for increasing premiums and the distribution of futures prices becomes thicker on the

left for low futures prices than on the right for high futures prices. The illiquidity trading cost

! This assumes that there are limits to the ability to arbitrage
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tends to aggravate the distortions produced by the wealth effect on the distribution of futures
prices.

One might argue that Keynes (1930) thoroughly described how speculators become more
fearful as they lose their wealth and flee the futures market. However, his analysis neglected the
enhancing effect of illiquidity. This paper shows that as frightened speculators leave the market
these become increasingly illiquid.

The paper is organized as follows. Section 1 briefly reviews the illiquidity and risk
sharing literatures. Section 2 presents the theoretical model under two central assumptions: (i)
futures prices are independent from the quantity traded; and (ii) markets are incomplete. The
model is further developed, by relaxing the first assumption in Section 3 and the second
assumption in Section 4. Section 5 draws on the model findings to analyse the risk sharing

mechanism behind the wealth effect and changes in illiquidity.

1. PREVIOUS WORK ON ILLIQUIDITY AND RISK SHARING

Tlliquidity'? is derived endogenously within the microstructure literature generally in the
form of a bid-ask spread or transaction costs, stemming mainly from inventory costs introduced
by Demsetz (1968), market order processing costs from Garman (1976) and insider trading from
Glosten and Milgrom (1985). These models assume the presence of market makers matching the
supply and demand who establish bid-ask spreads to cover their operating costs. O’Hara (1994)
provides a comprehensive overview of this field. These matching models, however, are of limited
use to the vast array of equilibrium and arbitrage models used for pricing and risk management.

Equilibrium or arbitrage models, such as in Ericsson and Renault (2001), take illiquidity
as given in the form of an exogenous trading cost and study how it impacts the decisions of

investors. Acharya and Pedersen (2002) for example study a four beta CAPM with persistent
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illiquidity and study its impact on the investors’ decision-making. Illiquidity and risk sharing
were until now separate lines of research.

Risk sharing is concerned with the possibility for economic agents to exchange risks
through financial markets, using derivatives as risk transfer vehicles. In the asset pricing
literature, Dumas (1989) shows that when investors have different degrees of risk aversion and
suffer a common risk, they must share the aggregate risk. Wang (1994) considers investors that
are heterogeneous both in their investment opportunities and access to information. In the absence
of information asymmetries, according to Wang (1994), selling by an investor increases the
volume and decreases the price, increasing its expected return, as the asset’s expected payoff has
not changed. This leads other investors to buy the asset so that its price may remain independent
of its volume. Risk sharing becomes of interest only if investors cannot correctly assess the
asset’s expected payoff. This happens when investors have heterogeneous beliefs as in Detemple
and Murphy (1994) or asymmetries of information as in Wang (1994). Risk sharing will change
depending on the source of the friction, such as non-insurable labor income shocks in
Constantinides and Duffie (1996), and frictions or constraints imposed on the investors, such as
the lower bound imposed by Grossman and Zhou (1996) on the hedger’s wealth which forces
them to hedge so as to respect it. This sharing of risks creates a demand for derivatives to shift
risk between those who are willing to take on more of risk for a premium and those who must
reduce their risk. Risk sharing comes under the broad denomination of ‘portfolio insurance
demand’ in the derivatives literature.

In the derivatives literature, risk sharing among heterogeneous investors therefore creates
a role for derivatives as risk transfer vehicles. Grossman and Zhou (1996) studied such an
exchange of risk in complete markets and continuous time where one type of hedger is
constrained not too lose a given fraction of his initial wealth, creating an asymmetric need to

share risk and hence a demand for put options. Franke, Stapleton and Subrahmanyam (1998)

12 See Galy (2002) for a more comprehensive review of this field
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show that the degree to which investors face non-hedgeable background risks, such as labor
income shocks or shocks to non traded assets, determines the exchange of risks. Finally, Bates
(2001) considers the sharing of crash risk or negative stock market jumps and shows that it
partially explains why stock options tend to overestimate volatility and the risk of a price jump.

When markets are incomplete, i.e. traders do not have enough uncorrelated assets to
hedge all risk sources (Harrison and Pliska (1983) and Duffie and Huang (1985)), the sharing of
risks is hampered. In such a context, the supply and demand of financial assets is imperfectly
elastic as pointed out for example by Leisen (2002), which implies therefore a transfer of risk
when trading. Leisen pointed out that derivatives would not be traded if the price of their
underlying asset at the next trading date is assumed locally normal énd markets are incompiete.
Magill and Quinzii (1995) following Keynes (1930) define market incompleteness as a failure of
the market to coordinate activities as all futures contract trades cannot be made at a
predetermined price due to frictions. This creates a demand for cash to hedge against price
uncertainty in addition to futures. The portfolio insurance demand literature extends this result to
show that it creates a demand for options.

In a previous paper (Gély (2002)), 1 linked risk sharing with illiquidity and showed how
illiquidity trading costs arise endogenously in an equilibrium model from the inability to share
risk freely when investors have heterogeneous constant absolute risk aversion. This result is
further generalized to a broad class of utilities in this paper allowing for the wealth effect and

thereby altering the distribution of futures prices.

2. MODEL

I assume an infinite horizon model with two groups of utility maximizing agents, G

producers of commodities and N speculators. Each agent maximizes the utility he expects from

consuming the profits 77, generated by the sale of a good decided at time O but realized only at
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time ¢. Therefore, the agent faces a problem13 each period whereby his cash flows are decided
now but realized only ¢ periods in the future. The utility function V(7,,;), j=L...,o is
assumed to be increasing and concave in the investor's wealth. The G+N,
i=1,...,G,..,G+ N, producers and speculators may have different degrees of risk aversion.
The hedger produces at time O the quantity y, of goods that will be sold at time # at an

uncertain price p,(y,) that he hedges by selling the quantity f, of futures contracts at a price of

F, . Producing the good costs him c¢(y,) at time O but these costs are only realized at time ¢ so

that the cash flow from the production of goods decided at time O occurs ¢ periods later. The
investor’s profits at time ¢ equal the revenues generated by the sale of the consumption good
minus the costs of production and the cost of hedging the production good by taking short futures
contracts positions at time 0 and reversing the position at time t. The profits at time t are therefore
given by equation (1):

7T, = p,(¥o)¥o —C(¥o) + fo(Fy — F) (1

The investor chooses the number f, of futures contracts so as to maximize his concave

atility V(7,,;), j=1,...,eo. I will use the notation V@ for the i™ derivative with respect to

profits of the utility function V(7 ,, ), j =1,...,00 at time 7. The first derivative represents the

marginal value of an additional dollar for the investor, the second represents the utility’s
curvature. It can be interpreted as a proxy for risk as can be seen in the Arrow-Pratt measure of

risk aversion as well as other global measures of risk.

Differentiating V(7,, ), j =L,...,e with respect to f; under the constraint of equation

(1) yields equation (2). The futures’ price is such that the expected value at time O of a dollar

B If preferences are separable, it is straightforward to see that the model reverts to a classical maximization
of terminal wealth. The fact that the maximization is repeated every period does not change anything as no
wealth is accumulated.
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measured in terms of marginal utility E,V," invested in the futures contract has a zero return
(E,V O (F, - F,)/F,)=0).

EV.O(F, - E)=0 @
A simple transformation E, (V,% / VO)F, = Fy) = E,M, o(F, — F;) =0 shows that equation ’
(2) can be rewritten in terms of the marginal rate of substitution M, , = A / V" between time

0 and time ¢. The marginal rate of substitution gives the price at which the agent would be
willing to wait and consume later. It is a classic result that if the investor is allowed to trade t

period risk free bonds with an interest of r,, then the marginal rate of substitution will equal the
risk free discount rate E,M,, =1/(1+r,). The marginal rate of substitution is therefore widely

interpreted as the investor’s personal risky discount rate M, ; = 1/(1+ 7). Equivalently, it is the

cash flow deflator used for present valuation but it may be risky as it depends on the investor’s

preferences

The futures demand and supply f,, thereafter referred to as the futures demand, is found

by differentiating equation (2) as a function of the futures price F, at time 0. Hedgers offer

futures contracts to speculators who have the same utility maximization problem, but are long in
the future contract and have no position in the underlying asset. The resulting futures demand is
given by the following equation (3):

EV"

f =
’ EOV:(Z)(F: —Fo)

3)

The futures demand is a function of the investor’s utility. It is an increasing function of the
marginal value of profits when hedging and an inverse function of the futures risk premium

F —F,.
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To better understand the demand for futures contracts, I re-express it to introduce the

familiar Arrow-Pratt risk aversion. Using the definition of the conditional expectation,
conditional covariance'* and that of local risk aversion p, =—V,® / V", the demand for futures
contracts (3) becomes a function of the error in predicting the futures price
ef =EVY(F,-F)-VP(F,-F):

EOV'I(I)
o= o BV —F) —Covy(per ) w
0P EV(Fy ) —Covp\p, e,

The demand is, as before, an increasing function of the marginal value of profits for the investor

E,V© It is also an inverse function of the futures price change F, —F, . This relation depends

on whether markets are in equilibrium or not. When the futures price is in equilibrium, defined by
equation (2), the first element of the denominator disappears from the equilibrium futures demand
in equation (4). The second element of the denominator is the conditional covariance of the error

in predicting the futures contract value with the Arrow-Pratt measure of risk aversion. The more
the investor’s risk aversion is correlated with the error in pricing e,F , the higher the hedging

demand. In other words, the more fearful the investor becomes of pricing errors, the less he is
willing to use futures contracts. Therefore, fear of mispricing is an additional factor driving the
demand for futures. These risks are shared when investors trade either to enhance or reduce their
exposure. As will be seen in the next section, trading creates endogenously illiquidity in the

futures market in the form of a trading cost.

3. ILLIQUIDITY AS AN ENDOGENOUS TRADING COST

In this section, we relax the assumption that agents are able to buy or sell any quantity of

futures contracts while leaving the futures price unchanged. Friend and Blume (1975) define such

¥ Covo(X,,Y,)=E(X,Y,) - Ey(X,)E,(Y)
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markets as illiquid. This changes two things, first the futures price is no longer assumed to be
independent of the quantity traded, and secondly each producer initiates a trade thereby creating a
price pressure on the futures market that will attract speculators, defined as having no position in

the futures contract’s underlying asset”.

3.1 MODEL WITH LARGE TRADES

Relaxing the assumption that the futures price is independent of the quantity traded in the
producer’s optimization problem changes the futures price. Compared to equation (2) where this
assumption was imposed, an additional trading cost appears endogenously. It equals the quantity

of futures traded multiplied by the expected change in the futures price created by the trade.

AF —F))

Eovr(l) (F, —Fy)+ foEOVt(D —" =0 &)
df;

This trading cost TC = f, E,V. " (d(F, — F,)/0f, ) is paid by the producer who sells

futures for hedging purposes to the speculator buying the futures as a compensation for the

sharing in the producer’s risk.

3.2 DERIVING THE TRADING COST
The derivative a(F; -F) / afo in equation (5) of the trading cost is unknown. It can be

determined directly from equation (2) where it was assumed implicitly to be too small to matter.

This assumes that trading a large amount of futures contracts does not change the shape of the

demand curve. Differentiating equation (2) as a function of the quantity of futures traded f,, I
find that the expected value E,V,"’ (F, — F)/df, of the differential in terms of marginal

utility equals the expected value in terms of risk of a deviation in the futures price (F, — F;))z.

"> See the proof of proposition 2 to see why this condition must hold.
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oF, - F)

Eth(l) af = _Eo P, (V;(l) (F; - Fo)2)= Eo (V:(Z) (Fz - Fo )2) (6)
0

where risk is measured by the Arrow Pratt measure of risk aversion. Note that the risk of a change
in the futures price was shown before to be a determinant of the futures demand.

