INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

IMPLEMENTING THE POSTGRESQL QUERY OPTIMIZER
WITHIN THE OPT++ FRAMEWORK

Ju Waxsg

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDIA UNIVERSITY
MoNTREAL., QUEBEC. CANADA

DECEMBER 2002
© Ju Waxa, 2003

il

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Vove rélirence
Our Sis Notre réédeence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77723-5

Abstract

Implementing the PostgreSQL Query Optimizer within

the OPT++ Framework

Ju Wang

As a promising object-oriented reuse technology, frameworks have been attracting
enough attention. However. much less work has becen done on framework-based

development, compared with on framework development.

[n this thesis we described our work. framework-based implementation of an
optimizer for a relational database. We implemented our target optimizer based on a
query optimization framework, OPT++. In order to borrow expertise from a mature
optimizer, we studied a model optimizer, the PostgreSQL optimizer. The operators and
algorithms supported by it are summarized. The transformative rules applied are

extracted. Its search strategy is analyzed.

In our application, typical operators for relational algebra are supported. Main
transformative rules extracted from the PostgreSQL optimizer are applied. A
PostgreSQL-like search strategy is implemented. Constrained dynamic programming and
genetic algorithm are incorporated to optimize joins. Additionally, we modified the
framework to fit sub-queries and explicit joins. We describe our implementation by
following the framework recipes. Problems and implementation considerations are
presented in detail. Furthermore, more general issues in framework-based development

are discussed.

Il

Acknowledgements

[would like to thank my supervisor, Dr Gregory Butler, for his guidance and finance
support. Also [would like to acknowledge Navin Kabra and Jinmiao Li. My thesis is
based on their work. [got prompt replies from them when asking them for helps. I had
helpful discussions with Bin Nie when doing the implementation. Finally, [would like to
thank the Quebec government for the financial support I received during my studies at

Concordia University.

v

Contents

List of Tables VIII
List of Figures v
Chapter 1 INtrodUCtIONoooiiiiieieeie e aee e l
1.1 The Problem and Related WoOrk........ocooovieiiiiiiiieeeeee e L
L L L The Problem ... |
LL2Related WOrK ... m et e e 2
L220UF WOTK ..ottt et e 4
1.3 Contribution of the TRESIS....c.cur et 5
1.4 The Layout of the TRESIS....cou eoeieeiieeecceeeee et 5
Chapter 2 BaCK@rOUN.coooi e e 7
2L FrameWOrKS ...t 7
210 What s a Framework? cooooooee e 7
2.1.2 Benefits of Frameworkscoooiooiiioieeeeeeeeeee e 8
2.1.3 White-box Frameworks and Black-box Frameworkscc.cocoeeveeeeeeeeennne. 9
2.1.4 Frameworks and Design Patternsccooooiviiiiieeiiieeeeeeeeeee e 10
2.2 Query Optimization of Databaseso.o.ooioioiioiiieeeeeeeeeeeeeeeeeee 11
22T OVEIVIEW ...ttt ettt et e et s eeeeeeeaenen e 11
2.2.2 Cost-based Plan SEleCHOMN «........oueveuvveeiieceeeeeeeeeeeee e 13
2.2.3 Search SIrate@Iesccoviueiiiienieeiee et 14
Chapter 3 OPT++: An Object-Oriented Framework for Query Optimization............. 16
L OVEIVIEW oo ee e e ee e 16
3.1.1 Basic Idea to Achicve Extensibility and Reusability.............cccoooeeueneene... 17
3.1 2 ATCRITECIUTEcceee e ee e e e 18
3.2 The Algebra COmMPONENTcoorumeueeeeeieeieteeeeeeeeeeeeeeeee e 21
3.2.1 Classes and HOOKSc..oueuiiiniioeeeiccceeeeeee e e 21
3.2.2 Equivalence of Two Logical Operator Trees..........ovvvereeeeeeeeerreeerernen. 24
3.3 The Search Space COMPONENEcccovumuivieieieieeeeeeeeeeeee e 25

3.3.1 Design Pattemns USedcooouenmimiiieeiieeeeeeee e 26

3.3.2 Classes and HOOKS ..cocoveeieiieece e 28
3.4 The Search Strategy COMPONENL..........ovemimeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenas 33
3.4.1 Design Patterns USedccoooeemeiieiiiceeeeeeeee e 34
3.4.2 Classes and HOOKS ...c.oocieiieieiiiieeiiecee e 35
3.5 Cost Evaluation and Dynamic PrUningcocovoveceeemeeeeeeeeeeeeeeeeeeeeeeeeeenn 41
3.5.1 Cost Evaluationcoooeioireenieieeeeeeeee e 41
3.5.2 Dynamic Pruningcc.cooeoiomoiooioceeeee e 42
Chapter 4 The PostgreSQL OpUimizer.............ooo oo 46
B L OVEIVIEW ..o e e e e 46
4.2 Main Data Structures of the PostgreSQL Optimizer..............oooeeeeeeeeeeeeeen.. 47
4.2.1 Internal Representation of @ QUETYo.ocoiimimioecomeeeeeeeeeeeeeeeea, 47
4.2.2 Internal Representation of a Plan ... 50
4.3 Transformative Rules Used in the PostgreSQL Optimizer............ooeevemevenen.... 51
4.4 Search Strategies Used in the PostgreSQL Optimizer...........ooovovueeeeeeeeeeenn. 35
4.4 1 Overall Search Strategy......ooeooveuiommieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 55
4.4.2 The Constrained Dynamic Programming Search Strategy 38
4.4.3 The Genetic Algorithm Query Optimization in PostgreSQL...................... 63
Chapter 5 The Implementation in OP T4o.oouvoieoeeeeeeeeeeeeeeeeeeeee 68
ST OVEIVIEW Lo 68
5.2 Internal Representation of @ QUETYco.co.ooomueomeeeieeeeeeeeeeeeeeeeeee 68
5.3 Application of Transformative RUleS...........cooeeeeomooeooeeooooeeoeoeoo 72
5.3.1 EXpression-normalizationooo.veveoeeoeeeeeeeeeeeeeeeeeeeeeeeeoeee, 72
5.3.2 Select-push-dOWNoeimeeiimieeeieeee e, 73
5.3.3 Sub-qUErY-pUll-UP ..o, 74
5.4 Implementation of the Algebra Component.............oooooovoeeeeeeeoieeeeeeee 76
5.4.1 Define Logical AIZEDra.......oo.o.ovoviviiiiiooeeeeeeeeeeeeeeeeeeeeeeeeee, 77
5.4.2 Define Physical AIZEDIa ..o.ov.vvvvieieceeeeeeeeeeeeeeeeeeeee, 80

VI

5.4.3 Set up Relationships between the Logical and Physical Algebras.............. 83

5.5 Implementation of the Search Space Component..........c.c.ooevevevevecrececvenennne. 85
5.5.1 Implement the Visitor HIerarchyc..ooooeooieeooieiiiiiiieeeeee, 85
5.5.2 Implement the Generator Hierarchy.........cococoovoivieceieoeeieeeeceeeeeeeeeeeean 86

5.6 Implementation of the Search Strategy Componentccoeeeeeveeceeeeevennnn. 88
5.6.1 Implement Property Calculatione..oooeeieoeieviiinieeeeeeeeeeeeeeeeeee, 88
5.6.2 [mplement the PostgreSQL Search Strategy............ocooovemivemeceeeeeeeeeenn. 91

5.7 Problems and Implementation Considerations...................o.ooemeecevemeeeemeeeeeenn. 95
5.7.1 Generality and EffiCIENCY oo ovievereeieeeeeeeceee e 95
5.7.2 Framework Mismatch and SOIUtONcoooovviviocceeeeeeeeeeeeeeee, 96
5.7.3 Special Treatment for GroupBy and OrderBycouooceeceeeeeeeeeeeennn. 98
5.7.4 Constrained Dynamic Programming............ooooveveueeevocniiceceeeeeeeeeeee 99
5.7.5 Genetic AIGOTItRML.......cvovieiiiieieeeceee et 99

5.8 Testing the Target OPUMIZETcooveveueeeereeeeeeeeeeeeeeeeeeeeeee et e 101
5.8.1 COrTeCINESS TESL....covmiueieeeeiieececee et 101
5.8.2 EffICIENCY TS cuueniieeeeeeeeeeee et e 104

5.9 REUSE SUMMAIY .oeeimieiieiieieceeee et 106

5.10 Limitations of Our Implementationoco.ovvmeeeeeeeeeeeeeeeeeeeeeeeeeeeeen. 107

Chapter 6 [ssues in Framework-Based Developmentocooeuemeeeeveeeeeeeeeeeeenn 109

6.1 DeVElOPMENE PrOCESS -.....ereeeeeiieceee et ee e e en 109
6.1.1 Process for General Software Developmento.cooeeeeeoeeeeeeeeeeean.. 109
6.1.2 Process for Framework-Based Development.............c.oooooueeeeeeeeeneeenn. 110

6.2 Understanding Frameworkso.oveeoieiemieceeee e 112

6.3 Unplanned CuStOMIZAtON.............cuerureeieeeceeieeeeeeeeeee e L5

6.4 NE€d fOr TOOLS. ..ottt 117

Chapter 7 CONCIUSIONcucueeeeeeceee e 119
BibDIOGIUPRY ..o 121

VII

List of Tables

Table 3.1 Expression Sets of SOME TreES....voveuveuiemimeiieeeeeeeeeeeeeeeeeeee e 24
Table 3.2 The Main Attributes of Class OperatorTreeovevueueueueeiemmeeeeeeeeeeenenn. 38
Table 3.3 The Main Attributes of Class OperatorTreePropertyoocoveecevecneeenne... 38
Table 3.4 The Main Methods of Class OperatorTreePropertyocovvemevceveeoeeennn... 39
Table 3.5 The Main Attributes in Class AlgorithmTreec.o.ovvemeeeieeieeeeeeeeeeean. 40
Table 3.6 The Main Attributes in Class AlgorithmTreePropertyooooveeeeeeevmeennnn.... 40
Table 4.1 Logical and Physical Operators Supported by PostgreSQLcoccooevnnn.... 46
Table 4.2 The Possible COMBINAUONSoucuveeeieeiceeeeeeeeeeeeeeeeeeee e 59
Table 5.1 Operators and Associated Algorithms in Our Algebra...........cocooovveoveenee... 84
Table 5.2 Optimization Times of the Two OptimiZerscoeoeueeeeeereeeeeeeeeeeeen. 105

VIII

List of Figures

Figure 2.1 Schematic Diagram of Query Processing.............coeeveveieueueeieerceieeeceeenne. 11
Figure 3.1 Basic SyStem DESIZN c.cv.eeimivieeeeeeeeeeeeee et 18
Figure 3.2 System ATCRITECTUIE «.ov.eeeeieee e 19
Figure 3.3 Overall Class Dia@ramcoooooimiiieiiiiieeeeeee e 20
Figure 3.4 The Algebra COMPONENtcoooviveiiiieeeeeeeeeeeeeeeee e 21
Figure 3.5 Some Lo@IiCal TrEES c.cvveveeiceceeeeeeeeeeeeeeeeeeeeeeeeeeeee e 25

Figure 3.6 The Sequence Diagram for Visitor Pattern in the Search Space Component . 27

Figure 3.7 The Search Space COMPONENL............ccooviiivieeeeeeeeeeeeeeeeeeeeeeeeeeee e 27
Figure 3.8 The Activity Diagram for the Method VisitDBOperators............................... 29
Figure 3.9 The Activity Diagram for the Method UnaryOperatorExpand::apply 31

Figure 3.10 The Activity Diagram for UnaryAlgorithmTreeGenerator::MakePhyNodes 32

Figure 3.11 The Activity Diagram for UnaryAlgorithmTreeGenerator::Apply 32
Figure 3.12 The Search Strategy COMPONENTooovveeeieieeeeeeeeeeeeeeeeeeeeeee e 34
Figure 3.13 The Activity Diagram for Deleting an Algorithm Tree...........ooevevreeneenen... 43
Figure 3.14 The Activity Diagram for Deleting an Operator Treeccovvurveeeevnnn... 44
Figure 4.1 A QUETY TIOEoviiiieeeceee et 49
Figure 4.2 A PLaN ... 51
Figure 4.3 The Activity Diagram for PostgreSQL Optimizationocovoveveeueeeen..... 57
Figure 4.4 Constrained Dynamic Programmingc...coooeooeiiiioeceeeceeeeee e 61
Figure 4.5 The Activity Diagram for Genetic Algorithmccocoooooivimioeieeeeeeen. 64
FIGUIE 4.6 A JOIN TTEE - e ee e es e e 65
Figure 4.7 The Activity Diagram for GEQOcocoommmimeeeeeeeeeeeeeeeeeeeeeeee e, 65
Figure 5.1 The Class Diagram for a Query Tre€e.cooevevrmiveememeeeeeeeeeeeeee e 69
Figure 5.2 Select-PUSh-AOWI «.c.coiuiiieicii et 73
Figure 5.3 The Activity Diagram for Sub-query-pull-up..........ccoooveiuevieeieeeeeeeeeeenn. 75
Figure 5.4 A Join Tree after Sub-query-pull-upccoooomiieiiiieeeeeeeeeeeeeeean. 76
Figure 5.5 The Customized Logical AIZeDri..........cooveevvveeeeeeeeeeeeeeeeeeee e, 71

IX

Figure 5.6 The Customized Physical Algebraocoooovioomo 81

Figure 5.7 The Customized Generator Hierarchycooooooimooooo 86
Figure 5.8 The Implementation of the Search Strategyocooooomoooee 93
Figure 5.9 The Implementation of Bottom-up Strate€gyccoooeoomomeoeoeeeeeeee 95
Figure 5.10 The Implementation of the Method JoinExpand:: Apply......c...ooovermeemeeeenen... 98
Figure 5.11 The Classes for Genetic AIZORtAMcocooooooooiieieeeeee 100

Chapter 1 Introduction

As an object-oriented reuse technology. frameworks have been studied for over a
decade. A lot of work on framework development, evolution. documentation and
application has been done, and the technology still remains a hot research issue. The
Know-Ii-All Project [But02] is investigating methodologies for the development,
application. and evolution of frameworks. A concrete framework for database
management systems is being developed as a case study for the methodology research.
To investigate issues in framework-based application development. and evaluate and
verify the query optimization sub-framework. we built a query optimizer for a relational

database based on the sub-framework.

1.1 The Problem and Related Work

1.1.1 The Probiem

Performance of computer hardware has increased dramatically in the past decades.
However. development of complex software is still expensive and error-prone. One of the
reasons for the situation is that much of cost and effort is wasted on re-discovery. re-
design and re-implementation across software industry. Effective software reuse helps to
attack the problem. Therefore. software reuse has been one of the main goals of software
engineering [Fay99].

Frameworks are an object-oriented reuse technology. They provide reuse at the level
of domain knowledge. requirements. architecture, micro-architecture. design, and code.
in the context of a product line. As an active research field. frameworks have been
studied for over a decade in aspects of development. documentation. evolution and
application. Also, in practice, many frameworks are developed and applied successfully
in a variety of domains. Some of the famous examples are MVC. ET++, and IBM San
Francisco framework. MVC (Model/View/Controller) [Gol84] is the Smalltalk user
interface framework. ET++ [Wei88] is a portable application framework, used to make
platform-independent GUI-based application programs. IBM San Francisco [IBMO2] is a

business framework for commercial application assembly.

Although a lot of work has been done. many issues, such as reducing framework

development cost. domain-specific enterprise framework development. black-box

frameworks. framework development management. framework economics. framework
standards [Fay97] need further study. Therefore. framework technology remains a hot

research field.

Within the field. much work has been done on the design, documentation. evolution of
object-oriented frameworks, but few studies have been conducted on framework-based
software development. The main concern of the thesis is framework-based software

development.

Know-It-All is a framework methodology study project. Its goals are to investigate
methodologies for the development. application. and evolution of frameworks and to
develop a framework for database management systems as a case study for the
methodology research. Some sub-frameworks have been developed. The query

optimization framework is one of the sub-frameworks.

The thesis work is a subproject of the Know-It-All project. The aims of the subproject

are:
® toinvestigate issues in framework-based application development:
® tocvaluate and verify the framework for optimizers: and
® o build an optimizer for a relational database based on the framework.

Framework-based application development is also called adaptation or instantiation.
Our work is basically the process of instantiation. Here. only issues in white-box

frameworks are considered because of the scope of our project.

1.1.2 Related Work

There is quite a lot of published literature on development. documentation and
evolution of object-oriented frameworks, but there are few papers talking about using
frameworks. Relatively systematic studies have been done by Garry Froehlich et al.
[Fro97. For98, Fro99. Fro00] in the University of Alberta. They summarize the issues in
using frameworks, propose some guidelines for choosing a framework for a domain
application. propose a hook model to help understand and instantiate a framework, also
specify requirements a tool called HookMaster that helps develop and instantiate
frameworks. Their method is on the basis of specifying all hooks in a framework

properly. Hooks, as it will be explained in section 2.1.1, are specific ways in which a

3]

framework can be customized. They believe that hooks can help understand and
instantiate frameworks by being characterized in two dimensions. In his thesis, Mattsson
[Mat96] outlines general activities involved in framework-based development. and
discusses some potential problems in the field.

From the perspective of query optimization, because writing, debugging an optimizer
and evaluating different search strategies are difficult and time-consuming, a lot of
attempts have been made to build extensible optimizers. Some early optimizers, for
example, ones in System-R [Fre87] and Starburst [Lee88] allow the algebra to be
extended but with fixed search strategies. In contrast, others allow extensible search
strategies. OPT++ [Kab99]. which is an object-oriented optimization framework. tried to

achieve both goals.

Concretely, our work builds on two software artifacts: OPT++. and the PostgreSQL
optimizer.
OPT++

The query optimization framework we instantiated is called OPT++. which was
developed by Navin Kabra et al. in the University of Wisconsin. Although its developers
did not call it a framework. it is a framework from the perspective of software
engineening. It designs frozen spots that contain expert knowledge. The expertise
knowledge can be used without any changes. Also it defines hot spots that allow the
opumizer-implementer to extend it easily. OPT++ uses the object-oriented features of the
C++ programming language to simplify the task of implementing, extending and
modifying an optimizer. It incorporates all the features of an extensible optimization
framework including specification of a logical algebra, execution algorithms, logical, and
physical query processing alternatives, and selectivity and cost estimation.

Jinmiao [LiOl] refined and re-documented the OPT++ framework. Some design
patterns were applied explicitly, and some components were re-decomposed to make the

framework more flexible and understandable.

Our work was actually based on the revised version of OPT++.

The PostgreSQL Optimizer

To build a new optimizer, it is a good idea to study a mature query optimizer.

Therefore, we studied a model optimizer. the PostgreSQL optimizer. The reasons why

we chose it are:

The PostgreSQL optimizer is typical. PostgreSQL stems from Postgres [Pos02a],
which is viewed as the ancestor of relational databases. Although. it experienced
a lot of critical changes, and now it is an object-relational database management
system. its optimizer is still a typical one covering most common optimization

techniques.

PostgreSQL is an open-source database management system. The source code is

available to public. Hence, we can study the optimizer in detail.

Unfortunately. there is very little literature talking about the PostgreSQL optimizer,

so we mainly focused on its source code and comments.

1.2 Our Work

To instantiate the framework, our work involved studying the model optimizer,

understunding the framework. modifying the framework for unplanned customization,

and customization.

Studying the PostgreSQL optimizer

o Its relational algebra implemented was summarized:

o Key data structures were analyzed:

o Main transformative rules were extracted; and

o Search strategies adopted in the optimizer were studied.
Understanding the framework

Understanding the framework is a nontrivial work in framework instantiation.
OPT++ is a white-box frame, so it needs the user to understand its internals to use
it effectively. We studied its overall architecture. design patterns used, main data
structures and algorithms, example applications to gain suitable understanding
before we started our implementations. [n fact, the understanding and the
customization overlap for a rather long time. Therefore, understanding the

framework accounts for a considerable proportion of the time of instantiation.

¢ Modifving the framework for unplanned customization
Because frameworks are generalized from applications. no matter how elaborately
they are designed, there can be some customization that is unplanned. In some
cases, custom requirements cannot be fitted only by extending the framework. We

modified such things to fit the unplanned customization.
o The parser:;
o Intemal representation of query and expression: and
o The control flow in part (to be recursive to fit sub-query processing).
e Customization
o Implementing abstract hook methods:
o Overriding some hook methods with default implementation:
o Overloading a hook method: and

o Adding new application specific classes when necessary.

1.3 Contribution of the Thesis

In this thesis. we describe the implementation of a query optimizer based on a query
optimization framework. OPT++. The PostgreSQL optimizer is analyzed deeply. The
operators and algorithms supported by the optimizer are summarized. The transformative
rules applied are extracted. Its search strategy is studied. OPT++ was evaluated and
verified. A PostgreSQL-like search strategy is implemented within the framework.
Constrained dynamic programming and genetic algorithm are incorporated to optimize
joins. In addition. we modified the framework to fit sub-queries and explicit joins.
Problems and implementation considerations are presented in detail. Furthermore. on the
basis of our experience. more general issues in framework-based development are

discussed. and some guidelines for the issues are proposed.

1.4 The Layout of the Thesis

Chapter 2 gives brief background information about the two fields our work involves:
frameworks and query optimization. Chapter 3 introduces OPT++ in a reasonable detail
so that the reader can understand our work. Complete documentation is available in

Kabra’s papers [Kab99] and Jinmiao's thesis [LiOl]. In chapter 4, we will analyze the

wn

PostgreSQL optimizer. The relational algebra, internal representation. transformative
rules and search strategies are extracted so that they can be implemented or applied in our
optimizer. Actually. the chapter can be viewed as requirement analysis and system
specification of our optimizer. Chapter 5 describes our implementation based on the
framework. Problems and implementation considerations are discussed in detail at the
end of the chapter. In chapter 6. general issues in framework instantiation are discussed

on the basis of related literature and our experience.

Unless otherwise indicated. all diagrams in the thesis are UML [B0099] diagrams, and

we discuss data types and programming mechanisms in terms of C++.

Chapter 2 Background

Basically. our work involved two fields: frameworks and query optimization. In our
work, we applied framework technology to build an optimizer. Therefore, it is necessary

to give brief background information about the two fields.

2.1 Frameworks

As a technique promising maximum reuse at many levels, object-oriented frameworks

are a very active issue for both the software industry and academia.

