GRAPHLOG: ITS REPRESENTATION IN XML AND
TRANSLATION TO CORAL

LIQIAN ZOU

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoRr THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APriL 2003
(© L1QiAN Zou , 2003

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Canadi

Bibliothéque nationale

services bibliographiques

385, rue Wetlington
Ottawa ON K1A ON4

Your e Votre rélecrence

Qur s Aotre redscence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son

-autorisation.

0-612-78004-X

Abstract

Graphlog: Its Representation in XML and Translation to Coral

Ligian Zou

Diagrammatic Query allows users to compose a query through diagrams in a
Graphical User Interface(GUI) environment. Diagrammatic Query has three basic

requirements that must be fulfilled:
e Both the query and query results should be presented graphically.
e The users should be able to query database intuitively.

e Queries should not only refer to information that resides at databases, but also
to views based on defined queries, defined previously, which are saved in the

system.

We utilize the logic of Graphlog and CORAL so that users are able to pose queries
by drawing nodes, edges and blobs, and probably by specifying which existing views
are to be included.

This thesis proposes the definition of Transferable Graph Language and the anal-
ysis, design, and implementation of the translation system. The transformation and
storage format used by our project is specified in Transferable Graph Language(TGL),
which uses XML DTD to regulate the program structures. The translation system will
be driven by TGL programs transferred from the GUI system. These TGL programs
collect node, edge, and blob status and information about how they are related. Also
they will inform which existing views will be involved. Then the translation system
will analyze these data and translate them to CORAL programs. Next, the transla-
tion system will organize calls to CORAL system and collect query results received
from the CORAL system. At the end, the translation system will transform the re-
sults as TGL result programs and return them to the GUI system for displaying to

users.

il

A cknowledgements

Above all, T wish to express my deepest appreciation to my thesis supervisor, Dr.
Gregory Butler. His inspiring and patient guidance lead me to accomplish my thesis.
I will never forget the principle that he taught me: Keep things simple. I can not
remember how many times this principle sends me on my way to conquer difficulties
and derive elegant solutions.

In addition, my gratitude would go to Xuede Chen and Helen Lin, who worked
together with me on the same project. They gave me valuable suggestions.

Continuely, I am alway grateful to my mother, it is her love that is accompanying
me through the master study.

At the end, I greatly appreciate the love, support, and encouragement of my
husband, Mang Yu.

v

Contents

List of Tables

List of Figures

1

Introduction

1.1 Deductive Database Systems Lo
1.2 Graph Query Languages and Support Systems
1.3 The Role of the Thesis in the Whole Diagrammatic Query System . .
1.4 Contribution of the Thesis o
1.5 Organization of the Thesis

Background

2.1 Object-Oriented Incremental Process Model

2.2 Graphlog and Hygraph
2.2.1 Fundamental Elements
2.2.2 Aggregate Functions
2.2.3 Graphlog, SQL and Object-Oriented Query Language

2.3 CORALSYStEI o v o o i i it e e e e e e
2.3.1 Architecture of CORAL Deductive System
2.3.2 CORAL Declarative Language
2.3.3 The Query Optimization

2.4 Extensible Markup Language(XML).
2.4.1 General Definitions oo
2.4.2 The relation of XML with SGML and HTML
2.4.3 XML Constructs« « o v i
2.4.4 XML Processors « « v v v v v it e e e e e

viii

ix

W N N =

© o o ot Gt

25 JAVA . . e e e e e e e e e e e e e e e e 18

2.5.1 The Architectureof Java 18
2.5.2 Collections Framework [20] 19
2.5.3 The Input/Output Framework 22
Transferable Graph Language 25
3.1 Lexical Elements 26
3.1.1 Charactersusedo 26
3.1.2 Identifiers e 26
3.1.3 Primitive Types and Literals 27
314 Operatorso 27
3.1.5 Expressions oo 29
3.2 Query Program Structureo 31
3.2.1 Program Elements 31
322 Content Modelso 33
3.3 Result Structureo 33
3.3.1 Program Elements, 35
3.3.2 Content Models 37
3.4 COmMmMENES« o o e e e e e e e e e e e e 37
Translation System 39
4.1 Context of The Translation System 39
4.2 Requirements and Incremental Plan 41
4.2.1 Requirements Definition 41
4.2.2 TIncremental Plan 48
4.3 Increment One Process« . . oo 52
4.3.1 Increment One — Analysis 52
4.3.2 Increment One — Design 57
4.3.3 Increment One — Implementation. 73
4.3.4 Increment One — Test 77
4.4 Increment Two Processo 83
4.4.1 Increment Two — Analysis 83
4.4.2 Increment Two — Design 87
4.4.3 Increment Two — Implementation 96

vi

4.4.4

Increment Two — Test

4.5 Increment Three Process v v v v v v i v i i i i v e e

4.5.1
4.5.2
4.5.3
4.5.4

5 Conclusion
Biblography
Appendixes

A University

Increment Three — Analysis
Increment Three — Design
Increment Three — Implementation

Increment Three — Test

Data Model System Schemes and Example Facts

B Sample Query Diagram Templates

vil

127

130

133

133

139

List of Tables

© 0 N O Ut ok W N -

A e e e e e g
EN S« NS BN JUR O R N e

A Comparison of XML, SGML and HTML 16
The Arithmetic Operators Applicable to TGL 28
The conjunction Operators Applicable to TGL 29
The Content Model of TGL Query Program 34
The Content Model of TGL Query Program(continue) 35
TGL Result Content Model 37
Tokenizer States and Associated Characters 66
Newly Declared Exception Classes Serving Increment One 73
The System Scheme File shared with lower layer system 80
The CORAL Program That Define Relation dept_people 102
The Coral Program That Query Using a TGL logical Expression . . . 121
The Result TGL Program For a Query Using a TGL logical Expression 122
The Coral Program That Query Involving Negation 124
The TGL Program for Results of the Query Involving Negation . . . 125
The Coral Program That Query Involving Aggregation 126

The TGL Program for Results of the Query Involving Aggregation . . 126
The Underlying System Scheme for the Univesity Data Model 134

viil

List of Figures

NoRNe SRS B« RS R AV

i~ T S
-] O Ut ke W N = O

18

19
20
21
22
23
24

The Incremental Process Model

An Example of DefineGraphlog,

Examples of Defining and Using Blobs 10
The Architecture of CORAL System 11
Core Collections Interface Hierarchy of Java 20
Character Stream Class Hierarchy of Java 23
Byte Stream Class Hierarchy of Java 24
The Two Methods to Depict Attributes 29
TGL Logical Expression Syntax 30
The TGL Program Structure Regulation 32
The TGL Result Structure Regulation 36
Context Diagram of The Translation System 40
Use Case Diagram Inside The Translation System 42
Activity Diagram of The Translation System 49
The Analysis Class Diagram of Increment one 58
The Conceptual Structure at Stage of Increment One 58
Organization of Nodes, Edges, and Blobs Before Applying Flyweight

Pattern e e e e 62
Organization of Nodes, Edges, and Blobs After Applying Flyweight

Pattern e 63
Nested Class i v i i it e 63
Inner Class XRuntime in Increment One 64
Tokenizer States Class Hierachy 66
Potential Paths of recognizing a Symbol 67
XToken Class Diagram 68
Tokenizing TGL Programs Class Diagram 69

X

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

45

46
47
48
49
50
o1
52
53
54

Class Hierarchy for Parsing TGL Program 71

An Example Coral Program 72
The design class diagram of Increment one 74
The Implementation of Class LocalTranslator Being Singleton 75
Test Object for Fetch System Schemes 81
Test case result of Fetch System Schemes 82
The Analysis Class Diagram of Increment Two 87
The conceptual structure at stage of Increment Two 88
Updated Inner Class XRuntime 89
Accessing CORAL System 90
An example of CORAL Backend Output 92
Collaborating to Access the CORAL System 93
The Sequence Diagram for Parsing Result 94
The design class diagram of Increment Two 95

Implementation of Recursively Recording Related User-defined Relations 97

Implementation of Combining Collection without Repetition 97
Implementation of Calculating Number of Generation 98
Implementation of Listing All Based User Schemes In order 99
Drawing of Query “Return Staff Members and Students in the Com-

puting Science Department” 101
TGL Program - Return Staff members and students in the Computing

Science Department 103
CORAL Execution Results - Return Staff members and students in

the Computing Science Department 104
TGL Program Corresponds to the CORAL Execution Results 106
Final Conceptual Structure of the Translation System 109
Translation TGL logical Expression Class Diagram 110
Class Diagram of PredicateParser 113
The Context-free Grammar for TGL logical Expressions 113
ASTNode Constructions Examples 114
Design of Class ASTNode 115
Design of Class CodeGenerator 115
Design of classes XNode, XEdge and XBlob 116

55
56

57
o8
99
60
61
62
63
64

Implementation of Detailof An Edge 118
Graph&TGL Program for an Query Example Using Positive TGL log-

ical EXpressions 120
Graph for an Query Example Involving Negation 123
Graph for an Query Example Involving Aggregation 125
Diagrams of Example Query Composition(1-6) 140
Diagrams of Example Query Composition(7 —11) 141
Diagrams of Example Query Composition(13 - 16) 142
Diagrams of Example Query Composition(17 —22) 143
Diagrams of Example Query Composition(23 -26) 144
Diagrams of Example Query Composition(27 -30) 145

X1

Chapter 1
Introduction

Along with the development of database technologies, great efforts has contributed
to the field of inventing query systems, making it easier for end users to compose
expressive, efficient, and powerful queries.

In fact, various query systems have been designed and implemented to assist
corresponding database data models. This thesis deals with diagrammatic queries
that are based on Graphlog [3] and CORAL [6], an excellent deductive database.

1.1 Deductive Database Systems

Deductive database systems have been under extensive research since 1980s. Until the
late 90s, powerful deductive database systems were created. The CORAL deductive
system [6] is such an example.

Deductive database systems are extended relational database systems. As rela-
tional database technology has matured and related optimizers have been improved
over the last decades, relational systems have become more widely used. However,
relational data model has painful limitations for scientific applications such as bioin-
formatics [1]. Above all, it can not process recursive queries, which are normal re-
quirements of most scientific applications. In effect, deductive database is not only
an extension of relational database, but an extension of logic programming languages
like Prolog [2]. So deductive databases inherit both the declarative features of rela-

tional database query languages and rule-based query ability from logic programming

languages. Thereby, a deductive database has potentially the high performance of re-
lational database and flexibility on query description provided by logic programming
systems. The CORAL system developed at University of Wisconsin is one of the most
practical implementations of deductive database.

Although declarative query languages of deductive databases already have signifi-
cant power for end users to express the queries, they are still less expressive compared

with graph query languages.

1.2 Graph Query Languages and Support Systems

“A picture is worth a thousand words”. Graph query languages use diagrams as
standard user interface. Compared with graph queries, deductive queries are much
less expressive and less easy to use. The Graphlog query language and its querying
environment, Hy+ [5], were designed and implemented in University of Toronto.

The Hy+ system utilizes the CORAL deductive system as its underlying support
to process queries [4].

There are several prototype applications that make use of Graphlog and Hy+ [4].
Nonetheless, the querying environment Hy+ system is implemented using Smalltalk,

which at least limits its integration possibility with other well-used applications.

1.3 The Role of the Thesis in the Whole Diagram-
matic Query System

Our project of designing and implementing a diagrammatic query system for use with
biological projects are basically composed of three parts: the Graphical User Inter-
face(GUI) system for biological scientists to compose query intuitively, the back-end
database system to support the CORAL deductive system for executing queries, and
the translation system residing between the GUI system and the CORAL deductive
database system.

This thesis is responsible for the design and implementation of the translation
system. Also it defines a textual language to record and transfer queries and query
results between the GUI system and the CORAL system.

1.4 Contribution of the Thesis

This thesis aims to provide support for diagrammatic queries oriented to scientific ap-

plications such as Bioinformatics. First, it defines the Transferable Graph Language.

Second, it designs a translation system that bridges between graph query interface

systems like Hy+ and the CORAL deductive system. The implementation is realized

using the Java programming language.

Through these efforts, this thesis contributes the following aspects:

extends Graphlog by providing a family of built-in predicates.

provides suggestions about how to implement the GUI system where the graph
queries are drawn. Through the regulation of its Transferable Graph Language
and the examples presented, the thesis proposes the drawing elements and util-

ities.

invents a way to write transferable textual records of the graphs. The Transfer-
able Graph Language makes use of XML Data Definition Types as programming
templates. As a consequence, the programs generated can be utilized in many

applications across different platforms.

presents an incremental development process that has advantages over waterfall

and iterative process models.
conforms to object-oriented development, thereby promoting reusability.

creates a platform-independent translation system. Because the translation
system is implemented in Java, it is able to cooperate with applications written

in different languages and reside in different platforms.

provides query templates. Through the examples in test cases and appendix,

the thesis provides a large number of templates representative of typical queries.

processes textual queries. Although the purpose of designing the Transferable
Graph Language is to record graph queries, queries can be constructed directly
using the TGL templates and fetch results. In effect, the translation system has

been integrated with the CORAL system. I is a useful application by itself.

1.5 Organization of the Thesis

This thesis comprises five Chapters and two appendixes.

Chapter 1 introduces the origin of the thesis and what the thesis contributes.
Chapter 2 provides background knowledge for the thesis. Object-oriented develop-
ment techniques, a graph query language called Graphlog and its supporting system
Hy+, the CORAL deductive system, Extensible Markup Language, and Java are
described in detail. The description mainly focuses on the knowledge that directly
relates to the thesis.

Chapter 3 presents the Transferable Graph Language that is defined in this thesis.
This language specifies graph elements and how graphs that express queries could
be recorded textually. The programs written in this language could be used in dis-
tributed computing.

Chapter 4 describes the incremental development process and deliverables of the
translation system that bridge Graph User Interface systems and the CORAL deduc-
tive system. Cooperating with the Transferable Graph Language(TGL), the transla-
tion system supports diagrammatic queries.

Chapter 5 concludes the thesis with an overview of the thesis and future work.
Appendix A presents database schemes of the university data model and table records(or
facts) used to test the translation system.

Appendix B provides diagram examples of a whole set of queries in university data

model.

Chapter 2

Background

2.1 Object-Oriented Incremental Process Model

The Figure 1 illustrates the incremental process model [22]. It provides a practical
and useful alternative to deal with the situation of requirements increasing during
development.

The entire development is broken down into many increments. In every incre-
ment, the waterfall approach is applied. When new requirements are identified, the
current process activities will not be affected. Instead, the current increment will be
completed. After that, the newly identified requirements are collected into another
increment, and a new cycle of waterfall process begins. Only a mininmal increase of
time should be expected to complete all the increments compared to finishing it in a
single pass.

The whole process is manageable because every increment is a smaller but com-
plete product compared with the whole application. This also yields high productivity
because relatively fewer professionals are necessary to develop the smaller products.
It ensures that the deliverables of all increments are robust by applying the waterfall
model to each of them. The early increments help to understand better what to ex-
pect from the final product. This is useful when the application is complex and has
a long schedule to complete. The functionality provided by the early products within
schedules are enough to satisfy the clients, and thereby reduce the pressure on the

developer team.

If the new requirements identified have a qualitative difference with those in com-
plete increments , it is not enough any more to merely design new classes to integrate
into the original design. The system structure achieved from early increments may

need to be adjusted too. Consequently, more time will be required.

2.2 Graphlog and Hygraph

Graphlog [3] and Hy+ [5] were developed at University of Toronto under the leader
of Mariano P. Consens. Graphlog is a language to assist in visualizing queries and
Hy+ is the system using Graphlog to pose queries.The Hy+ system is implemented
using the Object-Oriented language Smalltalk.

2.2.1 Fundamental Elements
2.2.1.1 Terms

In Graphlog, a term is either a constant, a variable, an anonymous variable, an
aggregation function, or a functor. A constant is a number literal or a string literal.
A wvariable is a sequence of characters in which the first character is a uppercase
letter and the remaining characters are in the set of alphabetical letters, digits, ‘_,
and ’. However, Graphlog is case sensitive. For example, the words “import”
and “Import” have different semantics. More likely, “import” is a predicate name,
whereas, “Import” is a variable name. An anonymous varieble in Graphlog is similar
to that in Prolog [2]. Generally, an anonymous variable is represented by the symbol
‘. The aggregate functions defined in Graplog are the set {MAX, MIN, COUNT,
SUM, AVG}. Their only permitted argument is a variable, which should represent
numbers. A functor in Graphlog has the same semantics in logic, and is applied to a

number of terms.

2.2.1.2 Expressions

Graphlog is the logic behind hygraph [3], and hygraph instances are presented in
Hy+ [5] GUI system. Hy+ GUI system has two types of windows: defineGraphlog
and showGraphlog.

Requirements 1

Analysis 1
Design j

Implementation 1

Test

Requirements l

Analysis 1
Design 1

Implementation 1

Test

Requirements 1

Analysis 1
Design j

Implementation 1

Test

Figure 1: The Incremental Process Model

Graphlog expressions are visualized by applying hygraph patterns in Hy+ system.
Hygraph is a hybrid of Harel’s highgraph and directed hypergraphs [3]. It is depicted
in the environment of Hy+ system. The elements of hygraph are node, directed edge,
and blob. A node is a vertex in a graph, and a directed edge is an arrowed arc in a
graph. A blob has the look of a rectangle box with a container node at upper left
corner outside the box and a set of contained nodes distributed inside the box. In
this way, the blob represents a relation between the container node and the contained
nodes. So, in effect, a blob is a collection of the edges and it gathers nodes together.
A blob can have two views, one is zoom-out, the other is zoom-in [3]. With the zoom-
out view, visually a blob shows only the container node. While with the zoom-in
view, a blob shows all its components described above. A blob can switch from a
view to the other view dependent on the user’s interest. Thereby, a zoom-out view
provides more general picture as a whole, whereas a zoom-in view presents details.

The two types of hy+ windows correspond to two types of hygraph patterns. The
first, a defineGraphlog is represented as a define query pattern of hygraph. Define-
Graphog defines a new relation based on the rest context. Its corresponding define
query pattern demonstrates the definition in a distinct way, by comparing with its
context. Generally, the edge or blob outline that presents the new relation is distin-
guished.

In hygraph patterns, a node represents an entity, and is labeled by a Graphlog
term. An edge between two nodes illustrates the relationship that involves them.
The label of an edge or a blob is aligned near the edge or inside the blob to represent
the relation. The label of an edge or a blob is a path regular expression generated

by the following grammar, where T is a sequence of terms and p is a predicate:

E — E|FE;E-E;—FE;~E;(E); E+; Ex; p(T)

Figure 2 is a defineGraphlog window. It is demonstrated through a define query
pattern of hygraph. The new relation, student_by_staff, is between the entity student
and the entity staff. Relevant information also includes another entity course, the re-
lationship defined between the entity student and the entity course with the predicate
takes, and the predicate teaches between the entity staff and the entity course.

The other showGraphlog window corresponds to filter query pattern of hygraph.
The purpose of a filter query is to retrieve all the database instances that match the

pattern. There are two different aspects between define query pattern and filter query

defineGraphlog

student(ID)
o~ students_by_staff

— staff(SID)
takes
teaches
]

course(Code)

Figure 2: An Example of DefineGraphlog

pattern:

1. Distinguished objects have different meaning. In define query pattern, the dis-
tinguishment means defining a new relation, while in filter query pattern, it

means retrieving existing data.

2. The number of distinguished objects permitted. There could only be one dis-
tinguished object in a define query, whereas there could be one to many in a

filter query.

Additionally, there is difference between defining a blob and using a blob. Figure 3
gives examples respectively. The example within the box marked defineGraphlog, the
relation contains is defined by the blob. It exists between a class and its variables
or its methods. In the other example, the newly defined relation is employed. The
purpose of this query is to retrieve all the members(variables and methods) of the

classes that satisfies the relation friend with class Clock.

2.2.2 Aggregate Functions

Graphlog also supports aggregation on collected multiset of tuples. Graphlog provides
five unary aggregate operators: MAX, MIN, COUNT, SUM, and AVG. They are
applicable to the labels of distinguished objects in the defineGraphlog window.

‘)
defineGraphlog showGraphlog
.Nclass(C)) ® class("Clock")
friend
contains
@ class(C)
contains
owns
declares
@ method(M)
@ variable(V ¢ method(M)
v @ variable(V)
An Example of Define a Blob

An Example of Using a Blob

Figure 3: Examples of Defining and Using Blobs

2.2.3 Graphlog, SQL and Object-Oriented Query Language
2.2.3.1 Similarity

The entity of Graphlog is similar to the relation in relational model or class in Object-
Oriented model. The predicate label of an edge or a blob can be compared with the
relationship in an E-R model and links in Object-Oriented model. Because a term can
contain functors, the links within objects can be related easily. For example, a person
who has the attribute of address is an object in Object-oriented model. The attribute
address will be stored as another entity separately, and a reference is used to link a
person entity and his/her address entity. The attributes of an address entity could be:
Street, City, PostCode. Then the term in Graphlog that corresponds to the person
entity in a Object-Oriented model is: Person(Name, Sex, Birthday, address(Street,
City, PostCode)).

2.2.3.2 Power of Graphlog

Although the queries posed using SQL and Object-Oriented query languages can be
expressed using Graphlog, a large set of Graphlog expressions can not be expressed
using SQL or OO query languages. Graphlog is more expressive in the following

aspects:

e Expressing recursive queries.
Most current commercial query systems conform to SQL 92 that does not sup-

port recursive queries. DB2 supports SQL99 which has linear recursion.

10

QUERY DATA - - MAIN\)
/ EVALUATION | <— > MEMORY
MANAGER
1 SYSTEM \
e
EXDOUS
USER OPERATING SYSTEM
STORAGE FILES
INTERFACE MANAGER
\\
A
QUERY
PN
| OPTIMIZER Eg

Figure 4: The Architecture of CORAL System

N\

™~
/

e More comprehensible.
The queries in Graphlog are more comprehensible because of the diagrammatic

depiction.

e Complex aggregation expressions.
With the ability to collect multisets of tuples and to compute aggregate func-
tions on them, Graphlog can pose a large number of queries that can not be

expressed using relational algebra or relational calculus [4].

2.3 CORAL system

The CORAL deductive database system [6] is developed at University of Wisconsin,
at Madison. The main contributors of this project are Raghu Ramakrishnan, Devesh
Srivastava, S. Sudarshan, and Proveen Seshadri. The research began in 1988, and the
current release version is 1.5.2, released on November 26, 1997. Being in the public

domain, CORAL system is available at the web site: http://www.cs.wisc.edu/coral/.

2.3.1 Architecture of CORAL Deductive System

The architecture of the CORAL deductive system is shown in Figure 4.
CORAL is a single-user database system. Through its command-line interface,
users can type in simple queries or consult programs to process complex queries. The

query processing includes two main parts: a query optimizer and a query evaluation

11

system. Query optimizer will rewrite the complex queries that are defined in declar-
ative “program modules”. Then the query evaluation system interprets the internal
form of the optimized annotated program, under the directives of annotations. Dif-
fering from other deductive systems such as Prolog system and LDL, which compile
programs, CORAL system provides significantly high execution speed. Thus it is par-
ticularly suitable for interactive program development [6]. Using a “get-next-tuple”
interface, the query evaluation system access to relations through the Data Manager
system.

The EXDOUS storage manager has a client-server architecture. Thus, the CORAL
system could extend its stand-alone mode to share data with other systems via the
EXODUS storage manager. Persistent data has two storage formats: text files, which
are strictly local, and the EXODUS storage manager. Data in text files will be con-
verted into main memory relations, while data in the EXODUS storage manager is
paged into EXODUS buffers on demand.

