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ABSTRACT

The Design and Implementation of Distributed Shared Memory

Based on Scope consistency

Wenlian Yang

Distributed Shared Memory (DSM) is one of the main approaches to implement
distributed computing. The purpose of this project is to design and implement a prototype
DSM that runs on popular TCP/IP networked Window PCs without special compliers
and/or linkers. Our DSM uses lock based scope consistency (ScC), and supports central
model, multiple server model and fully distributed model. We use object-oriented method
to encapsulate these models within one framework. We provide C++ APIs and a DSM
engine for C++ programmers to use DSM functions. The project is developed using C++

and Winsock APIs under Windows NT platform.
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OUTLINE

This report is organized as follows:

In chapter 1, we briefly discuss the concepts of Distributed Shared Memory (DSM),
including memory consistency models, granularity models and previous works. In
chapter 2, we present overview of our DSM system. We present an example to show how
to use our DSM. In chapter 3 we discuss several DSM implementation protocols, and
their relative merits. In chapter 4, we discuss the implementations on both the central
server model and the multiple server model. In chapter 5, we discuss how to implement
DSM using fully distributed solution. In chapter 6, we discuss the programming issues in

DSM development.
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Chapter 1 Introduction and Problem Statement

1.1 The Concepts of DSM

Distributed Shared Memory (DSM) is a popular and powerful distributed computing
paradigm. A DSM system has the following features:

a Multiple computers.

Q Interconnections connecting multiple computers.

a Multiple computers perform together to do useful work.

£1 P2 P3 PN

i i i i

v v Vv y
Mem Mem Mem Mem

I

< =

Communication Network
Logical Shared Memory

Figure 1.1 DSM Architecture

Figure 1.1 shows the general architecture of DSM, we can see that DSM is logically
shared memory. For more detailed introduction of DSM, please refer to [15].

1.2 Benefits and Drawbacks

Compared to another popular distributed computing paradigm, message-passing interface

(MPI), DSM has some major benefits:

0 Ease of programming: similar to the sequential programming in many aspects, DSM
programming is easier to learn and use. DSM provides simpler abstraction for
application programmers because DSM is built on top of MPI and hides many

complex details of internal data passing mechanism.



g DSM programs are usually short, more readable and understandable than the
programs written using MPI APIs. The programmers do not need to know about how
to use the complex MPI API functions, how to implement application communication
protocol, how to detect communication deadlock and how to implement

synchronization.

Compared to MPI, a major drawback of DSM is its efficiency. Usually a program written
with MPI is more efficient than a program written with DSM. DSM kernel, because of its
consistency requirements, greatly affects the speed of a DSM program. In order to
improve performance, DSM usually uses two strategies: locality and weaker consistency
models. Locality means there are multiple copies of a shared object. Each distributed
process should try to use its local copy whenever possible. Locality generates the
problem of how to make these copies consistent. The recent trend is to use weaker
consistency models. This means that the programmer shares some responsibilities with

DSM kernel to maintain consistency.

1.3 Memory consistency models

1.3.1 Why are they important?

Every DSM uses and implements at least one consistency model. A consistency model is
a contract between the progiammer and the DSM kernel. It says that if and only if the
programmer agrees to obey certain rules, the DSM kernel promises to guarantee the

expected results and execution behavior.



Consider the following example. Assume processes P1 and P2 share variables a and b,
initially a=b=0. Can the following codes guarantee that only one process is killed? Is it

possible for both processes to be killed?

P1 P2

a=l; b=1;

if (b=0) then if (a=0) then
kill(p2); kill(pl);

The answer to the above questions depends on which memory consistency model is used.
Under sequential consistency, we can guarantee that only one process is killed. But under

processor consistency we cannot make the same guarantee.

Memory Consistency model is very important, because it defines the semantics of a DSM
program. The same codes may have different execution behavior under different models.
The programmer needs to fully understand memory consistency model in order to write a
correct DSM program. Generally there are two categories of consistency models: (1)
consistency models that do not require synchronization operations such as strict
consistency, sequential consistency and processor consistency. (2) Consistency models
that require synchronization operations, such as weak consistency and release

consistency. For more formal description of consistency models, please refer to [10].

The following discussion summarizes some most commonly used consistency models.
The notation O (x) V is used to make the discussion more understandable, where O

represents operation R (Read) or W (Write), x represents a memory location, and V is the



value read from or written to the location x. R (x) 1 means that 1 is read from location x.

W (x) 1 means that | is written to location x. A—B means A happens before B.

1.3.2 Consistency Models that do not need synchronization operation

Strict consistency is defined as: any read to a memory location x returns the value
written by the most recent write operation to x. Implications of strict consistency are:
a All the processes instantaneously see all the writes.

a All subsequent reads see the new value of the write.

Strict consistency describes the memory behavior of multiple processes run on a uni-
processor computer. Strict consistency is too strong to be used in DSM, because it
assumes zero transmission delay, which is not practical. No matter how fast the
interconnection system is, there is some delay and there is no global clock that can be

used in a distributed system.

The following is a valid example under strict consistency: process pl writes 1 to
location x, then process p2 reads 1 from location x
Pl: W(x)1

P2: R(x)1

The following is an example that is invalid under strict consistency:
Pl: W(x)1

P2: R(x)0 R(x)1



The invalidity arises, as P2 does not instantaneously see the write by P1.

Sequential Consistency (SC) was defined by Lamport [1]: “the result of any execution
is the same as if the reads and writes occurred in some order, and the operations of each
individual processor appear in this sequence in the order specified by its program™

The following is a valid example under Sequential Consistency.

P1: W(x)I

P2: W(x)2

P3: R(:)1 R(x)2
P4: R(x)1 R(x)2

The following is an invalid example under Sequential Consistency.

P1: W(x)l

P2: W(x)2

P3: R(x)1 R(x)2
P4: R(x)2 R(x)!

The invalidity arises as P3 sees that W(x)1—>W(x)2, while P4 sees that W(x)2—>W(x)I1.

The sequential consistency requires that the execution of each process must follow the
program order. But this is not necessarily needed in some cases. Some executions do not
obey the program order but still generate SC results. This is because memory access can
be divided into two types: competing access and not competing access. Program order

should be only enforced where there are competing accesses.



Sequential consistency should be a model for the entire shared memory. Implementation
of this model requires that all reads and writes to be broadcast across the network,
allowing every node to see the same sequence of actions. For the programmer,
programming using this model is the simplest. The drawback of this model is that its

realization is inefficient and the performance is poor.

Processor Consistency is defined as writes performed by a process are seen by all other
processes in the order in which they were issued, but writes from different processes may
be seen in a different order.

The following is a scenario that is invalid under sequential consistency but is valid under
processor consistency:

Pl: W(x)1

P2: W(x)2

P3: R(x)! R(x)2

P4: R(x)2 R(x)]

P3 sees that W(x)1>W(x)2, while P4 sees that W(x)2—>W(x)1. Because W(x)1 is
performed in P1, W(x)2 is performed in P2, it still conforms to the definition of processor

consistency.

The following is an example that violates processor consistency:
Pl: W(x)l W(x)2
P2: R(x)2 R(x)1

P3: R(x)1 R(x)2



P3 sees that W(x)2—>W(x)1, while P2 sees that W(x)1 > W(x)2. Because in P1
W(x)1->W(x)2. So P2 should not see that W(x)2—W(x)1, thus not conforming to

processor consistency.

Processor consistency better reflects the fact that network latency between different
nodes can be different. Some problems may not have solutions under processor

consistency. So it is seldom used in DSM.

1.3.3 Consistency Models that need synchronization operation

Weak Consistency (WC) is initially proposed by Dubois et all [2] and defined as:

a Accesses to synchronization variables are sequentially consistent.

a No access to a synchronization variable is allowed until all previous writes have
completed everywhere.

a No data access (read or write) is allowed until all previous accesses to

synchronization variables have been performed.

The following shows an execution, which is valid under weak consistency:

Pl: W(x)I W(x)2 S
P2: R(x)1 R(x)2 S R(x)2
P3: R(x)2R(x)1 S R(x)2

Where S represents synchronization operation.
Before the synchronization, P3 did not see P1's writes in the order they occurred. But

after the synchronization, it sees the final value written to x.



WC allows for very fast performance. There is less communication to be performed
under WC. The writes can be buffered locally until synchronization instruction is
performed. For the programmers, the programming under WC is more complex than that
under SC. They need to use special synchronization instructions to maintain consistency.

Hence they are partly responsible for the consistency in sharing.

Release consistency model (RC) is proposed by Gharachorloo and et all [3], which
further divides the synchronization operation into acquire and release. To generate SC
results, RC requires that the program be properly labeled by acquire/release. They prove

that properly labeled RC program can generate SC results.

Release Consistency is defined as:

@ Refore an ordinary access can be performed, all previous acquire operations must
have been completed.

0 Before a release access can be performed, all previous accesses must have been
completed.

0 All synchronization accesses must be FIFO (First In First Out) atomic.

The following shows an example of how to label a program. Process P1, P2 and P3
contain operation W(x). Writing to a same location are considered as data-race
operations. In order to keep consistency, W(x) should be separated by synchronization

operation Acq(Acquire) and Rls(Release) as follows:



P1: Acq W(x)RIs
P2: Acq W(x)Rls

P3: Acq W(x)Rls

If there is enough synchronization (no data-race), a program based on RC can guarantee
SC results. RC has two representative implementations: Eager Release Consistency

(ERC) [4] and Lazy Release Consistency (LRC) [5].

Figure 1.2 shows the concepts of ERC and LRC. In ERC, when there is a release it
broadcasts data to all nodes. In LRC, data is buffered locally until someone acquires it.

Pl acq w(x) rls

|
P2 Macq w(x) rls f

>
P3 L \

ERC
Pl acqw(x) ris >
P2 acq w(x)rls
—>
P3 \ acq
—p
LRC

Figure 1.2 ERC and LRC

1.4 Granularity Models
Granularity is another important design issue in DSM. Granularity is closely related to
the problem of false sharing. Granularity specifies the size of the minimal data-chunks to

be used by the consistency protocols as a unit of sharing.



Figure 1.3 shows the concept of false sharing. Process 1 wants to write location X and
process 2 wants to write location Y. If X and Y belong to a same chunk of shared

memory, the two processes cannot perform write at the same time.

—» X:

Process 1 Process 2
Figure 1.3 False Sharing

False sharing is another factor that may greatly affect the DSM performance. Usually the
larger granularity, the more likelihood of false sharing. Performance is decreased when a
process has to wait for another process to finish writing different locations in a same
block. But if the granularity is too small, synchronization overhead may be considerable.
Synchronization is also considered expensive in DSM. Some DSM implementations use
fine-grained sharing, which means that granularity is at object level. The granularity size
is determined at run time and is usually very small. But due to its implementation

complexity, most DSMs still use fixed size page-based granularity.

A good compromise between object-based granularity and page-based granularity is to
use scope consistency [6]. Scope consistency improves release consistency in that its
granularity is user defined. In contrast, release consistency only allows each

acquire/release to operate on fixed length pages of memory chunks.

Another benefit of using scope consistency is that it allows you flexible partitioning of
the problem depending on the speeds of the computers. Suppose there are 3 computers:

computer 1 and computer 2 have almost the same speed. Computer 3 is 50% slower than



the other two. If each computer is assigned the same workload, computer 3 is obviously a

bottleneck. Under scope consistency one can assign less workload to computer 3.

1.5 Previous Work

The shared memory concept was first implemented on multiprocessor machine. Due to
the scalability limitation on the number of processors, software DSM was proposed to run

on a network of computers.

The first ever software DSM, IVY was developed by Kai Li [7] in 1986 at Yale
University. [VY uses pages of size 1k and implements sequential consistency. SC is

widely considered too strong for DSM implementation.

Munin [4] was developed at Rice University in 1990. Munin uses Eager Release
Consistency. It was implemented on SUN workstations connected via Ethernet. In Munin
there are nine types of shared data objects. Each type of object has its own default
memory coherence strategy. It also allows dynamic system decisions for coherence

models.