2.1.1 What is a Framework?

According to Johnson [Joh88], a framework is a reusable, “semi-complete™
application that can be specialized to produce custom applications. Framework
technology has been studied for more than a decade. Frameworks have proven to improve
productivity owing to their reusability. Frameworks can be reused in many levels such as
domain knowledge, analysis. architecture. design and code. Unlike earlier reuse
techniques based on class libraries, frameworks are domain specific. Frameworks are an
object-oriented reuse technology. so by default. we refer to an object-oriented framework.

when we talk about a framework.
The following are three common terminologies in frameworks.

* Hot spots [Pre94| are the general areas of variability within a framework where

placing hooks is beneficial. A hot spot may have many hooks within it.

¢ Hooks are the places in a framework that can be adapted or extended to provide
application specific functionality. A hook can be adapted in some way such as by
filling in parameters or creating subclasses. Each hook description documents a problem
or requirement that the framework builder anticipates an application developer will have.
and provides guidance about how to use the hook and fulfill the requirement. They are
the means by which frameworks provide the extensibility to build many different
applications within a domain [Fro97].

e Frozen spots [Pre94| within the framework capture the commonalities across

applications, in contrast to hot spots. They are fully implemented within the

framework and leave no work to the framework user. Typically there are no hooks

associated with them.

2.1.2 Benefits of Frameworks

According to Fayad [Fay99]. the primary benefits of frameworks stem from their modularity.

reusability. extensibility. and inversion of control.

Modularity — Using object-oriented technology. frameworks encapsulate volatile
implementation details behind stable interfaces. and hence modularity is enhanced. When
design and implementation changes within a module occur. the impact is localized

without affecting other modules. The property stems from object-oriented technology.

Reusability — The stable interfaces provided by frameworks guarantee that they can be
reapplied to create new applications. Framework reusability makes it possible to use the
domain knowledge and prior effort of experienced developers; therefore re-creating and
re-validating common solutions to recurring problems are avoided. Reuse of framework
components can improve productivity of programmers. as well as enhance the quality,

performance. reliability and interoperability of software.

Extensibility — Through irheritance and polymorphism of object-oriented languages. a
framework can be extended easily by providing explicit hook methods to be overridden.
That allows applications to extend its stable interfaces. Extending a framework is much
easier than developing an application from scratch. so timely customization of new
application services and features can be achieved.

Inversion of control — Unlike a library. a framework calls custom code. At run-time. a
framework calls custom code through polymorphism. In this way, the control flow of
system is defined in the framework instead of applications. When events occur. the
framework invokes corresponding hook methods on pre-registered handler objects, which
are instances of custom subclasses of abstract classes defined in a framework. The objects

of subclasses perform application-specific processing on the events.

Because these features of frameworks. framework-based applications need reduced time to

market. provide improved maintainability and reliability, conform to industry and domain

standards better. and embody domain expertise. In other words. framework-based development is

faster. better and cheaper.

2.1.3 White-box Frameworks and Black-box Frameworks

A framework originates from a single application. Towards maturity, after many
iterations, it will experience white-box stage and black-box stage, and finally reach an
application generator. Both white-box and black-box frameworks can be reused, but the
ways to reuse are different. White-box frameworks are reused by sub-classing, while

black-box frameworks are reused by composition.
White-box Frameworks

When a framework is new, it tends to be white-box. A white-box framework requires

the framework user to understand the internals of the framework to use it effectively.

A white-box framework is reused by sub-classing. Its behaviors can be extended by
deriving subclasses from the abstract classes defined by the framework and implementing
the hook methods. This is achieved by taking advantage of inheritance mechanism of
object-oriented languages. A white-box framework often is provided in format of source

code.
To reuse a white-box framework, we need to:
* understand how the subclass and super-class work together:
 have access to both the protected and the public parts of the class; and
» provide application specific functionality, by overriding existing methods. and
implementing abstract methods.
Also. we can make use of the parent’s methods.
Black-box Frameworks

As 1t evolves, a framework becomes more black-box. Now. it is reused by
composition, instead of inheritance. Its behaviors are extended by composing components
together, and delegating behavior between components. A black-box framework does not
require a deep understanding of the framework’s internal implementation in order for

users to use it.

In black-box frameworks. objects tend to be smaller, and there tend to be more of
them. The intelligence of the system comes as much from how these objects are

connected together as much as what they do in themselves.

Composition tends to be more flexible than inheritance. Consider an object that uses
inheritance versus one that delegates. With inheritance, the object basically has two
choices: it can do the work itself, or it can call on the parent class to do it. Delegation is
the idea that instead of an object doing something itself, it gives another object the task.
With delegation, an object can do the work itself (or perhaps in its parent), or it can give
the work to another object.

Application generators and even black-box frameworks sound so much easier to use
than white-box frameworks. However, they cannot be reached without creating white-box
frameworks first. To develop a black-box framework, we need to recognize components
that provide application behavior, and define protocols among the components.

Discovering this costs time. Relatively. white-box frameworks are easier to create.

The framework we used in our project is a white-box framework.

2.1.4 Frameworks and Design Patterns

A design pattern names. abstracts, and identifies the key aspects of a common design
structure that make it useful to create a reusable object-oriented design. They capture the
intent behind a design by identifying objects. their collaborations, and the distribution of
responsibilities. [Gam95]

Frameworks are different from design patterns in such ways:

¢ Design patterns describe micro-architectures, while frameworks have concrete

architectures.
® Design pattemns are abstract, while frameworks are semi-implemented.
e Frameworks are domain specific. while design patterns are more general.
However, there are some connections between design patterns and frameworks

e Framework design may incorporate design patterns at the micro-architectural

level.
* Flexibility for a framework is often achieved by applying design patterns.

® Design patterns help document a framework.

10

2.2 Query Optimization of Databases

Query optimization is key technology for database systems. An optimizer selects the
optimal physical access plan for a declarative query. A user just tells a DBMS “what to
do”, and an optimizer will decide “how to do”. To find an optimal physical access path,
an optimizer enumerates (probably not all) possibilities of physical paths, and chooses the

best one based on their estimated execution cost.

2.2.1 Overview

Both algebra and calculus can be used to model operation on relations in relational

databases. SQL queries are represented with a few operators that form relational algebra.

SQL query
|
Y
{ ‘
Parse query

query expression

2
tree
- ¥

" Selectiogical
query plan

/, -_

!

A logical query
Query -

' — lan tree

optimization ! v P
b Select
' physical plan

v A Physical query
N plan tree
Execute plan

Figure 2.1 Schematic Diagram of Query Processing
The process of answering a query can be divided into three major steps, as sketched in
Figure 2.1. [Gar00] A parse tree representing the grammar structure of the query is first
generated. A logical query plan that is a tree composed of logical operators is generated.
The tree may be reformatted into an equivalent based on some algebraic rules to achieve
a better logical query plan. Physical plans are enumerated and the best one with the
cheapest cost is selected. The last two steps are called query optimization. In practice,

there may be no clear boundary between the two steps.

I

To discuss query optimization, it is necessary to make clear the concepts mentioned in

above process.
Operator

An operator (also called a logical operator) is an operation in relational algebra. A
query can be represented by a tree of operators. In an algebra that is capable of
representing SQL queries, there are typically ten operators, union. intersection, difference
(except), selection, projection, product, join, duplicate elimination, grouping, and sorting.
Product can be viewed as a kind of special join, where there are no joinable tuples in the

two input relations.
Algorithm

An algorithm (also called a physical operator) is a particular implementation of a
logical operator. An operator may have more than one algorithm that can implement it.
For example, the operator join, can be implemented with nested-loop, merge join or hash
join algorithm. For the same input, the costs of different algorithms vary with the system
statistics of a database. Given an algorithm on an input. we cannot know the exact
execution cost of the algorithm without executing it, but we can estimate the costs based

on the system statistics, and choose the best one.
A Logical Query Plan

A logical query plan is a tree of logical operators that represent the particular
operations on data and the order of the operations. A logical query plan is also called a

logical plan or an operator tree.
A Physical Query Plan

A physical query plan is built from algorithms. It represents a real physical access path
to answer a query. It is also called an access plan, an algorithm tree, or a physical plan.
[t should be kept in mind that although, for the same query. different physical plans
produce the same result, the execution costs are different. That is why optimization is

needed.

According to Garcia-Molina [Gar00], to optimize a query. such decisions should be

made:

® Selecting better logical trees. We can transform a logical plan into its equivalent
with cheaper cost using algebraic rules. Note that no system statistics information

is needed to do the transformation.

® Selecting an algorithm for each logical operator. We can execute only physical
algorithms, so this must be done. Moreover, for the same operator. costs of
different execution algorithms are different. Note that system statistics

information is needed to estimate the costs in order for us to make a decision.

* Adding enforcers if necessary. Some algorithms require that its input have some
kind of property. which must be obtained by executing an enforcer algorithm. For
example. merge join requires that both its inputs have a common sort-order at the
join attribute. This has to be achieved by adding a sort algorithm.

* Selecting the way in which arguments are passed from one algorithm to the next,
by storing the intermediate result on disk or by using iterators and passing the

intermediate result directly in memory.

2.2.2 Cost-based Plan Selection

To select an optimal plan with the cheapest cost. we have to know the costs of the
possible plans. We cannot know the costs exactly without executing a physical plan, so
we are forced to estimate the costs. In most cases, [/O is the principal cost of executing a

query. sc the cost can be estimated by /O used to answer a query. That is:
cost = /O cost

I/Os are consumed to read in and write out the intermediate relations: therefore it is a

function of the size of intermediate rel ations. That can be represented as:
cost=f (X(size of intermediate relations))

The size of an intermediate relation equals the bytes per tuple times the number of its

tuples. Namely:
size = number of bytes per tuple X number of tuples

The former can be available in system statistics of a database, while the latter must be
estimated on the basis of property of the logical operator and system statistics. Finally,

we can estimate cost by the number of tuples of intermediate relations. That is:

cost=f (number of tuples of intermediate relations)

13

There is no universally agreed-upon size-estimation method. Fortunately, the goal of
size estimation is to help select a physical plan. instead of. to predict the exact size.
Therefore, even an inaccurate size-estimation method will serve the purpose as long as it
errs consistently. Some rules for estimation are suggested in Garcia-Molina’s book
[Gar00].

For a specific algorithm, the cost can be calculated on the basis of the estimated size of
its input(s) and other parameters such as memory size available, which can be obtained
from system statistics. The cost of a physical plan can be obtained by accumulating the

costs of all its algorithms.

2.2.3 Search Strategies

A search strategy determines how the space of all physical plans is explored.
Strategies can be classified into two categories. exhaustive and non-exhaustive, according

to whether they explore all the space or not.
Exhaustive Strategies

When the search space is not too large to be managed. exhaustive strategies are
preferred. Basically, exhaustive strategies check every possible physical plan to choose
the best one: therefore, the optimum must be found. Dynamic programming is a typical

exhaustive strategy, which will be explained further in latter chapters.
Non-exhaustive Strategies

When the search space is too large. the cost of optimization itself will become
intolerable. In this case, non-exhaustive strategies will be adopted. The strategies cannot
guarantec that the best plan is found, but it attempts to find a plan, which is almost as
cheap as the best, in a limited time. One of the examples of such strategies is the
randomized strategy. In our project, a randomized strategy with some heuristic

information is implemented:; it is called genetic algorithm,

[t is worthwhile to point out that even an exhaustive strategy does not even nccessarily
explore all possible physical plans, because some of search space that must not contain
the optimum can be excluded. For example, all logical trees in which there are selections
but not pushed down should be excluded. Therefore, strictly speaking, exhaustive

strategies scarch the space where the optimum must be.

14

In this chapter. background knowledge of framework and query optimization is
introduced concisely. Our work was to apply the framework technology to build an
optimizer. Because of suitable granularity of the query optimization problem, it can be

regarded as a good example of framework-based application development.

Chapter 3 OPT++: An Object-Oriented Framework for
Query Optimization

In this chapter. an object-oriented framework for query optimization. OPT++. is
introduced. First, its architecture design is introduced. and then the three components in
the architecture are presented in reasonable detail. Finally. the cost model and pruning

mechanism used in the framework are explained.

3.1 Overview

Our optimizer is implemented within the OPT++ framework, so it is necessary to
introduce the framework before we get to our implementation. For the framework user,

understanding how to use a framework is a nontrivial task in the process of development.

OPT++ is a query optimization framework written in Ci+, developed by the
University of Wisconsin. It is a white-box framework because it is reused by sub-
classing. According to Kabra [Kab99], we can get such benefits to develop an optimizer
based on it:

¢ Eusy to develop
Skeleton classes and control flow are well designed. and some search strategies
are implemenied in the design. An implementer needs only to subclass some
abstract classes. and do domain specific design.

¢ Easy to extend/change

Components (Algebra, Search Space and Search Strategy) are well decomposed.
Therefore. each of its components can be changed with minimum impact on the
other components.

¢ Easy to maintain

With its modularity and clean program decomposition. OPT++ promotes sharing
of code among different optimization schemes and implementations, leading, in
turn, to improved maintainability.

e Efficiency

Indirections are limited in the design level. At runtime. efficiency of OPT++-

based optimizers is not affected by the late-binding mechanism offered by C++.

16

As we see. benefits claimed by OPT++ reflect the advantages of framework

technology.

3.1.1 Basic Idea to Achieve Extensibility and Reusability

Like other white-box frameworks. OPT++ achieves extensibility and reusability
chiefly through inheritance. It defines a few key abstract classes with virtual methods.
These class definitions do not assume any knowledge about the query algebra or the
database execution engine. An abstract search strategy is implemented entirely in terms
of these abstract classes. The search strategy invokes the virtual methods of these abstract
classes to perform the search and the cost-based pruning in the search space. An
optimizer for a specific database system can be written by sub-classing these abstract
classes. Knowledge about the specific query algebra and execution engine for which the
optimizer is built. and the search space of execution plans to be explored, are encoded in
the virtual methods of these derived classes. The C++ inheritance and polymorphism
mechanisms ensure that the search strategy of the optimizer will call methods of suitable
subclasses at runtime. Figure 3.1 shows the basic system design of an OPT++based
optimizer[Kab99].

Furthermore. the search strategy itself is a class with virtual methods that can be over-
ridden. Thus. new classes can be derived from this class to implement different search
strategies. The optimizer-implementer can implement new search strategies by deriving

new classes from the provided search strategy classes.

-

17

T T
T sy
OPT++ provides L Q. Abstract Classes "\

this code / < -
N : - "

I f AN / Runtime Binding
[. i \ \ (Virtual Methods)

Optimizer Y ™~ T~ S~ \ \
Implementer ./ : o S—— \
writes this | P N ' N 1

.)
coda N — e e N

: Derived Classes

Figure 3.1 Basic System Design

3.1.2 Architecture

OPT++ is decomposed into three components: the “Search Strategy™ component
determines what strategy is used to explore the search space (e.g.. dynamic programming.
randomized. etc.). the “Search Space™ component determines what that search space is
(e.g.. space of left-deep join trees. space of bushy join trees. etc.). and the “Algebra”
component determines the actual logical and physical algebras for which the optimizer is
written.

Figure 3.2 is a schematic diagram of the system architecture of an OPT++-based

optimizer {Kab99].

18

Code provided

/ with OPT »

LT TR
- _Botomup e - - Search Strategy ——— 2FC

SEARCH
o \/’.\ B M N /\':__/ N, STRATEGY
NP Transtorman& S SA reeToPian , COMPONENT

A

e LoopsJonGen /
DBRetavon T
N on \ \\'. 4
L "‘_ !
R Select 7 /
S - . - N /’—‘\
: . ! e N IndexGen
‘ T ' . _InmalTreeGen /——J\
Lo : — JonExpana
i N - ¥__/
. X N .
et K/\ e
~.Jeasean '~ SEARCH SPACE COMPONENT
-
\; -
o N
\\ ’\Loops.loun >, 1\ Code written by
~ I Optimizer implementor
ALGEBARA COMPONENT

Figure 3.2 System Architecture

Jinmiao refined and re-documented the framework in an object-oriented style. Figure

3.3 is a UML class diagram [Li01] for the architecture of the framework.

19

A ——
Search Space

Search Strategy

/ OperatorVisitor
Quel timizerFacade

ryOptimi creates
\} 1

strategy 0.1 Generator

SearchStrategy

WK

search v 0.1

SearchTree

Inputs v ' optimumnode
v 0.1 — ‘

1

: OperatorTree : DBAlgebra
> 0\ o
0.1 ——P | 0.1
,_Phynodes \; DBOperator

parent -)
List<AlgorithmTree>
Inputs 1 i algo 0.1 DBAlgorithm
4 — 1 -"’/”J
AlgorithmTree o |
I

Figure 3.3 Overall Class Diagram
Note that some classes are renamed. and some classes reassigned among the
components. For instance, the class Operator and Algorithm are renamed to be
DBOperator and DBAlgorithm. Also they arc classified into DBAlgebra component.

Although the changes are not critical, we think the latter is more understandable.

The Algebra component defines the logical operators, the physical operators and their
associations in a target database.

The Search Space component is used to decide what operator trees and access plans
arc generated, and hence plays a large part in controlling the search space that is explored

by the search strategy.

The Search Strategy component encapsulates the system control. [t implements

different ways to perform search in the path space.

To our understanding, both the Search Space and the Search Strategy components are
used to explore the algebra expression space, but Search Space is to control the space
within a logical operator, while the Search Strategy component is used to control the

inter-operator space.

3.2 The Algebra Component

The Algebra component defines logical and physical operators in a database. OPT++
defines some abstract classes and lets optimizer implementers define their own algebra by

sub-classing them.

DBOperator . DBAlgorithm

.
[aY <
. |

1
* DBUnaryOperator - DBBinaryOperator DBUnaryAlgerithm : | DBBinaryAlgorithm

-~

The Operator Hierarchy Ent
orcer

DBOperatorOperation The Algorithm Hierarchy

Figure 3.4 The Algebra Component

3.2.1 Classes and Hooks

The top abstract classes are class DBOperator. DBAlgerithm,

DBOperatorOperation.

Class DBOperator

The abstract class represents logical operators in the query algebra. From the class. the
optimizer-implementer is expected to derive one class for each operator in the actual
query algebra. Besides real operators. such as SELECT and JOIN., database entities (for
example relations and attributes) also can be operators. They will serve as leaf nodes in

operator trees in the Search Strategy component.

According to the number of required inputs, operators can be classified into unary,
binary and those that take no inpuis. Because. with different arities, the behaviors of
operators vary. two subclasses DBUnaryOperator and DBBinaryOperator, which are
also abstract classes. are derived from class DBOperator. Actually, the optimizer-

implementer needs to subclass the two classes in most cases.

Hooks:

Sub-classing: The optimizer-implementer is expected to derive one class for each
operator in the actual query algebra.
Implementing abstract methods: Such methods must be implemented for their
derived concrete subclasses:
® Accepr—accepts a logical operator tree and tries to apply the operator to the tree.
A logical tree to be accepted is encapsulated in a visitor class.
® Duplicate—copies itself. During the course of optimization. many instances of
such operator classes are generated. For a class. all its instances are identical, so

this method provides a convenient way to produce a new instance given an object.

® MakeLogProps—creates logical properties for the operator tree rooted at this
operator. The tree is actually a sub-tree constructed so far. The method delegates
the task to a constructor of class OperatorTreeProperty in SearchStrategy
component.

The following method may be overridden:

o C(Clones

provides different ways to apply this operator to its input tree with
different parameters. For example. for operator SELECT. given an operator tree, if
there are restrictive qualifications on it. the method will return a list containing
objects of class SELECT. Each of the objects encapsulates a restrictive
qualification. If there are no restrictive qualifications on it. then an empty list is
returned. The class DBUnaryOperator and DBBinaryOperator give the method
a default implementation. However. according to our experience. the method needs

to be overridden in most cases.

Class DBAlgoritm

The abstract class represents physical operators (i.e.. execution algorithm) in the query
algebra. From the class. the optimizer-implementer is expected to derive one class for
each physical operator in the actual query algebra. For one logical operator, there may be
more than one physical operator to implement it. For example, for logical operator
DBRelation rerepsenting a relation, there can be FileScan (sequential scan) and

[ndexScan to implement it.

[§S]
(£}

As in the logical operator hierarchy, physical operators can also be classified into
unary. binary and those that take no inputs. Because, with different arities. the behaviors
of physical operators vary, two subclasses DBUnaryAlgorithm, DBBinaryAlgorithm,
which are also abstract classes. are derived from class DBAlgorithm. Particularly, in the
algorithm hierarchy, there is a special class Enforcer, which represents the execution
algorithms that do not correspond to any operator in the logical algebra. The purpose of
these algorithms is to enforce physical properties in their outputs required by subsequent
algorithms, instead of, to perform any logical data manipulation. For example, a Merge
Join algorithm requires a SORT algorithm as an enforcer to make its input sorted on the

join attribute.

Hooks:

Sub-classing: The optimizer-implementer is expected to derive one class for each
algorithm in the actual query algebra.

Implementing abstract methods: The optimizer-implementer must implement such

methods for their derived concrete subclasses in the algorithm hierarchy:
® Duplicate—the same meaning as in logical operator.

® MakePhyProps—creates physical properties for the algorithm tree rooted in at the
algorithm. Like in class DBOperator, the method delegates its task to a

constructor of class AlgorithmTreeProperty in the Search Strategy component.
Two another methods may be overridden:

® MakePhyNodes—builds the algorithm tree for an operator tree by delegating the

task to the Search Space component.

* Clones—provides different ways to apply this operator to it inputs, with different

parameters. According to our experience, we never override it.
For a concrete enforcer subclass, one has to implement such a method:

* Ewforce—stipulates what to do when it is used to enforce an algorithm tree.

Class DBOperatorOperation

All concrete subclasses in the Operator hierarchy also must multi-inherit another class
DBOperatorOperation. The class makes all its subclasses have a set containing

expressions that are applied by the operator.

The class is the key to understanding how the framework judges equivalence of two
logical trees and whether a logical tree is a complete tree, so it deserves more

explanation. This will be described in the next section.

3.2.2 Equivalence of Two Logical Operator Trees

After a query is parsed. all expressions involved are put in a universal set. Note that
besides normal expression such as arithmetic expression. Boolean expressions, both
relations and attributes are viewed as expressions. Each logical tree keeps track of what
expressions have been applied by keeping a set. Correspondingly, an operator must
record what expressions are applied by it. When expression sets of two operator trees are
equal. they are viewed to be equal, and normally, the one with expensive cost will be
pruned if it does have some interesting property. If the expression set of an operator tree
is equal to the universal set of the query, it is viewed to be a complete tree.

An example will make the idea more clear.

