INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Software Visualization

PeiLing Li

A Major Report

In
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

March 2003

© PeiLing Li, 2003

l * l National Library sl?lioﬂ‘\éque nationale

of Canada
isiions and sitions el
%Mb Services ::qrv%es bu"bliggraphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your Sis Vowe réliverce
Our fia Notre rilérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. 1a forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-77917-3

Canadi

Abstract

Software Visualization

Peiling Li

Software visualization is a significant force in software engineering. As the sizes of
software systems are becoming larger and more complex, program comprehension is
becoming more difficult. The tasks of program comprehension involve implementation,
maintenance, testing, debugging, menta! model construction and verification. Software
visualization is one promised way to support the tasks of program comprehension.
Through software visualization, graphics and animations are built to help illustrate and
present the computer program. In recent years, many related visualization techniques
have been developed and used to build visualization tools. The major goal of

visualization tools is to support program comprehension.

TABLE OF CONTENTS

L INtrOdUCHION. .. e e e e e |
2.The background of visualization and program comprehension.......................... 3
2.1 Program Comprehension.oovuieiniiniiiiiiiii e 3
2.2 Cognitive MOdelS.oooiiiiii 6

2.2.1 Bottom-up program cOmprehensiON.oooviriiiiiimiiiiiiieieetereeeenanns 7
2.2.1.1 Shneiderman’s Model...........co i 7
2.2.1.2 Pennington’s Model.........cooiniiiii 9

2.2.1.3 Comparison of Shneiderman’s model and Penning’s model.......................... 10
2.2.2 Top-down program COmMPrehenSiON. oouiueiririiniiii e, 11
2.2.2.1 Brooks” Model.....coonuineiniiiii e 12
2.2.2.2 Soloway and Ehrlich’'s Model..........c..ooooiiiii 14
2.2.2.3 Comparison of Brooks’ Model and Soloway and Ehrlich’s Model.................. 16
2.2.3 Opportunistic Program Comprehension.............cooooiiiiiiiiiiin. 17

2.2.3.1 Letovsky’'s Model......coooeiiiiiiiiii 18

2.2.3.2 Comparison of Letovsky’'s Model............coiiiiiiiiii e 19

2.2.4 An Integrated Meta-Model of Program Comprehension...................coceeiiiine 20
2.2.4.1 Comparison of the Integrated Meta-Model..................oiiiiiilL 21
3. Software Visualization and Related Techniques.....cccceceviiiiaiiiiiiiiiicainciiionen 23
3.1 Reverse Engineering.......coooviniiiiiiiiiiiiiiiii e 23

3.2 Information Visualization Techniques.............cooiiiiiiiiiiiiiiie 26
TR0 U 5 17 51 (1€ S S 27

iv

3.2.2 Focus + Context (Fisheye VIEWS).......cooiriiiiiiiie e 29

3.2.3 Shading/ Color/ TEeXLUIE........ueuimitiniiieieeieie et e et 31
3.2.4 Dimension 2D Versus 3D......cooeiniiiiiiii e 33
KT T-N (1111111 o)« DO OSSR 35
3.3 Software Visualization............cooviiiiiniiiii e 37
3.3 StAC VIBW .o eininititiiie et ettt e eee e e b eeaas 38
3301 StUCIUTAL. ..ottt 38
3.3.1.2 Use Case Diagram.........ooouininiininiiiiiiiiie ettt 39
3.3.1.3 Class Diagram.c.ouninuiininiiiiiit et e 40
3.3.1.4 DFD (Data Flow Diagrams)..........ccooeiiiiiniiiiiiiiiiieie e 41
KT T BRI (=15 11 | S PP PTPSUR RS SPU 42
3.3.1.6 HyperboliC SPace.........ouiuimiieiiiiiiie e 44
3.3.2DyNamic VIBW.....ouiuiiininiiiiee et 45

3.3.2.1 Behavior — show dynamic system behavior from a forward engineering

013 65701610 1 46
3.3.2.1.1 Sequence Diagram..........coouiiiiiiiiiiiitiii 48
3.3.2.1.2 Collaboration Diagram..........cccoooeiiiiiiiiiiii 49
3.3.2.1.3 State DIagrami........cooouiiiiiiiiiii e 50

3.3.2.2 Program Executions - show program executions from a reverse

T4 b 11T 1 =0 PR PR 52
3.3.2.2.1 Sequence DIiagram.........coviniiriiniiiii e 53
3.3.2.2.2 Collaboration Diagram...........cccooiiiiiiiiniiiiiii e 54
4. Survey of Software Visualization Tools........cccceeeriaieniaieiainiecriiiaiiiecei. 56