TreadMarks [5] was developed in 1992 at Rice University. It is the only commercially
available DSM. It provides user-level APIs with function such as process creation,
process destruction, synchronization, and shared memory allocation on UNIX
environments. TreadMarks supports various hardware such as RS-600, IBM, SP1&2,
DEC Alpha & DEC Station, HP, SGI, and Sun-SPARC. TreadMarks uses Lazy Release

Consistency (LRC) model, and was implemented using UDP/IP protocol.

11



Midway [8], which was developed at CMU in 1993, uses entry consistency. The system
was implemented on a network of DEC stations running MAC 3.0. Midway uses explicit
bindings of locks to shared data elements. It reduces network traffic by sending both data

and lock updates in a same message, and only to the required processor.

Shrimp [11], which was developed at Princeton University in1994, supports Intel CPU
PCs. It runs on NT or Linux and uses a special release consistency model called Scope

consistency. Shrimp needs some proprietary hardware to run it.

Shasta [12], which was developed at DEC Inc in 1996, uses a combination of fine-
grained and coarse-grained sharing in its implementations. Shasta needs a cluster of

workstations or servers to run it.

MultiJav [9], which was developed at Utah State University in 1998, implemented a
DSM using Java. MultiJav uses object-based granularity. Their objective is to provide

DSM function on multiple Java Virtual Machine (JVM).

We can see that DSM research is still largely associated with academic institutions. It has
not moved out into the realm of real business. Most DSMs are developed on unpopular
hardware platforms using some special development tools. We believe developing
inexpensive, easier to use and high performance DSM on popular PC environment should

increase DSM popularity in the future.



1.6 Problem Statement and Accomplishment

In this project we focus on the following main problems:

g Develop a prototype DSM, which runs on popular hardware platforms. We can see
that most previous efforts were done on legacy platforms. The platform to use our
DSM is based on Windows PCs networking with TCP/IP.

0 Provide DSM API functions for C++ programmer at source code level. Many DSMs
require special compilers and/or linkers to use their API functions. This is one of the
main reasons that limit the popularity of DSM. To use our DSM functions, the
programmer only needs to include relevant head files. No special compilers and
linkers are needed. The project work will provide a basis for future work to develop
middle-ware components to support other programming languages.

a The project focuses on how to map logically shared memory to local physically
memory based on scope consistency under different running environments. Our
system can run with the support of sever(s), or runs on fully distributed model
without any server. We include all DSM functionality in two C++ classes DsmServer
and Dsm_Proxy. DsmServer is needed when DSM is running with servers. To
facilitate the use on server model, we write an engine program, which uses the
DsmServer class. Dsm_Proxy is needed in all running environments. It contains all
the interfaces to complete DSM functionality.

a We focus on the communication and synchronization mechanisms between processes
and servers on different running environments. We design and develop the DSM

application protocols based on TCP/IP.

13



Chapter 2 Overview Of OQur DSM
2.1 Consistency model used in our DSM
2.1.1 Lock Based Scope Consistency
In this project, we implement a DSM using lock based scope consistency model. Scope
consistency model is proposed based on release consistency model. So our discussion
begins with release consistency model.
Release Consistency Model
Release Consistency is first proposed by Gharachorloo et all [3]. They propose to

categorize and label shared memory accesses as shown in figure 2.1.

Shared access shared,
Competi non competing specical,  ordinary,
Synchronization non- Synchronization sync nsyncp

Acquire  Release acqL. relp

Figure 2.1 Shared access categorization
The following is quoted from [3]:
“Release consistency is an extension of weak consistency that exploits the information
about acquire, release, and non-synchronization accesses. The following gives the
conditions for ensuring release consistency.
(A) Before an ordinary LOAD or STORE access is allowed to perform with respect to
any other processor, all previous acquire accesses must be performed, and
(B) Before a release access is allowed to perform with respect to any other processor, all
previous ordinary load and store accesses must be performed, and

(C) Special accesses are processor consistent with respect to one another.”



Compared to sequential consistency (SC), release consistency (RC) allows more overlap
as show in figure 2.2. Under SC, every access is serialized. Under RC, read/write
accesses between acquire (ACQ) and release (REL) are allowed to overlap, and are not
required to obey the program order. In addition, there is overlap between acquire (ACQ)
and release (REL) of different processes. Obviously RC shows more performance
potentials than SC. RC has two implementations: eager release consistency (ERC) [4]
and lazy release consistency (LRC) [S]. LRC further decreases the number of messages

exchanged. Hence the principle of lazy update is also used in our implementations.

ACQ READS COMPUTE WRITES REL
— —A—— — i
Sequential Consistency

READS WRITES
ACQ F— COMPUTE p— REL
L ] - I [ } i ] I ]
| L] r 1 I 1 L 1 1 1

— —

READS WRITES

ACQ F— COMPUTE |—— FREL
— = — B =
— —

Release Consistency

Figure 2.2 Overlap comparisons of SC and RC
Scope Consistency model
Scope consistency model is proposed by Iftode et all [6]. Consistency scope is defined as:
“A consistency scope is a scope with respect to which memory references are performed.
That is, modifications to data performed within a scope are only guaranteed to be visible

within that scope.”

15



The more formal definition of scope consistency model needs two more definitions:

A reference being performed with respect to a consistency scope and a reference being
performed with respect to a processor.

The following definitions are from [6]:

“A write that occurs in a consistency scope is performed with respect to that scope when
the current session of that scope closes.

A write is performed with respect to a processor P if a subsequent read issued by P

returns the value stored by that write.”

The scope consistency rules are:

“1. Before a new session of a consistency scope is allowed to open at processor P, any
write previously performed with respect to that consistency scope must be performed
with respect to P.

2. A memory access issued by processor P is allowed to perform only after all

consistency scope sessions previously opened by P have been successfully opened. ™

To make the above abstract definitions more clear, let us review some examples to see

what is scope consistency.

Example: Lock-based Consistency Scopes.

Figure 2.3 illustrates scope consistency with an example. When Process 1 acquires lock 1

it also enters the scope defined by that lock. Process 1 writes A while in scope 1 and

16



writes B while in scopes 1 and 2. Then process 2 acquires lock 2, thus opening scope 2,
and reads both A and B. Under scope consistency. process 2 is guaranteed to see

Process 1 's write to B assuming that process 2 acquires lock 2 after process 1 releases it.
However there is no guarantee that process 2 will see process 1's write to A because the
scope | was not opened at process 2 when it reads A. Thus, process 1 does not need to

propagate the modification of A to process 2.

Process 1 Process 2
Acquire(l) Open scope 1
A=l
Acquire(2) e Open scope 2
B=1
Release(2)  oiiiiiis Close scope 2
Release(l) i Close scope 1

Acquire(2) ......Open scope 2

X=A  ...... A is not guaranteed to be 1
Y=B  ...... Bis 1
Release(2) ...... Close scope 2

Figure 2.3 Lock based scopes

The above also shows an example of implicit scope; to implement it requires the compiler
to know which variables are in which scopes. Because this project is supposed to provide
directive support, implicit scope is not assumed. Instead, explicit scope is used. To
specify explicit scope, the programmer needs to use binding directive to associate data
segmentation with synchronization variables. Thus we assume scope to be specified by

the programmer as special directives.
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The above example also raises the question “Is it allowable for one variable to belong to
several consistency scopes?” Suppose in process 2 Acquire(2) is changed to Acquire(1)
and Release(2) to Release(1), what values are read for A and B. Under implicit scope, we
should get 1 for both A and B, because one variable is allowed to belong to several
consistency scopes. This is not supported in our DSM, because our work is not based on

compiler level.

There are some slight differences between RC and ScC when implicit scope is used.
Figure 2.4 shows an example. Suppose that A and B is in the same data page. Under ScC
process 2 can only see that B is I, because A’s write is not within the scope, but under
LRC process 2 can see both A and B is 1 because they are located in the same page. LRC
uses fix length data page and propagates the entire data page when other process

acquires.

Under explicit scope and single assignment of variables to a scope, scope consistency

reduces to become release consistency. Hence our implementation actually conveys to

LRC in this round.
Process 1 Process 2
A=]
Acquire(1)
B=1
Release(1)
Acquire(1)
X=A «e....inder LRC AandBis 1
Y=B ... under ScC only B is guaranteed to be 1
Release(1)

Figure 2.4 Scope consistency versus LRC
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2.1.2 How to use locks under scope consistency?

In scope consistency, shared memory is divided into several segments. Each segment has
a lock to protect its consistency. A lock is allowed to protect the consistency of several
segments. At any given time only one process is allowed to access a given segment, and
be granted the lock. Other processes are blocked until the lock is released. Different

processes can access different segments at the same time if they belong to different locks.

In figure 2.5, process 1 tries to access segment S1. Simultaneously process 2 tries to
access segment S3, and process 3 tries to access segment S2. Because Lock1 protects S1
and S2, so when process 1 and process 2 send acquire requests at the same time, only one
of them is granted the lock. Lock2 protects S2 and S4. When process 3 tries to acquire it,

there is no competition. Thus it is granted Lock 2 and can access segment 2.

| St | S2 | S3 | s4 ]
TLockl T Loc TLockl TLock2
Acq Acq Acq
Process | Process 2 Process 3

Figure 2.5 Segments and Locks.

To achieve better performance, the DSM programmer needs to review his/her program
carefully in order to reduce the possibilities that different processes simultaneously
access the same lock. Consider the following code segments to be run on two machines:

Programl:

for (I=1; I<=6; I++) {
Acquire(l)

//do some computations
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Release(I) }
Program2:

if (pid==1) {
for (I=1; I<=5; [+=2) {
Acquire(I)
//do some computations
Release(I) }
for (I=2; [<=6; [+=2) {
Acquire(I)
//do some computations
Release(I) }
}
else {
for (I=2; I<=6; [+=2) {
Acquire(I)
//do some computations
Release(l) }
for (I=1; I<=5; [+=2) {
Acquire([)
//do some computations

Release(I) }

According to program 2, process 1 access locks in the order: 1 3 5 2 4 6, process 2 access
locks in the order 2,4,6,1,3,5. In program 1, both processes access the locks in the same
order 1,2,3,4,5,6. So the possibility to access same lock for program 1 is higher than that
for program 2. Of the two programs, program 2 shows a better design, because it is less

likely to access a same lock.
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2.2 Running Environments of our DSM

Three running environments are supported (figure 2.6) in our DSM :(a) central server
model, (b) multiple server model and (c) fully distributed model. In model (a) or (b) there
is at least one server to serve the requests from distributed processes. There is no direct
communication channel between any two processes. In model (¢), there is no central
coordinator between processes, each process plays the same role as others. Each process

acts as both server and client.

In our DSM system, we identify two types of servers. One type is called master server,
and the other type is called peer server. In model (a), there is only one master server. In

model (b) there is only one master server and one or more peer servers.

The roles of master server:

0 Register all distributed processes. In model (b), master server also registers peer
server(s).

0 Support declarative directives through the interfaces of DSM Proxy class, as
standard C++ does not support any DSM syntax to declare a shared memory.

a Process acquire/release requests to keep the shared memory consistency.

The roles of Peer server:

o Process and respond to acquire/release requests to keep the shared memory

consistency.
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In model (a), only master server is keeping consistency of shared memory. In model (b),
both master server and peer servers are keeping the memory consistency. So each server

receives fewer acquire/release requests and thus enhances concurrency.

