INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

On-Line City Weather Forecast System

Lin Zhang

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2003

© Lin Zhang, 2003

i~l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Welington
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your e Votre rélérence
Our Sie Nowe rélirance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77728-6

ABSTRACT

On-Line City Weather Forecast System

Lin Zhang

This document presents a case study of implementing a server side Model View
Controller (MVC) design pattern using JSP and Servlet technologies. From the example,
we can understand how and why this pattern and these technologies work so well when

developing server-side Java web applications.

On-Line City Weather Forecast System is a web application that runs on Tomcat web
server. Its raw data comes frem an existing weather website.
hup://weatheroffice.ec.gc.ca. The system consists of two parts: one for processing
weather data, the other for visualizing weather conditions. The primary audience for the
system is weather database administrator but is also developed to provide non-
administrator ability to view current weather as well as weather forecast for next 5 days.
A weather processor is designed to parse and select data from the real-time weather web
site and save it in users designated database created by MS Access on the local server. A
weather server delivers a subset of this data to the clients in response to a query

formulated in a SQL statement.

iii

ACKNOWLEDGEMENTS

[would like to express my appreciation to my supervisor, Professor Peter Grogono.
Without his patience and guidance, I could not finish my work. Furthermore, I'd like to

thank Professor Shiri. Nematollaah for his constructive remarks.

I 'am also grateful to my family for their support and encouragement.

v

Table of Contents

1. INTrOdUCHON ..ot 1
1.1 Overview of the SYSteM....ccvovemeieeeeeeeeeeeeee e 1
1.2 TOOIS USEA ...ttt 2

2. System Requirements and Analysiscccceeeeveeeiieeeineeeeene.. 3
2.1 Problem Statementocooomiiimiiiee e 3
2.2 Use Case ANALYSIS. . ccoceieiiieieieeeeeceeeeeeee e 4

2. 2.1 USET ANALYSIS weeeieiieieeeee e 4
2.2.2 Use Case DEeSCIIPUONS.cueueuiemeeeie ettt et e 5
2.2.3 Use Case DIQGIam . ..c.cooiiiiiieiieieieetee e 8
2.3 Non Functional REqQUITEMENLSooeveevieieriiiiiiceeeeeeeeeeeee e, 9

3. System DESIZN c...oueiiiiiiieeeeeeee e 11
3.1 Design Rationale........ccccoouiiiioiiieeeeeeeeeeeee e 11
3.2 System DeSiZnccceruiiiieiiieeeee et 15

3.2.1 Weather Data Processing SUbSYStemcoooocoeeviveeieriicemiieeeeeeeeeeen. 15
3.2.1.1 Implementation of ASSOCIAONS.......c.eevvererieierieerenieeieeeneeee. 16
3.2.1.2 Class DIagramcoceeeemeiiieoeieeeeeeeeete e 19
3.2.1.3 Sequence Diagram.........ccccocceveirieienieeeiiieieee e 21
3.2.1.4 Object MOdEIScooiimiririieeeeeieeeeee e 22

\l

3.2.2 Weather Viewing SubSySIEMccccoeocriimmieieieieeeeeeeeee e 24

3.2.2.1 Implementation of ASSOCIAIONS....coveeveemeereeeeeeneenieeereeeeeeee. 25

3.2.2.2 Sequence Diagram.........coccecueeerereenieeereeeeemeteee e e 26

4. Implementationccueeuieeieeecieeeeeeecee e 27
4.1 System Environment..........c.ccoceeiririieeieieieieeeee e 27
4.2 Using JDBC Connection Pool Technologyc.c.oovevveeeeeeenenennne. 28
4.3 Inter-Servliet COMMUNICALIONoveureneeieieeeeerceeciee e 30
4.4 Implementation of MVC.......cccoiiiiiiiiiieeeeeee e 32
G T STAMTUD ottt s ettt ee e e eeaean 32

B2 VIBWS oottt et s e et e 34

A4 21 INAEX VIBW .oeeieiniieieeee et 34

4.4.2.2 Weather Record List VIEWccooomiiiiiiiiiceeeeeeeeee 35

4.4.2.3 Current City Weather Forecast VIewc.ocooeeveeeveeeeeenn.. 36

4.4.2.4 Weather Detail VIEWccooiiiiiiiiiceeeeeee 37

4.4.2.5 Next 5-Day Weather Forecast Viewc...cooooiicnennnn... 37

4.4.2.6 Last 7-Day Weather Forecast Viewc.ccooveevveeecennnne.. 38

4.4.3 Controlleromiie e 39

B4 A SEIVICE .ottt ettt et e e 41

4.4.4.1 Add Weather Servicec.coceeeoeeiiiiiicece e 43

4.4.4.1.2 Saving Weather Record..........c.ocuoeeveeieeiiieeieeeeeeeeeen 47

4.4.4.2 Query Current Weather Serviceo.ovoieieieeeeeeeeeeeeeeeeeens 47

4.4.4.5 Query Next 5-Day Weather Service............coooeveueueeeeeeeennee. 50

vi

S CONCIUSION .ttt e 52

.1 SUMMATY .ot 52
5.2 Discussion and Future Workccocoeeoeeieeeoeeeeeeeeeeeeeeen 52
RETEIEINCES ... 54
Appendix A: Installation Guidecooooeeveeeeeeeeeeeeeeeeeen 56
Appendix B: User Manual........cc.cccoovouiiiiiiiiiieiceceeeeeeeee, 58

vii

List of Figures

Figure 2.1: Use Case DIagrami ..ottt 9
Figure 3.1: MVC Architecture for a Web Application.............ueeeeeeeoeeoeeeeeeeeeeeeeeenn.. 12
Figure 3.2: Modules with Event and Information FIowcocoooooioieiiinieeeieeeaene.. 16
Figure 3.3: Class DIagram ...t 20
Figure 3.4: Sequence Diagram for Creating a Weather Recordo.oooeeveeeveenen... 21
Figure 3.5: Modules with Event and Information Flowccco.ocoooooioii 25
Figure 3.6: Sequence Diagram for Querying Weather Recordscoooooveoeneeneoennnen... 26
Figure 4.1: Server-Side Implementation of MVC ..o 28
Figure 4.2: Interface of Class ConnectionPoolc...ooooviiiiiiiiiiieeeeeeeeeeeen 29
Figure 4.3: Index View for DBA ..o 35
Figure 4.4: Weather Record List VIEW ..c.o.ccoooiiimimiiiiieeee e 35
Figure 4.5: Current City Weather Forecast VIEWcoooooioiiioiioieceeeeeeeeeeeeeeeen 36
Figure 4.6: Weather Forecast VIewc.ooooiiiiieeeeeeeee e 37
Figure 4.7: Next 5-Day Weather Forecast VIEWc..ooooviuiomeiiiiiiiiieeeeeeeeeeeeen. 38
Figure 4.8: Last 7-Day Weather Forecast VIEWcoooiooeomoeeeeeeeeeeeee 39
Figure AL: Login Page.........ocooiii e 58
Figure A2: Sign Up Page ... 59
Figure A3: Index Page for Non-DBAo 60
Figure A4: Add Record Page ..o 61
Figure A5: Deleie Record MenU..........cccoomiemiimimieiieceeeeeeeeeeeeeeee e 62
Figure A6: Delete Record Page ..ot 63
Figure A7: Record LiSt Page........cccccoiiiiiiioe e 63
Figure A8: Query Record MenUcoooieiiieiiiieee e 64
Figure A9: Query Record Page............ooovieiivieiiiee 65
Figure A10: Current Weather Conditions of Selected Cities............cooveemeeeeeeereeerenn.. 66
Figure Al1: Any Date Weather Pageccoooieiiiuiueieceieceeeeeeeeee e 67

viii

1. Introduction

1.1 Overview of the System

The On-Line City Weather Forecast System is a request-reply and a subscription system
for disseminating and broadcasting real-time weather information [l]. The system
consists of client and server that communicate using a HTTP protocol. A weather
database that resides at the server side maintains weather observation data such as current
weather and next 5-day weather forecast information. which is published by Environment
Canada’s Green Lane. When a weather client submits a request form to retrieve a subset
of these data, the weather server parses the request. queries the weather database, and

sends the result back to the client.

In this project. the source of original data comes from web pages of 14 cities in the
official weather web site of Environment Canada and the documents of these web pages,
written in HTML (Hypertext Markup Language), are plain text files with special tags and
some texts describing weather conditions. In order to extract weather data from these web
pages, an HTML parser program is designed to take one document as an input file, search
for specific text products e.g. temperature, cloud description, wind, pressure, visibility,
etc, and store the results including current weather and next 5-day weather forecast
information into a weather database on the local server. A weather server is responsible

for distributing the weather data in JSP format to the clients.

1.2 Tools Used

The On-Line City Weather Forecast System is developed in the WindowNT/2000
environment. The following tools are used for the system development:
o ISP (Java Server page), Servlet, Java language are used for implementing the web
application.
® MS Access 2000 is used for database management including data storage and data
retrieval.
e ODBC Data Source Administrator is used for setting up ODBC data source,
which is connected to the database on the local server.

* Internet Explorer 5.5 is used as a web browser to support user interface for the

web application.