For a query: SELECT - FROM employees as e, departments AS d WHERE
e.salary>1000 AND e.dept=d.id;

Suppose the relation “employees” contains such attributes {name. dept. salary}, while
“departments” contains {id. director. location}. The universal set will be {employees,
departments, name, dept. salary. id, director. location. e.salary>25.e.dept=d.id}. The
expression set of a SELECT object will contain {e.salary>25}, and the expression set of a

JOIN object will contain {e.dept=d.id}.

Table 3.1 Expression Sets of Some Trees

Tree Expression Set

tl {employees, departments, name. dept }
2 {employees, departments. name. dept, salary, id. director, location, e.salary>25}

t3 {employees, departments, name, dept, salary, id. director, location, e.salary>25,
e.dept=d.id}

t4 {employees, departments. name, dept, salary, id, director, location, e.salary>25,
e.dept=d.id}

Table 3.1 gives the corresponding expression sets of the operator trees in Figure 3.5.
Note that by default implementation of OPT++, once a relation is introduced into an
operator tree, all its attributes are introduced too. In the example. t3. and t4 will be

viewed o be equal, and also they are complete trees.

SELECT
(salary>1000)
DBRelation | ~ DBRelation
(employees) | - (employees)
t1 t2
JOIN) SELECT
(e.dept=d.id) (salary>1000)
\\‘
| SELECT N JOIN
i (salary>1000) N (e.dept=d.id)
N -
\
\
DBRelation ’ DBRelation DBRelation DBRelation
(empioyees) ’ (departments) (employees) (departments)
t3 4

Figure 3.5 Some Logical Trees

3.3 The Search Space Component

The component defines that what should be done when a new operator is applied to an
operator tree (a part of the complete tree). It controls the search space in one operator
level. Actually, the component is associated with the search strategy component, which
controls how to search the plan space in inter-operator level. As declared by Kabra

[Kab99], the search space subclasses can be implemented without making assumptions

about the search strategy, but that is less efficient. [mplementing the component based on
a specific strategy will improve efficiency. but decrease the extensibility of the target
system. As you will see in chapter 5, our instantiation has to balance extensibility and

efficiency.

3.3.1 Design Patterns Used

Jinmiao [LiO1] redesigned the Search Space component by applying visitor design
pattern [Gam95]. There are two hierarchies in the components, the visitor hierarchy and
generator hierarchy. The component performs operations on the logical algebra. The
visitor hierarchy just dispatches the tasks to operator-specific generators in the generator
hierarchy. where the real operations are done.

Visitor Design Pattern

As in the general visitor patten. a logical operator object calls a visitor's
corresponding method in its Accepr method and passes itself as a parameter. The logical
trec o be processed is encapsulated in the visitor when the visitor is initialized. Then the
visitor performs operator-specific operation on the tree by delegating the task to
corresponding generator classes.

Figure 3.6 shows the procedure when a Join object accepts an ExpandTreeVisitor in
UML sequence diagram. When an object of class Join accepts a visitor, it just calls the
corresponding method defined in the visitor class. VisitJoin in the diagram. Then the Join
object is processed in the method, by delegating the task to the generator classes.

Note that Figure 3.6 does not show the complete process. The treatment of converting
a logical tree to physical tree(s) is omitted.

The Visitor pattern makes the design more flexible, because it makes it easy to add a
new operation. The framework provides hooks letting the user to add a new method to

process a new operator easily.

L}) L
) 1 L]
) L} 1
) [}
<<create>> : :
wstor ExpandTreeVisitor '
Accept(visitor) : :
L 1
<<create>»> H
Visiton(thus
"———)‘ JonExpang H
:
t t
Apply(} } !
1
n <<create>> — H
\ QperatorTree '
) 13
] —_—)
]] 1
)) 1]
) 1
1 L]
1 1 1]
L}] :
H H MakePhyNodes() !
s]
' 1 Acceptivistor1) ‘cctreate>> E
‘ i : wistor 1 TreeToPlanVisttor | ¢
1 t 1 [}
) L} 1} t
' ' Visitjon(this) T H H
] 1 1 I al 1
] T T 1 1
1] l L} 1 L]
H : ' H 1 l :
H ' H H MakePhyNodes()
' T ‘ :]
1} Ll 1) t
t 1 1]]
) L} 1 1 [}
[} 1 1 1 L} < >
: H : : : ﬁ ingryTr N I3
L] L} 1)]
& 1] l 1} L3
1 T v]])
:) . ' : H MakePhyNades() |
1 ’ l) 1 L 1
L} + 1 [} L} Ll
L} Ll . L} L 1
L} .) 1] + 1]
] Ll]) t [}
1 i]] 1 1 L}
1 1 ' 1} 1 L})
() ' ' 1)] 1]
) " v i) 1 1
) ¥] 1 L Ll [}
))) [} L} l 1
] 1 . 1} 1 L}))
1] ' 13 1 L} t)
1 1 1] + 3 1)]
L} 1 t [}) .) 1

Figure 3.6 The Sequence Diagram for Visitor Pattern in the Search Space Component

QperatorTreeVisitor
i l

ExpandTreeVisitor ' TreeToPlanVisitor
: T
creates,uses Creates,uses
v N
. ExpandTreeGenerator AlgonthmTreeGenerator
L ;

7 3
i [l

L
]

' BinaryOperatorTreeExpand l i UnaryOperatorTreeExpand BinaryAlgonthmTreeGenerator UnaryAlgonthmTreeGenerator

I

EnforcerPlan

Figure 3.7 The Search Space Component

Figure 3.7 depicts main classes in the Search Space component provided by OPT++.

3.3.2 Classes and Hooks
3.3.2.1 The Visitor Hierarchy Classes

The visitor hierarchy defines three abstract classes. OperatorTreeVisitor,
ExpandTreeVisitor and ExpandTreeVisitor. The generator hierarchy implements the
major functionality in the Search Space component. The optimizer-implementer must
derive concrete subclasses from class ExpandTreeGenerator. and
TreeToPlanGenerator. The subclasses will be called by their corresponding
OperatorTreeVisitor subclasses. The optimizer-implementer may define their own
Visitor and Generator hierarchy parallel to ExpandTreeVisitor and
ExpandTreeGenerator in different ways, but generally speaking. the optimizer-
implementer does not need to change the TreeToPlanVisitor and

TreeToPlanGenerator hierarchy.

The OperatorTreeVisitor Class

The OperatorTreeVisitor is the root class the visitor hicrarchy. [t is partially
designed in the framework. It defines an attribute currentTree to represent the current
logical operator tree to be processed. The class is an abstract class and leaves a series of
pure virtual functions VisitXX. The functions must be implemented in its concrete
subclasses by the optimizer-implementer. Here, XX refers to the name of a logical

operator.

The ExpandTreeVisitor class

The ExpandTreeVisitor is a subclass of OperatorTreeVistor. It is designed to
delegate the task to an operator’s corresponding generator subclass. For example: We can
define our own subclass of OperatorTreeVisitor and dispatch the tasks to our own
generator classes. According to our experience, the ExpandTreeVisitor can be reused

without changes.

The TreeToPlanVisitor class

The TreeToPlanVisitor subclass is designed to convert an operator tree to its

corresponding algorithm trees. The visitor classes dispatch their responsibility to the

28

method, MakePhyNodes. of a concrete class. [n turn, the method of a concrete generator
class is called to perform the operation.

i
|
'
{

f’\tist<oBA|gorimm> list = op->GetListOfAlgorithms (); /‘

' O— flist.eof()] —@

[elée]

-

N

~.

DBAlgorithm *algorithm = list. Element (); \

i
i

I :] AlgorithmTree
\ algorithm->MakePhyNodes (currentTree); ; X [created)

Figure 3.8 The Activity Diagram for the Method VisitDBOperators
All the methods like VisitXX in the TreeToPlanVisitor class are implemented in the
same way. A private method, VisitDBOperators. is called to enumerate all physical trees
according to algorithms associated with the logical operator. This can be explained in

Figure 3.8.

First, the algorithms associated with the operator to apply are put in a list. Then, for
each algorithm, its MakePhyNodes method is called to try to generate a physical tree. The
concrete algorithm class calls the MakePhvNodes method of its corresponding generator

class to do the job in turn. This is shown in Figure 3.6.
The hooks in the visitor hierarchy are:

Sub-classing: The optimizer-implementer can derive a new class from
OperatorTreeVisitor to the search space in a different way. Nevertheless, because the
visitor class in the framework just dispatches its tasks to corresponding generator classes,
we can change the behavior of the Search Space component by changing the generator

classes. Therefore, there is no need to derive a new class in practice.

Adding new methods: The optimizer-implementer must add a VisitzXX method to

each class in the hierarchy.

* The optimizer-implementer must add a VisitXX pure virtual method for each
logical operator XX.

e The optimizer-implementer must implement a series of VisitXX methods in the
subclasses to expand an operator tree and to convert an operator tree to algorithm
tree(s).

According to our experience. for class TreeToPlanVisitor, we just implement the

method VisizXX by calling the private method VisitDBOperators.
3.3.2.2 The Generator Hierarchy Classes

The generator hierarchy does not have a common root class, but for each subclass of
class OperatorTreeVisitor. there should be a corresponding generator. There are two

top generator classes. ExpandTreeGenerator and AlgorithmTreeGenerator.

Class ExpandTreeGenerator

It is to expand an operator tree. Class UnaryOperatorExpand and
BinaryOperatorExpand are defined as subclasses of the class by the framework.
Common behaviors are generalized in the two subclasses according to the number of
their inputs. Normally. we subclass the two classes. instead of ExpandTreeGenerator.

and override the method. apply.

The method. upply, of UnaryOperatorExpand is implemented as shown in Figure
3.9. First the Clones method of the operator to be applied is invoked to determine
whether the operator can be applied to the given operator tree. Then the constructor of

class OperatorTree is called to generate 2 new expanded logical tree.

The new created logical trees are passed to the search tree and preserved there.

30

A

List<DBUnaryOperator> cianes = op->Clones (input); /

/

search tree.

O [clones.eof()] *'O Put a new operator tree into the %

{else]

k OperatorTree ‘newnode =new OperatorTree (clones.Element (), input); >

GlobalVariable()->search->NewNode (newnode); :------=-szeeeees) (createq]

Figure 3.9 The Activity Diagram for the Mcthod UnaryOperatorExpand::apply
Hooks:

Sub-classing: A subclass. such as JoinExpand. must be defined for each operator. It
should be defined based on UnaryOperatorExpand or BinaryOperatorExpand. The
method apply can be overridden if the optimizer-implementer does like the default

behaviors of them.

Overriding: The method Apply is to apply an operator to a given operator tree. [t is
implemented in a default way. The optimizer-implementer can override it. Normally. we

need to override it.

Class AlgorithmTreeGenerator

[t is an abstract class to convert a logical tree to physical tree(s) according to the
property of algorithm being applied. The two subclasses provided by the framework,
UnaryAlgorithmTreeGenerator and BinaryAlgorithmTreeGenerator, define
common behaviors when therc are one or two inputs respectively. Like in class
ExpandTreeGenerator. we subclass generally the two classes and override their

methods, instead of AlgorithmTreeGenerator.

As we can see in Figure 3.6. a concrete algorithm class calls the method

MakePhyNodes of an algorithm generator class to generate a physical plan. The class

31

then calls its method. apply. to do the job. The default implementation of method
MakePhyNodes and Apply UnaryAlgorithmTreeGenerator is shown in Figure 3.10 and
Figure 3.11. The two methods of class BinaryAlgorithmTreeGenerator are

implemented in the similar way.

\

List<AlgonthmTree> inputlist =lognode->Input ()->GetPhyNodes ();

O— [inputtist.eof()] —@
[else]
[else] N
’ AlgorithmTree “tree = inputlist.Element (); v
[else]
['tree->SubOptimal ()] [[
' R | AlgorithmTree
Call method Apply to generate an algonthm tree K (creat

Figure 3.10 The Activity Diagram for UnaryAlgorithmTreeGenerator::MakePhyNodes

|

Enforce the input aigorithm tree;

Generate a new algorithm tree by calling constructor of class AlgorithmTree; |

L

r

. e AlgorithmTree
. Prune the new created tree if it can be pruned k) 1 [created]

®

Figure 3.11 The Activity Diagram for UnaryAlgorithmTreeGenerator::Apply

32

As we see in Figure 3.10 and Figure 3.11, the method MakePhyNodes picks one
algorithm tree from its input operator tree (there may be more one algorithm tree
associated with an operator tree) at a time. and calls Apply to generate a physical plan

using the input algorithm tree and the algorithm to be applied.
Hooks:

Sub-classing: A subclass. such as JoinPlan. must be defined for each operator. [t
should be defined based on UnaryAlgorithmTreeGenerator or

BinaryAlgorithmTreeGenerator.

Overriding: The following methods can be overridden to change the way to generate
an algorithm tree given an algorithm and input algorithm tree(s), if the optimizer-
implementer does not like the default behaviors.

* Applyv—apply an algorithm to its input algorithm trees.

® MakePhyNodes—an abstract method that is supposed to enumerate all possible
combinations of inputs.

® CanBeApply—if the current algorithm can be applied to a given algorithm tree.

Our experience indicates we do not need to override them in most cases.

3.4 The Search Strategy Component

The search strategy Component encapsulates the system control flow. It implements
different search approaches to find the optimal plan in the inter-operator level. At any
time. there is only one search strategy dominating. The component also encapsulates the
cost model and makes cost estimation a hot spot. It preserves all logical and physical
plans generated up to the current time by maintaining an aggregation reference to the
Algebra component, and dynamically prunes the sub-optimal trees that do not have

interesting properties. Figure 3.12 is a class diagram for the Search Strategy component.

33

AlgorithmTreeProperty <—— AlgorithmTree

By
)
OperatorTreeProperty «<—- OperatorTree
x
A
SearchTree .
!
s
ExpandedSearchTree SearchStrategy
— Al
/>
BottomupSearchStrategy QueryOptimizerFacade
QueryOptimizerFacadeWithParser I‘ QueryOptimizerFacadeWithFormatedFile

Figure 3.12 The Search Strategy Component

3.4.1 Design Patterns Used

There are three design patterns used in the components: Facade. Strategy and Factory
Method.

The Facade pattern [Gam93] is used to provide a unified interface for the query

optimization subsystem.

The motivation of the Strategy [Gam95] design pattern is to define a family of
algorithms (called strategies). and to make them interchangeable. The idea conforms to
the need for extensibility of changing the search strategy in query optimization.
Therefore. it is natural to use the Strategy pattern. Typically. there will be only one
strategy used when the framework is instantiated, but we do not know which one it is
while designing the framework. so we cannot instantiate the concrete classes associated
with the strategy. Therefore. the Factory Method pattern is adopted to defer the decision
and let the concrete strategy decide what classes should be instantiated.

In Figure 3.12. SearchStrategy is an abstract class. We can define many concrete
search strategies by sub-classing it. To make them interchangeable, a pointer to class
SearchStrategy is defined as an attribute in the class QueryOptimizerFacade that uses
the strategies. The code is:

SearchStrategy * strategy:

34

To change a strategy. we only need to initialize a concrete strategy class, for example.
BottomupSearchStrategy. and assign its reference to the attribute. The code is:

strategy=new BottcmupSearchStrategy;

In this way, Strategy pattern is implemented.

As it will be described in next section. the class SearchStrategy needs to preserve a
reference to a concrete search tree class associated with a concrete search strategy class.
However. because the class SearchStrategy is an abstract class, it does not know what
concrete search tree class should be created while being initialized. As a result, there is
only a protected attribute defined as an pointer to the abstract class SearchTree. like:

SearchTree~ search;

An abstract method CreareSearchTree is defined in class SearchStrategy. The
method is implemented in its subclass. For example. in its subclasss,
BottomupSearchStrategy, the method is implemented as:

return new ExpandedSearchTree;

At runtime. a concrete search strategy class. for example. BottomupSearchStrategy,
is instantiated. and then it will call the method CreateSearchTree to initialize the
attribute, search. The code is:

search= CreateSearchTree!() ;

This is how the Factory Method pattern is implemented.

The two patterns make it easy to change strategies.
3.4.2 Classes and Hooks

Class QueryOptimitztionFacade

It is an abstract class defining an entry point to the query optimization system. It has
two concrete subclasses. QueryOptimitztionFacadeWithFile and
QueryOptimitztionFacadeWithParser. By implementing the method,
PreprocessQuery. in different ways, they behave differently when accepting queries in

different formats.

Class SearchStrategy

It is abstract class.

35

Main methods:

Optimize—a public method to optimize the user query and return the optimal physical

plan.

CreateSearchTree—the protected method that is supposed to be implemented in

concrete subclasses to create their corresponding search trees.
Main attribute:

search—a privale attribute representing the actual search tree (an instance of the

SearchTree class)
Hooks:

Sub-classing: The optimizer-implementer must subclass the class SearchStrategy for
a self-defined strategy, and implement the method CreareSearchStrategy. The class

BottomUpSearchStrategy is just an example strategy.
Implementing the abstract method:

® CreateSearchTree—the protected method must be implemented in concrete

subclasses to create their corresponding search trees.

The SearchTree class

[t is an abstract tree representing a search tree that is used to explore the search space.
ExpandedSearchTree is an example subclass of the SearchTree class. created by the

class BottomupSearchStrategy.
The main attribute:

listofunexpandednodes—the important attribute is an array of lists, which are used

to store the uncompleted operator trees generated during optimization.
The main method:

Prune—this is a critical static method used to prune the sub-optimal non-interesting
trees dynamically based on the cost of physical trees. The method is critical to understand

the efficiency of the framework, so it is explained in detail in 2.5.2.
Hooks:

Sub-classing: The optimizer-implementer must derive a subclass from the class

SearchTree for the self-defined search strategies.

36

[mplementing the following abstract methods:

® MakelnitialTree—a public abstract method. It is overridden to create initial
operator trees. The initial tree depends on the concrete search tree derived from the
class. For the Bottom-up strategy. an initial tree is just a leaf node representing a
relation. while in the transformation strategy, it is a randomly created complete
tree to be transformed. The optimizer-implementer must create initial tree(s) in a

way that is suitable to later search.

® DoSearch—a public abstract method. which performs the search on the search
tree. Different strategies implement it in quite different ways. For example, in the
Bottom-up strategy. it expands a tree (it may be an initial tree or a resultant tree of
one iteration of this process) by trying to apply all operators to it repeatedly until
complete trees are created. while in the transformation strategy. the initial tree is
transformed by applying transformative rule one at a time. The optimizer-
implementer must build the search tree based on the initial operator trees(s) using a

customized search strategy.

The OperatorTree class

The class is completely implemented. so no actions need to be taken.

This class is used to represent a logical operator tree. Actually. an object of the class is
a node of such a tree. A node takes none, one or two inputs. which are also objects of the
class, so a tree is constructed. The class, and OperatorTreeProperty, AlgorithmTree
and AlgorithmTreeProperty, are the most successfully designed classes.

The class OperatorTree keeps a reference to an object of class DBOperator. It
screens all operator specific details. but preserves general information required by
optimization. It also keeps a reference to an object of class OperatorTreeProperty,
which records the property of the current logical operator tree. Besides these, it holds a

list containing all its corresponding algorithms.

Its main attributes are shown in table 3.2.

37

Table 3.2 The Main Attributes of Class OperatorTree

Name Description
op A pointer to an object of class DBOperator, which is current operator to
be applied.
inputs An array of pointers to its input(s), which are also objects of class
OperatorTree.

phynodes A list of objects of class AlgorithmTree associated with the operator tree.

logprops An pointer to an object of class OperatorTreeProperty, which is used to
represent logical property of the operator tree.

Class OperatorTreeProperty

The class is used to calculate and store logical properties of an operator tree. Each
logical tree has an object of class OperatorTreeProperty associated with it. The
properties are mainly used to determine equality of two logical trees and to calculate

costs of its associated physical plans.

[ts main attributes are shown in table 3.3.

Table 3.3 The Main Attributes of Class OperatorTreeProperty

Name Description

_numtuples The number of output tuples. This is used to calculate costs of
its associated physical plans

_operations A set containing operations (i.e. expressions) applied to the
tree so far. It is accumulated when an operator tree grows. See
2.2,

_index_path A string representing the index path name which can be used

for an index scan.

-is_interesting An integer indicating whether the associated operator tree has
some interesting properties.

Table 3.4 lists its main methods.

38

Table 3.4 The Main Methods of Class OperatorTreeProperty

Name Description

IsEqualTo A public method that compares the logical properties of two
operator trees.

IsCompleteQuery A public method to judge whether a given tree is complete.

Hooks:

Adding a new method: The optimizer-implementer must add a constructor to the
class OperatorTreeProperty for each logical operator XX with format:

OperatorTreeProperty (XX*, OperatorTree*);

In this way, the framework associates the specific operators with the general

representation of operator trees.
[n one constructor, at least such things must be done:
¢ Calculating _numtuples;
e Calculating _operations.
The optimizer-implementer may
e Redefine whatis _is_interesting :

¢ Add some new logical properties.

Class AlgorithmTree

Similar to class OperatorTree, class AlgorithmTree is used to represent a physical
algorithm tree. The main attributes are shown in table 3.5. Like class OperatorTree. the

class is completely implemented, so no actions need to be taken.

39

Table 3.5 The Main Attributes in Class AlgorithmTree

Name Description

aAlgo A pointer to an object of class DBAlgorithm. which is current
algorithm to be applied.

Inputs An array of pointers to its input(s), which are also objects of class
AlgorithmTree.

Parent An pointer to an object of class OperatorTree, with which the
algorithm tree is associated.

phyprops An pointer to an object of class AlgoriothmTreeProperty, which is
used to represent physical properties of the operator tree.

suboptimal A Boolean attribute indicating whether the algorithm tree is sub-

optimal. An algorithm tree is marked as sub-optimal when it has
higher estimated execution cost, but used by other algorithm trees.
[n this case. we cannot delete it.

Class AlgorithmTreeProperty

The class contains the physical properties for an algorithm tree (physical query plan)

such as estimated execution cost. sort-order. etc.

Table 3.6 The Main Attributes in Class AlgorithmTreeProperty

Name

Description

_cost

An object of class Cost. It contains the estimated execution cost
for the current algorithm tree.

_is_interesting An integer indicating whether the associated algorithm tree has

some interesting properties. Whether an algorithm tree is
interesting will be defined by the optimizer-implementer in a
constructor of the class.

Hooks:

Adding a new method: The optimizer-implementer must add a constructor to the

class AlgorithmTreeProperty for each logical operator XX with format:

AlgorithmTreeProperty (XX*, OperatorTree=)

In this way, the framework associates the specific operators with the general

representation of operator trees.

40

[n one constructor, at least such things must be done:

¢ Calculating _cost. This is implemented by delegating the task to class Cost:
¢ Calculating the size of an output tuple.

