INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Employee Self Service

Man He

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

January 2003
© Man He, 2003

i~l

National Lib Bibli tional
of Canada iad du me e ¢
Acquisitions and Acquisitions et
Bibltographic Services services bibliographiques
395 Wellington Street 395, rue W
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your s Votre réldrence
Our e Notre réldeance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
repro.duged without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77988-2

Abstract

Employee Self Service

Man He

An Employee Self Service System (ESSS) has been designed and implemented
using Microsoft Visual C++ and Microsoft Distributed Component Object Model
(DCOM). The ESSS is a real ume. three-tier (presentation, application. and data).
distributed application capable of running on a configurable number of personal
computers. It allows users to view. change. and update their employment-related
information. such as personal information. benefit selections, and retirement
contributions. To support data efficiency. the database is fully controlled by the data-tier.
To support network efficiency, data storage is provided by the application-tier for the
frequently requested data. To support user efficiency, the users are provided with a
single-window user interface that covers all the functions needed to perform a user task.

An in-depth description of DCOM technology is also provided with this report.

1

Acknowledgements

[would like to take this opportunity to express my sincere thanks to my
supervisor, Professor P. Grogono, for his kind support throughout my studies at
Concordia University. Without his extraordinary guidance, this work would not have
been completed.

My thanks also go to all the professors and staff in the department of computer
science, especially Halina Monkiewicz, for their excellent supports during the entire
studies of my Master’s degree. [would like to extend special thanks to my friend, Mrs.
Lan Jin, for her help in getting the necessary information for my project.

[am deeply indebted to my beloved husband for his wonderful support and
understanding while [was doing my project and writing my major report at home. My
deep love goes to my husband and my daughter. [t is to them that [dedicate this report.

Finally, to my dearest parents, [express my cordial thanks for their continuous

encouragement while [was pursuing my studies.

iv

Table of Contents

Table of Figures vii
1. Introduction 1
1.1. The Background for the ESSS........... ettt eeeses e e eeeeen 1
1.2. The needs for the COMPONENE SOftWANe............o..eeeeeeeneeaecireeeeeceeeeeeeeeeieaeeeeeeeeees 2
1.3. The Distributed Application for the ESSS.........occ oo b
2. Inside DCOM 9
2. 1. OBJECt ACHIVALIONcoccuuuiamtaaeeieeeeemereeeireseeeeesensseresetesersessssasseasssessaansnnseens 10
2.2, Marshaling and Unmarshaling..................eooeeeeeueeeececineieiieetreseeeseeeseneeeeenens 12
2.3. Object Connection CONIIoL..............oueeeeeeeevueeeeieeeeeieeeieeeeeeeteeeeeeseessee s e nens 13
2.4. DCOM Threading Modelsou.eeeeeeeereereeeeeeeeeceeeeeeeneteeeeeraeenseeseeneeas 13
2.4.1. Single-Threaded Apartments (STA) «.cocoiivceniirrririiciirccrtetere et 14
2.4.2. Multithreaded Apartment (MTA)....cccouuieiieeeeeeeeeeeee et ae e e 14

2.5, SECUFIEY ISSUES cc.....eeeeieiiieeeeeeeeeeeete e et eeeeevss e e e e are e e e sbesese e snsae e snnnsnes 15
2.5 1. ACCESS SECUTILY eenniiieieieeieeceeeeecieeeeeee e e e e eae e e s e e easee e nneseeernseenneesnsnneas L5
2.5.20 Launch SECUTILY....ccoiiiiiiiiiieee ettt ettt s e eae L5
2.5.3. AURENUCAUION «.coiiiiii ettt e s e 16
254, Impersonation [EVELS ...t 16

3. System Requirements 18
3.1, Hardware requirement.....................occccoeoememeeoeeeemeeieeeeecteeteee e eeeeseaseeseeaeeseessasnnes 18
3.2, SOftware reQUIreMEnL....................ceeeeeeereeeseeereerueeeseseasseeseesseesesenssessesesseessesssesnns 18
3.3. Requirements for Graphic User INIerfaceccoueeveeceeveceeereeceeveeennnnns 19
33010 Login WINAOW. ..ottt ceee ettt et sen e st e saesmaenes 19
3.3.2. Data Explorer Window..........cccoeoiveiieieeeeeee et enes 19
3.4. Requirements for Middle-tier SErvers.......... . eeuecmeerrereeeeeeceeeereeeeeesenas 22
3.5. Requirements for DatQ-tier SErver.............ooueoeeereecererneeeeeeeessseneesseneneens 22
4. System Design 24
Ao], USEr DESCIIPIIONcccooovinannnnreeeereeeeeeeeeeeeieeeeteeesassntseesssssssssraassseressesssanssaen 24
4.2, Design CONSIAEIALIONeeoeeeeneeeseesieeiueeeeeeeeeeateeeesessaesassesneseessesaessneans 24
4.2.1. Presentation-tier — Graphic User "nterface......cc.ccoceevenninncnveneerenieenneenes 24