4.1 Visualization Tools For Bottom-Up Program Comprehension........................... 56

4.1.1 VIFOR and VIFOR 2.t 57
G I2POLKA. ...t s 57
413 ANIMAL. ..o 58
B L8 SEESYS. et 59
4. 1.5 RatioNal ROSE...c.ciniiiiii i 60
4.1.6 Features of Visualization Tools Enhancing Bottom-Up Comprehension............. 61
4.2 Visualization Tools For Top-Down Program Comprehension........................... 65
B2 L Hy oot e 65
4.2.2Jambalaya.oconiniitii e 66
4.2.3 Rational ROSE.......ooeniniieinit it 67
4.2 .4 Features of Visualization Tools Enhancing Top-Down Comprehension............. 69
4.3 Visualization Tools For Opportunistic Program Comprehension........................ 71
B3 1 RiGi e e 71
B3 2 PUL oo e 72
4.3 3 FUJaba....ceiii e 73
4.34TImagix 4Do e 74

4.3.5 Features of Visualization Tools Enhancing Opportunistic

ComPrehension. ..ot e 74
5. SUMMATY.cccictiierioresierecesracerssesensessnsescacssassssssessnscsssasasssssssasssoscssosnnans 80
Refrences.ooiiit i s 81
APPENdiX........o.oiiini e 93

vi

LIST OF FIGURES

Figure I Program Creation..........coooiuiiiiiiiiii e eeee e, 5
Figure 2 Program Comprehension............o.oooiiiiiiiiiiiiiiiiiiecee e 5
Figure 3 Shneiderman’s Model..............c.oooiiiiiiii 8
Figure 4 Penning's Model.........ccoooiniiniiiiii e 10
Figure 5 Brooks’ Comprehension Model...................oo 14
Figure 6 Soloway & Ehrlich’s Model................oooi 16
Figure 7 Letovsky's Model.......cooiiiiii 19
Figure 8 Integrated Code Comprehension Meta-Model.......................o 20
Figure 9 Reverse Engineering Process...........cooooiiiiiiiiiiiiiie 25
Figure 10 A hypertext Document with Hyperlinks.................oo 29
Figurell An Example of Fisheye View...........oooiiiiii s 30
Figure 12 Simulating a Solid Object On a 2D Image Plane.....................ooiiiiis 34
Figure 13 An Example of Horizontal Cone Tree From InXight........................ 35
Figure 14 A Use Case Diagram for Renting and Paying Bill in A VideoRenting

3£ (=) 1 VR 40
Figure 15 A Class Diagram for Class Customer in A Video Renting System............. 41
Figure 16 Typical 3- Level Tree Structure with Numbers Indicating Size

of Each Leaf Node.......ccoiviiiiiiiiii e 43
Figure 17 Tree-Map of Figure 16...... ..o 44
Figure18 An Example of Hyperbolic Browser............c..oooiiiiiiiiiii 45
Figure 19 The Catalysis Specification and Design Micro-process................c.....c... 47
Figure 20 A Sequence Diagram for Renting Items in A Video Renting

3£ 1) ¢ o T 49
Figure 21 A Collaboration Diagram of Renting Item in A Video Renting

A3 () o T P PP 50

vii

Figure 22 An Activity Diagram for Use Case: Rent Item in A Video Renting

N0 £ o VU g P 52

viii

LIST OF TABLES

Table 4.1 Features of visualization tools that enhance bottom-up comprehension....... 62
Table 4.2 Features of visualization tools that enhance top-down comprehension.........69

Table 4.3 Features of visualization tools that enhance opportunistic comprehension....75

1. Introduction

Software visualization is a significant force in software engineering. As the sizes of
software systems are becoming larger and more complex, program comprehension is
becoming more difficult. The tasks of programming, understanding, and maintaining are
becoming more and more difficult because the size of software systems is increasingly
larger and complex. Software visualization (SV) is one promised way to support these
tasks. Software visualization consists of the use of computer graphical artifacts and
animation to help illustrate and present computer programs, processes, and algorithms.
Roman and Cox define program visualization as the mapping from programs to graphical
representations [RC92]. Software visualization is necessary because software is a textual
expression; it seems the only way to have a global view of the system by reading the
source code. When the information amount is large, the reader is overwhelmed with
information. Graphical representations have been recognized as having an important
impact in communicating from the perspective of both writers and readers [LW86]. The
use of software visualization for program understanding or comprehension is the act of
perceiving the meaning and structure of a program. Additionally, program comprehension
is also useful in program debugging and testing. Programmers must understand programs
to devise complete and comprehensive test cases and to locate bugs. The need for tools to
support program comprehension is well documented [Oman90]. Visualization tools
should support the user in the performance of program comprehension tasks during
implementation, maintenance, testing and debugging, to aid the user in the construction

of a mental model, and the performance of program strategies.