Process

Process

Process

(a) Central Server Model

Master
Sever

Peer
Sever

T N

Process Process Process
(b) Multiple Server Model
4+—P

Process Process ¢ ’ Process
< |

(c) Fully distributed model

Figure 2.6 Different Running Environments for DSM

2.3 How to use our DSM functions

In our system, DSM functions are provided through the use of Dsm_Proxy class.
Dsm_Proxy class is designed to support distributed computing on different running
environments. DsmServer class is only used by the engine we provide. Programmers do

not need to know its details. Right now the DSM functions are only available to C++
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programmers. To use the DSM functions, the programmer needs to include the head file
Dsm_proxyl.h, which has the definitions of the Dsm_Proxy class. At the top of his/her
C++ program, the following line should appear:

#include “Dsm_Proxy1.h”

The first step to use Dsm_Proxy class is to specify its proxy mode. Proxy mode

determines which running environment is used. The following describes show how to

specify proxy mode.

a For model (a) or (b) construct a Dsm_Proxy object by using parameter
PROXYSERVER. The following shows an example:

Dsm_Proxy dsm_proxy(PROXYSERVER);

Q PROXYSERVER is supported by default. Hence the following statement has the same
effect:

Dsm_Proxy dsm_proxy;

g For model (c), use NOPROXY parameter to construct a Dsm_Proxy object:

Dsm_Proxy dsm_proxy(NOPROXY);

Initialization of Dsm_Proxy object is carried out as follows:

g Dsm_Proxy needs Winsock API support. The initialization for Winsock is done by
the Dsm_Proxy's Initialize function. If the initialization is successful, it returns 1
otherwise it returns 0.The following code illustrates its use:

if (dsm_proxy.Initialize()) {//call other Dsm_proxy functions}



Identification of the processes:

a Distributed processes work together cooperatively. They need to be identified. In
model (a) or (b), the first process connected to the master server is assigned process id
1. The process id is assigned according to the order in which the process connects to
the master server.

g In model (c), the program needs to generate its own process ids. This can be
accomplished by identifying a primary process with process id of 1. The process id of

other processes is assigned according to the order it connects to the primary process.

To simplify the design DSM kemnel, it is required that only process with process id 1 can
create and initialize the shared memory. The same applies to the use of create lock and

bind lock directives.

2.4 Shared Memory Representation in our DSM

How shared memory is represented internally?
a In our system, shared memory is represented internally by using memory id; a
memory id is a string identifier that uniquely identifies logically shared memory.

Internally each shared memory is represented by the following structure:

[ Memory Id | Number Of Elements | Type Size | Pointer to the buffer |

o The above structure is first created and stored in the master server in model (a) and
(b). In model (b), the peer server gets replicated copy of the structure from the master
server afterward. In model (c), the above structure is first created and stored in the

primary process. Then it is replicated to other processes.
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[n our system, two shared memory types are supported. One is called ReadOnly shared
memory, and the other is called ReadWrite shared memory. For ReadOnly memory, at its
creation, it should be initialized. ReadOnly memory is unchanged after initialization. The
other processes need to provide local address and memory id to get a copy of its values.
For ReadWrite shared memory, after initialization its values may be changed by
processes simultaneously. All processes need to use acquire/release synchronization

directives to ensure consistency.

How to make connections between local memory and shared memory?

For ReadOnly memory, use Dsm_Proxy’s Create ReadOnly function in process 1, and use
GetReadOnly function in all other processes.

The following shows an example of how to use CreateReadOnly and GetReadOnly:

if (dsm_proxy.Initialize()) { // Check is Winsock is installed
printf("input server name \n"); scanf("%s",srv);
dsm_proxy.Connect(srv,5000); //Connect to the Server on TCP port 5000
pid=dsm_proxy.GetPId() ; // Get process id from the server
if (pid==1) {
/1 If it’s the primary process call CreateReadOnly to create
// read-only memory on the server

dsm_proxy.CreateReadOnly("lock" (char *)lock[0],6,sizeof(int));

else {
// Other processes use GetReadOnly to get values of
// read-only shared memory.
dsm_proxy.GetReadOnly("lock", &lock[0]);



For ReadWrite memory, use Create ReadWrite function call in process 1, and use
Register ReadWrite function in other processes. The following is an example:

if (dsm_proxy.Initialize()) { // Check is Winsock is installed
printf("input server name \n"); scanf("%s",srv);
dsm_proxy.Connect(srv,5000); //Connect to the Server on TCP port 5000
pid=dsm_proxy.GetPId() ); // Get process id from the server
if (pid=1) {
int sort[200];

/finitialize sort array

//'If it’s the primary process call CreateReadWrite to create
// read-write memory on the server

dsm_proxy.CreateRead Write("sort",(char *)lock{0],6,sizeof(int));

else {
int sort[200];
//Use RegisterRead Write will fill any values in sort array.
dsm_proxy.RegisterRead Write("sort" (char *)sort[0]);

2.5 Initial Synchronization in Our DSM.
Initial synchronization is needed to make sure that all processes have consistent initial
states and all processes begin simultaneously. The initial synchronization is slightly

different depending on the running environments.

Under model (a) or (b) the first process is in charge of creating and binding locks, the

programmer should use StartdllProcess function to notify master server the end of



declarative directives. Upon this, the master server may proceed to send the necessary
information to all processes. These include the number of locks, the number of processes,
details of each lock and details of shared memory. Under model (b), peer servers are

transparent to programmers. A process only needs to connect to the master server.

Under model (c), each process plays the same role as other processes except for the
primary process. In order to register all the processes, the programmer should use
SetPrimaryProcess function to set a primary process. Then the primary process builds a
process list to be distributed to all processes for channel creation among all pairs of the
processes. Figure 2.7 and 2.8 show the details of the initialization procedures.

Master Server: Wait Connection and Compute connections

P1 Initialize Connpct declarative requests  StartAllProcss l Computing begins
P2 Initialize Colnect WaitForMasterServer * Computing begins
P3 Initialize Connpct WaitForMasterServer *Computing begins

Figure 2.7 Initial Synchronization under Server models.

Pl SetPrimaryProcess [nitialize declarative requests StartAllProcss Computing begins
A

P2 Initialize Conngct StartAllProcss Computing begins

P3 Initialize Connect StartAllProcss ¥ Computing begins

Figure 2.8 Initial Synchronization under Fully Distributed Model.
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2.6 Performance Issues

Some DSMs claim that they implement object-based (also called fine-grained)
granularity model. This raises the question “Is smaller granularity definitely better than
bigger granularity?” Our opinion is that decreasing granularity to a certain point will not
increase DSM performance any further. The reason is that most communication protocols
use internal buffer as the minimal communication unit. This means that if the object size
is smaller than the internal buffer size, transferring an integer may cost the same as
transferring a bigger complex object. When granularity is smaller than internal

communication buffer size, there is no further performance gain.

The next question is “For an application using DSM programming, how big should the

granularity be to get speed up?” We think there is no general answer to this question, it

depends on many factors and it varies from application to application. But the following

are some key factors we need to consider when we choose the granularity:

o The nature of application problem: For example, a smaller partition is more suitable
for a matrix addition problem than a sorting problem. Because for matrix addition,
only one pass processing is needed while for sorting problem multiple passes are

needed.

0 The speed of the communication protocoi: DSM programming requires the
coordination and cooperation of many processes. Each process only does a part of

the work. The efficiency of communication protocol affects sharing of results.



To illustrate these factors, consider a one-pass problem with complexity O(n) that is
partitioned equally between two similar computers. We assume the processing time for
one partition is Tp. Suppose the time to use acquire/release to get a partition is Tc. If the
problem is running on one computer, the time to solve the problem is 2* Tp If problem is
running on two computers, the time is Tp+ T¢. To get the speed up requires that Tp> Tc.
Suppose computer 1 is faster than computer 2. The time to process one partition for
computer 1 is Tp;. The time to process one partition for computer 2 is Tpz. So computerl
has to wait Tp2-Tp1 before results are transferred from computer 2. The total time for
computer 1 is Tp; + Tp2 - Tp; + Tc. So if Tpz -Tpi> Ty then there will be no speed up no

matter how fast the communication protocol is.

The following guideline may be useful in deciding on granularity:
0 The granularity should be bigger than internal communication buffer.

0 The granularity should be big enough to ensure Tp> Tc.

Test acquire protocol on two nodes:

This test is conducted on two computers: computer 1 is a Pentium-III 450, 256M RAM
computer running Windows NT 4.0, computer 2 is Pentium-IIl MMX 233 192M RAM
computer running Windows NT 4.0. We use the central server model. Computer 1 runs
the server engine and one of the processes. The process runs on computer 1 does not
compete for the lock used by computer 2. Computer 2 runs a process that repeatedly
acquires and releases the lock for 100 times. The purpose of this test is get information on

the time it takes to acquire a remote copy when there is no competing process.
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The following shows the codes that runs in computer 2:
Avg=0.0;
for (i=1;1<=100; i++) {

tic1=GetTickCount();

dsm_proxy.Acquire(1);
tic2=GetTickCount();
dsm_proxy.Release(1);
Avg+=tic2-ticl;

}

Avg/=100.0;

To measure the time elapsed, we use Window NT API function GetTickCount, which
retrieves the number of milliseconds that have elapsed since Windows was started. In the

above codes, Avg stores the average time to perform an acquire.

Table 2.1 shows the test results: From the table we can see that when the granularity is 2k
or 4k, acquire time is almost the same. But when the granularity is increased to 8k

acquire time increases sharply.

Granularity Acquire Time Range | Average Acquire Time
For 5 tests For 5 tests
2k 14.12~19.13 ms 17.48 ms
4k 14.92~17.92 ms 16.84 ms
8K 65.30~94.13 ms 83.42ms

Table 2.1 Results for acquire test on two nodes

2.7 An example to use our DSM
The following is a sample program to illustrate parallel merge sort completed by two

processes under central server model. The array contains 200 integers and is initialized
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with descending order integers from 200 to 1. Each process is supposed to sort the shared
memory array in ascending order. The array is partitioned into 6 segments. Each segment

is protected by a lock. The segment sizes are showed as follows:

120 | 40 [3 |3 | s0 [ 30 |
In the program, Process 1 first sorts segment 1, 3, 5. Process 2 first sorts segment 2, 4, 6.

Then both processes uses acquire/release to obtain the remaining segments.

At last both processes sort the whole array.

#include "Dsm_Proxy.h"

int compare( const void *argl, const void *arg2 ){
int *a; int *b; a=(int *)argl; b=(int *)arg2;
return *a-*b; };

int main(int argc, char* argv[])

{ Dsm_Proxy dsm_proxy(PROXYSERVER); //Run DSM on server modes
int pid; /*process id */ char srv[30]; /*server name */
if (dsm_proxy.Initialize()) { //check if initialize is success

scanf("%s",srv); // Input master server name
dsm_proxy.Connect(srv,5000); //connect to master server
pid=dsm_proxy.GetPId()
if (pid==1) { //fit’s first process
int lock[6; int ary[200];
for (int i=0; i<200; i++) ary[i]=200-i; //inited to descending order
/Istore created locks in lock array
lock[0]=dsm_proxy.CreateLock();
lock[1]=dsm_proxy.CreateLock();
lock[2]=dsm_proxy.CreateLock();
lock[3]=dsm_proxy.CreateLock();
lock[4]=dsm_proxy.CreateLock();

31



lock[5]=dsm_proxy.CreateLock();

//create lock array as read-only shared memory
dsm_proxy.CreateReadOnly("lock”.(char *)lock[0],6,sizeof(int));
/lcreate ary as read-write memory

dsm_proxy.CreateRead Write("ary" (char *)ary.200.sizeof(int));
//define segments

dsm_proxy.BindLock(1,"ary",0.20);
dsm_proxy.BindLock(2."ary",20.40):
dsm_proxy.BindLock(3,"ary",60.30);
dsm_proxy.BindLock(4,"ary",90,30);
dsm_proxy.BindLock(5,"ary".120,50);
dsm_proxy.BindLock(6,"ary",170.30);
dsm_proxy.StartAllProcess(); //Notify master server to move on
dsm_proxy.StartMonitor() ; //Start monitor master server response
dsm_proxy.Acquire(lock[0]);
gsort(ary,20,sizeof(int),compare);
dsm_proxy.Release(lock[0]);

dsm_proxy.Acquire(lock[2]);
gsort(&ary[60],30,sizeof(int),compare);
dsm_proxy.Release(lock[2]);

dsm_proxy.Acquire(lock[4]);
gsort(&ary[120],50,sizeof(int),compare);
dsm_proxy.Release(lock{4]);

/fbring results from process 2

dsm_proxy.Acquire(lock[1]);

dsm_proxy.Release(lock[!]);

dsm_proxy.Acquire(lock[3]);

dsm_proxy.Release(lock{3]);

dsm_proxy.Acquire(lock[5]);

dsm_proxy.Release(lock{5]);
gsort(ary,200,sizeof(int),compare);
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else { int lock[6]; intary[200];
dsm_proxy.WaitForMasterProcess(); //Wait for all processes
//Get read-only shared memory
dsm_proxy.GetReadOnly("lock",lock[0]);
//Register “ary” read-wirte shared memory
dsm_proxy.RegisterRead Write("ary" (char *)ary);
dsm_proxy.StartMonitor();
dsm_proxy.Acquire(lock[1]);
gsort(&ary[20],40,sizeof(int),compare);
dsm_proxy.Release(lock[1]);
dsm_proxy.Acquire(lock[3]);
gsort(&ary[90],30,sizeof(int),compare);
dsm_proxy.Release(lock[3]);
dsm_proxy.Acquire(lock[5]);
gsort(&ary[170],30,sizeof(int),compare);
dsm_proxy.Release(lock{5]);
dsm_proxy.Acquire(lock{0]);
dsm_proxy.Release(lock{[0]);
dsm_proxy.Acquire(lock[2]);
dsm_proxy.Release(lock[2]);
dsm_proxy.Acquire(lock[4));
dsm_proxy.Release(lock[4]);
qgsort(ary,200,sizeof(int),compare);

return O;
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Chapter 3 DSM Implementation Protocols

3.1 Comparison of ERC and LRC

DSM computers are connected by relatively low speed communication network. In order
to improve DSM performance, it is important to avoid broadcast of large amount of data
whenever possible. Figure 3.1 shows the broadcast under ERC. Assume pl, p2 and p3 in
turn acquire the same lock. Under ERC when there is a release operation, it broadcasts
the new page to all other processes. Under release consistency, only one process is
allowed to acquire the same lock at any given time, most broadcast pages are actually
wasted. As shown in the figure 3.1, at time t1 process P1 broadcast the new page to P2
and P3, but only P2 uses the page, the page sent to P3 is wasted. Similarly at time t2 the
page sent to P1 is wasted. Under release consistency, the page size is usually big (1-2k),

and the broadcast is expensive.

