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Abstract

Design of A Workflow Management System for BLAST Servers Using
JINI and JavaSpaces

Yang Li

BLAST (Basic Local Alignment Search Tool) is an important DNA and protein simi-
larity tool. It can give evolution and functionality information about unknown genes
by comparing them with well studied genes in a database. BLAST search may query
many DNA or protein sequences against a huge collection of databases. Today, it
is normal that one biological laboratory performs BLAST searches for thousands of
sequences in its daily research activities. The performance of the BLAST search im-
plementation is a bottleneck of such activities. In this thesis, we present a design of
a new distributed BLAST cluster system using Jini and JavaSpaces technology. This
system contains a set of BLAST servers. Each server has a partition of a database
against which BLAST algorithms may be executed. This thesis focuses on design-
ing a workflow management system which coordinates the work of distributed jobs.
Jini and JavaSpaces provide an easy way to exchange program code and data over
a network. We found it is easy to implement a workflow management application in
a distributed computing environment using Jini technology. Although this system is
for BLAST search. we found it is not difficult to modify it to fit other distributed

computing tasks.
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Chapter 1

Introduction

1.1 Context of Thesis

Along with the explosive burgeoning of biological data. the application of high per-
formance computing in biology is gaining more and more attention. The commonly
used technology for high-throughput computing is a distributed system. A heavy
computing task can be split into a set of smaller subtasks. Then these subtasks can
be distributed to different servers to be executed concurrently. After subtasks are fin-
ished. their results are returned and reassembled into the final result for the original
task. In this way, the total execution time decreases dramatically. In such a system.
the key issue is how to coordinate the working of all server nodes. balance the work
load among these nodes and handle the network exceptions. The ideal system should
be flexible. robust and need minimal administration.

BLAST (Basic Local Alignment Search Tool) is one of the most common DNA
(Deoxyribonucleic acid) and protein sequence similarity search tools. The purpose of
BLAST is to predict the functionality and biological role of unknown DNA or protein
sequences through comparison with those well-understood sequences in a database [1].
We assign similarity to sequences by the score of an alignment locally or globally. Due
to the huge size of databases with millions of sequence segments. the throughput of

the BLAST system is a bottleneck of the analysis process. The current solution is to



split the BLAST task into several small tasks. Then these small tasks are performed
concurrently to improve the performance. Generally we can select a job partition. a
data partition or mixed methods. In job partition. the requested task is split into
several small requests. In data partition. the database is split into several smaller
parts and the task is executed against these data partitions concurrently [4, 13]. If
we use both job partition and data partition. we can get even smaller subtasks and
may get better performance. However. there is an overhead of partitioning. It is not
always true that the smaller the task the better the performance. In this thesis. we
design a high performance distributed BLAST cluster system using the data partition
algorithm. Our solution is a simple system containing a cluster of BLAST servers.
each performing a BLAST search against a partition of the database.

Jini is a new distributed computation infrastructure from Sun Microsystems.
which was released in 1999. According to the Jini specification [9]. it is an ideal
tool for implementation of dynamic distributed computing systems. In such systems.
there are several clients. several services provided by servers. as well as at least one
lookup service. The lookup service is an object repository. from which clients can
download the service proxy object. All services are registered on a lookup service.
Clients can find lookup services by either a multicast or unicast protocol. The client
can automatically find the current available service with some desired service prop-
erties. This way the whole system can dynamically self-configure without disturbing
services. For instance. we can add more servers or remove some servers from the
system without shutting down the whole system.

Based on Jini technology. Sun Microsystems developed JavaSpaces [10] which
provides a cross-network shared memory. The network nodes can write and read
objects from that shared memory. As Migliardi [12] shows. the JavaSpaces model is
a simple unified mechanism for dynamic communication. coordination, and sharing
of objects between Java technology-based network resources.

Currently there are several implementations of high performance BLAST pro-

grams. such as TurboBLAST [13]. PowerCloud BLAST (18] and the high throughput



distributed DNA sequence analysis system from National Center for Genome Re-
sources (NCGR) [19]. None of them is implemented using Jini technology. In this
thesis. we present the design of a new high performance BLAST server based on Jini
technology. It not only provides high throughput, but also provides dynamic self-
configuration properties [12]. Another advantage of Jini is that it is an open source
technology based on Java. It can be used by anyone and is platform independent.
From the development perspective. it is very easy to use. Sun Microsystems pro-
vides a Jini starter kit [10], which contains all the essential classes and APIs for Jini
development.

In a distributed computing environment. the main problem is how to coordinate
the jobs on distributed nodes and maintain a reasonable load balance. Developers
usually use workflow management to control the running of a distributed computing
system. Workflow is the procedure to coordinate the work of all participants to
perform a predefined business goal [7]. A workflow management system is a type of
application managing the sequence of work activities and the invocation of appropriate
human and/or IT resources in each activity step. In this thesis. we design a workflow
management system based on Jini and JavaSpaces to coordinate the task dispatching

and data flow of a distributed BLAST search pipeline.

1.2 Previous Work and Purpose of This Thesis

As mentioned above, we can benefit from implementing a BLAST server using Jini
technology. Liusong Yang has evaluated the possibility of implementing a single
standalone Jini based BLAST server in her master thesis [27]. In such a BLAST
server. the BLAST algorithm is implemented using C++. The Jini service API
enables it to join a Jini environment. The client can send the BLAST request directly
to the server and the server returns the results directly back to the client. Each server
performs the whole BLAST search task. The performance of such a system is not

good. Another problem of such a system is it may waste a lot of computing resources.



Since even for one big task. only one server can execute the BLAST algorithm.

In order to improve the performance of BLAST search, we plan to design a high
performance BLAST server using Jini and JavaSpaces technologies. This project is
partitioned into three parts: BLAST server implementation using C++, the design
of a workflow management system, and a design of a client GUI. At the time of
this writing, the BLAST engine and client GUI are not completed. Thus. we cannot
provide a working system for testing or evalution. This thesis will focuses on workflow
management design. We will provide a detailed design for workflow related classes
and API signatures for client GUI related classes.

Although this paper focuses on a BLAST cluster, from my personal opinion it
is easy to adapt the system to other application servers. In other words, it can
be applied to other high throughput computations by changing the task definition,
server implementation and client interface implementations. The current design of
this system is for our local use. However, it is easy to extend it globally by adding

security control.

1.3 Contribution of The Thesis

The principal contribution is a system architecture for Jini-based distributed BLAST
cluster server system. The multiple BLAST Servers allow this system to do high
performance BLAST searches. The Jini and JNI technologies allow this system to
have dynamic configuration and platform independency properties. The multiple Task
Managers decentralize the system control and workflow management, and the cross
network shared error space improves system tolerance.

This thesis also includes detailed design and some implementation for our Sys-
tem. The detail design contains module design, Java class diagrams and sequence
diagrams. We specified the Java packages and classes used in our system in class
diagrams. The sequence diagrams present the major system activities and runtime

components interactions. The implementation is done in JBuilder 4.0 with JDK 1.3.1



and all classes are compiled without error. For some uncertain classes. we also pro-
vide the detailed API and function signatures. Although these detailed designs and
implementation may be modified in the final version, they will help us implement a

working system.

1.4 Thesis Organization

This thesis contains four chapters. Chapter 1 (current chapter) gives a brief descrip-
tion of the context of this thesis. Chapter 2 introduces the background knowledge
of BLAST. Jini. JavaSpaces and workflow. Chapter 3 presents the system design in-
cluding architecture design, detailed module design, Java class diagrams and dynamic
sequence diagrams. Chapter 4 discusses the achievement of this thesis. the status of

this project and possible future work.



Chapter 2

Background

2.1 BLAST - Basic Local Alignment Search Tool

BLAST is a sequence alignment algorithm. The main purpose of this algorithm is
to compare the similarity of unknown sequences against a collection of well studied
sequences in a database [1]. Such a comparison can help us predict the biological
function and structure of unknown genes or proteins, and predict the evolution of

species.

2.1.1 Local and Global Alignment

Sequence alignment means the procedure of comparing two or more sequences by
looking for a series of individual characters or character patterns that are in the same
order in the sequences. The quality of the alignment is evaluated using an alignment
score. We can use global and local alignment to compare the sequences. Global
alignment is an attempt to align the entire sequences, as many characters as possible.
In order to get the maximal score of alignment, non-identical characters or gaps are
placed to bring as many identical or similar characters as possible. In contrast to
global alignment. local alignment searches for regions of local similarity and need not

include the entire length of the sequences. Local alignment methods are very useful



for scanning databases or when you do not know that the sequences are similar over

their entire lengths (Fig 1) [11].

A. Global Alignment B. Local Alignmnet
LGPSTKQFGKGSSSRIWDN = —-——wee FGKG-———~-—-
l N LT
LNOIERSFGKGAIMRLGDA ~ -—-———-——- FGKG-—---———-

Figure 1: An Example of Global and Local Alignment.

2.1.2 Alignment Algorithms and Similarity Scores

How can we perform exact similarity comparisons between sequences? In artificial
intelligence (Al) . the Dynamic Programming Algorithm (DPA) is a heuristic method
to find the shortest paths in a search graph [15]. It is an ideal algorithm to solve
optimization problems. It is also used in sequence alignment. In this method. the
problem is represented as different states. The solution of the problem is the destina-
tion state. The algorithm is to find an optimal path from initial (original) state to the
destination state [16]. This algorithm is based on recursion from each current state,
selecting some/or one correct (optimal) next states to be added into the solution
path. The most important step for this algorithm is how to select the next state (or
node in graph) from the current state. The method is to calculate and assign a score
to each child node of the current node, and then select the one with highest score in
the set of nodes. The sequence alignment algorithm is based on this algorithm. This
algorithm is trying to find a set of small length alignments and then extend these
alignments. but only keeps those with higher alignment scores (optimal sets).

The Smith-Waterman algorithm is an example of such an algorithm. As shown in
Fig 2. this algorithm constructs a two-dimensional table of partial alignment scores.
The table has one dimension or axis for each sequence. Each cell in the table contains

the score for the best partial alignment that terminates with the pair of sequence

7



residues (one from each sequence) that correspond to that cell in the table. The best
scoring partial alignment is extended to subsequent cells in the table only when it
is the prior cell that results in the best scoring partial alignment for the subsequent

cell. The final alignment is thus the best scoring alignment possible [17].

Smith-Waterman Implementation

Figure 2: Two Dimensional Table of Smith-Waterman Algorithm.

However. this algorithm may take a long time to complete one comparison. In
fact. there is a set of different sequence search algorithms. These algorithms use
heuristic algorithms to improve performance and selectivity without losing too much
sensitivity. BLAST uses a word-based heuristic to approximate a simplification of
the Smith-Waterman algorithm. It is also known as the maximal segment pairs algo-
rithm. Recent advances in maximal segment pairs statistics allow the use of several
independent segment alignments to evaluate the significance probability. The BLAST
algorithm is less sensitive than Smith-Waterman, but more selective in appropriate
circumstances. Recent versions of BLAST can handle gaps and exhibit higher sen-

sitivity (17. 14]. Usually, the BLAST search is more sensitive for protein sequences,

8



since the nucleotide sequence has only four characters.
Detailed information for each algorithm and all available algorithms is beyond the

scope of this thesis.