The optimizer-implementer may

¢ Redefine whatis _is_interesting :

* Add some new physical properties.

Class Cost

The class is defined to compute the estimated execution cost, given an algorithm, and
the algorithm tree to be constructed. The cost model of the optimizer is encapsulated in

the class.
Hooks:

Overloading a method: The optimizer-implementer must overload the method,
compute, for each physical algorithm. In such a method, the estimated execution cost is
computed based on physical properties. The optimizer-implementer may change the cost

model in the method.

3.5 Cost Evaluation and Dynamic Pruning

Cost evaluation and dynamic pruning are two of core functions of the framework. The
cost model is a hot spot. which the optimizer-implementer must implement. Dynamic
pruning mechanism deletes the sub-optimal operators and algorithm trees that are

determined not to be parts of the complete optimal tree.

3.5.1 Cost Evaluation

There are different cost models for different situations. The most common uscd model
is to use the disk [/O to estimate the execution cost of an algorithm [Gar00]. In the

framework’s sample model. both /O cost and CPU cost are considered.
In the framework, the cost model is designed as a hot spot.
To calculate cost of an algorithm, the following information is needed:

e Estimated sizes of the inputs. This is calculated by constructors of class

OperatorTreePropperty, which are provided by the optimizer-implementer.

41

¢ Selectivity of the predicates applied by the algorithm. This is computed by the
method Selectivity of the class Expression. which can be re-implemented easily to

change selectivity of predicates without affecting any other part of the framework.

e Estimated number of instructions required to execute the algorithm and other
database statistics. such as the size of memory available, page-size, /O cost per

page. The data are available in system catalog.

3.5.2 Dynamic Pruning

In the course of optimization. many sub-trees and complete trees are generated. The
optimizer compares a tree to its equivalents. The ones with higher cost and without
interesting properties will be deleted as early as possible. The advantages of the dynamic
pruning are:

e Saving time: For some operator trees, if the strategy can decide that they will not
be the optimal tree. deleting them will save a lot of time. because we do not need
to expand them further. The earlier such trees are deleted. the more time can be
saved.

® Saving space: The unnecessary trees take up a lot memory. Especially. in C4++.
memory management is a critical problem. If we do not delete them properly.

memory leakage will occur.

To prune the trees. the framework has to find equivalents for a given tree. The
framework provides well-designed functionality to do that. It determines whether two
trees are equal on the basis of equivalence of two expression sets of two trees using a

hash mechanism. More details are described in Jinmiao's thesis.

Even though we find a sub-optimal equivalent. to delete a physical node is nontrivial.
If it is deleted improperly. memory leakage may occur. Also, the system will be
corrupted. because some other objects reference a non-existent node. Fortunately, the

framework considers all situations.

Figure 3.13 shows the function to delete an algorithm tree. Deleting a physical node
may cause its parent. an operator tree. to be deleted. The procedure is shown in Figure
3.14.

i
]
j
<> IsUsed

o

node 15 an aigonthm tree.
The Method GetParent() retums the pointer 10 its assoctated
' operator tree.

{else}

y t
O e [I5SubOpumal] —— ,

{else]

O- (node->suboptmal] +{ pnnt errar ntormanion |
Ne— .

!

node->GetfParent ()-) . Delete the pointer to the node trom is

i

¢

>DeletePhyNode (node) . '_ Parent’s subopumal_pnynodes hist - felse| O

@. - feise| @ _ Pode->suboptimal = 1.)

‘

{The parent Can tie Deieteq}

e
7 Deiete the pomnter to the

. parent from the s2arch tree
— [else]

—_— e
4

delete the parent.
-~ '

e

-

e "nade->GetParent ()->DeletePhyMode (node); |

\ delete is all nputs by caling the method recursively

e

{else]

, delete the physical node. ,/

Figure 3.13 The Activity Diagram for Deleting an Algorithm Tree

43

. parent is the parent operator treeB]

'

Delete the painter to the node from us parent’s
phynodes list

[else]

. /
O—[nadeoSubOpnmal 0Ol tsuboptimal _phynodes.insert (node);

felse]

<> [else]

[CanBeDeletedFromSearchTree]

\ Delete the pointer to the parent from the search tree)

%[else] g

[suboptimal _phynodes.IsEmpty ()]

L

.’\ delete the parent: j

i

Figure 3.14 The Activity Diagram for Deleting an Operator Tree

Note that;

1.

An algorithm tree can be used by more then one tree, so it has an attribute to
record how many other nodes are referencing it. When an algorithm tree is used,
we cannot delete it: instead. we set it to be sub-optimal and do not expand it
further. For example: consider a node (nl), which has been used as an input node
by another node (n2). Now, if a third node (n3) is created and it happens to be

equivalent to node nl and also happens to be cheaper than nl, then we would

delete nl. But if, in this situation. it happens that miraculously n2 turns out to be
part of the ultimate optimal plan (unlikely, but possible in the current scheme)
then we are in trouble. because n2 will try to access nl, but nl has already been

deleted.

9

The object of class SearchTree holds an array of lists containing pointers to
operator trees. which may be expanded further. When a logical tree is no longer

needed. we delete its pointer from the lists.

In this chapter, we described OPT++, the framework we use to build our own
optimizer. We describe the framework based on our understanding gained from
experience. Only the attributes and methods that help understand the framework are
introduced. Complete description of OPT++ is available in the Kabra’ paper [Kab99] and

Jinmiao's thesis [LiO1].

Chapter 4 The PostgreSQL Optimizer

This chapter will analyze the optimizer of PostgreSQL. After an overview, the main
data structures of the optimizer are introduced. The transformative rules used in the
optimizer are extracted and described. The rules are applied regardless of system
statistics. The search strategies used in the optimizer are illustrated. Especially, dynamic

programming and the genetic algorithm are described in detail.

4.1 Overview

The object-relational database management system now known as PostgreSQL (and
briefly called Postgres95) is derived from the POSTGRES package written at the
University of California at Berkeley [Pos02a]. Our target optimizer is for a relational

database. so we only analyze its features for optimizing relational databases.

As a mature relational-object database. PostgreSQL is compatible with the
SQL92/SQLYY standard. Although the optimizer does not generate logical trees while
optimizing a query. we still can extract the logical operators and their corresponding
physical operators abstractly on the basis of the SQL standard it supports. Table 4.1
shows the logical operators and physical operators implementing the logical operators.
The relational-object database specific physical operators, such as materialization.

append. and operators for non-SELECT queries. are not listed here.

Table 4.1 Logical and Physical Operators Supported by PostgreSQL

Logical Operator Corresponding Physical Operators
RELATION SEQSCAN, INDEXSCAN
UNION UNION
INTERSECTION INTERSECTION
EXCEPTION EXCEPTION
SELECTION SELECTION
PROJECTION . *
PRODUCT NESTED LOOP
JOIN NESTED LOOP, HASHJOIN, MERGEJOIN
DUPLICATE ELIMINATION UNIQUE
GROUPBY AGG
ORDERBY SORT
SUBQUERY SUBQUERYSCAN

46

Note: There is no explicit projection operator in PostgreSQL. After cach physical operator is
executed, the result is calculated according to the target list. The calculation is actually a

projectiorn.

All the logical and physical operators except the ones for set operation were

implemented in our target optimizer.

The search strategy varies with the number of relations involved in a query. If the
number of relations in a query does exceed a default value, the optimizer will do a near-
exhaustive search through the join tree space: otherwise. the genetic algorithm will be

employed to perform a semi-random search.

4.2 Main Data Structures of the PostgreSQL Optimizer

To understand how the optimizer works. it is necessary to study its main data
structures. As with other parts of PostgreSQL. the optimizer was written in the C
language. Therefore, the main data structures are strucrs. Here, the two data structures.
Query and Plan are introduced. The strucr Query represents a query internally. while the
struct Plan stands for a physical plan generated for a query. Because there are no logical
operator trees generated during the course of optimization, the two data structures are the

most important ones in regard to understanding the optimizer.

4.2.1 Internal Representation of a Query

A query, after being parsed and rewritten, is represented with a query tree (a struct in
C language) internally. The data structure contains all necessary information, which can
be used conveniently in subsequent processes. In PostgreSQL. a query tree 1s composed

of the following parts:
¢ The command type

This is a simple value of enum type telling which kind of command (SELECT.
INSERT. UPDATE or DELETE) produced the query tree. Because of the scope

of our project, we focus only on the SELECT command.
¢ The range table

The range table is a list of relations that are used in the query. In a SELECT

statement these are the relations given after the FROM keyword.

47

Every range table entry stands for a table or view and tells by which name it is
called in the other parts of the query. In the query tree, the range table entries are
referenced by index rather than by name, so here it does not matter if there are

duplicate names.
The result relation

This is an index (integer) into the range table that identifies the relation where the
results of the query go. This is for SELECT INTO, INSERT, UPDATE and
DELETE commands.

The target list

The target list is a list of expressions that define the result of the query. In the case
of a SELECT, the expressions are what builds the final output of the query. They
are the expressions between the SELECT and the FROM keywords. The symbol *
is just an abbreviation for all the attribute names of a relation. [t is expanded by

the parser into the individual attributes, so the optimizer will never see it.

Every entry in the target list contains an expression that can be a constant value, a
variable pointing to an attribute of one of the relations in the range table. a
parameter. or an expression tree made of function calls, constants. variables,

operators elc.

The qualification

The query's qualification is an expression much like one of those contained in the
target list entries. The result value of this expression is a Boolean value that tells
whether the operation (INSERT, UPDATE. DELETE or SELECT) for the final

result row should be executed or not. It is the WHERE clause of an SQL
statement.

For a specific relation, a qualification may be a Boolean expression restricting the
output of the relation, or a join qualification implying a Jjoin with another. For
example, tablel.age>25 is a restriction qualification, while
tablel.name=table2.name is a join qualification implying a join between table!
and table2.

The join tree

48

The query's join tree is a tree showing the structure of the FROM clause. For a
simple query like SELECT FROM a, b, c, the join tree is just a list of the FROM
items, because we are allowed to join them in any order. But when JOIN
expressions—oparticularly outer joins— are used. we have to join in the order
shown by the joins. The join tree shows the structure of the JOIN expressions.
The restrictions associated with particular JOIN clauses (from ON or USING
expressions) are stored as qualification expressions attached to those join tree
nodes. The key words explicitly indicate how the relations will be Jjoined.
INNER/OUTER, NATURAL, LEFT/RIGHT/FULL are called join directives.

e The others

There are the other parts of the query tree representing the group clause, having
qualification, DISTINCT clause, SORT clause and set operations. Also, there are

some lists for the subsequent use of optimization.

Figure 4.1 is a sample query tree, in which target list, join tree, and qualification are

shown. The range table for the query should be {tablel. table2}.

Query: select * from table1. table2 WHERE table1.a=table2.f:

!)s/’—%ablm a int)
: SELECT Que \

: /(tablm b varchar(10))
; Target List |

Join Tree | : >@me1 c floats)

Qualification \\
>(table2.d varchar(10))

\
\ ANy
—<

table2.e varchar(10) }

BN
fN
e S

{ Intd=) (Join

A\ /

/ \ FAR
Covera) o) Canmr

Figure 4.1 A Query Tree

49

4.2.2 Internal Representation of a Plan

After optimization. a physical plan to answer the query is generated. A physical plan is

a tree. Each node of such a tree is a physical operator (e.g. algorithm). The major

members of the struct plan are:

type : Type: enum. It is a variable indicating the operator of current node. For
example. it may be HASHJOIN.

cost: Type: double. It is the estimated cost consumed after the current operator is

executed.

plan_rows: Type: double. It is the number of rows the plan is expected to emit.
plan_width: Type: inzs. It is the average row width in bytes

target_list: Type: List. It is a list of expressions.

Qualications: Type: Lisz. It is a list of implicitly-ANDed qualication conditions
left_tree: Type: struct Plan *. It is a pointer to it left input which is alsc a node of
a plan tree.

right_tree: Type: struct Plan *. It is a pointer to it rigth input which is aiso a node
of a plan tree.

The other members indicate run time information and other plans which must be

executed before the current node is executed.

Figure 4.2 is an example physical plan. The leaf nodes are scans of relations. Because

there is an index on tablel.a3. and also there is a restriction qualification. a3=42. on it, we

can access tablel by index scan. For table2, a sequential scan has to be used. The

qualification. a2=b2, implies a join between tablel and table2. The directive INSTINCT

indicates that a physical operator. Unique. has to be applied. while the physical operator

Unique requires that its input must be sorted. so the physical operator. Sort, is applied

first.

50

Query: select DISTINCT a1.01 from table1, table2
WHERE table1.a2=table2.b2 AND table1.a3=42;

Unique

Sort \
Sort Columns: a1,b1

Nested Loop Join

Target List: a1,a2
Qualification: a3=42

l/ Index Scan] (Sequential Scanﬂ
' Ta,,'f:ﬁ; ‘f’;’f ! ' Table: table2 |
’ Target Ux.r 1.22 Index:none
get List: at, | Target List:b1,b2
Qualification: a3=42 ; \\ /

Figure 4.2 A Plan

4.3 Transformative Rules Used in the PostgreSQL Optimizer

While optimizing a query. some transformative rules can be applied without having to
know the system statistics. These rules proved to be helpful for generating better physical
plans. In this section. the transformative rules used in the optimizer will be listed. and
their corresponding consequences will be discussed. Because there is no literature on the
transformative rules of the PostgreSQL optimizer, we extracted the following rules from

the source code and comments. The version we studied was PostgreSQL7.2.1 [Pos02b].
Rulel: or-to-union

* Description: A qualified query with or-operator in its where-clause is converted

to union of two queries.

¢ Example:

A query:
SELECT a,b, ... FROM one_table WHERE
(vl = constl AND v2 = ccnst2 [vn = constn]) OR

51

(vl = const3 AND v2 = const4 [vn = constn |) OR

[(vl = constn AND v2 = constn [vn = constn)]}

1s converted into:

SELECT a.,b, ... FROM one_table WHERE
(vl = constl AND v2 = const2 [vn = constn]) UNION
SELECT a.b, ... FROM one_table WHERE
(vl = const3 AND v2 = const4 { vn = constn]} UNION
SELECT a.b, ... FROM one_table WHERE

[(vl = constn AND v2 = constn [vn = constn })]

e Applicability: To qualify for transformation, the query must be SELECT
command without any sub-SELECTs. It must not have a HAVING clause. or a
GROUP BY clause. Moreover, it must be a single table.

¢ Consequences: The benefits of the transformation are:

[. Avoiding the exponential memory consumption of applying Rule 2.
2. Making it possible to use index access methods. If a qualification resides in an
OR-expression. we cannot push it to its corresponding relation. therefore. we

cannot make use of index access methods.

Rule 2: constant-expression-simplification

¢ Description: Reduce any recognizably constant sub-expressions of the given
expression tree. Simplify Boolean expressions containing constant sub-
expressions if possible.

¢ Example: The expression "2 + 2" will be converted into "4". The expression "X
or true” will be converted into "true".

e Applicability: Any constant sub-expressions occurring in expressions.

e Consequences: The constant sub-expressions are simplified or even removed;
therefore, in some cases, select-push-down and other operations become possible
or at least more convenient after the transformation. For example, after we reduce

an expressions: "x OR true" to "true”. we do not do any process on the expression.

52

Rule 3: Expressions-normalization

Description: Convert a qualification to the most useful normalized form, either

CNF (AND-of-ORs) or DNF(OR-of-ANDs). Push down NOTs.

Example: The expression “A OR (B AND C) " will be normalized to be (A OR
B) AND (A OR C)". The expression “NOT (A OR B)” will be converted into
“(NOT A) AND (NOT B)".

Applicability: All expressions in WHERE-clauses and Join qualifications will
be normalized. However. normalization is only carried out in the top
AND/OR/NOT portion of the given tree: we do not attempt to normalize Boolean

expressions that may appear as arguments of operators or functions in the tree.

Consequences: Query qualifications (WHERE clauses) are ordinarily
transformed into CNF, i.e. AND-of-ORs form, because then the optimizer can use
any one of the independent AND clauses as a filtering qualification. However,
qualifications that are naturally expressed as OR-of-ANDs can suffer an
exponential growth in size in this transformation. so we also consider converting
it into DNF (OR-of-ANDs), and we may also leave well enough alone if both
transformations cause unreasonable growth. The OR-of-ANDs format is useful
for index-scan implementation, so we prefer that format when there is just one

relation involved.

Rule 4: select-push-down

Description: Push selections down to their corresponding relations as low as
possible. In PostgreSQL, if there is no index on a required selection attribute, the
selections are applied right after a sequential scan: otherwise. an index-scan is

adopted to retrieve the tuples.

Applicability: Restriction qualifications in a where-clause are selection

qualifications to be pushed down.

53

Consequences: As illustrated in almost every database textbook. by select-push-
down. undesired tuples are filtered out as early as possible. so normally, costs for

subsequent operations decline drastically.

Rule 5: Sub-query-pull-up

Description: When a query contains a simple sub-query in its FROM-clause. the
sub-query will be pulled up and merged into the upper query. Sub-query-pull-up
must be done recursively. That means the sub-queries’ sub-queries should be

pulled up first if they can be.

Example: A query: SELECT * FROM tablel, (SELECT * FROM table2 WHERE
~) AS foo WHERE.. will be transformed to be: SELECT + FROM tablel,

table2 WHERE ...

Applicability: The sub-query to be pulled up must be a simple SELECT query
in range table. When a query is not a set operation. and does not have aggregation,
grouping. having, distinct. or sorting, it is viewed as a simple query by the
PostgreSQL optimizer.

We do not pull up a sub-query that has any set-returning functions in its target list.
otherwise we might wind up inserting set-returning functions into places where
they must not go. such as qualifications of higher queries. Also. we do pull up
sub-queries. if there are too many sub-queries that can be pulled up. because that

will cause unpleasant growth of optimization time.

Consequences: The optimizer will find more possible ways to join the relations.
One of the newly added ways may be the best. Sub-queries force particular join
path methods and orders for the query. After pulling up sub-queries. the optimizer
can choose join order more flexibly: therefore. undesired tuples can be filtered out
as early as possible [Pir92]. For example, in the query: SELECT * FROM
tablel, (SELECT * FROM table2, table3 WHERE ..) as foo WHERE., if the
sub-query is not pulled up, table2 and table3 must be joined first. and then a sub-
plan is generated. After pulling up the sub-query. the optimizer can join the tree

relations in any order it sees proper.

54

However, that could result in unpleasant growth of optimization time. since the
dynamic-programming search has runtime exponential in the number of FROM-
items considered. Therefore, we do not merge FROM-lists if the result would

have too many FROM-items in one list.

[t must be kept in mind that a sub-query in the range table is a part of the join tree,
so it must be guaranteed that the join-tree structure is preserved properly after a
pull-up.

Some less important rules used in the optimizer are:

e A HAVING clause without aggregation is equivalent to a WHERE clause.
Normally a master user will write such a query. But if it happens, the rule will
help to do select-push-down, because the qualification can be a restriction

expression to a relation.

* Projection-push-down. The PostgreSQL optimizer does not have an algorithm for
projection. but each node of a physical plan has a target list, so projections are

done as early as possible.

The first three rules are preparation rules, they do not help generate good plans
directly, but they make subsequent manipulations more convenient. For example, select-
push-down and calculation of selectivity will be done more easily after transformation.
The rule select-push-down is the most typical optimization transformation rule, which
affects the execution cost a lot. The rule sub-query-pull-up has special importance in a
DBMS supporting views, because views will be converted into sub-queries. The rule

helps to find more ways to join relations.

The above rules must be applied in a proper order. The PostgreSQL optimizer applies
the rules in such an order: or-to-join, constant-expression-simplification. expression-

normalization, sub-query-pull-up, and select-push-down.
4.4 Search Strategies Used in the PostgreSQL Optimizer

4.4.1 Overall Search Strategy

Among all the relational operators, the most difficult one to process and optimize is
the join. The number of alternative plans to answer a query grows exponentially with the

number of joins included in it. Further optimization effort is caused by the support of a

w
wn

variety of join methods (e.g.. nested loop. hash join, merge join in PostgreSQL) to
process individual joins and a diversity of indexes (e.g., R-tree, B-tree, hash in

PostgreSQL) as access paths for relations.

The current PostgreSQL optimizer performs a near-exhaustive search over the plan
space. This query optimization technique is inadequate to support database application
domains that involve the need for extensive queries, such as artificial intelligence.
Performance difficulties in exploring the space of possible query plans created the
demand for a new optimization technique being applied. To handle large join queries,
non-exhaustive search is adopted.

Because join is the most complex for optimizing among all operators, the PostgreSQL
optimizer focuses principally on optimizing join, where other operators are converted into
nodes of a physical plan in a relatively fixed way. Figure 4.3 shows the high-level

activities of the optimization.

*

transformahve preproceeg

]
[Sub-query s a set operation|}

[Is_a_set_operation}
process set operauorD——

S

[ls_a SELECT _query]

choose access method for each relation '

@wen AGGREGATIOID

Figure 4.3 The Activity Diagram for PostgreSQL Optimization
During the optimizing process. we build algorithm trees, which are called “paths” in
PostgreSQL documentation, representing the different ways of doing a query. Note that
in a path. only relation access methods and joins are determined. We select the cheapest

path that generates the desired relation and turn it into a Plan to pass to the executor.

First, the optimizer chooses a proper access path for each base relation in the query.
Base relations are cither primitive tables, or sub-queries that are planned via a separate
recursive invocation of the optimizer. Possible paths for a primitive table relation include

sequential scan and index scans for any indexes that exist on the table. A sub-query base

57

relation just has one path. a "SubqueryScan” path. which links to the sub-plan that was
built by a recursive invocation of the optimizer. Then joins are optimized. A join takes
two inputs that can either be a base relation, or a join. All plausible physical methods and
orders are considered. It should be kept in mind that although the different join paths for
a query will generate the same result. but the costs will vary a lot because of the system
statistics. That is why most effort of the optimization is spent on joins. For a query, if the
number of relations in its range table does not exceed a certain value (11 by default), we
can afford to do exhaustive search in the join space, so constrained dynamic
programming is used. Otherwise. a randomized search strategy must be adopted, because
the cost will increase exponentially with the number of joins. Finally, the operators
GROUP, AGGREGATION, ORDER, and DISTINCT are converted into the

corresponding physical nodes in a fixed way.

4.4.2 The Constrained Dynamic Programming Search Strategy
4.4.2.1 Dynamic Programming Algorithm

Dynamic programming is essentially a table-filling approach for combinatorial
optimization problems. When there are n items in the problem, we consider the situations
of combination of 1 item. 2 items. ...n items in tum. The solution of a level (except the

lowest level) depends on its lower levels. Finally, the optimal solution is found.