Having derived the trading cost, it is straightforward to find the price equation of the
futures contract by introducing equation (6) into (5). This modified price equation of the futures

contract equals the original equation (2) plus an additional trading cost

TC = fyEyp, (V,m (F, - F, )2) on the right that lowers the futures price.
EVY(F, _Fo)—fOEoP,(V,(”(F, __Fo)z):o @

The demand and supply of futures contracts must now be aggregated to find the futures price in

the aggregate equilibrium in the presence of illiquidity trading costs.

3.3 EQUILIBRIUM IN AN ILLIQUID FUTURES MARKET
To find the futures price in the aggregate equilibrium, we must aggregate the supply of
and demand for futures across investors assuming a single price will clear the futures market. The
G producers initiate the futures contracts and are therefore the ones paying a trading cost to
speculators, who do not have a position in the futures contract’s underlying asset. Equation (7)

which prices the futures contract can therefore be rewritten to introduce a logical operator I, to

separate hedging trades from speculative trades.

EOVt,(il) (Fz - Fo) - IifO,iEopt,i (Vq) (F: - FO)Z):O t))

1,
I; =1 if i is a producer (hedger) and O otherwise (speculator)

NiG
Using the market clearing condition Z Jo. =0 on the futures on equation (8), we find the

i=1

equation (9) pricing futures contracts in the presence of illiquidity.
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N+G G
Eo( EVI,(i[) ](F: - Fo) - Zfo,iEop:,i (thil) (F: - FO)Z):() &)
i=1 i=l

The first term on the left of equation.(9) is the futures contract’s value in the market and the
second term on the left is the aggregate illiquidity trading cost that must paid by hedgers in order
for speculators to accept such trades. The illiquidity trading cost depends, among other things, on
the hedgers’ trades and their degree of risk aversion. Equation (9) can be rewritten as equation
(10) to show how illiquidity and risk shifting are related using the definition of the conditional
covariance to separate the futures risk premium from the aggregate marginal utility.

N+G

G
COVO(ZVz,(il)’E - Fo] Zfo,iEop:,.- (V:(;D (F, - FO)Z)
Eo(Ft_Fo):_ = +H

N+G . N+G W
E[ zv,fx] E( S ]
i=1

(10)

The futures risk premium or drift Ey(F, — F;) on the left of equation (9) depends on the futures

contract’s ability to reduce or increase the investors’ risk in the futures market. This is measured

N+G

in equation (9) by the covariance Covo( ZV(”

i ?
i=1

F, - F, )on the right side of the equation
between the futures risk premium or drift F, — F, and the marginal value of a dollar for investors

N+G
in that market ZV,(,” . To shift the financial risk of producing with futures contracts, the

i=l
producers must pay a trading cost (last element on the right of equation (10)) dependent on the
size of the futures trades and approximately (see proof 3) the expected variance of the futures

price for the producers adjusted for their expected degree of risk aversion.

3.4 FUTURES PRICE DISTRIBUTION
Introducing illiquidity makes the futures price distribution at time t F, fatter on the left

tail, more left skewed and dependent on the size of trades by strengthening the wealth effect.
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As was seen in equations (9) and (10) and proof 3, illiquidity creates an endogenous
trading cost that increases with the size of the futures trades, the expected degree of risk aversion
and a measure related to the expected variance of the futures price. lliquidity increases the
strength of the wealth effect, which determines how shocks to producers affect the futures price,

and thereby determines its distribution. Following a negative shock to the producer’s profit, the

wealth effect states that the producer’s degree of risk aversion p,; increases (see proof 1), as he

is assumed to feel more vulnerable and is said to have a prudential motive (VS ) <0). This

triggers a fall in the futures price as it becomes more desirable to short it for hedging and

consequently an increase in the futures expected risk premium E,(F, — F,) and the marginal
value of his profits V,f,.l .

This, in turn, increases the illiquidity trading cost in the aggregate equilibrium

G
1C= 2 foiEopP,; (V,(,l) (F, - FO)Z) as its components, the degree of risk aversionp,;,
=1

marginal value of profits V,f:) and especially the element (F, — FO)Z, all increase. This last

element is the square of the fall in the futures price resulting from the wealth effect, so that for
every fall in the investor’s profits, the trading cost increases by even more. The illiquidity trading
cost increases therefore the strength of the wealth effect.

Illiquidity pushes therefore the futures price distribution to the left. As for every shock
affecting the producer’s profits, the futures price is lower than it would be without illiquidity.
This assumes that in practice producers, selling futures to hedge, initiate a majority of trades. The
futures price distribution is therefore more skewed and fatter on the left tail, than would be the
case with only the wealth effect.

The properties of skewness and left fat tail can be deduced mathematically from equation

(10). Skewness is a measure of the bias in the expectation and is a scaled function of the third
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moment of the futures price distribution U, =(F, _Eon)3- From equation (10), the third

moment is:

N+G -3 N+G G 3
sy :[EO(ZV:(:)]] [COVO(Z‘II’(:),F; "FOJ_Zfo,iEop:,i(thil)(E —Fo)z)] (11)
i=1 i=1 i=1

The futures price distribution is skewed U, # 0, as the elements on the right of equation (11) are
different from zero. Intuitively, the distribution must be skewed to the left as the futures price
today trades at a large discount to its expected price F, < E F, under pressure from hedgers.
The sign of the conditional covariance on the right hand side can be determined by deriving the

marginal value of profits as a function of the futures premium conditional on the information

available at time 0, all else equal.

N+G N+G
8[ yvo ] /B(F, -F)=-YV?f, (12)
i=1 i=l

The conditional covariance is therefore positive, as the utility is concave V,ff’ <0, and this more

so for the G producers selling futures contracts. The trading cost is positive and the entire right

side of equation (11) is therefore negative. The futures price distribution is therefore skewed to

the left Fy < E,F,.
In addition to being skewed, the distribution is fatter on the left tail as described by the
fourth moment of the futures distribution g, = (¥, — E,F,)*. This corresponds to equation (11)

with the powers changed from three to four. The fourth moment is, as the third, different from
zero implying that the futures price distribution has a fat tail. The fourth moment is larger the
higher the futures risk premium implying that the distribution has a fatter left tail.

The futures price distribution is left skewed with a fat left tail even if markets are liquid.
These properties of the futures price distribution are enhanced by the presence of illiquidity. In

essence, a Keynesian run (investors become increasingly fearful as their losses accumulate and
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leave the market) out of the futures market takes the liquidity out of the futures market. This
implies in practice that one needs a lower degree of risk aversion to obtain these properties of the
futures price distribution. These results depend however on the assumption that markets are

incomplete.

4. WHEN ILLIQUIDITY TRADING COSTS CEASE TO MATTER:

CONVERGENCE TO COMPLETE MARKETS

In this section, we show that illiquidity is a property of incomplete markets, which
disappears as competing hedging products complete the financial markets, assuming that there are
an infinite number of risk sources as well as an infinite number of assets available to complete the
market.

llliquidity trading costs are relevant only if the supply and demand curves are not
perfectly elastic. As can be seen in equation (5), the derivative d(F, — F,,)/df,, would then equal
zero by definition and the trading cost would disappear. If a perfect substitute could be found by a
replication or arbitrage strategy, then it is a classic result that the supply and demand must be
perfectly elastic, as investors would switch from one good to the other whenever one market

would come under trading pressure. The futures price would therefore be independent of the

quantity traded. Illiquidity trading costs would then disappear, as the derivative d(F, — F,)/df,

within the definition of the trading cost TC = f, E,V," (E)(E -F)/ afo) equals zero. A futures

market is therefore liquid when the supply and demand curves are perfectly elastic. Equivalently,
there is no perfect substitute for the futures contract that could replicate its payoff, as would be

the case by taking opposite positions on a call and a put with the same strike price on the same

underlying commodity.
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This ignores however that other substitute products are available for hedging. Proposition
1, derived in the appendix, shows that, as more options are available for hedging or speculation,
the elasticity of the supply and demand curves increases as for every increase in the futures price,

one can buy other hedging products as imperfect substitutes.

Proposition 1: Convergence to market completeness

Let N be the number of options available in the market. Let the number of risk sources

that influence spot prices be infinite. For a given futures price F, and quantity of

futures f,:

a) The futures’ supply and demand curves become more elastic as more options become
available for hedging. Equivalently, the slope increases as the price and quantity are
taken as given.

b) The slope of the futures curve is indeterminate when there is an infinite source of

options to hedge an infinite source of risks.

}]im aﬁ) / an) = Indeterminate
—>oa

The slopes of the supply and demand curves become indeterminate as illustrated in figure 1, in
the limit when markets are complete, and the supply and demand become impervious to futures
price changes. This translates graphically below into curves that increasingly flatten as the

markets become more complete.
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Figure 1: Irrelevance of supply and demand when markets are complete

The illiquidity trading cost declines as financial markets become more complete and
sharing risk becomes less relevant. The concept of risk sharing and consecutive illiquidity trading

costs are studied using comparative statics in the next section.

5. RISK SHARING PROPOSITIONS

In this section, I study risk sharing or changes in the attitude towards risk that generate
prices changes through the wealth effect and the illiquidity trading costs. The attitude towards

risk will be measured by the degree of risk aversion and prudence. Risk aversion
V(Z) / v, (ll ’ measures the investor’s willingness to take risks when faced with uncertain

profits. It measures the curvature of the utility as a function of profits and is positive, as the utility

is assumed concave as a function of profits. The more curved it is, the more certain outcomes are
. 2 .
preferred to uncertain ones. The degree of prudence p,; = —V,(? ) / V,fi) , sometimes called

precaution, measures the investor’s willingness to bear risk as his profits or wealth changes (see

proof 1).

57



When the utility function is specified, risk sharing can be studied by comparing
graphically how the payoff of a derivative varies as a function of the underlying asset price. If the
graph is nonlinear and high for low states, that is these states are more expensive, then there is
clearly an excess demand to hedge against these states, or so argues the portfolio insurance
literature. As the utility function remains unspecified beyond the hypothesis that it is an
increasing and concave function of profits, I use comparative statics'® to see how risk alters both
the price of and demand for futures éontracts.

As we have seen, producers have risks from production, which cannot be hedged away
and must be shared with the market. This implies a wealth effect and illiquidity trading costs. In
this section, we will show in proposition 2 that this risk sharing puts pressure on the futures risk
premium implying that they will tend to decrease (contango) or increase (normal backwardation)
over time'’, with investors willing to buy or sell depending on their level of prudence. We will
show in proposition 3 that this problem becomes acute in a high-risk situation such as a crash as
there is an ever-increasing demand for hedging as hedgers find themselves more at risk. If
investors in the futures market have non-separable preferences, in that the utility derived from
tomorrow’s profits cannot be separated from today’s, then futures contracts become more
expensive as investors care about how risk is resolved, thereby reducing the use of futures

contracts (proposition 4).

5.1. COMPENSATION FOR RISK SHARING

Proposition 2, derived in the appendix, shows that risk transfers create an upward or

downward trend for futures prices known as contango and normal backwardation respectively.

16 See Varian (1992) for examples of the comparative statics method
17 Keynes (1930) first developed the argument that the unwillingness to bear risk creates contango or
normal backwardation in the futures prices.
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Proposition 2: Relation between prudential and risk tolerant motive with

contango or normal backwardation

F,2F = f,<0= Cov, (pv, /V,(l) VO (F, - F, ))S 0  for a speculator
F,<Fy= f,20= Cov, (pv, /V,(l) JVO(F, - F ))Z 0  for a hedger
Under normal backwardation, futures prices tend to increase over time [, = k. Speculators are

then willing to share the hedgers’ risk f; <0 as they are compensated by an increase in the
futures price. This implies that a speculator becomes less prudent for every dollar invested as the
value of the futures contract increases Cov, (pV‘ / VO vO(F, - F,))SO. Hedgers push the
futures price down by selling futures at time O and increase it at time ¢ by reversing their
positions thus offering a risk premium to speculators.