P1 acquire release
—>
New page Wasted page
P2 acquire  releasd
»
New page
Wasted page
p .
3 acquire release >
Tl T2

Figure 3.1 Network traffic under ERC
Can we avoid the releasing broadcast and only send the new page to the process that
needs (acquires) it? The answer to this question led to LRC. Under LRC, release is
buffered locally and the process delays sending new page until another process acquires

it. This split-phased transaction avoids unnecessary transmission of data,
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As shown in figure 3.2, suppose that at the beginning all processes buffer a same set of
shared values. Assume pl, p2 and p3 in turn acquire the same lock. At time T1 process
P2 executes an acquire. It broadcasts its version to all other process. Because the message
size of this broadcast is much smaller than a data page., it is not expensive compared to
broadcast a new page. All other processes compare the version they received with their
local version. Process P1 has a newer version, so it responds to P2 by sending a new
page to P2. This is repeated similarly at time T2. We can see that broadcast exists in both

ERC and LRC, but under LRC the actual data broadcast is avoided.

Pl acquire release

>
Versio& ew page Yersion
P2 acquire  release
4
\ New page
Version Vers'k\q
P3 acquire release

T1 T2

Figure 3.2 Network traffic under LRC

3.2 DSM Implementation models
DSM can be implemented in different ways. They can roughly be divided into three

categories: central server model, multiple server model and fully distributed model.

Central server model: Each distributed process is considered as a client. The central

server is responsible for registering all the processes, processing all declarative directives

and processing acquire/release requests. There is no direct communication channel
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between any two processes. This model is considered the simplest way to implement

DSM.

Multiple server model: Each distributed process is also considered as a client. However,
there are two types of servers: master server and peer servers. The master server has the
same role as in central server model. The peer server is only responsible for processing
acquire/release requests. The performance of each server improves because each server
potentially processes fewer requests. Similarly, there is no direct communication channel

between any two processes. However each process is connected to all the servers.

Fully distributed model: There is no central server. Instead, the first process (primary
process) is to take charge of initialization activities, include registering processes and
processing declarative directives. After initialization, each process plays the same role.
Each process is in charge of processing acquire/release requests and synchronizing the
requests. A local copy of the shared segment is maintained in each node. Direct
interprocess communication is needed to support the synchronized update activities.

Figure 3.3 illustrates these models.

In this project, we first developed a DSM running under the central server model before
moving on to the multiple server model and the fully distributed solution. That result in a

design that includes three models in the same framework.
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Master Peer Process
Server Server
Process Process Process Process Process | g Process
]

(a) Central Server model  (b) Multiple Server model  (c) Fully distributed model

Figure 3.3 DSM implementation models

3.3 Detailed Comparison of Implementation models

Performance is a key concern in DSM. Different implementations have different
advantages and disadvantages. We compare them by considering the following aspects:
Q The speed of server

a The speed of process

a Replication of internal structures

@ The need to broadcast.

a Resources used.

3.3.1 Central server model

In this model, the master server keeps a thread per process to monitor client requests. On
the client side, each process is assigned a thread to handle the responses from the master
server. Each process sends requests to the server and waits for its response. Figure 3.4

shows how processes and master server interact.

From figure 3.4, we can see that the master server maintains 6 threads for six distributed

processes. Because all the acquire/release requests are sent to the master server, the
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master server can became a bottleneck. On the other hand, the overhead on the client side
is the least as compared to the other models. Hence client process moves fastest
compared with its counterpart in the other models. This model also uses the least
resources compared to other models.

Master Server

T: Pl T: P2 T: P3 T:P4 T: PS5 T: P6

T:S T:S T:S T:S T:S T:S

T: thread S: Server

Figure 3.4 Communication under central server model

In this model, the central server always keeps the most recent version of data. When a
process executes an acquire operation, it sends a request to the server. The server
responds by sending the most recent data segments. When a process releases a lock, it
sends the updated to the server. There is no broadcast on both acquire and release

operations. Figure 3.5 shows the acquire/release operation under central sever model.

Updated Page Updated Page
Server
f J New page f New page
Acquire Release
P2 Acqulre Re[ase

Figure 3.5 Acquire/Release under central server model
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3.3.2 Multiple server model

In this model, there are multiple servers in charge of maintaining memory consistency. A
lock protects chunks of shared read-write memory not to be accessed by different
processes at the same time. For one specific lock, only one server is in charge of

maintaining the consistency of its acquire/release operation.

In figure 3.6, all the acquire/release requests to lock 1 are routed to server 1. Similarly, all
requests to lock 2 are routed to server 2. In our implementation, each process knows
which server to send requests. Thus there is no need to broadcast requests to all the
servers. In our system, locks are evenly distributed among multiple servers. Thus each

server increases its performance as it receives fewer requests.

In this model, each server has a thread for each process, master server has additional
thread(s) for peer server(s). Each process has a thread per server to monitor its response.
The client speed is slightly slower as it has to interact with multiple servers.

Updated Page

Server2
New page
Serverl Updated Page
f J New page f / / /
Pl Acquire] Release 1

P2 Alcquire 2 RZease 2

Figure 3.6 Acquire/Release under multiple server model
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Figure 3.7 shows communication details under multiple server model.

T:PI T: P2 T: P3 T: P4 T: P5 T: P6 T:P
7Y 4 & 7y Master Server
Pl P2 P3 L P4 P5 P6
Y \ 4 Y
T-M T-M T:-M T-M T-M ™M
Distributed
Processes
T:P T:P T:P T:P T: P T:P
l ’ ' ' ‘ ¢ ’ Peer Server
v v \4 v v \ 4
T: Pl T: P2 T: P3 T: P4 T:P5 T: P6 M

T: thread M: master server P: Peer Server

Figure 3.7 Communication under Multiple Server Model

3.3.3 Fully distributed model
In this model, there is no central place to store the most recent version of data, some
broadcast for synchronization is inevitable, either releasing broadcast or acquiring
broadcast must be used. Figure 3.8 shows the two different methods:
o In release operation, a process broadcasts process id and version to all processes.

Thus each process becomes aware where the most recent copy can be found.
a In acquire operation, a process broadcasts version to all processes, only the process

that has most recent version will respond. Each release generates a new version.

P1 release . P1 release
New page ew page
\‘Pid ,V acqx v
P2 P2 acq
Pid,V
P3 P3

Figure 3.8 Broadcast under Fully Distributed Model
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In this model, there is a direct communication channel between any two processes. Inside

each process, there is a thread to handle interaction with remaining other processes, as

illustrated figure 3.9.

P1 P2 P3 P4 P5 P6
T: P2 T: Pl T: Pl T: Pl T: P1 T:Pl1
T: P3 T:P3 T:P2 T:P2 T: P2 T: P2
T: P4 T:P4 T: P4 T: P3 T: P3 T:P3
T:P5 T:P5 T:P5 T:PS T: P4 T:P5
T: P6 T:P6 T: P6 T: P6 T: P6 T: P6

Figure 3.9 Resources used under Fully distributed Model

Due to these threads, the original process can be slowed down. However, whether these

threads produce pooper performance would depend on how often they are active. From

the message passing perspective that should not be a drawback.

Finally, we summarize comparisons of three implementation models using table 3.1.

Model Server Client Broadcast Replication Developing
Name Speed Speed Difficulty
Central Server Low High Not Each process Less Difficult
Needed Master Server
Each Process
Multiple High High Not Peer Server More Difficult
Server Needed Master Server
Fully N/A Low Needed Each Process Most Difficult
distributed

Table 3.1 comparisons of three implementation models
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Chapter 4 Developing DSM Under Server models

4.1 DSM architecture under server models

Under the server models, the server functionality is encapsulated in DsmServer class.
Dsm_Proxy class is used to provide DSM interfaces for programmers. The main tasks of
Dsm_Proxy are to send requests, wait for responses, assemble received data locally, and
send local memory segments to servers. DsmServer does the actual complex DSM tasks.
The DsmServer and Dsm_Proxy objects are connected through TCP sockets. Figure 4.1

shows the general DSM architecture under the server models.

Dsm_Proxy class
DsmServer Class -

Locks Read Thread r__> Locks Table to map
: Shared memory

Write For To local memo
Critical Memory Process ry
Sections

|| Thread Thread

Read Threads For For
Only For Master Server Peer Server
Memory Peer Server

Figure 4.1 DSM architecture
Inside the DsmServer class, there are some important data structures such as locks, read-
only shared memory and read-write shared memory. It also has many threads to morﬁtor
processes and peer servers. Dsm_Proxy class is simpler. It keeps the same lock structure
as the servers. It ha's a table that contains information to map shared memory to local

memory, and also has threads to monitor server responses.

4.2 Communication under the server models.
In our DSM, we use TCP/IP as the underlying protocol between processes and servers.

We choose TCP because of its reliability and its relative ease in programming as
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compared to the UDP protocol. Each server uses one TCP port for listening requests and
another port for sending responses. Figure 4.2 shows a scenario involving one master

server, one peer server and three distributed processes.

}

| Master Server | Resgc\mse Port ; Peer Server
i ) j
Thread for ’ - 3 Thread for
Peer Server Do — f
; -'vj, ; Master Server
- . —
: Do : ; i
i i L |
Threads for process | ! Threads for process
i s
i ~. Response Port ,,L /L Respanse Port
; J §

: ; { ,

Pracess Process

Process

!
‘
i
i

Figure 4.2 Dual port design.

Using two ports has several advantages:

a Application protocol is easier, as there is no sender/receiver switch.

o Efficiency: Both requests and responses can be pipelined.

0 Programming is easier as the protocols are simpler.

Table 4.1 lists all the internal messages used between peer server and master server.

Table 4.2 lists all the internal messages used between the servers and the processes.
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Name

Usage

SVR_GETSERVERID

Sent by Peer Server to Master Server to get server id

SVR_GETCLIENTPORT

Sent by Peer Server to Master Server to get which port

to listen on for client requests

SVR_GETMAXPROCESS

Sent by Peer Server to Master Server to get processes

will join distributed computing.

SVR_CREATELOCK

Sent by Master to Peer Servers, to notify Peer Servers

is new lock is created

SVR_BINDLOCK

Sent by Master to Peer Servers, to notify Peer Servers

to update lock information.

Table 4.1 Internal messages (servers)

Name

Usage

CLI_CREATEREADONLY

Sent by process to master server to create a read-only

shared memory on server

CLI_GETREADONLY

Sent by process to master server to get read only shared

memory copy.