The remainder of this paper will be organized as follows: Section 2 discusses the
background of visualization and program comprehension, Section 3 discusses software
visualization and related techniques, Section 4 summaries visualization tools, Section 5

presents a summary.

2. The background of visualization and program comprehension

Software engineering is concerned with improving the productivity of the software
development process and the quality of the systems it produces. However, as currently
practiced, the majority of the software development effort is spent in maintaining existing
systems rather than developing new ones [Rug81]. Estimates of the proportion of the
resources and time devoted to maintenance range from 50% to 75%[Boe81, ST78].
Maintenance can be defined as the managing processes of system change [Boe81, ST78].
Maintenance is difficult and expensive for various reasons, such as, the original source
code writer leaving, documentation being lost, out of date, or incomplete. In fact,
maintenance occurs over the whole life cycle of software. The activities of maintenance
include fixing problems, adapting to the new environment, adding new features. However,
it is only in recent years that work on program comprehension has become an
independent discipline closely linked to the field of software maintenance. Program
comprehension activities have a destructive effect on the productivity of maintenance
programmers. Comprehension is estimated at 50% - 60% of the maintenance effort. In
fact available estimates indicate the percentage of maintenance time consumed on
program comprehension ranges from 50% up to 90%[Cor89, Sta84, LS94]. Hence, work
on program comprehension presents a tremendous potential for improvement in the

productive of maintenance programmers and reduction of overall software life cycle cost.
2.1 Program Comprehension

The field of software comprehension is summarized in Corbi90, [RBCM91]. Software
comprehension involves both software engineering and cognitive science. Rugaber

3

[Rug81] defined program comprehension as the process of acquiring knowledge about a
computer program. Programmers use programming knowledge, domain knowledge, and
comprehension strategies when trying to understand a program. For example, one might
extract syntactic knowledge from the source code and rely on programming knowledge to
form semantic abstraction [MWT94]. Shneiderman [RC92], defines syntactic and
semantic program knowledge. Syntactic knowledge is language dependent and concerned
with the statements and basic units in a program. Semantic knowledge is language
independent and is built in progressive layers until a mental model is acquired through
the chunking and aggregation of other semantic components and syntactic fragments of

text.

Brooks [Bro83] defined comprehension as the reconstruction of the domain knowledge
used by the initial developer. Domain knowledge is knowledge about a particular domain
such as operating systems or UNIX systems. In this theory, understanding proceeds by
recreating the mappings from the problem domain to the programming domain through
intermediate domains. The problem domain or application domain consists of problems
in the real world. Hence, comprehending a program requires recreating the mapping
between domains. Figure 1 and figure 2, taken from [CruO1], show the steps involved to

move from problem domain to application domain and some gaps between them.

Problem
Domain

Stepl

Step 2

D Koot

Algorithms

—

Step 3

Algorithms |
Implementat |

ion

Source Code

Step 4

Figure 1. Program Creation

Problem

Gaps

i

Source
Code

Figure 2. Program Comprehension

In order to map the different domains, program comprehension has to bridge different

concepts via gaps. The following five gaps were indicated in [Rug81]:

e The gap between a problem from some application domain and a solution to it in

some programming language.

e The gap between the concrete world of physical machines and computer programs

and the abstract world of high-level design descriptions.

e The gap between the desired coherent and highly structured description of a
system as originally envisioned by its designers and the actual system whose

structure may have disintegrated over time.

e The gap between the hierarchical world of programs and the associational nature

of human cognition.

e The gap between the bottom-up analysis of the source code and the top-down

synthesis of the description of the application.

In order to understand the process of program comprehension, cognitive models were

have been proposed in the literature.
2.2 Cognitive models

Cognitive models reference both existing and newly acquired knowledge to build a
mental model [MV94]. A mental model is a set of beliefs that you hold about how a piece
of software, or a software feature, works. A cognitive model describes the cognitive
processes and information structures used to form a mental model [MV95]. In the
literature, there are four accepted categories of theories that describe the cognitive
processes involved in program comprehension: bottom-up program comprehension, top-
down program comprehension, opportunistic program comprehension, and an integrated

meta-model of program comprehension [SFM99].