CORAL supports a bi-directional interface to C++:

1. CORAL code can be embedded in C4++ code.

2. C++ can manipulate the database and C++ can define predicates used by
CORAL.

2.3.2 CORAL Declarative Language

The declarative language provided by CORAL [7] can be used to express complex
queries or view definitions on the database. CORAL combines features of database
query languages, such as efficient treatment of large relations, aggregate operations
and declarative semantics, with features of a logic programming language, such as
powerful inference capabilities and support for structural and incomplete data. The
CORAL declarative language widely extends the expressiveness of standard database
query language such as SQL. In addition, CORAL differs from logic programming
languages such as Prolog in supporting a declarative semantics.

The concepts of constant, variable, term, fact, and rules follow the convention of

logic programming languages. We provide three key concepts as follows:

1. Extensional Database(EDB)
A set of facts.

12

2. Intensional Database(IDB)
A collection of rules. At compile time, only the IDB and meta-information

about EDB are examined as programs.

3. Datalog Program
Programs with only constants and variables as terms and without funtors, nega-

tion, set-grouping, aggregation, and built-in predicates.

2.3.2.1 Syntax and Semantics

Constants — Numbers, identifiers beginning with lower-case letters and
quoted strings.

Variables — Identifiers beginning with an upper-case letter.

Functors — Uninterpreted function symbols which are represented using

identifiers beginning with a lower-case letter.

Simple terms — Have the format of constants(constants/variables, ...).

Complex terms— Have the format of constants(constants/variables/functors(. . .

Rules — p(t) : —=p1(f1), .. ., Pu(tn). I p1(€1), ..., pa(tn) are true, then p(%)
is true. Rule is an assertion for all assignments of terms to the variables

in the rule. Especially, a fact is a rule with an empty body.

Modules — Sets of rules and facts constitute modules. Modules export
part or whole of the predicates they define and the query form of the
exported predicates. “b” denotes an argument that must be bound
in the query, whereas “f” is an argument that should be free. The

exported predicates are visible to all other modules.

Non-ground facts — Non-ground facts are facts with variable arguments.
The semantics is that the fact is true with any replacement of the
variables. Such facts can be useful in knowledge representation and

natural language process.

Negation— CORAL supports non-floundering left-to-right modularly strat-
ified programs [7]. Non-floundering means all variables in a negative

literal are bound before the literal is evaluated. Modularly stratified

13

denotes there are no cycles through negation during generation of the
answers and sub-queries. The keyword “not” is the prefix indicating

a negation body literal. Note that no negative head is allowed.

Sets and Multisets — In addition to terms, sets and multisets are values
in CORAL. Sets and multisets can in turn contain sets and multisets.
So the universe of discourse is an extended Herbrand universe, which
is different from the standard logic programming. To obtain a set from
a multiset, we can use the makeset operator. As with negation, the

set-grouping operator is applied left-to-right modularly stratified.
Aggregate Operations — COUNT, AVG, MIN, MAX, and SUM are per-

mitted aggregate operations. Although there is no clear group-by func-
tion, we can achieve the same effect by applying aggregate operation
on grouped variables. For example, if we want to find the number
of students in classes, given a register relation having two columns of
Class_No, Student_ID. We can use the rule: numberOfStu(Class_No,
COUNT(< Student_ID >) :- register(Class_No, Student_ID). to de-
fine the predicate numberOfStud, then query the predicate to find the

results.

2.3.3 The Query Optimization

A declarative language is not supposed to specify the evaluation strategy. However,
CORAL has a series of annotations that do allow the program writer to decide the

optimization strategy and obtain better performanceciteCoralLanguage.

2.4 Extensible Markup Language(XML)

XML [12] was approved by the World Wide Web Committee(W3C) on February 10,
1995. XML has been developed to make the exchange of data on the web easier and

more efficient.

14

2.4.1 General Definitions

XML XML [14] is a meta language, that is, a language for describing languages.
A meta language such as XML, is broader than metadata because it provides the
syntax that allows users to create their own markup language and define their own
vocabularies to meet specific application or industry needs. A markup language uses
tags embedded directly into the text to specify or increase the meaning of the enclosed

piece of text.

Valid XML XML documents that make use of internal or external Data Type Def-
inition files are known as “valid” XML and require an XML parser to check incoming
data against the rules defined in the DTD to verify that the data were structured

correctly.

Well-formed XML An XML document is well-formed if it has a sound logical
structure and syntax. XML only requires data to be “well-formed”. A non-validating
XML parser checks if an XML file is “well-formed” but does not check if it is valid.

XML Vocabularies XML vocabularies are those markup languages defined using
XML technology. Especially, HTML can be a kind of XML vocabulary. While you
can create your own markup, many XML vocabularies are developed for various
fields and received recognition. Correspondingly, specialized tools and browsers will
be developed for these vocabularies so that the performance is much higher and the

implementation is much more adapted.

2.4.2 The relation of XML with SGML and HTML

While XML is a meta-markup language and HTML is a specialized markup lan-
guage. Standard Generalized Markup Language(SGML) is the basis for all markup
languages, including XML and HTML.

XML is a subset of SGML [14]. SGML is a text processing standard that describes
how a document should be laid out and structured. As a dialect of SGML, XML de-
scribes the information content of a document. SGML documents use a Document
Type Definition(DTD) to specify the structure of a document. Sometimes, the termi-
nology XML Data Schema is used to distinguish from SGML DTDs. Because SGML

15

XML HTML SGML
Document reusable | Yes No Yes
User-Defined tags Allowed Not Allowed Allowed
Tag number Unlimited | Fixed in each version | Unlimited
Information-oriented | Yes No Yes
Processing directions | Yes No Yes
Complexity Medium Simple Overkill
DTD Type Could have | Never have Have

Table 1: A Comparison of XML, SGML and HTML

is complicated to learn and apply, people focus on using the HyperText Markup Lan-
guage(HTML), which, in effect, in its pure form, is an application of SGML with a
Document Type Definition. However, HTML is more presentation-oriented. It does
not handle the meaning of the information displayed. Additionally, HTML has a fixed
set of tags, although it is extended with versions. In contrast, XML lets users define
their own tags which are much more flexible and vendor independent. Further, an
XML document can be developed once, but used many times.

XML was designed to be easily implemented and to work with both SGML and
HTML. In the foreseeable future, XML and HTML will coexist in the web world and
HTML will be a necessary part of implementing XML solutions on the web.

Table 1 lists the similarities and difference among XML, SGML and HTML.

2.4.3 XML Constructs

The main constructs of XML documents are elements, attributes, and entities. The

following are the main syntax for XML document constructs:

e Elements: < ! ELEMENT element-name EMPTY (#PCDATA) (organization

of subelements) >

e Attributes: < ! ATTLIST element-name attribute-name attribute-type if-
required >

o Entities: < ! ENTITY entity-name “content” >

16

e Processing instructions: < ? name instruction ? >. E.g., < 7 XML ver-

sion="%1.0" >

Elements — Fundamental structures for an XML document. They are
containers for XML document content, and an XML document is con-
structed by such containers. Elements are defined in DTDs and are
represented by tags in the documents. Also, the elements definition

specifies the content model of XML, that is, how elements are nested.

Attributes — Modifying elements, but not the XML document contents.
They provide adornment information for elements. Although most
HTML attributes mainly function to format the content with the pur-
pose of separating display from content, XML DTDs seldom have for-
matting attributes. Generally, style sheets are responsible for repre-

sentation.

Entity — A chunk of data that is defined in a DTD before being referred.

It can be textual data, binary files, parameters, and characters.

Processing instruction — Directing how a document will be processed with

a XML processor.

DTD — Regulating how XML documents are built. First, DTDs spec-
ify the XML constructs for XML documents. Next, DTDs regulate
how the constructs are connected. In addition, DTDs will provide in-
structions for processing the XML documents. There are two types
of DTDs: external DTDs and internal DTDs. External DTDs make
general declarations, while internal DTDs make document specific dec-

larations.

2.4.4 XML Processors

The basic functions of an XML processor include reading documents, interpreting
their markup and acting as instructed.

While most currently available processors are just parsers that are not responsi-
ble for displaying document, there are some processors that both parse and display

documents.

17

A validating processor checks a document against the DTD to make sure that the
document strictly adheres to the rules set down in the DTD. If the document violates
any part of the DTD, the parser will return an error, and the process of the document
may cease entirely. This is not necessarily a bad thing. You can use the validating

processor to check your documents for accuracy.

2.5 Java

Java [21], developed at Sun Microsystems, is an object-oriented programming lan-
guage based on proven technologies. Java has been extensively applied in network

related systems since its invention. This mainly lies in its following key features :

e Portability. Compiled Java programs can run across different platforms, given
that platform has Java environment, and the functionality remains the same.
Thus, in network applications, different platforms will not require additional

efforts to execute Java programs.

e Pure Object-Oriented. Java is a pure object-oriented programming language.
Dangling procedure functions are eliminated, and all the method calls are pro-
ceeded through messaging receiver objects from client objects. Thereby consis-

tent structures are achieved.

e Distributed. Java provides extensive frameworks to support network communi-

cations.

2.5.1 The Architecture of Java

The Java Platform The Java application programming interfaces (APIs) and the
Javal virtual machine (JVM) together compose the Java platform. Java virtual
machine provides the environment that Java programs can be run (or interpreted).Its
appropriate version is installed in a computer system depending on the platform
the computer system runs. Then the Java virtual machine compiles or interprets
java programs before it transfers them to the underlying operating system. So Java

programs are platform independent [17].

18

Security Java protects the safety in the following key aspects for computer systems

that run Java programs [19] :

e Shielding Memory Access
There is no pointer arithmetic in Java programming language. Thus, it elimi-

nates the run-time crashes caused by inappropriate access to memory areas.

e Automatic Garbage Collection
JVM provides Garbage Collection mechanism to release no longer referenced
memory without the intervence of programmers. Because all the dynamic mem-
ory are allocated from the heap, the garbage collection only monitors references
to heap. If there is no references to an area of it, the area will be freed for

reallocation.

e Verifying Byte-code
Before executing byte-code, the JVM will verify the byte-code to ensure it is

the output of a legitimate Java compiler.

e Applet Security Manager
Through SecurityManager subclasses, browsers ensure no potentially unsafe op-
erations are performed through an Applet. These operations include: read-
ing/writing local file system, opening sockets to destinations other than the IP
address from which the applet originated, creating a ServerSocket for listening

on a port, and reading some of system properties.

Applications and Applets Java programming language provides two structures of
programs: applications and applets. The key difference of the two types of programs
lies in that an application can fully access system resources, whereas an applet is
embedded in web pages and has restricted access to system resources. In addition,
the methods of invoking them are different. An application is invoked by a command
“java -option classname”, whereas an applet is invoked automatically whenever its

embedding web page is loaded.

2.5.2 Collections Framework [20]

A collection is a container that groups other objects, and these objects are called

its elements. Further, the elements of the collection can be stored, retrieved, and

19

Collection Map

\

) SortedMap

SortedSet

Figure 5: Core Collections Interface Hierarchy of Java

manipulated through it. Collections are abstracted from reality. Examples are file
folders, binary trees, and sets.

Java provides a collections framework to achieve the following goals [20]:

e Reducing Programming Efforts. It eliminates the needs to reinvent data struc-
tures and algorithms in each program and lets the programmers focus on busi-
ness logic. It also provides interface for collections to transform to each other

so that data could be easily reused.

e Increasing Programming Speed and Quality. The algorithms and implementa-
tions of the collections framework are well-designed and of high quality. By
conforming to the framework, first, programmers save time in designing the
whole structure. Secondly, programmers can make use of the structure for con-

sistent programming design, thereby achieve high quality.
The Java collections framework has three main parts: interface, implementation,
and algorithm.
2.5.2.1 Interface
The interface is the core of Java collections framework. Figure 5 shows the core

collections interface and the hierarchy.

Collection The Collection interface is the root of the collection hierarchy. Java

does not provide implementation for it. Its purpose is to provide the generality of

20

all the subclasses so that subclasses can be specified dynamically instead of compile

time.

Set The Set interface models the set concept. So it does not allow duplication
of elements. However, it does not require ordered elements although they could be

ordered.

SortedSet First, a SortedSet interface has the characteristics of a Set interface.
Secondly, all the elements in it will be in ascending order. The order on the elements
is the natural order or regulated according to a COMPARATOR provided together with

the creation of SortedSet.

List List is an ordered Collection with potentially duplicate elements. List allows
access to its elements at exact positions. That means it is possible to refer to an

element by its index in the list.

Map The Map and its subclass SortedMap comprise the other collection hierarchy.
The Map is the root. Map has such structures and capabilities that keys and their
corresponding values can be matched in the Map. The Map does not allow duplica-
tion. A key can only have one copy in the Map. Moreover, only one value of the key

can be stored in the Map.

SortedMap A SortedMap is a Map that maintains its entries in the ascending
order of the keys. Similar to the SortedSet in Collection hierarchy, the order of the
SortedMap follows the natural order of keys or computed according to the associated
Comparator.

Although Map and Collection are in different collection hierarchy, a Map could

be viewed as a Collection in three ways:
1. KeySet: The keys contained in the Map comprise a Set.

2. Values: The values that match the keys is in effect a Collection. However, This
Collection is not necessarily a Set because the same values can be associated

with different keys.

3. entrySet: All the key-value pairs in the Map together constructs a Set.

21

2.5.2.2 Implementation

The implementation of collection interface provides concrete classes that inherit the
features of the interface.
The implementations are divided into three groups according to the functions

achieved:

General Purpose Implementation Java provides a series of public classes for

the primary implementation of the core collection interface.

Wrapper Implementation Wrapper Implementation complies to the Decorator
Design Pattern [17]. It allows implementations to have added functionality of others.

These implementations are in Collections API.

Convenience Implementation The convenience implementations are realized us-
ing static factory methods or exported constants. The examples are: Arrays.asList

method, Collections.nCopies method, Collections.singleton method, and constants of
Collections. EMPTY_SET plus Collections. EMPTY_LIST.

2.5.2.3 Algorithm

The algorithms come from Collections API. Their purpose is: sorting, shuffling, rou-

tining data manipulation, searching, and finding extreme values.

2.5.3 The Input/Output Framework

Java provides an Input/Output framework to support flexible and simple configu-
ration. There are two types of I/O streams in Java Programming language: byte
streams and character streams. Byte streams support reading and writing any type
of data, including strings and binary format, whereas character streams support read-

ing and writing text depending on the locale character encodings.

2.5.3.1 Character Streams

Reader and Writer are the abstract super classes of a set of text reading classes. They
provide the common API and partial implementation. Figure 6 shows the two sets of

hierarchies supporting reading and writing text.

22

Reader

|

BufferedReader CharArrayReader InputStreamReader FilterReader PipedReader StringReader
LineNumberReader FileReader PushbackReader
Writer
BufferedWriter CharArray Writer InputStreamWriter FilterWriter PipedWriter StringWriter
FilterWriter
FileWriter

Character streams are responsible to read and write 16-bit characters.

2.5.3.2 Byte Streams

Figure 6: Character Stream Class Hierarchy of Java

Byte streams read or write 8-bit bytes, and all the byte streams classes are descendants

of InputStream and OutputStream. They inherit the partial implementation from

InputStream and OutputStream. Binary data like images and sounds are typically

read and written using the byte streams.

The byte streams family also has two

members, ObjectInputStream and ObjectOutputStream, which are used for object

serialization.

Figure 7 illustrates the two categories byte streams that are similar to those in

Figure 6.

23

InputStream

[

i

|

|

|

FileInputStream . PipedInputStream Filte[rlnpulStream ByteArrayInputStream SequencelnputStream StringBufferInputStream
|
| | | |
LineNumberlnputSlream% DatalnputStream BufferedInputStream PushbackInputStream [ObjectInputStream
OutputStream '
|
FileOulpulSL|;n PipedOutputIStream } ’ FilterOutputStream ByteArrayOutputStream { ObjectOutputStream
|
DataOutputStream] . BufferedOutputStream { PrintStream {

Figure 7: Byte Stream Class Hierarchy of Java

24

Chapter 3
Transferable Graph Language

This chapter covers the syntax and semantics of the Transferable Graph Language,
which is abbreviated as TGL. It describes all aspects of the language, including the
lexical elements, semantics of all types, as well as program structure.

The Transferable Graph Language is a platform-independent text language that
describes the information of query graphs, especially it emphasizes the data expressed
instead of the visualization effects. It is designed to be shared by many applications
and exchanged in a network environment. The graphs depicted in this language
consists of labeled nodes, directed edges, and blobs. A blob is a box that associates
an outer node with a set of inner nodes. Essentially, a graphs depicted by TGL
characteristically resembles that in a hygraph pattern. However, Transferable Graph
Language has a family of built-in predicates while Graphlog does not have this feature,
so the graph instances supported by TGL are a superset of those in hygraph patterns
because the TGL allows more concise and expressive expressions than Graphlog does.

The rationale for inventing such a language lies in the need for passing diagram-
matic queries for analysis and recording the corresponding diagrams. It is expensive
and impractical to send a whole diagram to analysis applications. Instead, the inter-
ested parts and associated relationships could be abstracted from the diagram and
packed as messages using a text language. Additionally, because the process of such
data may be distributed to several computers in a distributed system and the query
results will probably be utilized by many applications, it is better that the text lan-
guage has the feature of portability. This is achieved by designing TGL program

25

structure as XML Data Type Definition(DTD) and thereby enforcing the TGL pro-
grams to follow XML patterns. The design of taking on XML DTDs has the following
benefits:

e Reduce Design Errors. Since the XML DTD syntax has been well-established,

errors can be reduced in developing the language.

e A program written to conform to XML syntax has high readability for human

being so that errors are easy to identify.

e The most important thing is that the program will be suitable for transferring

across a network and reusing in multiple platforms.

3.1 Lexical Elements

This section presents the elements of the Transferable Graph Language.

3.1.1 Characters used

The Transferable Graph Language adopts the Unicode Character Set instead of ASCII
Character Set. Unicode Character Set is the international standard of 16-bit charac-
ters. It supports all the special logic operators used in Transferable Graph Language,
such as ¢ =’ (not). And other non-ASCII characters in the Unicode Character Set

can only appear in string literals.

3.1.2 Identifiers

Transferable Graph Language identifiers comprise two types. One type is for node
names, edge predicates, and blob predictates, the other for field names of a node and

attribute names of predicates.

e Predicate Identifiers
They begin with a lower-case letter followed by letters, the underscore(‘_’), the

dollar sign ($), and digits as well.

e Attribute Identifiers
They begin with an upper-case letter followed by letters, the dollar sign ($) and

26

digits. An exception is a single underscore character (‘_’) can represents a field,

meaning the field is anonymous.

3.1.3 Primitive Types and Literals
Transferable Graph Language provides the following primitive types:
o Integer
e Floating-point
e String
The constant values of each types are expressed as literals.
Integer Type Transferable Graph Language allows positive integer type and the
maximum value is 9223372036854775807. Integer literals are written in numbers. An

integer literal starts with a nonzero decimal digit, followed by decimal digits. For

instance, 30.

Floating-point Type Floating-point literals are written as a decimal number.

Some examples of floating-point literals are 0.3, 3.145, and 563.2.

String Type Transferable Graph Language permits string type but not character
type. All characters can be represented using string type by having only one character.
A string literal is enclosed in double quotes and consists of a sequence of characters,

as in the following examples: “Saint George”, “m”, “Air”.

3.1.4 Operators

Transferable Graph Language provides two categories of operators: one is arithmetic
oriented; the other is logic-related. The built-in predicates belong to the second

category. Operators are used for constructing edge or blob labels and node values.

3.1.4.1 Arithmetic Operators

The infix binary arithmetic operators list in Table 2 can only be applied to node label,
but not to edge or blob labels.

27

Multiplication
Division
Addition

— | Substraction

|*

Table 2: The Arithmetic Operators Applicable to TGL

3.1.4.2 Assignment Operator

The assignment operator is the simple ‘=’. The operator is only for constructing an

edge label. For instance, an edge label could be ‘=’

3.1.4.3 Comparison Operators

The comparison operators include equality operator ==, inequality operator <>, less
than < , less than or equal to <=, greater than > , and greater than or equal to >=.
These are applicable to edge labels. Note that a symbol ‘&’ is required to prefix the
operators <>, <, <=, > and >= . because the construction of programs follows XML

shemas, where the symbol ¢ <’ is used to mark the beginning of a tag,

3.1.4.4 Conjunction Operators

Transferable Graph Language bears more powerful expressiveness by providing opera-
tors to connect expressions. The newly formed expressions conjoined by the conjunc-
tion operators lead to concise queries. The operators and their semantics are shown
in Table 3. The precedence associated with each operator and the position where the
operator sits in expressions are listed along with the operator as well. The priority for
the precedences decreases from lower to higher numbers. Note that it is not inputable
from the keyboard for the symbol —, so the character reference ‘�AC;’ is used to

represent the — in the program in accordance to XML.

3.1.4.5 built-in operators

is_a Operator The is_a operator is a label for a directed edge. The semantics is
that the pointing entity of the edge has a generation relationship with the pointed

node. Put in another way, the key of the from-node entity is the same as that of the

28

Conjunction Operator | Semantics Position | Precedence

() exlusively evaluated first enclosing | 1

- not prefix 2

- inverse prefix 3

+ transitive closure suffix 4

* transitive closure, including self | suffix 4

| or infix 5
concatenation infix 5

Table 3: The conjunction Operators Applicable to TGL

® student(D)

® student(ID, "George")
has_Name

@ 'George'
Method 1.

Method 2.

Figure 8: The Two Methods to Depict Attributes

to-node although the two nodes are different relations. The is_a operator indicates

the two nodes are implicitly related.

has_XXX Operators This kind of operators provide another way to present an
attribute of an entity by using an edge. Generally, the pointing entity does not list
all attributes explicitly and the pointed entity is the value of a specific attribute. The
“XXX” in the format of has_XXX will be replaced by the specific field name. For
example, the Figure 8 provides two methods to depict the tuples with the relation

scheme of student(ID, Name) and the Name attribute having the value of “George”.

3.1.5 Expressions

There are two types of expressions in Transferable Graph Language: arithmetic ex-
pressions and logical expressions. Arithmetic expressions can be applied as node

labels, while logical expressions act as edge or blob labels.

29

E::=E \EVE.E | E+}| E*X|1—-E| "E| (E) | Compound - predicate

Compoound—predicate ::= predicate(simple—attribute—list)

| predicate(attribute—list—with—functor)

simple—attribute—list ::= simple—attribute, simple—attribute—list
attribute—list—with—functors ::= attribute, attribute—list—with—functors
attribute ::= simple—attribute | functor—attribute

simple—attribute ::= identifier | literals

functor—attribute ::= Compound—predicate

Figure 9: TGL Logical Expression Syntax

3.1.5.1 Arithmetic Expressions

Arithmetic expressions are generated by the following grammar:

E = FEopk
| (E)
| N

N = Variable

| Decimal literal

op = 4| |*]

Note that the parentheses have the highest priority and can change the ordinary

precedences of ops.

3.1.5.2 Logical Expressions

The logical expressions follow Graphlog Path Regular Expression, but provide further
regulation and description. The logical expressions serve as edge or blob labels.
The grammar is as in Figure 9.

Here the predicate has the same meaning as in other logical languages [2]. From

the definition, it can be seen that compound predicates could be nested.

30

The interpretation of an expression involves the nodes at the both ends of the
edge or the nodes as container and containees of the blob.