CLI_CREATEREADWRITE

Sent by process to master server to create a read-write

shared memory on server

CLI_REGISTERREADWRITE

Sent by process to master server to get initial

information of read write shared memory.

CLI_CREATELOCK

Sent by process to master server to create a lock

CLI_BINDLOCK

Sent by process to master server to define a segment

CLI_STARTALLPROCESS

Sent by master server to all process to begin computing

CLI_ACQUIRE Sent by process to servers to acquire a lock Also used
by server to acknowledge the acquire requests
CLI_RELEASE Sent by process to servers to release a lock

Table 4.2 Internal messages (processes to servers)




4.3 The design of DsmServer.

4.3.1 DsmServer class examples

In our system, the server functions are defined and implemented in DsmServer class.
DsmServer class encapsulates both master server and peer server under one framework.
DsmServer is designed as a Unix daemon. [ts main tasks are monitoring and processing
of acquire/release requests from processes. The master server has additional
responsibilities in supporting declarative directives. DsmServer can be used to construct a
master server object without peer server, a master server object with at least one peer

Server or a peer server object.

Example of master server with one peer server

DsmServer *pDsm=NULL;

//pDsm points to a master server object, which listens for process requests at port 5000
// There are two distributed processes

// The master server also listens for peer server requests at port 9000.

pDsm=new DsmServer(5000,2,9000,1);

Example of master server with no peer server:

DsmServer *pDsm=NULL;

//pDsm points to a master server object, which listens for process requests at port 6000
// There are four distributed processes

pDsm=new DsmServer(6000,4);

45



The server program needs to call function /nitialize to check if Winsock API is installed.
If Initialize is successful it returns 1. Otherwise it returns 0. Then it calls Run function to
start the daemon. The following codes show how to run a server:

if (pDsm->Initialize())

pDsm->Run();

Example of peer server
Peer server has no knowledge of the number of processes and the port assignments. So it
cannot run independently. Instead, a peer server has to connect to the master server to get
such information. Suppose master server “Jul” listens on port 9000. The following code
illustrates a peer server:
pDsm=new DsmServer();
if (pDsm->Initialize()) {

pDsm->SetMasterServer(“Jul”,9000);

if (pDsm->ConnectToMasterServer())

pDsm->Run();

}
4.3.2 Public Interfaces
The public interfaces of DsmServer class are shown as follows:
class DsmServer
{ public :

DsmServer(

unsigned int ClientPort=0, long NumOfProcess=0,
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unsigned ServerPort=0, long NumOfPeerServers=0);

~DsmServer();

int ConnectToMasterServer();

void SetMasterServer(char *Name,unsigned int Port);

int Initialize();

void Run();

friend DWORD WINAPI MonitorThreadForClient (LPVOID p);

friend DWORD WINAPI MonitorSvrReqThread (LPVOID p);

friend DWORD WINAPI MonitorSvrRpsThread (LPVOID p);
private:

/More details

We can observe that there are three thread functions in the class. Thread function
MonitorThreadForClient is used to monitor the requests from processes. The master
server uses MonitorSvrReqThread to monitor peer server requests. The peer server uses

MonitorSvrRpsThread to monitor master server requests.

To make easy use of DsmServer class, we provide an engine program for programmers,
which is written using DsmServer class. Thus they do not need to know any inside details
of DsmServer. All they need to do is to call Dsm_Proxy’s Connect function to connect to

SErvers.
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4.3.3 Internal data structures of DsmServer

The internal data structures of DsmServer are shown as follows:

class DsmServer
{ private:
int m_Role; //the role of the server master server or peer server
long m_MaxProcess; /max num of process
long m_MaxPeerServer; //the max num of PeerServers
//port for listening Peer Server request used by master server
unsigned short m_PortServerRequest;
//port for sending response to Peer Server use by master server
unsigned short m_PortServerResponse;
unsigned short m_PortClientRequest; //port for listening client requests
unsigned short m_PortClientResponse; //port for sending client response
// The dynamic array to listen process requests
struct ClientSockType *m_PtrClientRequest;
// The dynamic array to send responses to process
struct ClientSockType *m_PtrClientResponse;
// The dynamic array to listen Peer Server requests used by master server
struct ServerSockType *m_PtrServerRequest;
// The dynamic array to send responses to Peer Server used by master server
struct ServerSockType *m_PtrServerResponse;

/l Used by peer server to send requests to master server
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struct ServerSockType m_MSerSockRequest;

//Used by peer server to receive responses from master serve
struct ServerSockType m_MSerSockResponse;

/{The read only shared memory

struct ReadOnlyMem m_RdMem[MAX_RDONLYT;

//how many read only shared memory

int m_RdMemiIndex;

//The read write shared memory

struct ReadWriteMem m_RWMem[MAX_ RW];

//how many read write shared memory

int m_RWMemlIndex;

struct LockType m_Lock[MAX_LOCKY]; //The lock structure
int m_LockIndex; /How many lock

//Each lock has a critical section to protect it.

CRITICAL_SECTION m_Acqcs[MAX_LOCK];

Identification of processes and servers

In distributed computing, it is very important to identify each process and server. In our
system this is performed through the use of the following two structures: ClientSockType
and ServerSockType. ClientSockType is used to identify processes and ServerSockType is

used to identify peer servers. The following shows their details:

49



struct ClientSockType {
SOCKET sock;
int pid; /lprocess id
5
struct ServerSockType {
SOCKET sock;
int ServerlD; //Server id
char ServerName[MAX LENGTHY]; //Server name
HE
ServerSockType is used between the peer server and master server. Master Server assigns
server id when it accepts a peer server connection. A process has no knowledge of peer

servers, thus the master server has to keep their IP addresses in ServerName field.

The shared memory structure:
In our system, read-only and read-write shared memory have similar structure. Their
structures are shown as follows.
struct ReadOnlyMem {
char MemId[MAX LENGTH]; char *MemBuf;
int TypeSize; int NumOfElements; };
struct ReadWriteMem {
char MemId[MAX LENGTH]; char *MemBuf;

int TypeSize; int NumOfElements; }
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MemId field is a string used to uniquely identify a shared memory. MemBuf is a pointer
to the memory chunk that actually stores the shared memory. TypeSize is a field that
identifies type size of shared memory elements. NumOfElements field identifies the
number of elements stored in the shared memory. TypeSize and NumOfElements allow us

to support various data types.

The lock structure:
In our system, the lock structure is the key structure to implement acquire/release
protocol and scope consistency. The lock structure differs slightly from the one used by
fully distributed model. The lock structure used in this model is shown as follows:
struct LockType {

int Lockld; int Serverld; int NumOfSeg;

struct Read WriteSegment Segment{fMAX_SEG]; };

Segment structure:

struct Read WriteSegment {

int RWindex; char MemIld[MAX_LENGTH];
int Startindex; int NumOfElements;
int TypeSize;};

Segment structure is also used to implement scope consistency. Rwindex field is the index
for the read-write shared memory array. Mem/d field uniquely identifies the read-write
shared memory. Startindex field identifies the beginning of a segment. NumQOfElements

field identifies the size of segment. TypeSize identifies the element type size.
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Lock Synchronization

Under acquire/release protocol, it is very important that at any given time only one
process is granted a same lock. Under the server models, this is implemented by using
Window NT’s CRITICAL_SECTION structure. Each lock is associated with a critical
section. When one process acquires the lock it enters its own critical section, when it

releases the lock it leaves the critical section.

4.4 The design of Dsm_Proxy class
4.4.1 Public interfaces
Dsm_Proxy class is provided to the programmers to use DSM functions. The following

shows its public interfaces:

class Dsm_Proxy
{public:
void SetProxyType(int proType);
int Release(int LockId);
int Acquire(int Lockld);
int BindLock(int LockID, char *Memld, int StartIndex, int NumSeg);
void StartMonitor();
int CreateLock();
void StartAllProcess();
int RegisterRead Write(char *Memld,char *localbuf);

int CreateRead Write(char *Memld, char *localbuf, int NumOfElements,
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int TypeSize);
int GetReadOnly(char *Memld,void *localbuf);
int CreateReadOnly(char *Memld, char *localbuf, int NumOfElements,
int TypeSize);
int GetProcessId();
int Connect(char *Server, int Port);
int Initialize();
Dsm_Proxy(int ProxyType=PROXYSERVER);
virtual ~Dsm_ Proxy();
friend DWORD WINAPI MonitorSvrRpsThread (LPVOID p);
friend DWORD WINAPI MonitorPeerSvrRpsThread (LPVOID p);
B
Functions: CreateLock, BindLock, CreateReadOnly, GetReadOnly, Create ReadWrite,
RegisterReadWrite, GetProcessld, SetProxyType, Initialize, Connect, Acquire and

Release are the same for all models.

The following thread functions are only used under the server models:
MonitorSvrRpsThread is used to monitor responses from master server.

MonitorPeerSvrRpsThread is used to monitor responses from peer server(s).
4.4.2 Internal Data structures of Dsm_Proxy

class Dsm_Proxy

{private:
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int m_ProxyType; //indicate if server is needed to provide DSM functions
//Socket type to send requests to master server
struct ClientSockType m_MSvrSockReq;
//Socket type to receive responses from master server
struct ClientSockType m_MSvrSockRps;
long m_NumPSvrs; //Num of Peer Servers
//Dynamic socket type array used to send requests to peer server
struct ClientSockType *m_PSvrSockReq;
//Dynamic socket type array used to receive responses from peer server
struct ClientSockType *m_PSvrSockRps;
long m_Processld; //The process id
struct PeerServerList m_PSvrListtMAX_ PSVRY]; //Peer Server List
struct LockType m_Lock[MAX_LOCK]; //Lock structure
int m_LockNum; //Num of locks
//m_LocalMem is used to build a mapping between
/Nlocal memory and shared memory
struct RWMemLocalMem m_LocalMem[MAX_LOCAL]J;

int m_LocalMemlIndex;

In the server models, each process uses m_MsvrSockReq and m_MsvrSockRps to
communicate with master server. Dynamic array m_PsvrSockReq and m_PsvrSockRps

are used to communicate to peer server(s).
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Each process has the same lock structure as the one used in servers. m_LocalMem is used
to build the link between local memory and shared memory. m_Lock and m_LocalMem

are used to implement acquire/release protocol and scope consistency.

RWMemLocalMem structure is shown as follows:

struct RWMemLocalMem {
char MemId[MAX LENGTH]; //the unique shared memory id
void *pLocal; //the pointer to local buffer that store shared memory
int NumOfElements; //redundant for ease of programming

int TypeSize; /lredundant for ease of programming

4.5 An example of internal data structures
To show the internal structures of servers and processes, we use the following codes:
int ary[200]; int lock[6];
for (int i=0; 1<200; i++) ary[i]=200-i; //Init ary to descending order
//Create 6 locks
lock[0]=dsm_proxy.CreateLock();
lock[1]=dsm_proxy.CreateLock();
lock[2]=dsm_proxy.CreateLock();
lock[3}=dsm_proxy.CreateLock();
lock[4]=dsm_proxy.CreateLock();

lock[S]=dsm_proxy.CreateLock();
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//Create read only memory “lock™
dsm_proxy.CreateReadOnly("lock" (char *)lock[0],6,sizeof(int));
//Create read write memory “ary”

dsm_proxy.CreateRead Write("ary",(char *)ary,200,sizeof(int));
//define segments and bind to locks
dsm_proxy.BindLock(1,"ary",0,20);
dsm_proxy.BindLock(2,"ary",20,40);
dsm_proxy.BindLock(3,"ary",60,30);
dsm_proxy.BindLock(4,"ary",90,30);
dsm_proxy.BindLock(5,"ary",120,50);
dsm_proxy.BindLock(6,"ary",170.30);

Master Server/Peer Server side:

M_Lock:

Lockld ServerID NumOfSeg {Memld, start, Num,Type}
1 0 1 “ary” 0 20 4
2 0 1 “ary” 20 40 4
3 0 1 “ary” 60 30 4
4 0 1 “ary” 90 30 4
5 0 1 “ary” 120 50 4
6 0 1 “ary” 170 30 4
m_Acqcs (critical section for Acquire)

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

m_RdMem

MemlID Num Type

“lock” 6 4 T 1,2,34,56

M_RdMemIndex=1
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m RWMem
“ary” 200 4 ] 200,199......... I

M_RWMemlindex=1

Process side:

M_Lock
Lockld ServerID NumOfSeg {Memld, start, Num,Type}
1 0 1 “ary” 0 20 4
2 0 1 “ary” 20 40 4

3 0 1 “ary” 60 30 4
4 0 1 “ary” 90 30 4

5 0 1 “ary” 120 50 4

6 0 1 “ary” 170 30 4
m_LocalMem

ary
“ary” 200 | 4 ™ 200199 1

4.6 Supporting declarative directives under server models

In our system the following declarative functions are supported under the server models:
GetProcessld, CreateReadOnly. GetReadOnly, CreateReadWrite, Register ReadWrite,

CreateLock and BindLock. The following shows their implementation details.