As Table 4.2 shows. for a query containing n base relations. in level i. we have c,of
possibilities of ways to choose i relations without considering of the join order and

physical methods.

Considering permutation of join order, the number of ways (paths) will increase

exponentially with the number of relations.

The total number of all tree shapes T(n) for n relations can be given by the

recurrence[Gar00]:
r)=1
T(m=Y""TOT(n-i)

58

Table 4.2 The Possible Combinations

Level Number of Possibilities Combinations
n < {tablel. table2. table3,...tableN}
2 c,f {tablel, table2},{tablel, table3}...{ tablel, tableN}...
l c! {tablel}, {table2}, {table3}...{tableN}

i d

[n dynamic programming, we have to calculate the cheapest costs of combinations in

level L. and then calculate the cost of combinations in upper levels in turn based on the

results of lower levels. There are three points we should notice:

L.

[

3.

Because all possibilities are considered, dynamic programming guarantees that

the optimal plan must be found.

We cannot discard the results of lower levels until all computations are

finished. because we need them to make upper level decisions.

For example. to calculate the cheapest cost of the combination {tablel, table2,
table3}, the cheapest «costs of (tablel }.{table2},{table3},{tablel,
table2} {tablel. table3}.{table2, table3} must be known first. The costs are

available by looking up in lower levels.

When we get the cheapest cost. we also get a path to achieve the result. For
instance. among all possible paths to join tablel. table2 and table3, we may
find the cheapest path is {{tablel, table3}, table2}. To be used by higher level

calculations. the path must be preserved. until the final optimum is found.

The calculation effort will rise exponentially with the number of base relations.

4.4.2.2 The Constrained Dynamic Programming in the PostgreSQL optimizer

The optimizer does use dynamic programming strategy to search for the best physical

plan when the number of base relations is smaller than a certain value. However, it

improves the strategy by ignoring the combinations that will not be used by the best plan.

An item in a FROM-clause can be a base relation, an explicit join indicated a join

dircctive. or a sub-query. For an explicit join, the join order is fixed. Only physical

method and inner/outer position are determined by calculation. The constrained dynamic

programming takes an item in a FROM-clause as a basic block.

Study indicates that left-sided and right-sided join trees tend to produce the best plan
[Gar00]. Therefore, left-sided and right-sided trees are considered first. Then a subset of
bushy trees is considered. Figure 4.4 is the activity diagram for the constrained dynamic
programming strategy, where there are n items in the FROM-clause.

The strategy constrains the search space in two steps:

e Generating left-sided/right-sided trees; and

¢ Generating bushy trees.

A. Generating left-sided/right-sided trees.

For each tree in level i. in order to generate trees in level i+1, only the items in the
FROM-clause (except itself and the relations it covers) that have a suitable join clause
with it are considered to be candidates to join. If the current tree is not joined to any other
item in FROM-clause, we must do a Cartesian product with each item in the FROM-
clause except itself. In this way, if an item can be joined to any other items, it does not
need to do a Cartesian product with the other items. Typically. calculation will be
considerably reduced. The reason why it is safe to do this rests in that a Cartesian product
will produce a larger output than a join generally, so the trees based on Cartesian product
must be more expensive.

For example, there is a query,

SELECT * FROM t1,t2,tc3,t4,t5 WHERE tl.cl=t2.c2 AND t3.c3=t4.c4 AND
t2.c5=t3.c5;

The WHERE-clause implies three joins: {t1,t2}, {t3,t4} and {t2,13}
Using the constrained dynamic programming, in level 1, we get the following trees:

{th} {2}, {e3}.{t4}.{t5}).

60

?

te trees rep g base relanons

.1.

tree =next element ot Ieve([n- 1

j Probably generate new aperator trees.

“\\\ —————————— { join the tree with each tree ot level{1](o 1omableD
A
\ -~
NS X
\\ ~ [levelfi-1] not timshed]

\ ~M e {no new join tree generated]
\ e A4
AY ~a
A do Cartesian product with each tree in level[1]
\ (else)
\
\
\
\
\
\
3
\\ [i<=n]

\
Gjm each tree of level[j] and each tree ot level(i-j} (f |omableDe

fie=2|

Figure 4.4 Constrained Dynamic Programming
Now. we calculate trees in level 2. There is a join clause between tl and t2, so the tree
{tlt2} should be generated. So are {t3,t4} and {t2,t3}. There is no item that has join
clause to t5. so t5 has to do a Cartesian product with each of the rest. The four trees,

{501}, {t5,02}.{t5,13}.{t5.14}, are generated. So there are 6 trees in level 2.

Similarly. we can get the trees in level 3,

61

(el 23 ({3,442}, {{eSat a2} { {152 bl) ({52143), { (15,3 } 14}, { {1563} t2}
g {5,413},

The join trees containing the same relations. for instance {{t5.t3}.t4},{{t3,t4}.t3.}
compete for the best plan, the ones with more expensive costs are removed. So finally,
the surviving trees are:

{{rle2h 3] ({3 2} { {t5tL}2} ({1502 },3}.{{t513}.14}.

The final winners in level 4 are:

{H{ehe2 b3 ed b {{{Sl b2 b3 {{{tLL2},t5)t) { {{t5.13},14},12}.

The best tree in level 5 can be (depending on the system statistics):

{{{{tlt2}.t3}.t4},15}.

B. Generating bushy trees

Only a pair of join trees with a suitable join clause can be considered to generate a
new bushy join tree.

Take the previous query as an example again. In level L, 2 and 3, there are no bushy
trees generated. [n level 4. a bushy trees. {{1,2}{3.4}} is generated, because there is a
join clause between {tl.t2} and {t3,t4}. The bushy tree will compete for the equivalent
trees (the trees containing the same relation as it).

Likewise, in level 5, bushy trees are constructed. They are:
({23} (oS b} ({3 2 b (Sl b { {12} {3, ed b {{ {t5.63},t4), {tL 12} }.
As mentioned before, the bushy trees have to compete with their equivalents, only the
ones with cheapest costs will be preserved.

We notice that although some combinations are ignored, there is a guard condition in
cach level. That is: each item in the FROM-clause must appear at least once in each level.
The guard condition guarantees that a complete tree that covers all relation can be
constructed at the top level.

It is worthwhile to point out that the inner/outer positions and physical methods within
a combination must be determined by calculation based on system statistics. For example,
we have a combination.{{tablel, table3} table2}, we have to determine that which one
acts as inner input, {tablel, table3},or table2. Also, we have to determine which physical

method is adopted, hash-join, nested-loop, or merge-join.

4.4.3 The Genetic Algorithm Query Optimization in PostgreSQL
4.4.3.1 Genetic Algorithm

The genetic algorithm (GA) is a heuristic optimization method that operates through

randomized search within a fixed time bound.
First we illustrate some terminologies used in next discussion.
* Individual: An individual represents a solution of the problem.

* Population: The fix-sized sub-set of all possible solutions for the combinatorial

optimization problem is considered as a population of individuals.

¢ Fitness: The degree of adaptation of an individual to its environment is specified

by its fitness.

» Chromosome: The coordinates of an individual in the search space are represented

by chromosomes, which are in essence a set of character strings.

® Gene: A gene is a subsection of a chromosome that encodes the value of a single
parameter being optimized. Typical encodings for a gene could be binary or
integer.

Through simulation of the evolutionary operations (recombination. mutation, and
selection), new generations of search points are found that show a higher average fitness
than their ancestors. Figure 4.5 shows the activity diagram of the genetic algorithm, in
which P(t) stands for the generation of ancestors at a time t, while P"(t) represents the

generation of descendants at a time t.

It should be pointed out that the genetic algorithm does not guarantee that the optimal
solution will be found, but it reaches a fairly good solution in a fixed time. When we

cannot afford to search all the space, it is an ideal choice.

According to the PostgreSQL documentation [Pos02a], it cannot be stressed too
strongly that a GA is not a pure random search for a solution to a problem. A GA uses
stochastic processes, but the result is distinctly non-random (better than random), because

some kind of heuristic information is used.

63

nitiahze t=0,

iniiahze population at time t, P(t))

Vi

l Evaluate FITNESS ot individuals in P(t); '

[reach STOPPING CRITERION]| X/
©< \/\

[else}

G'(t):RECOMBINATION(P(!)}. '

V/

G'(t):MUTATION(P‘(t)D
V
l P(tﬂ)=SELECTION(P'(t)+(t)D

W/

Gvaluate FITNESS of P‘(t))

Figure 4.5 The Activity Diagram for Genetic Algorithm

4.4.3.2 Genetic Query Optimization in the PostgreSQL Optimizer

A solution of a query optimization problem can be viewed as a possible route of a
traveling salesman problem (TSP)[Mic96]. Possible query plans are encoded as integer
strings. Each string represents the join order from one relation of the query to the next.
just like a string of city numerals. For example. the query tree represented by Figure 4.6
is encoded by the integer string '1-4-3-2'. which means, first join relation 'l and '4, then
3', and then '2', where L. 2. 3, 4 are relation [Ds within the PostgreSQL optimizer. To
reduce search time. only left-sided trees are considered, so a sole join tree can be

constructed from a chromosome.

64

Figure 4.6 A Join Tree
The Genetic Query Optimization (GEQO) strategy is to search for a better solution

over the space of such routes in a limited time. Figure 4.7 shows the activity diagram of

the GEQO strategy.

Gmalize the pool randomly)

v

Galcula(e the costs of the chromosome; ’

(Sort the pool by cost of chromosome:

v

Select parents from the pooD/
§ s

Gmld:Crossover(paren(s))

v

Galculale the cost of the ch:ld)

\l/ [Required generations NOT finished)

Geplace the worst chromosome with the ch:ld)

X

[else}

v

l Return the best chromosome in the pool; l

Figure 4.7 The Activity Diagram for GEQO

65

The population of individuals is put into a pool. which is actually an array of
chromosomes. At the beginning, the pool size and number of the needed generations are
calculated based on the number of relations involved in a query, and then the

chromosomes in the pool are initialized randomly.

In each iteration, parents are selected from the pool based on a given linear bias. A
child is generated by crossover of the parents. During crossover, some kind of heuristic
information is used. Namely, priority is given to the "shared” edges. In the TSP problem,
the shared edges refer to the edges between two cities, which are shared by more than one
route.

There are many kinds of ways to do crossover. Five variants, edge recombination
crossover, partially matched crossover, cycle crossover, position crossover, and order
crossover, are supplied in the PostgreSQL optimizer.

At the end of each iteration, the child will replace the individual with the most
expensive cost in the pool. After all generations are finished. the best chromosome in the
pool is taken to construct a join tree.

Parts of the GEQO module are adapted from D. Whitley's Genitor algorithm. Specific
characteristics of the GEQO implementation in PostgreSQL are [Pos02a]:

e Use of a steady state GA (replacement of the least fit individuals in a population,
not whole-generational replacement) allows fast convergence towards improved
query plans. This is essential for query handling with reasonable time:

¢ Use of edge recombination crossover which is especially suited to keep edge
losses low for the solution of the TSP by means of a GA;

e Mutation as a genetic operator is deprecated so that no repair mechanisms are
needed to generate legal TSP tours.

The GEQO module allows the PostgreSQL query optimizer to support large join

queries effectively through non-exhaustive search.

In this chapter, a model optimizer. the PostgreSQL optimizer, is analyzed. Its

operators and main data structures are introduced. and its transformative rules are

66

extracted. Also, its search strategies are illustrated. In the next chapter, we will describe

how to implement a PostgreSQL-like optimizer within the OPT++ framework.

67

Chapter 5 The Implementation in OPT++

[n this chapter. the framework-based implementation of a relational optimizer will be
described. The intemal representation of a query will be introduced. Customization of the
three components in OPT++: Algebra, Search Space and Search Strategy. will be
presented. Problems encountered in the implementation and corresponding considerations

will be discussed.

5.1 Overview

In our project. a PostgreSQL-like optimizer for a relational database was implemented
based on OPT++. By PostgreSQL-like. three things are implied: (1) most of logical and
physical operators supported by PostgreSQL are also supported by our optimizer: (2)
most of its transformative rules are applied in our optimizer: and (3) we use the same
search strategies as PostgreSQL.

All operators in Table 4.1. except the set operators. are implemented in our optimizer.
However. considering the need of the target database. we focused on SELECT queries,
while INSERT. UPDATE. and DELETE queries were not implemented. To be
compatible with standard SQL. we modified the parser equipped with OPT++. because it

does not support some SQL grammar features. such as sub-query and explicit join.

As with PostgreSQL., we focus mainly on optimization of joins. Two search strategies,
constrained dynamic programming and genetic algorithm, are implemented in our
optimizer. When there are not too many relations in the range table of a query (11 by
default). a near-exhaustive search is employed to find the best plan; otherwise, a semi-
random search is performed to try to find as good a plan as possible in a limited time.
Other operators are converted into corresponding execution algorithms in a fairly fixed

way.

5.2 Internal Representation of a Query

Given a query. a parser parses it into a parse tree, and performs type-checking on the
parse tree. Then. it is converted to another tree representing the query, called a query trec.

The optimizer will take a query tree as input, and produce an optimal physical plan. The

68

representation of a query tree affects the implementation of an optimizer heavily, so it is

necessary to introduce it before moving to optimization implementation.

Operation 1
Q | Newty agaed !
)
4
- r—
— 1 ,’
Newiy addea
Relation _relerence Atitnbute _Reference ,’
—Ir—\(- -_relation Qperaton” - annbyte Atrnbute” Expression ,
! \ - 1S _SubGuery nt
,’ \\ - _subquery Query”
1 \ - operation Qperation”|
7 \\ - args (| Expression”
’ .
7 \
. \
\
¢ Jon_tree \
\ Relation
- _tree !ype enum ela Attnibute o
- _ret Relation® A4S _subugery nt =
- -_relanon
- | join Jown tree” - _sL y Query - ela
-_r_on Jown _tree” -
. [
o] v '
fo B Q-
Query
_attnbute kst hsl<AnnDute> .
-_relanon ust hsi-Relatons ~ - .————J
f - _target kst hsicExpression » S~ > '
-_is! ol operatons ust<Expression - : ~< S ~
——® _trom clause tem nst hsic,oin trees S o - ~J
= - ~
orger by ust<Expressian » S~ ST~ T~
-_group By Nst<Expression» ~o ‘~.:\\\\\
-_has gisthnct nt \\\ R P
- ~ ~ ~
-~ ~a U~ —_
>~ ~ < Moaihed trom arrays 1o hists
~o ~
-~
-~

i Newly added

Figure 5.1 The Class Diagram for a Query Tree.
Figure 5.1 is the class diagram for a query tree. Here. the main classes. their members
and relationship amongst them are introduced. For clarity, only data members critical for

understanding are given. For the same reason. some classes were renamed.

Class Query
Description: The class Query represents a SQL query internally.
Data members:

® _relation_ list—a list of pointers to objects of class Relation, which represent

relations involved in a query. namely. a range table.

69

® _attribute_list—a list of pointers to objects of class Attribute. which
represent all attributes involved in a query.

® _target_list—a list of pointers to objects of class Expression, which
represents items in a target list. Each item can have an alias.

¢ _from _clause_item_list—a list of pointers to items in the FROM-clause. An
item is a join tree represented by an object of class Join_tree that points to a
relation or a sub-query represented by an object of class Relation,.

® _group_by—u list of pointers to objects of class Expression, which represent the
GROUP BY items.

* _order_by—a list of pointers to objects of class Expression. which represent the
ORDER BY items.

¢ _has _distinct—a member of ins type, indicating whether the query has a
DISTINCT operation.

Class Relation

Description: The class Relation represents relations involved in a query. A relation
can be a real relation. or a sub-query mentioned in the FROM-clause. For a real relation,
its object contains all necessary information for optimizer. for example. internal id,
number of tuples. size of a tuple etc. Note that a sub-query in the FROM-clause must

have an alias so that it can be referenced to.

Class Attribute

Description: The class Attribute represents attributes of relations involved in a query.
An object contains all necessary attribute information for optimization, e.g., internal id,

name. type, size. index etc.

Class Expression

Description: The class Expression represents an expression occurring in a query. An
expression normally is composed of an operation, and some arguments, which are also
expressions. The SQL grammar allows a sub-query to exist in an expression, so it has a

pointer to class Query to preserve the reference to a sub-query.

Class Operation

70

Description: The class Operation represents operators in expressions. An operation
can be an operator. which takes some arguments. for example, arithmetic operator “+".
Also. it can be a dummy operator, such as a constant, an attribute reference or a relation
reference. [t has many subclasses including Relation_reference and
Attribute_reference. The other sub-classes representing different kinds of operators are

not shown here. In this way, an expression is constructed recursively.

Class Relation_reference and Attribute_reference

Description: The two classes keep pointers to objects of class Relation and Attribute
respectively so that they can be referenced to. They are defined as sub-classes of class

Operation to indicate that they are dummy operators.

Class Join_tree:

Description: The class Join_tree represents the structure of an item in FROM-clause.
An item can be a relation or an explicit join designated by some Join directives. The class

Join tree represents both the two cases by one of its members, _tree_type.
Data members:

* _rel—When an object of the class represents a relation, it is a pointer to an object
of class Relation; otherwise, it should be NULL.
¢ _l_join, _r_join— When an object of the class represents a join, they are

pointers to objects of class Join_tree respectively. acting as input of the current

Join: otherwise, they should be NULL.

As mentioned above, the OPT++ parser was modified in our project, so the structure
of a query tree was modified correspondingly. OPT++ provides the main design of the
classes and their relationships. In order that sub-queries and explicit joins can be fitted in
a query tree, we made the following modifications to the structure:

* Adding class Join_tree to represent explicit join structures:

* Adding _from clause_item_list in class Query to fit the representation of

sub-queries and explicit joins;

* Adding a reference to class Query in class Relation so that a base relation can be

a sub-query;

71

* Adding a reference to class Query in class Expression so that a sub-query can

appear in a WHERE-clause:

5.3 Application of Transformative Rules

There are two reasons why transformative rules should be applied. One is that some
transformations, for example select-push-down, can help generate a better plan without
knowing system statistics. Hence the subsequent execution costs decrease drastically. The
other reason is that some transformations. such as making the expressions to be implicit-

ANDed , will make following operations more convenient.

Referencing to transformative rules in the PostgreSQL optimizer, the following rules

are implemented in our optimizer.

¢ Expression-normalization

e Select-push-down

® Sub-query-pull-up

While the other two rules. or-to-union and constant-expression-simplification, which
are relatively less critical. are not applied.

The implementation of the three rules falls into three cases:

* The framework has implemented it (Expression-normalization);

* The framework left it as a hot spot (Select-push-down);

* Neither did the framework implement the rule. nor did it leave any hot spot for the

rule (Sub-query-pull-up)

5.3.1 Expression-normalization

From the standpoint a framework user. the first case is the easiest one. We need not to
do anything. When a parse tree is converted into a query tree (internal representation), the
expressions are dissected into OR-expressions concatenated by ANDs. The dissected
cxpressions are stored in a list, and the relationship between any two of them is implicitly
AND.

5.3.2 Select-push-down

In the second case, we have to do some work, but it is relatively easy. because we just
need to implement some hook methods. Select-push-down is implemented during
optimization. rather than before optimization as expression normalization. As we learned
in chapter 3, OPT++ allows us to change our search strategy by sub-classing class
SearchTree and SearchStrategy and overriding hook methods. MakelnitialTree and
DoSearch. The default search strategy supplied by OPT++, Bottom-up strategy, performs
select-push-down by pushing a selection down along a logical tree generated so far
whenever possible. However, the strategy is based on an assumption: the strategy
component does not know what operators are applied, or in what order the operators are
applied. When a sub-tree, which may be part of the final tree. is generated, the strategy
tries to all operators in the actual algebra on it to see whether a new node can be added.
and therefore the tree can be expanded. Figure 5.2 shows an example of select-push-
down. It is hard to understand in code level, and also less efficient, because the optimizer
tries to apply all operators repeatedly, even though most of them are not applicable to the

current sub-tree.

o] I><l
PN
I><| [:> o S
N l
R S R

Figure 5.2 Select-push-down

[n our strategy. we implement it by trying to apply different operators in a fixed order.
We believe they conform to the nature of SQL queries. No matter what a query is, we can
always guarantee to get the best plan by following the sequence in Figure 4.3. That is the
way the PostgreSQL optimizer does. So we override the DoSearch method, and apply
Select operator first. After initial trees, which are relation scans, are generated, restricting
qualifications are applied to their corresponding relations. In this way, all selections are
pushed down, and no actions are required in subsequent operations. Also, the
IndexCollapse operator is applied right after the Select operator so that we can make use

of indexes on select-attributes. Namely, if there is an index on the select-attribute

73

coincidentally. the physical method to access the relation will be changed to be index-

scan; otherwise, the initial tree is kept intact.

5.3.3 Sub-query-pull-up

There is no consideration on sub-query-pull-up in OPT++, so we have to do it after a
query tree is generated and before it is passed to the optimizer. As described in section

4.3, to qualify to be pulled up, a query tree must be a simple query in FROM-clause.
5.3.3.1 Data Structure Changes

Because the framework does not consider sub-query-pull-up, the original
representation of a query is not suitable for that. The original framework uses arrays to
store a range table, attributes, and qualification expressions. If a sub-query is pulled up,
some of the homogenous items will be merged, but arrays cannot be used to do the
merging conveniently in C++, because we always need the original objects, instead of
copies. Therefore. we changed them to be lists. Also, the framework does not consider
explicit joins, so there is no data member for explicit joins. As mentioned in 5.2, class

Join_tree is added to represent the structures.

5.3.3.2 Sequence for Pulling up a Sub-query

74

(Pull up the sub-query's sub-queries recursiviey '

@place all alias references to the sub-qu@

l Remove the sub-query from range labla

Figure 5.3 The Activity Diagram for Sub-query-pull-up

Figure 5.3 shows the activities of sub-query-pull-up. First, recursively pull up the sub-
query's sub-queries if applicable. Then, a sub-query’s lists of range table, attributes and
operations (i.e. expressions in its target list, WHERE-clause) are merged into the current
query. After the lists are merged, we can reference to the relations and attributes that
were in the sub-query in current query. Next, all variables referencing to the sub-query by
its alias in current query should be replaced with the items in the sub-query’s relations
and attributes. For example, in the query:

Sample query 1:

SELECT foo.a,.. FROM r, (SELECT S.x+t.y AS a, .. FROM s,t WHERE..) AS
foo WHERE foo.a..;

foo.a appearing in both the target list and the WHERE-clause should replaced with
S.X+L.y.