Suppose Al and A2 are the key attributes of the nodes incident to the edge or
the blob with the expression, and E is the label of the edge or the blob. Let the final
predicate derived for the edge or blob be represented as P.(Al,A42,T). The T is a
vector of attributes. Then the program produced to derive the final predicate will

contain the following rules:
e if E := aPredicate(T) , then P.(Al,A2,T) :— aPredicate(Al, A2,T).
e if E := —E1,and E1 ::= aPredicate(T) , then P,(Al, A2, T) : — -~aPredicate(Al, A2, T).
e if E := —F1,and E1 ::= aPredicate(T) , then P,(Al, A2,T) : — aPredicate(A2, A1, T).

e if E := E1+,and E1 = aPredicate(T) , then P.(Al, A2,T) : — aPredicate(Al, A2,T).
P.(A1,A2,T) :— aPredicate(Al, X, T), P.(X, A2,T), where X is a variable.

e if E := Elx,and E1 ::= aPredicate(T) , then P.(A1, A1,T) : — aPredicate(Al, A2,T).
then P,(A2, A2,T) : — aPredicate(Al, A2,T). P.(Al, A2,T) : — aPredicate(Al, X, T),
P.(X, A2,T), where X is a variable.

e if E == E1|E2,and E1 ::= aPredicatel(Ty), E2 ::= aPredicate2(Th) , then P.(Al, A2,T) :
— aPredicatel(Al, A2,T). P.(Al,A2,T):— aPredicate2(Al, A2, T5).

e if E := E1.E2,and E1 ::= aPredicatel(T}), E2 ::= aPredicate2(Ty) , then P.(Al, A2,T) :
— aPredicatel(Al, X, T1), aPredicate2(X, A2, Ty).
3.2 Query Program Structure

TGL query program structure is stipulated through XML data definition type, graphlog.dtd,
listed in Figure 10.

3.2.1 Program Elements

A TGL program may contain these elements:
e graphlog — describes a set of GUI patterns for a specific query

e defineGraphlog — identifies a pattern used to define a new relation or predicate

31

<!ELEMENT graphlog((defineGraphlog+, showGraphlog*)|
(defineGraphlog*, showGraphlog+))>
<!ELEMENT defineGraphlog(include*, distinguished—define, content)>
<!ELEMENT showGraphlog(include*, ID, distinguished—show, content)>
<!ELEMENT distinguished—define(nodeledgelblob)>
</ELEMENT distinguished—show((node+,edge*blob*)|
(node* edge+,blob*)|
(node* edge*,blob+))>
<!ELEMENT content(node*, edge*, blob*)>
<!ELEMENT node(ID, entity}>
<!ELEMENT entity(name, field*)>
<!ELEMENT edge(ID, predicate, fromNodelD, toNodelD)>
<!ELEMENT blob(ID, predicate, outerNodelD, innerNodelD+)>
<!/ELEMENT ID(#PCDATA)>
<!ELEMENT name(#PCDATA)>
<!ELEMENT field(#PCDATA)>
<!ELEMENT predicate(#PCDATA)>
<!ELEMENT fromNodelD(#PCDATA)>
<!ELEMENT toNodelD(#PCDATA)>
<!ELEMENT outerNodelD(#PCDATA)>
<!ELEMENT innerNodel D(#PCDATA)>
<!ELEMENT include(#PCDATA)>

Figure 10: The TGL Program Structure Regulation

showGraphlog — identifies a pattern used to find the result interested
distinguished-define — specifies the characteristics of the newly defined relation
distinguished-show — describes the highlighted elements to query

content — describes the context of a newly defined relation or queries made.
node — describes the features of a node

edge — specifies the constitution of an edge

blob — defines the organization of a blob

ID — identifies a showGraphlog, node, edge or blob in a particular graphlog.
entity — provides the physical description of a node

name — identifies the relation name of a node

field — describe an attribute of a relation

32

e predicate — specifies the predicate name of an edge or a blob

e fromNodelD — specifies the node ID at the start point of an directed edge
e toNodelD — specifies the destination node of an directed edge

e outerNodeID — identifies the container node of a blob

e innerNodelD — identifies a contained node of a blob

e include — describes which predefined relation is involved

3.2.2 Content Models

A content model complements an element definition and regulates how elements can
be nested given an XML vocabulary [15].

The Transferable Graph Language query program structure conforms to the ele-
ment content model. Non-text element definitions and their semantics are listed in
Table 4 and 5.

The query program structure declares the interface to the upper layer system.
A GUI application that likely acts as the client will collect the drawing information
and build up a TGL program according to the query program structure. Then the
GUI application sends a message to the translation system with the TGL program

for further treatment.

3.3 Result Structure

The query results derived by the CORAL system can not be utilized by the upper
layer system directly. Because the links between drawing elements and results can
be retained when forming CORAL programs, it is better to require the translation
system to take care of transforming the results to a format for the upper layer system
and other potential applications. Hence, Transferable Graph Language specifies the
Result Structure for the process. The result structure is regulated using XML data
definition type as well and is listed in Figure 11.

The result structure specifies the interface that the translation system should

conform to when translating back the results. The upper layer system will also refer

33

Definition

Semantics

Definition

Semantics

Definition

Semantics

Definition

Semantics

Definition

Semantics

Definition
Semantics

Definition
Semantics

Definition
Semantics

<\ELEMENT graphlog((de fineGraphlog+, showGraphlogx)|
(de fineGraphlogx, showGraphlog+)) >

A graphlog may contain defineGraphlogs and showGraphlogs.
However, at least one defineGraphlog or one showGraphlog.

<\ELEM ENTdefineGraphlog(includex, distinguished — de fine,

content) >

A defineGraphlog employs zero to many predefined relations,
specifies the features of the relation to be defined, and
describes the context involved to define the new relation.

<\ELEM ENTshowGraphlog(includex, I D, distinguished — show,

content) >

A showGraphlog uses zero to many predefined relations,
provides an identification, which later acts as the clue
for returned results, specifies teh list of elements to

be queried, and provides the content.

<\ELEM ENTdistinguished — de fine(node|edge|blob)
A distinguished-define element provides the interested
node, edge, or blob descriptions. However, only one of them.

<\ELEMENTdistinguished — show((node+, edgex, blobx)|
(nodex, edge+, blobx)|

(nodex, edgex, blob+)) >

A distinguished-show element lists all highlighted

drawing elements: nodes, edges, blobs. But at least

one of them.

<|ELEM ENTcontent(nodex, edgex, blobx) >

The content element describes all non-distinguished
drawing elements. There may be many nodes, edges, and
blobs are involved. Specially, there may not be any one.

<\ELEM ENTnode(ID, entity) >
A node element specifies the identification in the
graphlog and the physical features of a node.

<!\ELEME NTentity(name, fieldx) >
An entity element consists of a name and zero to many
fields. It serves to detail a node information.

Table 4: The Content Model of TGL Query Program
34

Definition
Semantics

Definition
Semantics

<IELEMENTedge(ID, predicate, fromNodel D,toNodel D) >
An edge element details the identification, predicate

name, the starting node identification , and the end

node identification of an edge in a graphlog.

<\ELEMENTblob(ID, predicate, outer Nodel D, inner Nodel D+) >
An blob element describes a blob in a graphlog. The data

includes its identification, predicate name, the container

node identification, and one to many inner node identifications.

Table 5: The Content Model of TGL Query Program(continue)

to the result structure to draw the diagram representing the query results for the

human readers when it receives the translated results.

3.3.1 Program Elements

Accordingly, a translated result may include some or all of the following elements:

e showGraphlogReturn — describes the regulated results for queries in a show-

Graphlog ‘

e result — details the values of the query

e node — specifies the associated values for interested fields of a node

e field — specifies value for a particular field in a node

e edge — provides the answers of from node and to node that constitute an edge

e fromNode — supplies the value of the starting node of an edge

e fromNode — supplies the value of the ending node of an edge

e blob — details the key values of the outer node and associated inner nodes for

a blob

e outerNode — supplies the value of the container node of a blob

¢ innerNode - supplies the value of a contained node of a blob

35

<!ELEMENT showGraphlogReturn(result+)>
</ATTLIST showGraphlogReturn ID CDATA>
<!ELEMENT result(node*, edge*, blob*)>
<!ELEMENT node(field+)>

<IATTLIST node ID CDATA>

<!ELEMENT field(#PCDATA)>

<!ATTLIST field pos CDATA>

<!ELEMENT edge(fromNode, toNode)>
<!ATTLIST edge ID CDATA>

<!ELEMENT fromNode(#PCDATA)>
<!ATTLIST fromNode ID CDATA>
<!ELEMENT toNode(#PCDATA)>
<!ATTLIST toNode ID CDATA>
<!ELEMENT blob(outerNode, innerNode+)>
<!ATTLIST blob ID CDATA>

<!ELEMENT outerNode(#PCDATA)>
<JATTLIST outerNode ID CDATA>
<!ELEMENT innerNode(#PCDATA)>
<JATTLIST innerNode ID CDATA>

Figure 11: The TGL Result Structure Regulation

These elements also employs attributes for further description. And below the

characteristics of these attributes are given:

e showGraphlogReturn-ID — provides the link between the query pattern and
the result

e node-ID — specifies which node the value is related to

e field-pos — specifies the position of the field in the‘ attribute list of a node

e edge-ID — provides the identification of the edge that values associated with
e fromNode-ID — specifies that the value links to the starting node of an edge
e toNode-ID — specifies that the value links to the ending node of an edge

e blob-ID — links a set of values with a blob throught the identification

e outerNode-ID — identifies the container node of a blob

e innerNode-ID — specifies a inner node identification of a blob

36

Definition <!ELEMENT showGraphlogReturn(result+)>
Semantics A showGraphlogReturn is constituted by one to many result units.

Definition <!ELEM ENTresult(nodex, edgex, blobx) >
Semantics A result includes values of zero to many nodes, zero to many edges,
and zero to many blobs.

Definition <!ELEM ENTnode(field+) >
Semantics A node value is given by the list of its field value.

Definition <!ELEMENTedge(fromNode,toNode) >
Semantics An edge value is described throught the from node and the to node

Definition <!ELEM ENTblob(outer Node,inner Node+) >
Semantics A blob value is provided through the description of
a set of nodes including a container node and associated
contained node.

Table 6: TGL Result Content Model

3.3.2 Content Models

The content models for the result structure definition describe the relationships be-
tween elements, and the order of nested elements in their parent element. Details is
given in the Table 6.

The elements field,fromNode,toNode, outerNode and innerNode are all text strings

that provides concrete value.

3.4 Comments

A program without any annotation has low reusability and poor maintainability.
Even the developers themselves may need to refer to the comments to analyze or
modify the program. Comments are especially important for maintenance after the
application launches.

Transferable Graph Language allows developers to use comments to provide text

information of a program. A comment begins with the symbol - - and continues until

37

the end of that line. Through this function, TGL programs are capable of making a

meaningful archive.

38

Chapter 4
Translation System

This chapter describes the process of the translation system. It follows the Object-
Oriented incremental process [24] to collect requirements, analyze, design, implement,

and test.

4.1 Context of The Translation System

Figure 12 depicts the context of the translation system. End users utilize the Dia-
grammatic Query System to define views and , more importantly, pose queries. The
Diagrammatic Query System has a three-tier architecture [16]. The GUI system is the
representation layer, and the CORAL deductive database acts as the DB layer. The
translation system resides between the GUI system and CORAL deductive database.
Hence, the GUI system is the upper level system, or the client, of the translation
system. It fetches system schemas and user-defined views through the translation
system. Internally, the translation system is divided into two parts. One is the trans-
lation engine, the other is the rest of the translation system. The translation engine
utilizes the rest of the translation system to fulfill the tasks requested by the GUI
system. So we see the translation engine as the actor of the rest of the translation

system.

39

Define Views

Query

Diagrammatic Query System

GUI System

Fetch system schemas@ind user—defined views

Processing Query

N
Translation System
The Rest of Translation System
J

CORAL Deductive Database

Translation
Engine

Figure 12: Context Diagram of The Translation System

40

4.2 Requirements and Incremental Plan

This section defines the complete requirements of the translation engine through a
series of use cases. It describes their characteristics and functions, partitions the

development, and derives the resulted increments.

4.2.1 Requirements Definition
4.2.1.1 Overall Description

First, the translation engine should be able to initialize the rest of the translation
system, fetch up-to-date underlying system schemas and user-defined views. Then if
the initialization is successful, the translation engine receives requests from the GUI
system. The requests are derived from diagrams drawn by end users adhering to
the definition of the TGL. Basically, although the combinations may be varied, the
requests can be classified into two categories:

View Defining: A new entity with its attributes can be specified; an edge with
particular features can be defined; a blob that depicts new relationships of container
node and contained nodes can be regulated.

Query processing: The instance of an entity could be found; also the values of a
particular attribute of the entity could be listed; still maybe just a variable in the
query context is interested; the possible results of an entire edge are wanted; the

combination of the container entity and contained entities need to be listed.

4.2.1.2 Use Cases Specification

The translation engine is the actor of the rest of the translation system. For each use
case, its goal, inputs, and outputs are recorded. The following use cases, illustrated
in Figure 13, will guide through the projects and later maintenance.The GUI system
development team can also refer to them for design.

The context mentioned below consists of a set of non-distinguished entities, edges,

and blobs that accompany the distinguished one or ones.

41

The Rest of the Translation System

initialize translation

fetch system schemas

fetch user—defined relations

define entity refering only to system schemas

define edge refering only to system schemas

define blob refering only to system schemas

define entity refering to user defined

/ query entity refering to only system schemas
. queryedgerefering to only system schemas

s
—_— ‘
/\\\ query blob refering to only system schemas
uery entity refering to user defined
Translation Engine :
query edge refering to user defined
query blob refering to user defined

process using positive TGL logic expressions

process involving negation
process utilizing aggregation

close translation

Figure 13: Use Case Diagram Inside The Translation System

42

Use case initializeTranslation
Goal prompts the translation system to be ready to communicate
Inputs system time
Outputs successful initialization
not necessary since already initialized

underlying systems not ready

Use case fetchSystemSchemas

Goal retrieves the schemes defined by system
Inputs none

Outputs an array of system schema’s

systems schema’s do not exist

Use case fetchUserDefinedRelations

Goal retrieves the relations defined by users
Inputs None

Outputs an array of user-defined relations

user-defined relations do not exist

Use case closeTranslation
Goal prompts the translation system to suspend
Inputs none
Outputs successful close
translation system closed already.

persistent information storing failure

Use case defineEntityReferingOnlyToSystemSchemas

Goal defines a new entity based on underlying system schemes
Inputs distinguished node, context

Outputs successful definition

attempt to a overwrite system schema failure

43

Use case
Goal

Inputs

Outputs

Use case
Goal

Inputs
Outputs

Use case

Goal

Inputs

Outputs

Use case

Goal

Inputs

Outputs

defineEdgeReferingOnly ToSystemSchemas
specifies a new relationship of two

entities based on underlying system schemes
distinguished edge, context

successful definition

attempts to a overwrite system schema failure

defineBlobReferingToOnlySystemSchemas

describes a new relationship between an

entity and a series characteristically

similar entities based on underlying system schemes
distinguished blob, context

successful definition

attempts to a overwrite system schema failure

defineEntityReferingToUserDefined

defines a new entity based on both underlying
system schemes and user-defined relations
distinguished node, a list of user-

defined relation referred to, context

successful definition

attempts to a overwrite system schema failure

defineEdgeReferingToUserDefined
specifies a new relationship of two
entities based on both underlying system
schemes and user-defined relations
distinguished edge, a list of user-

defined relations used, context

successful definition

attempts to a overwrite system schema failure

44

Use case
Goal

Inputs

Outputs

Use case

Goal

Inputs

Outputs

Use case
Goal

Inputs
Outputs

defineBlobReferingToUserDefined
describes a new relationship between an
entity and a series characteristically
similar entities based on underlying
system and user-defined schemes
distinguished blob, a list of employed
user-defined relation, context

successful definition

attempts to a overwrite system schema failure

queryEntityReferingToOnlySystemSchemas
looks for values of a or many existed

entities based on underlying system schemes
distinguished node or nodes, unit id, context
results returned

query pattern definition error

queryEdgeRefering ToOnlySystemSchemas
searches keys for the from-node and
to-node pair of a directed edge based on
underlying system schemes

distinguished edge or edges, unit id, context
results returned

query pattern definition error

45

Use case
Goal

Inputs

Outputs

Use case

Goal

Inputs

Outputs

Use case
Goal

Inputs

Outputs

queryBlobReferingToOnlySystemSchemas
finds the possible combination of a container
node and a set of contained nodes

that between them the blob relation or
relations are satisfied based on underlying
system schemes

distinguished blob or blobs, unit id, context
results returned

query pattern definition error

queryEntityReferingToUserDefined

looks for values of a or many existed
entities based on both underlying system
schemes and user-defined relations
distinguished node(s), unit id, employed
user-defined relation list, context

results returned

query pattern definition error

queryEdgeReferingToUserDefined

searches value pairs for the from-node

and to-node of interested edges with support

of both system schemes and user-defined relations
distinguished edge(s), unit id, utilized
user-defined relation list, context

results returned

query pattern definition error

46

Use case

Goal

Inputs

Outputs

Use case

Goal

Inputs

Outputs

Use case
Goal
Inputs

Outputs

queryBlobReferingToUserDefined

finds the possible combination of a
container node and a set of contained nodes
that between them the blob relation(s)

is satisfied based on both underlying
system schemes and user-defined schemes
distinguished blob(s), unit id, a list of
employed user-defined relations, context
results returned

query pattern definition error

processUsingPositive TGLLogicExpressions
defines and queries utilizing positive TGL
logical expressions so that the query
pattern is more powerful and expressive
distinguished elements and context with
TGL logical expressions, required
information according to categories above.
response or results returned

TGL logical expressions definition error

processInvolvingNegation

defines and queries with negation involved
distinguished elements and context with TGL
logical expressions having negation, required
information according to categories above.
response or results returned

TGL logical expressions definition error

47

Use case processUtilizingAggregation
Goal defines and queries with the support of aggregation functions
Inputs distinguished elements and context described
also through aggregation functions, required
information according to categories above.
Outputs response or results returned

aggregation function misused

4.2.2 Incremental Plan

Through the incremental process, the translation system is partitioned into three
manageable products. The complexity of these three products is increased one by one.
Also the former always acts as a base for the later ones. The benefits achieved [22]

are:

e Every increment is processed as a robust process and delivers a complete prod-
uct. The functionality realized is part of the final product, so the early increment

can help to understand what could be expected from the final product.

e Under the verification and support of the processing increment, the succeeding

increment can process the more complex ones.

e A clear time schedule can be foreseen and evaluated along each pass of increment

development.

Figure 14 illustrates the relationship among the use cases and assists in division
of increments. The incremental plan constitutes three increments. The details of
these increments are listed below. The division reflects the rule that processing goes
from the simple to the complex, from the basic to the fulfilled. With each pass of

increment, the rationale behind the participation is also included.

Increment One (Rationale — Deal with the simple use cases first, so basic func-

tionality of the translation system can be analyzed and realized)

initializeTranslation (system time) {successful initialization, underlying

system not ready}

48

S

[initialize translation system j

[unfinish]

[finish}

[close translation system)%_A

O

.

fetch system schemesj

(fetch user—defined views }

—_—

collect graphlog information [TGL logical expression posili\h}

[negative]

(process positive j {process negative }

[aggregation]

process aggregation

_

(wIoISAS IoJa1 AIJNUD JULIOp j

C
C

wa)sAs J0Jo1 93pa 2uIop]

[involve views]
[only system schemes]
[define]
[define]
[query] (query]
e N s 3 ~

wdISAs 10J01 qOIq SULJIp]

uIaIsAs 19321 qoiq Arenb]
SMIIA 19§21 AImua dujap j
SMIIA J19321 28p2 aulop J
SMOITA 19521 qO[q SUrJop j
walsAs 19)21 28p2 A1onb j
wWoIsAs 19391 qojq A1onb]

[wa1sAs 19§21 A3nud Axanb]

C

[wAsAs 19301 Aynyus A1onb j

r wa)sks 10321 98po Aronb j

(
(
(
(

v

1

v v

Figure 14: Activity Diagram of The Translation System

49

fetchSystemSchemas() {an array of system schemes, systems schemes do

not exist}

fetchUserDefinedRelations () {an array of user-defined relations, user-

defined relations do not exist}

defineEntityReferingOnly ToSystemSchemas (distinguished node, context)

{Successful definition, Attempts to a overwrite system schema failure}

defineEdgeReferingOnlyToSystemSchemas (distinguished edge, context)

{Successful definition, Attempts to a overwrite system schema failure}

defineBlobReferingToOnlySystemSchemas (distinguished blob, context)

{Successful definition, Attempt to a overwrite system schema failure}

defineEntityReferingToUserDefined (distinguished node, a list of user-
defined relation referred to, context) {Successful definition, Attempt

to a overwrite system schema failure}

defineEdgeReferingToUserDefined (distinguished edge, a list of user-defined
relations used, context) {Successful definition, Attempt to a overwrite

system schema failure}

defineBlobReferingToUserDefined(distinguished blob, a list of employed
user-defined relation, context) {Successful definition, Attempt to a over-

write system schema failure}

Increment Two (Rationale — processing queries is core function of the translation
system. Users make a series of preparations to ensure the correctness and accuracy
of the query pattern. In the second incremental pass, query function is realized,
based on the groundwork accomplished in Increment One. Then after this stage, the
translation system will possess sufficient parts to demonstrate its capability and be

evaluated.)

queryEntityReferingToOnlySystemSchemas (distinguished node or nodes,

unit id, context) {results returned, query pattern definition error}

queryEdgeReferingToOnlySystemSchemas (distinguished edge or edges,

unit id, context) {results returned, query pattern definition error}

50

queryBlobReferingToOnlySystemSchemas (distinguished blob or blobs, unit

id, context) {results returned,query pattern definition error}

queryEntityReferingToUserDefined (distinguished node(s), unit id, em-
ployed user-defined relation list, context) {results returned, query pat-

tern definition error}

queryEdgeReferingToUserDefined (distinguished edge(s), unit id, utilized
user-defined relation list, context) {query0501, results returned, query

pattern definition error}

queryBlobReferingToUserDefined (distinguished blob(s), unit id, a list of
employed user-defined relations, context) {results returned, query pat-

tern definition error}

Increment Three (Rationale — process the most complex use cases of the trans-
lation system. TGL logical expressions provide more power and more convenient way
to declare the query pattern, but additional processes are needed to incorporate the
expressions into the program. Further, negation and aggregation are two error-prone

fields in logic programming, extra efforts have to be made to ensure correctness.)

processUsingPositive TGLLogicExpressions (distinguished elements and con-
text with TGL logical expressions, required information according to
categories above) {response or results returned, TGL logical expres-

sions definition error}

processInvolvingNegation (distinguished elements and context with TGL
logical expressions having negation, required information according to
categories above) {response or results returned, TGL logical expres-

sions definition error}

processUtilizingAggregation (distinguished elements and context described
also through aggregation functions, required information according to
categories above) {response or results returned, aggregation function

misused }

Along the development of increments, the use cases presented in the generic re-

quirements will be augmented with detail scenarios and corresponding pre-conditions

51

and post-conditions. Together a conceptual structure for the entire translation system

will be developed.

4.3 Increment One Process

This section presents the course of analysis, design, implementation, and test for the
indispensable functions of the translation system. These functions serve to connect

the translation system, retrieve persistence schemes, and declare new relations.

4.3.1 Increment One — Analysis

Whereas requirements show the exterior consequences the user wants to acquire
through the interactions with the system, analysis reveals the domain logic beneath
the problems and reflects the development view compared with the user view of the
requirement.

At this stage, use cases are reconsidered and refined from the technical point of
view. However, goals, inputs, and outputs will not be listed again, and these can
be referred to the Requirement and Incremental Plan section. In fact, the goals are

detailed with scenarios.

4.3.1.1 Use Cases refinement

This part refines use cases for Increment One.

52

Use case

Scenario 1

Pre-condition

Post-condition

Exception

Scenario 2

Pre-condition

Post-condition

Exception

Use case

Scenario

Pre-condition

Post-condition

Exception

initializeTranslation
The GUI system informs the translation

system to be ready. After received the instructions,

the translation engine warms up the translation system, and asks for

the files that store persistent system schemes from

the lower layer system.