2.1.3 BLAST Search Database and Algorithms Options

The National Center for Biotechnology Information (NCBI) Genebank database con-
tains a set of DNA and protein sequences. When doing a BLAST search, we usually
select a database for the closest species first. Different databases also provide different
biology evolution information. For more information about databases, please refer to
Appendix A.

As mentioned above. when doing a BLAST search. we can select different algo-
rithms to obtain different sensitivity and selectivity. Some algorithms have higher
sensitivity on proteins over nucleotides. We also may need to convert a gene sequence
into a protein sequence to compare results from different algorithms. The NCBI
BLAST search web page provides a collection of search parameters. For example,
blastn means standard nucleotide BLAST; blastp means standard protein-protein
BLAST: blastx means nucleotide query against protein database BLAST. For more

information about the BLAST search algorithm options, please see Appendix B.

2.1.4 High Performance BLAST

For short sequence alignment, a BLAST search is almost as simple as the examples
mentioned in Section 2.1.1. However, in the real world, user usually need to compare
hundreds or thousands of sequences against a database with millions of sequences.
The computation task may take hours or weeks. Hence a high throughput system is
very useful for such CPU-intensive tasks. Currently, we use data parallelism and job
parallelisin to split such big tasks into smaller ones. which are distributed to different
nodes to be executed concurrently. The results produced by individual nodes are as-

sembled into a final result. Such a system is usually referred to as a computing farm



Features Our System TurboBLAST PowerCloud NCGR System

High

performance Yes Yes Yes Yes
Dynamic

Configuration Yes Yes N/A No
Robust Yes Yes N/A N/A
Heterogonous

Platform Yes Yes No No
Remote Access Yes N/A N/A Yes
Scalability Yes Yes N/A N/A
Technology Jini. JavaSpaces Java RMI N/A CORBA

Table 1: Comparison of High Performance BLAST Systems

(4]. Currently there are several implementations of high performance BLAST pro-
grams. such as TurboBLAST [13], PowerCloud BLAST [18] and the high throughput
distributed DNA sequence analysis system from National Center for Genome Re-
sources (NCGR) [19]. These systems are based on CORBA or other distributed
computing infrastructures. Table 1 displays a comparison of our system with these

other systems.

2.2 Jini - A Distributed Computing Infrastructure

on Java

2.2.1 What is Jini

Jini (pronounced Jee-nee, is not an acronym and does not stand for anything) means
“spontaneous networking”. It is a new distributed computation infrastructure from
Sun Microsystems. In a network based on this technology, users are able to plug any
Jini-enabled devices such as printers, storage devices. speakers, etc., into a network.
All other devices and computers in the same system can be notified that the new
device has been added and is available. When the clients need to use some resources,
it can look up related “services” from the network and download the proxy of the

service to complete the tasks. This way, there is no longer any need for the special

10



device support software known as a device driver in a user’s local operating system

8. 9].

2.2.2 How Jini Works

Basically. the Jini system consists of three major components: clients, services and
lookup services. These three components cooperate with each other using the follow-

ing protocols [2]. as shown in Fig 3:

e Services discover and join: each Jini enabled service can discover lookup
services using a unicast or multicast protocol and then register itself into the

found lookup services.

e Clients lookup and download: the Jini client finds a service via a lookup
service and download the proxy for the required service to its local Java virtual
machine (JVM) to perform desired tasks. During computation. the proxy may

communicate with the service provider directly if it is necessary.

e Entry publish and service attributes match: each service has one or more
entries to list its attributes, including the name, the service it can provide and
the quality of the service (e.g. printing quality of the printer). These entries
are published on the network when the service is registered. The client can find

the required service by matching these fields.

In other words, in Jini-enabled systems, the lookup service serves as a proxy
repository. Each service has to register itself. and upload its proxy to at least one
lookup service. Clients can search for service proxies by matching entries. Then
clients can download the proxy and use it as a local object. Since a lookup service
can broadcast its existence. the services and clients can communicate to each other

with minimal knowledge about each other.

11



Lookup Service

LﬁniServiceProxy ]

Service Provider

[JiniServioeProxy J

T T — [rissnicepron |

Figure 3: Jini Protocols.

2.2.3 Architecture of Jini Service

According to the implementation method. the Jini service proxy can fall into two
categories: fat and thin proxies.

A fat proxy usually does most of the jobs to complete a given task. In extreme
cases. it contains all of the code to perform the service. It is downloaded to the
client and performs all the computing tasks. As shown in Fig 4, the service includes
an interface and an implementation. The client uses the interface as a template to
search for an implementation proxy. At runtime, the implementation of a proxy
resides in the client JVM. It executes all of the computing tasks on the client’s side.
For some heavy computing tasks and those tasks which need to communicate with
databases. the thin proxy is more reasonable. A thin proxy does no more than provide
an interface to enable the client to communicate with the service providers. It has to
exchange data and/or code with the service provider to complete its task. Although a
thin proxy can be implemented using other protocols. usually it is implemented using
Java RMI (Remote Method Invocation) technology [2]. The classes and JVM objects

are shown in Fig 5. At runtime, the service implementation stub will be downloaded

12



into the client JVM and will communicate with the server. We also can implement

Jini services using a socket client and server model. The client downloads a TCP /1P

socket proxy to talk with the server.

A. Non RMI Jini service B. Non RMI Jini service JVM objects
class diagram
<<nterface>> Client JUM Server JVM
Seriafizable
gom io) T
MyService
? MyService T
<<hterface>> T __ X — MyServicelmp
MyService imp ? | e— —

\—-/

&

MySermvicelmp

Figure 4: Fat proxy Class Diagram and JVM Objects

2.2.4 JavaSpaces

Based on Jini technology. Sun Microsystems developed JavaSpaces and released the
first implementation of JavaSpaces with the Jini starter kit. JavaSpaces is a Jini
service that provides an object database service. It can be used as a shared memory

in a network. A typical JavaSpaces implementation provides the following interfaces:
e Write: write an object into JavaSpaces.
e Read: read an object from JavaSpaces.

e Take: read and remove an object from JavaSpaces.

Those objects written into JavaSpaces have to implement the Entry interface. In

this way. a client can use Jini Entry field matching to find specific objects.

13



2.2.5 Jini and Distributed Computing

Jini and JavaSpaces provide a variety of features. which are necessary for imple-
menting distributed systems. These features include: discovering resources. dynamic
federations. distributed leasing. distributed event management. and over network
shared objects memory. allowing construction of a self-healing system that has no
single point-of-failure [20]. In a distributed system. different nodes need to exchange
data and messages from each other to establish communication. Some technologies
can allow remote code execution. However. the client can only create a reference of
remote objects. In contrast. Jini not only allows data and messages to travel over the
network. but also allows code to travel to the client’s Java virtual machine (JVM).
Moreover. JavaSpaces provides a cross network shared memory as an object repos-
itory. All participants can write and read objects from JavaSpaces. These shared
objects include both data and program code.

In general. Jini technology has the following features and properties that make it

easy to implement more robust distributed systems [9]:

e Scalability: Jini provides an ideal environment to create flexible networked

systems scalable from the small device to the enterprise.

¢ Open source: The Java and Jini community are free and open source. making

it easy to set up a creative collaboration.

e Code mobility: Not only data, but also programming code can travel over a

network in Java objects.

* Robustness: Since Jini services use the leasing method to register service
proxy. Jini-enabled network can do self-configuration and improve failure toler-

ance.

¢ Integration and compatibility: the Java language properties and the Java
native interface (JNI) allow fast, easy incorporation of legacy. current. and

future network components.
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2.3 Workflow and Workflow Management System

2.3.1 Workflow

Workflow refers to the procedure of coordinating work among all participants to
finish a predefined business goal. The participants can be people. machines and
computation devices. In such a procedure. the information and tasks are passed
between participants serially or concurrently in a predefined order. Now the workflow
is normally organized within the context of an information technology system to

provide computerized support for procedural automation [7].

2.3.2 Workflow Management System

A workflow management system is a type of application for managing the sequence
of work activities and the invocation of appropriate human and/or IT resources in
each activity step. The process definition and task list management is the main
functionality of such a system. The task list is a job queue. in which the tasks
are performed in a predefined order concurrently or serially. A typical workflow

management system has the following five interfaces [7]:

o Process definition: specifications for process definition data and its inter-

change with the Workflow Execution environment.

e Workflow interoperability: interfaces to support interoperability between

different workflow systems.

e Invoked applications: interfaces to support interaction with a variety of IT

applications.
e Client applications: interfaces to support interaction with human users.

¢ Administration and monitoring: interfaces to provide system monitoring
and metric functions to facilitate the management of composite workflow appli-

cation environments.
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2.3.3 Workflow Management System Based on Jini

As mentioned in Section 2.2.5. Jini can make distributed computing implementation
easier. Jini and JavaSpaces can also make a workflow management system much
easier to implement and much more robust. As Schaefer has shown [22], it is easy to
treat all workflow worker participants as service providers and all tasks. processes and
activities as objects traveling over the network. We also can write all tasks into shared
JavaSpaces. The workflow application components can read or take their interested

tasks to perform their own computation job.
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Chapter 3

Design

3.1 Problem and Solution

The purpose of this thesis is to design a high performance BLAST search system.
Compared with the existing systems. it should be more robust. more flexible. and it
should be able to dynamically extend or contract with minimal administration effort.

We also apply a distributed computing architecture for our system design. Our
system consists of a cluster of BLAST Servers. These servers can have diverse hard-
ware and/or OS platforms. Each server handles BLAST searches against one small
database partition. In other words. in the current version of our system. we use a
data parallelism algorithm to split BLAST tasks (See Section 2.1.4). In order to im-
prove system stability and have true dynamic self-configuring properties. we design
a Jini-based workflow management system to handle network exceptions, coordinate
the distribution of tasks and maintain load balance among BLAST Servers.

We can get some benefits from Jini technology. First, the users can have a trans-
parent view of the system. They do not need to know the IP address or domain of a
BLAST Server before submitting a BLAST search request. Second. we can add or re-
move any BLAST Server to or from the system without disturbing the service. Third.,
it is easy to mix heterogeneous BLAST Servers in different platforms into the sys-

tem. Each server may have a different implementation of BLAST algorithms and/or
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databases. This can provide an easy way to partition a huge database set into several
small parts.

In our system. the workflow management system is a software component to man-
age data and task flow between BLAST clients and BLAST Servers. The major func-
tionality of the system is providing BLAST search pipeline management and failure

handling.