Under contango, futures prices tend to decrease F, < k. Hedgers are more than willing

to use futures contracts to hedge f, =0, as they can transfer risk to speculators and receive a risk
premium for it. They become more prudent for every dollar invested as the value of the futures
contract increases Cov, (Pv, / Vt(”,V‘(l)(F0 - F,))ZO. This unlikely situation F, <k, is
possible, but selling pressures from hedgers will push the futures price down immediately.

Therefore, one cannot have a downward trend or contango without allowing for an excess of long

hedgers in the model to push the current futures price upwards.

5.2. NONLINEAR RISK SHARING

Proposition 2 shows that contango or normal backwardation means that investors are
willing to share risk if they are compensated. The result that risk sharing creates a pressure on

futures prices was confirmed in section 3 and is further studied in the proposition 3.
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Proposition 3, derived in the appendix, shows how the supply and demand of futures
contracts changes with the degree of risk aversion.

Proposition 3: Risk aversion mechanism
sign{df, [p, }=—sign {EV(F, - F))}

signi’ f, J9p? }= sign{E,p, VO (F, - F,)}
When futures prices increase over time F, 2 F; (normal backwardation), hedgers sell futures

contracts as their degree of risk aversion increases sign{afo / apvl }2 0 (as a result of the wealth

effect for example) and this at a decreasing rate Sign{a g fo / ap‘i }S 0. Hence, the price pressure

on the futures markets will be strongest, when hedgers feel the most vulnerable or equivalently
have a high degree of risk aversion. In the language of Keynes (1930), proposition 3 states that
speculators are frightened and flee the market during a crisis. As was shown in section 3.4, the

futures market becomes less liquid at an increasingly fast pace through the illiquidity trading cost.

5.3. DYNAMIC RISK SHARING

The attitude towards risk has been described by the degree of risk aversion to uncertainty
in profits at a given point in time and is therefore static. In the next section, we add a temporal or
dynamic dimension to the attitude towards risk by introducing non-separability in the investor’s
preferences. The investor then cares both about uncertainty in his profits and how this uncertainty
resolves itself or equivalently its dynamics. This dynamic component of the attitude towards risk
is shown to effectively increase the investor’s degree of risk aversion, limiting his willingness to

share risk, and therefore strengthening the wealth effect.
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Non-separability of preferences increases the investor’s degree of risk aversion by
introducing a dynamic component (proposition 4.1) and decreases the investor’s willingness to
shift risk through time (proposition 4.3). The difference between the degree of risk aversion under
non-separable preferences and that under separable preferences is a function of the elasticity of
the marginal rate of substitution through time 0 and the parameter & , which controls the degree
to which preferences are non-separable'® (proposition 4.4). Therefore, the speculator requires a
greater compensation for entering into a futures contract, as the expected value of the futures
contract at time # is greater. The contract becomes more expensive through these two
mechanisms so that the demand for futures contracts falls.

The attitude towards risk is said to be dynamic if the investors’ preferences are not an
additive sum of his instantaneous utility. Until now, the investors were assumed to have
preferences that were additive or separable so that each period the producer took decisions

independently of how it would impact his future instantaneous utility and hence future decisions.

The investor’s utility function V(7z,, ), j =1,...,e0 under non-separable preferences is chosen as

a nonlinear sum of instantaneous utilities (13) that reverts to the linear or separable case used
before when the parameter & = 0. The investor’s attitude towards time is given by the parameter

B discounting his instantaneous utilities, while his time horizon is given by the parameter 7;.

v, =[§ﬁ"U(ﬂ,ﬂ-)] (13)

The non-separability of the utility of profits across time introduces a dynamic to risk, the
investor taking into account how a risky investment will evolve. For example, managers face
great anxiety or elation today when undertaking a high-risk project, as they are uncertain not only
how it will work out today and tomorrow, but how the risk of that project will evolve as time goes

by. The degree of risk aversion under separable preferences corresponds therefore to the one

BIf o =0 the utility function reverts to one of separable preferences.
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based on the instantaneous utility o, =-U 1(2) / U ,(1) , while under non-separable preferences it is

based on the function of the instantaneous utilities o, = AR / 1A

Proposition 4.1, proved in the annex, shows that the degree to which preferences are non-

separable influences the demand for futures contracts.

Proposition 4.1: Dynamic risk

g[‘l <0 if F, < F, the futures price is decreasing and p, > ((l +0)0 )_1
104

From proposition 2, we know that this proposition concerns a hedger selling futures
contracts as he can both shift his risk and be compensated for it. An increase in dynamic risk,

controlled by the parameter « , decreases hedging demand for a given level of the instantaneous

degree of risk aversion pé > ((l+06 )6 )—1 where O is the difference between the degree of risk

aversion under non-separable and separable preferences. An increase in the importance of

dynamic risk controlled by ¢ increases the importance of past and future profits on the utility

V(rz,, i) J=L,...,00 derived by the investor from his profits. The hedger uses fewer futures

contracts in the presence of dynamic risk even though he can shift his risk and be compensated
for it.

Proposition 4.2 shows that introducing a dynamic component to the investor’s attitude
towards risk increases the investor’s degree of risk aversion, thereby strengthening the wealth

effect.

Proposition 4.2: Relation between static and dynamic risk aversions measures
aU®

Py, =Py, + ——
2B U@.,.)
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The Arrow-Pratt measure of risk aversion p, =-y® / V. of the utility with non-separable
preferences exceeds the one with separable preferences Py, =—U,(2’ / Ut(l) by a factor
aU,(”V,_l/l"“ that is positive if =0 and V(7,;,j=1,...,00)20. When preferences are

separable o =0, the two measures of risks are equal. Under these conditions, assuming separable
preferences, and O <« <1 for the utility to be concave (see proof 2), is therefore equivalent to
increasing the investor’s degree of risk aversion. Note that risk aversion under separable
preferences can be said to be dynamic as it depends on future utilities or states, while the
traditional measure is static.

Proposition 4.3 shows that the increase in risk aversion comes from an unwillingness to

shift risk through time when preferences are non-separable.

Proposition 4.3: Relation between the elasticity of the marginal rate of substitution

through time ¢, (EMRST) and the parameter o :

Y
n tUt

:glant =(-a)7—
nﬂt g(:)ﬁ'U(ﬂ,_H-)

!

The elasticity of the marginal rate of substitution through time (EMRST) is a decreasing function
of the parameter . The more the investor is concerned about risk resolution, the less he is
willing to shift risk through time and hence the higher the risk premium he will require to enter
into a futures contract.

The previous set of propositions showed that risk sharing becomes more difficult when

introducing a dynamic component to risk. Proposition 4.4 summarizes these results.

Proposition 4.4: Relation between the degrees of absolute risk aversion p;} , p{} and

the EMRST o
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A A

Py, =py +0——
l-«o

Proposition 4.4 follows directly from propositions 4.2 and 4.3 It shows the dynamic risk aversion

p(,? =-V%r, / V" difference with the static risk aversion pé‘, =-UPn, / U is a function

of the EMRST (0 ) and the parameter «. When the parameter ¢ increases, the ratio oc/ l-a

increases and the EMRST & decreases (proposition 4.2). The net impact is more clearly seen in
proposition 4.2, where the premium increases linearly with ¢¢. Hence, dynamic risk as measured
by ¢ increases the investor’s degree of risk aversion by decreasing his willingness to shift risk

through time. This dynamic component disappears when preferences are separable & =0.
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CONCLUSION

Risk sharing creates an illiquidity trading cost that strengthens the wealth effect. This in
turn increases the fatness of the left tail and skewness of the distribution of futures prices beyond
that created by the wealth effect. Risk sharing becomes increasingly difficult as investors find
themselves at risk, creating a pressure on the futures prices for speculators to accept the risk
unloaded by hedgers. In the presence of non-separable preferences, this mechanism is again

strengthened as investors worry about how uncertainty will resolve itself.
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ANNEX

Proposition 1: Convergence to market completeness
Let N be the number of options available in the market. Let the number of risk sources that

influence spot prices be infinite. For a given futures price F, and quantity of futures fo:

a) The futures’ supply and demand curves become more elastic as more options become available
for hedging. Equivalently, the slope increases as the price and quantity are taken as given.
b) The slope of the futures curve is indeterminate when there is an infinite source of options to

hedge an infinite source of risks.

}Iim df, /0F, = Indeterminate

Proof proposition 1:
To prove proposition I, we must first find the slope of the futures demand. The demand

function (3) is derived as a function of the futures price.

oy _ —SoEV BV — ) - EVO (L BV, (F - F) - EV,)

(14)

2

BFB (EO‘/;(Z)(F;_F;)))

(3) => I, - —-EVO(EVP)-EVY(f,EVO(F, - F)~EV®) -
aE) (EOV,(Z)(F; —F;]))Z

@y Yo - ¢ TEVE - LBV E B+ BV (16)
oF, 0 (Eth(Z)(F; _FE)))

%) EVOF —F

i_:_ﬁ]?— 0 t(z)( t 0) "

o, " EVO(F-E)

using equation (40), derived as part of the proof of proposition 2, we have therefore:
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2)
Yoo LoV, (18)
an EOVt (Fz - E))
afo =-2 EOVt(I)EOVt(Z) (19)

2
W (EV2(F-F))
The hedger has now a portfolio of N derivatives on the underlying product giving each a different
payoff g,(p(y,),..) at maturity. The sources of uncertainty on the spot price remain unspecified

and may be multiple.

Ty = PV )Yo —c(¥o) = fo (F, — Fy) _gfo,igi(P(yt),--) (20)

Proof of proposition 1.a):
if (F, — F,) <0 we just showed that 0>V, (70, o) 2V, (7T, 5)
Using equation (19), the inverse of the price elasticity is

E 2)
=Lk op =1 @1
o aFofo EOV: (E—_FO) -

using the equilibrium demand of futures (3) into (21)

_ dof, F, EV®
= L= f, 0t : 22
5.0 al;[-] f;) Of;) EOV(l) (22)

Note the more options are available, the more the utility changes so that the demand for futures
contracts, which depends on the first and second degree of the utility, changes as other options
become available. For a given price and quantity of futures in equilibrium at time 0, I find how
the elasticity of the curve changes. The introduction of a new good changes not only the shape of

the curve as measured by elasticity but its position.

-1
8Fo:fo
-1
FO vfo

_ EoV,“’(”,,N) EOV,(Z)(”:,NH) 23)
EO‘/t(l)(ﬂ:t,NH) EO‘/t(Z)(n-t,N)

N+l

£

N
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As the utility is concave V,(Z) (1) £0, then V,(l) ()isa decreaéing function so that:

EVOm, )2 EVO (7, ) ‘ (24)
Whether (F, —F,) =20 or (F, — F,) <0, I show in the demonstration of proposition 1.1 that it
implies: E,V,? (1, ) < E,V 2 (7, )

-1
8F
- ’f
So that equation (23) => %’—i <l=>¢

Fo.fo

(25)

Fouto| o1 = EFort

N

N

The elasticity of the supply or demand curve increases the more options are available.

Proof of proposition 1.b):
To find the limit of the slope given by equation (19), I first find the limit of the denominator and

numerator. The proofs of propositions 1.a and 1.b assume the price and quantity to be constant.