2.2.1 Bottom-up program comprehension

Bottom-up comprehension permits low-level code to be generated first, in an attempt to
build up to the goal [Shn80]. Bottom-up theories are based on the notion that a
programmer understands a program by iteratively abstracting and connecting together
‘chunks’ of code. Chunks are pieces of code that have own meaning. The strategy of
chunking is, then the smallest chunks, the bigger, etc., until the whole program is

understood.
2.2.1.1 Shneiderman’s Model

Shneiderman proposed that programs are understood bottom-up, by reading source code
and then mentally chunking low-level software artifacts into meaningful, high-level
abstractions [Shn80]. These abstractions are further grouped until a high-level
understanding of the program is formed. The Shneiderman comprehension model is

shown in figure 3 [SM79].
Shneiderman’s view of the comprehension process consists of three levels:
e Low-level: Comprehension of the function of each line of code.

e Mid-Level: Comprehension of the nature of the algorithms and data, and high-
level: comprehension of overall program function. It is possible to understand
each line of code and not to understand the overall program function. It is also
possible to understand the overall program function and not to understand the
individual lines of code, not the algorithms and data. Mid-level comprehension

involves knowledge of the control structures, module design, and data structures,

which can be understood without knowledge at the other two levels. Thorough

comprehension involves all three levels of understanding.

High-Level: The programmer’s semantic and syntactic knowledge can help
programmers to get a high level abstraction of a given program, finally an internal
semantic form is built. At the highest level, the programmers know what program
does and how it does, even the low-level structures such as algorithms or data
structure. The internal semantic form represents the understanding of the program;

it is independent of and can be expressed in other languages or context.

Model of Comprehension — Shneiderman
Problem
Statement Internal Seman ties Program
Warkmg Memory
Shat-term High-Level f
— Meruory | Concepts v
————— Problemn
Low-Level
Program —— Staternent
l)
Long-Term Memory
High-Level Cancepls
eammee—— Fortran
Destgn §
Activity -
k- c
H
Campreherision g
Actaity 2 Pascal Other
e peprm ey p—
Sernantic Knowledgye Syntactic Knowiedie
shnnavman pod

Figure 3. Shneiderman’s Model

2.2.1.2 Pennington’s Model

Pennington [Pen87] also suggests that program comprehension is bottom-up. When the
source code is totally new to the programmer, a mental model called program model is
built first. A program model is a control flow abstraction that captures the sequential
behaviors of the program execution. Pennington uses text structure and programming
plan knowledge to explain the development of a program model. The text structure

knowledge consists of the control primes used to build the program model.

Programming plan knowledge, consisting of programming concepts, is used to exploit

existing knowledge during the comprehension task and to infer new plans for storage in

long-term memory. Chunking is the main activity in the comprehension process. When
more and new abstract program knowledge is then built by chunking code structures into
more abstract structures, a program model is built. After the program model, a situation
model is mentally developed. The development of a situation model requires the
knowledge of real-world domain, using program model to create a data-flow/functional
abstraction. The mechanism used for situation model is domain plan knowledge. Domain
plan knowledge is used to derive a mental representation of the code in terms of real-
world objects, organized as a functional hierarchy in the problem domain language. A
situation model encompasses chunked plan knowledge, and the program model consists
of a hierarchy-chunked components. Figure 4 [Pen87] is a graphical representation of
Pennington’s model, The right half illustrate the process of program model building, and

the left half describes the situation model construction.

Sdwee Thn

-

Oh pertunistic
Top-Down

Dectrens &
Cake

y

o‘

Mnm‘l
Stcrues

lhumm

Kiowledm

A TMMI"

/&7&%\

Wcmm:ﬂm-
A. Srasge Plns
L Tticnl Mans

C Impleneutdin le

Olam Knowled)

Rubsof Diswurse “0@'

Siuchees

Yotlam Damm\

Knowisdge
<R L. et Pt Fasl Weatd Kruewlo dam
S n ﬂu Kebdm A Fnetionsd
Aoesth
z (‘mvnl - Krowleca
Data-Strutures
Sygiies -LDu- Flow isliss
o o fan
‘::"; /\ & ulesol Thaowre
cn..h-})-
M-
Rwnam
Oppartunistic o
Bottmn-up
twupen | Syste matic| Systematic
e Bettom—up m

Figure 4. Penning’s Model

2.2.1.3 Comparision of Shneiderman’s model and Penning’s model

The cognitive structures of Shneiderman’s model are multileveled. Information from the

outside world , to which the programmer pays attention, such as descriptions of the to-be-

programmed problem, enter the cognitive system into short-term memory, a memory

store with a relatively limited capacity (Miller,1956, suggests about seven chunks), and

10

which performs little analysis on the input information. A short-term memory’s capacity

is limited. The programmer’s permanent knowledge is stored as long-term memory, with

unlimited capacity for organized information. Information from short-term memory and

existing concepts from long-term memory are integrated in a working memory

[Feigenbaum, 1974] which represents a store that is more permanent that short-term but
less permanent than long-term memory, and in which information from short-term and
long-term memory may be integrated into new structures. The result is used to generate a
solution, or as learning, is stored in long-term memory for future use. Thus,
Shneiderman’s model has a hierarchical organization of knowledge and separates it as
semantic and syntactic knowledge. Shneiderman’s model focuses on the form of mental
representation, but it lacks on the details of knowledge construction. For example, there

is no mechanism for abstraction.