3.2 System Specification

It is simple for the end user to use this system. The user provides some sequences and
related parameters. The system executes a BLAST search and returns the results to
the user. Another type of user is the system administrator who monitors the system
status and controls some services. However. from an internal view. this is a distributed
BLAST cluster system controlled by a workflow management application. The Jini-

based BLAST cluster system contains the following components (Fig 7 and Fig 8):

e BLAST Clients: receive user’s input: generate BLAST Request: send requests to

service and retrieve results.

e Task Manager: workflow management engine to coordinate the task and data
flow between BLAST Client and BLAST Server. Backup all data exchanged

among system nodes during BLAST search execution.

e Task Manager Database: storage to back up user’s input, results and intermedi-

ate data.

e BLAST Server: execute BLAST algorithms and produce the BLAST search

results.

e Lookup Services: Jini service proxy repository providing lookup, discovery. reg-

istration and downloading service.
e Administrator: provide GUI to monitor system runtime architecture and status.
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e Result Space: shared network memory providing storage for result objects ex-

changed between nodes.

e Error Space: shared network memory providing storage for error message objects

for failure handling. May be combined with the resuit space.

3.2.1 BLAST Client

The major function of a BLAST Client is providing a user interface for the end user.
From a BLAST Client. the user can send a request and view query results. In our
system. there is more than one BLAST Client and each has a unique name. The Client

supports following functionalities:

e Send a request: user can input the query sequences and BLAST parameters

then issue a BLAST search request.
e Display results: user can view the BLAST results in graphic format.

¢ Administration function: report client status to administrator.

Send a request

In addition to allowing the user to select all BLAST search parameters. as those on
the NCBI web blast interface [1]. this system also allows the user to view the server
list and select appropriate servers to perform the BLAST search. The user can also
submit a batch of sequences each time. The user follows these steps to submit a

BLAST request:

e Input query sequences: The user can input more than one query sequence
directly in a GUI text box or upload a pre-edited text file. All sequence data
should be in FASTA [1] format.

e Select query databases: The user can select desired DNA or protein databases
to run the query against. More than one database can be selected at each time.

See Appendix A for available databases.
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Select BLAST algorithm: The user can select one of the available algorithms.

See Appendix B for available algorithms.

e Select alignment view option: The user can select a favorite display format
for results. Current available formats include: Pair wise, query-anchored with
identities. query-anchored without identities, flat query-anchored with identi-

ties. flat query-anchored without identities and hit table.

e Browse and select desired BLAST Server: The user can use a GUI-based
BLAST service browser to find desired services (optional). In the browser,
each BLAST service lists its database. available algorithms. current status (idle
or busy) and computation resources (such as number of processors, speed of

processor and total RAM in megabytes or gigabytes).

Submit request: After the user has collected all the necessary information,

he can click a button to submit a request.

Request validation: Once the user has confirmed the request, the BLAST
Client program validates the request based on the user’s input. The validation

is based on the following criteria:

— Query sequences quality: percentage of unknown nucleotide pair or
protein amino acid residues, such as user input error due to typing mis-

takes.

— Request parameters: some input data cannot be applied to specific

algorithms or databases.

All requests that do not pass the validation are blocked, and the user is prompted

to correct the input data.

Display Results

The BLAST Client GUI presents the results graphically to the user. This functionality

includes the following scenarios:
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Display request progress status: After the user submits the request, the

GUI displays request progress information.

Display instant results: When a request is being processed. the BLAST
Client is notified when partial results or final results are available. The user can

select to view these results now or later.

Retrieve backup results: If a request is done. the user can retrieve the

backup results from the database at any time.

Administration function

In order to allow an administrator to monitor the BLAST Client. each client must

include the following functionalities.

Report the current status to the administrator.

Allow the administrator to change the status.

3.2.2 Task Manager

The Task Manager is the main workflow component in our system. Its main func-

tionality is coordinating the communication. task distribution and failure handling.

Another important functionality is backing up all the data used in this system in-

cluding requests. tasks and final results. It supports the following functionalities:

Receiving requests: receive request from BLAST Client.

Searching for old results: in order to save system resources, Task Manager
searches backup results for request with the same contents. The search is per-

formed on request sequences and BLAST parameters.
Creating tasks: Task Manager creates tasks from a request.

Split task: those tasks with multiple database partitions are split into subtasks

using data parallelism.
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e Dispatching tasks: dispatching subtasks to an appropriate BLAST Server by

matching the request database and preferred server.
e Receiving results: receive results from BLAST Server.
e Preparing final results: assemble results to final results if it is necessary.

e Notify BLAST Client: when a final result is ready. Task Manager notifies the

client.

e Failure management: continually check for potential system node failure or

network exception.

¢ Administration function: report status to administrator.

Receiving requests

The Task Manager receives requests from BLAST Clients. Two requests may have
the same contents. but if they come from different BLAST Clients or from the same
BLAST Client with different IDs (serial number). we treat them as different requests
since the results for these requests are sent back to different clients or the sequence

database is updated.

Searching for old results

In order to reduce the work load for the system. the Task Manager searches among
previous results with the same request contents and parameters in the Task Manager
Database. If such a result is found. and all related BLAST Databases have not been
updated. the result is retrieved and sent to the client. Otherwise. the Task Manager

continues to process the BLAST search.

Creating tasks

The Task Manager generates tasks based on request contents and parameters. Each

task has the following fields:
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e Algorithm: selection of BLAST algorithm. For more information please refer

to Appendix B.
e Databases: selection of databases against which to run the query.
e Sequences: the user’s query sequences.
e Alignment view option: the final user preferred display format of results.

o Preferred BLAST Server: the user preferred BLAST Server name or ID to

execute the request. This is an optional parameter.

After each task is created, it is added into the task queue.

Split task

Based on data parallelism. if there is more than one BLAST database listed in the
task. the task is split into subtasks. Each subtask only contains one query database.
Depending on the database partition and the subtask database entry. these subtasks

may or may not be sent to different BLAST Servers.

Dispatching tasks

At any time. if the task list is not empty, the Task Manager picks a subtask and sends
it to one of the appropriate available BLAST Servers. The task dispatching is based

on the following criteria:

e BLAST database matching: The request query database is matched with
one of the BLAST Server databases.

e First-in, first-out: In case there is more than one task matched with the same

BLAST service, the first-in and first-out rule is used.

e Preselected server: In case more than one BLAST Server is matched with the

same task, the server whose name is matched with task’s preferred services name
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is selected. If no BLAST Server is preferred by the task, the server with more

computational resources is selected. Otherwise, an arbitrary server is selected.

Receiving results

After a BLAST Result is created on the BLAST Server, the Task Manager is notified

and attempts to get the results from the BLAST Server.

Preparing final results

After the Task Manager has received the results, it prepares the result into the final

format and sends it back to the client. This procedure includes the following steps:

e Assemble results: all results based on subtasks are assembled into one result

for the original task.

e Convert results format: convert the result data into the user-preferred view

format. For available formats please refer to Section 3.2.1.

e Write results to the shared result space: Task Manager writes the final
results into a result space and notifies the BLAST Client that the results are

available. See beginning of this section.

e Store results into the backup database: One copy of the final results are
stored in the backup database to let users retrieve their results later or from a

different BLAST Client machine.

Notify BLAST Client

While each request is being processed, the Task Manager notifies the BLAST Client

for several events:

e Request received event: After the Task Manager creates each new task from
a request. it generates a request received event to notify the BLAST Client. This

event contains a request ID. After the BLAST search is done, the user can use
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this ID to retrieve the results from the database on any machine where the

BLAST Client program is running.

e BLAST Server failure event: In case one or more BLAST Servers fail, the Task
Manager notifies the related BLAST Clients and resends the failed Task to an

alternative BLAST Server.

¢ Results ready event: When the final result is ready, the Task Manager notifies
the related BLAST Client where the request came from. If the BLAST Client is

still available, the user can chose to view the results now or later.

e BLAST progress event: The BLAST Server sends back progress information
about each individual task. The Task Manager notifies the related client about

these events.

Failure management

Since this system is a distributed system, nodes and network connections may fail
at any time and any place. Thus we use dynamic configuration properties of Jini
to improve the stability of our system. Generally, we use the following methods to

handle the failure of one or more nodes:

e Multiple BLAST Servers: more than one BLAST Server provides the same
services with the same database partition. This can ensure that no database
partition server totally fails. We also can add and remove servers without

stopping the BLAST search service.

e Multiple Task Managers: having more than one Task Manager helps to decen-

tralize the workflow management.

e Backup Task Manager database: provide storage of intermediate data, including

the original request, partial and final results.
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e Shared error space: one instance of JavaSpaces functions as a shared mem-
ory for all error messages. This decentralizes the failure handling. Each Task

Manager can retrieve any error message and execute an exception handler.

Administration functions

The Task Manager reports its status to the administrator and allows the Administrator

to change its status. In any situation, changing status must not result in lost data.

3.2.3 BLAST Server

The BLAST Server is a Java based program running on a workstation or a Beowulf
cluster. It provides the software interfaces to invoke a native program. written in
C++. to execute the BLAST algorithm and return the result. It also provides the
Jini BLAST Service to let the Task Manager submit a BLAST search remotely. A

BLAST Server provides the following functionalities:
o Register the Jini BLAST Service proxy object to all available lookup services.
e Publish the service properties to the system.
® Receive Tasks or Subtasks from the Task Manager.

e Prepare for the running of BLAST, for instance by removing vector contamina-

tion.
¢ Invoke the BLAST search program to perform the task.
e Return results to the Task Manager.
e Notify the Task Manager for any error or exception.
e Report server status to the administrator.

¢ Allow the administrator to enable and disable the service without losing data.
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3.2.4 Lookup Service

To make things simple. our current version of the system uses the general Lookup
service coming with the Jini Starter Kit [10]. It provides a repository for proxies of

all Jini services used in this system.

3.2.5 Administrator

The administrator is a software component that allows the user to interact with this
Jini based system. It provides a GUI for viewing the runtime system architecture.
It is optional for the BLAST search. That means without any administrator in-
stance running. the system can still perform a BLAST search. It has the following

functionalities:

e System monitor: the user can view the system runtime architecture via a

GUI module.

e BLAST search history and performance analysis: the user can query

backed up results and execute parameters for each request.
e Changing the node’s status: user can use administrator GUI to change the

Jini service status.

System monitor

The system monitor provides a GUI to allow the user to view a picture of the runtime
system architecture. The user can browse the currently available BLAST Servers, Task
Managers and clients. It displays the following information and refreshes according

to an adjustable time interval.
e Current status: either enabled or disabled.
e Current running tasks for a BLAST Server and a Task Manager.
e Current pending tasks for a Task Manager.
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BLAST search history and performance analysis

The user can use the GUI to query the backup results to review the system’s running
history and to view performance statistics, such as the number of requests performed
by the system and by each BLAST Server. These values can help us to find opti-
mal work balance distribution. For each request. the system reports the following

parameters:
e The request sequence number and length.
o The database partition size: bytes. length and number of sequences.

e The execution time and waiting time.

Changing the node’s status

The user can block a client or disable a service at an appropriate time. These types
of status changes should not result in lost data. Any unfinished tasks are handled by

currently available services.

3.2.6 Results and Error Space

An instance of JavaSpaces from Jini starter kit serves as a cross-network shared
memory to store results and error message objects. The Task Managers write results
into this space. and clients read results from this space. All nodes can write error
messages into this space, and any Task Manger can retrieve an error message to

perform exception handling.