This report is organized as follows: Chapter | states overview of the system; Chapter 2 is
focusing on system requirements and analysis; Chapter 3 describes system design;

Chapter 4 states the implementation details. and conclusions are given in Chapter 5.

~

2. System Requirements and Analysis

2.1 Problem Statement

There are two main tasks in this system: one is to extract weather information of 14 cities
from a Canadian official weather web site www.weatheroffice.ec.gc.ca, and store it into a
user-defined weather database; the other task is to publish daily weather conditions of
each city on any specified date. The weather database can be maintained manually by
Database Administrator or automatically by the system. In order to keep current weather
data, the system can update itself 9 times maximum to keep accurate weather information
verses other weather systems. The weather database used in the system only keeps newly
parsed weather records, formerly stored today’s weather records can be overwritten
automatically. There are two categories of users in the system. For different users, it

implements different functionalities.

Database Administrator
A DBA is a particular user of a database who can login to the On-Line City Weather
Forecast System. Weather Data Processing Subsystem, and is allowed to access to the
weather database.
¢ Get current weather data of any selected cites, and save it in the weather database.
¢ Delete some obsolete weather records from the weather database.

* Query weather records from the weather database on a specified condition.

Common User

A common user is a user who can login to the Weather Viewing Subsystem and view
daily weather conditions.

e View today’s weather conditions of any selected city.

e View next 5 days weather forecast of any selected city.

® View previous week weather conditions of any selected city.

® Search weather conditions of any selected city on a specified date.

2.2 Use Case Analysis

In order to capture the functionalities of this system, we make full use of use cases (4]
and use case diagrams to explain the system. Use case is a sequence of transactions that a
user performs with the system. Now we consider the system from two different users’
perspectives: the DB Administrator and the common user. According to the

circumstances of each user, the system provides some functionalities.

2.2.1 User Analysis
In this system, two categories of users are defined:
1) Database Administrator
Skills and knowledge:
¢ Traditional database management (managing and maintenance of database).
¢ Tomcat web server management. Tomcat from version 3.0 up to current version.

* Understanding the web technology (like HTML, XML etc) and terminology (like

Web Portals, ASP, etc).

2) Common client (those who have no right to access to database)
Skills and knowledge:
o User should have some basic knowledge of how to use internet browser (Internet

Explorer5.0 up or Netscape6.0)

2.2.2 Use Case Descriptions

2.2.2.1 DB administrator (DBA) logs into the system

DBA opens a browser, and goes to login web page of the On-Line City Weather Forecast
System; DBA enters username and password; A checking program is performed to check
if the user is a valid DBA; If it is approved, DBA can go to the home page of Weather

Data Processing Subsystem.

DBA logs into the On-Line City Weather Forecast System; DBA chooses “Extract
weather” from the menu. an add form is shown on the screen; DBA chooses one or more
cities from city list on the screen and presses the button “Go’’; an HTML parser program
is performed and weather records including temperature, pressure, visibility, wind etc

information are created; Weather records are submitted to weather database.

2.2.2.3 DB administrator deletes weather records for a period of time

DBA logs into the On-Line City Weather Forecast System; DBA chooses “Delete
Weather” from the menu and three options is shown on the screen; DBA chooses button

“Delete Period Weather” and a city list is shown on the screen; DBA chooses one city

and enters starting date and ending date; delete program is performed to list all the

records needs to be deleted; DBA confirms to delete chosen record.

2.2.2.4 DB administrator deletes current day’s weather records of any cities

DBA logs into the On-Line City Weather Forecast System; DBA chooses “Delete
Weather” from the menu and three options is shown on the screen; DBA chooses button
“Delete Current City Weather” and a city list is shown on the screen; DBA chooses one
or more cities from the city list; a delete program is performed to delete all the current

day’s weather records of the selected cities.

2.2.2.5 DB administrator queries weather records for a period of time

DBA logs into the system; DBA chooses “Query Weather” from the menu and two
options is shown on the screen; DBA chooses button “Query Period Weather” and a city
list is shown on the screen; DBA chooses one city and enters starting date and ending
date; a query program is performed to list all the relevant weather records on the screen:
DBA can views weather detail including wind, pressure, visibility, etc for any specified

date.

2.2.2.6 DB administrator queries current day’s weather records of any cities

DBA logs into the On-Line City Weather Forecast System; DBA chooses “Query
Weather” from the menu and two options is shown on the screen; DBA chooses button
“Query Current City Weather” and a city list is shown on the screen; DBA chooses one
or more cities from the city list; a query program is performed to show all the current

day’s weather records of the selected cities.

2.2.2.7 DB administrator logs out the system

DBA logs into the system, DBA chooses Log Out from the menu and a login form is

shown on the screen.

2.2.2.8 Common user logs into the system

User opens a browser, and goes to login web page of the system; user enters username
and password. A checking program is performed to check if user’s information is
complete; If it is approved, common user can go to home page of Weather viewing

Subsystem, else common user goes to sign up page.

2.2.2.9 new user signs up the system

User opens a browser, clicks “Sign up now” and a sign up page is shown on the screen;
user inputs username, password, and re-entry password; a sign up checking program is
performed to check if information is valid; if it is correct, common user goes to home

page of Weather Viewing Subsystem.

2.2.2.10 Common user queries today’ weather record

Common user logs into the Weather Viewing Subsystem; user chooses “Current
Conditions” from the menu and a query form is shown on the screen; user chooses one
city listed on the screen; a query program is performed to list today’s weather conditions

including temperature information, wind, description etc.

2.2.2.11 Common user queries next 5-day weather records

Common user logs into the weather viewing subsystem; user chooses “Next S-Day

Weather” from the menu and a query form is shown on the screen; user chooses one city

from city list on the screen; a query program is performed to list next 5-day weather

conditions including weekday, weather description.

2.2.2.12 Common user queries last 7-day weather records

Common user logs into the Weather Viewing Subsystem; user chooses “Past One-Week
Weather” from the menu and a query form is shown on the screen; user chooses one city
from city list on the screen; a query program is performed to list last 7-day weather

conditions including temperature, wind, weather description etc.

2.2.3 Use Case Diagram

Figure 2.1 provides a high-level use case diagram of the On-Line City Weather Forecast

System.

Create Weather Record O
// O Delete Current Weather
—1 Delete Weather Record
\.

I?\dminis;r\xt Query Current Weather

9 Query Weather Record O
% Query Next 5-Day Weather
''''' chude .

/ ?t_ >

Internet Surfe Login -

o : P ldate U
e alidate User

Common User O
—~

Figure 2.1: Use Case Diagram

2.3 Non Functional Requirements

2.3.1 Computer Hardware and Software Requirements

The On-Line City Weather Forecast System should perform all its functionalities under

the following hardware and software environments:

< Sever side:

* Operating system: Microsoft windows 98/2000/NT 4.0 or higher.

* Database Management System: Microsoft Access2000.
® Minimum hard disk space 1GB
» Client side:
* Operating system: Microsoft windows 98/2000/NT 4.0 or higher.
* Minimum modem connection rate: S6kps

* Internet Brower: Microsoft Internet Explorer 5.0 or higher.

2.3.3 Interface Requirement

The interfaces of the system should be clear, understandable and easy to use, SO user can

use the system without any difficulty.

2.3.4 Safety Requirement

In order to distinguish DB administrator and common user, identification checking
should be performed before he or she enters into the system. Thus, we can avoid
unauthorized access to the system and also prevent non-DBA from accessing the weather

database.

10

3. System Design

3.1 Design Rationale

Now we enter into design phase. In this phase, system architecture should be carefully
chosen because the wrong beginning of the design will endanger the development of the
whole project. So our system architecture should focus on ease of maintenance,
application performance, and compatibility with existing systems. According to the
specifications provided by requirement analyst above, the system should reach the
following goals: DB administrator on client side opens a browser to parse weather
information. and send back to the database on server side; common client on client side
opens a browser to retrieve weather conditions from the database that resides on server
side. In addition, DB administrator can do some maintenance to the weather database. In

this section. we discuss some main issues concerned in the design phase.

3.1.1 Choice of Architecture

In the system design phase, we take advantage of Model-View-Controller (MVC) [6]
architecture to develop our system. The goal of MVC design pattern is to separate the
application object from the way it is represented to the user (view) from the way in which
the user controls it (controller). Now we consider the roles of MVC components played
in a web application. All web applications are event driven. We consider an HTTP
Request as an Event. When a web browser from client side sends an event to web
application server, a controller from the server side receives the event and performs

relevant functionality. It processes the event and according to the current state of the

11

client, determines the next state of the client. Then it invokes a target view to display the
required output. Views and controllers on the server side are considered as presentation
layer at web application. Models are separate from the presentation layer views and
controllers. It provides Problem Domain services to the Presentation Layer including
access 1o Persistent Storage (database). Both View and Controller may send messages
down to the Model and in tum it will send back appropriate responses. Figure 3.1 will

shows the complete MVC Architecture design for a Web Application.

Thn Cliert Cliere
Browser

nput '
Event HTTP L
Request Page

Presentation Controder :D Viw
Model Prabiem Damain
Layer Services

Persistence abase

Dm

Figure 3.1: MVC Architecture for a Web Application.