1) T find the limit of the denominator lim E, V2@, ONF, —F) =1

E,(v® @y F, —F) =E, A (7, — fo.1v+1g1\{+1 ONE, - F)
e if (F,—F,)<0 then by proposition 2, V) <0, then V,(.) is a decreasing function

of profits so that, supposing that the additional options are used for speculating
(fons18nu () =0):

VO, ) SVP () <0

=> },l_rg E, (Vt(z) (7, 1)) = —°

and as (F, - F,)<0=>

Ey (V2 @,y i NF, = Fy) 2 By (V2 (m O)E, ~ F,) 20 (26)
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Hence, the denominator of equation (17) is an increasing function of the number of
substitute options available for speculating. In the limit, the denominator therefore

converges to infinity.

lim By (V2 @z, D)F, ~ ) =<0 @7

e if (F,—F,)20 then by proposition 2, V,”» >0, then V.® () is an increasing function

of profits so that, supposing that the additional options are used for hedging
( fo,N+1gN+1 ()=0):

VO @, xn) V2 () S0

=>lim E, (V2 (@, ,,)) = —>

andas (F, - F,) 2 0=>

Ey (V2 (7, o NE, = Fy) < Ey (VO (m, , )(F, — F,) <O (28)

Hence, the denominator of equation (17) is a decreasing function of the number of
substitute options available for hedging. In the limit, the denominator therefore converges

to zero.

lim B, (V2 (7, ., )(F, - Fy) =0 29
2) 1 find the limit of the numerator: }Iim EVOEV® =9
—yo0

If (F, —F;)<0 or (F, - F,) 20, we just showed that:

Vr(Z) (nt,NH) < V:(Z) (”t,N) <0=> }]im E, (Vt(Z) (”t,NH)) =oe=>
lim E, (V" (7, 3, DV Ey (V," (7, 1)) = =20 = ID (Indeterminate)

Since the utility is concave V¥ () <0 then V() isa decreasing function.

It (F, = F,) 20 => 0<V,O(m, ) SV, (m, ) = lim E, (V" (7, ,1)) =0 (30)
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If (F,~F,)<0=>0<VP(m, ) VO (@, ) = lim E, VO, ) = (3D
Using the results of 1), 2) and equation (19), we have:

. df, —o0,00
i —_ < = AV -_—— =
if (F,—F))<0= }Il_t)l;le oF, — ID (32)

. ¥, 0
if (F, ~F) >0 => }ll_rga{%’):— (0 )= 1D 33)

The slope of the supply or demand curves are therefore indeterminate in the limit. In the limit, the

two are perfectly elastic or flat so that the quantity and hence the slope cannot be determined.
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Proposition 2: Relation between prudential and risk tolerant motive with contango or

normal backwardation

F2F,= f,<0= Cov, (pt /VIU),VI(D(FO - Ft)) <0 for a speculator

F<F,= f,20= Coy, (p,/V,(l),Vt(”(FO—F;))ZO for a hedger

Proof of Proposition 2:
To find the demand for futures contracts, I use the demand for futures (3) and expand its

denominator using the definition of the covariance.

_ EV®
E,p,EV® (F, - F)+Cov, (p,.V," (F,~F,))

Jo (34)

Using the first order condition of equilibrium (2), the futures demand in equilibrium is therefore

given by,

@
f equilibrium _ EO ‘/t

— (35)
’ Cov, (p,. V" (F, - F))

Equation (35) shows an investor in equilibrium will hold futures contracts long if his
degree of risk aversion moves in the same direction as the value of the futures contract and short

otherwise.
sign{f, } = sign{Cov, (0,,V," (F, - F)))} (36)

Therefore, the producer hedges because the value of the futures contract increases when the
expected spot price of his goods falls. An investor without a position in the underlying asset is
less risk averse when the value of the futures contract increases and is therefore willing to act as a
speculator.

If the futures prices are increasing (normal backwardation), then as can be seen in

equation (35) using the result of (36), then the speculator is willing to take a long position. If the
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futures prices are increasing (contango), then as can be seen in equation (35) using the result of

(36), then the hedger is willing to take a short position. These results are summarized below:
F,—F <0= f, <0 for a speculator
F,—F,20= f, 20 for a hedger

To find the impact of the prudential motive on risk taking, I derive equation (2) noted

here (36), pricing the futures contract as a function of the futures price F, , as a function of the

futures position f; and then the futures price F, , I obtain equation (37) and then (38):

E,VO(F,-F)=0 (37
E\V,®(F,-F,)*=0 (38)
EVPUF, -F)+EVP f{(F,—F) =0 (39)

Equation (38) can be rewritten in the following manner:

2E,(V.ONF, ~F)= EVS fy(Fy~ F 40)

2B, 0V (Fy~ ) = f,Ey p, V" (Fy ~ F) o

fo2 = 2E0Vt(1)/Cov0[‘f('1) ptVt(l)(Fo —Fz)’Vtm(Fo ~F;)] (42)
t

From the result of equation (36), equation (42) can only hold if the hedger becomes more prudent
for every dollar invested as the value of the futures contract increases. Conversely, a speculator

becomes less prudent for every dollar invested as the value of the futures contract increases.

Covy (p, [V VO (F,~F))20 f,20 @3)

Covy (p, V" VO (F, - F))<0 £, <0

The proposition 2 therefore holds.
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Proposition 3: Risk aversion mechanism
sign{0fy /9p, }=~sign{EV," (5, ~ F))}

sign{0 £, /9p? } = sign{E,p, V" (F, - F, )}

Proof of Proposition 3:

Deriving the futures demand (supply) of equation (3) as a function of the second

derivative of the utility V', I find that:

afo _ —E, (Vr(l))Eth(l)(E) - F;)

(44)
o, (EpVOFE-F)
Introducing equation (3) into equation (44), the equation simplifies to:
2
Voo JoE v~ F) @s)
o,  EV®
The utility being increasing, it follows therefore that:
sign{of, /dp, }=—sign {EV" (F, - F,)} (46)
Deriving equation (47) as a function of the degree of risk aversion:
2

azfo ~ Z(EOVI(I))(EOVz(l)(E) _E)) )
aptz (Eopt Vt(l) (F;) - F; ))3
The utility being increasing, it follows therefore that:

sign{0’ f,/op} } = sign{E,p, V" (F, - F,)} '(49)

Hence, from the results of (46) and (49), proposition 3 is proved.
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Proposition 4.1: Dynamic risk

%Ci <0 if F, < F, the futures price is decreasing and pé > ((1+06)0 )_1
[04

Note that the index for risk aversion now depends on whether we are considering the

instantaneous utility function U (77, j), J =1,...,00 or the utility function V(7 ; ), j=1,...,00.

Proof of Proposition 4.1:
To find the impact of dynamic risk on the use of futures contracts df;, / da, I must first
find oV, /0 and OV /dc. The intertemporal utility function under non-separable

preferences is given by equation (50). & represents the degree to which present and future
utilities are linked for the investor when taking a decision today. When it equals zero preferences

are said to be separable as tomorrow’s utility is added to today’s. f is the standard parameter

describing the agent’s preference for time and 7] is the horizon of the investor

7 ) I-o
v, =|:§6ﬁ‘U(ﬂ:m):| (50)

The utility’s first derivative is given by equation (51) and its second derivative by equation (53):

AR (1—a)Uf”[§ﬁ"U<m+.->]_ =(-a)U v« (51)
i=0
@ _ WY - o2l & pi -
VO =-a) UP| 2 U@, | -alU) XU, (52)
[ —a l+a
VP =(-a) UPV~ —aU® ) V,T-E] (53)

3] th(l) / da : Deriving the first derivative of the utility (51)as a function of the parameter

LA ol & o - N R
——a’ :—U}’[Zﬁ’U(ﬂm)} +(1—a)U,”[Eﬁ’U(7z,+i)} ln[Zﬂ’U(ﬂm)} (54)
(04 =0 =0 1=0
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a

av,® - y
— = U,‘”th-a(— 1+(1-a) ln[z B'U(m,,, )D (55)

do

2) V@ / da : Deriving the second derivative of the utility (53) as a function of the parameter &

a‘/t(Z)
da
. . —a 3 . —-o-1
“(U,m[%ﬂl(](ﬁt“)] “a(Ut(l)) [%ﬁlU(ntﬂ')il )
-a-1

o 04 a-1

= = T, - —a-l ol
+(1- a){‘U,‘”V,““ v, -([U® ){Zﬁ'U (n,ﬂ)} +aU® v, my, ](56)
i=0

- -a-1
L ooy
v,
dor o , =t , ot et
+ (l~a)(—U,(2’V, e [y ia _(Ut(l) )~Vt oy Oc(U,(”) Ve [ny, e ] )
v VF‘{— UP +(1-0)(-U® V= )} +
! —
J -o-1 5 ) 5 ot
yis {Q(Uta)) a0 +alg® f iy )} (58)

~yPyie [1 +(1-a)(In VF)}

LA
— = (39)

aa p et =
+(Ut(1)) Vi g+ (I-a)(-1+alnV, =)

3) df, / 9 : The demand for futures equation given by equation (3) is differentiated as a function

of the parameter &
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1

E, {U}”V;g(—n(l—a) InV,= H EV®(F, -F,)
A

do (EYVO(F, - F))

YOy - [1 +(—o)(In VF)} (60)
_Eo (V:(l))Eo (F;z - FE))

-a-1 ot
HU®@) v [a+(l—a)(—1+aan, - )]

(EVP(E, - F))*

E, [U,“’V,’E (~1+1mv, )]EOV,‘” (F, -F,)

a‘f—0=
da (E,VP(F,-F,))* 61)
- 3 oot
~E,(V")E, l:(F,Z —FO{ —uOvEei—amy, - Vv, l+at+oymy, )]}
(E,V2 (F, - F,))
E, [U,‘”V,_l-_a (~1+mv, )}EOV,‘” (F,-F,)
o _
da (E,VP(F - F,))* )
-a Lo
~E,(V")E, [(F, ~F, )V,‘““(— UPl—-amv, -2 Yviel+at+any, )]
(E,V?(F, - F,))’
E|UOV, e (- 1+1nV, )|E,V® (F, - F,)
.%..: =
2) - 2
m Wy e [ ] L @} %[ ]
+E,(VO)E,| (F, - F) UV | [l-aln, +W(U, Fviefi+ad+aymy, )

(EO‘/t(Z) (Ft _Fo))z

Using equation (71) of proposition 4.4
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E,|UOV, " (~1+InV, )|E,V.® (F, - F,)

% _ |
2 _ 2
dat (E,V® (F, - F,)) )
—a -1
+E, (V,“’)E{(F, ~F U v e i-amy, |+ Uu®pl vieiraqraymy, )]
(EVP(F, - F,))’
e

Using equation (68) aU "V, ¢ = Py, — Py, =0 20 (proof of proposition 4.4)
Yy _1E, v, (-1+1nv, JE,v® (F, - F,)
doo « (E,VP(F, —Fy))? 65)

+E,(VOVEF, - Fyyov, (14602 ) +ainV, (-1+1+a)bp? )]
(E,V.? (F, - F,))*

1
af—o <0 if the futures contracts’ prices are decreasing and p‘% z—
do (1+ax)d

Hence proposition 4.1 is proved.
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Proposition 4.3: Relation between the elasticity of the marginal rate of substitution through
time 0 and the parameter O :
_dlnV, l-a

= LRI (66)
dlnm, & ,; o
‘Y BUM®,,)

i=0

Proof of proposition 4.3:

Using the definition of the utility function from equation (13) it is straightforward to find:

M
n tUt
T

2 BU,.,)

o= dlnV,
dln7,

~(-a) ©67)

Proposition 4.4: Relation between the degrees of absolute risk aversion p(}j , '0;}, and the

EMRST o

o

A A

py =p; +0——
K Ur -

Note that A means absolute

Proof of proposition 4.4:

Using the definition of the utility function from equation (13) it is straightforward to find:

Lo e =
VO =a-au?| 3 pue,) | - a-au oy (63
i=0
- , _ia
v® = (1—05)[U,(2)V,“°‘ —au®Yy, l-a} (69)
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We can derive therefore the risk aversion for the utility function from these two equations as:

1
vo o _
Py, =~ Vt(n - Ut(l) +aU,"V, =

t t

Using equation (70), the conclusion of the demonstration follows. Note that:
L
= p, =py +aULPV, """ =0=p, —p, 20if €20 and V,20

1 —
v, " Py,

L p
auv, " =p, —p, V, =(1-o)In(———7—) (71
: OCU( )

!
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Minor sets of proofs:

Proof 1: Risk aversion is an increasing function of profits if v® <o (prudential motive).

ap, yoyo_yor  yo ye 2 ye .
. y 02 0 + Yo | Ty P # (72)
t t t

I3

Proof 2:

Assume that the utility function V, defined in equation (13) is positive. The instantaneous utility
functions U, and the utility function V, are assumed to be concave. The second derivative of the

investor’s utility function (Vt(z)) is negative if O <o <1. Hence, the parameter must be

bounded between 0 and 1 for the hypothesis that the utility is concave to be true.