4.2.2. Middle-tier — Application SErviCesooomirmiomeeie e
4.2.3. Data-tier — Database ACCESS..oummmiiiieieeeeeeee e eeeeee e eecee et eeeeaneaes

4.3, TASK ARQLYSES ..ottt
F. 4. SVSIEM ATCRITECIUTEc...cooneeeneiiiiiniiieeeee ettt
4.5. System Design —Object Modeloeomnmmmieeieeeee e
4.6. System Design — Dynamic Modelcccoouemmniinomniiicciiceceene.
B.7. DAl FLOW ..ot s et

5. System Implementation

5.1. Implementation ConSideration....................occoceeeeeeveinnnienieinminneeceerceseeeeeneens

5.2, Implementation Details...............ooocoeceeioumiciimiineeiaeiieiieiiicetnteeeeeeeee e e neeeeneens
5.2.1. GUI Module — the Graphic User Interface..........ccccooeeiinccnnniinnnncnn.
5.2.2. GuiBase MOdule.......coooiieiiieiiiette et
5.2.3. DataControler Module..........ccooiiiieee et cte e
5.2.4. SecurityMgr Module ..o

5.2.5. DataAccess Module..........oooiiiiiiii et

5.2.6. PrOjJECt SELUNES..cueeieeieieeeeriennetetreet ettt et

6. Installation and Execution

6.1. The Distribution of Dynamic Linked Libraryccoccocccecevvnenoneenenaeeecnen.
6.2. Server Side CONfIGUIALION..........c.cocuoeeumreeieeeeceereceteece ettt e

6.3. Client side CONfIGUIALION.co.coeeuecovieeeriieieeeieeeeeee ettt
6.3.1. Registration for the PrOXY ..cccceeueiineiinee ettt
6.3.2. Registration for Remote SErVerscoocoeeieeiiricieeeeeeenteee e

6.4. Settings for Database CONNECHIONccocoeuueeemeeeereneeeseriereesersssesaesesseenans

0.5, USING IRHE ESSS...eoeeeeeeeeeeeeeeeeeeeeteeteee e e seeeae st s et sae s s s assssssssasssessesanns
6.5.1. Login WINAOW....c.oiirieeieieeeecetcteteeeeteeie e et res et e s e sas e nesennene
6.5.2. Data Explorer Window......c.cccoouiveveiennteenciiercnteeceecceesee st see e

7. Future Extension

8. Conclusions

References

Appendix — IDL Files

vi

25
26

27
29
32
39

46

46

46
47
47
48
50
50
51

54

54
54
56
57
58
60

60
61
62

70

71

73

74

Table of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Structure for the Three-tier Application

DCOM Architecture

Task Analysis Diagram for Information Display

Task Anaiysis Diagram for Information Update

the ESSS Architecture

Class Definitions for GUI Module

Class Definitions for GUIBase Module

Class Definitions for DataCtroler Module

Class Definitions for SecurityMgr Module

Class Definitions for DataAccess Module

Use Case Diagram for Loading Application

Use Case Diagram for Exiting Application

Use Case Diagram for User Login

Use Case Diagram for Personal Info Display
Use Case Diagram for Personal [nfo Update

Data Flow and Sequence Diagram

Login Window

Data Explorer Window

Personal Information Display

Pay Information Display

Dental Coverage Information Display

Medical Coverage Information Display

Vision Coverage Information Display

Basic Life Coverage Information Display

Retirement Account Balance Display

Personal Information Update

Retirement Fund Reallocation

Retirement Investment Direction Change

Retirement Account Contribution Rate Change

vii

11
28
29
30
34
35
36
37
38
40
41
42
43

45
62
63
64
64
65
65
66
66
67
68
68
69
69

1. Introduction

This report presents the design and implementation of Employee Self Service
System (ESSS). The ESSS is designed to facilitate employment-related self-service
process. It provides a convenient way for employees to view and update their personal
information, their benefit information, and their retirement account information. It also
provides a feasible way for implementing a reliable, distributed application in Windows

environment.