The translation system is idle and empty.

The translation system is prepared and system schemes
files updated.

The lower layer can not be called, required files not updated.
The remote upper layer system wakes up the translation
system. The translation system is initialized. Connection
between the host and client are established. Also the host
obtains system schemes files from lower layer system.

The translation system is sleeping.

Connection between client and server are established,
system schemes info are retrieved from lower layer.
Connection can not be initialized. No system schemes
recreated.

fetchSystemSchemas

The upper layer system acquires run-time system
schemes structure from the translation system.

The translation engine reorganizes the system schemas
files into the structure agreed by the upper layer

system, and return it.

The translation system is ready and system schemes

files updated.

The translation system keep the system schemes

and the upper layer have the system schemes information.

There is no any existing system schemes.

53

Use case

Scenario

Pre-condition

Post-condition
Exception
Use case

Scenario

Pre-condition
Post-condition
Exception

Use case

Scenario

Pre-condition

Post-condition

Exception

fetchUserDefinedRelations

The upper layer system acquires predefined relations

of users. The translation system retrieves existing
user-defined relations information and return to upper
system.

The translation system is ready and has knowledge of

where to retrieve user-defined relations.

The upper layer have the user-defined relations.

There is no any existed system schemes.

closeTranslation

The local upper layer system tells the translation

system to turn off. After received the instructions,

the translation system record run-time structure

into disk.

The translation system is awaiting for new task.

Persitant data is restored.The translation system is idle now.
The physical storage fails.

defineEntityReferingOnly ToSystemSchemas

The upper layer system recognizes the entity distinguished
by user and collects assistant elements expressed based on
system schemes. Then the upper layer system transforms
these information into TGL program. Next, the upper layer
system drives the translation system with the program.

The translation system parsed the program, maps it to

a CORAL program named by the relation name, and return
a message indicating the successful creation.

A TGL program including the information of the emphasized
entity(name, attributes) and elements that form the context.
A new CORAL program that defines the entity is created.
The new entity name is the same with some system schema,

error is returned.

54

Use case

Scenario

Pre-condition

Post-condition
Exception
Use case

Scenario

Pre-condition

Post-condition

Exception

defineEdgeReferingOnly ToSystemSchemas

The upper layer system has the label, the from-node and
to-node of the distinguished edge as the distinguish part

of the TGL program. Then it records the aiding information

as the content part. Next it calls the translation system

to translate the TGL program into a CORAL program.

After defining the CORAL program, the translation system
tells back the success.

A TGL program including the information of the emphasized
edge(label, from-node, and to-node) and elements involved

in the context.

The edge definition program is stored through the system.

The edge label repeats a system schema name, error is sent back.
defineBlobReferingToOnlySystemSchemas

The upper layer system states the highlighted blob with its
label, container node, and a set of contained nodes in the

TGL program. Then encloses other context element information
into the program. At the service of the upper layer system,

the translation system sets up a corresponding CORAL program
and sends back a successful response.

A TGL program including the information of the emphasized
blob(label, container node, and contained nodes) and

elements involved in the context.

The blob definition program is stored through the system.

The blob label reuses a system schema name, error is sent back.

95

Use case defineEntityReferingToUserDefined

Scenario The upper layer system recognizes the entity distinguished
by user and records the circumstances. The query pattern
employs both system schemes and user-defined relations.
Next, the upper layer system calls the translation system
with the TGL program that describes the information.
The translation system parsed the program, maps it to
a CORAL program named by the relation name, and records
the new relation name and related user-defined predicates
into run-time structure. A message is returned to indicate
the success.

Pre-condition A TGL program including the information of the emphasized
entity(name, attributes) and elements that form the context.

Post-condition A new CORAL program that defines the entity is created,
the name and linked user-defined relations recorded.

Exception The new entity name is the same with some system schema,
error is returned.

Use case defineEdgeReferingToUserDefined

Scenario The upper layer system transfer A TGL program and related
user-defined relations to the translation system. The
TGL program has the information of the distinguished edge
and other aiding elements in the circumstance.
The translation system translates the TGL program. Also
it records the relationship of the new defined edge and used
non-system schemes.

Pre-condition A TGL program including the information of the emphasized
edge(label, from-node, and to-node), elements involved
in the context, and non-system schemes used.

Post-condition The edge definition program is stored through the system,
the link between the new user-defined and existing ones is
dynamically kept.

Exception The edge label repeats a system schema name, error is sent back.

56

Use case defineBlobReferingToUserDefined

Scenario The upper layer system states the highlighted blob with its
label, container node, and a set of contained nodes in the
TGL program. Then encloses other context element information
into the program. In addition, it indicates which user-defined
predicates are used. At the service of the upper layer system,
the translation system sets up a corresponding CORAL program,
records the related user-defined predicates, and sends back
a successful response.

Pre-condition A TGL program including the information of the emphasized
blob(label, container node, and contained nodes) and
elements involved in the context.

Post-condition The blob definition program is stored through the system.

Exception The blob label reuses a system schema name, error is sent back.

4.3.1.2 Analysis Class Diagram

The class diagram shown in Figure 15 is based on the use cases in Increment One
and thus the model is confined to the classes of the current increment. Note that
only the top level classes are in this diagram to illustrate the process outline, and
sublevel classes and their functions are depicted in the following sections. Note that
the naming convention for the classes in engine package are prefixed with the character

‘X’, this is used to differentiate from classes with similar names in other packages.

4.3.2 Increment One — Design
4.3.2.1 Conceptual Structure of Increment One

The reasonable motivations to formulate a conceptual structure of the translation
system are: ensuring the development to align with domain logic, guiding decisions
of the rest process, and acting as communication vehicles with other layers.

At this stage a structure for use cases in Increment One is established and shown

in Figure 16. Along with succeeding increments, the structure will be augmented.

o7

XScheme

File scheme
XGraphlogParser
Hashtable schemas e
2
LocalTranslator
1
. 1 1 1 1
ILocalTranslator singleton XEngine
1
XDefineCodeGenerator
s
RemoteTranslator 1 s 11
1 1 XDefineGraphlog
1 1
1
* * Ed
XNode XEdge Xblob

Figure 15: The Analysis Class Diagram of Increment one

GUIScreen

responses

define new relations

engine

Figure 16: The Conceptual Structure at Stage of Increment One

o8

4.3.2.2 Translator Templating Methods

TRANSLATOR is an abstract base class for LOCALTRANSLATOR and REMOTETRANS-
LATOR. It is responsible for initializing, prompting the underlying system to provide
up-to-date shared information, fetching translation persistent states, transferring back
response and translation results. In fact, many details for the above transactions are
significantly different for LOCALTRANSLATOR and REMOTETRANSLATOR. One so-
lution is leaving all the methods of TRANSLATOR abstract until the subclasses give
the concrete algorithms. However, if we pay attention to the fact that the skeletons
of these algorithms in both subclasses are similar, a better alternative could be de-
rived. By using the Template Method design pattern [8], TRANSLATOR could define
the structures of the methods, and subclasses only need to flesh out the distinct parts.

The advantages over the first solution are
e The subclasses need not hard code all the details separately.
e The commonalities are abstracted and made reusable.

e A clearer structure is determined at design time.

4.3.2.3 LOCALTRANSLATOR Being Singleton

Translators will transform user-defined relation from the TGL program format to
executable CORAL programs. It makes sense to keep the corresponding CORAL
program. First, the user will probably check the correctness of the definition or
utilizing it immediately after the relation is defined. Keeping the CORAL program
will save another run. Second, a user-defined relation may be used many times,
keeping the translated CORAL program will save time and increase performance.
The next decision made is to determine the place and structure to store these
user-defined CORAL programs. One choice is to reserve disk spaces for every user,
consequently, users do not share their defined relations with others. The only common
support comes from system schemes. Another choice is to reserve a disk space for
all users so that each user can share other user’s definition. The translation system

takes on the later choice. The reasons backing this decision are that:

e Many users may define similar relations. The first choice may cause many copies

of a single user-defined relation. This is not efficient. Moreover, it precludes

99

reusabilities.

e Some users are just one-time visitors or seldom use the system, it it wasteful to

preserve space for them.

e The first choice makes file system management complex, while managing files

is not the main responsibility of the translation system.

However, the second choice is not a golden solution, either. There exists the problem
that a user may replace others’ definition by mistake. We solve this problem by
providing a list of all existing user-defined relations to users before they define their
own. Not only could it let users reuse resources, but it prevents their carelessly
overlapping others’ artifacts.

Another possible problem caused by the later choice is that more than two exe-
cutions of the translation system may overlap. When many relations are employed
and the TGL program gets complex, one execution can last a period of time. With
modern computer systems, the overlapping of two executions is quite possible. Mul-
tiprocessing is a popular technique of contemporary operating systems, and CPU
utilization is maximized by arranging a process on each CPU. Even if there is only
one CPU, its time may probably be divided into intervals that let each process have
a chance to run. As a consequence, two definitions of a relation may be executed
interchangeably and the final CORAL program is a strange mixture.

The solution of the problem is to apply the Singleton Design Pattern [8] to the
LOCALTRANSLATOR. Through letting the LOCALTRANSLATOR class itself to keep
track of its sole instantiation, it is guaranteed that there exists only one instance.
Also the method is public and can be accessed from any global point. Notice that
the constructor of the LOCALTRANSLATOR is protected instead of public. Thus
clients outside the package can not instantiate the LOCALTRANSLATOR by using its
constructor.Also the protected accessibility ensures the extensibility of the TRANS-
LATOR class and thus clients are able to use an extended instance without changing
the code.

4.3.2.4 XENGINE As Facade of Translation Details

The translation process is complex and the client is not interested in how to exchange

messages at low level, either. A high level interface that encapsulates the details is

60

preferred, So XENGINE class takes the role.

The translation process consists of scanning files into tokens, analyzing the gram-
mar of the token sequence, producing internal data structures, generating target code
under the aid of the internal data structure, executing the generated code on the
target system, fetching the result, parsing the result, transforming the result to ac-
ceptable format, and returning the result. Each step needs a set of classes to support.
Although it leads to much more flexibility and enhances reusability through providing
the interface to each group of classes and permitting customization, here the client
cares only for the result with the acceptable format, but not the configuration details.
Consequently, leaving a wealth of interfaces to be configured only causes complexity
to the client.

Therefore, a facade is introduced through class XENGINE. The design conforms
to Facade Design Pattern [8]. The client need only to pass the TGL program file
for a graphlog to an XENGINE object, then it can receive the names of generated
CORAL programs. The client needs even not think about how the file names are
abstracted from the CORAL program files. It is the XEngine object that takes care
all the translation process and supplementary activities. The client sends message
through the returnResults method of XENGINE class. The method encapsulates all
the translating transactions.

By using the facade pattern, the translation system is able to decouple the client

from translation details and promote the independence of the translation system.

4.3.2.5 Runtime Data Structure and Flyweight Design Pattern

A graphlog consists of a set of query patterns(defineGraphlogs and/or showGraphlogs),
while a query pattern constitutes nodes, edges and blobs.There are still intricate re-
lationships between the nodes, edges, and blobs: a node may be the end of several
edges and some blobs at the same time; an edge has two nodes as the ends; a blob
has a great number of contained nodes.Furthermore, an element may modify the at-
tributes of other elements. For instance, an edge with label “is_a” emphasizes that the
from-node and end node should have the same key. All these features indicate that
the data structures representing the elements should correctly reflect the consitution

and be easily referred by one another.

61

LR 4 Edgel Edgel \15(153/”", s 00 ﬁl\’ ‘@oo-

-/ \

L L
@@N«m Grate1D Gtz o3 Coed >+ Cater > ok e a o> Qs> » o

Figure 17: Organization of Nodes, Edges, and Blobs Before Applying Flyweight Pat-
tern

In addition, the number of elements could be huge, which requires efficient con-
struction and access.

Flyweight Design Pattern (8] grants an effective method to solve similar problems.
The basic idea is: first, to create all lowest level elements and manage them in a pool.
Then, let elements of higher levels be constructed with reference to the basic. Last,
to decorate the the basic and reuse them at runtime.

In this application, nodes are the lowest level of the construction, whereas edges
and blobs have nodes as construction elements. So for a particular graphlog pattern,
all nodes are built independently and collected together. Whereas edges and blobs
are built with their specific information and references to-nodes in the collection.
Thereby, all the nodes are shared and copies of nodes are saved for edges and blobs.

The situations before applying Flyweight Design Pattern and after applying the
pattern are illustrated in Figure 17 and Figure 18 respectively. It is clear that the
number of node objects after sharing nodes among edges and blobs is far less than
that of before sharing. Plus,

The benefits achieved through the design are:

e Memory space for storing objects is soundly saved.
e Total number of instances are significantly reduced through sharing.
e The data structures of node, edge and blob are both elegant and efficient.

e The maintenance of node objects with same states is saved when one of them

is updated.

62

Figure 18: Organization of Nodes, Edges, and Blobs After Applying Flyweight Pat-
tern

class EnclosingClass{

class ANestedClass {

Figure 19: Nested Class

4.3.2.6 Inner Class Richening functionality

The Java language has a powerful design and implementation vehicle: Nested Class [21].
A nested class is a class that acts as a member variable of another class. It is illus-
trated in Figure 19.

An inner class is a non-static nested class. It has unlimited access to all the mem-
bers of its enclosing classes, including the static and the non-static. Consequently, the
enclosing class increases its functionality with the aid of the inner classes. Nonethe-
less, an inner class can not define any static members of its own because it associates
with an instance of its enclosing class. An inner class only makes sense in the context
of its enclosing class.

In the translation system, XGRAPHLOGPATTERN objects collect their basic states
along the procedure of parsing the corresponding TGL program. But these states are
not the final states that are utilized when generating executable CORAL programs.
Further computation and organization are necessary to form the final states based
on the basic states. It is helpful and can increase performance if these repeatable

computation and organization could access the basic states with least restrictions.

63

<<Inner Class>>

XRuntime

— Hashtable userScheme;

+ XRuntime(Hashtable scheme)
+ void refineNodes(Hashtable systemScheme)
+ void refineEdges(Hashtable systemScheme)

+ void refineBlobs()

Figure 20: Inner Class XRuntime in Increment One

An inner class of XGRAPHLOGPATTERN meet the requirements metioned-above.
First, it can access the node, edge and blob members freely and thus can assign up-
to-date states to them after modification without complex message sending. Second,
the abstraction of the computation is declared as an inner class’s member methods
and can be reused. Figure 20 depicts the design of the XRUNTIME class that plays
the role of an inner class in the XGRAPHLOGPATTERN class.

Assisted by the inner class XRUNTIME, the XGRAPHLOGPATTERN could refine

its member variables xNodes, xEdges, and xBlobs dynamically.

4.3.2.7 Tokenizing the TGL program

This section introduces the design of scanning the TGL program and breaking it
down into tokens.

Token is the fundamental unit of a language. It represents a logical chunk of
characters that has meaning in a particular language. Generally, it could be a number,
a word, or a punctuation. As a human reader, the first step for a computer utility to
analyze a text representation in a language is to find all possible tokens. In terms of
compiler technology, the process of dissecting text is called lexical analysis, too. It is
complex and impractical to identify the tokens while recognizing the grammar of the
language. It is against the rule of Object-Oriented Design that an object only care

about its own responsibilities.

Tokenizers’ responsibilities A XTOKENIZER class will be responsible to locate
all tokens in TGL programs. The role of the X TOKENIZER class is as follows:

e Identify numbers.

64

construct words from letters, digits, and special characters allowed.

Locate one character symbols like ¢ >/ ¢ -/

»

Allow multicharacter symbols, such as “ < /["and“ — —

Recognize whitespaces as token delimiters.

Shape double quoted string.

e Ignore comments beginning with “ — 7.

1t reads roughly like a human being does, especially it finds precisely where a token
begins and ends. For example, the tokenizer will view the string “ < /graphlog >”
as containing 3 tokens: a multicharacter symbol, a word, and a symbol. That is,(<
/), (graphlog), and(>).

An XTOKENIZER object does not hold these tailored logical strings. It forms
XTOKEN objects using this information. So the XTOKEN class does not determine

what is or what is not a token, but it does hold the results determined by the tokenizer.

Tokenizing following State Design Pattern [8] The XTOKENIZER class has a
set of internal state objects that relates to various types of tokens. And an object
of the TOKENIZER class alters its behavior when its current internal state object
changes.

The abstract class that represents the states of recognizing tokens is XTOKEN-
STATE. The interface common to all classes that represents different tokenizing states
is nextToken(PushbackReader r, int ¢, XTokenizer t). There are a total of five states
for tokenizing TGL program: XBeginOrEndState, XValueState, XWhitespaceState,
XCommentState and XErrorState. The corresponding class hierachy is illustrated in
Figure 21. The concrete states implement their state-specific behavior respectively.

A state is associated with a set of characters. The states and their linked characters
are listed in Table 7.

To decide what the current state is, the X TOKENIZER class looks up in the table
with the character it just read. After a state is matched, the TOKENIZER object
changes its current state by sending message to an appropriate XTOKENSTATE ob-
ject. Besides the character read by the TOKENIZER object, the TOKENIZER object

65

<<abstract>>

XTokenState

+ XToken nextToken(PushbackReader r, int ¢, XTokenizer t)

A

A

(XBeginOrEndState

X ValueState

H XBeginOrEndState()

t XToken nextToken(PushbackReader r, int ¢, XTokenizer t)
i void setBeginOrEndChars(int ¢, boolean b)
4 void setBeginOrEndChars(int from, int to, boolean b)

H XValueState()

b XToken nextToken(PushbackReader r, int ¢, XTokenizer t)
i void setBeginOrEndChars(int from, int to, boolean b)

k- void setValueChars(char[] a, boolean b)

@(WhitespaceState

[XErrorState

H XWhitespaceState()

b XToken nextToken(PushbackReader r, int ¢, XTokenizer t)
t+ void setWhitespaceChars(char|] a, boolean b)

t XBeginOrEndState()

4+ XToken nextToken(PushbackReader r, int ¢, XTokenizer t)

XCommentState

i+ XBeginOrEndState()

k XToken nextToken(PushbackReader r, int ¢, XTokenizer t)

Figure 21: Tokenizer States Class Hierachy

From To State

C < c<! BeginOrEndState
@7 o ValueState

‘&’ ‘&’ ValueState

¢ ¢ ValueState

‘=’ ‘=’ ValueState

‘(‘© ValueState

‘a’ ‘g’ ValueState

‘A’ v ValueState

‘0’ ‘9’ ValueState

¢ ¢ CommentState

The rest characters The rest characters FErrorState

Table 7: Tokenizer States and Associated Characters

66

Figure 22: Potential Paths of recognizing a Symbol

itself is passed to the state. In addition, all the tokenizer states share one single
PushbackReader by accepting it one by one.

The PUSHBACKREADER is usually generated in the XTOKENIZER constructor,
still a flexibility is provided through setReader().Thus the TOKENIZER object can be
reused by simply changing the resource. PUSHBACKREADER has a special ability
that it can put back a character to the resource after reading it. This is useful in
the situation when the next character must be read to judge whether the end of
a token is reached, but unfortunately, the current other than the next character is
the end, so the next character must be sent back to the resource for another token.
Recognizing a symbol is a good example. All the three symbols are legal in TGL:
“ o 4 <=7 gnd“ <>" and Figure 22 shows the potential paths of recognizing a
symbol.

When an XVALUESTATE object encounter the character ¢ <’, it looks to see
whether the next character in the input stream matches ¢ =" or* >’ . If there is
a match, the new symbol token is fixed. Otherwise, the symbol is just a ¢ <’ and
whatever the character looked over is, it has to be put back into the input stream.
The PUSHBACKREADER class helps this by its method unread(int c).

4.3.2.8 The XToken Class

The XTOKEN class serves as a container for a string of text chunked by an XTOK-
ENIZER object.

An XTOKEN object has a type and a value. The X TOKEN class takes the following
token types as member variables: XTT_EOF, XTT_BEGIN, XTT_END, XTT_VALUE,
XTT_COMMENT, and XTT_ERROR.

These types help XParsers to distinguish the tokens in terms of the roles they play

67

XToken

TokenType tType

String sval

<< token types>>

+ TokenType XTT_EOF

+ TokenType XTT_BEGIN

+ TokenType XTT_END

+ TokenType XTT_VALUE

+ TokenType XTT_COMMENT
+ TokenType XTT_ERROR

+ String getSVal()

+ TokenType getTType()
+ boolean equals(Object 0)
+ boolean isBegin()

+ boolean isEnd()

+ boolean isValue()

Figure 23: XToken Class Diagram

in the TGL program. So a tag like “ < graphlog > ” is a token of type XTT_BEGIN,
and the value of the token is the string “graphlog”. Moreover, an example of a token
with type XTT_END could be “ < /graphlog > .

Although a token need not to identify itself, it does need tell itself from others.
The equal(Object 0) method addresses the function. Notice that the parameter is
an instance of Object class, but not of XToken class. The reason is that by default
XTOKEN class inherits from the class OBJECT, which is the ancestor of all the classes,
and equal(Object 0) is a protected method that need to be specified by any subclasses.

In addition, an X TOKEN object should be able to claim its own type. The isXXX()
methods that return boolean values are designed for this purpose. Figure 23 shows
the class diagram of XTOKEN.

Summarily, while scanning a TGL program, an X TOKENIZER object distinguishes
tokens relying on its internal states. Then it forms XTOKEN objects that represent

the recognized tokens. The overall design of the tokenizing process is illustrated in
Figure 24 .

68

XTokenType

states

create
<<abstract>> XToken

XTokenizer XTokenState

N

XBeginOrEndState XValueState

XErrorState

XWhitespaceState

XCommentState

Figure 24: Tokenizing TGL Programs Class Diagram

4.3.2.9 Parsing hierachy for TGL program and Composite Design Pat-
tern [8]

A set of query patterns are organized into a single TGL program; each query pattern
has a distinguished part and a content. Furthermore, the distinguished part and the
content are composed of nodes, edges, and blobs. Moreover, the number of possible
constructions is large. The relation that a higher level component is made up of lower
level components suggests a composition structure.

Consequently, primitive classes can be defined for parsing the fundamental com-
ponents like nodes, edges, and blobs. Then container classes for parsing the distin-
guished part and content can be built from these fundamental parsers. In turn, these
parsers can be grouped to form larger parsers, for defineGraphlog and showGraphlog.

However, containers have some different behaviors that composing items do not
have, although the procedure of breaking a TGL program into tokens and recon-
structing these tokens into runtime data structure for further process is the same.

To distinguish these objects will notably increase complexity and significantly re-
duce the reusability. Composite Design Pattern presents a reasonable solution to the

problem: let the super class possess behaviors of both the simple components and

69

the complex components. Thereby, the developer need not specify classes to deal
with a particular parsing process at design time, but leave it until run-time binding.
Applying to our system, the super class is XPARSER class. And the leaf classes are
XNODEPARSER, XEDGEPARSER, and XBLOBPARSER. Next, XCONTENTPARSER,
XDISTINGUISHDEFINEPARSER, X DISTINGUISHSHOWPARSER are composed of XN-
ODEPARSER, XEDGEPARSER, and XBLOBPARSER. The continuous level compo-
nents include XSHOWPARSER, which consists of a XDISTINGUISHSHOWPARSER and
a XCONTENTPARSER, and X DEFINEPARSER, which consists of a XDISTINGUISHDE-
FINEPARSER and a XCONTENTPARSER. Then the highest level composition class
is the XGRAPHLOG made of a XDEFINEPARSER and a XSHOWPARSER. All leaf
classes make use of the method getIDKey to return the assigned id of the correspond-
ing elements. Moreover, except for the XGRAPHLOGPARSER, all the rest of the
parser classes share a member method parse(X Tokenizer, XGraphlogPattern). And
the XGRAPHLOGPARSER has its own parsing method parse(XTokenizer) . All these
methods are abstracted upon the tree to the top super class, XPARSER. Figure 25

shows the parsing class hierachy.