4o

Vo =@ —(x)[U,”’V,E -au® v, (73)

Proof 3:
I show that the trading cost is a function of the investor’s expected local risk aversion and the

value of profits and approximately the variance in the futures market. If the futures drift is not too

great, then the futures price is a good predictor of its value in the future Fy, = E(F,).

Eopt(vtfil)(Ft ~F0)2)2E0(ptvtfil)(Ft —EOFt)Z) (74)
Using the definition of the expected covariance, the equation (75) becomes:

Eop, (VP (F - F,)*)=

m 2 o 2 (76)
Ey(pVE, ((F, = EyF)* )+ Covy (p VP, ((F, ~ E,F)?))
Assuming away the conditional covariance on the left side, equation (77) further simplifies to:
Eop V. (F, = F)* )= Ey 0,V xVar, (F,) 78)
Therefore, the trading cost is a function for the investor’s expected local risk aversion and the

value of profits and approximately the variance in the futures market.
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What does the simplification on the covariance imply?

I define the shock in the futures variance €, using the definition of expectations by the following
equation Var,(F,)=E, ((F, ~E,F)? ): (F, — E,F,)* +¢,. Using this definition in equation
(79) it becomés:

E,p, (V0 (F, = ) )= By (pV)E(F, = E,F)* )+ Covy (o, V.9 ¢,) an
Hence removing the covariance is equivalent to assuming that shocks to the variance of futures

prices have no impact on risk aversion and marginal utility and consequently on the futures price.
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ILLIQUIDITY AND THE GRAPH OF THE IMPLIED VOLATILITY FUNCTIONS

In the previous paper, we have shown that the wealth effect in the futures market is
strengthened in the presence of illiquidity. In the following paper, we consider the impact of
illiquidity on European put options. llliquidity in the put option’s market can potentially jointly
explain the empirical puzzles concerning the graph of the implied volatility as a function of
moneyness and as a function of the volume or open interest. Illiquidity proves to be closely
related to volatility in the underlying spot price for options close to or at the money. It can

therefore be partially controlled by hedging the Vega risk of a change in volatility.
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ILLIQUIDITY AND THE GRAPH OF THE IMPLIED

VOLATILITY FUNCTION

ABSTRACT

Iliquidity in the put option’s market can potentially jointly explain the empirical puzzles
concerning the graph of the implied volatility as a function of moneyness and as a
function of the volume or open interest. Illiquidity proves to be closely related to
volatility in the underlying spot price for options close to or at the money. It can therefore
be partially controlled by hedging the Vega risk of a changein volatility. This could
explain why Bollen and Whaley (2002) found that abnormal returns from selling put
options disappear when controlling for Vega risk. Put options, as well as futures
contracts, are priced using the technique of changes in the subjective probability measure
normally reserved for risk neutral pricing. In addition, we explore how changes in the
hedging period, size of the cash good being hedged and profits change the demand for put

options and futures contracts.
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INTRODUCTION

The underlying asset’s volatility is assumed constant in the Black and Scholes option
pricing models and therefore, the implied volatility of put options on the same underlying asset
should be the same. However, empirical research has found that this is not the case and that
implied volatilities of put options with different exercise prices on the same underlying asset are
different. This phenomenon is a puzzle that academics are trying to explain. In addition, Judd and
Leisen (2002) report that fixed maturity plots of a call option’s open interest across strike prices
peaks for the at-the-money contract. The third puzzle, is that time variation in the implied
volatility depends also on net buying pressure (Bollen and Whaley (2002)).

Illiquidity in the put option’s market can potentially jointly explain these three empirical
puzzles concerning the graph of the implied volatility as a function of moneyness and as a
function of the volume or open interest. Illiquidity, derived as an endogenous trading cost, proves
to be closely related to volatility in the underlying spot price for options close to or at the money.
It can therefore be partially controlled by hedging the Vega risk of a change in volatility. This
could explain why Bollen and Whaley (2002) found that abnormal returns from selling put
options disappear when controlling for Vega risk. Put options, as well as futures contracts, are
priced using the technique of changes in the subjective probability measure normally reserved for
risk neutral pricing. In addition, we explore how changes in the hedging period, size of the cash
good being hedged and profits change the demand for put op~tions and futures contracts. The
demands for put options and futures contracts are shown to increase with the investor’s wealth
and are therefore normal goods. In addition, the demand for put options and futures contracts
increase with the number of goods produced and the hedging period.

The paper is organized as follows. In section 1, previous work on explaining the implied

volatility functions is presented: In section 2, the model is presented. In section 3, the illiquidity
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trading costs are derived first for each investor and in the aggregate equilibrium using the market
clearing condition that the aggregate supply and demand are equal. In section 4, illiquidity is
shown to potentially explain puzzles in option pricing related to the implied volatility surface as a
function of volume and moneyness. In section 5, equilibrium-pricing solutions are derived using
changes in the probability measure using a variant of the equivalent martingale measure. In

section 6, the determinants of the demand for futures and put options are derived.

1. PREVIOUS WORK ON THE IMPLIED VOLATILITY FUNCTIONS

Models of derivatives prices by previous researchers generally assume that markets are
complete so that each derivative has a perfect substitute to replace or replicate it. The demand and
supply for the assets are therefore perfectly elastic so that buying or selling does not create a
pressure on the markets. Markets are defined as liquid by Friend and Blume (1975), as anyone
can buy or sell any quantity at no cost. However, in practice, markets are incomplete as there are
frictions (credit risk, borrowing limits...) limiting the ability to arbitrage'®. The derivatives prices
are then determined in equilibrium by equating their supply and demand. Trading becomes risky
and derivatives markets illiquid.

The study of illiquidity trading costs is part of the derivatives microstructure literature
which seeks to explain known limitations of current pricing models. These are summarized in the
graph of the implied volatility, which should be a constant function of the strike price and
independent of volume. However, the graph of the implied volatility decreases monotonically as a
function of the strike price or moneyness. Judd and Leisen (2002) report that fixed maturity plots
of a call option’s open interest across strike prices peaks for the at-the-money contract. Bollen

and Whaley (2002) find that the time variation (term structure) of the implied volatility of an

! See Constantinides and Perrakis (2002) for an example of the impact of exogenous transaction costs on
the ability to arbitrage. Illiquidity will imply an endogenous transaction cost in this paper.
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option series is a function of net buying pressure from public order flow using S&P500 index put
options and twenty individual stocks. Net buying pressure is defined as the number of contracts
traded at or above the prevailing bid/ask midpoint less the number of contracts traded below the
prevailing midpoint. Finally, Bates (2001) studies a market where negative jumps (crashes) can
occur. Less crash-averse investors insure the more risk-averse through the options market. Bates
finds that heterogeneity amplifies the impact of jumps (crashes). Option prices then overpredict
volatility and jump risk due to the wealth effect.

This paper shows that net buying pressure creates illiquidity in the derivatives market in.
the form of an endogenous illiquidity trading cost that amplifies the wealth effect. This can
potentially explain empirical puzzles related to the graph of the implied volatility functions as a

function of moneyness, volume or open interest and time structure.

2. MODEL

There are G producers hedging in the derivatives markets and N speculators willing to
take on their risk in these markets. The price of the producers’ good, the number of producers and
hedgers are determined exogenously. It takes ¢ periods before a producer sells his good, while his
production costs are incurred at the beginning, time Q. This leaves him with the risk that the
price of his good might fall between the time he starts production and the time he sells it. He can
hedge this price using futures or insure against a fall in the price of his good using put options.
To avoid introducing illiquidity as a risk of reversing a given position and thereby complicating
the notion of illiquidity, the option is assumed to have the same maturity as the hedge and the
underlying good is assumed liquid. The futures contract margins are ignored and considered an
additional source of friction behind the assumption of market incompleteness limiting the ability

to replicate assets without risk. Both put options and futures will be in demand as neither
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instrument can fix in advance the price of the production, due to frictions behind the assumption

of market incompleteness, such as the aforementioned marking to market or limits to borrowing.

To hedge the price of the good he produces, the producer can short f, futures contracts
at the price of F;. To insure against a fall in the price of his production good, the producer can
purchase n, long put options at a price of F, giving him the right to sell at.the strike price K a
unit of his good at the maturity t of the option. The producers’ profits 77, at time t come from
selling y, of his goods at a price of S, at a cost of production of ¢(y,). In addition, the
producer pays initially the premium n,Fy for the put option with a payoff of ny,Max(K - S, ,0)
at maturity. Hedging with futures is initially cost free for a payoff of f,(F; —F,) at maturity.

The profits to the producer are summarized in equation 1

7, =8,y —c(¥o) + fo(Fy — F,) + nyMax(K — 8,,0), 7, =-n,F, )
Speculators, defined as having no position in the production good, are willing to be the

counterpart of the hedgers in the derivatives markets for a price. Their profits are given by

equation (1) with the production part removed. We will refer to producers as hedgers in the text,

while the term “investors™ stands for speculators and hedgers in the derivatives markets.

Speculators and producers maximize the utility V(7,,;), j=1,...,o0 they derive from
their profits. The utility function is assumed increasing and concave as a function of profits and

separable preferences. I will use the notation Vt(i) for the i" derivative with respect to profits of
the utility function V(7,, ;), j =1,...,%0 at time .
The investor can choose the amount f,; of futures contracts so as to maximize his utility

V(x,,;), j=1,...,00. Differentiating V(7,, ), j =1,...,00 withrespect to f, under the constraint
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of equation (1) gives the futures pricing equation. Further dividing by the marginal utility at time
0 V,(O) yields equation (2).
E,M,(F,~F)=0 @

The price of the futures contract Fj is the expected value of its payoff in terms of the

marginal rate of substitution M, = V,(I) / VO(D . It represents the investor’s risky discount rate and

would equal the risk free discount rate in complete markets after a risk neutral transformation.
Futures contracts are valuable as they reduce the producer’s risk or enhance the speculator’s risk,

that is they change his risky discount rate.
The futures demand and supply f,, derived in a previous paper” and thereafter referred
to as the futures demand, is found by differentiating equation (2) as a function of the futures price

Fy at time 0. Hedgers offer futures contracts to speculators who have the same utility

maximization problem, but are long in the future contract and have no position in the underlying

asset. The resulting futures demand is given by the following equation (3):
fo= EOVt(])/EOVr(Z)(Ft —F)=EM, /Eﬁpt M, (F, - F) &)

The demand for futures contracts by the hedger depends on the expected value of profits
at maturity E M, as well as the expected value of the futures contract on a risk adjusted basis
E,p,M,(F,-F,), where p,=-V® / V® s the degree of risk aversion. Note that the
demand for futures contracts depends on the options contract through the impact of profits on the

utility and therefore on the marginal rate of substitution M, =V ® / V" as well as on the degree

of risk aversion p, =—V,® / Ve,

0 Galy (2002)
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The investor can choose the amount n, of put options so as to maximize his utility
V(n,,;), j=1,...,cc. Differentiating V(rr,, i) J =L,...,0 with respect to n, under the constraint
of equation (1) yields equation (4).