1.1. The Background for the ESSS

In many companies, the processes such as updating personal information,
changing benefit selection, and changing retirement contribution are very time
consuming and inconvenient. Employees need to fill out forms and to submit the forms to
Human Resources. The Human Resources then processes the requests and enters the data
into the database. This mechanism often causes problems to both employee and human
resource individuals. One of the problems would be the time delay between the user
request and the data entry. For certain time-critical user requests, such as retirement
account fund reallocation, the delay could bring negative impact on employees. To
increase the efficiency of data processing, a system called Employee Self Service was
designed and implemented.

The ESSS is designed to help employees view, change, and update their personal
information, their benefit selections, and their retirement contributions without going
through the human resource individuals. The windows-explorer-based user interface

makes the ESSS easy to learn and easy to use. Its self-service features greatly reduce the

workload of human resource individuals. At the same time it offers great convenience for
employees to access their employment-related information. With a simple click on one of
the icons located on the left side window, the corresponding information will be quickly

displayed on the right side window. In summary, the ESSS would be an excellent tool for

employees in managing their employment-related information.

1.2. The needs for the component software

The ESSS is designed to run on a personal computer (PC) in Windows
environment. The primary reason for using a PC and Windows operating system is their
popularity and affordability for most companies. For large companies with up to several
hundred thousand employees, a powerful PC might be needed to install server
components. A typical powerful PC is often equipped with dual CPUs and 2 GB physical
memory. Its dual CPUs are expected to offer quick response to meet a number of user
requests: while its high capacity of memory is able to hold information about half a
million employees. Therefore, a personal computer would be an ideal choice for hosting
the Employee Self Service System.

To show the importance of component software in the ESSS, we examine two
different systems. In system 1, we implement the ESSS to run on a single computer. The
data to be processed can be retrieved from a remote database via a network connection.
Each employee is able to access and retrieve the data from his desktop computer at his
own office. With this system architecture, the number of database accesses could be very
high. As a result, the database server could be overloaded, causing significant delay in

system response. [n the worst case, the database server could crash.

[n system 2, we intend to remove the drawbacks caused by frequent database
accesses. To reduce the number of accesses, we need to establish the so-called middle
layers to store frequently requested data. This can be accomplished by splitting the ESSS
into several components with different components to run on different computers. In such
a distributed environment, the data will be loaded and stored into its dedicated middle
layer after the data is first retrieved from the database. All the subsequent requests for the
same data will be provided by the middle layer component without the need to access the
database again. With this mechanism in place, the number of database accesses will be
reduced significantly.

This distributed system architecture allows the fine-tuning of the system
performance. When the number of the users increases, more components can be added
into the system to maintain high performance. Based on the most recent software
development, these software components could be implemented by using the so-called
component software technology.

So far, two parallel technologies are available for the component software. One of
the technologies — the Distributed Component Object Model (DCOM) [1][2]{3] is
developed by the Microsoft Cooperation to support communication among objects on
different computers. The other one — the Common Object Request Broker Architecture
(CORBA) [4][5] is developed by the Object Management Group (OMG) to support the
invocations of operations on objects located anywhere on a network.

Both DCOM and CORBA support the following common features in the

development of server components:

e Multiple programming languages. Most mainstream programming languages can be
used for component implementation.

e Location transparency. Client can invoke server object without the details of server
location.

e Strong security. Different levels of security checks are performed for server object
invocation and access.

e Multithreaded server. Concurrent multiple-client accesses to the server object are
supported.

In addition to the above common features, several key differences between DCOM and

CORBA can be summarized as below:

¢ High-quality development tools are available for building DCOM components. On
the contrary, no development tools are provided for building CORBA components.

¢ DCOM has large selection of commercially available ActiveX components for use.
CORBA does not have such support, leading to longer development cycles on
average.

e CORBA supports a wide variety of operating systems. DCOM only support Windows
NT 4.0, Windows 95/98, Windows XP, Windows 2000, Sun Solaris 2.5, and Digital
UNIX.

¢ CORBA supports implementation inheritance, one interface can inherit another’s
components. DCOM only supports interface inheritance, the derived interface does

not inherit the components available under the original implementation.

For the ESSS where PC and Windows operating system are used, it is more
natural to use DCOM rather than CORBA to implement the system since more

development support is available for DCOM in Windows environment.