Now, we need to reconstruct the join tree. Sub-queries in a range table fall into two

categories according to their positions: (1) It is a separate item in FROM clause, like

SELECT.. FROM r, subquery,.WHERE..; (2) It is an item in a explicit join, like SELECT..
FROM r INNER JOIN subquery ..,.WHERE..; [n the first case. adding the sub-query’s
Join trees to the upper query’s join tree list suffices. In the second case, especially when
the sub-query has multi-item. and even explicit joins in its FROM-clause, we have to
construct a new join tree based on the join trees in the sub-query. Figure 5.4 shows the

Join trees after pull-up for such a query:

i><1

N

r X

PN
s ><l

P

t u

Figure 5.4 A Join Tree after Sub-query-pull-up
Sample query 2:

SELECT foo.a,.. FROM r natural join (SELECT s.x+C.y AS a, .. FROM s, ¢t

natural join u WHERE..) AS foo WHERE fo00.a..;

Note that we construct a Cartesian product node when two items have neither explicit
nor implicit join. Finally. we need to remove the sub-query’ alias from the current
query’s range table. For example, we need to remove the sub-query’s alias. foo. from the
range table.

[t is worthwhile to point out that the optimizer does not know if a query had some
simple sub-queries after the pull-up, so no special treatment is needed for such a query in

the optimizer.

5.4 Implementation of the Algebra Component

To customize the algebra component. we only need to define sub-classes of class
DBAlgorithm and DBOperator and establish the relationships between the logical
operators and their corresponding physical operators.

The logical and physical operators in our system are almost the same as PostgreSQL’s
as shown in Table 4.1. We do not implement set operations, in which there is nothing to

opuimize. There is one more logical operator. IndexCollapse.

76

Following the recipes given in Jinmiao's thesis [LiOl]. first we define the logical

algebra. then the physical algebra. and finally the class DBQOperatorQOperation.

5.4.1 Define Logical Algebra

DOBOPerator

-
i
DBUnaryOPerator DBBnaryOPerator |
. ! ‘
i = —
f f ; ! i !]
indexCollapse | | OBRelaton | ' Select |. GioupBy Odey | Distnct || Subquey || Join
} M i 1 ’L
i .
! I
| ;
" DBOPeratorOperaton

Figure 5.5 The Customized Logical Algebra

5.4.1.1 Sub-classing

As shown in Figure 5.5. cight concrete subclasses (adomed in gray) are defined to
represent the logical operators in the logical algebra. They are DBRelation. Select.
GroupBy. OrderBy. Distinct, SubQuery. Join. IndexCollapse. The operator
DBRelation. representing a relation in a database. takes no input, so it is defined as an
immediate sub-class of the abstract class DBOperator. Also operator IndexCollapse
does not behave as either DBUnaryOperator or DBBinaryQOperator, so it is defined as
a subclass of DBOperactor, although it takes one input. Other sub-classes are defined as
sub-classes of DBUnaryOperator and DBBinaryOperator according to their arities. All
the concrete sub-classes also inherit from class DBOperatorOperation so that a concrete
class can record what operations (i.e., expressions) are being applied by an operator. For
example, the class Join has to record a join qualification, while class Select has to record
a filter qualification. The operations will be used to calculate selectivity. determine
whether two logical trees are equal, and judge whether a logical tree is complete for a

query. as illustrated in section 3.2.

77

5.4.1.2 Implementation of Hook Methods

According to the framework recipes. the hook methods. Accept. Duplicate,
MakeLogProps must be implemented. while Clones can be overridden if the default

behavior does not fit the requirement.

The following are description for the implementation of the hook methods. For each
hook method, we describe our implementation. and then an example is given. The hook
methods for other classes were implemented in the same way.

* Accept

This is to accept a visitor. There are two kinds of concrete visitors,
ExpandTreeVisitor and TreeToPlanVisitor in our application. By accepting the two
visitors, the current operator is applied to the input operator tree. and the new tree is
converted into a physical tree.

Note that we reused the Visitor Hierarchy designed for Bottom-up strategy.

Example:

DBRelation::Accept() is implemented as:

void DBRealtion: :Accept(OperatorTreeVisitora visitor) {

visitor.VisitDBRelation(this);

1

The rest concrete sub-classes implement the hook method in the same way, except
calling their own processing methods defined in visitors. The visitors, in turn. delegate
the tasks to generators in the Search Space component.

e Duplicate

Given an object, this method is just to duplicate an object. Normally, an original object
is generated when the optimizer is instantiated, and stored in a global object of class
OperatorAndAlgorithm. All new created logical and physical operators are copies of
objects in the global object.

The method of all the subclasses are implemented in the same way:

I. Initialize a new object;

2. Copy all members from the original object.

Example:

78

The method of class OrderBy is implemented as follows:
DBOperator <OrderBy::Duplicate (void) const
{
OrderBy -d = new OrderBy (GetListOfAlgorithms ()):
assert (d); *d = *this; return d;
}
GetListOfAlgorithms is a public method of class DBOperator to return a logical

operator’s corresponding execution algorithms.
e MakeLogProps
This is an important method to calculate the logical property of an operator. This

method is implemented only by delegating the task to a constructor of class

OperatorTreeProperty.
Example:

The method of class Join is implemented as:

OperatorTreeProperty *Join::MakeLogProps (OperatorTree *node)

{
OperatorTreeProperty *1 = new OperatorTreeProperty {(this, node):;
assert (l); return 1;

}

The parameter. node. is a sub trec after the current operator, join. is applied.

For each concrete sub-class of class DBOperator, a corresponding constructor is
implemented. Therefore, for class Join, the corresponding constructor of class
OperatorTreeProperty is to calculate the size of output, set whether the node is
interesting.

e (Clones

This is a critical method, which is used to determine whether the operator represented
by the concrete sub-class can be applied to the input logical sub-tree according to the
query.

The hook method for class Join is implemented as follows: Given two inputs, which

are sub-trees, if there is a join qualification, a clone is generated; otherwise, no clones are

79

generated. If a clone is generated. the Join operator will be applied to the two inputs;

otherwise, the operator will be ignored.
Example:

Pseudo code for Join::Clones() is as follows:

list<DBBinaryOperator> Join::Clones (OperatorTree *leftinput,

OperatorTree *rightinput)
{
list_t<DBBinayOperator> clones ;

Calculate join qualifications based on properties of the two

inputs;

if (there is a qualification)

{
Generate a clone by calling Join::Duplicate();
Clones.add (new clone);

}

return clones;
}
For example, the left input tree contains relations, rl. r2, and r3. and the left input
contains relations, r4 and r3. If there is a qualification rl.name=r4.name. then a clone
should be generated based on the qualification; otherwise. an empty list should be

returned.

Note that. because multi-attribute joins are not supported. there is at most one object in

the list clones.

5.4.2 Define Physical Algebra

Physical operators are defined to implement the logical operators with which they are

associated.

80

DBAIgonthm

T
FileScan IndexScan ~ DBUnaryAigonthm DBBinaryAigonthm
S5 y
Enforcer |} Filter Uniqe || Group SubPlanScan | | Nestedloop || Hashdoin Mergedoin
i {
- L
Sort

Figure 5.6 The Customized Physical Algebra
5.4.2.1 Sub-classing

In our optimizer. ten concrete subclasses (adorned in gray) of are defined, as shown in

Figure 5.6. There are Filescan, IndexScan. Filter, HashJoin, MergeJoin. NestedLoop

N

Group, Sort, Unique and SubplanScan.
Note that Cartesian product is treated s a special join. which is a cross join.
5.4.2.2 Implementation of Hook Methods

For each of the concrete subclasses. the following hook methods are implemented as

follows:
® Duplicate
The method is used to duplicate an object of a concrete physical operator.
Example:

The method of class MergeJoin is implement as:

DBAlgorithm <*MergeJoin::Duplicate (void) const

{
MergeJoin *h = new MergeJoin (enforcers); assert (h);
*h = *this; return h;

}

Here, enforcers is a list of objects of class Enforcer.

e MakePhyProps

81

[t is to calculate physical properties such as cost, and sort order. Like in logical
operator classes. the task is delegated to one of constructors of class

AlgorithmTreeProperty.
Example:

The method of Class MergeJoin is implemented as:
AlgorichmTreeProperty *MergeJoin: :MakePhyProps (AlgorithmTree*node)
{
AlgorithmTreeProperty *p = new AlgorithmTreeProperty (this, node);
assert (p): return p;

}
o MakePhyNodes

This method is to generate all possible physical trees based on input(s). It is
implemented in class DBBinaryAlgorithm and DBUnaryAlgorithm, so normally, we

do not need to override it.

In our application. all execution algorithms, except Sort and Group, use the default
implementation given by the two classes. The reason why the method is overridden in
class Sort and Group is that they do not add new expressions to the tree's operation set in
the current scheme of the framework. so the new trec will be as viewed as equal to the
input tree. Therefore. it we use the default implementation of MakePhvNodes in class
DBUnaryAlgorithm, the new tree will be deleted by the dynamic pruning mechanism.

This will be explained in detail in section 5.7.3.
e C(Clones

In our application, the method Clones in physical operator class does no more than
method Duplicate. Tt just duplicates an algorithm object. puts the copy In a list, and

returns the list.
e Enforce
A concrete enforcer class must implement a method, Enforce. In this method, an

enforcer treats its input according to the required properties described in an object of

class AlgorithmTreeProperty.

The Sort class is worth some special attention, because it acts both as an execution
algonithm for logical operator OrderBy and an enforcer for the physical operators,

MergeJoin, Group and Unique.
The only enforcer in our algebra is Sort, and its method Enforce is implemented as (in
pseudo code):

list_t< AlgorithmTree > Sort::Enforce (AlgorithmTree *node,

AlgorithmTreeProperty *reqd_props)

—

lise< AlgorithmTree > enforced_outputs;
1f(node has the required properties)
{

enforced_outputs. Insert (node) ;

return enforced_outputs; // return the unchanged node

} else
{
Generate a new object of class Sort:

Generate a new algorithm tree, newnode, by applying the

sort cbjecrt;
enforced_outputs.Insert (newnode);

recturn enforced_outputs;

5.4.3 Set up Relationships between the Logical and Physical Algebras

After defining logical and physical operators, we need to set up relationships between
them. The constructor of each logical operator class takes a list of corresponding physical
operator as input. The relationships are established by adding objects of physical operator

classes to corresponding list. The relationships between operation and execution

algorithms are list in table 5.1.

83

Table 5.1 Operators and Associated Algorithms in Our Algebra

Operators Associated Algorithms
DBRelation Filescan
[ndexCollapse IndexScan
Select Filter
Join HashJoin, MergeJoin. NestedLoop
GroupBy Group
OrderBy Sort
Distinct Unique
SubQuery SubplanScan

Example:
The code for setting relationship between operator Join and its execution algorithms is
like:
List<algoritmTree> join_algos;

assert (hh_join = new HashJoin);
join_aigos.InsertatEnd (hh_join);

assert (join = new Ajoin_t (join_algos));

all_operators.InsertAtEnd (join);

Finally, all objects of logical operator classes are put into a list named all_operators

so that the optimizer can visit them.

[n our application, we applied one operator only once but in a fixed order, so the order
in which we put the operator into the list al1_operators is important. The order must

conform to the sequence described in Figure 4.3.

In the Algebra component. implementation of all hooks, except the method
MakePhyNodes of class Sort and Group, is routine. Therefore it is very easy to extend
the algebra. The reason for the ease rests in that the customization is fully planned by the

framework designer.

84

5.5 Implementation of the Search Space Component

The search space component determines how to apply a logical operator on a logical
operator tree to expand the tree so that complete trees can be obtained. How to choose the

logical operator and the tree is determined by the search strategy component.

5.5.1 Implement the Visitor Hierarchy

I. Add abstract methods to the class definition of OperatorTreeVisitor for each logical

operator.

The format of the abstract methods is:

virtual void VisitXX (¥XX*)=0;

XX is the name of a physical operator class.

Example:

For class Join we need to add an abstract method like:

Virtual void VisitJoin (Join*)=0;
2. Add a method to the class definition of ExpandTreeVistor and TreeToPlanVisitor
for each logical operator.

¢ The methods added to class ExpandTree Visitor

The format of such a method is:
virtual void VisicxX (XxX*) ;
{
XXExpand expand;
expand.Apply(op, currentTree) ;
}

XX is the name of a physical operator class.

From the implementation. we know the methods just delegate their tasks to subclasses

of class ExpandTreeGenerator such as JoinExpand.

Note that ExpandTreeVistor is for the Bottom-up search strategy, but we reused it in
our strategy. However. we control the search space further in our search strategy

component. as it will be explained in section 5.6.1.

¢ The methods added to class TreeToPlan Visitor

Such methods like VisiiXX are similar to the methods added to class
ExpandTreeVisitor. However. all the methods have the same implementation, calling a
private method named VisitDBOperator. By calling the private method. the class
TreeToPlanVisitor creates all possible physical plan trees for a logical tree. The private

method is provided by the framework. as illustrated in section 3.3.2.1.

Example:
void TreeToPlanVisitor::VisitJoin(Join* op) (

VisitDBOperator (op) ;

5.5.2 Impiement the Generator Hierarchy

L. Define a concrete subclass in the Expand TreeGenerator hierarchy for each logical
operator.

Corresponding to the logical algebra. subclasses defined are DBRelationExpand,
SelectExpand. GroupExpand. OrderExpand, UniqueExpand. SubQueryExpand,
JoinExpand. UnionExpand. IntersectionExpand. ExceptExpand . as shown in Figure

5.7. The concrete classes are adorned in gray.

ExpandTreeGenerator <] DBRelationExpand
= |
|
BinaryOperatorTreeExpand UnaryOperatorTreeExpand =~ L IndexCollapseExpand
- : | =
i JoinExpand !g SelectExpand DistinctExpand OrderExpand GroupExpand | | SubQueryExpand

Figure 5.7 The Customized Generator Hierarchy

In our application. such concrete subclasses, except JoinExpand, are defined without
any implementation. so they just behave as their immediate super-classes,

BinaryOperatorTreeExpand and UnaryOperatorTreeExpand.
Example:

OrderExpand is defined for the logical operator OrderBy as a subclass of class

UnaryOperatorTreeExpand without any implementation, so the method Apply of class

86

UnaryOperatorTreeExpand will be called at runtime. This can be illustrated with
Figure 3.6. In the sequence diagram, JoinExpand is generated, and its method apply is
called. However. for other operators, their generator classes have no implementation, the
method Apply of the class BinaryOperatorTreeExpand or
UnaryOperatorTreeExpand will be invoked at runtime according to the operator’s
arity.

The method apply of class UnaryOperatorTreeExpand is implemented by the

framework. as illustrated in section 3.3.2.2.

The reason why class JoinExpand overrides its super-classes’ methods is the key
decision of our instantiation. The Search Space component is intended to expand a given
tree by applying a logical operator on it. How to choose a tree and an operator is
determined by Search Strategy component. All operators, except Join, conform to the
framework design well. That is we can expand a tree once applying one operator.
However, our strategy only searches all join space, instead of all plan space. JoinExpand
needs to know all trees to be joined so that it can do dynamic programming and genetic
optimization. This does not match the functionality separation between the Search Space
and the Search Strategy components well. In our implementation. class JoinExpand
caches the trees to be joined passed by Search Strategy component until all trees are
received. When all trees to be joined are received. the dynamic programming or genetic

algorithm is triggered according to the number of items to be joined.

Before we optimize the items in FROM-clause, each item should be optimized. As
mentioned in 5.2, one item in FROM-clause can be separate relation (or non-simple sub-
query, because simple queries have be pulled up), for which no optimization is needed, or
an explicit join. For an explicit join, join order need not be considered, but we still have

to decide which input acts as left/right input, and which physical operator is adopted.

A method, MakeOneExplicitJoin, is added to class JoinExpand to optimize an
explicit join. In the method, one of constructors of class OperatorTree is called;
therefore, the control flow defined by the framework is reused. Especially, the dynamic
pruning mechanism is used to delete sub-optimal trees so that the space and time needed

are reduced drastically.

87

Now. each item in the FROM-clause has been optimized. The inputs for dynamic
programming and genetic algorithm are ready. Next. we can use the two algorithms to
optimize the joins. After the dynamic programming or genetic algorithm is done, the best
operator trees are passed to class SearchTree of the Search Strategy component for
further optimization.

To balance the layout of the chapter, dynamic programming and genetic algorithm are
described in 5.7, and the reason why class JoinExpand is implemented differently will

be explained in section 5.7.2.

2. Define a concrete subclass in AlgorithmTreeGenerator hierarchy for each
physical operator.

The concrete subclasses corresponding to physical algorithms are defined. For
example, for class FileScan, there is a FileScanPlan class. Class FileScanPlan,
[ndexScanPlan do not behave as their super-classes, so their methods are implemented.
The remaining classes behave as their intermediate super-classes. so there is no

implementation within them.

FileScanPlan is implemented to generate an algorithm tree for a real relation (not a
sub-query). IndexScanPlan is implemented to change the access algorithm from
FileScan to IndexScan. if there is a select on a relation, and there is an index on the
select attribute coincidentally. Class Sort and Group override the method MakePhvNode
of class DBUnaryAlgorithm, in order to avoid triggering the dynamic pruning
mechanism. Therefore. class SortPlan and GroupPlan are not used actually. The reason

will be explained the section 5.7.3.

5.6 Implementation of the Search Strategy Component

The Search Space component determines how to explore the plan space. In the

component, I need to implement the cost model and our own search strategy.

5.6.1 Implement Property Calculation

The cost model is encapsulated in the two property classes and class Cost, so we need
to calculate logical and physical properties for operator and algorithm trees by

implementing the three classes.

1. Logical Properties Calculation

88

In this step. a constructor of class OperatorTreeProperty for each logical operator is
added. In such a constructor. the properties. such number output tuples. operations (i.e.

expressions) applied so far. and _is_interesting. are calculated.

Because the physical layer of our target database has not been finished yet, the dummy
system catalog is used. However, it is easy to change to make use of a real system
catalog. To do that. what needed to be changed is selectivity of different predicates. so
once more accurate statistics is available, the optimizer can calculate the properties more
accurately simply by re-implementing a method named seldesc of subclasses of class

Operation (in Figure 5.1).

We adopt selectivity of predicates provided by the framework. For example.

selectivity of a "=" predicate is set to be 0.001 by defauit.
Example:

The logical properties of class Join is calculated in one of the constructors as follows
(pseudo code):

OperatorT:eeProperty::OperatorTreeProperty(Join *op, OperatorTree

*node)

{

Set index path :f applicable;
If (there is a sort-order)
is_interesting=true ;

calculate _operation based on propercies of left and right
inputs;
double selectivity=1.0;
if(op->IsCrossJoin())
{
selectivity=1.0; ‘/for a cross join, the selectivity is 1.0;
telse
{

calculate selectivity based on join qualifications.

1

J

Calculate number of output tuples based on selectivity and

inputs’ properties;

89

2. Physical Properties Calculation

In this step. a constructor of class AlgorithmTreeProperty for each logical operator
1s added. In such a constructor. the physical properties such as, _is_interesting. cost
are calculated. In our application. if a physical operator tree has some kind of sort order,

the attribute. _is_interesting. is set to be true: otherwise false.

We added two new data members. _sort_order. _required_sort _path. to the class

AlgorithmTreeProperty.
® _sort_order

It is a list of strings representing sort orders the physical tree have. For example, after
executing a merge join. a physical operator will have sort order on the merged attribute.
A list is used because there may be a major sort order and some minor sort order, but in

the current implementation, we only make use of major sort order.
¢ _required_sort_path

[t is a string representing a required sort path that is needed by the Enforce method of
subclasses of class Enforcer. In our application. only one concrete enforcer class. Sort.

is defined. and it needs to know what attribute should be sorted.
Example:
The calculation of MergeJoin’s physical property is defined as follows (pseudo code):
AlgorithmTreeProperty T AlgoricthmTreeProperty (MergeJdoin ~algo,
AlgorithmTree *node)
{
_is_interesting=1l; //for a merge join produces some sort order;

_sort_order.add(left_sort_order); /*preserve sort order name on

left input;*/

—sort_order.add(right_sort_order); /*preserve sort order name on

left input;*/
Calculate the size of output tuples;

_Cost.compute (algo, node):; /* call Cost::compute to compute the

cost; */
}

3. Cost Computation

90

Add a method Compute to class Cost for each physical operator XX to calculate the cost

of the current physical operator tree.

In our application, the cost model suggested by the framework is adopted. Namely,

both [/O and CPU cost are considered.
A typically computation is as follows:
Cost=number of pagesxI/O cost per page+ number of pagesxnumber of instructions
per pageXexecution cost per instruction

In the equation. the three parameters. /O cost per page, number of instructions per
page and execution cost per page. are available in system catalog, so the only thing to
compute is the number of pages. The variable. number of pages, can be calculated based

on the property of the inputs and nature of the physical operator.
Example:
For a HashJoin:
number of pages=3 (B(1)+B(r)):
B(l): number of pages of left input:
B(r): number of pages of left input:
The reason is that we need 2(B(1)+B(r)) to do hash first. then B(1)+B(r) I/Os are

needed to load the hashed inputs.

5.6.2 Implement the PostgreSQL Search Strategy

[n our application, a PostgreSQL-like search strategy is implemented. In the strategy,
we generate initial trees representing relations. Right after that. selections are pushed
down. Then joins are optimized. Finally SortBy. GroupBy etc. are converted into
physical nodes in a fixed way. The strategy is described in 4.4.1. In other words. our
strategy is a hybrid strategy. The activities in our strategy are the same as PostgreSQL's

as illustrated in Figure 4.3.
There are two obvious features in our strategy:

* The logical operators are applied in a fixed order, while the order is actually

algebra specific.

91

® Most effort is spent on joins. The dynamic programming and genetic algorithm are
applied only to joins, instead of all the search space.
Although some regions of the search space are not explored, we never miss the regions
that contain the optimum. Therefore, the best plan must be found.

In our implementation. the classes defined for the Bottom-up search strategy are

reused to achieve our goals whenever possible.
I. Define class PostgresqiSearchStrategy

A new class PostgresqlSearchStrategy is defined as a subclass of class
SearchStrategy. In the new class, only one method CreateSearchTree is overridden to

create its corresponding search tree. an object of class PostgresqiSearchTree.