Advantages of choosing modei-view-controller architecture:

e Multiple views using the same model:

12

The MVC feature of separating model from view decides that multiple views can
have the same model.

e Easier support for new types of clients:

If the system adds a type of client, it simply provides a new view and controller for it
and connects them with the existing models.

® Ease of growth: controllers and views can grow as the model grows

3.1.2 Use JSP Technology as MVC Views

In the On-Line City Weather Forecast System, we choose JavaServer pages (JSP) [8]
technology to create interactive pages as part of a web-based application. Compared with
other scripting languages like HTML, JavaScript, Active Server Pages (ASP), JSP
combines static HTML with XML and Java code and hence can produce dynamic.

portable, and scalable and easily maintained web pages [9].

Standard JavaScript can generate HTML dynamically on the client. But it can only deal
with situations where the dynamic information is on the client's environment. HTTP and
form submission data is not available to JavaScript. Because it runs on the client,

JavaScript cannot access server-side resources such as databases.

Active Server Pages (ASP) is a similar technology from Microsoft. However, JSP has
more advantages. First, the dynamic part is written in Java, which it is more powerful and
easier to use. Second, it is portable to other operating systems and non-Microsoft Web

Servers.

13

3.1.3 Use Servlet Technology as a MVC Controllers

Java Servlets [10] are server side Java code run in a server application to answer client
requests. A servlet is a dynamically loaded module that services requests from a web

server. It is secure, portable, and easy to use.

Compared with traditional server-side solution Common Gateway Interface (CGI) [11],
Java Servlet solution provides its own way to keep database connections persistent by
using a connection pool, and processing multiple client requests concurrently by making
use of Java’s multithreading feature. These two features are important advantages of Java
Servlets over a CGI solution. On the other hand. the main drawback of the CGI technique

is inefficiency in handling concurrent client requests.

3.1.4 Use Microsoft Access to create database as data storage

Microsoft Access is a relational database used on desktop computers to manage
information on different levels for different purposes. It is easy to user and also comes

equipped with Wizards that help the novice to create tables, forms, queries, and reports.

3.1.5 Scalability

One of the key issues for any online system is its ability to be scaled to large applications.
In the On-Line City Weather Forecast System, the feature of MVC design pattern
determines the application is still manageable and understandable even it is scaled to a
large one. When a common interface receives incoming Events from HTTP Requests, it
instantiates an appropriate service class based on the current state of the client. After

executing the condition evaluation, it moves the client to the appropriate next state and

14

the correct view for the next state would be invoked and sends back to the client. The

client browser then changes to the new state.

3.1.6 Portability

In order to ensure that the system can run on other platforms, we developed this project
using Java technology. One of the majur advantages of Java language is portability. Java
code can be run on a Java Virtual Machine instead of a physical computer. Since Java
programs are portable, a complete system can be developed, tested and integrated before

the hardware is available for deployment.

3.2 System Design

We identified two subsystems for the On-Line City Weather Forecast System: Weather
Data Processing Subsystem and Weather Viewing Subsystem. We distinguished two
subsystems by username and password. Only database administrator can go to Weather
Data Processing Subsystem and common user can only go to Weather Viewing

Subsystem.

3.2.1 Weather Data Processing Subsystem

In the Weather Data Processing Subsystem, we define three modules: User Interface,
Event Handler and Database. Figure 3.2 shows these three modules and their relationship.
In User Interface module, we define all the interfaces that users will interact with. In
Event Handler module, we defined a controller interface to handle user’s input and
instantiate services to implement the functionalities of the web application. [n Database

module, we define tables to store weather data and users’ personal information. In this

15

section, we mainly discuss the associations between components in each module as well
as associations between two modules. In the final section, we analyze the static and

dynamic structure of the subsystem by drawing class diagram and sequence diagram.

User Interface Event Handler Database
[IconBax] 1 Controller j
I Logn View H— >1[Login Service [I<
userdnfo
I Signup View 'J— S Signup Service 1[< datebase
Create Record ‘1_ Add Weather L
View Service
Delete Current J‘ Delete Current
U Weather View Weather Service
S
E weather
R Http Delete Record 1—' Delete Period database
:"> List View Weather Service
Query Current Query Cumrent
Weather View Weather Service
Query Record Query Period >
List View Weather Service
) . ! | .
Sign out View ; 4}@ out Service

|

Figure 3.2: Modules with Event and Information Flow

3.2.1.1 Implementation of Associations

3.2.1.1.1 Associations between User Interface and Event Handler

16

The On-line City Weather Forecast System is a web-based system, so the association
between User Interface and Event Handler modules is the association between web client
and web server. When a web client clicks a button or triggers an event, a request is made
to web server. The web server passes the request to a controller and then the controller
instantiates necessary service to weather object or user info object. Later on, the
controller forwards the results to the web client. Icon bar in User Interface module has a
pointer to the controller in Event Handler module and the controller in Event Handler

module has pointer references to all the views in User Interface module.

3.2.1.1.2 Associations between Event Handler and Database
¢ Two-way association between Login Service and userInfo database
Login Service sends user’s personal information to userInfo database and gets
user’s validation message from userlnfo database. This is implemented by
providing a pointer from Login Service to userinfo database and a pointer from

userlnfo database to Login Service.

® Two-way association between Sign Up Service and User Info Database
Sign Up Service sends user’s personal information to User Info Database and
User Info Database stores the information and returns submission result to Sign
Up Service. This is implemented by providing a pointer from Sign Up Service to

User Info Database and a pointer from User Info Database to Sign Up Service.

® Two-way association between Create Record Service and weather database

17

Create Record Service sends current weather object and next 5-day weather object
to weather database and the weather database stores the objects and returns
submission result to Create Record Service. This is implemented by providing a
pointer from Create Record Service to weather database and a pointer from

weather database to Create Record Service.

* Two-way association between Delete Record Service and weather database
Delete Record Service sends chosen city and date message to weather database
and the weather database deletes relevant records and returns existing records to
Delete Record Service. This is implemented by providing a pointer from Delete
Record Service to weather database and a pointer from weather database to Delete

Record Service.

* Two-way association between Query Record Service and weather database
Query Record Service sends chosen city and date message to weather database
and weather database retrieves some relevant records to the Query Record
Service. This 1s implemented by providing a pointer from Create Record Service
to weather database and a pointer from weather database to Create Record

Service.

3.2.1.1.3 Associations within Event Handler module

Controller in the Event Handler module reacts to user’s input and determines how to

handle the incoming requests. It instantiates a Service class and after executing the

18

created Service, results are returned to the controller. So there is two-way association
between Controller and Services. This is implemented by providing a pointer reference

from Controller to Services and a pointer from each Service to Controller.

3.2.1.2 Class Diagram

The relationships between classes and the structure of each class in the Weather Data
Processing Subsystem are shown in Figure 3.3. From the diagram, we can see that
Controller class and StartUp class extend from HttpServlet class; LoginChecking,
Add_Weather, Delete_City_Weather, Del_Period_Weather, Query_Cur_Weather,
Query_Period_Weather class extend from Service class; StartUp class is used for
updating weather database automatically several times a day according to the number
entered by the user when the web server starts up; Controller class can instantiate a
Service class and handle user’s incoming request. HTMLParser class can parser a HTML

file and save results into two string arrays.

19

LoginChecking
Sty @con: Comnecton
&timer Timer
B “LoginChecling)
‘Inﬂﬂ ‘exew[eo
Vedela) | e -~
“ioGet) / """"
/ /
/ Al Veahe |
% : Qoon: Comection |
HitoServet Semce
ik <] M Weate)

S — %oxecute)

" Cootroler |7 {f ' &w\

P \ Delete_City Waather
sty / \ |#oon: Comection
iget) | \ [Rtoday: Date
VoPust) | ‘ \

Y | | .| delete 5day recard]
Yirari) |/ \ 4 Yexecute
[

Query Penod Weather | | Query Cur Weather || Del Penod Weather
Quity - String Quites : St Rty - Sting
QstarDite: String Stoday : Date QstarDate : Sting
QendDite: Strng QendDte : Shing

¥oxeotte)
Yoxecute) WuarscResulSet) || Yereaute)
“narseResutSe YoarseResulSe]

Figure 3.3: Class Diagram

Save Record

&pour whec - Sting])
%next_Sday_wRec - Stringf]

¥Sare Recard)
Wit CumentWrec()
®insert Next Sday Wrecy

]

HimlParser

A'%crty String

@uityLoc String
Qcurent whec : Sting]
%next_S_day_wRec - String]}
Qnageloc : Sring

parser: Paser

$doParseq
eCurenitrec]
“ueiert Sdzy whec(

3.2.1.3 Sequence Diagram

Figure 3.4 is a sequence diagram for the scenario: DB Administrator logins to the On-

Line City Weather Forecast System, creates a weather record and saves the record into

weather database.
0B index page Add Weather Contraller Add Weather ‘Weather ‘Weather Add_Weather
Admimstrator web page Semce Record Databse target page
login :
K entLr :
! L n > : dOPOStO :
0 : > mstantiate
| : goParser()
it . I~
f f : retlim ff parser is fai o
¥ : L doSubm(
: retumn saving resuf '
i turn sawing resuft
1 ‘ rF(
. U
| : forwird() 5
| ' 1
|‘ .
ii i
i T

-

Figure 3.4: Sequence Diagram for Creating a Weather Record

3.2.1.4 Object Models

According to the requirement analysis and concemned with the architecture of the system,
we defined three object models: user personal info model, current weather model and
next 5-day weather model. User personal information model will be modeled in the
userlnfo database-login table. Current weather model will be represented as weather
database-current weather table and next 5-day weather model will be modeled as weather
database-5-day-weather table. In order to make the tables available to the application,
ODBC data source should oc set up. Next we will introduce the attributes in each object
model and each of the object’s attributes will also be included in each table

representation.

e user personal information model
User personal info model is used for user registration. It includes username, password
and another attribute level that is for distinguishing common user from DB

Administrator.