1.3. The Distributed Application for the ESSS

A typical application that interacts with a user, such as the ESSS, usually consists
of three elements: presentation. application logic, and data. Presentation focuses on
interacting with the user. Application logic performs calculations and determines the flow
of execution of the application. Data elements manage information that must persist
across sessions or be shared between users.

Two-tier. or standard client/server applications, as described in Section 1.2, group
presentation and application logic components on a single client computer and access a
shared data source using a network connection. The advantage of such a configuration is
that the data is centralized. This centralization benefits an organization by sharing data,
providing consistency in accessed data, and reducing duplication and maintenance. But
there are also a number of limitations for two-tier applications, such as poor scalability,
poor maintainability, poor reusability, and poor network performance.

[n three-tier architectures, presentation, application logic, and data elements are
conceptually separated. Presentation components manage user interaction and request
application services by calling middle-tier (application-tier) components. Application
components perform business logic and make requests to access databases in the data-
tier. Application design becomes more flexible because clients can call server-based

components to complete a request, and components can call other components to improve

code reuse. Three-tier applications that are implemented by using multiple servers across

a network are referred to as distributed applications. Three-tier architectures are often

called server centric, because they uniquely enable application components to run on

middle-tier servers, independent of both the presentation interface and database
implementation. The separation of application logic from presentation tier and data
element offers many benefits:

e Multi-language support. Application components can be developed using general
programming languages.

e Centralized components. Components can be centralized for easy development,
maintenance, and deployment.

e Load balancing. Application components can be spread across multiple servers,
allowing for better scalability.

e Efficient data access. The problems for database connection are minimized since the
database now sees only the application component, and not all of its clients. Also
database connections and drivers are not required on the client.

¢ Improved security. Middle-tier application components can be secured centrally using
a common infrastructure. Access can be granted or denied on a component-by-
component basis, simplifying administration.

e Simplified access to external resources. Access to external resources, such as
mainframe applications and other databases, is simplified; a gateway server becomes
another component that is used by the application.

The ESSS fits well into three-tier distributed application. The employees interact

with the system through the graphic user interface provided by the presentation tier. The

application services are provided to the presentation-tier component by the middle-tier
components. [n the ESSS, it is the middle tiers that provide the essential data storage to
reduce the network traffic and database accesses. The data-tier component manages the
accesses to the database. as for example changing employee personal information. All
these software components should be configured and distributed into several different
PCs to maintain the maximum performance of the system. The structure of three-tier

application is shown in Figure 1. The adjacent tiers are connected through the network.

Presentation Client
--------------------------------- Network ——————=—==——=—-
Application Mi(_idle
Logic Tier
Server
__________________________ Network ~—~—°TTTTTTTTTT
Data
Elements Database

Figure 1. Structure for the Three-tier Application

The reason for the ESSS to use distributed three-tier application is not only the
resource sharing, but also the benefits gained from distributing the components into
several different computers. By partitioning and distributing a complex application into

presentation, application logic, and data sections, we can achieve the following benefits:

Scalability: As the number of users or workload increases, more server components
can be added. Thus the application does not downgrade.

Reliability: When a hardware or software failure should occur in some components,
the system could continue functioning through the other components.

Efficiency: Problems in certain components could be located and resolved quickly

without the need to shut down the whole system.

2. Inside DCOM

In this chapter, we present an in-depth description of the Microsoft Distributed
Component Object Model (DCOM). This component technology will be used in the
implementation of application-tier and data-tier of the ESSS.

DCOM is a specification and set of services that allow software developer to
create modular, object-oriented, customizable, and distributed applications using a
number of languages [6]. It supports communication among objects on different
computers, whether on a local area network (LAN), a wide area network (WAN), or even
the Internet. [n DCOM architecture. applications are built from packaged binary
components with well-defined interface [1]{2]{3]{6]. DCOM allows flexible update of
existing applications, provides a higher-degree of application customization, encourages
large-scale software reuse, and provides a natural migration path to distributed
applications. The Component Object Model (COM) [9] is an approach to achieving
component software architecture. COM specifies a way for creating components and for
building applications from components. Specifically, it provides a binary standard that
components and their clients must follow to ensure dynamic inter-operability. DCOM is
the distributed extension of COM. It is an application-level protocol for object-oriented
remote procedure call. With DCOM technology, an application can be configured and
distributed at any locations. Because DCOM is an extension of COM, one can take
advantage of the existing COM-based components and knowledge to quickly build a new

distributed application.