4.3.2.10 Generating Coral Program

With the states of refined XNobES, XEDGES, and XBLOBS objects for a define-
Graphlog, generating a corresponding CORAL program is essentially to restate the
query pattern in terms of CORAL language.

To define a new predicate, a typical CORAL program encloses the definition of
the predicate in a module. The mark of the beginning of the module is the keyword
module plus the name of the module and a period. And the keyword end_module and
a period marks the finishing of the module. The predicate can be reused by other
predicate outside the module through exporting it. Also the usage of the predicate is
specified by pointing out whether the attributes should be bound or free. The symbol
period specifies the end of a CORAL statement.

An example is shown in Figure 26. The program defines the predicate creditMT2.
It can be used outside the module since it is exported by the module. The only at-
tribute is free while making queries. The predicate, course(Code, -, Credits), appears

in the rule body to support the definition. The variables Code and Credits must be

70

XParser

#parse(XTokenizer)

#parse(XTokenizer, XGraphlogPattern)
#String getIDKey()

XContentParser

<<leaf>>
XBlobParser

+parse(XTokenizer, XGraphlogPattern)
+String getIDKey()

XNodeParser
XEdgeParser
XBlobParser

#parse(XTokenizer, XGraphlogPattern)

XDistinguishShowParser

<<leaf>>
XEdgeParser

XNodeParser
XEdgeParser
XBlobParser

#parse(XTokenizer, XGraphlogPattern)

XDistinguishDefineParser

XNodeParser

Hparse(XTokenizer, XGraphlogPattern)
H-String getiDKey()

XEdgeParser
XBlobParser

#parse(XTokenizer, XGraphlogPattern)

XDefineParser

XDistinguishDefineParser

<<leaf>>
XNodeParser

+parse(XTokenizer, XGraphlogPattern)

+String getIDKey()

XContentParser

#parse(XTokenizer, XGraphlogPattern)

XShowParser

XDistinguishShowParser
XContentParser

#parse(XTokenizer, XGraphlogPattern)

| XGraphlogParser |
XShowParser

XDefineParser
#parse(XTokenizer)

Figure 25: Class Hierarchy for Parsing TGL Program

71

module q0.
export creditMT2(f).

creditMT2(Code) :— course(Code,_, Credits),
Credits > 2.

end_module.

2creditMT2(Code).

Figure 26: An Example Coral Program

bound before evaluating the rule. However, the second variable is an anonymous vari-
able, and applies to any value at the position of facts during the evaluation. Notice
that queries can be processed in a CORAL program as well.

So translating a defineGraphlog is transforming the TGL program into a CORAL
module that exports the name of the distinguished elements and specifies the usage.
XDEFINECODEGENERATOR class is responsible for the generation action. An in-
stance of it is constructed with the refined XDEFINEGRAPHLOG object. Then the
X DEFINECODEGENERATOR object abstracts useful messages and organizes the pro-
gram through the method generateCode. By default, the names of the module and
CORAL program are the same as the predicate. This facilitates the computation and
search of a user-defined relation. XDEFINECODEGENERATOR class also provides the
method getModuleName to pass the newly defined CORAL program name to the

client for the purpose of updating records of user-defined relations.

4.3.2.11 Exception Handling

The exception hierarchy framework created by Java language considerably facilitates
error-handling. Exceptions are categorized into checked exceptions and unchecked
exceptions. The checked exceptions will be examined at compile time to ensure that
they are dealt with by developers. And the unchecked exceptions are those occurring

in run time and probably due to ill coding logic.

Translation System Exception Hierarchy A new tree of exceptions are defined
by the translation system. These and other exception class libraries of Java language
are wired into the system to react to the problems occurring at run time. The newly

constructed exceptions follow the naming convention that the class names will end

72

Exceptions Functions

TranslationException the super class of all newly defined exceptions
AlreadyInitializedException | the translation system has been initialized and it is ready.
AlreadyClosed Exception the translation system has been closed.

Table 8: Newly Declared Exception Classes Serving Increment One

with string “Exception”.
If the translation process is interrupted at some point, corresponding exceptions
will be thrown. By catching the exceptions, the client will understand what cause the

interruption of the execution. There are set of reasons that may lead to exceptions:
e The underlying system that supports the translation system is not available.
e The file system may have I/O problems.
e The client set up unreasonable calls.

The TranslationException class is designed as the superclass of all newly defined

exceptions for the translation system.

Newly Defined Exceptions in Increment One In Increment One, the newly
declared exceptions and their functions are listed in Table 8.
4.3.2.12 Summary

The design delivery of Increment One is illustrated in Figure 27.

4.3.3 Increment One — Implementation

Implementation emphasizes the algorithms that realized the design. Put in another
way, implementation of a system is responsible for fleshing out the member methods
of classes.

4.3.3.1 Implementing Template Methods

Class TRANSLATOR has two template methods: initialize and close. They employ

two protected methods activate Underlying and garbageCollect, whose implementation

73

GUIScreen

<<abstract>>
Translator

String systemFile
String userFile

+ Translator{)

+ String initialize()

+ String close)

+ Hashiable fetchSystems()

+ Hashtable fetchUsers()

+String[H fetchResults(Smng
ate

engine
XDefineGraphlog
XGraphlogParser - String distinguishPart
- XDefineParser xDefineParser + XDefineGraphiog()
~ Vector xDefineGraphlogs + void runtimeRefine(Hashtable, Hashtable)
+ void addDistinguish(String 5)
+ XGraphlogParser(+ String getDistinguishPart()

+ void parse(XTokenizer xt)
+ XDefineGraphlog[] getDefineArray()

XEngine

+ XEngine()

class Runtime

<< inherited from XGraphlogPatter >>
+ XGraphlogPattern()
+ void addIAlncluded(String pFileName)
+vold getlncludedPFiles() |
+ Hashtable getXNodes()

+ Hashtable getSystemSchemas()

+ Hashtable getUserSchemas()

#activ nderlymg
garbageCollect()
1
g
2 LocalTranslator
j=f
[L‘?. - LocalTranslator singleton
]
g # Local Translator()
t&r + LocalTranslator mnstance()

+ String{}[] returnResults()

Scheme

File scheme

Hashtable schemas

+ Hashtable getXEdges()
+ Hashtable getXBlobs()

XNode XEdge ' } Xbiob

XDefineCodeGenerator

- String distinguishlD
- String moduleName

+ XDefineCodeGenerator(XDefineGraphlog)
+ String generateCode()
+ String getModuleName()

Figure 27: The design class diagram of Increment one

74

private static LocalTranslator singleton = null;
public LocalTranslator instance(){

if(singleton == null){
singleton = new LocalTranslator();

return singleton;

}

Figure 28: The Implementation of Class LocalTranslator Being Singleton

will be determined in the subclasses, respectively. Thus the subclasses keep tem-
plate through overridden the activateUnderlying and garbageCollect methods. LoO-
CALTRANSLATOR has a XENGINE object as a member variable. As the heart of the
translation system, an XENGINE instance will keep many runtime data structures,
which consume extensive resources. So the key point of inactivating the translation
system is to release the resources from the XENGINE instance. We could recommend
the garbage collector of Java Virtual Machine to collect it through setting the instance
to null. Nonetheless, in this situation, it is not so simple because the XENGINE object
in fact remains noncollectable if there are still references to it. So it must be ensured
before setting the XENGINE object to null that all the references to the XENGINE
object should be null. The task is fulfilled by engine.garbageCollect().

4.3.3.2 Implementing Singleton

To ensure there are no system runtime conflicts, LOCALTRANSLATOR class is deter-
mined to provide only a single instance.

Clients will obtain the reference to the singleton exclusively through the member
method instance of LOCALTRANSLATOR. The static member variable singleton can
only be accessed by the LOCALTRANSLATOR class itself, and it is initialized to null by
default. The method instance uses lazy initialization. That is, the instance singleton
will not be created and kept at runtime until it is first accessed. The implementation
is listed in Figure 28.

The lazy initialization can not be replaced by automatic initialization. It can
not ensure a singleton instance of class LOCALTRANSLATOR through setting up the
accessibility of the member variable singleton as global or static and initializing it at

the declaration time or in constructor. First, it can not be guaranteed that only one

5

instance of a static object will be declared. Second, the initialization of a singleton
may rely on other runtime values and thus it can not be sure that a singleton can be

initialized using static initialization with required information.

4.3.3.3 Implementing Flyweight

Effectiveness is achieved through the design that runtime data structures are orga-
nized using Flyweight Design Pattern. However, it also brings up costs of finding
shared objects and computing required information. So managing shared objects
efficiently is critical to make the design practical.

The flyweights, or the shared nodes, should be stocked with little effort. Besides,
the storage of them should facilitate locating a particular object. Generally, an asso-
ciation will be used to look up interested flyweights. The data structure of hashtable
is suitable for the purpose. All the flyweights compose a table. In this table each
flyweight is stored and retrieved using its key, the node ID. Also, an edge or a blob
refers to a flyweight by having the key of the flyweight in its state. The edge or the
blob only know the identities of flyweights. To obtain further information of its re-
lated flyweights and to modify the inner states of them, it will retrieve the flyweights
and compute. Note that if a flyweight is altered during the computation, it need to

be restored to the repository table.

4.3.3.4 Implementing Coral Program Generation

A syntax error free CORAL program can not guarantee that the execution yields
expected results. Not only the logic behind the CORAL program should be proper,
but the constraints of the CORAL program must be satisfied. These increase the
complexity of the implementation of generating a health CORAL program.

At the current version, the CORAL system has the following constraints that

relates to Increment One:

e A rule need to have its variables bound before being evaluated. Still us-
ing the example in Figure 26 to illustrate the constraint. Suppose the rule
creditMT?2(Code) : — course(Code, -, Credits), Credit > 2.
is changed to creditMT2(Code) : —Credit > 2, course(Code,_, Credits). ,
there will be no answers at all although several course Codes are derived using

the first program. The reason behind the scene is that expression Credits > 2

76

is evaluated first, and at the very time, the variable Credits has no value at
all. Even immediately later, Credits does have a value through a fact of the

predicate course, the interpreter of CORAL system will not check back.

Through the following implementation strategies, the constraint is guaranteed to

be met.

o In the rule body, list predicates for nodes before those of edges, and lastly those
for blobs. The rationale of the strategy lies in simple components composing
complex ones. Since an edge consists of two nodes, then listing nodes’ predicates
before the edges’ will ensure variables, which appear in node relations but are
used by edges, will be bound before referred by edges. Since blobs are defined

in terms of nodes and probably edges, the same analysis applies.

e List comparison expressions after system predicates and user-defined predicates.
This is because the variables in the comparison expressions exclusively refer to
variables that appears in those predicates. The arrangements can prevent a

similar error in the example above.

4.3.4 Increment One — Test

Use case testing method [11] is adopted to examine the application functionality. Use
case testing is designing, executing, and evaluating test cases directed by use cases.
Because the translation system is independent of user interface, the test will proceed
without involving the user interface. However, since most test inputs have the format
of XML file, they are significantly abstract. This also causes the evaluation of the
test result to be difficult. For a good understanding of the inputs , the corresponding
drawing patterns are drawn together with generated TGL program.

Each test case is designed to be self-supported. Its TGL program is designed to
conforms to the corresponding use case inputs. After the test completes, the post-
conditions of the use case will be validated. The independence of the test cases has

the following benefits:

e All test cases can be used repeatedly. Because the system environment need
to be set for the test, satisfying post-conditions of one run can not verify the
correctness of the application functions. Many runs must yield the same results.

An independent test case can be used for this purpose.

77

e They do not intervene with each other. The inputs and pre-conditions of a test
case are not dependent on the post-conditions of others, and the results of test
cases are isolated as well. Thus, the failure of a few tested cases can not derive

the incorrectness of the rest of the cases.

e Standalone test cases prevent complicated setup. Because the results of some
test cases are not the necessary preparation for others, the test cases are not
chained. This precludes the need for ensuring that each preceded tests yields

expected production. This causes extensive time to set up a single test.

e Separate test cases support efficient debugging. The debugging can be carrying
on from case to case. Therefore, the complexity is reduced and debug speed can

be faster. As a result, efficiency is achieved.

The test cases are developed using the same implementation language, Java, as
the translation system.

The upper layer system expects no human user assistance during the interactions
with the translation system. Besides, it expects as few as possible interaction to
attain goals. To fulfill this requirement, simple interfaces are demanded from the
translation system. This results in a significant information-hiding design effect of
the translation system. Nonetheless, the effect draws on the difficulty of validating
test results. The tester will only have file names of results, which is far from enough
to verify the functionality of the translation system. To resolve the problem, in the
test phases, intermediate products of the translation process are held and traced so
that detailed examination could be carried on.

The university model is taken on for the test purpose. The reason why we use the
university model is that university domain is well understood and many database sys-
tems related to this domain have been established. Consequently, detailed problems
can be discussed with common understanding, complex test cases can be designed
and followed without causing confusion, and horizontal comparsions can easily be set
up with other system.

In Increment One, we listed a test case as an example to demonstrate that the
design and implementation for Increment One could achieve the functions required
by use cases. Also this example is used to exhibit the effectiveness of the use case

testing method.

78

4.3.4.1 Test Case — Fetch System Schemes

The test case named Fetch System Schemes is based on the use case fetchSystem-
Schemas. It uses the file systemScheme.txt, which is updated through initializing the
translation system. It can also be assumed that the file systemScheme.txt will not

change before the translation system shuts down and reinitializes.

Input Explained The schemes recorded in systemScheme.txt are supposed to be
retrieved and organized from a relational database. This is the routine of a deductive
system. Every line in the table represents a relation. The relation name is listed first,
then attributes are listed in the following parentheses. The order of the attributes is
important because a deductive database treats attributes by their positions instead
of their names. In the example input shown in Table 9, the relations of lives_in,
first_supervisor, second_supervisor, prerequisites, assessment, resides assessment re-
flect relationships between two entities. The rest are of entity model. Whereas the
relations representing relationship will be depicted with edges or blobs, an entity re-
lation will correspond to a node in the TGL, and the first attribute should be its key.
Giving an example, the predicate prerequisites of assessment reflects a relationship

between a course and its prerequisite courses.

Test Object The test object developed for this test case are listed in Figure 29.
This test case is a simple one , and only one main method is enough. Nonetheless,

for complex ones, more methods need to be created to assist the tests.

Test Execution and Evaluation Under the conditions:
e Underlying layer system could be connected.

e Relation schemes can be retrieved through the underlying system and system-

Schemas.txt can be updated.
e There indeed exist schemes like in Table 9.

The test result copied from console is listed in Figure 30.

79

person(ID, Name).

staff(ID,Salary).

student(ID).

tutor(ID).

visiting_staff(ID).

dept(No, Name).

course(Code, Title, Credit).
address(AID, Street, District, City).
works_in(ID, Dept).

teaches(ID, Course).

majors_in(ID, Dept).
takes(ID,Course).
run_by(Course,Dept).
prerequisites(Course,PreCourse).
assessment (Course,assName,Percent).
lives_in(ID, AID).
first_supervisor(StaffID, StudentID).
second_supervisor(StaffID, StudentID).
resides(Dept, AID).

Table 9: The System Scheme File shared with lower layer system

80

public static main(String[} args) {

System.out.println("Date: " + new Date());
System.out.println("Test Case —— Fetch System Schemas™);
// precondition set up \: initialize the translator
LocalTranslator translator = new LocalTranslator();
try {
int updateStatus = translator.initialize();
if(updateStatus==translator.NotUpdated) {
System.out.println("underlying system not ready.");
System.exit(1);

}

}catch(FileNotFoundException e){
System.out.println("Initializing Failure ...");
System.exit(1);

}

// retrieve the system schemas and show results.

try {

Hashtable systems = translator.fetchSystem();

catch(

int count = O;
for(Enumeration e=systems.keys(); keys.hasMoreElements();){
count++;
String name = (String)keys.nextElement();
String[] fields = (String[])systems.get(name);
System.out.println("Scheme " + count + " : " +name);
int k = 0;
for(int k = O; k<fields.length; k++){
if(k == fields.length—1){
System.out.print(" " +fields[j] + "\n");
lelse{
System.out.print(" " + fields[j] +",");

) }

}

if(count==0){
System.out.println("No existing system schemas available.");
System.out.exit(1);

}elsef
System.out.println("There are together " + count + " system schemas.");

}
}

Figure 29: Test Object for Fetch System Schemes

81

lice.l_zou % java TestOneSystem
Date: Thu Dec 12 20:10:34 EST 2002

Test Case —— Fetch System Schemas
Scheme 1 : person
ID,Name

Scheme 2 : staff
ID,Salary

Scheme 3 : student

1D

Scheme 4 : tutor

1D

Scheme 5 : visiting_staff
1D

Scheme 6 : dept
No,Name

Scheme 7 : course

Code, Title,Credit
Scheme 8 : address

AID, Street, District,City
Scheme 9 : works_in
ID,AID

Scheme 10 : teaches
ID,Dept

Scheme 11 : majors_in
ID,Course

Scheme 12 : takes
ID,Dept

Scheme 13 : run_by
ID,Course

Scheme 14 : prerequisites
Course,Dept

Scheme 15 : assessment
Course,PreCourse
Scheme 16 : lives_in
Course, assName,Percent
Scheme 17 : first_supervisor
StaffID,StudentID
Scheme 18 : second_supervisor

StaffID,StudentID
Scheme 19 : resides
Dept,AID

There are together 19 System Schemas.

Figure 30: Test case result of Fetch System Schemes

82

4.4 Increment Two Process

This section illustrates how Increment Two integrates the core functions into the
translation system. Still the waterfall method is used to go through the process of
analysis, design, implementation, and test of these functions. Besides the joining of
new contents, updates are made to the deliverables of Increment One to meet new
requirements. However, the modifications to the existing desing and implementation
only limit increasing class attributes and methods, but no associations between classes
are altered.

Increment Two focuses on how to record queries, transform queries to CORAL

programs, and make use of CORAL system to execute the programs,

4.4.1 Increment Two — Analysis

This section analyzes the requirements for retrieving query results through the trans-
lation system. The deliverables of Increment One support the analysis in Increment
Two by having a similar process, from receiving the user requests to transforming
into executable CORAL programs. However, it has to go a step further to complete
a query instead of defining a relation. The generated CORAL program that corre-
sponds to a TGL program needs to be submitted to the underlying CORAL system
through runtime environment and get executed. Furthermore, the execution results
of the CORAL programs need to be checked and transformed into TGL programs.

At last, the transformed results will be sent back to the upper layer system.

4.4.1.1 Use Cases refinement

This part refines use cases in Increment Two.

83

Use case queryEntityReferingToOnlySystemSchemas

Scenario 1 The upper layer system submits the TGL programs
that query one or many entity relations to the translation
system. The translation system parse the program and
generate corresponding CORAL programs. Then it invokes
the CORAL system through the enclosed operating system.
Then after the CORAL system executing the programs,
the translation system collects the results and transformed
them into TGL program and inform the upper layer system.

Pre-condition The translation system is ready, and the CORAL system is
reachable through the runtime environment. v

Post-condition a set of TGL programs corresponds to the CORAL execution
results.

Exception The CORAL system is not available. I/O exceptions during
reading and writing files. The translation process halted
because of the illegalities of the TGL program.

Use case queryEdgeReferingOnly ToSystemSchemas

Scenario After taking over TGL programs for querying about edge
relation(relations), the translation system analyzes them
and generates CORAL programs accordingly. Then it connects
to the CORAL system and requires the execution. With the
execution results, it translates them into the format that
the upper layer system can recognize, then transfers them
back.

Pre-condition ~TGL programs including the information of the distinguished
edge(edges) and its context.

Post-condition Query results for the distinguished edge(s) in the format of
TGL programs.

Exception TGL programs are not acceptable. Input/Output problems caused

by environment. CORAL system is unavailable.

84

Use case

Scenario

Pre-condition
Post-condition
Exception

Use case

Scenario

Pre-condition

Post-condition

Exception

queryBlobReferingToOnlySystemSchemas

With the TGL program that aims to find pairs of container

node and contained nodes, the translation system checks its
syntax and translates the semantics. The newly generated CORAL
programs are executed by the CORAL system after successful
connections. Then the translation system takes back the results,
and transforms them in the unit of blob instances. Last the
regenerated results are sent back to the upper layer system.

legal TGL query programs that emphasize on searching instances
of existing blob(s).

Blob instances found in the format of TGL programs.

The blob to query does not exists. TGL programs has logical errors.
queryEntityReferingToUserDefined

In the TGL program that user submitted, entity relation

results are interested. Moreover, user defined relation(s)

are in the context to support the query. So besides the normal
translation, it needs to find all related user defined relations
recursively. And before executing the programs through the
CORAL system, it should consult all these relations. Then it
translates the execution results into TGL programs.

Legal TGL programs, accessible run-time data structures of

user defined relations and their direct supporters.

instances of interested entity relation(s) retrieved and

in the format of TGL programs.

No accessible information of user defined relations and

their supporters. The user-defined relation referred to

has no corresponding CORAL programs defined.

85

Use case

Scenario

Pre-condition

Post-condition

Exception

Use case

Scenario

Pre-condition

Post-condition

Exception

queryEdgeReferingToUserDefined

The upper layer system transfers a TGL program that
interests the instances of edge relation based on

user-defined relations. The translation system collects

all the direct and indirect user-defined relations besides
translation. Then it first consults these user-defined

relations before consults generated CORAL programs.

Last, the translation system transformed the received

CORAL execution results into TGL programs and informs

the upper layer system.

Legal TGL programs, information of user defined relations and
their direct supporters.

Results in the format of TGL program that corresponds to

the CORAL execution results.

The user-define relations referenced has no information

either for the translation system or for the CORAL system.
queryBlobReferingToUserDefined

TGL programs that aim to find instances of interested blob(s)
are handed over to the translation system. Along with the generation
of the CORAL programs, the translation system also search all
the direct or indirect user-defined relations. Then before
executing the CORAL programs generated, it consults all the
referred user-define relations in the order of their dependencies.
At last, it receives the results and makes translation again
before sending back to the upper layer system.

TGL programs including highlighted blobs to be queried

and names of referred user-defined relations.

A set of blob instances the met the query pattern.

No useful user-defined relation information.

4.4.1.2 Analysis Class Diagram

The class diagram shown in Figure 31 is based on the use cases in Increment Two.

Two more classes are added and referred by XENGINE: XSHOWGRAPHLOG and

86

XScheme

File scheme
XGraphlogParser

Hashtable schemas

2 1
LocalTranslator
1 1 ,

1
LocalTranslator singleton XEngine

XDefineCodeGenerator

*

1
1 *| XDefineGraphlog

] 1‘ |
|
]

—
—

RemoteTranslator

XNod XEdge Xblob
* * ¥
1 | XShowGraphlog

1 1 XShowCodeGenerator
1
1
! 1
XResultParser CoralCommutor

Figure 31: The Analysis Class Diagram of Increment Two

XSHOWCODEGENERATOR.
Note that the naming convention for the classes in engine package are prefixed
with the character ‘X’, this is used to differentiate from classes with similar names in

other packages.

4.4.2 Increment Two — Design
4.4.2.1 Conceptual Structure of Increment Two

At this stage the structure for use cases in Increment Two is augmented based on
that of Increment One and shown in Figure 32. In the next increment, the structure

will still be augmented.