3.3 System Architecture

3.3.1 System Components and Functionalities

The system is a distributed computing system based on the Java network computing

infrastructure Jini and JavaSpaces [8, 9]. From the system specification, Section 3.2.
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it is not difficult to list the components and their functionalities.

e Jini BLAST Client: a Jini client to find Jini Task Manager Services, receive user
input and display the result. It is also a Jini service to provide client adminis-

tration functions (Section 3.3.2).
e Lookup Services: a Jini service repository.

e Jini Task Manger: a Jini server that provides the Jini Task Manager Service to
receive requests from clients; it is the main workflow management component
to coordinate the work of system components; it is also a Jini client to find Jini

Blast Services.

e Jini BLAST Server: a Jini server that provides the Jini BLAST Service; com-
municates with the native BLAST search engine to produce a BLAST Result;
provides administrative information and allows the administrator to change the
status. Each Jini BLAST Server can run on diverse platforms with different
implementations of the BLAST search. From a hardware point of view, a Jini

BLAST Server can be a standalone server or a Linux cluster.

e Administrator: a Jini client to monitor the system runtime architecture and to

control the system. Not mandatory for BLAST searches.
e Task Manager Database: storage to back up data and log event information.

e Results Space and Error Space: cross-node shared memory to store results and

error message objects.

For software functionality specification please refer to Section 3.2.

3.3.2 Administrator and Jini Adminservices

In order to provide a runtime system overview, each node in this system includes one

Jini service. The purpose of this service is to provide status and activity information
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for each node. The Administrator is a Jini client that can find and download these
services to create a graphic picture of the runtime system [3] (See Fig 6) and to
communicate with Jini service providers. On some nodes. such as the BLAST Server
and Task Manager, we use the one Jini service to provide both administration and
system services. For instance, the Jini BLAST Service also provides the administration

service function for the BLAST Server.

3.3.3 Communication between the Components

Since our system is a Jini-based dynamic distributed computing system, a large
amount of data, messages and code is exchanged among system components. The
interaction among the components in this system is changed dynamically at runtime.
Generally. all communications are classified into two categories: Lookup services com-

munication and non-Lookup services communication.

Lookup service communication

Communication between Lookup services and other nodes/components includes the
Jini lookup services discovery. registration of service proxies, service searching and
download. In our system, there are several Jini clients and Jini services. Before clients
and services can begin to communicate with each other to complete tasks, they must
talk to the Lookup Services first. In general, the following types of communication

occur between lookup services and each individual node (Fig 7):

e BLAST Client: finding and downloading Jini Task Manager Services and Result

Space from Lookup Service; registering BLAST Client administration service.

e Task Manager: finding and downloading Jini BLAST Services, Result and Error

Space; registering Jini Task Manager Service.

e BLAST Server: registering Jini BLAST Service.
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e Administrator: finding and downloading Jini Administration Services for each

node.

e Result and Error Space: registering space.

Figure 7: System Architecture and Interaction with Jini Lookup Service.

Non-Lookup service communication

This type of communication consists of the exchange of data or ob jects between nodes
in order to perform BLAST searches, task dispatching and other system coordination.

Generally the following data/object exchanges (Fig 8) occur:
e BLAST Client sends requests to Task Manager.
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e Task Manager sends tasks to BLAST Server.

e BLAST Server sends back results to Task Manager.

e Task Manager writes requests. tasks and results to Task Manager Database.
e Task Manager writes results into Results Space.

e Task Manager notifies client for events.

e BLAST Client retrieves old results from Task Manager Database.

e BLAST Client reads the results from Result Space.

e BLAST Server notifies Task Manager that certain events have happened.

e Administrator retrieves service administration information from each node.

3.4 Module Design

In this section. we discuss the module design for each component as shown in Fig 9.

The components and their modules are:
e BLAST C(lient:
— User Input GUI.
— Result GUL
— Service Browser.

— Jini BLAST Client.

— Jini Client Admin Service.
e Task Manager:

— Jini Task Manager.

— Task Dispatcher.
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— Results Assembler.
— Database Access.
— Failure Manager.

— Jini Task Manager Service.
o BLAST Server:

— Jini BLAST Service.
— BLAST Search Engine.

— Jini BLAST Server.
o Administrator:

— Jini Administrator.
— System Browser.

— Activity History Browser.

3.4.1 BLAST Client

In order to perform its functionality, a BLAST Client has the following components

(panel A in Fig 9):
e User Input GUI: get user input.

e Result GUI: display BLAST results.

e Service Browser: display a list of available Jini BLAST Services and their

properties.

e Jini BLAST Client: This is the main client program. It finds lookup services,
downloads Jini Task Manager Services and sends requests to Jini Task Manager

Services. It is also an object holder for the BLAST Server.
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¢ Jini Client Admin Service: sends client information to the administrators

and receives commands from the administrator

3.4.2 Task Manager

This is the main workflow management application of the system. In general. the

Task Manager contains the following components (panel B in Fig 9):

e Jini Task Manager: This is the main program and object holder. It finds
and downloads the Jini BLAST Services via the lookup services; it sends tasks to
the Jini BLAST Service: gets results from the Jini BLAST Service; writes results

to the Result Space and notifies the client that the results are ready.

e Task Dispatcher: generate tasks and subtasks: maintain a task queue and

dispatch subtasks to the Jini BLAST Service.
e Results Assembler: prepare and merge the BLAST results.

e Database Access: provide basic database access and data manipulation func-

tions.

¢ Failure Manager: continuously retrieves error message objects from the Error

Space and executes appropriate error handling functions.

e Jini Task Manager Service: a Jini service is downloaded to the client and
receives requests from the client. It also sends admin information to the Admin-

istrator.

3.4.3 BLAST Server

The BLAST program runs on this node. The Jini BLAST Service enables other nodes
in the system to see and communicate with this program. It contains the following

modules (panel C in Fig 9):
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e Jini BLAST Service: a proxy registered in the Lookup Services; publishes
Jini BLAST Service properties: receives BLAST Tasks; notifies Jini Task Manager

regarding results.

e BLAST Search Engine: a Java Native Interface (JNI) based program that
calls a legacy program to execute the BLAST search algorithm and write results

back to the Jini BLAST Server results list.

e Jini BLAST Server: This is the main program and object holder for the

server. It registers the Jini BLAST Service in the lookup services.

3.4.4 Administrator

This is the system administration tool software. The user can use it to view the
system runtime architecture. That means it can display how many services and
clients are currently running in the system. The user can view detailed properties for
each service/client and the runtime status for each service. It contains the following

components (panel D in Fig 9):

¢ Jini Administrator: This is the main program and object holder. It is a Jini
client that can find and download all Jini BLAST Services. Jini Task Manager
Services and Jini Client Administration Services; send commands back to the
Jini services: coordinate the communication between components inside the

administrator; process events and messages from other nodes in the system.

e System Browser: a GUI that displays the system runtime architecture and

the status of each node.

e Activity History Browser: a GUI that retrieves system activities from the

database based on the query criteria.
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3.4.5 Task Manager Database

The Task Manager Database can be any relational or object oriented database man-

agement system. In the current version, we use a MySQL relational database.

3.4.6 Results and Error Space

The Results and Error Space is an instance of the JavaSpaces implementation from
the Jini starter kit. No specific implementation is required. It provides a cross-node

shared memory to store results and error objects.

3.5 XML Data Format

In our system. XML is the standard format for exchanging data between nodes and
components. In this section, we list XML examples of requests, tasks and results.
Each data instance in the whole system can be identified using a sequenced ID number
and unique node name. The ID number is unique on the node that generated the

data instance.

3.5.1 Request

As shown in Fig 10. the XML request data includes a query sequence, detailed BLAST

search parameters and the identity of the client that originated the request.

3.5.2 Task

The XML task data includes detailed information about the BLAST search, infor-
mation about the request and task type information that enable the task to be re-

assembled later on. See Fig 11.
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<?xml version="1.0" encoding="UTF-8"2>
<Request 1id="123456" client = "clientname”>
<Algorithmsblastn</Algorithm>
<Request Sequence>String of sequence in FASTA format</Request Sequence>

<Database>database 1l</Databases

<Database>database n</Database>
<Alignment Option>pairwise</Alignment Options
</Request >

Figure 10: XML Example for BLAST Request.

<?xml version="1.0" encoding="UTF-8"?>

<Task id="123456" task manager = "TaskManager" type="Task">

i <Request id="123456" client = "clientname">

<Algorithm>blastn</Algorithm>

<Request Sequence>String of sequence in FASTA format</Request Sequences

<Database>database l</Database>

<Database>database n</Databases>
<Alignment Option>pairwise</Alignment Option>
</Request>
</Task>

Figure 11: XML Example for BLAST Task.
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<?xml version="1.0" encoding="UTF-8"2?>
<Task id="123456" task_manager = "TaskManager" type="SubTask">
<Request id="123456" client = "clientname">
<Algorithm>blastn</Algorithm>
<Request Sequence>String of sequence in FASTA format</Request Sequence>
<Database>database</Database>
<Alignment Option>pairwise</Alignment Option>
</Request>
<parent task>parent task id</parent tasks>
</Task>

Figure 12: XML Example for BLAST Subtask.

3.5.3 Subtask

A subtask is almost the same as a task. The difference is that a subtask only contains

one database and contains a parent task ID (Fig 12).

3.5.4 Result

XML result data not only includes the BLAST results data but also contains all of the
task data for the task and the request. In the result assembling stage, if two different
results (with different ids and server-name combination) come from the same task,

they are merged into one result (Fig 13) [24].

3.6 Class Diagrams

This section presents the Java packages and classes used in this system. Our system

contains the following packages:

e blastbasic: contains all utility classes and superclasses for other packages.

e blastclient: contains all classes to construct a Jini BLAST Client.
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<?xml version="1.0" encoding="UTF-8"?>
<Result 1d="123456" BLAST Server = "BLAST server name">
<Task id="123456" task_manager = "TaskManager® type="SubTask">
<Request 1id="123456" client = "clientname">
<Algorithms>blastn</Algorithms>
<Request_Sequence>String of sequence in FASTA format</Request_Sequences
<Database>database</Database>
<Alignment_Optionspairwise </Alignmenc_Options>
</Request>
<parent_task>parent task id</parent_task>
</Task>
<results_data on_complement_strand="true" confidence="100">
<algorithm> blast2x version="2.0.11" </algorithm>
<databases>nr</database>
<result_typesblast_grp</result_type>
<match_desc>&gt ;gi|7513096|pir||JE0225 JH8 protein ? human </match_descs
<query_region start="23981" end="24850">
<db_id id="AC069411F1" version="AC063411F1.10" db_code="gb"/>
</query_regions
<match_region start="2" end="289">
<bio_sequence element_id="SP78QZH69TJ169Q">
<db_id id="JE0225" db_code="pir"/>
</bio_sequences>
</match_region>
<match_align>
Query:24850 SVM*DLRKQKDTLWKFYAESDEQKLMKNRKTLPNVKNKDLSQVLRDQICQCCSEHMPLNG 24671
S + +R K L +F+A SD K ++ R+TL K + L +VL + SE +P++G
Sbjct: 2 STLYSIRAHKAQLLRFFASSDSNKALEQRRTLHTPKLEHLDRVLYEWFLGKRSEGVPVSG 61
</match_aligns
<result_property prop_type="blast_score">166</result_property>
<result_property prop_type="blast_pe_scr">2e-38</result_property>

<result_property prop_type="blast_ident">33</result_property>
<result_property prop_type="blast_sim">52</result_property>

<result_property prop_type="blast_gaps">0</result_property>
</results_data>
</Result>

Figure 13: XML Example for BLAST Result.
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e blastserver: contains all classes to construct a Jini BLAST Server. 1taskman-
ager: contains all classes for workflow management and constructing a Task

Manager. It contains several classes and two sub-packages:

— database: provides database accessing and data manipulating function-
alities.