Required attribute to model user personal information

Attribute Type
username String
password String
level char

9
9

e current weather model
Current weather model is used for modeling current weather information parsed from
existing weather forecast web site. The content of the model will be stored into

current weather table.

Required attribute to model current weather information

Attribute Type

date String
city String
description String
temperature String

pressure String

visibility String

humidity String
wind String
detail String
am char

® next 5-day weather model
Next 5-day weather model is used for modeling next 5-day weather forecast
information parsed from existing weather forecast web site. The content of the model

will be stored into next 5-day weather table.

23

Required attribute to model next 5-day weather information

Attribute Type
City String
Date String
Weekdayl String
Descl String
Weekday?2 String
Desc2 String
Weekday3 String
Desc3 String
Weekday4 String
Desc4 String
Weekday5 String
DescS String

3.2.2 Weather Viewing Subsystem

In Weather Viewing Subsystem, we defined three modules in the same way as in
Weather Data Processing Subsystem. In User Interface module, we added Current
Weather View, Next 5-Day Weather View, Last 7-Day Weather View and Date Weather
View so that user can view weather information from difference perspective. In Event
Handler module, we added Query Current Weather Service, Query Next 5-Day Weather
Service, Query Last 7-Day Weather Service and Query Date Weather Service to

implement search functionalities. Figure 3.5 shows three modules and their relationship.

User Interface Event Handler Database

Icon Bar 4L Controller

[~
Login View —H— /] Login Service IS userinfo
database
| Signup View | > Sigoup Service |4

Query Current Query Current

Weather View Weather Service

Query Next 5-Day Query Next 5-Day
U Weather View .N Weather Service weather
S Http database
E p——
R ' Query Last 7-Day Query Last 7-Day

Weather View Weather Service

Search Date Search Date

Weather View < Weather Service

ljim out View j(&—‘

Error page View
~J si)
2| Sign out Service

Figure 3.5: Modules with Event and Information Flow

3.2.2.1 I[mplementation of Associations

The association between Interface module and Event Handler module, the association
between Event Handler module and Database module and the association within Event
Handler module in Weather Viewing Subsystem is almost the same as in the Weather

Data Processing Subsystem introduced above.

3.2.2.2 Sequence Diagram

Figure 3.6 is a sequence diagram for the scenario: common user logins to the On-Line
City Weather Forecast System. enters querying conditions, relevant records are retrieved

from weather database and sent back to the client.

Common User index page QueryWeather .Controller Query_Weather ‘Weather Weather
web page Senvice Database display page
login : : : : :

enteru >t doPost) A 5 E :
. instantiate connect :

{etum query resu

geturn query resul

forward()

Figure 3.6: Sequence Diagram for Querying Weather Records

4. Implementation

4.1 System Environment

We use tomcat (version 3.3)[13] as our web server that is developed in an open
environment and released under the Apache Software License. Tomcat is a container of
servlets and JavaServer Pages. It can be used stand-alone or integrated with a web server
such as Apache or Internet Information Server. In our project, Tomcat acts as a stand-
alone web server and stores MVC components. [t takes several steps to implement the
server-side MVC design pattern. When the web server receives a request from a web
client, it passes the request to Controller. After performing some services to the object
models, the Controller forwards the results to a JSP view. The JSP view then sends
results to the web server and the web server sends it back to the client. Figure 4.1 shows

how to implement the server-side MVC.

27

Weather Forecast Server

Tomcat Servilet and

JSP Container \
Servlet
(Controller)

B it 1

Figure 4.1: Server-Side Implementation of MVC

4.2 Using JDBC Connection Pool Technology

We use JDBC-ODBC Bridge that is provided by Sun with JDKI.1 or later to access a
database. When a coming request communicates with a database, a single connection to
the database should be established and it should be destroyed after finishing. However
connecting to a database is time consuming since the database must allocate
communication and memory resources as well as set up security checking, thus results in
slow servicing of requests. JDBC Connection Pool gives a solution to solve the problem.
We can create a pool of n connections to the database. Thus instead of servicing one
request at a time we can service n number of requests at once. Establishing the

connection once and then use the same connection for subsequent requests can therefore

dramatically improve the performance of a database driven web application [15]. The

interface of class ConnectionPool is defined in Figure 4.2.

public class ConnectionPool {

/f Fields

private String driver,
private String url;
private int size;

private String username,
private String password,
private Vector pool;

/{ Constructors
public ConnectionPool({ }

/f Methods

public void setDriver(String p0) { }

public String getDriver() { }|

public void setURL(String p0) { }

public String getURLQ (}

public void setSize(int p0) { }

public int getSize() { }

public void setUsername(String p0) { }

public String getUsername() { }

public void setPassword(String p0) { }

public String getPassword() { }

private Connection createConnection() throws Exception { }
public synchronized void 1nitializePool() throws Exception { }
private void addConnection(PooledConnection p0) { }

public synchronized void releaseConnection(Connection p0) { }
public synchronized Connection getConnection() throws Exception { }
public synchronized void emptyPool() { }

Figure 4.2: Interface of Class ConnectionPool

From above definition, we know that the ConnectionPool object should meet the
following requirements:

® [t holds n number of open connections.

29

e When the pool is close, all connections to the database are released
e If n+/ connections are requested, it can create a new connection and add it to the

pool.

4.3 Inter-Servlet Communication

In order to access the userinfo database, weather database and save servicing time of
requests, we create LoginConnectionPool servlet and WeatherConnectionPool servlet.
ODBC data sources login from userInfo database and weather from weather database
should be set up before creating these servlets. Instead of making a ConnectionPool
object available to only one servlet, we add the ConnectionPool object into a reference to
Javax.servlet.SerlvetContext, which is shared by all servlets. This makes the
ConnectionPool object available to all the serviets. Now we can give an example code in

LoginConnectionPool servlet.

ConnectionPool pool=new ConnectionPool();
pool.setDriver("sun.jdbc.odbc.JdbcOdbeDriver");
pool.setURL("jdbc:odbc:login");

pool.setSize(4);

pool.setUsername("");

pool.setPassword("");

pool.initializePool();

ServletContext context=getServietContext();

context.setAttribute("LOGIN_CONNECTION_POOL", pool):

30

The preceding code first creates an instance of ConnectionPool with 4 open connections
to userinfo database. Then it gets a reference to the ServietContext that is shared by all
the serlvets and calls its serArtribute() method to adds the ConnectionPool object to the

shared ServelrContex:t. This makes the ConnectionPool avalilabe to other serviets.

To make the connections available before the first request is made, we set up the
LoginConnectionPool and WeatherConnectionPool as preloaded servlets when the

Tomcat engine starts up, which is implemented in web.xm! file:

<servlet>
<servlet-name>ConnectionPool.LoginConnectionPool</serviet-name>
<servlet-class>ConnectionPool.LoginConnectionPool</servlet-class>
<load-on-startup>l </load-on-startup>
</servier>
<servlet>
<servlet-name>ConnectionPool. WeatherConnectionPool</servlet-name>
<servlet-class>ConnectionPool. WeatherConnectionPool</servlet-class>
<load-on-startup>2</load-on-startup>

</servlet>

The above code ensures that the ConnectionPool objects one of those is defined in
LoginConnectionPool servlet and the other is in WeatherConnectionPool servlet are

available to all the other servlets when the web server starts.

31

4.4 Implementation of MVC

In this part, we concentrate on implementing a MVC design pattern of the web-based
system. We discuss the implementation details of JSP views, controller as well as some

services that are connected to the object models.

4.4.1 Startup

Before implementing the MVC design pattern, we first introduce Startup class. Startup
class is an Httpservlet that is loaded when Tomcat engine starts and keeps running until

the server is close. This is done by web.xml file:

<servlet>
<servlet-name>StartUp</servlet-name>
<servlet-class>StartUp</servlet-class>
<load-on-startup>3</load-on-startup>

</serviet>

When Startup class executes, user is asked to input a number n for recording the times of
updating weather data in weather database. After typing the number n, the systems will
update weather database automatically n times a day. This is done in the inir () method of

Startup class. The source code in the iniz () method of Startup class is in listing:

public void init(ServletConfig config) throws ServletException {

super.init(config);

try({
System.out.println("Enter recording time(1-9):");
int t=System.in.read()-'0";
while (<0 || >9){
System.out.printin("Enter recording time(1-9):"):
t=System.in.read()-'0";
}
TimerEvent e=new TimerEvent();
int delay=(24/t)*60*60;
if (timer==null){
timer=new Timer(1000*delay, e):
timer.start(); }
else if (!timer.isRunning())
timer.restart();
System.out.println("Data is waiting for updating”):
}
catch(IOException e){ }
}
First it asks user to enter a number 0-9 from the keyboard and take the number as the
times of updating weather database per day. An instance of Timer executes a TimerEvent
object at a fixed interval that is responsible for extracting weather data from 14 existing

web pages and saving it into weather database.