Function GetProcessld sends a request to the master server. Then the master server sends
back the assigned process id. Process id reflects the order in which processes connect to

the master server. Figure 4.3 shows its details.

Master Server

CLI_GETPROCESSID T CLI_GETPROCESSID | Process Id

Process
Figure 4.3 GetProcessld
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The first process connected to the master server uses function CreateReadOnly to create
read-only shared memory on the server. Figure 4.4 shows its details.

Master Server

Memld
CLI_CREATEREADONLY TypeSize Values | CLI_CREATEREADONLY
Process NumOfElements

Figure 4.4 CreateReadOnly
All other processes use GetReadOnly function to get the values set by the first process.
Figure 4.5 shows its details.

Master Server

CLI_GETREADONLY Memld CLI_GETREADONLY | Values
Process

Figure 4.5 GetReadOnly

The first process connected to the master server uses CreateReadWrite to create read-

write shared memory on the server. Figure 4.6 shows its details.

Master Server

Memld
CLI_CREATEREADWRITE TypeSize Values [CLI CREATEREADWRITE
Process NumOfElement

Figure 4.6 CreateRead Write

All other processes use RegisterReadWerite function to get the initial descriptions set by
the first process. RegisterReadWrite is used to build a link between local memory and

read-write shared memory. Figure 4.7 shows its details.

Master Server

CLI_REGISTERREADWRITE Memld | CLI_ REGISTERREADWRITE| Descriptions
Process

Figure 4.7 RegisterReadWrite
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The first process connected to the master server uses CreateLock to get a unique lock id
from the master server. Lock id begins from 1 and is increased by 1 when a new lock is
created. Figure 4.8 shows its details.

Master Server

CLI_CREATELOCK CLI_CREATELOCK New Lock Id

Process
Figure 4.8 CreateLock

The first process connected to the master server uses BindLock to define data segments
protected by a lock. Figure 4.9 shows its details.

Master Server

Lockld
CLI_BINDLOC Memld ,Startindex CLI BINDLOCK

Process | | NumOfElements

Figure 4.9 BindLock

4.7 Initialization under server models

Initialization for Master Server: If a master server has more than one peer server, it
waits for all peer servers to connect to it before it accepts any process connection. Then it
waits for the connection of all the processes.

Initialization for Peer Server: After peer server connects to the master server, it
requests the master server for its server id, TCP port to listen on and the number of
processes. Then it allocates resources accordingly and starts a thread to monitor
information sent from the master server.

Initializations for Process: After a process connects to the master server, it requests the

master server for its process id and the number of peer servers. If the master server has
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more than one peer server, the process asks the master server to send back the peer server

list and connects to each peer server.

Replications: Under the server models, lock information needs to be replicated. Before
the first process connects to the master server. all peer servers have already connected to
the master server. So replication to peer server happens right after a process sends
declarative requests to the master server. Client requests CLI CREATEREADWRITE,
CLI CREATELOCK and CLI BINDLOCK are sent by the master server to peer servers
as SVR_CREATEREADWRITE, SVR_CREATELOCK and SVR_BINDLOCK. Thus the

peer servers can create similar structures.

Replicating lock information to all processes is more complex. When the first process
sends declarative requests, other processes may not have yet connected to the master
server. Thus replication only happens after all processes have connected to the master
server and there is no more declarative requests. To satisfy these conditions, special

synchronization functions need to be called.

The first process is responsible to call StartAllProcess to tell the master server that there
is no more declarative requests. All remaining processes need to call function
WaitForMasterProcess to wait for the primary process to complete declarative requests.
The functions GetReadOnly and Register ReadWrite can only be called after function

WaitForMasterProcess is called. If the master server knows that all connections are
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made and there are no more declarative requests, it replicates lock information to all
processes. Then all distributed processes can move on.

4.8 Acquire/Release Protocol under the server models

Under the server models, the general application protocol between server and client is
shown as follows:

Server

Head | More Data Head | More Data
Client

Figure 4.10 General application protocol

The head uses the following SvrCmdPack structure:
struct SvrCmdPack {

int CmdType; /l command type tell server what task to perform

long MoreRemains;  // indicate if there are more data IR
The client first sends head to the server. [f more data is needed, the client sends more
necessary packets to the server. After the server processes the command, it acknowledges
the client using a head that has the same command type. If there are more data sent from

the server, the client receives them as well.

Under the server models, acquire/release protocol needs the coordination between the
server and processes, with the server performing most of the tasks.

Client side acquire protocol is shown as the following:

(1)Prepare acquire command.

(2)According to m_Lock determine which server to send request to.

(3)Send acquire command to specific server.
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(4)Send Lockld to the same server.

(5)Wait server to send back acquire command.

(6)Wait for lockid and seg.

(7)Wait for segment description.

(8)Wait for segment data.

(9)According to m_LocalMem copy received data to local memory.

In the central server model, step (2) is not needed.

Server side acquire protocol is shown as the following:
(1)Wait for acquire command.

(2)Wait for lockid.

(3)Servers try to enter critical section according lockid.
(4)Acknowledge client with acquire command.
(5)Send lockid and num of segments back to client.
(6)Send each segment’s description to client.

(7) Send each segment’s data to client.

The following shows acquire protocol details between server and client.

EnterCriticalSection

Server
ACQ}.ockidT ACQ LockidlSeg lSeg DescriptionLSeg Data .....

Client

Figure 4.11 Acquire Protocol
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Client side release protocol is shown as the following:
(1)Prepare release command.

(2)According to m_Lock find which server to send request to.
(3)Send release command to specific server.

(4)Send Lockld to the same server.

(5)Send segment description.

(6)Assemble segment data.

(7)Send segment data.

(8)Repeat (5)-(7) for all segments.

Server side release protocol is shown as the following:
(1)Wait for release command.

(2) Wait for Lockld.

(3) Wait for segment description.

(4) Wait for segment data.

(5) Update the copy on the server side.

(6) Repeat (3)-(6) for all segments.

(7) LeaveCriticalSection.

Update local copy LeaveCriticalSection

Server
RLS TLockiJ Seg description T Seg DataT

Client

Figure 4.12 Release Protocol
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Chapter S Developing DSM Under Fully Distributed Model
5.1 DSM architecture under fully distributed model
In this model, Dsm_Proxy class is not design as a thin client. Complex DSM tasks
previously performed in DsmServer class are now moved to Dsm_Proxy class. Figure 5.1
shows the DSM architecture under fully distributed model. In order to support declarative
directives, the structure for ReadOnly memory is added to the Dsm_Proxy class. Critical

sections are not used, as synchronization is realized through the acquire/release protocol.

DsmProxy Class
Read Process
Locks Only Lists
Memorv
Table to map Threads
Read Write Shared For All
memory Other Processes
To local memory

Figure 5.1 DSM architecture under fully distributed model
Additional fields in the Lock structure are used. They are:
a CurrentOwnerld identifies the process that currently owns the lock.
Q LastWriteProcess identifies the process that most recently wrote.
Q NewVersion identifies the most recent version of a data segment.
a CurVersion identifies the version of a local data segment.
One interface function SetPrimaryProcess is added to allow a programmer to set the first
process. Function SetPrimaryProcess accepts two parameters:(1) the number of

processes, and (2) the port at which the process listens to other processes.



SetPrimaryProcess should be called before Initialize is called. The following shows an
example:

/IThere are two 2 processes, each listen on TCP port 5000.

Dsm_Proxy dsm_proxy(NOPROXY);

dsm_proxy.SetPrimaryProcess(2,5000);

if (dsm_proxy.Initialize() ) { // more codes here };
To make DSM programming easier, each process only needs to know the computer name
or [P address of the primary process. The primary process keeps a computer list of all
processes connected to it and broadcast this list to all other processes. Then each process

can build the communication channels as shown in figure 5.2

5.2 Communication under fully distributed model
In the fully distributed model, the most recent data may exist in any of processes. Each
process is involved in the synchronization. Direct communication channel is used

between any pairs of processes.

Figure 5.2 shows the communication among three distributed processes. Each process
listens on the same port for the other processes. If there are n processes, a process has n-1
sockets for listening to requests from the other processes. It also has n-1 sockets for
sending to the other processes. A process has an internal dynamic socket array Regq for
listening to all other processes, and an internal dynamic socket array Rps for connecting

to all other processes.
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Process 1

Req P2 " Rps 2

Req P3 Rpﬁ

O
;;// N

Req P1 Req P1 Rps )

Req P3 Rps 3 B Req P2 Rps 2

Figure 5.2 Communication example under fully distributed model.

Table 5.1 lists all internal messages exchanged between processes. We can see that fewer
internal messages are used under fully distributed model. This is because declarative

messages are not sent. Declarative operation is processed locally by the first process.

Name Usage

CLI_ACQUIRE Sent to the process who last acquire the lock
CLI_ACQACK Sent back to process who acquires it
CLI_RELEASE Sent to every process that there is a new version

CLI_LOCKOWNER Sent to every process who currently acquires the lock

CLI_LOCKRELEASE | Sent to every process that lock is released.

Table 5.1 Internal messages exchanged among processes
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5.3 The design of Dsm_Proxy Class

5.3.1 Public interfaces

The public interfaces of Dsm_Proxy used under fully distributed model are shown as

follows:

class Dsm_Proxy

{public:

}

void SetPrimaryProcess(int NumOfProcess,int ListenPort);

int Release(int LockId);

int Acquire(int LockId);

int BindLock(int LockID, char *Memld, int Startindex, int NumSeg);

int CreateLock();

void StartAllProcess();

void WaitForMasterProcess();

int RegisterReadWrite(char *Memld, char *localbuf);

int CreateRead Write (char *Memlid, char *localbuf, int NumOfElements,
int TypeSize);

int GetReadOnly(char *Memld, void *localbuf);

int CreateReadOnly(char *Memld, char *localbuf, int NumOfElements,

int TypeSize);

int GetProcessld();

int Connect(char *Server, int Port);

int Initialize();

Dsm_Proxy(int ProxyType=PROXYSERVER);

friend DWORD WINAPI MonitorProcessThread (LPVOID p);

friend DWORD WINAPI WaitConnectThread (LPVOID p);

Functions: CreateLock, BindLock, CreateReadOnly, GetReadOnly, CreateReadWrite,

RegisterReadWrite, GetProcessld, Acquire and Release are the same as the server

models. There are some minor differences in initialization functions used in different
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models. SetPrimaryProcess is only used under fully distributed model to set which
process is the primary process. The primary process does not use the Connect function.
Function StartMonitor is not used. The primary process uses StartAllProcess function.

All other processes use WaitForMasterProcess for initialization.

Under fully distributed model, except in the primary process, all other process use thread
function WaitConnectThread to wait for other processes to connect. Thread function
MonitorProcessThread is used to process acquire/release related requests an can process
more internal messages such as CLI_LOCKOWNER, CLI ACQACK and

CLI LOCKRELEASE.