— javaspace: provides JavaSpaces instance searching functionality.

e administrator: contains all classes to construct an Administrator.

We also need the Jini Starter Kit [10] to run instances for Jini Lookup Services and
JavaSpaces. In the following sections, we present more details about the packages
and their classes related with workflow management. For the GUI related classes, we

only provide some programming interfaces.

3.6.1 Blastbasic Package

The BLAST Basic package contains the basic utility classes and superclasses for other

packages. As shown in Fig 17, it contains the following classes:

® JiniNode: this class is a superclass for the main classes of each node in our sys-
tem. It provides basic Jini client and server functionalities of finding all available
lookup services; to create and register Jini services for each node; to listen for
events that happened on the service. JiniNode contains several abstract func-
tions that allow the subclass to implement different services searching, matching

and downloading functions.

e BasicData: the superclass for BLASTRequest, BLASTTask and BLASTResult.
The abstract function parseData() guarantees that subclasses can fetch the
necessary object property information from XML data via their own implemen-

tation. See Fig 14.
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package blastbasic;
import java.io.Senalizable;

abstract public class BasicData implements Serializable
{

/fthe contents of data in XML format

protected String strXMLData = "";

//the number asigned at the node

protected long IngSequenceNumber;

//where the data created

protected String strNodeName="";

public BasicData(){}

public void setData(String argXMLData){strXMLData = argXMLData; }
public String getData(){return strXMLData;}

public String getNodeName(){return strNodeName;}
public long getSequenceNum(){return IngSequenceNumber:; }
public String getID(){return strNodeName+IngSequenceNumber;}

public boolean equals(Object argData){
BasicData tmpData = (BasicData)argData;
return strNodeName.equals(tmpData.strNodeName)
&&(IngSequenceNumber==tmpData.lngSequenceNumber);

}

abstract public void parseData();
abstract public void createXMLData();

}

Figure 14: Class BasicData.




package blastbasic;
import net.jini.core.entry.Entry;

abstract public class Infor implements Entry{
public static final String SERVICETYPE_BLASTSERVER = "BLAST Server";
public static final String SERVICETYPE_TASKMANAGER = "Task Manager";
public static final String SERVICETYPE_CLIENTADMIN = "Client Admin";

public String strServiceType = "";
public String strName ="";
/Iphysical address for the service node
public String strLocation ="";

public String strIPAddress = "";

public Infor(){}

abstract public void initialize(String argIniFile);

}

Figure 15: Class Infor Lists All Service Properties.

¢ Infor: an implementation of the Entry interface. working as Jini service prop-
erties. The immediate subclasses are ServerInfor. TaskManagerInfor and
ClientInfor. As shown in Fig 15, it publishes service properties to the whole

system.

® BasicService: an interface for all Jini services used in our system. Also pro-
vides an administration API for changing the status. Since the BLAST search
needs to read sequences from the database, and since the Task Manager must
exchange data with the backup database, our Jini service architecture uses an
RMI based thin proxy. As shown in Fig 16, the BasicService interface extends

from Remote. See Section 2.2.3.
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package blastbasic;

import net.jini.core.event.*;

import net.jini.core.lookup.ServicelD;
import net.jini.lookup.ServicelDListener;
import net.jini.core.entry.Entry;

import java.io.Serializable;

import java.rmi.*;

public interface BasicService extends Remote,
Serializable, ServiceIDListener{

public int getStatus() throws RemoteException;

public int getServiceType()throws RemoteException;

public void changeStatus(int argStatus)throws RemoteException;

public EventRegistration addRemoteListener(RemoteEventListener listener)
throws java.util. TooManyListenersException, RemoteException;

public void fireNotify(RemoteEvent event)throws RemoteException;

public Entry[] getInfor()throws RemoteException;

public ServicelD getServiceID()throws RemoteException;

Figure 16: BasicService Interface
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¢ BasicServicelmp: the implementation of BasicService. the superclass for all

service implementation. It notifies all clients who have downloaded its proxy.
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Figure 17: Class Diagram for BLAST Basic Package

3.6.2 Blastserver Package

The Blastserver package contains the classes for constructing the server node. See

Fig 20.

¢ BLASTEngine: the class extends from Thread to invoke the BLAST search pro-
gram written in C++ code using the Java Native Interface (JNI) [23]. See
Fig 18.

¢ ServerInfor: the subclass of blastbasic.Infor (Fig 15) contains detailed
server information. It is published in the Lookup Services. Clients use it to find

the desired server. As shown in Fig 19. it lists the server’s computing resources.
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package blastserver;

import java.sql.*;

import taskmanager. BLASTSubTask:
import taskmanager. BLASTResult;
import blastbasic_BasicData;

public class BLASTEngine extends Thread{
private JiniBLASTServicelmp jiniservice;
private BLASTSubTask task = null;
public BLASTEngine(JiniBLASTServicelmp
argService, ThreadGroup argGroup){
super(argGroup, "");
jiniservice = argService;
System.loadLibrary("blastlb");
}
public void setTask(BLASTSubTask argTask){task = argTask; }

public void run(){
result = executeBLAST(task);
jiniservice.addResult(result);

}

public native BLASTResult executeBLAST(BLASTSubTask argTask);
H

Figure 18: BLASTEngine with JNI Function Call
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package blastserver:
import blastbasic.Infor;
public class ServerInfor extends Infor{

public int intNumOfCPU;
public int intTotalRam:
public String Database;
public String strAlgorithm;
public int intTotal CPUSpeed;

public Serverinfor(){
super();
}

public void initialize(String arginiFile)
{

//following code read in properties from ini file.

}
}

Figure 19: ServerInfor Contains BLAST Service Properties.



e JiniBLASTService: the BLAST service proxy interface. It is used to create a

service template to search the proxy implementation.

e JiniBLASTServiceImp: the implementation of JiniBLASTService. The max-
imum BLASTEngine number limits the number of concurrent BLAST search

threads running on each server.

® BLASTServer: the subclass of blastbasic.JiniNode to start program; find

lookup Services and register its own Jini BLAST service.

¢ ServerEvent: subclass of RemoteEvent. serves as an event-message for notify-

ing JiniTaskManager.

3.6.3 Blastclient Package

The BLASTClient package provides a user interface to get user input and display
results. See Fig 21. Fig 22, Fig 23.

e ResultForm: GUI to display BLASTResults.
e InputForm: GUI to get user input.

® ServiceListForm: the graphic user interface to list JiniTaskManagerServices
and JiniBLASTServices. The user can browse and select the appropriate one

for each request.

e JiniBLASTClient: the subclass of basic.JiniNode to start the client: find and

download the JiniTaskManagerServices; register the client admin service.

e JiniClientAdminService: Jini service provides communication between the

BLAST Client and the Administrator.

¢ ClientInfor: the subclass of blastbasic.Infor to provide necessary BLAST

Client information to the Administrator.
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package taskmanager;

import blastbasic.*;
import blastserver.ServerInfor;
import java.util. Vector;

public class TaskManagerInfor extends Infor{
public Vector serverPropertyList = new Vector();
public TaskManagerinfor(){}

public void initialize(String argIniFile){
/*todo: implement this blastbasic.Infor abstract method*/

i

public void addServerInfor(ServerInfor arginfor){
serverPropertyList.add(argInfor);
}
}

Figure 24: Class TaskMangerInfor Contains BLAST Services Information

3.6.4 Taskmanager Package

The Taskmanager package contains all of the classes for workflow management. See

Fig 25, Fig 26 and Fig 27. It contains the following classes and sub packages:

¢ TaskManagerInfor: the subclass of blastbasic.Infor (Fig 15). It works as an
Entry object for publishing JiniTaskManagerService properties. As shown in
Fig 24. it also contains all available JiniBLASTServices information for each
Task Manager. In this way, the client can receive a transparent BLAST service

list without knowing the existence of the Task Manager.

¢ JiniTaskManager: the subclass of JiniNode. Main program of Task Manager.
Creates and registers an instance of JiniTaskManagerService and downloads

JiniBLASTService.



JiniTaskManagerService: Jini service interface for Task Manager Service.

JiniTaskManagerServicelmp: the class implements JiniTaskManagerService.

It extends from BasicServiceImp.

FailureManager: extended from Thread to continually check errors from the
Error Space and take action to handle the failure of BLAST Client. BLAST Server

and other Task Managers.

BLASTRequest: contains request information created on the client and passed to

JiniTaskManagerService. It contains the fields in XML data (Section 3.5.1).
BasicTask: is the superclass of BLASTTask and BLASTSubTasks.
BLASTTask: contains task information and may contain subtasks.

BLASTSubTask: generated from BLASTTask to contain a single job. In our case,
each BLASTSubTask only contains a request against one database partition. It

is created on the Task Manager and is passed to the BLAST Server.

BLASTResult: contains result data. It is created on the server and is returned
to the Task Manager. Since it is written into the Result Space. it also implements

the Entry interface.

TaskDispatcher: extended from Thread. Creates tasks and subtasks, dis-

patches subtask to the JiniBLASTService.
ResultAssembler: prepares and merges results created from the same task.

Package Javaspaces: contains one class: SpaceFinder, to find an instance of

JavaSpaces using a space name.

Package database: sub-package contains one class DatabaseAccess. to provide

basic database access and data manipulation functions.

BaseEventMessage: the class to hold an event message.
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® LogMessage: the subclass of BaseEventMessage to hold the log messages for
all events.

¢ ErrorMessage: objects to hold error information. They may be created on any

node. and are written into error space. FailureManager reads this object and
executes the error handling code.
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Figure 25: Class Diagram for the Task Manager Package

3.6.5 Administrator Package

The Administrator package provides an administrative interface to monitor the system

runtime architecture and activity history. It also enables the user to block nodes in
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the system. The current design is simple. However. in the future, the administrator’s
job can be extended to manually modify tasks and work balance. It contains the

following classes (Fig 29):

e JiniSystemAdmin: the subclass of JiniNode. It finds all Jini services in the

system.

e ServiceNode: an object to represent a system node in order to create a runtime

architecture GUI picture.
e JiniServiceListFrame: GUI to display system runtime architecture.

e ServiceActivityFrame: GUI to let the user review blast activities and query

old activities in the database.

3.7 How the System Works

In this section. we present some sequence diagrams to explain how the system works.