33

4.4.2 Views

Now we start to define the interfaces that users interact with. From the requirements
described in previous section, we need to define Index view, Weather Record List view,
Current City Weather Forecast View, Weather Detail View, Next 5-Day Weather
Forecast View, Last 7-Day Weather Forecast View and an Error Page. In this section we

introduce each of them.

4.4.2.1 Index View

Index View is homepage for the On-Line City Weather Forecast System. It is represented
in two files Weather_DB.jsp and Weather_Viewer.jsp. One file is for Weather Data
Processing Subsystem and the other is for Weather Viewing Subsystem. An image of the

Index View in Weather Data Processing Subsystem is in Figure 4.3.

R Weother Dotabase Page Microsoft luternet Explorer provided by Sympatico

Fle Edt view Favortes Toois Help

s . EN . . el —
€ L L Z L et yFeates @Pvese @ 3., T
Larms @Y petff24.202.13.228: scher_forcastise oncroler) .

o L 2%
—‘%m?? J2dedd oi:- "':"'

Extract Weather
Delete Weather

Query Weather

Welcome |_zhang to the Online
Weather Forecast Database System

Home
Sign Qut
Weather Forcast Web
created ¢y Lin Zhang. [_zhang@cs.concordia.ca last modifiad: April 8, 2001
Daza 15 obtsaned from and 1= copyright of Environment Cansds.
2] masto:zhang! @hatmad.com @ Intornet

34

Figure 4.3: Index View for DBA

4.4.2.2 Weather Record List View

The Weather Record List View is represented in the file Query_Weather_Viewing jsp. An

image of the view is in Figure 4.4.

D Weather Databaze Page Microwoft Internet Explaters provided by Sympatico

Fle Edt WView Favortes Tools Help &
L - N - -~ A P R Vs i RN

Qo - D 1] J B T sern trreoes @rese @ 13- 3 T B B

2ozress 48] htp:if24.202.13.228: 8000 weathes _forcest/serviet/Controles vl tris * 3%

-~ t
L2 G ¢ %
= = o v o
Waror S lied {/::.": kr

City: Montreal :
From:2002/0L/01 T0:2003/12/31 =
Extract Weather 2003/04/08 Light Snow -2°C detail
Delete Weather 2003/04/07 Cloudy -2°C detail
Query Weather 2003/04/05 Light Freezing Rain 0°C detail
2003/04/03 Cloudy 0°C detail
2003/04/02 Cloudy 2°C detail
Horme 2003/04/01 Light Snow -1°C detail
— 2003/03/31 Mainly Sunny -2°C detail
Sign Out 2003/03/30 Cloudy 1°C detail .

Weather Forcot Wois

created by Zin Chaeng, |_chang@cs.concordia.ca
. 5

Ddtd is obtained fram and 15 copyrighs o

O

i3t Mmoedrfiad: Aprii o,
nviy

com=2at canadd .

(LA

"o

£] oone @ Internet

Figure 4.4: Weather Record List View

Weather records are received from RECORDS attribute of a request object, which is
inherited from javax.serviet.ServietRequest. Their values including date, weather
description and temperature are stored in HashMap objects. The Weather Record List
View displays the values of those records on the screen. This is done by the following
code snippet:

Object[] records=(Object[])request.getAttribute("RECORDS"):

for (int x=0; x<records.length; x++){

35

HashMap record=(HashMap)records[x];
out.printin("<TR><TD>"+record.get("DATE") + </TD>" +
"<TD>+ record.get("DESCRIPTION") + “</TD>" +
"<TD>" + record.get("TEMPARATURE") + "</TD>" +
"<TD><a target=_blank href=/weather_forcast/serviet/Controller?"+
"service=RecordDetail&date="+record.get("DATE")+

"&target=/WeatherInfo.jsp>detail</TD></TR>");

4.4.2.3 Current City Weather Forecast View
Current Weather View is represented in the file CurrentWeatherList.jsp. It lists all the
current weather forecast of selected cities including weather description, temperature. An

image of Current Weather Forecast View is in Figure 4.5.

S (=H]

R Weather Dotaboze Pape Microsoft [nternet Explorer provided by Sywnpatico

“he Ece Veve Favortes Tools el ”
< un 4F] retp:fi2e 202 13 >28 8060, _torcases ~t Lowe 3._
P %4_ /":' . " .
_.__ai,-_ﬂ_--_ - ,3:”-, = ,% e -
Extract Weat
Delete Weatt Current Observation
Query Weath Date: 2003/04/14
Montreal Mostly Cloudy 15°C detail
Hotn Toronto Mostly Cloudy 19°C detail
(8 ©
T il Quebec Thunderstorm with Rain 5°C detail
Sign Out Ottowa Partly Cloudy 14°C detail
ThunderBay Mostly Cloudy 15°C detail
Vancouver Cloudy 12°C detail
Weatner Formgor Web
created by Liwt Thang. i_shang(@cs.concordia ca i43¢c modified: April 2, 2003
NAr4 "« obtrtazoned £from amncd X ~oamorg Rt N Fnviromment cCasadse .

Figure 4.5: Current City Weather Forecast View

36

4.4.2.4 Weather Detail View
Weather View is represented in the file Weatherinfo.jsp. It lists detail weather
information: temperature, weather condition, pressure, visibility, humidity, wind and

description. An image of Current Weather Forecast View is in Figure 4.6.

D weather detml Poage MIe 020t Internet L xpiorss provided by Syorpoltcn

Fia ER View Fevortes Took e
2unkers Q1 Weo:flocalhast: 8000/ waathar forcast] e Oler Marvica—R acor OOt st atw=2003/01 50 i £ Go

Weather Detail
Pressure: 102.5 kPa
Visibility: 19 km
Humidity: 44%

Light i -
} Wind: E 7 km/h
- ®» Snowshower d
~. .~ .18°C Increasing cloudiness

early this moming
. . followed by 30%
Description: probability of flurries this
evening. Cold. High near
minus 14.

Figure 4.6: Weather Forecast View

4.4.2.5 Next 5-Day Weather Forecast View

The Next 5-Day Weather Forecast View is represented in the file Lisz_Sday_Weather.jsp.

An image of the Next 5-Day Weather Forecast View is in Figure 4.7.

37

D Weather Viewer Page Microsoft lnternet Explorer provided by Sympatico
Fe Edt vew Favortes Tools Help
2ases. 8] hp:/[24.202.13.228.8000]weather forcastjserviet/Controer v ks ,

National Weather

Next 5-Day Weather Forecast

Current Conditions

Next 5-Dav Weathe M3§@200_3/9_4_/0§_ BRI, Lt T

Pt Ome-Week Conditions
ast One-Wee Tonight Clearing during the night. Low near minus 3.

Weather
Wednesday Sunny. High near 6.
Search by date: Thursday Sunny. Low near zero. High near 10.
01 v/ 61 vy 2002 v .) .
B . Showers. Low near 2. High near 7. Probability
Frday of precipitation 60 percent. i
Saturday Sunny. Low near zero. High near 2.
Home
Sign Qut
03} - — _ @ intamet

Figure 4.7: Next 5-Day Weather Forecast View

In the file List_Sday_Weather.jsp, a weather record consisting of next 5 days weather
description is received from RECORD attribute of a request object. The Next 5-Day

Weather View displays the contents of the weather record on the screen.

4.4.2.6 Last 7-Day Weather Forecast View

The Last 7-Day Weather View is represented in the file Past_7day_Weather jsp. Figure

4.8 shows an image of the Last 7-Day Weather Forecast View.

38

A Weather Viewer Paepe Microsott lntesnet Explarer provided by Sympaticn

x
Fle EM View Favortes Tooks Hep [EE Y

National Weathei

Past 7-day Weather Observation

Current Conditiomn:
Next 5-Dayv Weatt

N

Toronto .2003/04/08 o RS T

P

Humidity Wind

Date Conditions Temp Pressure Visibility

Past One-Week 2003/04/07 Light Snow 4°C 1030 6km 8% NE2O
Weather 2003/04/05 Mainly Clear ~~ 4°C 1017 2dkm 67% WNW33
ight Freez :
2003/04/03 Light Freezing 2°C 1020 6km 87% NE16
Search by date: —___ Duzle T
01 vy 01 vy 2002 v, 2003/04/02 Haze 4°C 101.7 8km T% El6
2003/04/01 Fog 1°C 1013 ~10km 88% SES
2003/03/31 Partly Cloudy -1°C 1016 24km 55% NNW42
ST T 2003/03/30 Mosty Cloudy 2°C 1020 24km 61% NNW28
Home
Sign Out

Figure 4.8: Last 7-Day Weather Forecast View

In the file Last_7day_Weather.jsp, weather records consisting of last 7 days weather
observation data are received from RECORDS attribute of a request object. The Last 7-
Day Weather View displays the contents of the weather records including last seven days

weather conditions. temperature, pressure, etc, weather information on the screen.