87

GUIScreen

responses

define new relations

engine

coralBridge

utilizes

Figure 32: The conceptual structure at stage of Increment Two

4.4.2.2 TUpdated Inner Class XRuntime

In Increment two, a new class XSHOWGRAPHLOG is introduced to deal with the
showGraphlogs. And showGraphlogs have great similarity with defineGraphlogs in
terms of refining run-time data structures. unlike defineGraphlogs, showGraphlogs
deal with the utilizing of included user-defined predicates. DefineGraphlogs simply
register the included. But showGraphlogs must list all referred user-defined predi-
cates, including those indirectly refereed predicates. So the run-time refinement for
showGraphlogs involves refining the corresponding data structure as well.

Therefore, the inner class XRUNTIME, which is responsible for refining data struc-
tures of XGRAPHLOG, is updated as Figure 33 illustrates. The newly added methods

are in bold face.

4.4.2.3 Transforming showGraphlogs to CORAL Programs

There are similarities between transforming defineGraphlogs and transforming show-
Graphlogs. Nonetheless, the differences do exist.

First, a showGraphlog may own a bunch of distinguished elements while a define-
Graphlog can only have one distinguished element, whatever i‘t is, a node, an edge,

or a blob. So , for a showGraphlog, all the distinguished elements need to be checked

88

<<Inner Class>>

XRuntime

- Hashtable userScheme;

+ XRuntime(Hashtable scheme)

+ void refineNodes(Hashtable systemScheme)

+ void refineEdges(Hashtable systemScheme)

+ void refineBlobs()

+ Vector refineIlnclndedForShow()

- Vector findDecendants(String dependentee)

- Vector combineWithoutRepeat(Vector v1, Vector v2)

- int findMaxGeneration(String dependentee)

Figure 33: Updated Inner Class XRuntime

carefully to locate all interested query objectives instead of just one for a define-
Graphlog. Since the purpose is to find the possible values for the objectives, a single
predicate could be employed to encompass as attributes all the interest objectives.

Second, because a showGraphlog aims at finding the result, the predicate it defines
is simply an intermediate product. Thus, unlike a defineGraphlog, a showGraphlog
does not keep the newly declared predicate permanent, and the predicate is discarded
after usage.

Third, the interested objectives lose the connection with their origins, the nodes,
edges, and blobs when they are simply dug out. This does not influence retrieving
results at all since the context is also woven into the CORAL program as rule bodies.
However, when the query results come out, the objectives with many values suddenly
find they are orphans, at least they can not find any clue of their own family, the
nodes, edges, and blobs. Furthermore, They are not in a format that is acceptable
for the upper layer system who is expecting them. The solution to this dilemma is
that along with the process of picking the objectives, the code generator also records
their origins and the roles they play in the origins. Later, with this data structure,
the query results derived from the CORAL system can be reorganized into the TGL
programs understood by the client.

4.4.2.4 Accessing CORAL System in Background

ShowGraphlogs declare the query patterns to retrieve query results. And processing

queries needs the assistance of the CORAL System.

89

{ Translation System } S >(Coral System J

Runtime

Host

. Operating
Java Virtual System
Machine
Java
Interpreter

Figure 34: Accessing CORAL System

For a particular showGraphlog, not only the transformed CORAL program, but
the set of user-defined relations that are referred by the showGraphlog are consulted
in advance to attain the results. Although CORAL System encourages interacting
mode of queries for users, it allows background execution, too. There are two key
points about the execution of generated CORAL programs from a showGraphlog:
messaging CORAL system and executing CORAL program in background.

Java Runtime Environment and Messaging CORAL System To send mes-
sages CORAL System is in fact the problem of calling CORAL system through Java
programs under the support of the underlying platform. The environment where the
translation system sits has determined influence to the solution of the problem.

The translation system resides at the UNIX platform [18] with the support of
UNIX version CORAL system. But the translation system can not see the CORAL
system although both of them live in the runtime environment of UNIX system. There
has to be a way to let the translation system to first access the runtime environment
and then to talk to the CORAL system. A RUNTIME object of the Java environment is
employed as the bridge. The RUNTIME object allows the application to send messages

to the system resources directly. The process is illustrated in Figure 34.

90

The oval labelled Runtime in the diagram represents the current runtime envi-
ronment and is an instance of the Runtime class. The current runtime environment
could be an implementation of the Java virtual machine and an interpreter running
on host operating system, or an implementation of the virtual machine together with
an interpreter on a particular operating system.

RUNTIME objects provide two services [23]. First, they communicate with the
components of the runtime environment—getting information and invoking functions.
Second, RUNTIME objects are also the interface to system-dependent capabilities. For
example, UNIX Runtime objects might support the getenv and setenv functions.

Nonetheless, accessing directly to the system resources through a RUNTIME object
does have a disadvantage: it comprises the ability of system-independence because the
Runtime class is tightly integrated with the implementation of the Java interpreter,
the Java virtual machine, and the host operating system. So the translation system

is system-dependent at this point.

Execute CORAL programs at backend Since the translation system can sum-
mon the underlying UNIX operating system, the CORAL system can be called in
turn using the command “coral” to enter into the interaction mode to execute queries.
However, the interaction mode requires manual involvement, which is inflexible and
impractical for the translation stem.

CORAL system does provide a way to execute programs at the backend [6]. The
format of the command is: coral < inputFileName > outputFileName; . Here
the keyword coral is the UNIX command to run the CORAL system. The symbols
“ <’ and ¢ >’ introduce an input file and an output file respectively. Last, the semi-
colon marks the end of this command. The inputFileName and outputFileName are
provided by users. In the input file, the CORAL commands for processing queries
are listed; and in the output file, the CORAL system feeds back the results into it.
An example of output file is listed in Figure 35.

To execute a list of the commands at the backend, the user lists them in an
executable file. The execution of the file will run the commands sequentially. Another
line, #!bin/bash, must exist at the very top of the file because the commands conforms

to the bash script language.

91

This is Coral Version 1.5.2

Welcome to CORAL.

All commands MUST end with a period .
Type help. to access help information.

ready>>ready>>1D=4881177.

... next answer ? (y/n/all)[y]ID=4125785.

... next answer ? (y/n/all)[y](Number of Answers = 2)
ready>>

Figure 35: An example of CORAL Backend Output

Organizing the Access Class CORALCOMMUTOR is the coordinator of the whole
process of accessing UNIX operating system, communicating with CORAL, executing
CORAL programs, and messaging back the execution results. It and the executable
file executeCORAL, the input file inputFile.tzt, and the output file outFile.txt all be-
long to the package of communicateCORAL. They collaborate together with XShow-
Graphlog to accomplish the process. And the relationship is demonstrated in Figure
36

4.4.2.5 Translating CORAL Execution Results to TGL program

Like Figure 35 shows, the results obtained through the CORAL system are listed for
variable attributes of the predicate. And these are bound values from derived facts
for the predicate. However, the upper layer system is not able to understand them

and feeds them back to the human users. So another circle of translation is required.

STRINGTOKENIZER Class No new tokenizer class is designed for scanning the result
file, the STRINGTOKENIZER class in Java class libraries has enough functions to
accomplish the job.

Another BUFFEREDREADER class of Java class libraries aids in the scanning pro-
cess. A BUFFEREDREADER object swallows the whole result file, but spits it out line
by line. A STRINGTOKENIZER object is then fed with selected lines that includes
the answers, but not decorations. For each line, the STRINGTOKENIZER object strips

out CORAL prompt and explanation. Then it breaks the rest to variable and value

92

coralBridge

XShowCodeGenerator CoralCommutor

inputFile. txt outFile.txt

<<executable>>

executeCoral

Figure 36: Collaborating to Access the CORAL System

pairs.

XRESULTPARSER Organizing Translation Unlike the XPARSERS in Increment
One, which are responsible for recognizing TGL patterns and building run-time data
structure. The XRESULTPARSER class takes care of the whole process of translating
the result file.

It takes the above-mentioned BUFFEREDREADER object and STRINGTOKENIZER
object as its members to accomplish the scanning job. And it creates the final re-
sult file for the upper layer system with the help of two HASHTABLE objects. First,
an XRESULTPARSER object is constructed by receiving the file to be translated. In
turn, it creates the BUFFEREDREADER object by passing the file continuously. How-
ever, the XRESULTPARSER class differentiates from a general parser that recognizes
patterns after a scanner tokenizing the input stream. Before requiring the STRING-
TOKENIZER to decode, it filters out what the STRINGTOKENIZER should work on.
Next, with the two HASHTABLE, it constructs results according to the result schema

regulated in TGL. The two HASHTABLE objects are essentially two views of the same

93

AChent AXResultParser ABufferedReader AStringTokenizer AHashtable AnotherHashtable

XResultParser(outFile)
BufferedReader(outFi
finalResult
create()
StringTokenizer(aLine, "=,")
nextTpken()
get(FieldName)
nextToken()
getltype)
putitype, info)
keys()
tecord()

Figure 37: The Sequence Diagram for Parsing Result

data. One HASHTABLE object is built up in a XSHOWCODEGENERATOR. It has the
variables to be queried as index, and lists the associated distinguished nodes, edges,
or blobs and the roles played of variables. The other HASHTABLE object sees the
data of the first Hashtable object in the unit of node, edge, and blob. The second
HASHTABLE object collects all its indices while dealing with first line answers. And
the remaining lines share the HASHTABLE object structure and change the contents
for keys. After toknenizing each line, a unit answer is formed in terms of result
schema and output to the final result file. The sequence diagram shown in Figure 37
illustrates the collaboration.

The design delivery of Increment Two is illustrated in Figure 38.

94

engine

XDefineCodeGenerator
XScheme
— —— XNode
File scheme
N
Hashtable schemas XDefineGraphlog
) XEdge
XGraphlogParser
XShowGraphlog

N__| Xblob
— Vector distinguishParts -
— String showGraphlogID
+ XShowGraphlog()

| ___{ + void runtimeRefine(Hashtable, Hashtable)

XEngine + void addDistinguish(String s)
+ Vector getDistinguishParts() XResultParser
XShowCodeGenerator ~ BufferedReader br
- StringTokenizer st
— Vector distinguishParts — Hashtable resultRebuild
— String f}leName § + XResultParser(File fileout)
- Vector includedPFiles + void parse(XTokenizer xt)
— Hashtable resultStructure + String createXMLFile(Hashtable, String)
- XResultParser xRP
~ String outFileName
~ String resultFileName
+ XShowCodeGenerator(XShowGraphlog)
+ String generateCode()
+ void callUnix()
- boolean isVariable(String s)
coralBridge
screenGUI
CoralCommutor
LocalTranslator .
RemoteTranslator - String executeCommand
. — String outputFileName
LocalTranslator singleton — String inputFileName
+ CoralCommutor()

+ void executePrograms()

Figure 38: The design class diagram of Increment Two

95

4.4.3 Increment Two — Implementation

4.4.3.1 Finding All Used User-Defined Relations of ShowGraphlogs and
Recursive Method

This part also constitutes the implementation of newly designed methods of inner
class XRuntime in increment two.

For a showGraphlog, a list of user-defined relations may be referred to. The
definition of such a relation, say A, may rely on not only system schemes but also
other user-defined relations, say B, C, etc. In turn, the B and C may still depend on
other user-defined relations.

CORAL system requires that the definition of a predicate should be provided
before it is utilized. So all recursive used definitions should be listed before those of
included user-defined predicates. Consequently, for a showGraphlog, besides other
runtime refinement, it needs to look up and reorganize the information of all actually
used user-defined schemes, which are a superset of the included files listed in the
corresponding TGL program.

Two steps are involved in the solution. First, it must find both directly and
indirectly referred user-definition shemes. The implementation makes use of recursive
methods. For each listed included user-defines relation A in the TGL program for a
showgraphlog, it must record its utilized user-defined relations, which is a set T. In
turn, for each relation in the set T, the process continues and new records are collected
without repetition. The process ends when no more new user-defined relations can
be found. The code segments are listed in Figure 39 and Figure 40. The end point of
the recursive method exists because the dependency relationships among user-defined
predicates are acyclic. It could be proved because it is impossible that A’s definition
uses B’s definition , and at the same time, B’s definition depends on A’s definition.
Notice that the method combine WithoutRepeat is a utility to ensure that the definition
of a single user-defined predicate is not added twice in the execution.

Second, it must satisfy the constraint that the definitions of predicates that are
depended on always stands before those of its dependents.

A fact exists that if two predicates have the same number of descendant genera-
tions, it is not possible that one could depend on the other. The Number of Decendant
Generation is defined as follows: If the definition of an ancestor relies on the defini-

tions of some other predicates, which are called the next generation of the ancestor,

96

Vector findDecendants(String dependentee){

Vector decendants = new Vector();
Vector nextGeneration = (Vector)userScheme.get(dependentee);
if(nextGeneration == null){ // no next generation
decendants.add(dependentec);
Jelse{
for(Enumeration e = nextGeneration.elements(); e.hasMoreElements();){
String aDependant = (String)e.NextElement();
Vector aGeneration = findDecendants(aDependant);
combineWithoutRepeat(decendants, aGeneration);
}
if(!decendants.contains(dependentee))
decendants.add(dependentee);

return decendants;
1

Figure 39: Implementation of Recursively Recording Related User-defined Relations

Vector combineWithoutRepeat(Vector v1, Vector v2){

if(vl==null && v2 == null)
return null;
if(vl == null)
return v2;
1f(v2 == null)
return vl;
Vector combination = new Vector();
combination.addAll(v1);
for(Enumeration € = v2.elements(); e.hasMoreElements();){
Object anElement = e.nextElement();
if('combination.contains(anElement)){
combination.add(anElement);
}
}

return combination;

}

Figure 40: Implementation of Combining Collection without Repetition

97

int findMaxGenerations(String dependentee){
Vector nextGeneration = (Vector)(userScheme.get(dependentee));
if(nextGeneration == null){
return (;
Jelse{
int max =0;
for(Enumeration e = nextGeneration.elements(); e.hasMoreElements();){
String aDependentee = (String)e.nextElement();
int generations = findMaxGeneration(aDependentee);
if(max<generations)
max = generations;

}

return max;

}

Figure 41: Implementation of Calculating Number of Generation

but none of the next generation defines referred to any user-defined relations, then the
ancestor has one descendant generation. And its descendants are all leaves. However,
if any descendants of the ancestor also has their own descendants, then the number
of generations of the ancestor is one plus the maximum number of generations of its
dependants.

The fact can be proved. First, we assume the fact does not stand. Thus we suppose
predicates A and B have same number of generations N, but A is the ancestor of B.
The conflict can be derived as such: since A is the ancestor of B, then according to
the above definition for The Number of Decendant generation, at least, the number of
descendant generation of A is one plus that of the B, that is, N +1. As a consequence,
the conclusion disagrees with the assumption of A’s number of generation being N. So
our assumption can not hold, and the fact is true.Based on the fact, we could ensure
any ancestor is listed before its descendants by the following strategy: compute all
the number of generations for all derived user-defined schemas in the first step. Then
list the derived schemes according to their number of generations, with the order from
the lowest to the highest. The code for the calculation of the number of generations
is in Figure 41.Note that he data structure hashtable is employed to keep the records
of relations given a number of generations. The corresponding implementation code

for the whole procedure is in the Figure 42.

98

Vector recursivelnclus = null;

int maxLevel = 0;

for(Enumeration e = includedPFiles.elements(); e.hasMoreElements();){
String aPFile = (String)e.nextElement();
Vector aFamily = findDecendants(aPFile);
combineWithoutRepeat(recursivelnclus, aFamily);

)
Hashtable pFilesWithLevel = new hashtable();

for(Enumeration e = recursivelnclus.elements(); e.hasMoreElements();){

String aPFlie = (String)e.nextElement();
int levels = findMaxGenerations(aPFile);
if(maxLevel < levels)
maxLevel = levels;
Vector pFilesAtSameLevel = (Vector)(pFilesWithLevel.get(Integer.toString(levels)));
if(pFilesAtSameLevel == null){
pFilesAtSamel evel = new Vector();
pFilesAtSamelevel.add(aPFile);
pFilesWithLevel.put(Integer.toString(levels), pFilesAtSameLevel);
}else{ // the vector for this level has existed.
pFilesAtSameL evel.add(aPFile);
pFilesWithLevel.put(Integer.toString(levels), pFilesAtSameLevel);
}

}
Vector organizedInclus = new Vector();
for(int i =0; i<=maxLevel; i++){
Vector alevel = pFilesWithLevel.get(Integer.toString(i));
if(aLevel != null){
organizedInclus.addAll(aLevel);

Figure 42: Implementation of Listing All Based User Schemes In order

99

Because these procedures serve to refine the runtime data structure of show-
Graphlogs, characteristically they belong to the class XRuntime. So the above im-
plementation is added to the inner class XRUNTIME of XGRAPHLOGPATTERN as

member methods.

4.4.3.2 Messaging CORAL System Using a Runtime Object

As any other Java applications, the translation system has a single instance of class
RUNTIME that allows it to interface with the environment in which it is running.
However, like others, the translation system cannot create its own instance of this
class. The way to obtain its runtime is using the getRuntime method of RUNTIME
class: Runtime aRuntime = Runtime.getRuntime(). Then, with the aRuntime, the

translation system could start the CORAL system.

4.4.4 Increment Two — Test

This part describes the test of the deliverables of Increment Two. The test cases are
designed in accordance with the user cases listed for the current stage and center on
processing queries through the translation system given legal TGL programs.

All the scenarios related to the use cases for Increment Two are tested. Nonethe-
less, only one typical scenario as well as its test results and intermediate products are

explained in detail as follows.

4.4.4.1 The Query Example Graph

In the university data model, the query Return staff members and students in the
computing science department could be expressed as in Figure 43

In the figure, the upper rectangle first defines a relation named dept_people using
a blob. All the underlying schemes used are system schemes. The schemes could be
found in Table 9. The label of blob is dept_people. The container node is an entity
with relation dept. There are two contained nodes for this blob, and they are staff
entity and student entity.

The lower rectangle declares the query for retrieving final results. The query is
based on the newly defined relation dept_people in the upper rectangle. Two kinds of

entities, staff and student, are interested. Note that another attribute of the relation

100

defineGraphlog
@ dept(No)
dept_people
works_in majors_in
® student(ID)
® aff(SID)
showGraphlog . .
o 'Computing Science”
has_Na
o dept(No)

dept_people

@ stwdent(ID
@ sufi(SID))

Figure 43: Drawing of Query “Return Staff Members and Students in the Computing
Science Department”

101

module dept_people.

export. dept_people(ff).
eid002(ID,No) :- majors_in(ID,No).
eid001(SID,No) :- works_in(SID,No).
dept_people (No , SID) :-
eid002(ID,No),

eid001(SID,No).

dept_people (No , ID) -
eid002(ID,No),

eid001(SID,No).

end module.

Table 10: The CORAL Program That Define Relation dept_people

dept is depicted through the edge labeling has_Name. As designed above, it provides
flexibility to describe the Name attribute so the value, “Computing Science”, can be
emphasized. In addition, it gives a visual clue of the relationship between the entity
dept and its attribute Name.

Note that two entity relations, student and staff, are interested because the query
aims to distinguish retrieved instances of them. Otherwise, if the query only want

people in Computing Science department, only one node can be drawn instead of two.

4.4.4.2 Transformed TGL Program

The transformed TGL program that corresponds to the pictures are listed in Figure
44.

4.4.4.3 Generated CORAL Program

The translation system parses this program and generated a user-defined relation

dept_people is shown in Table 10

4.4.4.4 CORAL Execution Results

Figure 45 displays the execution results of the CORAL system.
It is obvious that there are repetitions among the results for a single relation. This

is because of the way the query pattern is expressed.

102

—— Return students taking a course given by Steve Johnson
<graphlog>
<defineGraphlog>
<distinguished-define>
<blob>
<ID>BID001</ID>
<predicate>dept_people</predicate>
<outerNodeID>NIDOO01 </outerNodeID>
<innerNodeID>NID0002</innerNodeID>
<innerNodeID>NID0003</innerNodeID>
</blob>
</distinguished-define>
<content>
<node>
<ID>NID0O001</TD>
<entity>
<name>dept</name>
<field>No</field>
<fentity>
</node>
<node>
<ID>NID00O2</ID>
<entity>
<name>staff</name>
<field>SID</field>
<fentity>
</node>
<node>
<ID>NIDO003</ID>
<entity>
<name>student</name>
<field>ID</field>
<fentity>
</node>
<edge>
<ID>EID00I</D>
<predicate>works_in</predicate>
<fromNodeID>NID(((2</fromNodeID>
<toNodeID>NIDOO01 </toNodeID>
<ledge>
<edge>
<ID>EID002</ID>
<predicate>majors_in</predicate>
<fromNodeID>NID0003</fromNodeID>

|
|
I
b
|
|
|
|
1
!
|
|
|
t
|
|
!
|
|
|
I
t
i
|
i
|
|
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
t
I
t
I
I
1
1
I
|
b
I
|
I
|
i
1
|
I
|
t
i
'
!
1
|
|
|
|
t
I
|
|
|
'
'
|
i
1
|

<<continue>>

<toNodeID>NIDO001</toNodeID>
<ledge>
<lcontent>
</defineGraphlog>
<showGraphlog>
<include>dept_people</include>
<ID>showGraphlogg!5</ID>
<distinguished-show>
<node>
<ID>NIDO001</ID>
<entity>
<name>student</name>
<field>ID</field>
<Jentity>
</node>
<node>
<ID>NIDO002</ID>
<entity>
<name>staff</name>
<field>SID</field>
<entity>
</node>
</distinguished-show>
<content>
<node>
<ID>NIDO003</ID>
<entity>
<name>dept</name>
<field>No</field>
<lentity>
</node>
<node>
<ID>NIDO04<D>
<entity>
<name>"Computing Science"</name>
<Jentity>
</node>
<edge>
<[D>EIDO01</ID>

<<continue>>

<predicate>has_Name</predicate>
<fromNodeID>NID0003</fromNodeD>
<toNodeID>NIDO004</toNodeID>
<ledge>
<blob>
<[D>BIDO0I</ID>
<predicate>dept_people</predicate>
<outerNodeID>NIDO003</outerNodeID>
<innerNodeID>NID0002</innerNodeID>
<inmnerNodeID>NID000] </innerNode[D>
</blob>
</content>
</showGraphlog>
</graphlog>

Figure 44: TGL Program - Return Staff members and students in the Computing

Science Department

103

This is Coral Version 1.5.2

Welcome to CORAL.

All commands MUST end with a period .
Type help. to access help information.

ready>>ready>>ready>>ID=4881177, SID=cs0001.

... next answer ? (y/n/all)[y]ID=4125785, SID=cs0001.
... next answer ? (y/n/all)[y]JID=4881177, SID=css001.
... next answer ? (y/n/all){y]ID=css001, SID=cs0001.

... next answer ? (y/n/all)[y]ID=4881177, SID=cs0002.
... next answer ? (y/n/all)[y]ID=4125785, SID=cs0002.
... next answer ? (y/n/all)[y}ID=css001, SID=cs0002.

... next answer ? (y/n/all)[y]ID=4125785, SID=css001.
... next answer ? (y/n/all)[y]ID=css001, SID=css001.

... next answer ? (y/n/all)[y[ID=4881177, SID=4125785.
... next answer ? (y/n/all)[y]ID=4125785, SID=4125785.
... next answer ? (y/n/all)[y]jID=css001, SID=4125785.
... next answer ? (y/n/all){y](Number of Answers = 12)
ready>>

Figure 45: CORAL Execution Results - Return Staff members and students in the
Computing Science Department

104

4.4.4.5 TGL Program for Results

Figure 46 gives the translated results that would be returned to the upper layer
system.