We describe the following system activities:

e Register and Download Services: describe how the Jini service node registers

the service proxy and how the Jini client downloads the service proxy.

e Client send Request: describe how BLAST Client sends a request to TaskMan-

ager.

e Creating and Dispatching Task: describe detail information about Task Manager

creating and dispatching tasks.

e Write Results to ResultSpace: describe how results are sent back to TaskManager

and finally written into ResultSpace.

e Read Results from ResultSpace: describe how client reads results from Re-

sultSpaces.
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package administrator;

import blastbasic_*;
import net.jini.core lookup.ServicelD;
import net_jini.core.entry Entry;

public class ServiceNode{

private BasicService service;
private ServicelD id;
private Entry[] serviceProperties = null;

public ServiceNode(BasicService argService,
ServicelD argID, Entry{] entries){

service = argService;

id = argiD;

serviceProperties = entries;

}
public boolean equals(Object argNode)({

ServiceNode tmpNode = (ServiceNode)argNode;
return tmpNode.id.equals(id);
}

public void updateProperties(Entry(] argEntries)
serviceProperties = argEntries;

}
}

Figure 28: Class ServiceNode Creates a Representative for each Node.
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o Failure Handling: describe how TaskManager handles a network exception.

3.7.1 Register and Download Services

In our system, each node has a main program extended from blastbasic.JiniNode.
First, as shown in Fig 30, each node, except the Administrator, creates its own Jini
service. Then, it finds all Lookup Services by creating a LookupDiscover instance.
The Jini node is added as a DiscoverListener for the LookupDiscover instance. An
instance of DiscoveryEvent is passed back to the node. The node’s main program
can get a registrar from the DiscoveryEvent object and then register its services by
calling its register() function. An instance of ServiceRegistration is returned. Each
node can get its service ID from ServiceRegistration and assign the service ID to
its own service. It is used to renew the node’s service lease or used for re-registration
so the same service can keep the same ID.

When the node receives the ServiceRegistrar instance, the Jini node can use it
to find and download all matched Jini services (Fig 30).

The sequence diagram presents some general ideas about how service registration
and match is done. As shown in Fig 31, Fig 32, Fig 33 and Fig 34, we use the Task
Manager as an example to show the inheritance relationships and function calls for
Jini service registration and downloading. JiniTaskManger implements the abstract
method createService() to create an instance of JiniTaskManagerServiceImp. The
superclass JiniNode implements the general methods findAllLookupServices() and
discovered() to allow all nodes to find all lookup services and register their services.
The registerSerivce() in the superclass helps each node register its own Jini Service.
JiniTaskManager also implements the abstract method getService() to download
proxies of JiniBLASTServiceImp. The JiniBLASTServer uses the same algorithm to
register a proxy of JiniBLASTServiceImp. JiniBLASTClient and JiniSystemAdmin

also find and download necessary proxies using this same method.
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Figure 30: Sequence Diagram for Jini Services Registration and Downloading.
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abstract public class JiniNode implements DiscoveryListener,
LeaseListener, RemoteEventListener{
protected String strName; /node name
protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();
protected BasicServicelmp service = null;
protected EventRegistration myServiceEventReg = null;

public JiniNode(){ }

public JiniNode(BasicServicelmp argService) {
service = argService;
findAllLookupServices();

}

//must read an ini file to set service properties

abstract public void createService(String arglniFile);
/ldownload service

abstract public void getService(ServiceRegistrar argRegistrar);

//find all lookup services by multicast
public void find AllLookupServices(){
System.setSecurityManager(new java.rmi.RMISecurityManager());
LookupDiscovery discover = null;
try{
discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
}catch(Exception e)f
e.printStackTrace();
System.exit(1);
}
discover.addDiscoveryListener(this);

Figure 31: Class JiniNode Provides Basic Jini Service and Client APIs.
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abstract public class JiniNode implements DiscoveryListener,
LeaseListener, RemoteEventListener({

public void discovered(DiscoveryEvent evt){
//get all registrar list
ServiceRegistrar{] registrars = evt.getRegistrars();
try{
for (int n = 0; n < registrars.length; n++){
ServiceRegistrar registrar = registrars[n];

registerService(registrar);

getService(registrar);
)
}catch(java.rmi.RemoteException exp){
/ferror handling
}
}

public void registerService(ServiceRegistrar argRegistrar) throws java.rmi.RemoteException {
1/
Serviceltem item = new Serviceltem(null, service, service.getInfor());
/I Export a service
ServiceRegistration reg = argRegistrar.register(item, Lease. FOREVER);
service.serviceIDNotify(reg.getServiceID());

leaseManager.renewUntil(reg.getlease(), Lease. FOREVER, this);

Figure 32: The discovered() and registerService() Functions in Class JiniNode
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package taskmanager;

public class JiniTaskManager extends JiniNode{
private Vector blastServerList = new Vector();

public void createService(String arglniFile){
/*todo: implement this blastbasic.JiniNode abstract method*/
TaskManagerInfor(] properties = new TaskManagerInfor{1];
TaskManagerInfor taskManagerProperties = new TaskManagerInfor();
taskManagerProperties.initialize(argIniFile);
taskManagerProperties.strService Type = Infor.SERVICETYPE_TASKMANAGER;
properties[0] = taskManagerProperties;
JiniTaskManagerServicelmp taskMangerService =null;
try{
taskMangerService = new JiniTaskManagerServicelmp(properties);
myServiceEventReg = taskMangerService.addRemoteListener(this);
super.service=taskMangerService;
}catch(java.util. TooManyListenersException exp){
/{do nothing
}catch(RemoteException exp){
//do someting
} //set service

}

Figure 33: Class JiniTaskManger Implements the Function createService() to Create
JiniTaskManagerService Instance.
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package taskmanager;
public class JiniTaskManager extends JiniNode({

private Vector blastServerList = new Vector();

public void getService(ServiceRegistrar argRegistrar){
/*todo: implement this blastbasic.JiniNode abstract method*/
Class[] classes = new Class[] {JiniBLASTService.class};
ServiceTemplate template = new ServiceTemplate(null, classes, null);
TaskManagerInfor tmplnfor = nuil;
ServiceMatches matchedServices = null;
//get task manager service properties
try{
matchedServices = argRegistrar.lookup(template, 100);
tmplInfor =(TaskManagerinfor)service.getInfor()[0];
}catch(RemoteException exp){
//do something
}
for(int 1 = 0; i < matchedServices.items.length; i++){
JiniBLASTService tmpService = (JiniBLASTService)matchedServices.items[i].service;
if(tmpService != null){
tmplnfor.addServerInfor((ServerInfor)matchedServices.items(i].attributeSets[0]);
blastServerList.addElement(tmpService);
}
}
}

Figure 34: Class JiniTaskManger Implements the getService() Function to Download
All Available JiniBLASTServices.
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3.7.2 Client Send Request

The user issues a command on InputFrame to pass all data and parameters to
JiniBLASTClient. The latter creates a new BLASTRequest instance and initialize
it with user input. Then the client finds a JiniTaskManagerService matching
the user input or using a service name. The client then calls the receiveBLAS-
TRequest() function and passes the request to it. The JiniTaskManagerService
adds the request into a pending BLASTRequest list. The client also adds itself as a
RemoteListener to that JiniTaskManagerService in order to listen to events oc-

curring in the JiniTaskManager. See Fig 35, Fig 36.

inputFram client ; request tasksewice
InpytFrame Jini Client BLASTRequest JiniTaskManagerService
seni:lRemest(used nput, taskMérName)
new()
request
setData(input)

findTaskManpger(input, seraceName)

Pam—

receiveBLASTi?equest(request) addReqLéstToLjst(request)

P—

addRemote'Listener(this)

Figure 35: Sequence Diagram for Sending a Request to the JiniTaskManager
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package blastclient;

public class JiniBLASTClient extends JiniNode {

/fargUserInput in XML format
public void sendRequest(String argUserInput, String argTaskServiceName)({
BLASTRequest newRequest = new BLASTRequest();
newRequest.setData(argUserInput);
//find task manager service proxy by name or by user input
JiniTaskManagerService tmpService = findService(argUserInput, argTaskServiceName);

//add this as remotelistener to service
try{
tmpService.addRemoteListener(this);
tmpService.receiveBLASTRequest(newRequest);
}catch(java.util. TooManyListenersException exp){
//add error handling
}catch(RemoteException exp){
/lcreate error mesaage and write it to error space

}

Figure 36: JiniBLASTClient Sends Requests to the JiniTaskMangerServicelImp.
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3.7.3 Creating and Dispatching Task

The JiniTaskManager gets the BLASTRequest list from JiniTaskManagerServiceImp
and uses it to create a new TaskDispatcher. Since the TaskDispatcher and the
JiniTaskManagerServicelmp share the same BLASTRequest list, every time a new
request is added to the list in JiniTaskManagerServiceImp, the TaskDispatcher
can read it. Then JiniTaskManager starts a TaskDispatcher thread. If the re-
quest list is not empty, the TaskDispatcher removes a request from the list and
creates a new BLASTTask using that request. At the same time, all BLASTSubTasks
are created and added into the job queue. Then TaskDispatcher continues to take
a BLASTSubTask and pass it back to the JiniTaskManger by calling sendTask() un-
til the job queue is empty. JiniTaskManager finds a JiniBLASTService based on
the BLASTSubTask data, and passes that BLASTSubTask to the JiniBLASTService by
calling runBLAST().

In JiniBLASTServiceImp, the constant integer MAX_BLASTPROCESSES limits
the total number of BLAST search processes running concurrently on that server. The
instance of ThreadGroup manages all BLAST threads running on the same server
(Fig 40). If there are enough resources, or we have not exceeded the search engine
threads limits, then the JiniBLASTService starts a new BLASTEngine thread to
execute a BLAST search. If everything is fine, a boolean variable is returned to the
TaskDispatcher. The TaskDispatcher updates the task status and reorganizes the
task list to remove dispatched tasks from the job queue. If the task is not dispatched
successfully, it stays in the job queue and waits to be sent out again. See Fig 37,

Fig 38 and Fig 39.