4.4.3 Controller
Controller is a central part in the MVC design pattern. It reacts to the user’s request and
decides how to deal with the coming request. In our project, the controller is
implemented as a servlet. It does the following work:

* Receive user’s request. parser service name and target JSP file name from the

request.

39

¢ Instantiate a Service class by the service name and call execute () method to
handle user’s request.

¢ Forward the result of the executed service to the target JSP file for viewing.

The following code implements the functionality of the Controller:

String serviceName=request.getParameter("service");
if (serviceName==null){

throw new ServletException("No service named");

String target=request.getParameter("target");
if (target==null){

throw new ServletException("No target named");

ServletContext context=getServletContext();
Class cls=Class.forName(serviceName);
Service service=(Service)cls.newlInstance();
service.execute(request, response, context);

forward(request, response, target);

Now we give an example of a request form containing service parameter and target

parameter.

<Form name="query_weather"

40

action="/weather_forcast/servlet/Controller" method="post">

<INPUT type="submit" name="submit" value=" Query ">

<INPUT TYPE="hidden" value="Query Weather" name="service">

<INPUT TYPE="hidden" value="/Query_Weather_Viewing.jsp" name="target">

</Form>

When the client submits the above request, the Controller will execute service Query
Weather and forward the executed result to target JSP file name

Query_Weather_Viewing.jsp.

4.4.4 Service

When the Controller class receives client’s request, an instance of Service class will be
created and its execute () method will be called to perform its functionality. Here we
define a public interface Service class that acts as prototype of all the services. In the

Service interface, only one method execute () is defined. The following code does this:

public interface Service {
public void execute(HttpServietRequest request,
HttpServietResponse response,

ServletContext context) throws Exception;

}

41

In this project, we define several services. Each service performs its own functionality by
implementing the execute () method of Service interface. Now we list all the services
performed in the system.
® Add Weather Service is to add creating records into weather database.
® Delete Current Weather Service is to delete current day’s records from weather
database of selected cities.
® Delete Period Weather Service is to delete a period time of weather records of a
specific city.
® Delete Database Service is to delete all the weather records from weather
database.
o Query Current Weather Service is to retrieve current weather records of selected
cities from weather database.
® Query Period Weather Service is to retrieve a period time of weather records of a
specific city.
e Sign Up Service is to register new user into the system.
e Login Checking Service is to check user’s authorization.
® Query Next 5-Day Weather Service is to retrieve next 5 days’ weather condition
from weather database.
® Past 7-Day Weather Service is to retrieve last 7 days’ weather condition.
o Search Date Weather Service is to search any data's weather condition and

e SignOut Service is to perform logging out of the system.

42

In the next part of this section, we focus on four services: Add Weather Service, Query
Current Weather Service, Delete Current Weather Service, Search Current Weather

Service and Query Next5-Day Weather Service.

4.4.4.1 Add Weather Service

The Add Weather Service is an implementation of interface Service.execute () method.
When a user selects one or more cities from the city list on the screen, and presses Save

Selected Cities button, execute () method will start its execution.

First, it receives a list of cities from the request. According to the web page location of
each city, an HTML parser is then performed to open an HTML file, select weather data
including current weather and next 5 days weather forecast, and save it into weather
database. In the final, the result of submission is assigned to an attribute of a request
object called SAVING_FLAG. If the value of SAVING_FLAG is |, Add Weather service
will send message “records have successfully inserted into weather database™ to its target
ISP file. Otherwise, it will send an error message “submission is failed”. The sample

code in execute () method is in listing:

String[] city=request.getParameterValues("cities");
String(] current_wRec=new String[11];

for (int i=0;i<city.length:i++)

{

current_wRec[0]=city[i];

43

HtmiParser parser=new HtmlParser(city[i]);
parser.action_Performed();
current_wRec=parser.getCurrentWrec();
Object{] next_5_day_wRec=parser.getNext_5Day_Wrec();
Save_Record s=new Save_Record(current_wRec, next_5_day_wRec);
int result=s.action_Performed(request,response,context);
if (result==0)
{request.setAttribute("SAVING_FLAG", "0")://failed

return; }

}

else request.setAttribute("SAVING_FLAG", "1");//successful

4.4.4.1.1 Weather Parser

Now we introduce the weather parser occurred in Add Weather Service. It uses
HTMLEditorKir.Parser in package javax.swing.text.html and its implementing class
ParserDelegator in package javax.swing.text.html.parser in Java Swing system to parser

an HTML file.

In this project, weather parser should exact weather information of 14 cities from website
http://weatheroffice.ec.gc.ca. First, according to the name of each city received from Add
Weather Service, the parser finds weather web page location of the city, opens an HTML

file and prepares to read the input stream. Then it calls parse () method from an instance

of class PaserDelegator to parse the given stream and drive the given callback with the
results of the parse. A subclass of HTMLEditorKit.ParserCallback TempParserListener
is designed to receive the parsing results, select desired weather data and save those data

into records current_wRec and next_5_day_wRec. This is done by the following code:

if (pageLoc.indexOf("://") > 0)
{

URL u = new URL(pageLoc);

Object content = u.getContent();

if (content instanceof InputStream)

r = new InputStreamReader((InputStream)content);
else if (content instanceof Reader)
r = (Reader)content;
else throw new Exception("Bad URL content type.");

}
else r = new FileReader(pageLoc);
parser = new ParserDelegator();
parser.parse

(r,new TempParserListener(current_wRec, next_5_day_wRec), true);

r.close();

When class HTMLEditorKit.ParserCallback receives arbitrary sized chunks from a
HTML document, it recognizes markup elements and separates them from the plain text.

There are several methods In class HTMLEditorKit. ParserCallback to handle incoming

45

streams: handleText(), handleCormment(), handleStartTag(), handleEndT: ag() etc. Our
class TempParserListener inherits class HTMLEditorKit.ParserCallback and only one

method handleText () are implemented, other methods are ignored.

Next we discuss the general ideas of handling texts from a HTML file in method
handleText(). In this system, the weather parser should extract 12 items of weather
information, which are general weather condition, temperature, pressure, visibility,
humidity, wind, current weather description and next 5 days’ weather forecast. In its
implementing class TempParserListener, variable count is used for item counter and
variable countDay is used for day counter. There are total 9 situations considered in
handling text entries. Situations from 0 to 8 mainly deal with relevant weather
information and situation 9 deals with irrelevant text input. The source code of method

handleTex:() is in listing:

public void handleText(char(] data, int pos) {
/111I111] enough weather information, no more parser//////
if ((count==12) && countDay==5) return:
String t=new String(data);
if (next!=9) {
if (t.equals(" ")) return;
if (t.equals("UTC")){ next=0;return; }
count++;

addRecord(t);

46

next=9;

setNext(t);

In above code snippet, method serNext() is used to decide which situation the current
input text is in. If the incoming string matches one of titles in a definition list, variable
next is assigned to a new value. Otherwise, it still remains 9. If nex is not equal to 9, next

input string from the HTML file is the data need to be selected.

When method handleText() receives a new string , it checks the value of variable nexz. If
the value is equal to 9, go to execute method serNexr () to receive next input string,
otherwise. plus 1 to item counter. and saves the string into current weather object or next

5-day weather object.

4.4.4.1.2 Saving Weather Record

Save_Record class is for saving extracted weather information into weather database. It
stores current weather object into table weather_table and stores next 5-day weather

object into 5_day_weather table.

4.4.4.2 Query Current Weather Service

The Querv Current Weather Service is an implementation of the interface

Service.execute() method in Weather Data Processing Subsystem. When a user selects

47

one or more cities from the city list on the screen and presses Display Current Conditions

button, execute () method will start its execution.

First, it receives names of the selected cities from the request object, and opens an unused
connection from a ConnectionPool object WEATHER_CONNECTION_POOL to connect
weather database. Second, it performs a select statement on the weather_table under the
conditions of current date and name of each city and returns a ResultSet object. If current
record exists, the ResultSet is converted into a HashMap object. In the final, a list of
HashMap objects is assigned to RECORDS attribute of the request object and sent back

to the target view of the service. This is done by the following code in method execute ():

String[] city=request.getParameterValues("cities");
Vector results=new Vector();

Java.util.Date today=new java.util.Date():
SimpleDateFormat formatter:

formatter=new SimpleDateFormat("yyyy/MM/dd");
String to_day=formatter.format(today);
pool=(ConnectionPool)
context.getAttribute("WEATHER _CONNECTION_POOL"):
con=pool.getConnection();

Statement statement=con.createStatement();

String queryStr;

if (con'=null){

48

for (int i=0;i<city.length;i++){

queryStr="SELECT * "+

"FROM weather_table "+

"WHERE (date="" + to_day + "")"+

" AND (city=""+ city[i] +")";

ResultSet rs=statement.executeQuery(queryStr);
boolean moreRecords=rs.next();
if (moreRecords)

results.add(parseResultSet(rs)); }

request.setAttribute("RECORDS", results.toArray());

}

4.4.4.3 Delete Current Weather Service
The Delete Current Weather Service is an implementation of the interface
Service.execure() method. When a user selects one or more cities from the city list on the

screen and presses Delere button, execute () method will start its execution.