5.3.2 Internal data structures
The internal data structures of Dsm_Proxy class used under the fully distributed model
are shown as follows:

class Dsm_Proxy {
private:

int m_ProxyType; //indicate if extra server is needed

long m_Processld; /The process id

struct LockType m_Lock[MAX LOCK]; //Lock structure
int m_LockNum; //How many lock

//The table to map Read-Write memory to local memory
struct RWMemLocalMem m_LocalMem[MAX LOCAL];
int m_LocalMemlIndex;

// The Read Only shared memory structure

struct RWMemLocalMem m_ReadOnly[MAX LOCAL];
int m_ReadOnlyIndex;
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//How many processes will join the distributed processes

int m_MaxProcess;

struct ProcessList *m_ProcessList; //The process list structure
//Dynamic socket array used for listen other processes to connect
struct ClientSockType *m_ProReq;

//MDynamoc socket array used to connect other process

struct ClientSockType *m_ProRps;

//Which port is used to listen requests

unsigned short m_PortReq;

35
ProcessList is the only new data structure used under fully distributed model. The

following shows its details:

struct ProcessList {

int Pid;

char ComputerName[MAX LENGTH];
B

5.4 Supporting declarative directives under fully distributed model
Similar to the server models, the following declarative functions are supported:
GetProcessld, CreateReadOnly, GetReadOnly, CreateReadWrite, Register ReadWrite,

CreateLock and BindLocK.

Only the primary process is allowed to use function CreateReadOnly to create read only
shared memory. CreateReadOnly involves only local operations. It fills a new element in
m_ReadOnly array and increases its index. Read-only shared memory structure is
replicated to other processes when they connect to the primary process. All other

processes use GerReadOnly function to get the values set by the primary process.
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Function GetReadOnly looks up the replicated m_ReadOnly structure to get the values.

Hence it does not generate network traffic.

Only the primary process is allowed to use function CreateReadWrite to create read-write
shared memory. CreateReadWrite builds a mapping between read-write shared memory
and local memory. The structure m_LocalMem built by CreateReadWrite is replicated to
all other processes. All other processes use RegisterReadWrite function to build a link
between local memory and read-write shared memory. The replicated m_LocalMem
structure contains a local pointer, which cannot be directly used and must be allocated

locally.

Only the primary process is allowed to use CreateLock to get a unique lock id, lock id

begins with 1 and is increased by 1 when a new lock is created.

Only the primary process is allowed to use BindLock to define segments protected by the
lock. BindLock initializes the lock structure fields New Version, CurVersion, and
LastWriteProcess. Lock structure is replicated to all other processes. But some fields are
changed locally. For example, fields NewVersion, CurVersion are both set 1 for primary
process. When the primary process initially acquires a lock, it knows it already has a
local copy. For other processes NewVersion is set 1, and CurVersion is set 0. This means

that there is a most recent copy elsewhere.
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5.5 Initialization under fully distributed model
The initialization under fully distributed model are quite different from that under the
server models. The initialization details of primary process are shown as follows:
(1) Listen on local port.
(2) Accept a connection
(3) Send pid, max_process, port back to connected process
(4) Send lock information back to connected process
(5) Send read-only shared memory information back to connected process
(6) Send read-write shared memory information back to connected process
(7) Add the new connected process to its process list
(8) Wait for connected process to start its thread that listen on its own port
(9) Connect to that Process
(10) Send back Acknowledge message
(11) Start a thread to monitor connected process
(12) Repeat (2) to (11) until all other processes have connected
(13) Broadcast process list
(14) Wait remaining processes to connect each other.

(15) Broadcast message to move on

The following shows initialization details of other processes:
(1) Try to connect to primary process.
(2) Wait for pid, m_maxprocess, and port.

(3) Wait for lock information.

71



(4) Wait for read-only shared memory information.

(5) Wait for read-write shared memory information.

(6) Allocate resources according to m_MaxProcess.

(7) Create a thread to allow other processes to connect and notify primary process to
connect.

(8) Wait for acknowledge from the primary process to connect this process.
(9) Create a thread to monitor process requests.

(10) Wait for process list.

(11) Try to connect all remaining process according to process list.

(12) Send acknowledging message to primary process.

(13) Wait for primary process to move on.

Primary Process

Process id Lock
Ack
Connect| | Max_Process [Read Only memory | Connect| Process| to Move on
List move on
Port Read Write Memo

Other Process
Figure 5.3 Connection to primary process

Figure 5.3 shows how a process connects to the primary process. From figure 5.3 we can
see that Max_Process, Port. Lock, ReadOnly memory, ReadWrite memory and process

list are replicate to all other processes from primary process.
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5.6 Acquire/Release protocol under fully distributed model
Acquire/release is performed at each process. Some new internal messages are used:
CLI_LOCKOWNER informs other processes the owner of the lock. CLI ACQACK
acknowledges for CLI ACQUIRE. CLI LOCKRELEASE releases a lock.
The details of acquire protocol are shown as follows:
(1) Check CurrentOwenerld field of lock structure. Acquire is blocked until
CurrentOwenerld is empty.
(2) If CurVersion equals NewVersion, broadcast CLI LOCKOWNER and LockID
message to other processes. Lock is granted and local copy is used.
(3) If the CurVersion is not equal to NewVersion, LastWriteProcess field identifies
which process to send CLI ACQUIRE request.
(4) For the process that receives CLI ACQUIRE requests, send back its data page and
acknowledge it with CLI ACQACK message.
(§5) Wait for CLI ACQACK response from that process.
(6) Assemble data from that process.
(7) Broadcast CLI_LOCKOWNER and LockID message to other processes as lock is
granted
From the above, it can be observed that acquire request is not sent to others if the lock is
already granted. The process waits until no one owns the lock. If no one owns the lock, it
checks if it already has the most recent page. If so, the local copy is used. Then the lock is
granted by broadcasting to the world that it is the lock owner. If it does not have the most

recent one, then a remote copy is used. It sends a CLI ACQUIRE request to the process
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that last wrote on it. Upon the receipt of CLI ACQACK , it assembles the received data.

Then lock is granted by broadcasting that it is the lock owner to all other processes.

The details of release protocol are shown as follows:

(1) Increase NewVersion by one.

(2) Assign NewVersion to CurVersion.

(3) Broadcast CLI LOCKRELEASE, lock id, process id and new version to every
process.

(4) For other processes, upon receiving CLI_LOCKRELFEASE message, they receive
lock id, process id and new version. Then set the lock’s CurrentOwenerld field to
be empty, and reset NewVersion and LastWriteProcess fields according to the

message received.
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Chapter 6 Programming issues when implementing DSM
6.1 How to use TCP/IP multithreaded programming in DSM development
6.1.1 System calls used in TCP/IP programming
TCPAP is used in our DSM as the underlying communication protocol. We use a lot of
TCP/IP programming in our development. For more detailed information on TCP/IP

programming please refer to {14}

The following diagram shows Winsock APIs call sequence in a server application:
WSAStartup: Initializes Winsock
sgcket : Creates a socket, uses AF_INET for TCP port
htons : Converts a port number from host byte order to network byte order.
Network byte order will be used in function bind.
bind : Associates a local address with a socket

liSten : Prepares a socket to listen for incoming connections

actept: Accepts a connection on a socket connection phase
|
send/recv communication phase

After a server program creates a socket, it calls Atons to convert TCP port. Then it uses
bind to specify which port it listens and uses /isten for incoming connections. Finally it
calls accept to wait until a connection is made. For multi-clients server program, a
static/dynamic socket array structure should be used to keep multiple connections. Then a

server commurnicates with clients using send/recv.

The following diagram shows Winsock API call sequence in a client program:
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WSAStartup: Initializes Winsock
sqcket : Creates a socket, uses AF_INET for TCP port

connect: Establishes a connection to a server connection phase

send/recv communication phase
After a client program creates a socket, it calls connect to connect to the server. and

interacts with the server using send/recv commands.

Both the server program and the client program can be divided into two phases:

o Connection phase: In this phase server and client use some APIs to establish
connections. After connections are made, these APIs are not used again.

@ Communication phase: In this phase the server and the client use send/receive and

other APIs to communicate. These APIs are repeatedly used when needed.

6.1.2 Methods to serve multiple clients

Generally there are three methods to design multi-client server program:

(a) Use one process by using select function call

(b) Use multiple processes by using fork.

(c) Use multiple threads in one process

Method (a) uses function FD_CLR, FD_SET to add socket descriptors to a set. Then it
uses select to wait until descriptor to become ready. Select is blocking until the
descriptor is ready. Then we can use FD_ISSSET to test which descriptor is ready.
Method (b) uses Unix system call fork to generate identical processes. Each process

services a user connection. The disadvantage of this method is that it is resource
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expensive, and there are no shared states among these processes. Figure 6.1 shows the

ideas of these three methods.

Process

Client Client Client

(2) One process multiple clients

Master
Process
Slave Slave
Process Process
Client Client Client

(b) Multiple processes multiple clients

Process
Threads

oy

Client Client giient

(c) Multiple threads for multiple clients

Figure 6.1 server programming methods
Both methods (a) and (b) are not used in our implementation because the main process is
blocking. Under fully distributed model the main process is used to implement the
application. Thus blocking is not acceptable. Instead, we use method (c). Threads are
running in the background and are parallel to main process. The other benefit of using
threads is that the main process and threads uses and shares the same address space,

internal data sharing is easier.
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Figure 6.2 shows the differences between thread and process. A process owns all the
necessary resources to run an application. Two different processes do not shared
resources such as global data and heap. A thread is running separately within the process.
So they shared the global data and heap. It’s much quicker and more efficient for thread

switching than process switching.

Process
Process Gilobal data
Heap
Global data Codes
Heap Threads
Codes

Figure 6.2 Process and thread
6.1.3 Using threads in a class
Under Windows NT, the thread function must have the following prototype:
DWORD WINAPI FuncName (LPVIOP p);
The function returns a DWORD, which is used to provide return status. Usually we use
API function CreateThread to create a thread in the same process. However we should
know that thread APIs are C style and not C++ APIs. You should be very careful when
you use them. The prototype of CreateThread is shown as follows:

HANDLE CreateThread(LPSECURITY_ ATTRIBUTES IpThreadAttributes, //Security
DWORD dwStackSize, //thread stack
LPTHREAD_START_ROUTINE lpStartAddress, //address of thread function
LPVOID IpParameter, // pointer to parameters
DWORD dwCreationFlags, //thread creation flags
LPDWORD IpThreadld //thread id);

The first two parameters are usually set to 0. This enables the use of default values.

Thread APIs are platform dependent. It’s rather tricky in using them in C++ classes.
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There are two ways to use thread in a C++ class:

(1) Specify a thread function as friend function to the class.
(2) Specify a thread function as static function to the class.
The following is an example for method (1):

DWORD WINAPI ThreadFunc (LPVOID p);
class Examplel {
public : void Start();
friend DWORD WINAPI ThreadFunc (LPVOID p);

private:  //internal data structures and functions

}
void Examplel::Start()
{ DWORD tld; /fpass this allow thread to access Examplel class

HANDLE hThread;
hThread=CreateThread(NULL,0, ThreadFunc,(LPVOID)this,0,&tld);
}
DWORD WINAPI ThreadFunc (LPVOID p){
/[Thread codes
/MWe must cast ptr to Examplel class pointer
Examplel *ptr = (Examplel *) p;

// Then we can use ptr-> to access all Examplel’s class interfaces.

An example for method (2) is shown as follows:

class Example2 {
public : void Start();
private: static DWORD WINAPI ThreadFunc (LPVOID p);
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void Example2::Start()

{ DWORD tld; // This complex type cast is needed
HANDLE hThread;
hThread=CreateThread( l

NULL,O, (unsigned long (__stdcall *)(void *))ThreadFunc, NULL,0,&tId);

}
DWORD WINAPI Example2::ThreadFunc (LPVOID p){

//The ThreadFunc is a member function of Example2

//No extra codes are needed to access it.

}
In our implementation, we use method (1).

6.1.4 How to implement no-byte-loss application protocol in DSM
Implementing DSM requires that a protocol between a server and a client is byte-loss-
free. This means even single byte loss is not acceptable. For example, if the server sends
an eight-byte head to a client, the client must guarantee to receive 8 bytes. If we try to
achieve this goal by simply using recv function call, we will have problems. The
following sample code illustrates this:

char head[8];

memset(head,0,8); /Iclear buffer before receive

recv(sock, (char *)head,8,0); //the recv can return even if it receives less bytes than 8
The recv function receives data from a socket, and has the following prototype:
int recv (SOCKET s, char *buf, int len, int flags );
Under Windows NT, the fourth parameter is not supported and is always set to zero. The
problem of recv is that under Windows NT, it may return even if it does not fill the full

length of buffer. Figure 6.3 shows the case. Before the recv is called the channel has 8
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bytes. After recv is called, it may jus: read 6 bytes from the channel. This causes

misinterpretation of data and failure of application protocol.