Each item of answers in the CORAL execution results is translated. And the
variables and their values are associated with the original elements in the graph. In
this particular example, the variables SID and ID that represent the key attributes of
entities staff and student are linked to theirs nodes respectively and the corresponding
attribute positions are indicated too. Notice that the repetition of the instances for
two entities are not eliminated. This is necessary because although in this example no
other variables are interested, it is usual that many variables are involved in a single
answer and judgment for eliminating duplication can not be given arbitrarily. This
is not bad either since when the Graphical User Interface system attempts to assign
values to the blob contained nodes, it can remove duplications from its collection at

ease.

4.5 Increment Three Process

This section focuses on how to integrate TGL logical expressions, negation and aggre-
gation into the translation system and wraps up the whole development. It completes
the analysis, design and implementation of the system and generates the final deliv-

erables.

4.5.1 Increment Three — Analysis

The analysis for Increment Three concentrates on complex translation circumstances.
Besides directly using predicates for labels, TGL logical expressions can be involved to
make more concise and more expressive queries. Additionally, negation and aggrega-
tion are two extended fields for logic querying. This part provides detail descriptions

for these complex query techniques.

105

<showGraphlogReturn ID ="showGraphlogq15">

<result>
<node ID ="NID0002" >
<field pos ="0" >cs0001</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >4881177</field>
</node>
<lresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >cs0001</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >4125785</field>
</node>
<result>
<result>
<node ID ="NID0002" >
<field pos ="0" >css001</field>
</node>
<node ID ="NID000L" >
<field pos ="0" >4881177</field>
</node>
<Jresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >cs0001</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >css001</field>
<mode>
<fresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >cs0002</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >4881177</field>
</node>
<Jresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >cs0002</field>

<< continue>>

</node>
<node ID ="NID0001" >
<field pos ="0" >4125785</field>
</node>
<lresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >cs0002</field>
</node>
<node ID ="NID0O01" >
<field pos ="0" >css001</field>
<node>
<Jresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >css001</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >4125785</field>
</node>
<Jresul>
<result>
<node ID ="NID0002" >
<field pos ="0" >css001</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >css001</field>
<fnode>
<fresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >4125785</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >4881177</field>
</node>
<fresult>
<result>
<node ID ="NID0002" >
<field pos ="0" >4125785</field>
</node>
<node ID ="NID0001" >

<< continue>>

<field pos ="0" >4125785</field>
</node>
<Jresul>
<result>
<node ID ="NID0002" >
<field pos ="0" >4125785</field>
</node>
<node ID ="NID0001" >
<field pos ="0" >css001 </field>
</node>
<fresult>
</showGraphlogReturn>

Figure 46: TGL Program Corresponds to the CORAL Execution Results

106

Use case

Scenario

Pre-condition
Post-condition

Exception

Use case

Scenario

Pre-condition

Post-condition

Exception

processUsingPositive TGLLogicExpressions

In the TGL programs submitted, labels could be either
predicates or positive TGL logical expressions. the

the translation of the expressions that act as labels

need to be combined into the final CORAL programs.

Then the translation system executes the CORAL programs
with the suppport of the CORAL system. In the end, the
transformed results are returned to the upper layer system.
Well-formed TGL logical expressions as labels. Coral system
is ready.

translated results in TGL programs.

TGL logical expressions are illegal according to the TGL.
Input/Output errors.

CORAL system is not accessible.

processInvolvingNegation

The labels in the query patterns that users draw

are involving negation. So the corresponding universe

of discourse involves labels’ environment. The

translation system has to consider this particular

condition during the translation. Then it could

consults generated CORAL programs on the CORAL
system. At the end, it returns translated results

to the upper layer system.

Well-formed TGL logical expressions that involve negations.
The CORAL system is ready.

Results in the format of TGL program that corresponds to
the CORAL execution results.

Negations are not properly defined.

I/0O errors.

107

Use case processUtilizing Aggregation

Scenario In the TGL programs that define new relations, aggregation
is conjuncted with the node labels or predicate attributes.
The translation system should integrate the aggregation
functions into the whole translation. Then with the generated
CORAL programs, it fetch results from the CORAL system.
However, the execution results received from the coal system
have to be translated into TGL programs acceptable by the
upper layer system.

Pre-condition Legal aggregation functions applied to labels.
TGL programs are in good conditions.

Post-condition Well-defined CORAL programs that correspond to the
definition.

Exception The application of aggregation is not appropriate.

4.5.2 Increment Three — Design

Figure 47 illustrates the essential decomposition of the translation system. Thereby,

system components are recognized and the innerconnections among them are identi-
fied.

4.5.2.1 Integrating the Translation of TGL logical Expressions

The translation of the graphlogs essentially includes translating the context of the
query patterns and translating each element in the patterns. An element expressed
using TGL logical expressions complicates the translation. This section focuses on
the translation of these elements and the integration of the translation into those

accomplished in Increment One and Increment Two.

Translation of TGL logical Expressions Basically, the translation of TGL log-
ical Expressions shares the rule of that of Graphlog path expressions, and the Inter-
pretations of the semantics are similar.

As regulated in the Transferable Graph Language, an logical expression follows the
grammar: F «— E | E;E - E;—E;—F; (E); E+; Ex; predicate(attributeList) . The

interpretation of such an expression is fundamentally restating the query objectives

108

GUIScreen

engine package is the core of the
translation system. It embraces the
expression package to empower itself

return result

query L
.
.

engine .

o

expression strengthen

L7 . coralBridge

expression package inter— - R h
interpret wit]
pret TGL logic expressions

Figure 47: Final Conceptual Structure of the Translation System

in the rule head and describing subexpressions and their relationship in the rule
body. The translation follows the steps: scanning an expression, breaking down the
expression to tokens, recognizing the path regular pattern, setting up run-time data
structure by organizing the token information, and last, generating expected code
using the run-time data.

The collaboration of classes that serve together to translate TGL logical expres-

sions is illustrated in Figure 48.

Token States Again the State Design Pattern is applied here. The TOKENIZER
class relies on the token states to determine the type and value of a token, and there

are five token states involved in the process.

1. PredicateState
The PredicateState determine what comprise a predicate. The characters that
are allowed in a predicate are: ‘a’-‘z’, ‘A’ - ‘Z’,‘0’- ‘9’, and ‘_". By convention of
logic programming language, a predicate begins with a lower letter, and numeric

digits are allowable in a predicate. After a PREDICATESTATE object finishes a

109

{abstract}
—> owns Tokenizer Token
TokenState
PushbackReader generates | #TokenType (Tpye
+ Token nextToken() TolfenState[ZS 6] #String sVal()
whm.:spaceState TokenType TT_EOF
prechateState TokenType TT_SYMBOL
predll)c;;teSymbolState TokenType TT_PREDICATE
: symbolstate TokenType TT_PREDICATE_SYMBOL
PredicateSuate . errorStale TokenType TT ERROR
-7, =
int .EOF =255; K oz Tokenizer() Token EOF
] StnngBuffer;_ , ’ Tokenizer(String) Token ERROR
boolean predicateChar[] -9 Token nextToken()
. void setString(String) Token(Tf)kenType, String)
+ PredicateState() boolean isSymbol()
+ Token nextToken() boolean isPredicateSymbol()
pulls from boolean isPredciatﬁ:()
boolean equals(Object)
PredicateSymbolState N .
o as_a
PRI —
boolean pSymbolChar(] O - L, CodeGenerator employs Parser
+ PredicateSymbolState() 0 TokenType
+ Token nextToken()
refers # String name
construct]
N TokenType(String)
WhitespaceState Y,
', ASTNode
intEOF =255, ---"71 »>
boolean whitespaceChar(] \ ’
A\
+ WhitespaceState()
+ Token nextToken()
ErrorState
SymbolState
boolean SymbolCharf]
+ SymbolState()
+ Token nextToken()

Figure 48: Translation TGL logical Expression Class Diagram

110

" token, it transfers control back to the TOKENIZER object. PREDICATESTATE
class utilizes a set of overloaded private methods with name of setPredicateState

to internally legitimate these characters.

2. PredicateSymbolState

The characters, * </,‘ >’,and ¢ =" are admitted by the PredicateSymbolState.
When the TOKENIZER object encounters one of them, it passes the charac-
ter as well as itself to its internal PREDICATESYMBOLSTATE object. Then
the PREDICATESYMBOLSTATE object continues to look up in the input stream
to check whether a legal combination exists instead of just a single symbol.
If a combination is matched, the PREDICATESYMBOLSTATE will return a to-
ken that takes the combination as its value. However, if the token contains
only the character passed to the PREDICATESYMBOLSTATE object, the PRED-
ICATESYMBOLSTATE object has to return back the character looked over to the
input stream. This is accomplished through a PUSHBACKREADER object.

3. SymbolState
A SymbolState recognizes the character set {‘|", ¢/, ‘=, ‘=", %", ‘+', (",)" }
. These characters are the conjunction operators of the TGL logical expressions.
After the TOKENIZER object encounter one of the symbols, it decides the SyMm-
BOLSTATE is responsible for the construction of next token, so it passes the

symbol to its SYMBOLSTATE object.

4. WhiteSpaceState. The whitespace referred here is a sequence of one or more
whitespace characters. The WHITESPACESTATE object collects as many whites-
pace characters as it can at one time and discards them, then it passes back the

control to the Tokenizer object.

5. ErrorState
If a character outside all the characters recognized by above token states ap-
pears, the TGL logical expression runs into error. The ERRORSTATE is respon-
sible for dealing with this kind of problem and it informs the parser that an

error exists.

TOKENIZER Class Driven by the PREDICATEPARSER, The TOKENIZER class

relies on its token states to pull out tokens one by one. The TOKENIZER class could

111

set up its resource input stream when constructing. Another alternative is provided
to promote the reuse of a TOKENIZER object: first constructing an TOKENIZER with
or without specifying reading resource, and later using the method setString(String)

to provide the resource.

PREDICATEPARSER Class The PREDICATEPARSER class is the engine of the
whole translating TGL logical expression process. Figure 49 depicts the class design
of PREDICATEPARSER. At the beginning, the client creates a PREDICATEPARSER
object by sending it the expression to be analyzed and the information of associated
nodes. Then the PREDICATEPARSER object immediately constructs its TOKENIZER
object with the logical expression. After receiving the expression, the TOKENIZER
object spits out TOKEN objects one after another until the end of the expression is
reached through its token states objects. During the process, the PREDICATEPARSER
is monitoring the TOKENIZER object and receiving every TOKEN object it generates.
Along with the receiving, the PREDICATEPARSER object constructs an ASTNODE
object that collects all the tokens in the expression. After the TOKENIZER object
finishes scanning, the PREDICATEPARSER object completes the ASTNODE construc-
tion, too. Then the PREDICATEPARSER object calls a CODEGENERATOR object to
work on the ASTNODE instance and produces a segment of CORAL program ac-
cordingly. The context-free grammar derived for recognizing the tokens is shown in
Figure 50

ASTNoODE Class ASTNode is the abbreviation of Abstract Syntax Tree Node.
An ASTNode is constructed with Token objects by a PREDICATEPARSER OBJECT.
And each ASTNode corresponds to an TGL logical expression. Essentially, every
ASTNode has a root and two branches. The root is a string that represents the
relation of the two branches. Each branch is just another ASTNode. There are three
variations for ASTNode instances. The ASTNode constructions for the examples are

listed in Figure 51

1. An ASTNode having two branches
This kind of ASTNode is constructed for expressions having two operands plus

an infix operator. Giving an example, the ASTNode for expression E1|E2.

2. An ASTNode having only left branch

112

PredicateParser

final static String inverse
final static String not
final static String 1Par

final static String rPar
final static String alter

final static String catenate

final static String plusTran

final static String timesTran

— Tokenizer tokenizer

— Token t

— Stack stack

— ASTNode astNode, leftTree, rightTree
— CodeGenerator codeGenerator

+ PredicateParser()

+ start()

— void parseE(Q)

— void parseExpression()

— void parseTerm()

— void parseFactor()
— void parseEnd()

Figure 49: Class Diagram of PredicateParser

E :=Expression | Expression
E :=Expression.Expression

E := Expression

Expression := Term + Term

Expression := Term * Term

Term := -Factor
Factor :=not End
Factor ;= End
Factor := (E)

Figure 50: The Context-free Grammar for TGL logical Expressions

113

ASTNode for the expression "E1 | E2" ASTNode for the expression "El +" ASTNode for the expression "-E2"

5 G
. 5

An example of an ASTNode with two branches. An example of an ASTNode with left branch. An example of an ASTNode with right branche.

Figure 51: ASTNode Constructions Examples

This kind of ASTNode is constructed for expressions having one operand plus

a suffix operator. An example is the ASTNode for expression E1+.

3. An ASTNode having only right branches
This kind of ASTNode is constructed for expressions having one operand plus

an prefix operator. An example is the ASTNode for expression —FE1.

During the construction of an ASTNODE for a TGL logical expression, its left
branch and right branch are updated continuously. New ASTNODE objects are added
and old ones are updated. Thus, a deep copy, but not a shadow one, of an ASTNODE
is required while transferring forward and backward. Class ASTNODE fulfills the
function by inheriting the interface PUBLICLY CLONABLE. Figure 52 depicts the class
ASTNode.

Producing CORAL Program for TGL logical Expression Class CODE-
GENERATOR is responsible for producing the CORAL program finally for a TGL
logical Expression. However, it has to work on the intermediate ASTNODE gener-
ated by a PREDICATEPARSER object. The design of CODEGENERATOR is shown in
Figure 53

Combining with Context Translation The translation of TGL logical expres-
sion serves as a part of the whole translation. It has to be integrated with the
translation of context accomplished in Increment One and Increment Two. Since the
TGL logical expressions serve as edge or blob labels, the translation of the expressions

should integrate with the translation of the edge or blob. So the job is assigned to

114

{interface}

PubliclyCloneable

T

ASTNode

final static Vector SYMBOLS
static int COUNT

int index

ASTNode left

ASTNode right

String value A
boolean symbollLike

+ ASTNode(String)

+ Object clone()

+ boolean isSymbolLike()
+ void setSymbolLike(boolean b)
+ void setLeft(ASTNode)
+void setRight(ASTNode)
+ ASTNode getLeft()

+ ASTNode getRight()

+ Stirng getValue()

+ int getIndex()

+ int getCount()

+ static void setCount(int i)
+ boolean isEnd()

+ String toString()

Figure 52: Design of Class ASTNode

CodeGenerator

+ final static String PREDICATE_PRE

+ final static String VAR_PRE

+ final static String ASSIGN

— String out

~ String from, to

- String origin

- int plusCount, timesCount, inverseCount
- int catenateCount, alterCount, notcount

+ CodeGenerator(String)

- String[] getVarsFrom(String)
+ String workOn(ASTNode)

void write(String, ASTNode)

Figure 53: Design of Class CodeGenerator

115

XB
XNode XEdge b
) - String eID - Str%ng bID .
- Str%ng nlD - String fromNodeID - Stqng bPred.1cate
— String nodeN'ame _ String toNodeID — String contalperID
— boolean hasFields - String tolnfo — Vector coytzfmed.s
~ boolean hasFrom . . - boolean distinguished
- Vector fields - String pString - boolean defineDistinguished
— boolean withEdgeOrBlob - boc?lean ha.sOrIs — String outerInfor
. ~ String detailBody i
— String expression — boolean distinguished — Vector innerInfor
— boolean distinguished - boolean defineDistinguished — String pExpression
- boolean variableLike - boolean notPredicate
~ boolean aggregates. . - boglean sym.bolPredicate + XBlob()
~ Vector variablePositions — String ePString
<<getter and setter methods >>
+ XNode()
<< getter and setter methods>> + XEdge()
- void createOrReplaceExpression() <<getter and setter methods>>
+ void setFieldAt(String field, int index) + void generateDetail()
+ String toString()

Figure 54: Design of classes XNode, XEdge and XBlob

the corresponding edge or blob. The generateDetail method will take care of this part
of translation. When the XCODEGENERATOR need the definition of the edge or the
blob, it simply origins the edge or blob itself to generate the translation of the TGL

logical expression and retrieves the CORAL program segment.

4.5.2.2 'Translation Involving Aggregation

Aggregate functions can only be used as arguments to define new relations. So if the
label of a node is expressed involving aggregate functions, the translation segment
of the node will not appear as a part of a rule body in the CORAL program. XN-
ODE class is assigned to prevent the illegal listing. Its isAggregate method lets the
CoDEGENERATOR object check whether the label of a node contains an aggregate
function. If it is true, the node is excluded from the constitution of the rule body.
Finally, the XNODE, XEDGE and XBLOB classes are complete. Their class de-

signs are illustrated in Figure 54

116

4.5.3 Increment Three — Implementation
4.5.3.1 Translating TGL logical Expression Label for An Edge

The implementation of the method generateDetail for an edge is listed in Figure 55.

4.5.3.2 Translation Involving Negation

The negation involvement appears in two kinds of circumstances. First, if the pred-
icate that corresponds to the TGL logical expressions is negative. Second, if part of
logical expressions are negative. Dealing with these two circumstances need different

strategies to deal with.

Labels Involving Negation If the TGL logical expression for a label uses the
negation operator —, the translation of the negative part has to be incorporated
into the translation of its level. It is not acceptable to use a temporary predicate
representing the negative part to attend the translation of its level any more.

CODEGENERATOR class is responsible for the proper combination of negative
parts with their level translation. It declares a private boolean method isNotBranch
to check if the current ASTNODE branch being translated is negative. Upon a
negative branch, the CODEGENERATOR object will add the translation of the branch
directly to those of the branch’s siblings.

Negative Labels In cases when not only the labels are constructed using —, but
the final predicates that derived from the labels are negative, the outside context of
the elements that have the labels is the universe of discourse for the negation.

In such cases, the translation of the labels should be listed directly with the trans-
lation of its context instead of just combining its temporary predicate representative
with the context, and defining the negation translation before. Otherwise, it will
cause execution errors and no expected results will be derived. Besides, all the vari-
ables that serve to the negation should be bound before the rule, which involves the
negation, is evaluated.

To attain this goal, the situation should be identified before generating the highest
level translation. The situation is judged through the isNotPredicate method of the
elements. Once the situation is identified, it should be separated from the normal

ones so that later it is dealt with individually. In XDEFINECODEGENERATOR and

117

public void generateDetail(){
// only serve for hasOrlIs field is false
try{
if(hasOrlIs == false){
PredicateParser predicateParser = new PredicateParser(pString,fromlInfo,tolnfo, eID);

detailBody = predicateParser.start();
notPredicate = predicateParser.rootIsNot();
symbolPredicate = predicateParser.isSymbolPredicate();

if(notPredicate){ // not ...
// note the first goal is at the end of detailBody.
int firstGoal = detailBody.lastIndexOf(".");

detailBody = detailBody.substring(0, firstGoal);
firstGoal = detailBody.lastIndexOf(".");

ePString = detailBody.substring(firstGoal+1);
detailBody = detailBody.substring(0, firstGoal+1);

int firstAssign = ePString.indexOf("':—");
ePString = ePString.substring(firstAssign+2).trim();

}else if(symbolPredicate){
int assignPos = detailBody.indexOf(":—");
int goalEnd = detailBody.lastIndexOf(".");
ePString = detailBody.substring(assignPos+2, goalEnd);
System.out.printin("L108 in XEdge, ePString: " + ePString);
}Jelse{ // normal predicate
int pos = pString.indexOf(’(’);
if(pos>0){ //predicate(otherSuffix).
ePString = eID.trim().toLowerCase() + "(" + fromInfo + "," + toInfo + "," +
pString.substring(pos+1);
}else{ // just predicate
ePString = eID.trim().toLowerCase() + "(" + fromInfo + ","” + toInfo + ")";
}

) }

}catch(IOException e){ System.out.printin("IO errors in class XEdge” + €) ;}

}

Figure 55: Implementation of Detail of An Edge

118

XSHOWCODEGENERATOR, classes, a vector pNotString is used to record the appro-
priate CORAL program segments that corresponds to the negative labels. There are
two benefits using this pNotString vector. First, the elements involing negation can
be identified and integrated correctly. Second, it allows for evaluation of positive
predicates in advance so that variables for the negative predicates may bind values

before the evaluation.

4.5.4 Increment Three — Test

The requirements in Increment Three emphasize on utilizing TGL logical expressions
and involving negation and aggregation. The analysis, design and implementation
deliverables in turn are centered on the translation of the logical expressions, negation,
and aggregation and the integration of these parts to those accomplished in Increment
One and Increment Two.

Because the functionality and capabilities of positive TGL logical expressions,
negation, and aggregation vary significantly, test cases are designed and carried on
respectively. In each test case, first, a possible graph to express the query example
is given. Next, the corresponding TGL program is provided for the graph. Then,
generated CORAL programs for the TGL program are listed. And finally, the TGL

program that corresponds to the CORAL execution results are presented.

4.5.4.1 Positive TGL logical Expressions — Return Direct and Indirect

Prerequisite Courses for the “DB4” Course

Graph&TGL Program This is a typical recursive query. Not only the direct
prerequisite courses of the course “DB4” are interested, but those of course “DB4”’s
direct prerequisite courses. In the next turn, more indirect courses will be discovered.
This search will carry on until no more new courses can be found.

The recursive queries are obviously beyond the ability of SQL. But under the
support of our TGL and translation system, the query can be expressed and processed
elegantly. A possible graph query expression and the corresponding TGL program
could be:

This query can be denoted using the TGL logical expression prerequisite-+, which

is composed of by the system schema prerequisite and the suffix TGL logical operator

119

showGraphlog

. IIDB 4"
course(Code)
has_Title

prerequisite+

. course(Code2)

—— Return all direct and indirect prerequisite courses for

~— the "DB4" course.

<graphlog>
<showGraphLog>
<ID>showGraphlogg18</ID>
<distinguished-show>
<node>
<ID>NIDO003</ID>
<enfity>
<name>course</name>
<field>Code2</field>
<lentity>
</node>
</distinguished-show>
<content>
<node>
<ID>NIDO001</ID>
<entity>
<name>course</name>
<field>Codel</field>
<lentity>
</node>
<node>
<ID>NID0002</ID>
<entity>
<name>"DB4"</name>
<lentity>
</node>

|
1
|
1
[
I
]
'
i
i
I
1
1
1
|
|
t
I
|
I
f
i
i
1
|
|
|
1
|
|
|
I
|
|
I
t
i
!
I
1
|
1
|
I
1
|
t
t
i
)
|

— — continue here

<edge>
<ID> EIDO01</ID>
<predicate>has_Title</predicate>
<FromNodeID>NID(001 </FromNodeID>
<ToNodeID>NID0002</ToNodeID>
<ledge>
<edge>
<ID> EID002</ID>
<predicate>prerequisites+</predicate>
<FromNodeID>NID0001 </FromNodeID>
<ToNodeID>NID0003</ToNodeID>
<ledge>
</content>
</showGraphLog>
</graphlog>

Figure 56: Graph&TGL Program for an Query Example Using Positive TGL logical

Expressions

120

module showGraphlogql8.
export showGraphlogq18(f).

pPlusCount1(Codel,Code2) :- prerequisites(Codel,Code2).

eid002(Codel,Code2) :- pPlusCount1(Codel, VAR Plusl),eid002(VAR Plusl,Code2).
eid002(Codel,Code2) :- pPlusCount1(Codel,Code2).

showGraphlogql18(Code2):-

course(Codel,“DB4”),

¢id002(Codel,Code2).

end_module.

?showGraphlogq18(Code2).

Table 11: The Coral Program That Query Using a TGL logical Expression

+ . The semi-built-in predicate has_Title introduces the related course with the title
of “DB4”.

The corresponding TGL program is listed under the graph. The distinguished
node with label “course(Code2)” is enclosed by the open tag and closing tag of
distinguished-show. Other context information are described in the part of content.

It is clear that this query pattern is simple but powerful.

Generated CORAL Program The translation system parses this program and
generates an executable CORAL program(in Table 11)for later use.