Py =EM,Max(K - S,,0) 4)

The price of the put option F, is the expected value of its payoff discounted by the

marginal rate of substitution” M, = V,(” / V" . Put options are valuable for hedgers as they

reduce their risk while speculators enhance their risk.

The demand for put options n, is found by differentiating equation (4) as a function of
the put options price F, at time 0 yielding equation (5).
n' = pOEOM, Max(K -S,,0) = p,P, 5)

The demand for put options is an inverse function of the investor’s current degree of risk
aversion” p, and the expected value of the payoff. Note that the demand for options contracts

depends on the futures contracts through the impact of profits on the utility and therefore on the

marginal rate of substitution M, =V / Vs as well as on the current degree of risk aversion

po ==V V5"

3. ILLIQUIDITY AS AN ENDOGENOUS TRADING COST

In this section, we relax the assumption that investors can buy or sell any quantity of

derivatives without additional cost”. Equivalently these markets are imperfectly liquid. This

! Under the assumption of market completeness used in the arbitrage approach, after a risk neutral
transformation, M, would become the risk free discount rate.

* An increase in the degree of risk aversion increases the discounting of the payoff through the marginal
rate of substitution, so that its net effect is unclear.
5 This did not correspond to the case of complete markets, as frictions are still assumed to prevent
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changes the investors’ problem, as the prices of the derivatives are no longer independent of the
size of the trade. In addition, producers must initiate a trade thereby creating a pressure on the
derivatives market that will attract speculators, defined here as having no position in the
underlying asset. This creates an illiquidity trading cost that was derived for futures contracts in a
previous paper® and is derived here for put options. The trading cost for futures contracts will
change in this model only in that the profit function now has options contracts in addition to the
futures contracts. The equations are otherwise not modified.

Now that the futures and put options prices are no longer independent of the quantities
that are traded in these markets, the investor’s optimization problem endogenously creates an
additional illiquidity trading cost. Therefore, the futures and put options demand are given

respectively by equations (6) and (7):

EVOF, - R+ B0 2 Fo) | ©
7,
P, +1, 3P, [n, = E,M, (K - S, 0) %)

Hedgers pay  the  illiquidity  trading  cost in  futures contracts
TC, = f,EV " (9(F, - F,)/9f,) and in put options contracts TC, = n, OF, /on, as they need

to attract speculators to shift the risk of selling their production at time t. These costs would

disappear only if the supply was perfectly elastic or the trade was negligible in size.
The slope of the futures contract d(F, — F,)/df, and put options 0P, /on, demands in

equations (6) and (7) can be determined from equations (2) and (4) where trades were assumed to
be too small to matter. The slope of the futures and put options demand are therefore given

respectively by,

a(Fr _Fo)

E,V®
o o

= _Eoptvzm (F,-F)* = EOVr(ZJ(F: - Fo)2 ®)

arbitrage.
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?:—EoptM; MCDC(K_SHO)z_PO /nO ®
n,

See Proof 1 for more details
The futures and put options prices in the presence of illiquidity are therefore, combining
equations (6) with (8) and (7) with (9):

EVYO(F, ~F)—1.f, E,p,V"(F,—F))* =0 (10)

P, —Ing,E\M,,|p, Max(K -, 0)* + B, p,,Max(K - S, 0)]

(11)
= E,M,,Max(K - S,,0)

I, =1 if i is a producer (hedger) and 0 otherwise (speculator)

Now that we have derived the pricing equation for individual investors with hedgers
paying an illiquidity trading cost to speculators, we must find the equilibrium price for the futures

and put options markets by imposing the market clearing conditions for these markets

NG N+G )
2 Jo,=0and ¥n,, =0, where G is the number of hedgers and N the number of speculators.
i=1

i=1
The prices of the futures and put options contracts are therefore given by equations (10) and (11)
in equilibrium. The futures value is pushed down by the illiquidity trading cost, as hedgers must
short at a lower price in an illiquid futures market to attract speculators. The put option’s price
increases when that market is illiquid as speculators ask hedgers for a higher premium to cover

the risk of a fall in the price of the underlying good.

NIG NG o 5
E, 2_:1 Vt.i (F, -F)-E, % fO,iEOpl,i(Vt,i (F, - F) ):O (12)
S M, .| M6 M,
B, ~§no,iEoT[pmMax(K—S,,O) |= 3 Byt Max(K 5,.0) (13)

The condition that speculators have no exposure to the underlying spot good is not imposed

directly in the equation (13). Under a risk neutral transformation (assuming market completeness)

* Galy (2002)
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one would transform the left side of equations (12) and (13) into a discrete version of the Black
and Scholes formula for futures and put options. However, these prices would ignore the
illiquidity trading costs. For futures contracts, the illiquidity trading cost diminishes the futures
value linearly with the futures demand at approximately the square of the futures price variance.

For put options contracts, the illiquidity trading cost increases the option’s price linearly with the
put options demand at approximately the square of the moneyness measured by (1-.S, / K).

Hence, far in the money puts will be much more expensive® than in the absence of an illiquidity

t,i

N+G
trading cost in incomplete markets Fy = ), E,

i=1

Max(K —S,,0) or under a discrete version

of the Black and Scholes formula in complete markets P, =1/(1+ rt)E(?Max(K -5,,0). In
proof 2, we show that the risk neutral probability O is used to transform the risky discount of the

marginal rate of substitution M, into a risk free one 1/(1+r,).

4. ILLIQUIDITY AS AN EXPLANATION OF SOME PRICING PUZZLES

The underlying asset’s volatility is assumed constant in the Black and Scholes option
pricing models and therefore, the implied volatility of put options on the same underlying asset
should be the same. However, empirical research has found that this is not the case and that
implied volatilities of put options with different exercise prices on the same underlying asset are
different. This phenomenon is a puzzle that academics are trying to explain. In addition, Judd and
Leisen (2002) report that fixed maturity plots of a call option’s open interest across strike prices
peaks for the at-the-money contract. The third puzzle, is that time variation in the implied

volatility depends also on net buying pressure (Bollen and Whaley (2002)).

® Investors will use derivatives as long as the benefit from using them exceeds their cost (proof 9).
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Illiquidity in the put option’s market can potentially jointly explain these three empirical
puzzles concerning the graph of the implied volatility as a function of moneyness and as a
function of the volume or open interest. Iliquidity, derived as an endogenous trading cost, proves
to be closely related to volatility in the underlying spot price for options close to or at the money
(see proof 8). It can therefore be partially controlled by hedging the Vega risk of a change in
volatility. This could explain why Bollen and Whaley (2002) found that abnormal returns from
selling put options disappear when controlling for Vega risk. While these results are generally
derived for indexes, the model’s concept of hedgers covering a future price risk applies also to
indexes, as these are also used to manage the risk of an uncertainty in the price of an underlying
asset.

The first puzzle, concerning the graph of the implied volatility as a function of
moneyness, can potentially be solved in this model. Illiquidity may explain why the graph of the
implied volatility is related to net buying pressure. Since the implied volatility is determined
using observed put options prices from markets that are not liquid, it will include an illiquidity
premium. This implies higher prices than under Black and Scholes and therefore a Black-Scholes

implied volatility that increases approximately at the square of the moneyness
g 2

21, Ey (M 0 / N Ipm.Max(K -5,,0) ] in equation (13) of our model. Hence, illiquidity would
i=l

create the nonlinear graph of the implied volatility observed in the data.
The second puzzle concerning the graph of the implied volatility as a function of the put
options demand can also potentially be solved in this model. First, let us show that a plot of call

option open interest across strikes would peak for the at-the-money contract. If the option is close

to or at the money S;=K, then the illiquidity trading cost in equation (13)
G
IC, = g:anJEO (M,’i /N{p,iiMax(K :oSO ,O){I = 0 will be close to zero, replacing E,S, with

Sy Therefore, the option is the most liquid when the option is close to or at the money as the

93



trading cost approximately disappears, making it more attractive to investors. Hence, the demand
for put options should peak close to or at the money, as put options are the less costly in terms of
illiquidity trading costs.

Second, let us show that the graph of the implied volatility, in particular its time

variation, is directly related to net buying pressure from hedgers. The higher the net buying

G
pressure from hedgers >’ n,, , the higher the illiquidity trading cost. If most put options are close
i=1

to being at the money S, = K, then the illiquidity trading cost is approximately related to the

variance in the underlying asset at the maturity of the option, assuming again that the underlying

G
asset follows a random walk E,S, =S,, TC, ZZnO,iEO(M i / N)p,;Var,(S,), where the
i=]

conditional variance of the underlying asset price is Vary(S,) (see proof 8). Hence, the expected

variance in the spot market Var,(S,)increases in importance for pricing, the larger the net

buying pressure from hedgers. This may potentially explain the result of Bollen and Whaley
(2002) that hedging pressure impacts future volatility. This suggests also that controlling for
changes in the volatility of the underlying asset, called Vega risk, is a way to control® illiquidity

for put options close to or at the money.

5. PRICING DERIVATIVES IN THE PRESENCE OF ILLIQUIDITY

The equations (12) and (13) which price futures and put options contracts in the presence
of illiquidity depend on the choice of an unobserved utility function limiting their value for
practical applications. In this section, we show how equilibrium-pricing solutions for the

derivatives are derived using a variant of the equivalent martingale measure and can be more

% Control in the sense of bringing prices closer to their arbitrage or risk neutral values.
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easily applied. In practice, we would need only to specify the path of the underlying asset with

the appropriate mean depending on the change of probability measure.

5.1 PRICING FUTURES IN THE PRESENCE OF ILLIQUIDITY

The equation (12) which prices futures contracts in the presence of illiquidity can be

transformed using changes of the subjective probability measure P(s). We will define the
probabilities Q(s) and W(s)as transformations of the investor’s subjective probability P(s) of

the event s .
Dividing equation (12) by the marginal value of a dollar at time 0, we find that equation

(12) can be rewritten to introduce the marginal rate of substitution through time.
N+G G 2
EO % M"i(E—Fo)ﬁfs:%fo.iEOMz,ipt(F; _FO) =0 (14)

The probability Q(s)= P(s)M,(s)/E,M, is called the risk neutral probability as
payoffs are discounted at the risk free rate under this probability (see proof 7). Under this risk
neutral transformation, the future’s expected payoff is discounted at the risk free rate. This
transformation is independent of the utility function that is used as the marginal rate of
substitution disappears from the pricing equation. In incomplete markets, this can only be
considered an approximation. However, this has the advantage of having the illiquidity trading
cost as a premium to the risk neutral or arbitrage price whose computation is well understood.