On the contrary, Pennington’s model is more detailed and includes the implementation
mechanisms of cognitive process. The program model’s mechanisms are rext structure
and programming plan knowledge, and situation’s mechanisms are cross-reference and
chunking. The major drawback of Pennington’s model is the lack of higher level

knowledge structures such as design or application domain knowledge.
2.2.2 Top-down program comprehension

The theory of top-down comprehension is that the comprehension tasks start by gaining
an understanding of the overall goals of the program; each subtask is then viewed from
the perspective of how it relates to that goal. The programmer uses their own experience

and attempts to confirm their expectations.

11

2.2.2.1 Brooks’ Model

Ruven Brooks’ model deals with the comprehension of completed programs [Bro77,
Bro83]. A completed program means that the source code has been implemented.
Brooks’ model has its basis in areas outside of computer science, such as
thermodynamics problem solving, physics problem solving, and chess. The model was
initially created to explain four major source of variation observed in the act of program

comprehension.

1) The functionality of the program to be understood. Why do programs that perform

different computations vary in comprehensibility?

2) The differences in the program text. Why do programs that are written in different
languages differ in comprehensibility, even though the same calculation is performed

in each?

3) The motivation the understander has in comprehending the program. Why does the
comprehension process vary depending on whether the motivation is to debug the

program versus enhancing the program?

4) Individual differences between people ability’s in comprehending a program’s
purpose. Why does one person find a program easier to comprehend than does

another?

To account for these four areas of variation, Brooks created a model based on three main

ideas. There three ideas are:

1) The programming process is the construction of mappings from a task domain,

through one or more intermediate domains, to the programming domains.

12

2) The comprehension process of that program is the reconstruction of all or part of

those mappings.

3) The reconstruction process is expectation-driven by the creation, confirmation and
refinement of hypotheses. These hypotheses describe the various domains, and the

relationships between them.

Brooks [Bro83] suggests that the central strategy employed in top-down program
comprehension is hypothesis formation and evaluation. He starts from the assumption
that in the development of a program a programmer creates a mapping between the
application domain and the domain of programming. Comprehension involves the
reconstruction of this mapping, through several intermediate domains. This is an
iterative, hypothesis-driven process that begins with the formulation of a primary
hypothesis that expresses a global description of the program goal. Next, subsidiary
hypotheses are formulated to refine the primary hypothesis in a hierarchical faction.
Hypotheses are iteratively refined, passing through several knowledge domains, until
they can be matched to specific code in the program or some related document. For
example, a hypothesis may state that a particular equation (math domain) expresses
cost (accounting domain). A procedure name FCFS may generate the hypothesis that

a first-come-first serve algorithm is used for process scheduling.

Figure 5[4] illustrates Brooks’ model. Knowledge shown as triangles can be used
directly for hypothesis generation in the mental model or it can be matched from one

domain into another.

13

/m,,,\

Model of Comprehension — Brooks

A

»< wrcH

/\>

o/

/ Dum;un
Domain Sdlemns
External Rpresentation Exterici! Reamesenhition
Requirements Docirient atter ProgramCoce
Mscellaneass Docament s User's Mernals
¥ Proble Dommatn Matiemne Manrals
//4 Intermedue \
Domain Schemas \
Venly Verfy
miernzd sehe mas taterml scherm
agunst Exteraxl aganst Extern:
Represent atons Representatiors,
\ Venty Sepmg | ErrmiReprsentation]
wlermilschemigg TN\l Pretmizry & Datlt
aganst Exwrmal| Jesign Joanmemnts
epremutations)
Fypa hesisDrven b ¢ vpottiesss Hypithests
' 1 Drtvent Dwen ¥
[nternal Representatisn — Mental Maodel
Hypathesis & Subgoals
Hrooke | 77.80)

Figure 5. Brooks’ comprehension model

2.2.2.2 Soloway and Ehrlich’s Model

14

this way consists of a hierarchy of goals and plans. Rules of discourse capture

The Top Down program understanding model [SE84, SAE88] typically applies when the
code or type of code is familiar. In this case, the code can be decomposed into a hierarchy
of elements typical of that program type. For example, an expert of operating systems can
easily decompose a new operating system into standard components, such as a process

scheduler, a virtual memory manager, and a file system. The mental model constructed in

conventions of programming, such as algorithm and data-structure implementations and
coding standards, and are used to decompose goals into plans and plans into lower level
plans. Goals denote intentions, and plans denote techniques for realizing intensions. Plans
work as rewrite rules that convert goals into subgoals and finally into program code.
Program comprehension is defined as the process of recognizing plans in code,
combining these plans by reversing the rewrite rules to form subgoals, and combining the
subgoals into higher-level goals. The model includes three different types of plans:
strategic plans, tactical plan, and implementation plans. Strategic plans describe goal
strategy enacted in the program to accomplish its goal. Tactical plans are local strategies
for solving a problem. Implementation plans describe the characteristic of the language

and are used to implement tactical plans.