TGL Program for Results Through executing the CORAL program in Table 11,
the CORAL system return the answers we expected. Then, the translation system

generates the corresponding TGL program shown in Table 12.

4.5.4.2 Involving Negation — Return Students Taking Only Courses Given
by Steve Johnson

Graph This is a complex query, which can not be expressed without the support of
negation. There are students that take courses taught by staff member Steve Johnson.
They could be divided into two categories: students who take courses not only from
Steve Johnson but also from other staff members, and those who do not takes courses

given by staff members other than Steve Johnson. It is not difficult to find the whole

121

< showGraphlogReturnl D = “showGraphlogql8” >
< result >

< nodelD = “N1D0003” >

< fieldpos = “0” > comp646 < / field >
< [node >

< [result >

< result >

< nodelD = “N1D0003” >

< fieldpos = “07 > comp248 < / field >
< [node >

< [result >

< result >

< nodelD = “N1D0003” >

< fieldpos = “0” > comp218 < / field >
< /node >

< [result >

< /showGraphlogReturn >

Table 12: The Result TGL Program For a Query Using a TGL logical Expression

set. The puzzling task is to separate the first part of students from the whole set.
Negation is used to exclude the unnecessary part from the whole range.

Figure 57 provides a solution. Note that the character reference “�AC;” is
used to represent — in the picture because — can not be input from keyboard. In fact,
Graphical User Interface system could provide a button with — as label to users for
the consistency of representation and transfer to TGL program using the “�AC;”
behind the scene.

The three query patterns represent three steps to process the query. The two
define query patterns support the final show query pattern. First, a relation stu-
dents_by_staff is declared to collect all students that take courses given by a specific
staff member. The second definition, students_not_SJ, is based on the first definition
and underlying system schemes. It is used to search all students that take courses
from staff members whose names are not Steve Johnson. A key, or tricky, thinking
here is that besides the course from other staff members, a student in this set still
may take courses from Steve Johnson. Last, the desirable answers could be obtained
through the show query. It discards all students that take courses from both Steve

Johnson and other staff members from the whole set of students who attend courses

122

defineGraphlog

student(ID)

takes
students_by_staff
teaches
o
course(Code) O staff(SID)
defineGraphlog
@ student(ID)
students_not_SJ | students_by_staff
R b "Steve Johnson”
staff(SID)) %
is_a <
= has_Name
o —>0
person(SID) Namel

showGraphlog
student(ID)

T2, staff(SID1)

students_by_gtaff 7 students_not_SJ

¢ Staff(SID)
is_a

° has_Name o

"Steve Johnson"

person(SID)

Figure 57: Graph for an Query Example Involving Negation

123

module showGraphlogql2.
export showGraphlogq12(f).

pNotCount1(ID,SID1) :- students_not_SJ(ID,SID1).
eid001(ID,SID) :- students_by_staff(ID,SID).
showGraphlogql12(ID):-

person(SID, “Steve Johnson”),

€id001(ID,SID),

not pNotCount1(ID,SID1).

end_module.

7showGraphlogq12(ID).

Table 13: The Coral Program That Query Involving Negation
from Steve Johnson.

Corresponding TGL Programs Only the TGL program for the final show query

pattern provides an idea of how negation is translated and integrated.

TGL Program for Results Through executing the CORAL program in Table 13,
the CORAL system return the answers we expected. Then, the results are translated
into an acceptable TGL program as shown in Table 14.

The results could be judged based on the facts in file uni.F.

4.5.4.3 Involving Aggregation — Return Courses with Less Than Two

Assessments

Graph Since counting is needed, this query has to employ aggregation functions.
A possible solution is depicted in Figure 58.

Note that the aggregation function COUNT is used in the definition of relation
ass_count in the first picture of the figure. In fact the to-node connects to the edge
with label ass_count has COUNT(< Percent >) as its label. Later the newly defined

relation is the base of the final query.

Corresponding TGL Programs The TGL program that corresponds to the def-

inition of ass_count is shown in Table 15.

124

< showGraphlogReturnI D = “showGraphlogql2” >
< result >

< nodel D = “N1D0001” >

< fieldpos = “0” > 3345167 < /field >
< /node >

< [result >

< result >

< nodel D = “N1D0001” >

< fieldpos = “0” > 3788947 < / field >
< [node >

< [result >

< /showGraphlogReturn >

Table 14: The TGL Program for Results of the Query Involving Negation

defineGraphlog
course(Code)
assessment(Percent)

ass_count

®

Assess_name @ COUNT(<Percent>)
showGraphlog
course(Code)
ass_count
<
e

Count o2

Figure 58: Graph for an Query Example Involving Aggregation

125

module ass_count.

export ass_count(ff).
eid002(Code,Assess_name,Percent) :-
assessment(Code,Assess_name,Percent).
ass.ount(Code, count(< Percent >)) : —
eid002(Code,Assess_name,Percent).
end_module.

Table 15: The Coral Program That Query Involving Aggregation

< showGraphlogReturnI D = “showGraphlogq21” >
< result >

< nodelD = “NI1D0001” >

< fieldpos = “0” > comp248 < / field >

< /node >

< [result >

< [showGraphlogReturn >

Table 16: The TGL Program for Results of the Query Involving Aggregation

TGL Program for Results Based on the newly defined relation using the CORAL
program shown in Table 16, the final query results received from the CORAL system
is translated as follows:

In effect, only one course that has the key of “comp248“ meet the requirements.

126

Chapter 5
Conclusion

This thesis is rooted in the research requirements of biological scientists. First, the
biological information is potentially very large and the structures of the information
are significantly complex. So efficiency in organizing and processing these data is
crucial for biological science. The CORAL system provides efficient support in the

following two aspects:

1. CORAL allows users to create new abstract data types and integrate them
with its query language. Thus, high-level types and corresponding methods
such as matching and indexing for biological data can be defined. It avoids the
inefficiency of using low level data types like list to simulating the biological
data.

2. CORAL possesses the features of efficient treatment of large relations, aggregate
functions, declarative semantics, powerful inference capabilities, and support of

incomplete and structured data.

Second, the biological scientists expect an user interface to be as much user-friendly
as possible to analyze the biological information. So far, a graphical user interface
is the best choice. Although CORAL is useful and expressive, users have to write
its programs and use a command-line query interface, which is quite impractical for
biological projects.

Therefore, we want to implement a diagrammatic query system to support bio-
logical projects. Graphlog and Hy+ system present a useful and practical idea for
diagrammatic query system based on the CORAL system. However, the implemen-

tation of Hy+ system is in Smalltalk, which limits the extension and reusability of

127

the system.

Our project borrows ideas from Graphlog and Hy+ system to support diagram-
matic queries. But the application will be implemented in the Java language for the
purpose of having extensibility, reusability and portability.

The application has three main parts: GUI system, a translation system, and
backend database support. This thesis designs and implements the translation sys-
tem. Also it proposes a textual language(Transferable Graph Language) used to
record and transfer the graph queries composed by the end user in the GUI system.
The Transferable Graph Language also regulates the format for the results sending
back to the GUI system.

The main contribution of the thesis is as follows:

e It supports recursive queries, complex terms, negation, aggregation, and com-

plex logic expressions.

e Tt extends the Graphlog by allowing a family of built-in predicates. The “is_a”
and “has_XXX” predicates are user-friendly.

e It defines the transferable textual language, Tranferable Graph Language, which
regulates the restatement of the query composition diagrams. The language is
used to collect the information in the diagrams that contains the query expres-
sions. In effect, this language itself could be used to compose queries since it has
well-formed programming formats that are friendly to human beings. The more
important feature is that the programs written in the language can be trans-
fered across distributed computer systems, thereby increase the reusability and

performance.

e Tt designs and implements a platform-independent translation system that is the
middle layer of our diagrammatic query system. Further, the realization process
conforms to Object-Oriented technologies and the implementation language is
the Java programming language. As a consequence, the translation system has
high reusability and good maintainability so that it could be planted into an
internet or intranet application to support a graph query environment without

changes.

e It tests the translation system and the Transferable Graph Language based on a

university data model because this domain is more familiar to most users. Thus

128

the explanation of the query expressions and results are more understandable,
and readers will not balk because of the sophisticated domain knowledge. The
queries are taken in whole from the thesis “Evaluating Object-Oriented Query
languages” [10]. Originally, these queries are designed and evaluated against
the key features and functions of object-oriented query languages. In effect,
the construction of these queries requires not only all the functions of a typical
relational database query language, but those specific to object-oriented query
language. So the successful composition of these queries using the Transferable
Graph Language also proves that TGL has sufficient features to act as a query

language.

The thesis is limited in the following ways: First, the thesis tests the translation
system and the Transferable Graph Language using university data model instead of
bioinformatics data model. Second, the current implementation supports only single
PC mode execution although it leaves the interface to support network collaboration.
Third, the GUI system and back-end database support are not finished yet, so the
interface between the translation system and the two layers may require further test
and adjustment.

Therefore, in the future, we can make the following improvements: first, we could
design a typical biological data model to test the translation system. Especially, we
could make use of the optimization mechanism of the CORAL system to improve the
performance and increase the efficiency. Second, later the flesh-out and customization
of REMOTETRANSLATOR will support queries through internet. Third, we need to

test the application as a whole to adjust the interface between them.

129

Bibliography

[1]

Greg Butler, Erich Bornberg-Bauer, Gosta Grahne, Franz Kurfess, Clement Lam,
Joey Paquet, Isabel Rojas, Rajjan Shinghal, Lixin Tao, Adrian Tsang, The BiolT
Projects: Internet, Database and Software Technology Applied to Bioinformatics,
International conference on advances in infrastructure for electronic business,

science and education on the internet, 2000.
Jean B. Rogers, A Prolog primer, Addison-Wesley, 1986.

Mariano P. Consens, Alberto O.Mendelzon, and Dimitra Vista, Deductive
Database Support for Data Visualization, Proceedings of the 4th International
Conference on Extending Database Technology, pages 45 — 58, 1994.

Mariano P. Consens, Frank Ch. Eigler, Masum Z. Hasan, Architecture and Ap-
plications of the Hy+ Visualization System, IBM Systems J.,33(3): 458 — 476,
1994.

Mariano P. Consens, Frank Ch.Eigler, Sergio R. Faria, Hy+ User’s Manual,
University of Toronto, 1993.

Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, Praveen Seshadri, The

CORAL Deductive System, The VLDB Journal, 3:161 — 210, 1994.

Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, CORAL — Control,
Relations and Logic, Proceedings of the 18th VLDB Conference, pp. 238 — 250,
1992.

130

[8] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software, Addison Welsley, 1997.

[9] Steven John Metsker, Building Parsers with Java, Addison Welsley, 2001.

[10] Daniel K.C. Chan, Philip W. Trinder, Raymond C. Welland, Evaluating Object-
Oriented Query Languages, The Computer Journal, Vol.37, No.10, pp. 858 — 872,
1994.

[11] Shel Siegel, Object-Oriented Software Testing — A Hierachical Approach, John
Wiley, 1996.

[12] Norman Desmarais, The ABCs of XML — The Librarian’s Guide to the eXten-
sible Markup Language, New Technology Press, 2000.

[13] David A. Watt, Deryck F Brown, Programming Language Processors in Java,
Prentice Hall PTR, 1999.

[14] Matanya Pitts, XML in Record Time, San Francisco : Sybex, 1999.
[15] McLaughlin Brett, Java& XML, Sebastopol, CA : Cambridge, 2001.

[16] Len Bass, Paul Clements, Rich Kazman, Software Architecture in Practice, Ad-
dison Welsley, 2001.

[17] Bruce Eckel, Thinking in Java, Prentice Hall, 2000.

[18] Dennis de Champeaux, Douglas Lea, Penelope Faure, Object-Oriented System
Development, Addison-Wesley, 1993.

[19] Jess Garms, Daniel Somerfield, Professional Java Security, Birmingham, UK :

Wrox Press, 2001.
[20] Darren Govori, Java Application Frameworks, New York : Wiley, 1999.

[21] Kafura Dennis, Object-Oriented Software Design and Construction with Java,
Prentice Hall, 2000.

131

[22] Rowlett Tom, The Object-Oriented Development Process:Developing and man-
aging a robust process for Object-Oriented Development, Prentice Hall, 2001.

[23] Russel Winder, Graham Roberts, Developing Java Software, Worldwide Series

in Computer Science, 2000.

[24] XiaoPing Jia, Object-Oriented Software Development Using Java, Addison Wel-
sley, 2000.

132

Appendix A

University Data Model System

Schemes and Example Facts

Appendix A shows the underlying system schemes for the university data model.
It also includes the records of the tables(or facts) for the purpose of testing and
processing example queries.

Table 17 presents the underlying system schemes.

Below is the list of the sample records used to retrieve query results and test.

person(cs0001, "William Atwood").
person(cs0002, "Esmail Nabil").
person(ce0001, "Bird Herry").
person(css001, "Burger Losa").
person(cel005, "Lee Joey").
person(4881177, "Steve Johnson").
person(3345167, "Dini Sabin").
person(3511786, "Grogono Gosta").
person(3788947, "Lui Lixin").
person (4125785, "Li Joey").
person{(cs0003, "Steve Johnson").
person(cs0004, "Bob Campbell").

staff (cs0001, 2500).
staff (cs0002, 1800).

133

person(ID, Name).

staff(ID,Salary).

student(ID).

tutor(ID).

visiting_staff(ID).

dept(No, Name).

course(Code, Title, Credit).
address(AID, Street, District, City).
works_in(ID, Dept).

teaches(ID, Course).

majors_in(ID, Dept).
takes(ID,Course).
run_by(Course,Dept).
prerequisites(Course,PreCourse).
assessment(Course,assName,Percent).
lives_in(ID, AID).
first_supervisor(StaffID, StudentID).
second_supervisor(StaffID, StudentID).
resides(Dept, AID).

Table 17: The Underlying System Scheme for the Univesity Data Model

134

staff (ce0001, 4801).
staff(css001, 3400).
staff(cel005, 1685).
staff (4125785,3400) .
staff (cs0003,2300) .

student (4881177) .
student (3345167) .
student (3511786) .
student (3788947) .
student (4125785) .
student (css001) .

tutor(css001).
tutor(4125785) .

visiting_staff (cel005).
visiting_staff (cs0001).

dept(cs, "Computing Science").
dept (gm, "John molson business").
dept (artG, "Art Gallery").
dept(edu, "Education").

dept(eg, "Engineering").

course(comp218, "Fundamentals of C++ Programming”, 3).
course (comp248, "Introduction to Programming",3).
course(coen60, "Software Regular ",4).

course(comp651, "DB4", 4).

course (comp646, "Computer Networks and Protocols", 4).

course(eSL207, "English as Second Language 207", 1).

address(addr001, "Maisonuvue Street", "center ville", "Montreal").

135

address (addr002, "Hillhead Street", "Hillhead", "Montreal").
address(addr003, "University Avenue", "Kelvinside", "Montreal").

address (addr004, "Lincoln Street", "Dowanhill", "Glasgow").

works_in(cs0001,cs).
works_in(cs0002, cs).
works_in(ce0001,eg) .
works_in(css001, cs).
works_in(cel005, eg).
works_in(4125785, gm).

teaches (cs0001, comp676) .
teaches(cs0002, comp218) .
teaches (ce0001, coen60).
teaches(css001, comp646).
teaches(cel005, coen6l).
teaches(cs0003, comp248).
teaches(ce0001, eSL207).

majors_in(4881177,cs).
majors_in(css001,cs).

majors_in(3345167,gm) .
majors_in(3511786,eg) .
majors_in(3788947,edu) .
majors_in(4125785,cs) .

supervises (cs0001, 4881177).
supervises(css001, 4125785).
supervises (css001, 4881177).
supervises (cs0003, 3788947) .
supervises(cs0004, 3788947).
supervises(cs0003, 3345167).

136

takes (4881177, comp646) .

takes (4125785, comp218).

takes (4881177, eSL207).

takes (4125785, eSL207).

takes (4881177, comp248).

takes (4125785, comp248).%for gs1.P to be commented.
takes (3345167, comp248).

takes (3788947, comp248).

run_by(comp646, cs).
run_by (comp218,cs) .
run_by(comp248,cs) .
run_by(eSL207,edu) .

prerequisites(comp248, comp218).
prerequisites(comp646, comp248).
prerequisites(comp651, comp646) .

assessment (comp646, "mid-term1", 0.25).
assessment (comp646, "mid-term2",0.25) .
assessment (comp646, "assign",0.25).
assessment (comp646,"final", 0.25).
assessment (comp651, "mid-term",0.25) .
assessment (comp651,"project",0.25).
assessment(comp651,"final", 0.5).
assessment (coen60,"ass1", 0.33).
assessment (coen60,"ass2", 0.34).
assessment (coen60,"final", 0.33).
assessment (comp218,"mid-term", 0.5).
assessment (comp218,"final", 0.5).
assessment (comp248, "final", 1).
assessment (eSL207, "assi", 0.1).
assessment (eSL207,"ass2", 0.1).

137

assessment (eSL207, "ass3", 0.1).
assessment (eSL207,"ass4", 0.1).
assessment (eSL207,"final", 0.6).

lives_in(cs0001, addr002).
lives_in(cs0002, addr003).
lives_in(4881177, addr001).
lives_in(4125785, addr004).
lives_in(3511786, addr002).

first_supervisor(cs0001, 4881177).
first_supervisor(cs0002,3511786) .
first_supervisor(cs0003, 3788947).
first_supervisor(cs0003,4125785) .

second_supervisor (cs0004,4125785) .
second_supervisor (css001, 4881177).
second_supervisor (cs0004, 3788947).

resides(cs,addr002).
resides(gm,addr003) .
resides(artG,addr001).
resides(edu,addr004) .
resides(eg,addr003) .

138

Appendix B

Sample Query Diagram Templates

This appendix presents diagram solutions for example queries in the university data
model. It provides the corresponding TGL programs for these diagram queries as
well. Finally, the TGL programs generated by translating the coral execution results

of those queries are presented.

1. Query Diagrams
Note that Q12, Q15, Q21 are not in the examples because they have been

explained in detail in the test cases of Increment Two and Increment Three.

139

showGraphlog

"Steve Johnson"
has_Name

staff(ID)

Q1. Return staff members named Steve Johnson

showGraphlog
2000

Sal
w has_Salary

staff(ID)

Q2. Return staff members earning moer than $2000 per month.

showGraphlog

o address(AID)
lives_in

has_City

® "Glasgow"

. tutor(ID)

Q3. Return tutors living in Glasgow.

showGraphlog

o dept(No)
majors_in

works_in

tutor(ID)

Q4. Return tutors working and studying in the same department.

@ staff(ID)

showGraphlog

@ visiting_staff(ID)

Q5. Return all visiting staff in the university.

showGraphlog
Salary

has_Salary

2000 & staff(ID)
is_a

@ visiting_Staff(ID)

Q6. Return all visiting staff who earn more than $2000 per month.

Figure 59: Diagrams of Example Query Composition(1 - 6)

140

showGraphlog

"Steve Johnson”

dept(
'\ majors_

has_Name

person(ID1)

N

Q7. Return students studying in the same departmetn as Steve Johnson

majors_in

¢ student(ID1)

. student(ID

showGraphlog

® student(ID)

in takes

@ course(Code)

Q8. Return courses taken by students.

showGraphlog

student(ID})

takes

@ course(Code)

Q9. Return students and courses taken by them.

showGraphlog
. student(ID)

takes

course(Code)

@ Credit

Q10. Return students and courses taken by them that have more than one credit.

defineGraphlog

¢ Student(ID)

takes
students_by._staff

teaches
) R
®

course(Code) staff(SID)

Q11. Return students taking a course given by Steve Johnson.

showGraphlog
. student(ID})

personS(ID, "Steve Johnson")
students_by_staff

staff(SID)

Q11. Return students taking a course given by Steve Johnson.

Figure 60: Diagrams of Example Query Composition(7 — 11)

141

showGraphlog

. ® studeny(ID)
is_a
‘K

has_Name

. Name

Q13. Return the names of students.

defineGraphlog

® dept(No)

dept_course

® course(Code)
Q14. Return all the possible combinations
between departments and courses.

showGraphlog
@ dept(No)

/)tcoursc

® course(Code)

Q14. Return all the possible combinations
between departments and courses.

defineGraphlog

® staff(SID)
is_a

® person(SID staff_area

)
lives_in
@ address(AID

Q16. Return areas where students, but no staff, live.

defineGraphlog
® student(ID)
/
° person(ID) student_area
lives_in

o address(AID

Q16. Return areas where students, but no staff, five.

showGraphlog

o student(ID)

student_area

staff(SID)

— staff_area * address(AID)

Q16. Return areas where students, but no staff, live.

Figure 61: Diagrams of Example Query Composition(13 - 16)

showGraphlog

o Sa
has_Sal w

staff(SID) -
.R ‘ Income_tax

0.4 * Salaray

Q17. Return income tax of staff as 40% of their salaries.

showGraphlog

. student(ID1)

lives_in

® address(AIDI, _, "Hillhead",)

Q19. Return students living in the following areas: Hillhead, Kelvinside and Dowanhi

showGraphlog

. student(ID2)

lives_in

@ address(AID1, _, "Kelvinside",)

Q19. Return students living in the following areas: Hillhead, Kelvinside and Dowarhill

showGraphlog
. student(ID3)

lives_in

® address(AID1, _, "Dowanhill", _)

Q19. Return students living in the following areas: Hillhead, Kelvinside and Dowanf

showGraphlog
@ course(Code)
not prerequisite

¢ course(Codel)

Q20. Retarn courses with no prerequisites.

showGraphlog

o staff(SID)

first_supervisorlsécond_supervisor

°
student(ID) T

is 2 person{ID, "Steve Johnson")

Q22. Return the first and second supervisors of Steve Johnson.

Figure 62: Diagrams of Example Query Composition(17 — 22)

143

showGraphlog
@ _sudeni(D) .
first_supervisor second_supervisor
staff(SIDl). ¢ staff(SID2)
&is_a is_e%
o
®
person(ID1, "Steve Johnson") person(ID2, Bob Compbell”)
23. Return students having Steve Johnson before Campbell in their supervisor lists.

defineGraphlog showGraphlog
@ course(Code) o course(Code)
assessment(Percent)
percent_count(Pergént) percent_count(Percent)
= o 4
o Assess_name /
®
® COUNT(<Percent>) Count
(24. Return courses with 4 assessments of the same percentage weight. Q24. Return courses with 4 assessments of the same percentage weight.
showGraphlog showGraphlog
. Salary
@ course(Code, "DB4",)
percent_count(0.25) s ® tutor(ID)
has_Salary -
¢ Count 0
staff(ID)
Q25. Return the number of assessments worth 25% in the course DB4. Q26. Return the salary of tutors and keep the possible duplicate values.

Figure 63: Diagrams of Example Query Composition(23 — 26)

144

showGraphlog
@ taff(SID1)
W ‘\
. is_a
student(ID)
]

person(SID, "Steve Johnson™)

Q27 Return students supervised by Steve Johnson.

showGraphlog

® _staff(SID1)
W
o

first_supervjgorisecond_supervisor
course(Code)

®
student(ID) s a]

person(ID, "Steve Johnson")

Q28. Return courses taught by the supervisors of Steve Johnson.

defineGraphlog
o dept(No)

resides
majors_in
addmss(AID, "Hillhead Street”, _,)

® student(ID)

Q29. Return Students whose major deparments are in either
Hilthead Street or University Avenue.

showGraphlog
o course(Code)
takes
run_by
o —
student(ID) ® ept(No)

majors_in

Q30. Return students taking some courses run by their departments.

showGraphlog
¢ dept(No)

resides
majors_in
address(AID, Umversny Avenue", _,)

® student(ID)

Q29. Return Students whose major deparments are in either
Hillhead Street or University Avenue.

Figure 64: Diagrams of Example Query Composition(27 — 30)