It receives names of the cities from the request object, and opens a connection from a
WEATHER_CONNECTION_POOL object to connect weather database. Second, it
performs a delete statement on weather_table under the conditions of current date and
each name of the city and returns a ResultSet Object. If the ResultSet is empty, “current
weather data for the city is not available” will be shown on the target view of the service.

Otherwise, “current weather has successfully been deleted” will be shown.

49

4.4.4.4 Search Current Weather Service

The Search Current Weather Service is an implementation of the interface
Service.execute() method. When a user selects one city from the city list on the screen

and presses Search button, execure () method will start its execution.

First, it receives name of the city from the request object, and opens a connection from a
WEATHER_CONNECTION_POOL object to connect weather database. Second, it
performs a select statement on weather_table, and returns a ResultSet containing a
weather record with the chosen city and current date. Last, When the ResultSet is
returned, it is converted into a Hashmap object and put back to the target file called

CurrentWeather.jsp.

4.4.4.5 Query Next 5-Day Weather Service
The Query 5-Day Weather Service is an implementation of the interface Service.execute()

method. When a user selects one city from the city list on the screen, and presses Display

Next 5-Day Weather Condition button, execute () method will start its execution.

First, it receives name of the city from the request object, and opens an unused
connection from a WEATHER_CONNECTION_POOL object to connect weather
database. Second, it performs a select statement on 5_day_weather table and returns a

ResultSet containing a weather record with the chosen city and current date. Last, when

50

the ResultSet is returned, it is converted into a Hashmap object and assigned to an

attribute of request object called RECORD. This is done by the following code.

if (con'=null){
Statement statement=con.createStatement();
String query="SELECT * "+
"FROM 5_day_weather "+
"WHERE (date="" + current_day + ")"+
" AND (city=""+ city +"")":
ResultSet rs=statement.executeQuery(query);
boolean moreRecords=rs.next();
HashMap record=new HashMap():
if (moreRecords)
record=parseResultSet(rs);
record.put("CITY". city).

request.setAttribute("RECORD". record);

51

S. Conclusion

5.1 Summary

The On-Line City Weather Forecast System is a web-based application for extracting
weather data and observing weather conditions. It provides a friendly interface that users
can interact with. In addition, in order to keep the weather data up to date, weather

database updates its information automatically up to 9 times.

In this document. we give an example of how to design a web application using MVC
pattern and how to leverage a server-side implementation of the MVC. It is demonstrated
that it is a good choice to choose MVC architecture. We can take advantage of its feature
separating presentation layer from model layer to scale up the application easily. And
also it is proved that a web application implemented by JSP. Java, and Servlet technology

is efficient, portable and independent of platform.

5.2 Discussion and Future Work

In the on-line system, weather parser is a central part of processing weather data. Now it
works well to select weather data from existing web site and save it into user-defined
weather database for later viewing. However, the current parser has some potential

drawbacks that might affect the performance of the weather system.

The working procedures of the parser have been introduced in design phase. The general
principle of the HTML parser is: if an input string matches one of the titles in a definition
list, next input string is the weather data need to be extracted. Now we suppose the page
format of 14 cities is same, so the weather parser can work well. However, the web pages
are dynamic. They update contents everyday. If the titles that are used to identify weather
data change e.g. from upper case to lower case, the parser might lose data or even result
in system crash. This is a potential problem in our weather parser. It is easy to overcome
the drawback by observing the contents of those web pages when the weather system
runs abnormally. If a title is found different, we come back to the weather parser program
and add the new title into title definition list so that the HTML parser can handle all the

possible cases to ensure the system runs well.

Current weather parser ignores all the tags in the HTML files and can only extract text
input. To make the system illustrated. we can add a new method into the parser, which
can handle image tags and extract weather images from the existing HTML files. In
addition, some advanced search functionalities are expected to add into the system so that

the weather system can present different views to the clients.

53

References

[1] Oleg Kiselyow, “Implementing Metcast in Scheme*”, Software Engineering,
Naval Postgraduate School, Monterey, CA 93943
http://okmij.org/ftp/papers/Scheme-Metcast-paper.ps.gz
[2] Environment Canada, http://weatheroffice.ec.gc.ca
[3] “Weather Processor (WXP)”, http://weather.unisys.com/wxp/, August 2002
[4] Paul Harmon, Mark Watson,
“Understanding UML: The Developer’s Guide: with a Web-Based Application in
Java®, Academic Press/Morgan Kaufmann, November 1997

[5] James Goodwill, “Developing Java Servlets(2™ Edition)”, Sams,2001

[6] uidesign.net, “Server-side MVC Architecture”, October 1999
hup://www.uidesign.net/1999/papers/webmvc_partl.html

[7]1 Aimin Han, “BIB TgX Server”, Computer Science Department,

Concordia University, Canada, 2001.
(8] Sun Corporation, “JavaServer Pages(TM) Technology™,
http://java.sun.com/products/jsp/
(9] “JSP Web Hosting”,
http://www.low-cost-web-hosting-guide.com/jsp-web-hosting.shtml
[10] Sun Corporation, “Java(TM) Servlet Technology”,
http://java.sun.com/products/serviet/
[12] Amanda W. Wu, Haibo Wang and Dawn Wilkins,
“Performance Comparison Of Alternative Solutions For Web-To-Database

Applications”, October 2002,

54

http://rain.vislab.olemiss.edu/~ww l/homepage/project/mypaper.htm

[13] The Jakarta Site - Apache Tomcat, http://jakarta.apache.org/tomcat/
(14] Hans Bergsten, “Improved Performance with a Connection Pool”, September 1999

http://www.webdevelopersiournal.com/columns/connection_pool.html,

55

Appendix A: Installation Guide

Windows NT/2000 is needed for installing the system.

Install and Configure Tomcat 3.3
I. Download Jakarta-tomcat-3.3 and unzip the archive into a directory.
2. Set up Environment variable
® Pick up a control panel icon and click system. In System Properties, select
e Advanced tag and click Environment Variables button
® Setup anew system variable JAVA_HOME={jdk1.3.1 directory}
e Set up a new system variable TOMCAT_HOME={tomcat installation

directory}

Create ODBC System Data Source

. Copy database login.mdb and weather.mdb to the location {tomcat installation

directory }\webapps\weather_forcast\database.

(%]

Start the application ODBC in control panel.
3. Select the DSN tab and click the Add button to add a new data source.
4. Select the Microsoft Access Driver and click Finish button. ODBC Microsoft

Access Setup screen will be seen.

56

Enter the string” login” as the data source name and enter the location of
login.mdb and click OK.
Repeat the above steps, enter string “weather” as the data source name and enter

the location of weather.mdb.

Copy all the files under the directory of Tomcat

In order to make the system run appropriately, we should copy the files of the On-Line

Weather Forecast System under correct directory of the web server:

Move all JSPs for weather data processing subsystem to the
<SERVER_ROOT>\webapps\weather_forcast\ directory. Move all JSPs for
weather viewing subsystem to the <SERVER_ROOT> \webapps\
weather_forcast\ client\ directory.

Make sure Service class, Controller class and ConnectionPool package is in the
classpath of Tomcat <SERVER_ROOT>\webapps\weather_forcast\ WEB-
[INF\classes\ directory.

Copy all the compiled the service implementations and class files to the

<SERVER_ROOT>\webapps\weather_forcast\ WEB-INF\classes\ di rectory.

Startup Tomcat Web Server

Go to Tomcat installation directory and double click “startup.bat” to start the Tomcat

scrver.

Open your browser to the following URL:

http://localhost:8080/weather_forcast/Login.jsp.

57

Appendix B: User Manual

Login Page

For security, only authorized user can go into the system. The login page (see Figure Al)
prompts user to input its username, password. If user is not registered, Sign Up Page will
be shown on the screen. Otherwise, user goes to index page of the system.

e | Login Page - Microsoft Internet Explorer provided by Sympatico
Fie Edt Vview Favotes Tools Help

Aad-ess , & http:/flocathast:8080/weather_forcastLogin. sp

Welcome to Weather Forecast System
Canadi

Username: in
Password: eseed|

I Sign In][Cancel]

Sign up now

€

3| &9 Local intranet

Figure Al: Login Page
Sign Up Page
This page (see Figure A2) provides a simple registration form for unauthorized user. It
prompts user input usemame, password and reentry password. If user has existed or
password is incorrect, a message” User has Existed” or “Please re-enter your Password”
will be shown on the top of the page. Otherwise, the new user has successfully registered

and goes (o index page of the system.

58

R o o e &
Svms Q) repiifocabon: o000 ter forcativer ot " 1 -)
b @) Customen ks 48] Free rotmel @] windows o] Windows Media

Sign Up

Username: n:
Password: ‘ses

) bone S Local meranec

Figure A2: Sign Up Page

Index Page

1. DB-Administrator Index Page

If login is successful, DBA goes to index page of Weather Data Processing Subsystem.

2. Non-Administrator Index Page
If login or sign up is successful, non-DBA goes to index page of Weather Viewing

Subsystem (see Figure A3).