15

External
Reprsentations

Dacuments

Requremers Doc.
Destg Doctunent
Code

User Viamais
Reference Marmals
Mainenance

Mamals
Ml):f Related
oumerds

8 Ruksof Discourwe: {subset

varstpdiledame wayas
maLtad
- No dead code
A testfor 2 ondition means
the condittan must be
poterttally Lue
Dan'tdo double duty with
cocle tn 2 non-drpUswaN
-AnIF tsusei whena
statentent body (s quxrarnterd
to execite only onee: a
while 1s usel whenthe
statement nuy reve Lo be
exrcited repratedly

®

Rules
/ of Discourse\

Understa ndi\

Process
Mﬂdmu /

/5

Model of Comprehension — Soloway & Ehrlich

/:roe,nmml%

Plans
(Schzmas|

i\

Internal Representatinn

Current Mental Regresentatien

of Program
{Plans/ Schemas)

72 1\

A Pl
Strakgic: Glbal Staeges
Tactical: Lloal Stratvgles

[mpilementat orr LnQuage
Deprrulent

Figure 6. Soloway & Ehrlich’s Model

Figure 6, taken from [MV94] shows the model’s three major components: 1) The

triangles represent knowledge (programming plans or rules of discourse). 2) The diamond

represents the understanding process. 3) The rectangles illustrate internal representations

of the program.

2.2.2.3 Comparison of Brooks’ Model and Soloway and Ehrlich’s Model

Brooks’ model emphasizes the mappings between domains and their interrelations. All

levels of domain eventually meet the “ actual code” domain level; it is justified that a

16

larger effort be made in supporting this bottom level domain and the relationships. One
way to do this is to make the binding stage more explicit by showing the relationships
between an intermediate hypothesis and the code to which it has been bound. This could
also involve some sort of status to indicate if a given section of code has been bound at
all, or possibly even that it has been bound twice. Another issue is that the mental model
is constructed in one direction only, from the problem domain to the program domain.
The knowledge so structured is undefined. It would not be possible to switch from one

level abstraction to another going in an opposite direction.

A Knowledge base is required in Soloway’s model. The element of domain knowledge is
similar to Brooks’ domains. The highest-level abstractions in the mental model are
emphasized. But the relationships between high level domains (e.g. “invoicing” to
functional decomposition”) are not addressed by plans. This is a direct consequence of
the formal, rigid structure of plans: they have gained expressive power at the low level

domains by sacrificing the power needed to express high-level domain relationships.
2.2.3 Opportunistic Program Comprehension

Opportunistic theories are a mixture of the bottom-up and top-down processes where the
programmer uses an as needed, rather than a systematic, approach to understand the
actual code [MV93c]. Opportunistic comprehension is characteristic of experienced
programmers. Who apply their knowledge to formulate hypotheses, where possible, and

analyze code to identify chunks and other high level structures when necessary.

17

2.2.3.1 Letovsky’s Model

Letovsky [Let86] views programmers as opportunistic processors capable of exploiting
either bottom or top-down cues. There are three components to his model, the knowledge
base, mental model, and assimilation process. Knowledge base encode the programmer’s
expertise and background knowledge. Mental model encodes the programmer’s current
understanding of the program. Assimilation process describes how a mental model
evolves using the programmer’s knowledge base and program source code and
documentation. The mental model is organized into three different layers: the
specification layer, which describes the program goals, the implementation layer, which
expresses the lowest level abstraction, and the annotation layer, which links each goal in
the specification layer with its relationship in the implementation layer. Assimilation is
opportunistic and occurs either top-down or bottom-up depending on the programmer’s
initial knowledge base. Programmer’s Inquiry episodes are a key part of the assimilation
process. Such an episode consists of a programmer asking a question, conjecturing an
answer, and then searching through the code and documentation to verify or reject the

conjecture. Fiugre 7 [MV94] shows Letovsky’s Model.

18

Model of Comprehension — Letovsky

Jrat

Exemna
\ \ lepresentanons|
/ \ /Asslmu l:mo\n\ Documentatian
Knowledge Base P Process Code
Progr:rmeng Expertise (Top Downtor Manuals
Gaals Prooke Domutn Boltom up]
s
Rules of Dixourse
Internal Representaticn -~ Mental Representation
Lavers
Dungling 1. Specttication (Goals)
Purpase [E——P 2. Implementatton
3. Annotaifon ddication of hox each gl 1n Speatficaton biyer &
Avomplshed a:¢d by which parts of Lie implmenta pn kiyer)
Letovsky |86
Litman etali86)

Figure 7. Letovsky's Model

2.2.3.2 Comparison of Letovsky’s Model

beyond the statements that it occurs.