The code is:

SearchTree*PostgresqlSearchStrategy::CreateSearchTree(Query' query)

{

return new PostgresqlSearchTree(query);

}

The framework does not consider sub-queries. In order to process sub-queries, the
Opitmize method of class SearchStrategy was modified. Some code for identifying and
optimizing sub-queries in expressions and the range table of a query tree was added. To

optimize the sub-queries, the optimizer is called recursively.
2. Define class PostgresqlSearchTree
A new class PostgresqlSearchTree is defined as a sub class of class SearchTree

In this class, three main methods. NewNode, MakelntialTree, and DoSearch of class
SearchTree are overridden. The other virtual method ExpandNode is neither overridden
nor used, because we think it is over-featured.

a) MakeintialTree

In this method, we borrowed its implementation from Bottom-up strategy, in which
logical operator trees representing relations or sub-queries are generated, and put into a
list.

Note that ExpandTree Visitor, which is for Bottom-up strategy, is used in the code:

void PostgresglSearchTree::MakelInitialTree(void)

~

ExpandTreeVisitor visitor;
GlobalVariable() ->opalgo->get->Accept(visitor) ;
}
Here. get is an object of class DBRelation.
b) DoSearch
In the method. the control flow of the strategy is implemented. After initial trees are
constructed, each operator in the algebra is applied to all the trees generated by its
previous operator, as shown Figure 5.8. The order is implied in the list containing all the
operators.
The implementation is a compromise between efficiency and extensibility. The

rationale behind the decision is explained in section 5.7.

e

| Ogerator -
< 0
[L, : “ ! D
: Makelmitiai Tree ————creale == —3 Operalor Tree !
- L
| -
T . ~
« l . l
: ! <:>——————wmy————~4:> :
' get !
I ['All _aperators eof()} :
§
| b
l_—— > DBOperator "op=All_operators GetNextOperatort), . :
{else] - Y, 1
i
i
I
I

levels+,

—— get

—~ &

‘listotunexpandednode(leve- 11} eof()

OperatorTree" tree=iistofunexpandednade(ievel-1] GelNextTree() +——=————

'k\

—__——...__——-._._—...—.__—....._...._—..._)

! create(inserted ntalistofunexpandednode(levei)
f ! ExpandTreeVisitor(tree) visitor:

-

L op->Accept(visitor), ————————————————————

Figure 5.8 The Implementation of the Search Strategy
As far as the whole algebra is concerned. the following operations will be executed,

when a query is optimized.

93

a) Select-push-down

We call code implemented for Bottom-up strategy to do select-push-down. First we
get an object of class Select from a global variable. Then, its Accept method is called.

b) Index collapse

As described in 5.2. the step may find a cheaper way to access a relation. index-scan.

¢) Optimizing joins

So far, we get initial logical trees representing relations. probably with selection on
them. The trees are stored in a list named listofunexpandednodes{level], which is an
element of an array of lists defined in class SearchStrategy.

The task of optimizing joins is dispatched to class JoinExpand, where dynamic
programming and genetic algorithm are employed to search join space.

d) Applying GroupBy. OrderBy and Distinct

[n our scheme. after joins are optimized. there may be more than one logical operator
tree remaining. The reason is that although some physical trees are sub-optimal, they may
have some kind of sort order. so they and their parent logical trees cannot be deleted.

Now, we have to applied logical operators. GroupBy. OrderBy and Distinct, to the
best trees in turn. if applicable. By calling the method Clones of class Group or Order,
we can determine whether an operator Group or Order should be applied.

As in select-push-down. the control flow defined by the framework for Bottom-up
strategy can be used here. However. we cannot make use of the dynamic pruning
mechanism here, because they do not add any new operations (i.e. expressions) to the
expression sct of an operator tree. The reason will be explained in detail in 5.7.

Note that the physical operator Group and Unique, which correspond to the logical
operator Group and Distinct, need an enforcer, Sort. Also, Sort is the execution algorithm
of logical operator Order.

If a resultant join tree has the required sort order by chance, then no sorting is needed.

€) Return the best plan

Finally. it is time to choose and return the best plan. Among all remaining logical

trees, we find a physical plan with the cheapest cost. If the current query is a top-level

94

SELECT query. the plan is the final plan: otherwise. it could be a sub-plan for its upper

query.
5.7 Problems and Implementation Considerations

5.7.1 Generality and Efficiency

As a framework. extensibility is emphasized. so OPT++ implemented a search
strategy with high generality by calling hook methods and using list data structure.
Furthermore. OPT++ suggests the custom search strategies must be implemented totally
in terms of virtual methods of predefined abstract classes without making use of
knowledge of the actual algebra. By following the rule, the extensibility of a target
optimizer will be guaranteed. However. without any knowledge about the actual algebra,
we will sacrifice some efficiency. even greatly in some cases.

We can explain the point by analyzing the Bottom-up strategy implementation
equipped with the framework. In the Bottom-up strategy, when a logical tree, which may
be part of a complete tree. is expanded. all logical operators are applied on it and new
operator trees are generated in the process. The process repeated until there are no

unexpanded operator trees. The process is presented in Figure 5.9.

UnexpandedTrees

__create

MakeintiaiTree

O——_ felse| ‘_—O

{There s at least an unexpanded tree]

creale

[The tree 1s complete
e

get an unexpanded tree ‘—

<>

[else]

* Apply each operator in the algebra on the unexpanded tree n tumn '

Figure 5.9 The Implementation of Bottom-up Strategy

The implementation is less efficient because the complete search space is explored,

even the regions that cannot contain the optimal plan.

For example. in a query:

SELECT * FROM emplovees AS e, departments AS d WHERE
e.dept=d.id AND e.age>25 ORDER BY name;

at least such cases should not be considered in optimization:

e Selects are applied after joins;

¢ OrderBy is not applied last.

When we apply selects after joins, explicit select-push-down is needed. When there
are a lot of relations in a query. the number of join combinations could be huge. For each
combination, a select-push-down must be done once, if we apply selects after joins.
Therefore. the cost of select-push-down may not be negligible. Also, if OrderBy is not
applied last. the result sort-order it produces may be destroyed by other algorithm, for

example, HashJoin.

[n our application. we made a compromise between efficiency and generality. Our
strategy applies each logical operator in a fixed order only once for optimizing a query, as
described in Figure 5.8. We achieve efficiency by stipulating an order of applying
operators. The order conforms to the nature of SQL. [n this way, some regions of the

search space that cannot contain the optimum are excluded.

We keep space for extension by not mentioning concrete operators in our strategy and
delegating tasks to the Search Space component. As shown in Figure 5.8, we get a pointer
to each concrete operator from a list (all_operators in Figure 5.8), and call its virtual
method Accept through polymorphism. If a new operator is added, we do not need to
change our strategy code, as far as the applying order is respected and the corresponding

generator classes arc implemented properly.

5.7.2 Framework Mismatch and Solution

The framework is composed of three components, Algebra, Search Space and Search
Strategy. Both Search Space and Search Strategy are to control how to explore the plan
space. Search Space is designed to control search behavior within an operator, namely

given a tree and an operator, The Search Space component determines how the tree is

96

expanded. Search Strategy is designed to control inter-operator search behavior, i.e., how
to select a tree and an operator for the Search Space component. In this way, the control

can be tuned in two levels. Generally speaking, the design is flexible.

However, the design mismatches our strategy in part. The problem is that: on the one
hand. the Search Space component is design to apply one operator to one operator tree.
On the other hand. our strategies to optimize joins, dynamic programming and genetic

algorithm, need to know all the operator trees representing the items in the FROM-clause.

To solve the mismatch, there are some alternative solutions. One solution is to treat
joins differently in the Search Strategy component without dispatching the task to Search
Space component. If so, we have to mention the operator Join in the strategy component.
However, the rule guaranteeing extensibility of the target optimizer will be violated,
because the framework requires that a custom strategy must be written in terms of virtual

methods of the predefined abstract classes without using any actual algebra information.

The solution we adopted is to cache the operator trees to be joined in the Search Space
component. specifically class JoinExpand. The optimization is not triggered until all

trees to be joined are received.

To do so. we need a global variable (a list) to cache the pointers to the operator trees to
be joined. The implementation of the method Apply class JoinExpand is shown in Figure
5.10.

97

. Store the painter o the operator tree in a global list ' — ——cache- ——) _Operator Tree
N\ .

<>—[e'sel —@

[All operator trees to be joined received]

dynamic programming/genetic algorithm C———_—————— getall trees ~
[
[
/ QOperator Tree
\ fetum resultant trees to SeachTree \ ————————— E i

Figure 5.10 The Implementation of the Method JoinExpand::Apply

5.7.3 Special Treatment for GroupBy and OrderBy

One of the most successful aspects of OPT++ rests in its dynamic pruning mechanism.
It deletes the physical and logical sub-trees, which are determined not to be a part of the

final optimal tree. Using the mechanism is safe and convenient.

However, to process the logical operators GroupBy and OrderBy, the mechanism
cannot be used in the current OPT++. As explained in 3.2.2, two logical trees are viewed
to be equal when they have same set of operations (i.e. expressions) applied. In the
current scheme, relations and attributes are all viewed as expressions, and no duplicates
are allowed in the universal expression set for a query. Another fact is that when an initial
trec representing a relation is generated, the relation’s attributes are also introduced into
the expression set of the tree. This is necessary for the materialization operator for
relational-object database. However, this causes a problem in our application: The two

operators, GroupBy and OrderBy, cannot introduce new expressions.
For example, a query:

SELECT * FROM Employees. Departments WHERE age>25 ORDER BY age;

98

The auribute. age. can appear only once the universal expression set,
_list_of_operations in class Query.

Therefore, after a join tree is generated. when we apply the OrderBy operator to the
join tree, no new expression will be introduced into the expression set of the current tree,
because the attribute, age is already there (All attributes including age were introduced
when the relation Employees is introduced). The optimizer will consider the new tree is
equal to the join tree. and delete the new one. To avoid the incorrect treatment, we have
two choices:

e Change implementation of DBRelation::Clones not to introduce attributes when
introducing relations to the operation set of a logical operator tree.

¢ Override the method MakePhyNodes of class Sort and Group to avoid triggering
the pruning mechanism.

We adopted the latter. If we do not override the method, the method of their
immediate super-class. DBUnaryOperator, will be invoked at runtime. and the pruning

mechanism will be triggered.

5.7.4 Constrained Dynamic Programming

We implemented constrained dynamic programming strategy in the same way as
PostgreSQL. We enumerate all promising combinations of the items, and then call a
constructor of class OperatorTree as in the method MakeOneExplicitJoin. Similarly, the

contro! flow and dynamic pruning mechanism defined by the framework is reused.

5.7.5 Genetic Algorithm

We implemented the genetic algorithm by imitating the PostgreSQL optimizer. The

flowchart of our implementation is described in Figure 4.7.

Classes
Three new classes are defined in our application to implement the genetic algorithm.
¢ Class Pool: representing the population of individuals.

¢ Class Chromosome: representing an individual. [t reserves a string of integers,

each of which is just the numeral of an item in FROM-clause.

* Class Edge: representing an edge between two cities in the TSP problem.

99

The three classes are designed to be a reusable. The three classes are tightly coupled.
but have loose connection with other classes.

The only interfaces with its caller, the class JoinExpand. are the constructor, Pool,
and the public method ginune_best_chromosome.

The package required its caller to provide a method named GeneticEvaluate to

compute the fitness of each chromosome.

Pool

-data Chromosome”

-edge _table Edge-”
-size " int

-stning _length nt

+«Paooal()

+~Paoal()

+gimmme _best_chromasome()

Edge Chromosome

Figure 5.11 The Classes for Genetic Algorithm
[n this way, the sub-structure are reused with no or minor modification.

The same bias function for selecting parents as PostgreSQL is adopted. and one of

crossovers, Edge Recombination Crossover [Pos02b] is implemented.

Reuse of the Framework.

Although the framework does not provide a similar strategy, we can take advantage of
the facilities as in the constrained dynamic programming strategy. To compute the fitness
(execution cost) of each chromosome, a logical tree must be generated. Because only left-
sided trees are considered. a chromosome, which is a permutation of numerals of items in
the FROM-clause, stipulates a unique way to construct a logical tree. Therefore, a
constructor of class OperatorTree is called to construct operator trees, as in method

MakeOneExplicitJoin. Likewise, we obtain the same benefits.

Delete logical trees

As mentioned above, in the course of genetic optimization, a good number of
complete logical trees are generated tentatively so that fitness of the corresponding

chromosomes can be computed. If we do not delete the trees dynamically, a lot of

10C

memory will be wasted. In the dynamic programming approach. only one complete
logical tree is generated eventually, while other sub-optimal incomplete trees are
dynamically deleted by the pruning mechanism. However. in the genetic algorithm
strategy. all the trees are complete. If we use the pruning mechanism, only one complete
tree can be generated: others will be pruned out. Therefore we cannot rely on the pruning

mechanism. Consequently, we have to implement this ourselves.

The method DeleteGeneticTree is defined in class JoinExpand to implement the

function.

In the method. we delete a logical tree from top to bottom. Although we have to
implement the new function, we still reuse the framework by calling one of its global
functions. named ADeleteTree, which is well-designed function for deleting a logical

sub-tree and its associated physical trees.

5.8 Testing the Target Optimizer

To verify the target optimizer. we did correctness and efficiency tests.

5.8.1 Correctness Test

For correctness tests. we optimized a group of sample queries with our target
optimizer and the PostgreSQL optimizer. and then we compared the output plans

generated by the two optimizers. The following are the test cases and resuits.
1. Simple Queries
Objective: In the case. we test the simple queries with only SELECT and FROM
clauses, but without explicit joins.
Example Query: SELECT = FROM Persons p, Employees e;

Results: The two optimizers generate the same results. The output plan does a

nested-loop join between the two relations.
2. Selects

Objective: In the case, selects on relations are tested. There are two sub-cases. One

is that there is no index on the select attribute. The other is there is such an index.
Example Query:

SELECT * FROM Employees WHERE salary>1000C;

101

SELECT * FROM Persons p where p.age=25;

Note that there is an index on Person.age. while there is no index in relation

Employees.

Results: The two optimizers generate the same results. In the output plans, if there
is a required index. the relation is accessed through index-scan: otherwise, the relation

ts accessed through file-scan.

3. Select-push-down
Objective: In the case. select-push-down is tested.
Example Query:

select =~ <from Persons p,Employees e where p.name=e.name and

e.name="Smith" and p.age=25;

Results: The two optimizers generate the same results. In the output plans, if there
is a select on a relation, and the relation is joined with another. select is applied first,
and then join. Furthermore. if there is a required index on select attribute. for example,

p.age. in the example query. access method to the relation is index-scan.
4. Explicit Joins

Objective: In the case. explicit joins with join directives are tested. Both explicit
Joins with qualifications and natural joins are tested.

Example Query:

SELECT * FROM Persons p INNER JOIN Employees e ON (p.name=p.name) ;

SELECT *~ FROM Persons p NATURAL JOIN Employees e, Cities c where

p.name=e.name and p.age=25;

SELECT * FROM tablel NATURAL JOIN table2;

Results: The two optimizers generate the results with the same join orders, but the
join methods may vary with the system catalogs. In the output plans. join orders are
determined by the explicit joins. Especially, in a natural join, if there is no common
attribute between the two relations. we just do a Cartesian product. For example, in the
third example query, there is no common attribute between tablel and table2, so we do
a Cartesian product.

5. Implicit Joins

Objective: In the case where joins implied by WHERE clauses are tested.

Example Query:

SELECT * FROM tablel, table2, table3 WHERE tablel.alll=table2.a021l
AND table2.a022=table3.a032;

Results: The two optimizers generate equivalent results. Although the join orders
and methods may vary with the system catalogs. the join trees containing the same

relations are generated. Therefore. they are equivalent.
6. Sub-query-pull-up
Objective: In the case. sub-query-pull-up is tested.
Example Query:

SELECT * FROM Departments AS d, (select * from Employees e, Persons

p where p.name=e.name) AS foo;
Results: The two optimizers generate the results with the same join orders, but the
join methods may vary with the system catalogs. In the output plans, there is no sub-

plan generated. This indicates that the simple query in the FROM clause is pulled up.
7. Sub-queries
Objective: In the case. both sub-queries in FROM and WHERE clauses are tested.
Example Query:

SELECT =~ FROM Departments as d, (select name from Employees
e,Persons p where p.nrame=e.name ORDER B8Y name) &s foo where

foo.dept=d. id;

SELECT * from Departments AS d inner join (select * from Employees
e, Persons p where p.name=e.name ORDER BY name) as foo ON (foo.dept=
d.id);

SELECT ~ from Employees where name = any (select Persons.name from

Persons where age>25);

Note that putting the ORDER BY clause in the sub-queries looks strange. but if we
remove them, the sub-queries will be viewed as simple queries and pulled up. They

are put there just to prevent the sub-queries from being pulled up.

Results: The two optimizers generate equivalent results. In the output plans, sub-

quertes are optimized first and corresponding sub-plans are generated.
8. Order by Clause

Objective: In the case, we test the ORDER BY clause.

103

Example Query:

SELECT e.name, p.address FROM Employees e, Persons p where

p.name=e.name ORDER BY name;

SELECT * FROM Employees e, Persons p where p.name=e.name ORDER BY
salary:

Results: The two optimizers generate equivalent results. In the output plans, sub-
queries are optimized and corresponding sub-plans are generated. In the first example
query, after merge join between the two relations, no sort operation is needed, because
the merge join generates the required sort-order. Please note that whether this happens
depends on system catalog. In the second query, a sort algorithm must be executed

after the join.

The tests indicate that the target optimizer produces correct execution plans on the

test queries.

5.8.2 Efficiency Test

To test the efficiency of our optimizer. a group of queries is optimized with both our
optimizer and the PostgreSQL optimizer on the same testing platform. Then, the
optimization times are compared. Because most of the optimization time is spent on
joins. we tested a group of queries with different numbers of Joins. We did the tests on a
personal computer, with 256M of memory and 1.7 GHz CPU. The operating system is

Linux 2.4.18, and the compiler is GNU g++ 2.96. Table 5.2 shows the test results.

104

Table 5.2 Optimization Times of the Two Optimizers

(microseconds)

Number of Joins The PostgreSQL Optimizer The target Optimizer
l 318 310
2 580 770
3 921 2196
4 1884 4774
h] 2827 9258
6 4163 16311
7 6168 27750
8 8103 43755
9 10615 65707
10 664873 2224559
Ll 745303 2590484
12 835139 2945270
13 924679 3280735
14 1009752 3696897
15 1107406 4206457
16 1191265 4690540
17 1482741 5251568
18 1512814 5711181
19 1829051 6392086

20 1922496 6711760

Note that when there are more than 10 joins in a query. the genetic algorithm is used.
The genetic algorithm initializes a fixed size (1024 by default) pool of chromosomes, so

the time increases drastically here.

From the results, we observe that the target optimizer is less efficient than the
PostgreSQL optimizer. We studied the two optimizers from the perspective of efficiency,

and found that the following factors contribute to the difference.

¢ The two container classes provided by OPT++ are inefficient. OPT++ defines two
container classes, Set and List. providing easy-to-use interfaces. They are used
very frequently as a basic facility. Unfortunately. they are very inefficient. In our
testing environment, accessing an element in a set will cost about 5 microseconds,

while a STL set does it in about 0.1 microsecond. In a query with 10 joins, we

105

need to access elements in sets more than 6000 times. Therefore. a lot time is spent
on set and list operations. If the two container classes are improved, the

optimization time will decrease to a great extent.

The PostgreSQL optimizer does not generate logical operator trees. while the
target optimizer generates logical operator trees. Although equivalent
computations must be conducted in both the two optimizers. We need to allocate
memory for the logical trees at runtime, and allocating memory dynamically costs

more time than other commands in general.

The indirection of design results in the efficiency degradation to some degree.
Although OPT++ declares it improves extensibility without sacrificing efficiency,
our experience indicates efficiency is discounted to some degree. For example, to
determine whether two logical sub-trees can be joined, it needs to visit the
universal expression set and the expression sets of the two trees. and then gets the
result by doing some set operations. For any two sub-trees to be considered, the
routine is executed. In PostgreSQL. this is conducted straightforwardly by

analyzing expressions in WHERE clauses.

According to Navin[Kar99], on a Sun SPARC-10/40 with 32MB of memory, an

OPT++-based optimizer costs about 10 seconds to optimize a query with 10 joins.

Considering the platform difference. we believe our target optimizer achieves the

efficiency expected by the framework designer. Although the larget optimizer is less

efficient than the PostgreSQL optimizer. its optimization efficiency is still in a reasonable

range. If the defects of the container classes in OPT++ are removed, the efficiency will be

closer to that of the PostreSQL optimizer.

5.9 Reuse Summary

The framework is reused in different granularities and levels in our application.

Architectural Design — The three-component architecture is well designed.
Therefore, in our application, no architecture design is needed. Our
implementation follows the design of responsibility distribution among the three
components. The algebra is implemented by sub-classing class DBOperator and

DBAlgorithm.

106

¢ Classes and relationships among them — Our experience indicates that structural
artifacts tend to have higher reusability. The classes and relations are well
desigried. The classes OperatorTree. AlgorithmTree , OperatorTreeProperty and
AlgorithmTreeProperty can be reused easily to represent logical and physical
trees without any changes. While other abstract classes are reused by sub-classing

them.

e Exemplary control flow — Bottom-up strategy and transformative strategies are
supplied as sample strategies. Not only do they help understand the framework.
but also can be reused in part in other strategy. In our approach. we reused the

control flow defined by the Bottom-up strategy as mentioned in 3.6.

e Functions — Sometimes. we can also reuse some global or static functions
defined by the framework, although we cannot reuse the whole control flow.
Examples:

Prune: is an important static method to prune out the equivalents with more

expensive. We reuse it in the method MakeAnExplicitjoin to optimize an item in
FROM-clause.

ADeleteTree: we reuse the global method to delete a logicul tree and its associated
physical trees in the genetic algorithm.
® Segments of code — When we override and overload a function, it is posstble to

find some useful segments of code in the original function. We can copy and

reuse them.

5.10 Limitations of Our Implementation

Most of the PostgreSQL optimizer's features are implemented in our optimizer.
However, as a study project. there still are some details that are not considered. As far as

query optimization is concerned. the limitations of our optimizer are:

(1) Correlated sub-queries [Gar00] are not supported. This is the most complex case of
sub-query processing. Although the basic strategy is the same as processing other

Kinds of sub-queries. more work is needed to do for this kind of sub-queries.

(2) Minor sort-orders are not used. We make use of only major sort-order, while the

PostgreSQL optimizer does consider the minor sort-orders.

107

(3) Not all data types are considered. We considered only some typical data type in
attribute definition. while the PostgreSQL optimizer take a great effort to treat

more precise data types. For example, for int type, they consider int8. int16 etc.