59

B Weather Viewsr Page Muwrowolt interet Explares poorvided by Sympotico

Fle ER Vew Fevortes Tooks Help r

Qus - O H AW Pswwr Freves @ @ - = _ CETSODPH
e i unks ¥

Nati Weatl - .
ational Weather Il Welcome lin to the Online bl

Current Conditions City Weather Forecast System
Next S-Day Weathe

Past One-Week
Weather

Search by date:
Gl v/ 01 «; 2002 v,

Weather Forcast Web
cresed by Lin Thang, {_zhang@cs.concordia.ca lase mogified: Aprii 5, 2003

| €] Done 4 tocal intranet

Figure A3: Index Page for Non-DBA

Add Record

To add a weather record. click Extract Weather in the navigation bar of index page, a city
list is shown on the screen. Select one or more cities and click Save Weather Data button
(see Figure A4). If submission is successful, message “‘Weather data has successfully
inserted into Weather Database” is shown on the screen. Otherwise, an error message

“submission is failed” is shown.

60

[Weather Dotobaze Page Mic 1osoft (nter net Explores provided by Sympatica
I AR
Fig Edt View Tools telp

Favorkes

Adcrass | @] metp:s24.202.13.220: ¥

O -0 NP fForn e @ @ 257 __CHCOPH

i ues ™ g5

i ‘

Extract Weather Select From Available Cities
Delete Weather

Query Weather

Home

Sign Qut A -

f _ SeveweatherData |

ta b

R L LA VR ey Ty I

PP

Wecther Furcest et

crecied by Lin Zheng, |_zhang@cs.concordia.ca last modified: Jprii 2, 20035
&) 0ore @ Intacrat

Figure A4: Add Record Page

61

Delete Record

To delete a weather record, click Delete Weather in the navigation bar of index page, a

menu with three options (Figure AS) is shown on the screen.

D Weather Database Pape Mecrosalt Inteenet Explorer provided by Symipatic o
i ' ¥ >
s £t View Favortes Tools Melp

achres. |) e 172+, 202,13 f o s =

Extract Weather
Delete Weather Sclect lrom tollowing options:

Query Weather 3

o Delete Period Weather

Home © Delete Current City Weather

Sign Out !
o Empty Weather Database '

Weather Farcast Web

created by Live Thanyg. |_gheng@cs.concordia.ca fas< modaried: dAprel 9, J002

FAT2 s wbtg:ined from dnd :3 coovright of Environment Canade. _

- T

Figure A5: Delete Record Menu

1) Delete a Period of Time of Weather Records

Choose button Delete Period Weather from the delete record menu, click Submir buttoﬁ,
an interface (see Figure A6) is shown on the screen. Select one city, enter starting date,
ending date and click GO button. A record list (see Figure A7) with the chosen city from

starting date to ending date is shown on the screen. Click delete to delete any record.

X Weather Database Page Microsott Internet Explorer provided by Sympatic o

Fie Edt View Favortes Tools Help &

Qe - O dd{br’M~?Fm6‘me‘“ = =

address th://zqznz 13.221 ’) i T T s ™ X%

2 B YL SR

S

#

Extract Weather 1
Delete Weather Delete Weather Records ;
Query Weather) i
Choose City and Date B

S —— city Mewes % i
Home date som 01_wjy 01 97 2002 w) v 12 ¥/ 31 vy 2002 v 3
Sign Qut ¥
(=] i

-

Weuther Forcast Web

crected &y Lin Zhang, |_zhang@cs.concordia.ca liast modified: 4dpral &, 2003
2 @ intornet

Figure A6: Delete Record Page

A Weather Database Page - Microsolt Internet Explarer provided by Syinpatico

Fle ER View Favortos Tools Help F-4
Qe - O x 2 o S seaen o Fevortes @ veda £ 3
Sdsreas @] tD:/124.202.13.228:8080 weather _forcast/serviatiControler * 38
D B2 L S
City:Montreal 2
From:2002/01/01 T0:2003/12/31
Extract Weather
Delete Weather 2003/04/09 Cloudy -2°C delete
Query Weather 2003/04/08 Light Snow -2°C delete
2003/04/07 Cloudy ~2°C delete
L 2003/04/05 Light Freezing Rain 0°C delete
Home 2003/04/03 Cloudy 0°C delete
Sign Out 2003/04/02 Cloudy 2°C delete
e 2003/04/01 Light Snow -1°C delete
2003/03/31 Mainly Sunny -2°C delete v
Weather Forcest Webs
crected &y Lin Zhang, |_zhang@cs.concordia.ca iast modified: April 8, 2003
]) . @ lntomet

Figure A7: Record List Page

63

2) Delete Current Weather Records

Choose button Delete Current Weather from the delete record menu, click Submir button,
a city list is shown on the screen. Select one or more cities from the city list and click
Delete button, current weather records of selected cities are deleted from the weather

database.

Query Record

To query a record, click Query Weather in the navigation bar of index page, a menu with

two options is shown on the screen (Figure 8).

X Weather Database Page - Microsoft lateroet Explorer provided by Syinpatica
File Edt Wew Favortes Tools Help -4
Address] heto:$/24.202.13.220:0000/woather forcast/serviot/Controler vl us * @B

Extract Weath.!
Delete \\"eathe!
Query Weathe:

S Query period Weather

Home < Query Current City Weather
Sign Out

Hoeuther Forcast Web
crested by Lin Zhang, _zheng(@cs.concardia.ce last modified: dpril &, 2003
Data 22 akrained from and 15 copwright of £nvironmont ~anada.

Figure A8: Query Record Menu
1) Query a Period Time of Weather Records
Choose Query Period Weather Button and click Submit, an interface (Figure A9) is

shown on the screen. Select one city, enter starting date and ending date, click GO button.

64

A record list with the chosen city from starting date to ending date is shown on the

screen. Click Detail to see the detail description of that day’s weather.

D Weather Botabane Panr Mu 0501t biteroet xplares provided by Syngatioo

Fle EdR View Fevortes Tooks twl F 4
Qo - QD i F Osern Prreonm @rese @ (- = e oR
Sadress | 4] .202.13 _torcast vl o * %
P, B T BN
-~
3
Extract Weather b
. 4 3
Delete Weather Query Weather Records i
<
Query Weather . {
Choose City and Date 3
City Montreal ! \.
Home date som 01 v/ T V7 0027 w0 12 v/ 31 vy M~ E
Sign Qut ‘
v
Woatiter Forcast Weh
cresed &v Lin Tharg. |_cheng(@cs.concordia.ce la=t smodifried: Apr:il o, 2ee?
€] bone @ Interne]

Figure A9: Query Record Page

2) Query Current Weather Records

Choose button Query City Current Weather from the query record menu, click Submit
button, a city list is shown on the screen. Select one or cities from the city list and click
Display Current Conditions button, current weather records of selected cities are shown

on the screen (Figure A10).

65

D Weother Databaue Pope Micionatt bntenmet Explorer pravidesd by Sysnpatic o

g e Viawe Favortws Tools iy t
Acuwen. o) NEED:f/24.202.13 _t -, ieds &

Extract Weat
Delete Weatk Current Observation
Query Weath Date: 2003/04/14
Montreal Mostly Cloudy 15°C detail
Home Toronto Mostly Cloudy 19°C detail
o Quebec Thunderstorm with Rain 5°C detail
Sign Out Ottowa Partly Cloudy 14°C detail
ThunderBay Mostly Cloudy 15°C detail
Vancouver Cloudy 12°C detail

Weoatner Forcest Erb

crearsa by Linn Thaeng, |_chang@cs.concordta.ca lest modified: Aprail 5, 2005
Nara s ohrained from and :s copyvriaht of Fnvironment Canada

Figure A10: Current Weather Conditions of Selected Cities

View Today Weather

To observe today weather. click Current Conditions in the navigation bar of index page. a
city list is shown on the screen. Select one city and click Display Current Conditions

button. The detail observation of current weather is shown on the screen.

View Next 5-Day Weather

To observe next 5-day weather forecast, click Next 5-Day Weather in the navigation bar
of index page, a city list is shown on the screen. Select one city and click search button.

Next 5-day weather forecast is shown on the screen.

66

View Any Date Weather
To observe any date weather information, go to the navigation bar of index page, input
date and click Go button, a city list is shown on the screen. Select one city and click

Search button, that day’s weather detail is shown (see Figure A11) on the screen.

A Weother Viewer Page Microsutt Internet Exploser provided by Sympatico
Fle EM View Fevorkes Tools Help J- <4
Aasers: @) M flocahost:B080fwrather _forcastfsarvietiControler v ks g%
. ':32 @ A 6—-_ ,S'
oo vt A {-’..4:. K
”~
Vancouver
National Weather 2003/03/02
Pressure: 101.8
Current Conditions ey ea-
- Vistbility: 16km
Next 5-Day Weather . qe
3 : C}oudy Humidity: 87%
Past One-Week 6°C Wind: SSW6
Weather mnd-
Mainly cloudy
~ - date: .. with a few
Search by date: Description: ew |
03 v/ 02 ~; 2003 v, showers. High
{(Ga | 8.
Weatner Sorcast Web
creared &y lin ZThang. |_zheng@cs.concordie.ca last medified: Nov 20, zoul
Data 15 vhrarned £from aad 15 copyrighat of Envilonment Jas.add .
4] Oone S Local ntranec

Figure All: Any Date Weather Page

67