The utility function can be removed entirely from equation (12) which prices the futures

contract by changing the subjective probability P(s) of the event s by the probability
W(s)=P(s)p,(s)M,,(s)(F, - Fy)|Eyp ;M,, (F, ~ F,). Under this transformation, the

illiquidity trading cost equals the present value of the futures contract (see proof 2). This can be

verified by multiplying and dividing by the inverse of the futures demand

fo =—EM, / E,p, M, (F, — F,) into the illiquidity trading cost of the equation (12) which
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prices futures contracts and using the marginal condition 1/ l+r, = E,M, (see proof 6). Under

this double change of probability measure, the futures pricing equation (9) becomes independent

of the choice of utility.
N+G 0 G w
F, =<1/N>[§ B )+ B (F) 15)

See Proof 2 in the Annex

Where O and W are two probability measures defined in proof 2, N the number of speculators
and G the number of hedgers. The futures price is a weighted average of the expected futures
prices. The illiquidity trading cost takes the form here of a downward pressure, under the
probability measure W, on the expected futures price as hedgers seek to shift their risk by selling
futures contracts. The equation could price futures in practice by assuming a path for the stock

price at maturity and finding the mean corresponding to each probability measure change.

5.2 PRICING PUT OPTIONS IN THE PRESENCE OF ILLIQUIDITY

The equation (13) which prices put options contracts in the presence of illiquidity can be

transformed using a change of probability measure. Let P(s) be the subjective probability of the
event s used by investors, while Q(s) and X (s) are other probabilities of the same event?.
The probability Q(s)= P(s)M,(s)/E,M, is the classic risk neutral probability as can

be easily verified (see proof 7). Under this risk neutral transformation, .the option’s expected
payoff is discounted at the risk free rate and this irrespective of the agent’s utility function. In
incomplete markets, this can only be considered an approximation. However, this has the
advantage of having illiquidity as a premium over the risk neutral or arbitrage price whose

computation is well understood.

" These probabilities will be chosen as transformations of the subjective probability P(s).
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The utility function can be removed entirely from the option’s pricing equation (13),
which prices the option’s contract by changing the subjective probability P(s) to the probability
X(8)=P(s)p,,;,(sIM, ,(s)Max(K — ST,O)/EOpOJ.M,JMax(K —57,0). Under this double

change of probability measure, the option’s pricing equation (12) becomes
G N+G

P, = (1/N)[2 By [(0,;/pos)Max(K = S,,0) |+ 1/(1+1,)) Y, EEMax(K -, ,0)} (16)
i=1 i=l

See Proof 3 in the Annex.

The option’s expected payoff under the probability measure Q(s) is discounted at the risk free
rate, while the illiquidity trading cost equals the option’s expected payoff under the probability
X (s) multiplied by the change in the degree of risk aversion. Intuitively, the more fearful
hedgers are of a crash (measured by the degree of risk aversion at maturity p,), the more illiquid

and expensive put options will be and this beyond the wealth effect®® assumed away by making a
risk neutral transformation of the payoff. Speculators are willing to bear the hedger’s risks only if
they receive an additional compensation over the option’s expected payoff.

The option’s pricing equation (16) could be further simplified and solved using the

decomposition of an expected option payoff, assuming a diffusion process for the spot good, and

making an assumption on the joint distribution of degree of risk aversion (p,; / P,,;) with the

option’s payoff Max(K —S,,0) (see Garcia and Renault (1998) for an example of this

approach).

% See Galy (2002) for a discussion of the wealth effect and its relation with illiquidity in the futures market
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6. DETERMINANTS OF THE DEMAND FOR FUTURES AND PUT

OPTIONS

In this section, we look at the determinants of the demand for futures and put options. We
find that futures and put options are normal goods, whose demand increases with production as
long as producing is profitable. The impact of the hedging period increases the demand for put
options if profits are expected to increase.

Proposition 1 shows that futures contracts are normal goods whose demand increases

with production and the hedging period as long as it is profitable.

Proposition 1: Determinants of the demand for futures contracts

1. sign(df,/ot) =—sign(F, - F,)sign(0r/or)

2. a;—020 if F,-F,<0andm, <0
y

%CESO if F,-F,<0andm, 20
y

%)
3. sign o = —sign(F, — F,)
or

t
Hedgers use futures the longer the hedging period as long as profits are expected to

increase. In addition, the use of futures contracts is an increasing function of the production of the

cash good being hedged if it is an economic liability (7, <0). It is a decreasing function when
g y 7L, g

the cash good is an economic asset (77, 2 0) . These results hold only when the futures prices are

declining, that is in contango. Finally, futures contracts are a normal good as their demand

increases and decreases with the investors’ wealth as measured by profits.
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Proposition 2 shows that put options are also normal goods under some weak conditions.
They are more in demand as production increases as long as it is profitable. Finally, the demand

for put options increases with the hedging period.

Proposition 2: Determinants of the demand for put options

1. dn, [0t >0 if proposition 2.3 holds
2. 9n,/dy, 20 if proposition 2.3 holds and p > C,

on,

20 if 0<9p, /97, < py(p, = P,) and VO <0

7o
The put options demand changes with the hedging period, the investor’s profits and the size
of the cash good being hedged. The option’s demand increases as the investor’s hedging horizon
or the option’s time to expiration increases.

In addition, the put options demand increases with the investor’s wealth as measured by his

)

profits if he is prudent V.’ <0. The degree of prudence P ="V, / V,fiz !, sometimes called

precaution, measures the investor’s willingness to bear risk as his profits or wealth changes (see
proof 1). Therefore, put options are a normal good for the investor. Equivalently, the investor’s
degree of risk aversion increases with his wealth (or equivalently his profits). The increase in his
degree of risk aversion must however be bounded by a function of his current degree of risk
aversion and his expected degree of risk aversion at the maturity of the option’s contract. Should
the investor expect a crash, he will demand more put options, as his expected degree of risk
aversion in the future will grow with his expected loss in wealth”. This same ratio of degree of

risk aversion to current degree of risk aversion is present in the liquidity cost of equation (15).

¥ The demand for put options was shown to increase (decrease) with increases (decreases) in the investor’s
wealth (not future wealth)
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The higher the demand to hedge against a crash, the more put options will be asked for and the
more expensive they will become as the put options market becomes illiquid.
Finally, the demand for put options increases as long as profits increase and the good

produced is still profitable.
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CONCLUSION

Illiquidity can potentially explain the graph of the implied volatility as a function of
moneyness and as a function of volume or open interest. Illiquidity is closely related to volatility
in the underlying spot price for options close to or at the money. It can therefore be partially
controlled by hedging the Vega risk of a change in volatility. This could explain why Bollen and
Whaley (2002) found that abnormal returns from selling put options disappear when controlling
for Vega risk. Futures contracts and put options can be priced in equilibrium in illiquid markets
using transformations of the subjective probability measures. In addition, the demand for futures

contracts and put options increases as the hedging period, profits and size of production increases.
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ANNEX

Proposition 1: Determinants of the demand for futures contracts

L. sign(df, [ot) = —sign(F, — F,)sign(d7/or)

d
2. aaiy"zo if F,~F,<0and 7, <0 aiy"so if F,~F,<Oandx, >0
3. sign—gfz—o = —sign(F, - I)

t

Proposition 1.1: Hedging period

sign(df, /ot) = —sign(F, — F,)sign(dr/dt)

Proof of proposition 1.1

Differentiating equation (3) as a function of 7, :

ad df, on

i]__ — fO 4 (17)
Jdt  Odm, ot

From proposition 1.3, therefore proposition 1.1 holds.

Proof of proposition 1.2

Differentiating equation (3) as a function of y and using equation (3):

¥, _ E0On,) - EVOn, (- F)] as)

dy, Ev® (F, ~ Fy)

Noting from proof 5 that sign{Ft - F, }: sign(Vt(S) ), it follows that proposition 1.2 holds.
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Proof of proposition 1.3

Differentiating equation (3) as a function of 7, :

¥ _ EVPEVP(F - F)-EVOEVO(F - F)

(19)
2
on, (EOVt(z) (F - Fo))
Using equation (3) to simplify

Yo _ BV )= fuFolVOF, - Fy) 0
o, EYV(F, - F,)
Using equation (34), the expression further simplifies to:

VAR T X VA S N A on
a”t E()V:(Z) (Fz - Fo) EOVt(Z) (F: - Fo)
The utility being concave, it follows that proposition 1.3 holds.
Proposition 2: Determinants of the demand for put options
L. dn, /0t = 0 if proposition 2.3 holds
2. dn, [dy, = 0 if proposition 2.3 holds and p = C,

dn, . -
3. >0 if 0<9p,/om, < py(p, —p,) and VP <0
0

Proof of proposition 2.1:

on, _ dn, 07, 22

ot dm, ot

From proposition 2.3, this implies that the sign(dn,/dt) =Proposition 2.3 holds

and Sign(aﬂ/ at). If profits are increasing and proposition 1 holds then the demand for put

options increases with the hedging period. Therefore proposition 2.1 holds.
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Proof of proposition 2.2:

on, _0ny 97y, _ dny (p—C.)

Using the compound rule for a derivative:
; ’ dy, 9w, dy, 9=, g

Hence, the demand for derivatives increases as a function of the size of the good being hedged as

long as it is marginally profitable and proposition 2.3 holds.

Proof of proposition 2.3:

Differentiating the option’s demand (5) as a function of the profits,

n, _ |EM,(K-5,) p,)om,

= (23)
877:0 [EOMT(K_ST)+pO]2
Let us derive the numerator separately:

. _V(Z)V(l) .
EM, (K -$,) p,)or, = G{EO —ar (K =S7) ] /8750 24)

0

. ___V(2)V(1) .

a[E()MT (K—ST) pol/aﬂo :Eo(a[—‘;(lTT:'/aﬂoJ(K_Sr) (25)
0
NEM, (K —5,) p, o, =
(26)

(V0(3)VT(1) 1 VO(Z)VT(Z) )V0(1)2 _ 2V0(2)V0(1) (VO(Z)VT(U) .
-E, pOn (K-S;)
0
VO(3)VT(1) + VO(Z)VZQ) ~ V0(2)2VT(1))
VO(I)Z VO(I)ZVO(I)

a[EOMT (K _Sr)+ Py 1/87[0 = _Eo( ](K ‘"Sr)+ 27

By .
8[EOMT (K ‘Sr)+poya”o = —E{ (;/(ng + PP M, —2pM . (K -S,) (28)
0

alEoMT(K _ST)+ Lo J/aﬁo =

_ V0(3) _VO(Z) V(l) i
—E| —5 & T(l) + PO M ~2p, M, (K -S,)" (29)
VO VO VO

104



AEM (K -5,)" p, |fomy, = —E, (vopu M, + oo, M, ~202M,, ) (K -5,)  (30)
AEM, (K = 5,)" p, |fom, = ~E,M (K ~5,)" p, (v, + p ~2p, ) 31

Where, v, = —Vom / VO(Z) represents the prudence which controls how risk aversion changes with

wealth (see equation (51) below). Introducing the result of equation (49) into equation (41), we

find that:

ony EM (K—-S.) p,,+p; —2p,)
- 2
o7, [_EOMT (K_ST)+p0:|

(32)

The elements of equation (50) are all positive with the potential exception of (v, + o, —2p,)
whose sign must be determined.