19

Letovsky’s model produces either top-down or bottom-up comprehension depending on
the program'’s initial knowledge base; it is suitable for experienced programmers.

Letovysky’s model is the most general cognition model. The mental representation is
described in detail, but there is a lack of description of how the knowledge assimilation

process works or how knowledge is incorporated into the mental model representation

2.2.4 An Integrated Meta-Model of Program Comprehension

Von Mayrhauser and Vans [MV93a] combined the top-down, bottom, and opportunistic
approaches into a single metamodel. They propose an integrated cognition model that
combines features of several existing models, primarily Soloway and Ehrlich’s top-down
model [SE84, SAE88] and Pennington’s program and situation models [Pen87].
Understanding is built concurrently at several levels of abstractions by freely switching

between the three comprehension strategies.

Top-—Down

Setweuin (Plan)
p—— churrutne dicgs Currert Merknl
Process Representation
of Program
—=

i Tuctical Pisns

C Isupsmesitatian
Ptans

1 Cmnwro! Srinme

— K bocine |
O Flan Kecrwis dae Phosnt Woarid

Punctaing Knreledgs

Figure 8.Integrated Code Comprehension Meta-Model

20

The integrated code comprehension meta-model consists of four main components: a

program model, a situation model, a top-down model, and a knowledge base. The first

three components reflect mental representations of comprehension and the strategies used
to construct them. The fourth component refers to knowledge needed to perform the
process of comprehension. Each model component represents both the internal
representation of the code and the strategy to build this internal representation. The
knowledge base furnishes previously acquired information related to the comprehension
task. During comprehension, new knowledge is developed and stored into knowledge
base for future use. The top-down model of the integrated model is typical active if the
code or type of code is familiar within its application domain. If the programmers are
unfamiliar with the code, the programmers will switch to the bottom-up model. The main
feature of the integrated meta-model is that any of the three model components may be in
effect during the understanding process to accomplish a comprehension goal [MV93b,

MV93c].

Figure 8, taken from [MV93a], shows that each model component has its own preferred
types of knowledge. [MV93b, MV93c] contain thorough discussions of the integrated

meta-model and its component models.
2.2.4.1 Comparison of the Integrated Meta-Model

The integrated model combines the top-down understanding of {SE84, SAE88] with the
bottom-up understanding of [Pen87], opportunistic approach [Let86], recognizing that for
large systems a combination of approaches to understanding becomes necessary

[MV93a). Experiments showed that programmers switch between all three of these

21

comprehension models [MV93b, MV93c]. For example, during program model

construction a programmer may choose top-down when he recognizes a beacon

indicating a common task such as sorting. This leads to the hypothesis that the code sorts
something. A sub-goal is generated and the code for clues is searched and selected to
accomplish the sub-goal. If during the code searching, the programmer finds some codes
he doesn’t familiar with, he may come back to bottom —up. The structures of integrated
Meta model built by any of the three model components are accessible by any others.
However, each model component has its own features of knowledge. Compared to the
opportunistic approach, the integrated comprehension promises the understanding is
developed at several levels of abstractions by freely switching between the three
comprehension strategies, and opportunistic approach chooses either bottom-up or top-
down comprehension at the beginning depending on the programmer’s initiate

knowledge.

22

3. Software Visualization and Related Techniques

Program visualization is simply defined as the use of graphic artifacts to enhance the
understanding of programs [EO94, PBS93, RC92]. In a wider context, it is sometimes
also called software visualization [PB93]. Through software visualization, graphical
icons help building program understanding. Software visualization can be done at
different levels, such as at the abstract algorithm level, or the language level. For
example, SHriMP (Simple Hierarchical Multi-Perspective) supports for seamless
exploring software structure and browsing source code, with a focus on effectively
assisting hybrid program comprehension strategies [SWFM97]. SHriMP visualization
technique integrated the visualization techniques such as a nested graph, fisheye views or
focus + context, pan + zoom, hypertext links, animation etc. SHriMP can be used to
visualize source code of a complex software system. SHriMP can be combined with an

ontology editor such as Jambalaya for knowledge acquisition.
3.1 Reverse Engineering