3.7.4 Write Results to ResultSpace

As shown in Fig 18, after the BLASTEngine finishes executing the BLAST search, it
creates a new BLASTResult and adds it to the result list in the JiniBLASTService-

Imp instance. The latter creates a ServerEvent and notifies the JiniTaskManager,
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Figure 37: Sequence Diagram for Creating and Dispatching Tasks
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public class JiniTaskManager extends JiniNode{
private Vector blastServerList = new Vector();
private TaskDispatcher taskDistributor = null;
private FailureManager failureHandler = null;

public boolean sendTask(BLASTSubTask argTask)({
JiniBLASTService tmpBLAST = findServer(argTask);
boolean sendSuccess = true;
try
if(tmpBLAST.runBLAST (argTask)){
tmpBLAST.addRemoteListener(this);

}

}catch(java.util. TooManyListenersException exp){
//do nothing

Jcatch(RemoteException exp){
/ldo something
}

return sendSuccess;

}
private void startTask(}{
/lcast the service in super class to JiniTaskManagerSericeImp
Vector tmpRequestList = ((JiniTaskManagerServicelmp)super.service).getRequestList();
taskDistributor = new TaskDispatcher(tmpRequestList, this);
taskDistributor.start(Q;
failureHandler = new FailureManager(this);
failureHandler.start();

Figure 38: JiniTaskManger Sends Tasks to JiniBLASTServiceImp via Proxy.
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public class TaskDispatcher extends Thread({
private JiniTaskManager parent = null;
private Vector requestList = null;
private Vector taskList = new Vector();

public TaskDispatcher(Vector argRequestList, JiniTaskManager argManager){
requestList = argRequestList;
parent = argManager;

}

public void run() {

while(true){
if(!requestList.isEmpty(Q){

BLASTRequest tmpRequest = (BLASTRequest)requestList.remove(0);
parent.saveData(tmpRequest);
createTask(tmpRequest); //create new task and add it to list

}

if('taskList.isEmpty()){
BLASTSubTask tmpTask = findUnsentTask();
if(parent.sendTask(tmpTask)){//update task status
tmpTask.setStatus(BaseTask. TASKSTATUS_INPROGRESS);
/fupdate Task or subTask status.
}

cleanTaskList(Q);//remove sent out task

}

llsleep two seconds for each loop
try{

sleep(2*1000);
}catch(InterruptedException exp){

}
}
}

Figure 39: Class TaskDispatcher Begins a Thread to Create and Distribute Subtasks.
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package blastserver;

public class JiniBLASTServiceImp extends BasicServicelmp
implements JiniBLASTService{

//max number of BLAST engien can be executed concurrently
private final int MAX_BALSTPROCESSES = 10;
private ThreadGroup blastEngines = new ThreadGroup("BLAST Engines");

public boolean runBLAST(BLASTSubTask argTask)throws RemoteException{
/*todo: Implement this blastserver JiniBLASTService method*/
if (blastEngines.activeCount()<this. MAX_BALSTPROCESSES)({
/frunning BLAST search and create result then notify TASKManager
BLASTEngine newBLAST = new BLASTEngine(this, blastEngines);
newBLAST setTask(argTask);
newBLAST .start();
return true;
}
else
return false;
}
)

Figure 40: Class JiniBLASTServiceImp Manages a BLASTEnginge Thread Group
and Limits the Number of Processes Running on BLAST Server.
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where the BLASTTask comes from. The JiniTaskManager receives all of its own
results from the JiniBLASTService and creates a new ResultAssembler instance.
The ResultAssembler instance checks each result and tries to merge it with the other
results (if there are any) which were created from the same task. After preparing the
results, the JiniTaskManger creates a new instance of SpaceFinder and uses it to
get a proxy of the JavaSpaces instance. Then a new BLASTResult is written into the
space. See Fig 41, Fig 42 and Fig 43.

nncuuw M&t‘ka)

: : m_
—) : : &m&m
0

Figure 41: Sequence Diagram for Getting Result and Writing it to ResultSpace

3.7.5 Read Results from ResultSpace

After the JiniTaskManager writes a BLASTResult to the Result Space, it calls the
notifyClientForResult() function of JiniTaskManagerServiceImp (see Fig 43). The
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package blastserver;

public class JiniBLASTServicelmp
extends BasicServicelmp implements JiniBLASTService{

public void addResult(BLASTResult argResult){
resultList.add(argResult);
prepareNotify(BLASTMSG_FINISH),

}

public BLASTResult[] getResult(String argTaskManagerName)
throws RemoteException{
//search result from the list and return
BLASTResult[] tmpResult;
/fadd code here to search results in the List for given TaskManagerName
return tmpResult;

}

private void prepareNotify(String msg)(
/**

* prepare XML message in following format

<MSG>
<EventTyep>Result Ready</Event>
<EventID node="nodeame" sequenceNum="123456789"/>
<Server>Server Name</Server>
<TaskManager>Task Manager Name</TaskManager>
<Clientt>Client Name</Client>
</MSG>
*/
//will be replaced by real message
String xmIMsg = "Message In XML formate";
ServerEvent event = new ServerEvent(this, BLASTEvent. SERVER_EVENT,
System.currentTimeMillis(), null, xmIMsg);
super.fireNotify(event);

Figure 42: Class JiniBLASTServiceImp Adds the Result to the List and Notify
JiniTaskManager.
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package taskmanager;

public class JiniTaskManager extends JiniNode {

public void notify(RemoteEvent argEvt){
//make sure the event is from taskmanager service of the same node
if( argEvt instanceof ServerEvent){
/Nooking for BLAST Service name
String strServerName = parseXMLMessage(((ServerEvent)argEvt).getMsg(), "Server”);
String strEventType = parseXMLMessage(((ServerEvent)argEvt).getMsg(), "EventTyep™);
if(strEventType.equals("Result Ready™))
getResultFromServer(strServerName, (ServerEvent)argEvt);
}
}
/fuse server name to find BLASTService and getResult from that service
private void getResultFromServer(String argServerName, ServerEvent argEvt){
JiniBLASTService tmpService = findServer(argServerName);
BLASTResult tmpResults[] = null;
try{
tmpResuits = tmpService.getResult(getNodeName());
}catch(RemoteException exp)(
//add error handling
}
ResultsAssembler assembler = new ResultsAssembler(database);
for (int i = 0; i < tmpResults.length; i++){
assembler.reset(); //reset the assembled data to null;
assembler.prepareResult(tmpResults(i]);
BLASTResult newResult = assembier.getAssembledResult();
writeResultToSpace(newResult);
/] cast service in super class to a JiniTaskManagerServicelmp
((JiniTaskManagerServicelmp)service).notifyClientForResult(newResult.getClientName(), argEvt);
}
)
/1this funcition will search a java space and write the result to space.
private void writeResultToSpace(BLASTResult argResuit){
//add code here to write result to java space
SpaceFinder spaceFinder = new SpaceFinder("BLASTResult™);
JavaSpace resultSpace = spaceFinder.space();
try(
resultSpace.write(argResult, null, Long. MAX_VALUE);
}catch(RemoteException exp){
//wait for a while and re-write again
}catch(net.jini.core.transaction. TransactionException exp){

}

Figure 43: Class TaskManager Gets Results from the BLAST Service and Writes
Results to the ResuitSpace.
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latter finds the correct JiniBLASTClient using the client’s name and notifies it with
a “result ready message” (Fig 44). The JiniBLASTClient interprets that event
and calls the takeResult() function from the ResultFrame instance (Fig 45). The
ResultFrame instance finds the ResultSpace via the SpaceFinder instance. It creates
a BLASTResult template using the client’s name. All matched results in the space
are taken to the client and sent to the result GUI (Fig 46). For more information see

sequence diagram Fig 47.

package taskmanager;

public class JiniTaskManagerServicelmp
extends BasicServicelmp implements JiniTaskManagerService({

public void notifyClientForResult(String clientName, ServerEvent argEvt){
Object(] listeners = listenerList.getListenerList();
JiniBLASTClient tempClient = null;
for (int i=0; i<listeners.length; i++){
if(listeners[i] instanceof JiniBLASTClient){
tempClient = (JiniBLASTClient)listeners[i];
if(tempClient.getNodeName().equalsIgnoreCase(clientName))
tempClient.notify(argEvt);
}
}
}
}

Figure 44: Class JiniTaskManagerServicelImp Finds an Instance of the JiniClient
and Notifies it that Result is Ready.
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public class JiniBLASTClient extends JiniNode({

/IGUI objects

}

private ResultFrame resultFrame = null;
public void notify(RemoteEvent argEvent){
if( argEvent instanceof ServerEvent){
/Nooking for BLAST Service name
String strServerName = parseXMILMessage(((ServerEvent)argEvent).getMsg(), "Server");
String strEventType = parseXMLMessage(((ServerEvent)argEvent).getMsg(), "EventTyep");
if(strEventType.equals("Result Ready"))
resultFrame.takeResults();
}
}

Figure 45: JiniBLASTClient Get Notify Message and Call method takeResults().

3.7.6 Failure Handling

Since this is a distributed computing system, network exceptions and other errors
may occur on any node in the system. In general, the failure of the BLAST Client and
the Administrator does not cause any major problems in our system. The functionality
of Administrator is that of providing a system monitor. This is not mandatory for
the BLAST search. The failure of a client, on the other hand, is that it may lose
the result of its query. However, the user can issue a command to retrieve the result
from ResultSpace or to retrieve results from the database later through another client
terminal using the request ID.

We must pay attention to the failure of the Task Manager and the BLAST Server.
As shown in Fig 48, in this system, the JiniNode contains the implementation of the
function writeErrorMsgToSpace(). On each node, if there is a network exception or
any other error, an ErrorMessage instance is created and written to the Error Space.

The ErrorMessage object contains the error type and error location. For instance,
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package blastclient;

public class ResultFrame extends JFrame(
private JiniBLASTClient parent = null;
private Vector resultList = new Vector();
private JavaSpace resultSpace = null;
private final long MAX_SPACETIMEOUT = 10*60*1000;
public void findSpace(){

SpaceFinder spaceFinder = new SpaceFinder("BLASTResult");
resultSpace = spaceFinder.space();

}

/Iread and remove results form result Space

public void takeResults(){

BLASTResult resultTemplate = new BLASTResult();

resultTemplate.strClientName = parent.getNodeName();
boolean blnFoundResult = true;
while(binFoundResult){
/fif found return a result else return null
try{
BLASTResult result = (BLASTResult)resultSpace.takelfExists(
resultTemplate,null, MAX_SPACETIMEOUT);
if(result!=null){
resultList.add(result);
Thread.sleep(1000); //give some time for other thread.
Jelse
blnFoundResult=false; //stop loop.
}catch(RemoteException exp){
//dosomething
}catch(InterruptedException exp)({
//dosomething
}catch(TransactionException exp){
{//[dosomething
}catch(UnusableEntryException exp){
//[dosomething
}
}
}
}

Figure 46: ResultFrame Gets Results from ResultSpace for a Client.
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Figure 47: Sequence Diagram of a Client Reading a Result from ResultSpace
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in the client, if there is a RemoteException raised during the sending of request,
an ErrorMessage object with the failed Task Manager name is created and written
into the ErrorSpace (see Fig 49). As shown in Fig 38 and Fig 50, a FailureManager
thread in each TaskManager keeps reading ErrorMessage objects from that space and
invokes an error handling procedure, such as sending all affected BLASTTasks again.

package blastbasic;

abstract public class JiniNode implements DiscoveryListener,
LeaseListener, RemoteEventListener{

public void writeEmrorMsgToSpace(ErrorMessage argMsg){
/fadd code here to write ErrorMessage for Java Space
SpaceFinder spaceFinder = new SpaceFinder("BLASTErrorMsg");
JavaSpace errorSpace = spaceFinder.space();
try{
errorSpace.write(argMsg, null, Long. MAX_VALUE),
}catch(RemoteException exp){
//do something to handle error
}catch(net jini.core.transaction. TransactionException exp){
//do something to handle error
}
}

}

Figure 48: wroteErrorMsgToSpace() in JiniNode.