6 bytes

/

Channel | 8bytes | Channel | 2 bytes
R
{1) Before recv (2) after recv

Figure 6.3 recv function
To implement byte-loss-frec protocol, we use our self-defined BlockRecv function to
receive incoming data strea:. Function Blo-kRecv receives the same parameters as recv.
But unlike recv, it is blocking until it fills the data butfer. We use ioctlsocket to test if the

channel has “len” bytes in its buffer. The foliowing code illustrates BlockRecv:

void BiockRecv { SOCKET s, char *buf, int len. int flags ){

long rec; unsigned int rcvb; int total;

do{  //Before recv we test if the channel has more bytes than len
ioctlsocket(s,FIONREAD,(unsigned long *)&rec);

} while (rec<len);

total=0; //we will compute many bytes received in total

do {
rcvb=recv(s, (char *)buf+total, len-total,0); //rcvb is the bytes actually received
if (rcvb>0) total=total+rcvb; //Add rcvb to toal
else break;

3 while (total<len); //loop until full len bytes are received
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6.2 Programming techniques used in DSM synchronization
6.2.1 Using critical section to synchronize acquire requests
Under the server models, acquire requests are sent to a specific server. Because at any
time at most one process is allowed to get the lock, we need a mechanism to solve the
problem when the server simultaneously receives acquire requests from several processes
for the same lock. One possible solution is to queue the acquire requests. When there is
no owner of the lock or the lock is released, the process on top of the queue is removed
and granted the lock. We do not use this method because it needs additional coding.
Instead, critical section is used in our implementation. Critical section is a simpler
solution when the threads of a single process need mutual-exclusion synchronization. We
should know that there is no guarantee about the order in which threads will enter the
critical section. However, the operating system guarantees fair selection of all threads. In
our case the order is not important. The following shows the related codes:
class DsmServer {

//Each lock has its own critical sections.

private:  CRITICAL_SECTION m_Acqcs[MAX LOCK];
}
DsmServer::DsmServer( unsigned int ClientPort, long NumOfProcess,

unsigned int ServerPort,long NumOfPeerServers)

{ //In the constructor critical sections are initialized

for (int i=0; i<MAX_LOCK; i++) InitializeCriticalSection(&m_Acqcs[i]);
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The following function is used by the server to process acquire requests

void DsmServer::ProcessAcquire(int ProcessId)
{ struct SvrStdDataPack data;
struct SvrCmdPack cmd;
//receive which lock id the process wants to acquire

BlockRecv(m_PtrClientRequest[Processld].sock,(char *)&data,sizeof(data),0);

EnterCriticalSection(&m_Acqces[LockId-1]);
//Other codes

}

void DsmServer::ProcessRelease(int Processld)

{ struct SvrStdDataPack data;
BlockRecv(m_PtrClientRequest[Processld].sock,(char *)&data,sizeof(data),0);
//Codes for receiving newest data page from process
//And assemble them in the server are omitted

LeaveCriticalSection(&m_Acqcs[LockId-1));

6.2.1 Using Named Event for synchronization
When we use multi-thread methods to implement DSM, we should avoid using recv
function in different thread functions running concurrently. The following example

demonstrates some undesirable outcome.

Thread 1§ Thread 2

recv() recv()

} }

Both thread 1 and thread2 use recv function to wait for some data. Suppose thread 1 is to

wait for 8 bytes head, thread 2 is to wait for 256 bytes data. The protocol used is to send
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the head followed by variable size data. Under the above arrangement, if thread 2 is
running before thread 1, then the protocol may fail. Because thread 2 consumes the head
that is needed by thread 1. So in our implementations, recv only happens in the thread
functions or in the functions called by thread functions. Therefore there is need for thread

functions and other functions to synchronize. Consider the following acquire example:

Process

Acquire —»

send
| Server

|
Thread <

recv

Under the server models, acquire is implemented in this way: acquire sends a request to
the server, and waits for response. As recv is only used in a thread, when the server sends
back a response, the thread function needs to notify the acquire function. But how ? One
simple method is that acquire function and thread function share a flag. After acquire
sends a request, it periodically polls the flag. Thread function sets the flag until it receives
server response. In our implementations, we use named event to avoid the polling. It
works like this: after acquire sends a request, it creates a named event and waits for it.
Thread will set the name event until it receives the server response. The following
example shows the details.
int Dsm_Proxy::Acquire(int LockId) {
if (m_Lock[Lockld-1].LastWriteProcess>0) {
cmd.CmdType=CLI_ACQUIRE;
cmd.MoreRemains=LockId;

int pid=m_Lock[Lockld-1].LastWriteProcess;

84



sd=send(m_ProRps[pid-1].sock,(char *)&cmd,sizeof(cmd),0 );
m_HAcq=CreateEvent(NULL,FALSE,FALSE, T("Acq"));
assert(m_HAcq!=NULL);
WaitForSingleObject(m_HAcq,INFINITE);
CloseHandle(m_HAcq);
//More codes are omitted here

}

The acquire acknowledge is supported by.

void Dsm_Proxy::ProcessAcqAck(int LocklId , int pid)

{ struct SvrStdDataPack data;
/lcodes to assemble received data are omitted here
SetEvent(m_HAcq);

}
6.3 Key code examples

The examples in this section are to show the use of methodologies discussed in the
previous sections. The following codes are all used under the fully distributed model. It
shows how the primary process registers processes and how information is replicated:

void Dsm_Proxy:: WaitProcessConnect()

{ SOCKET SockListenRequest;
struct SvrStdDataPack data;
struct sockaddr_in locall,from;
int fromlen;
int socket_type =SOCK_STREAM;
int pid=2; int res;

fromlen =sizeof(from);
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locall.sin_family = AF_INET;
locall.sin_addr.s_addr = INADDR_ANY;
locall.sin_port = htons(m_PortReq );
SockListenRequest= socket(AF_INET, socket_type,0); // TCP socket
assert(SockListenRequest!= INVALID_SOCKET);
res=bind(SockListenRequest,(struct sockaddr*)&locall sizeof(locall));
assert(res!= SOCKET_ERROR);
res=listen(SockListenRequest,5);
assert(res!= SOCKET_ERROR);
while (pid<=this->m_MaxProcess ) {
m_ProReq[pid-1].sock =
accept(SockListenRequest,(struct sockaddr*)&from, &fromlen);
assert(m_ProReq[pid-1].sock!=INVALID SOCKET);
m_ProReq[pid-1].pid=pid;
//Send pid,max_process,port to connected process
data.pData.Prm1=pid;
data.pData.Prm2=m_MaxProcess;
data.pData.Prm3=m_PortReq;
send(m_ProReq[pid-1].sock,(char *)&data,sizeof(data),0);
//Send lock information
data.pData.Prm1=m_LockNum;
send(m_ProReq[pid-1].sock,(char *)&data,sizeof(data),0);
send(m_ProReq[pid-1].sock,
(char*)&m_Lock[0],sizeof(m_Lock[0])*m_LockNum,0 );
//send read-only shared memory information
data.pData.Prm1=m_ReadOnlyIndex;
send(m_ProReq[pid-1].sock,(char *)&data,sizeof(data),0);
if ( m_ReadOnlyIndex>=1) {
send(m_ProReq[pid-1].sock, (char *)&m_ReadOnly[0],
sizeof(m_ReadOnly[0])*m_ReadOnlyIndex,0);

int blocksize;
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for (int i=0;i<m_ReadOnlyIndex;i++) {
blocksize=
m_ReadOnly[i]. TypeSize*m_ReadOnly[i]. NumOfElements;
send(m_ProReq[pid-1].sock,(char *)m_ReadOnly[i].pLocal,
blocksize,0);

b

//send read-write shared memory information
data.pData.Prm1=m_LocalMemlIndex;
send(m_ProReq[pid-1].sock,(char *)&data,sizeof(data),0);
if ( m_LocalMemIndex>=1) {

send(m_ProReq[pid-1].sock,(char *)&m_LocalMem(0],
sizeof(m_LocalMem([0])*m_LocalMemindex,0); }

//Add a new process to process list

strcpy(m_ProcessList[pid-1].ComputerName,inet ntoa(from.sin_addr));

m_ProcessList[pid-1].Pid=pid;

//wait for other process to start thread

BlockRecv(m_ProReq[pid-1].sock,(char *)&data, sizeof(data),0);

//Call ConnectProcess will let primary process connect to other process

ConnectProcess(pid);

//Send ack to other process notify connect success

send(m_ProReq[pid-1].sock,(char *)&data, sizeof(data),0);

//start a thread to monitor process

DWORD tld; HANDLE hThread;

m_CurProcess=pid;

hThread=CreateThread(NULL,0,MonitorProcessThread ,
(LPVOID)this,0,&tId);

Sleep(1000); pid+=I;
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The follow thread is used to implement acquire/release protocol:
DWORD WINAPI MonitorProcessThread (LPVOID p)
{ Dsm_Proxy *ptr = (Dsm_Proxy *) p;
struct SvrStdDataPack data; struct SvrCmdPack cmd;
int index=ptr->m_CurProcess-1; int lockid;
while (1) {
//Block until receive command head
BlockRecv(ptr->m_ProReq[index].sock,(char *)&cmd,sizeof(cmd),0);
switch(cmd.CmdType) { //According head type, do some further process
case CLI_ ACQUIRE:
ptr->ProcessAcqReq(cmd.MoreRemains,index+1); break;
case CLI_ ACQACK:
ptr->ProcessAcqAck(cmd.MoreRemains,index+1); break;
case CLI_LOCKRELEASE:
lockid=cmd.MoreRemains;
BlockRecv(ptr->m_ProReq[index].sock,(char *)&data,sizeof(data),0);
ptr->m_Lock[index].CurrentOwnerld=0;
ptr->m_Lock[index].LastWriteProcess=data.pData.Prm1;
ptr->m_Lock[index].NewVersion=data.pData.Prm2 ;break;
case CLI LOCKOWNER:
lockid=cmd.MoreRemains;
BlockRecv(ptr->m_ProReq[index].sock,(char *)&data,sizeof(data),0);
ptr->m_Lock{index].CurrentOwnerld=data.pShort; break;

return 1;
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Conclusions & Future works
The following conclusions are drawn from this project:
g DSM can be implemented using different models (algorithms). But for the
programmers their usage is almost the same. We show how to encapsulate different

DSM models under one framework by using object-oriented method.

o Our developing experiences show that using multi-thread programming is more
efficient. We believe multi-thread programming plus object-oriented programming is

the best combination when developing DSM.

@ The most important aspect of developing DSM is to handle communication among
processes and servers. The communication model we propose uses dual TCP ports.

This simplifies both designs and programming.

a We started our design on master server model, later we moved on to multiple server
model and fully distributed solution. Our experiences demonstrate that although the
algorithms are quite different under various models, most of the internal data

structures and program structures are reusable.

0 We use some platform dependent programming techniques in our development, such
as critical section structures and named events. The use of these programming

techniques considerably simplifies the coding.
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The following are recommended for future improvements

a Compilation of a process into a multithreaded process is necessary in order to relax its
program order in software distributed shared memory. This is a step omitted in the
reported implementation. This should be dealt with before significant benefits can be

obtained from the relaxed consistency model.

0 Supporting DSM on Unix/Linux platforms. The existing codes use Winsock APIs. It

is easy to port them to Unix/Linux using little effort.

Q@ One major limitation of our system is that it only supports C++ at source code level.
To solve this problem, we think that middle-ware components such as DCOM and
CORBA are the best solution. Minor code rewriting is needed to transform the

existing DSM to middle-ware components to support other commercial languages.

a Optimize existing application protocol to decrease network traffic is possible. The
existing acquire/release protocol sends or receives the whole data segment. This is not

needed when only a few data items are changed in the segment.
0 Additional performance analysis is needed to address issues such as the scalability of

DSM, the refinements of consistency models to be used and allocation of application

processes to various nodes in the network.
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