Software systems that are developed specially for an organization have a long lifetime.
Some software systems developed many years ago are still in used using technologies
that are now obsolete. They are known as legacy systems [CC90] and have become
business-critical for many companies. These legacy systems need to be maintained and
evolved due to many factors, including error correction, requirements change, business

rules change, structure re-organization, etc. Legacy systems are difficult to understand

and are maintained because of their size and complexity as well as the history of their

evolution. Reverse engineering is one of promising approaches in program

23

understanding. Reverse engineering is the process of analyzing a subject system to
identify the system components and their interrelationships, and create representations of
the system in another form or in a high level abstraction [MWT94]. The goal of reverse
engineering is to extract information from the exiting software systems to better
understand them [LCCCLY95]. The information includes the underlying features of a

system, such as [Con87]:

e System structure — its components and their interrelationships, as expressed by

their interface;
¢ Functionality — what operations are performed on what components;

e Dynamic behavior — system understanding about how input is transformed to

output;

¢ Rationale — design involves decision making between a number of alternative at

each design step; and

¢ Construction — modules, documentation, test suites etc.

24

Figure 9. Reverse Engineering Process

The process of reverse engineering can be divided into four phases: Context Parsing,
Component Analyzing, Design Recovering and Design Reconstructing, as shown in

Figure 9 [Con87].

e Context Parsing Phase - Analyzing source code and extracting information from
the source code. An intermediate representation is created, such as the Abstract

Syntax Tree (AST), which can be accepted as input of the next phase.

¢ Component Analyzing Phase — The component’s artifacts are revealed. The

artifacts include: structure chart, variables’ attributes, functions’ information,

25

program slices, call graphs, data flow, definition- use graph and control

dependencies.

e Design Recovering Phase - To extract original requirements and/or design

knowledge from source code. a high-level view is obtained.

e Design Reconstructing Phase — A design model is generated from the last phase.
The design model offers not only functionality and system behavior, but aiso the

correct architecture.

During the reverse engineering process, the source code is not altered, although

additional information about it is generated [LCCCLY95].
3.2 Information Visualization Techniques

Information visualization, as opposed to scientific visualization, aims to visualize abstract
data that may have no natural visual representation. This data can be very complex,
containing a great number of elements structured hierarchically, in a network, linearly, or
even lacking structure. The use of information visualization, rather than using the raw

data, is done for several reasons, some of which are: [Knight98]:

e Being able to display a large amount of information in one view and thus provide

an overview.

e Being able to see correlations or patterns that may have otherwise been missed

had only the figures been used.

e Trying to display structural relationships and context that may be more difficult to

detect by individual retrieval requests (provided by Card et al.[CKM91]).

26

e Providing an effective way of going between overview abstractions and detail of

the data.

Numerous methods have been studied for graphically representing information within a
limited amount of screen space. There are several considerations that have be made in
choosing a particular technique [LM94]. The method must be suitable for the information
that you are going to display- some are dedicated to certain styles of information. In any
system that is required to support real time user interaction, good performance is
imperative. Other implementation issues must be considered, including the hardware
requirements (e.g., memory consumption, 3D acceleration), and the screen resolution
available to the interface. In the following section of this paper, I present several
implementation techniques which are hypertext, focus + context, shading/color/texture,

dimension 2D versus 3D, and animation.
3.2.1 Hypertext

Since the introduction of the World Wide Web, hypertext has become a very popular and
familiar technology. The basic tools such as the html language, browser, Java applets etc.
are widely available and understood by many programmers. The same technology can be
used in information visualization. Hypertext is a method of document navigation that
facilitates non-sequential document reading [Nie90, Nie95]. Traditional documents are
typically designed to be read from beginning to end in a sequential manner. In particular,
physical paper documents must be presented in this way (page 1 precedes page 2 which
precedes 3..). However, many paper documents are not intended to be read sequentially
(e.g., reference manuals, dictionaries). Non-sequential navigation including the content

list, index, page reference, and footnote. Although these techniques are effective, the

27

reader has to flip the pages to navigate. In a hypertext document, many sequential
restrictions can be lifted and new navigation methods can be implemented. Components
may act as links to other pages of the document. A link (also called an anchor) could be a
word, words or a figure. When a link is activated, the reader directly navigates to the
point in the hypertext that the link indicates. In a hypertext version of the document, each
word in the document glossary can be linked to each occurrence of that word in the
document. By selecting the obscure word in the text, the reader navigates the link directly
to the word'’s position in the glossary. To facilitate browsing documents on the world-
wide Web, browsers use a document formatting language called HTML (Hypertext
Markup Language) along with an addressing system consisting of the URL (Uniform
Resource Locator) to present and navigate hypertext documents. Many browsers based on
this standard are available, including Netscape Navigator [Nescape97], Microsoft Internet
Explorer [Microsoft97] etc. In addition to supporting the navigation of hypertext links,
they support a common model of navigation history, which preserves the reader’s
location as a link is followed. A hypertext document with hyperlinks is shown as figure

10 [JS91].

28