package blastclient;

public class JiniIBLASTClient extends JiniNode({

/fargUserInput in XML format
public void sendRequest(String argUserInput, String argTaskServiceName)
{
BLASTRequest newRequest = new BLASTRequest();
newRequest.setData(argUserInput);
JiniTaskManagerService tmpService = findService(argUserInput, argTaskServiceName);
//add this as remotelistener to service
try{
tmpService.addRemoteListener(this);
tmpService.receiveBLASTRequest(newRequest);
}catch(java.util. TooManyListenersException exp){
//add error handling
}catch(RemoteException exp){
/create system ErrorMessage
ErrorMessage newError = new ErrorMessage();
newError.intType = EmorMessage. EVENTTYPE_TASKMANAGERFAILED;
newError.stNodeName = argTaskServiceName;
newError.strMessageDesc = "some description”;
writeErrorMsgToSpace(newError);
}
}

}

Figure 49: JiniBLASTClient Creates an Instance of ErrorMessage and Writes it to
the Error Space When an Exception Occurs.
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package taskmanager;

public class FailureManager extends Thread {
private JiniTaskManager parent = null;
private JavaSpace errorMsgSpace = null; //JavaSpace we used for results deposit
private final long MAX_SPACETIMEOUT = 10*60*1000;
public void run(){
while(true){

/read error from errorspace and do something

handleError(readErrorFromSpace());

try{

sleep(2*¥1000);
}catch(InterruptedException exp){

}
}
private ErrorMessage readErrorFromSpace() {
/hake all one errorMessage from space
Ifcreate errorMessage template for matching
ErrorMessage errorTemplate = new ErrorMessage();
ErrorMessage error = null;
try{
error = (ErrorMessage)errorMsgSpace. takeIfExists(errorTemplate, null, MAX_SPACETIMEOUT);
}catch(RemoteException exp)({
//add code to display exp message
}
return error;
}
public void handleError(ErrorMessage argError){
switch(argError.intType){
case BaseEventMessage. EVENTTYPE_SERVERFAILED:
/fadd code here to handle error
parent.writeErrorMsgToSpace(argError);
break;
case BaseEventMessage. EVENTTYPE_TASKMANAGERFAILED:
//add code here to handle error
break;

Figure 50: FailureManager Thread Continually Checks for the Potential Failure of
the System Node.
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Chapter 4

Conclusion and Future Work

4.1 System Requirements and Project Status

In this section we will review our system requirements and what we have achieved.

4.1.1 System Requirement and Our Design

In this section we list our system requirements and verify if our design satisfies these
requirements. Our system is a workflow management system with the following fea-

tures:
e High throughput.
e Dynamic configuration.
e Robustness.
e Heterogeneous platforms.

In the current design, we use multiple BLAST Servers to get high performance.
By applying Jini technology, our system can dynamically configure itself and self
heal. The Jini leasing protocol, multiple Task Managers and cross network shared

error space (an instance of JavaSpaces) improves the failure tolerance of our system.
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Based on Java and JNI technologies, BLAST Server and the workflow management

system can run on different OS platforms.

4.1.2 Project Status

Currently the system design and most of the detail design for workflow management
related module are completed. Most of the workflow related Java packages and classes
are implemented and compiled using JDK 1.3.1 in JBuilder 4.0 environment. In
order for our system to be compiled without error, we provide API for classes whose
implementation is not certain at the time of this writing.

In order to make a working system, we still need to do the following design and

implementation work:

e Graphic user interface design: in our current design, both client and adminis-

trator user interfaces are to be determined.

e C++ BLAST algorithm implementation: our system will invoke the BLAST
algorithm written in C++.

¢ Implementation for some uncertain classes: some classes and functions, in our
current design, are undetermined. For instance, what type of error handling do

we want to do when a Task Manager is crashed.

o Testing and debugging: before we can release our working system, we also need

to test and debug our system.

4.2 Conclusion

From this project, we found that the Jini and JavaSpaces technology is a good choice
for implementing a distributed computing system in the domain of biological research.
From a workflow point of view, the Jini and JavaSpaces technology can split the

software development into multiple groups. For instance, in our system one group can
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concentrate on BLAST search server component development, another can develop
workflow management related software, and another group can focus on client GUI
development. As Schaefer has shown in his paper [22], these three groups can work
independently, with little coordination.

From a distributed computing point of view, the Jini and JavaSpaces technology
provides an easy way to dynamically distribute a task and maintain a reasonable
workload balance; to exchange data and code over network wires; to decentralize the
failure handling; to mix servers with varying implementations and platforms in a
single system. In fact, the capability of exchanging objects over the network makes
Jini an ideal infrastructure for grid computing on a global scale [25, 26].

4.3 Future Work

This project is an attempt at testing and demonstrating the possibilities and advan-
tages of using Jini to implement a high throughput BLAST cluster server. Obviously,
the next step is implementing this system. There are many ways to improve on our
system or make our system more general, both in biology computing and distributed

computing domains.

4.3.1 System Implementation and Integration
The whole project is partitioned into several parts:
e The BLAST engine design and implementation;
e The workflow management system design and implementation;
e Client graphic user interface design and implementation;
e System integration and testing.

In order to execute the BLAST engine efficiently, we will implement it using C++.
One of Dr Butlers graduate students, Jerry Jing just began to design and implement
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the BLAST engine using standard template libraries in C++. In this thesis, we
discuss the design and partial implementation of the workflow management system.
In the next step, we will implement a client GUI. After all the implementation work is
completed, we can integrate the whole system together and provide a working system

for testing and evaluation.

4.3.2 Load Balancing

This thesis presents a system architecture for high performance BLAST servers. Since
our system contains multiple BLAST Servers and multiple Task Managers, the load
balancing and job management are a critical issue for the final system performance.
In the current design, although the clients can select their preferred Task Manager
or BLAST Server, most requests will be sent randomly to any one of the Task Man-
agers. The task manager dispatches the tasks by matching the database partition and
BLAST algorithm on the severs. In future designs, we will add more heuristic algo-
rithms to send requests to the Task Manager with the smallest job queues or the Task
Manager with the shortest time to finish all its queued jobs. The Task Manager will
use heuristic algorithms to send tasks to the BLAST Server with the fewest pending
jobs. These algorithms need to dynamically detect the computing resources on the
server, update server information on the Jini Lookup Service and notify the Jini client

with service proxies downloaded.

4.3.3 Job Parallelism

In our current design, we only use data parallelism to split BLAST search tasks.
This means that a subtask is based on database partitions. In order to improve
performance, we may add a Job Parallelism algorithm in our system in such a way that
each subtask will contain only one database partition and one query sequence. For
instance, if we have 10 database partitions and the user input contains 10 sequences,

the final number of subtasks will be 100. By this way, each server only does a small
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part of the whole task [13]. However, we must avoid creating too much overhead by
splitting tasks into excessively small subtasks.

4.3.4 Job Priority

In our current design, all tasks will be added to the job queue and executed in a “first-
in first-out” manner. In future versions, we may prefer that more important jobs are
finished as fast as possible. Thus we can add job priority to the task definition, and
allow the administrator to change the task’s priority value. The client may set desired

priority values if given permission.

4.3.5 Jini Administrator Service Bean

In our current design, we use Jini services to talk with the administrator node. Al-
though it works, there is one problem: if we stop a service, we may end the lease
of that service, disabling the administrator from seeing that service until it restarts.
To resolve this problem, future design can add a small Jini service component called
a Jini administrator service bean to each node. It will independently set up com-
munication between a node and the administrator, and separate system Jini services
from administration services. For example, on each BLAST server there are two Jini
services, one is the Jini BLAST Service and another is the Jini Admin Service. The first
one provides a BLAST search interface and the second one provides communication

[3] for the administration.

4.3.6 Framework for High Performance Computing Work-
flow in Biology

Although our system is designed as a BLAST cluster, we found that it is easy to adapt
to other high-performance computing needs by modifying the definition of requests,

tasks and results, server implementations as well as client GUI. Thus, future work
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can involve exploring the possibilities of developing a Jini-based workflow framework

for high performance computing in the field of biology.
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Appendix A

BLAST Databases

A.1 General Database

e nr
All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or
phase 0, 1 or 2 HT'GS sequences). No longer “non-redundant”.

e est
Database of GenBank+EMBL+DDBJ sequences from EST Divisions.

e est_human

Human subset of GenBank+EMBL+DDBJ sequences from EST Divisions.

e est_mouse

Mouse subset of GenBank+EMBL+DDBJ sequences from EST Divisions.

e est_others

Non-Mouse, non-Human sequences of GenBank+EMBL+DDBJ sequences from
EST Divisions.

[ gSS
Genome Survey Sequence, including single-pass genomic data, exon-trapped

sequences, and Alu PCR sequences.
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e htgs
Unfinished High Throughput Genomic Sequences: phases 0, 1 and 2 (finished,

phase 3 HTG sequences are in nr).

e pat
Nucleotides from the Patent division of GenBank.

e yeast

Yeast (Saccharomyces cerevisiae) genomic nucleotide sequences.

e mito

Database of mitochondrial sequences.

e vector

Vector subset of GenBank(R), NCBI, in ftp://ftp.ncbi.nih.gov/blast/db/.

¢ E. coli

Escherichia coli genomic nucleotide sequences.

e pdb
Sequences derived from the 3-dimensional structure from Brookhaven Protein

Data Bank.

¢ Drosophila genome
Drosophila genome provided by Celera and Berkeley Drosophila Genome Project
(BDGP).

e month
All new or revised GenBank+EMBL+DDBJ+PDB sequences released in the
last 30 days.

e alu
Select Alu repeats from REPBASE, suitable for masking Alu repeats from query
sequences. It is available by anonymous FTP from ftp.ncbi.nih.gov (under the
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/pub/jmc/alu directory). See ” Alu alert” by Claverie and Makalowski, Nature
vol. 371, page 752 (1994).

e dbsts
Database of GenBank+EMBL+DDBJ sequences from STS Divisions .

e chromosome
Searches Complete Genomes, Complete Chromosome, or contigs from the NCBI

Reference Sequence project.

A.2 Human Genome Blast Databases

e genome

human genomic contig sequences with NT _#### accessions.

® mrna

human RefSeq mrna with NM_#### or XM _#### accessions

e protein

human RefSeq proteins with NP_#### or XP_#### accessions

e gscan mrna
predicted mRNA sequences generated by running GenomeScan program on hu-

man genomic contigs.

e gscan protein

CDS translations from GenomeScan mRNA set.
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Appendix B

BLAST Search Algorithms

e blastn

Standard nucleotide BLAST.

e blastp
Standard protein-protein BLAST.

e blastx

Nucleotide query against protein db BLAST.

e tblastn
Protein query against translated db.

e tblastx
Nucleotide query against translated db.

e PSI-BLAST
One of blastp algorithms, means position specific iterative BLAST a feature of
BLAST 2.0 in which a position specific scoring matrix, PSSM is constructed
(automatically) from a multiple alignment of the highest scoring hits in an initial
BLAST search. For more information please visit

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psil.html.
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e MEGABLAST
It uses greedy algorithm for nucleotide sequence alignment search. It is op-
timized for aligning sequences that differ slightly as a result of sequencing or
other similar “errors”. When larger word size is used, it is up to 10 times faster
than more common sequence similarity programs.

http://www.ncbi.nlm. nih.gov/blast /megablast.html.
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