(4) More accurate system statistics are needed. We use a dummy system catalog, in
which only estimated statistics is available. In the PostgreSQL system catalog,
much more accurate statistics are maintained. For example. for an attribute of a

relation. numbers of most common values are available.

108

Chapter 6 Issues in Framework-Based Development

Framework-based development requires new some special considerations compared
with traditional application development. While a lot of attention has been paid on
methods for framework development, problems in using framework are not studied too
much. In this chapter, general issues in framework-based development are discussed. We
clearly know the one instantiation iteration for one framework is far from enough to
general rules. so for each issue. related work is summarized first, and then suggestions
are given based on our experience.

Because our experience is on a white-box framework, all the issues are discussed in

terms of white-box frameworks.
6.1 Development Process

6.1.1 Process for General Software Development
Generally speuaking. independent of the software life cycle model chosen. the software
development process can be divided into such phases [Bus93]:
e Domain Analysis
The Domain Analysis or Subject Analysis phase is aimed at getting an understanding
of the problem. The result of this phase is a description of the task that is to be solved
by the software.
e Requirement Analysis
Requirement Analysis aims to elicit and identify both the functional and non-
functional requircments for the intended software to be developed. The result is
normally a list of requirements that has to be fulfilled by the software.
e System Analysis
The Systems Analysis phase concentrates on what to do in the application. The
entities identified in the real world task are mapped to a software model. The
system'’s functionality is mapped to software components and their relationships and
the components responsibilities are defined. The result of this phase is called the

conceptual framework.

109

e Architectural Design

The Architectural or System design phase deals with the main structuring of the
application to be built. The architectural framework for the application is chosen and

the conceptual framework is mapped to the architectural framework.

The subsystems and the relationships between the subsystems are specified. The
result of the phase is a model of the application comprising its components, their

responsibilities, high-level data structures as well as their relationships.
e Detailed Design

In the Detailed Design phase the responsibilities and data structures are specified in
tull detail. Principles and policies for implementation of the data structures and the

subsystems are defined.
¢ Implementation

The final implementation of the system takes place in the Implementation phase using

the results from the Architectural and Detailed design phases.

¢ Testing

Finally, the functional and non-functional requirements for the application are
validated in component tests, system tests. and integration tests.

¢ Maintenance

When the application is in operation it will after some time require modifications due
o new requirements or operating environments. These changes are handled in the

Maintenance phase.

6.1.2 Process for Framework-Based Development
Related Work

Mattsson [Mat96] proposed a development process for framework-based development.

The process is composed of such activities:

e Actvity I: Define the conceptual framework for the application. It includes the
assignment of functionality to components. the specification of the relationships

between them, and the organization of collaboration among them.

® Activity 2: Select an object-oriented framework for the application.

110

Activity 3: Map the entities of the conceptual framework for the application into

the selected object-oriented framework and subsystems/sub-frameworks (if any).

® Acuvity 4: Specify or revise the relationships between the sub-frameworks of the
applicauon’s object-oriented framework. The selected framework may be
composed of a number of sub-frameworks with predefined relationships, which

have to be revised or remain unchanged.

e Activity 5: Structure the various sub-frameworks of the object-oriented
framework. The components of the conceptual framework that has been mapped
into each sub-framework are to be further organized with the purpose of achieving

the required non-functional properties for the application as a whole.

® Activity 6: Structure the different components of a sub-framework. This includes
deciding which parts of the sub-framework will continue to be hot spots and

which parts that will be frozen spots.

® Activity 7. Implement the software system. Code all the classes that have been

specified.

As Mattsson emphasized in his thesis. the activities are general. The activities in
instantiation of different frameworks may vary a lot. Moreover. there is no practice
supporting his advisory process.

Although Garry Froehlich did not propose explicit activities, he provided some
general technique for different stages of framework-based application. [For99]

e Analysis

Besides activities in general development process, choosing a framework is also a

main task in the phase. He proposed some guidelines for choosing frameworks.

e Learing to Use the Framework

[n framework-based application, understanding a framework takes considerable time

and effort.

¢ Design and Implementation

Since the framework should already define an abstract design of the application and

provide much of the implementation, users have much less work to do at this stage.

e Testing

111

There is no special requirement on applications developed from frameworks. Both
common functionality from the framework and application specific functionality need

to be tested.
Although little work has been done on the issue, there is some consensus:
® There is no existing method for framework-based application, but we need it.

® Process for framework-based application should be domain specific, or even
framework specific.
Our experience
Architecture design is not needed in our case. Because we instantiated only one
framework. instead of cooperating multi-frameworks, the architecture was defined be the

framework. The OPT++ decomposes the system into three components, and defines the

collaborations among them. Our instance followed the architecture.

Studying a framework helps analysis. Framework can be reused in many levels
including domain analysis. When we do analysis. we usually do not know what to do and
how to do exactly. A well-documented framework provides us the framework
developer’s considerations. Therefore. the phases studying a framework may start from

domain analysis until implementation.

6.2 Understanding Frameworks

When a white-box framework is used. it is necessary to understand the concepts and
architectural style of the framework in order to develop applications that conform to the

framework.

However. understanding frameworks is nontrivial work in framework development. In

most cases. it is difficult to understand framework, because: [But00]
e The design is abstract;
e The design in incomplete;
® The design may provide flexibility that is not needed in our application;
¢ Collaborations and relationships may be indirect and obscure.

Therefore. learning is the key issue in framework instantiation, and sufficient time

should be allocated for it.

Related work

To improve the understandability of frameworks. a large amount of work has been

done on framework documentation. The documentation techniques include: [But00]
e Example applications
¢ Recipes / cookbooks
¢ Contracts
¢ Design patterns
e Framework overview
¢ Reference manual

Besides documentation methods, there are also other proposals on the problem. To
communicate with common notation between framework developers and users, an UML
profile. UML-F was proposed by Marcus Fontoura et al. [Fon02] This UML extension
allows the explicit representation of framework variation points. It can be used to assist
framework development and instantiation. UML-F provides not only a notation, but also
some kind of methodology. They believe that the hook and template relationship cannot
be represented with standard UML relationships. Two principles, unification and

composition, were proposed to assist framework instantiation.

Also. an empirical study has been conducted to find out how the framework user can
understand a framework more effectively. Forrest Shull [Shu02] studies the process of
using and learning a framework to develop graphical user interfaces by students in an
academic setting. He proposes that techniques based on examples are the most suitable
for supporting learning, especially for novice users. He classifies the style of studying
framework into hierarchy-based and example-based. The result shows that learning by
example (as opposed to gaining familiarity with the framework itself first) is useful for
helping beginning learners produce working systems quickly.

An alternative way to attack the understanding obstacle is to reduce the need for
understanding the framework. Some approaches have been proposed to automate the
instantiation to some degree. Oliveira’s approach [Oli02] is to represent the framework
design with XML. Instantiation process characteristics like sequencing and dependency

can be specified through unambiguous representations. The framework then can be

113

instantiated declaratively. M. F. Fontoura [Fon00] presented the same idea, but domain

specific languages are used to represent the framework design and instantiation

requirement in his approach.

In each approach mention above, tools are developed to aid understanding framework.

Our experience

Our experience shows both framework providers and users can do. Framework

providers can improve the understandability by:

Providing reasonable degree of abstraction

Both over-featured and under-featured spots do harm to users’ understanding. In
OPT++, we believe some methods, for example the method, ExpandNode, for the

Bottom-up strategy is over-featured to be part of an abstract class.
Programming in good style
Good programming style will help users understand the designer’s intent. For

example, in C++, const member methods will require users not to change any data

members of the class when they are overridden.
Using De facto standards

There are many de facto standards in software society and in the problem domain.
Using standards will improve understanding of frameworks. For example, STL
(The Standard Template Library) is well accepted in the C++ circle. No doubt,
STL containers will be more understandable than self-defined container classes.
Probably because STL was not mature enough when OPT++ was developed,
OPT++ defines some container classes, such as List, Set.

Offering sample data

Among with exemplars, sample data should be given to make the exemplars more
effective. At runtime, sample data may trigger some routines that cannot be
executed when users give random inputs. Sample SQL queries will trigger the
routines that are not straightforward to users. User then can gain better

understanding by following the routines.

Framework users can understand a framework more effectively by:

Understanding domain knowledge

114

Frameworks are not for end users, but for application developers. Therefore.
framework users must possess enough domain knowledge. In our project, we

cannot reuse the framework without query optimization knowledge.
e Mastering De facto standards

Now that the framework developers may design frameworks with standard
technology, mastering the standards will accelerate the understanding process. We
take it for granted that application developers are familiar with the standards in

his fields.
¢ Using debugging tools
For a programmer, it is very intuiiive to follow the execution of program step by

step. For a white box framework. we do that by using debugging tools. such as

GDB on Linux. In this case, exemplars and sample data are very helpful.

Our experience also supports one of Forrest Shull's conclusions [Shu00]. Example
approach is more effective at the beginning of understanding the framework. That
conforms to nature of cognition, from particularity to generality. However, we also found
following recipes will achieve completeness easily at late stages of implementation.

Understanding frameworks may start with domain analysis, and extend to
implementation phases. When a framework is complex. it is impossible and unnecessary
to understand the framework completely before we start our design and implementation.

With the process of our implementation, our understanding will deepen.

6.3 Unplanned Customization

No matter how elaborate framework development is, there always are some things that
are not anticipated and planed. Therefore, we need do some unplanned customization

sometimes.

There is very little literature talking about the issue, so, based on our experience, we

propose the following suggestions.
* Respect the basic framework design

We belicve modifications to frameworks should be allowed, because in this way,
frameworks may evolve. However, the basic framework design must be

respected. In our project, we modified the representation of a query tree to fit sub-

115

queries optimization and explicit joins. These modifications are minor and do not
change the basic design of the framework. The most important parts of OPT++,
we believe. are operator/algorithm tree representation and dynamic pruning

mechanism. Therefore, they are never modified.
Sacrifice generality when necessary

Some unplanned customization is caused by generality of frameworks.
Sometimes, not only framework itself is general, but also it requires its instances
to possess generality of some degree. However. we may know more our domain
more clearly, so it is possible to make specific assumptions about our domain. In
this case, sacrificing generality may release framework users from constraints.
and thus, solve the unplanned problem. In OPT++, the Search Strategy
component requires a stralegy to be written absolutely in terms of predefined
abstract methods without making any assumptions about the actual algebra.
However, the optimization of SQL queries does have some kind of order. This is
not planned in the framework. We solve the problem by ordering the optimization

of operators as introduced in 5.7.1.
Reassign the functionality of components

Frameworks provide architecture reuse by defining the components and their
relationships. However. the decomposition does always fit our applications. In
this case. we may change the functionality of some components. In OPT++. the
Search Space component is design to apply one operator on one given tree, while
how to select the operator and the tree is determined by the Search Strategy
component. In our application, we need to know all the trees in order to do
dynamic programming and genetic optimization. Therefore, the function of class
JoinExpand is changed to cache the trees to be Joined and then do search in join

space. This has been explained in 5.7.2.
Report modifications to framework developers

Frameworks are generalized from specific applications, and they evolve in
instantiation. Problems encountered in instantiation may help framework

developers to refine the framework. For example, in our project, madification of

116

the query tree representation can be reused by other applications. Thus, it should

be reported to the framework developer.

6.4 Need for Tools

Object-oriented frameworks can be complex and difficult to use. Tool support can
greatly aid developers in using these frameworks. In our process of instantiation, there
was no tool supporting our development. but we realized tools would help a lot in

framework-based application.
Related work

Along with the different methodologies for framework development and instantiation,

many tools have been proposed. Each tool is based on some kind of model or method.

Garry Froehlich et al. developed a tool called HookMaster{Fro98] for their hook model.
Based on their hook model. the tool helps describe how the framework is intended to be
used. and shows where changes can be made. The hook tool aids users by extending the
UML language to include hooks and by semi-automatically enacting the changes within
hooks.

For the UML-F approach [Fon02]. a supporting tool was presented. It can guide users
to create a new subclass implementing hook methods. The tool prompts the application
developer about all the required information to complete the method for each variation

point in the framework structure. The instantiation tool is a wizard driven by cookbooks.

Tools are more important in the approach of instantiation automation. To support
their declarative approach, Oliveira et al. proposed an XML based framework
instantiation tool called xFIT [Oli02]. It can interact with the reuser to capture the
application specific requirement (Application Specific Increments (ASI) in their paper) in
a window-based environment. This ASI semantic is then used to generate a complete
final design based on the framework represented in their model.

Our experience
From our experience, we realized tools could be very helpful in all stages of
framework-based application.

Ideally, a tool for framework instantiation should have such functionalities:

¢ Basic visualization and navigation

117

The class hierarchy should be visualized. The framework classes and instance
classes can be viewed clearly. Hot spots and hook methods can be identified
graphically. Navigations among related classes and methods are easy. The
functionality can be implemented language-specifically. but method-
independently.

e [Instantiation guidance
Based on framework documentation. a too!l should guide the instantiation process
step by step. For example. what classes should be derived. what methods should
be overridden or implemented. This must be implemented in a method specific
way.

e Violation check
Some violations can be found by compilers during compilation. It may be
impossible for a tool to find some violations to frameworks constraints. However,

there are some violations a tool can find. For example. applications override some

methods that are not supposed to be overridden.
¢ Code generation

A considerable proportion of work in framework-based development is to derive
subclasses and implement hook methods. A tool can help generate the skeleton
code for the classes and methods. Microsoft Visual C++ is a good example of

such a tool.

Of course, at the final stage. a framework itself becomes a tool. an application
generator. However, before we achieve that. tools will help a lot when reusing white-box

framework.

As Brooks argued in his essay [Bro95], there is no silver bullet for software
development. There is no exception in framework technology. Although methods are
needed in framework development and instantiation, no single approach can attack all
problems. As we have seen. solutions are often domain specific. or even framework

specific.

118

Chapter 7 Conclusion

In this thesis we described our work. the framework-based implementation of an
optimizer for a relational database. In addition. more general issues in framework-based

development were discussed.

OPT++. the framework we instantiated. is a well-designed framework., according to
our instantiation experience. On the whole. the three-component decomposition conforms
to the nature of query optimization. Especially. logical operators, execution algorithms
and corresponding operator trees and algorithm trees are well represented. The properties
of operator trees and algorithm trees are well generalized. [n these classes, neither over-
feature nor under-feature was found. The relationships among the classes are well
defined. We did not find any defects in this part of the framework. Dynamic pruning
mechanism is elaborately designed. and all special cases are processed properly.
However. separation between the Search Space and Search Strategy component does not
fit all applications. In our implementation. we reassigned the functionality of the two
components in part. Furthermore. as Kabra claimed. the framework user has to balance
between efticiency and extensibility of the target optimizer. We made a compromise
between the two. Namely. we focused on efficiency. but kept the optimizer extensible

wherever possible.

Stemming from a pioneer relational database system. PostgreSQL provides a good
model optimizer to study. It supports SQL92/99 standard. Tvpical logical operators and
execution algorithms are implemented in it. Some transformative rules are applied to
preprocess a query tree to make subsequent optimization to be performed more
conveniently. Other rules serve the goal of improving optimization without system
statistics. Its search strategy is a sequential approach on the whole. The operators
involved in a query are considered in a fixed order. Most of optimization effort is paid on
joins. For joins, constrained dynamic programming is employed to search join space if
there are not too many items to be joined: otherwise. genetic algorithm is adopted to do
randomized search guided by some heuristic. The approach excludes some regions in
search space that must not contain the optimum. captures and solves the key problem. In

this way, optimization efficiency is improved.

119

[n our application. typical operators for relational algebra are supported. Main
transformative rules extracted from the PostgreSQL optimizer are applied. A
PostgreSQL-like search strategy is implemented. Constrained dynamic programming and
genetic algorithm are incorporated to optimize joins. Additionally, we modified the
framework to fit sub-queries and explicit joins. In the course of the framework
instantiation, we found planned customization is fairly routine. The customization of the
Algebra component is in this case. However. unplanned customization needs more

consideration.

Understanding a framework is a key problem in framework-based development.
Having studied existing documentation techniques. we propose some suggestions for the
issue from the perspective of a framework user. The suggestions include: providing
reasonable degree of abstraction. adopting good programming style, using de facto
standards, offering sample data. and using debugging tools. The solution to unplanned
customization tends to be case specific. We give some general suggestions on the
problem. Tools are developed along with the proposal of methodologies in the field.
However, the tools are associated with specific methodologies, or specific frameworks
On the basis of our experience. we described basic requirements for tools supporting

framework instantiation.

Frameworks do improve productivity. [t would be impossible to finish an optimizer in
master’s thesis work without the framework. A white-box framework, although requiring
much effort to understand its internals. can be reused in analysis, design and code. Our
experience also indicates that structural artifacts, e.g., the Algebra component in OPT++,
tend to have higher reusability. Framework-based development has its own
characteristics. It is a consensus that we need corresponding methods for this kind of
development. A good many methods for framework development and instantiation are
being investigated, but studies show that the solutions are apt to be domain specific, or
framework-specific. The issues in the field, including the ones we discussed, deserve

more study.

120

Bibliography

[Boo99] Grady Booch. James Rumbaugh, Ivar Jacobson. The Unified Modeling Language

[Bro9s]

[Bus93]

[But02]

[But00]

[Fay99]

{Fon00]

[Fon02]

[Fre87]

[Fro00]

[Fro97]

User Guide. Addison-Wesley, 1999,

Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering,

2nd edition. Addison-Wesley & Benjamin Cummings, Jr., 1995.

F. Buschmann, C. Jikel, R. Meunier, H. Rohnert, M. Stahl. Pattern-Oriented
Software Architecture. Draft copy, Siemens, AG, 1993

G. Butler, L. Chen. X. D. Chen, A. Gaffar, J. M. Li, L. G. Xu. The Know-It-All
Project: A case study in framework development and evolution, Domain Oriented
Svstems Development: Perspectives and Practices. Kiyoshi Itoh, Satoshi Kumagai

(eds), Taylor & Francis, UK. 2002.

G. Butler. R.K. Keller, H. Mili. A framework for framework documentation. ACM

Computing Surveys 32.1 (March 2000) electronic symposium.

M. Fayad, D. Schmidt. and R. Johnson (eds). Building Application Frameworks:
Object-Oriented Foundations of Framework Design. John Wiley and Sons, New

York. September 1999.

M. F. Fontoura, C. Braga. L. Moura, and C. J. Lucena. Using Domain Specific
Languages to Instantiate Object-Oriented Frameworks. [EEE Proceedings -

Software, 147(4). 109-116, 2000.

Marcus Fontoura. Wolfgang Pree, Bernhard Rumpe. The UML Profile For

Framework Architectures. Addison-Wesley, 2002.

J.C. Freytag. A Rule-Based View of Query Optimization. In Proc. ACM SIGMQOD

[nt. Conf. on Management of Data, San Francisco (1987) 173-180.

G. Froehlich, H. J. Hoover, P. G. Sorenson. Choosing an Object-Oriented Domain
Framework. ACM Press, New York, NY, USA. Article No. 17 Periodical-Issue-
Article, 2000.

G. Froehlich, H. J. Hoover, Liu, L. and P. G. Sorenson. Reusing Application
Frameworks Through Hooks. ACM, Special Issue on Object-Oriented Application

121

Frameworks, Vol. 40, No. 10. October 1997.

[Fro97] G. Froehlich. H. J. Hoover. Liu. L. and P. G. Sorenson. Hooking into Object-
Oriented Application Frameworks. Proceedings of the 1997 International

Conference on Software Engineering.

[Fro98] G. Froehlich, H. J. Hoover, Liu. L. and P. G. Sorenson. Requirements for a Hooks
Tool.1998. http://www .cs.ualberta.ca/~softeng/papers/ssr04.pdf

[Fro99] G. Froehlich. H. J. Hoover, Liu. L. and P. G. Sorenson. Using Object-Oriented
Frameworks. In Handbook of Object Technology, S. Zamir (ed.), CRC Press, New
York, 1999: 26-1:26-22.

[Gam95] Erich Gamma, Richard Helm. Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Gar00| H. Garcia-Molina. J. Ullman, and J. Widom. Database Svstem Implementation.
Prentice-Hall, 2000.

[Gol84] Adele Goldberg. Smalltalk-80: The interface Programming Environment. Addison-
Wesley, Reading, Massachusctts. 1984.

[IBMO2} [BM, SanFrancisco Common Business Objects User Guide.
http://www-3.ibm.com/software/ad/sanfrancisco/education.html

[Joh88] Ralph Johnson and Brian Foote. Designing Reusable Classes. Journal of Object-

Oriented Programming. 1988.

[Kab99] Navin Kabra and David J. Dewitt. OPT++: An Object-Oriented Implementation for
Extensible Database Query Optimization. VLDB Journal, vol 8, no.l, pp- 55-78,
May. 1999.

[Lee88] Mavis K. Lee, Johann Christoph Freytag, and Guy M. Lohman. Implementing an
Interpreter for Functional Rules in a Query Optimizer. Proceedings of the 14th
VLDB Conference, Los Angeles, California. pp. 55-78, 1988.

(LiOI] Jinmiao Li, An Object-Oriented Framework For Extensible Query Optimization,

Master Thesis, Concordia University, 2001.

[Mat96] M. Mattsson, Object-oriented Frameworks - A Survey of Methodological Issues,

Licentiate Thesis, Department of Computer Science, Lund University, 1996.

[Mic96] Zbigniew Michalewicz. Genetic Algorithms+Data Structures= Evolution

Programs. Springer. 1996.

[O1i02] Toacy C. Oliveira. Paulo S. C. Alencar. and Donald D. Cowan. Towards a

Declarative Approach to Framework Instantiation,

http://www.cs.ubc.ca/~kdvolder/Workshops/ASE2002/DMP/papers/Q7oliveira-et-al.pdf

[Pir92] Hamid Pirahesh. Joseph M. Hellerstein. and Waqar Hasan. Extensible/rule based
query rewrite optimiZation in Starburst. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data. pp. 3948, 1992.

[(Pos02a] PostgreSQL 7.2.1 Documentation. hitp://www.postgresql.org/idocs/
[PosO2b] PostgreSQL 7.2.1 Source Code. hup://www.postgresql.org/

[Pre94] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-
Wesley. 1994.

[Shu00} F. Shull. F. Lanubile. and V. Basili. Investigating Reading Techniques for
Framework Learning. [EEE. (Vol. 26. No. 11) pp. 1101-1118, November 2000.

[Wei88] A. Weinand. E. Gamma., R. Marty. ET++ - An Object-Oriented Application
Framework in C++. Proceedings of the OOPSLA'88. pp. 46 — 57. 1988.