Uy + Pr =20, 20 (true if V¥ is sufficiently negative)

if Vg =04 2 06~ Pr

P, ~ Po) 2 Py(Py — Py

Po (0, + 0g) <=py (0 — Pr)

apo/ano = pO(pT _po)

3)
where, dp, /07T, = [)0(—1?0 +0,) :—“E] +p§ >0

0

0<0p, /07y < Py (pr — py) if VO <0

on,

Hence,

20 if 0<9p,/om, < Py (P —Py) and VP <0

0

The demand for put options increases when the investor is risk intolerant VOO) <0 in that his

degree of risk aversion increases with his profits:

dp, [or, ==V [VP +p2 >0 if V<0 (33)
4 t t t t 4
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This increase is relatively slow for reasonable values of the degree of risk aversion, assuming no

major crash. A major crash would push the investor’s degree of risk aversion at the maturity of

the option very high.
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Proof 1: Illiquidity trading cost for put options

Differentiating equation (4) as a function of the number of put options traded, we find that:

aPO 3 Vz(Z) Max(K - ST ,O)Vo(l) _ VO(Z) (_PO )Vt(l)

=FE Max(K - §,,0) (34)
an, " v ’
P V(2) V(l) V(2) V(l)
ok, = Ey ~—-Max(K - S, ,0)* + P, *_E, ——Max(K - S, ,0) (35)
al’lo V() V() VO() V()
t

Using the definitions of the marginal rate of substitution M, =V, / V" and degree of risk
. —_U® 6)) . . . .
aversion p, = —V, / V"', we further simplify the equation to:

§i =—E,p,M, Max(K — 5;,0)* = B, p,E,M, Max(K - $,.,0) (36)
o

Using the option’s demand of equation (5), the expression further simplifies to:

oF,

o == —Eyp,M, Max(K - S:,0)* = B, /n, 9)
no

The illiquidity trading cost is therefore:

TC, = ny OF, [on, =—n,E,p,M, Max(K - §,,0)* — P, (37

Proof 2: Pricing Futures Contracts in the Presence of Illiquidity

Multiplying and dividing the illiquidity trading cost in equation (12) by the futures
demand of equation (3) f, =—E,M, / E,p,M, (F, - F,), and multiplying and dividing the

expected value of the futures contract by the expected marginal rate of substitution, equation (12)
which prices futures contracts in the presence of illiquidity becomes:

NtG M“_
> (BM, B, ——5~(F, - Fy)

ot 38)
& EM,, ip M, .p, (F-F)

2 foi=
° 0,1' EMtlptt(F F)

(F,—F,)=0
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Q(s) = P(s)M, ,(s) / E,M, ; (s) is the classical risk neutral probability measure used to
change risky discounts into risk free ones, while

W(s)=P(s)p M, (F, - F, )/E0 p M, (F,—F,) isa probability measure, as:

SWs) 2P(s)p.M (F,~Fy) 2P®p,M (F~F)
Wi(s) = R T ACH _ s

seQ @ Eyp M, (F, - F,) E,p M, (F, ~ Fy)

— Eop,itMt,i(Ft _FO) -1

Eop,itMt,i(Ft - FO)

where possible events are noted by s and belong to the set of all possible events €.

P(S)p,itMt,i (Ft —Fy)

W(s) =
EOp,itMt,i(Ft - FO)

>0 as the marginal rate of substitution, degree of risk aversion

and the payoff are positive. Hence, W(s) can be defined as a probability.
The equation (22) can be further simplified using the usual marginal condition

EM,, = 1/ (1+r,) (see proof 6) so that equation (22) becomes:

N+G ] G 1
h) ES(F, —-F)+Y——EY(F,-F,)=0 (39)
i=1 1+, =1+,

Equation (23) can be further simplified as:

N+G

3 (E?(E)—F0>+§<E¥(E)—Fo)=o / (40)

i=1

Therefore, the futures price in the presence of illiquidity is given by the following equation:

N+G G
Fo= (V) 'S BE R+ S B (F,)} (15)

Proof 3: Pricing Put options in the Presence of Illiquidity
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Multiplying and dividing by the demand n, '= oPoM, Max(K —S,,0) the illiquidity trading
cost in equation (13), and multiplying and dividing the expected payoff by the expected marginal

rate of substitution £, M, ;, we find that:

G M Max(K-S.,0 ;
PO _(l/N)g‘;no‘in(;,]iEo pO,t 1,1 ( f ) |:p!,

Max(K -S,,0) |=
E,po M, Max(K - §,.0) Po;

(4D

N+G Mr i
(/N) Y, E,M, ,E,—"— Max(K - S, 0)
i=l ' EM

05" 1,0

This equation (25) can be further simplified using the equation E,M = 1/ (1+r,) (see proof 6)

so that the option’s pricing equation becomes:

R, = (I/N)EG) Ey [ 5 (K —S,)+]+(1/N)I§(l+ ) EQ(K=S,)" (42)
i=1

i=1 0,

P(s)p, M, (K-S )"

Is X(s)= "
EOpO,th,i (K - ST)

a probability?

Summing the probability as a function of all the events s possible in the set of all possible events

Q . we find that:

3 x(9)= 3 POPM K Z5,) 2, PO)po,M, (K =5)
@ e B M (K8t ooy M (K =S50
Eyp M, ,(K~S.) _

Eopo,iMz,i(K" ST )+ -

P(s)p, M, (K~-S;)

X(s)= "
Eopo,sz,i(K - ST)

20 as the marginal rate of substitution, degree of risk aversion

and the payoff are positive. Hence, X (s) can be defined as a probability.

Proof 4: Degree of risk aversion is an increasing function of profits if V¥ <0.
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Oy® _y @2 3) @ T 3)
VAU A A/ +[ v, }_ AURPEI )

on Vt(1)2 Vr(l) Vt(l) Vz(l)

i

Proof 5:

F-F,<0=V® <0and f, 20
F-F,>0=V® >0and f, <0

¢

Differentiate equation (2) as a function of F, twice to obtain equation (44) and then (45):
foEV®(F,-F)-EV" =0 (44)
S EVE + fEVO (- f)(F, - Fy))+ EV® f, =0 (45)
Equation (45) further simplifies to

2E0Vt(2)

EVO(F, - F,) = (46)

0
sign{EOVt(” (F,—F, )}: - sign{f0 }
From equation (3), we know that sign {fo }= —sign{F, - F, }
Combining these two results to deduce the relation between vV, and (F, — F,), we have:

sign{E,V.? (F, - Fy)}= sign{F, - F, }=—sign{f, }

Proof 5 therefore holds.

Proof 6: E.M, =1/(1+r,)
Assume that the investor borrows the quantity B, of a one period risk free bond with a payoff of

X, and a return of (1+r,). Then the profit function (1) then becomes:

T, =8,y —c(¥o) + fo(Fy — F,)+nMax(K —S,,0)+B,X ~B,_ X(1+r,), m,=-n,F,
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Investors chooses the number of bonds so as to maximize his utility V(7,, j ), j =1,...,00. This

yields the “classic” result that the marginal rate of substitution equals the risk free discount rate.

E,M,, =1/(+r,) 47

Proof 7: P, =(1/(1+ r,))EOQMax(K -5,,0)

Equation (4) can be modified as follows:

P, = E\M,Max(K ~S,,0)= 3. P(s)M, Max(K — S, ,0) (48)
eQd

Dividing and multiplying by the expected marginal rate of substitution E,M,, equation (48)

becomes:
P(s)M
P, =EM, 3 EOM ik -5,0) 49)
seQ EOMt
P(s)M, . . . . .
O(s) = —ET is the so called probability as the option under that probability Q(s) is

0 ¢

discounted at the risk free rate. Using the definition of the risk neutral probability and proof 6:

B, =(/(1+r))EMax(K - S, ,0) (50)

G
Proof 8: TC, = (1/N)> ny,EM,,p, Var,(S,)

i=l
The trading cost for the put option, when the option is close to or at the money is by definition

such that §; = K. Assuming the price of the underlying asset follows a random walk

E,S, =S5,,wefind that K = S = E,S,, so that the trading cost

G
1C, = Sy E, (m,, /N{pu.Max(K -5, ,0)2] 1)
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becomes by replacing K by E,S,,
G
TC, = 31y, (a,, /N{ 0, Max((E,S, - 50)2,0)] (52)

G
which further simplifies to TCPzVarO(St)(l/N)EnO,iEOM iP.;» where Vary(§,) is the
i=1

conditional variance of the underlying asset price.

1
Proof 9: F, 1

+r

E,Max(K —S,,0) = Covy(M, ,Max(K - 5, 0))

Using the definition of conditional covariance, the price of the put option in equation (4) can be

decomposed as follows: _

P, = E,M, E,Max(K ~ S,,0) + Covo (M, ,Max(K - S, 0)) (53)

Using equation (47) pricing a bond, we find therefore that:

P, - 1—:— EyMax(K ~S,,0) = Cov, (M, ,Max(K - 5,,0)) (54)

t

The marginal rate of substitution is the risky rate at which the investor discounts payoffs. Hence,
an investor is willing to pay a price F, above the arbitrage price (1/ d+r, ))E0 Max(K - §,,0)
if he can reduce with the option’s payoff his risk, as the risky discount rate depends on the

underlying asset price S .
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CONCLUSION

Illiquidity is introduced in the optimisation or trading problem of the investor as an
inability to trade and share risk without‘chang'mg the market price. This creates an endogenous
transaction cost and bid-ask spread without the need for informational asymmetries, inventory or
order processing costs. This trading cost is a linear function of the variance of the spot market
multiplied by the volume generated by hedging pressures, making the futures price dynamics
richer. lliquidity will exist in equilibrium even with very small trades if there is no price
mechanism to force market clearing at a single futures price confirming that risk sharing is a
source of illiquidity.

When the investor’s degree of risk aversion is allowed to change with wealth, risk
sharing creates an illiquidity trading cost that strengthens the wealth effect. This in turn increases
the fatness of the left tail and skewness of the distribution of futures prices beyond that created by
the wealth effect. Risk sharing becomes increasingly difficult as investors find themselves at risk,
creating a pressure on the futures prices for speculators to accept the risk unloaded by hedgers. In
the presence ‘of non-separable preferences, this mechanism is again strengthened as investors
worry about how uncertainty will resolve itself.

Illiquidity can potentially explain the graph of the implied volatility as a function of
moneyness and as a function of volume or open interest. Illiquidity is closely related to volatility
in the underlying spot price for options close to or at the money. It can therefore be partially
controlled by hedging the Vega risk of a change in volatility. This could explain why Bollen and
Whaley (2002) found that abnormal returns from selling put options disappear when controlling
for Vega risk. Futures contracts and put options can be priced in equilibrium in illiquid markets
using transformations of the subjective probability measures. In addition, the demand for futures

contracts and put options increases as the hedging period, profits and size of production increases.
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This thesis leaves open several questions for future research. First, what role do rational
expectations play in the liquidity of financial markets? Markets may become illiquid if investors
believe that a crash is going to occur. This belief may be self-fulfilling, thus precipitating the
actual crash. Second, what is the impact of illiquidity on the Value at Risk (VAR) measures used
to determine the amount of cash that banks should hold in reserve against a run on their deposits?
The VAR depends on the shape of the left tail of the price distribution of their portfolio of assets
and liabilities, which will change in a crash under selling pressures. There is therefore a clear

incentive to find an improvement to VAR measures, which are currently used.

114



SUMMARY

Derivatives markets can quickly become illiquid in periods of high uncertainty. Neither
the source of this illiquidity nor it implications are well understood. First, this thésis shows that
hedgers’ trades have an adverse impact on the futures price creating effectively an endogenous
trading cost increasing in times of uncertainty and acting as the source of illiquidity in these
markets. Second, illiquidity is shown to strengthen the wealth effect, which has been proven to be
too weak empirically to explain the behavior of prices. The wealth effect is the mechanism
through which changes in investors’ wealth impact their attitude towards risk. As investors lose
wealth, they become more risk averse and ask for a higher compensation to hold a risky asset
thereby decreasing its price. Third, illiquidity is shown to potentially explain the shape of the
implied volatility function not only as a function of moneyness but also of the options’ volume or
open interest. These results are derived from models, where producers maximize their expected
utility derived from their profits. They seek to hedge the uncertain price at which they will sell
their product in the future. They can use futures or put options to reduce this price risk but must
pay speculators, defined as having no position in the underlying asset, a premium. This premium
disappears normally as trades are assumed to be too small to matter and the risk of trading
perfectly shared. Both of these assumptions are relaxed to derive the illiquidity trading costs and

its implications.
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