2.1. Object Activation

One of the important features of DCOM is that it has a mechanism for
establishing connections to components and creating new instances of components either
locally or remotely. In the COM/DCOM world, object classes are named with globally
unique identifiers (GUIDs), which are called Class [Ds. These Class [Ds are nothing
more than fairly large integers (128 bits) that provide a collision free, decentralized
namespace for object classes. The COM libraries provide CoCreatelnstanceEx,
CoGetlnstanceFromFile for remote object creation, which in turn calls Querylnterface
implemented in the server component.

In order to be able to create a remote object, the COM libraries need to know the
network name of the server. Once the server name and the Class Identifier (CLSID) are
known, the service control manager (SCM) on the client machine connects to the SCM
on the server machine and requests creation of this object. As shown in Figure 2, the
DCOM protocol is layered on top of the OSF DCE RPC specification [10]. Next to the
DCE RPC is the Security Provider offering security checks for the method calls between
client and object. Proxy and stub are responsible for marshalling and unmarshalling (see
next section) for any method call. Their details will be given in the following section.

Two fundamental mechanisms allow clients to specify the remote server name
when an object is created:
¢ As afixed configuration in the system registry.

e As an explicit parameter to CoCreatelnstanceEx, CoGetlnstanceFromFile.

10

Security | hepppe| | SEUNY | pep ppe
Provider Provider
Protocol Protocol

CoCreatefnstanceEx

SCM \

CoCreatelnstanceEx

/ SCM

Figure 2. DCOM Architecture

The first mechanism is extremely useful for maintaining location transparency. By

making the remote server name part of the server configuration information registered on

the client machine, clients do not have to worry about maintaining or obtaining the server

location. If the server name changes, the registry is changed and the application continues

to work without further action.

Some applications require explicit run-time control over the server to be

connected. For this kind of application, COM allows the remote server name to be

explicitly specified as a parameter to CoCreatelnstanceEx, CoGetlnstanceFromFile. The

developer of the client code is in complete control of the server name being used by

COM for remote activation.

It

2.2. Marshaling and Unmarshaling

When a client wants to call an object in another address space, the parameters to
the method call must be passed from the client’s process to the object's process. The client
places the parameters on the stack. For remote invocations, the caller and the object don't
share the same stack. Some COM libraries need to read all parameters from the stack and
write them to a memory buffer so they can be transmitted over a network. The process of
reading parameters from the stack into a memory buffer is called "marshaling”. The
counterpart to marshaling is the process of reading the flattened parameter data and
recreating a stack that looks exactly like the original stack set up by the caller. This
process is called “unmarshaling”. Once the stack is recreated, the object can be called. As
the call returns, any return values and output parameters need to be marshaled from the
object’s stack, sent back to the client, and unmarshaled into the client's stack.

COM provides sophisticated mechanisms for marshaling and unmarshaling
method parameters that build on the remote procedure call (RPC) infrastructure defined
as part of the distributed computing environment (DCE) standard. In order for COM to be
able to marshal and unmarshal parameters correctly, it needs to know the exact method
signature, including all data types. This information is provided using an interface
definition language (IDL), which is also built on top of the DCE RPC [10] standard. IDL
files are compiled using a special IDL compiler — MIDL compiler, which is part of the
Win32 SDK. The IDL compiler generates C source files that contain the code for
performing the marshaling and unmarshaling for the interface described in the IDL file.
The client-side code is called the "proxy," while the code running on the object side is

called the "stub." The proxies and stubs generated by MIDL are COM objects that are

12

loaded by the COM libraries when needed. By looking up the Interface Id (IID) from the

system registry, COM can find the proxy/stub combination for a particular interface.

2.3. Object Connection Control

An object’s lifetime is controlled by a mechanism called reference counting,
which uses the AddRef and Release methods of interface /Unknown. Every COM/DCOM
interface must inherit from interface [Unknown; every COM/DCOM component must
implement AddRef and Release. AddRef and Release are called quite often, and sending
every call to a remote object would introduce a serious network performance penalty.
Hence. DCOM optimizes AddRef and Release calls for remote objects. To do so, remote
reference counting is conducted per interface rather than per connection, allowing for
greater network efficiency.

Remote reference counting would be entirely adequate if clients never terminated
abnormally, but in fact they do. To make system robust in the face of clients terminating
abnormally when they hold remote references, a Pinging mechanism is used for detecting
any client abnormal termination. At every elapse of predefined ping period time, the
server object sends a ping signal to the connected client. If the ping period elapses
without receiving a ping on that server object, all the remote references to interfaces

associated with that server object are considered "expired" and can be garbage collected.

2.4. DCOM Threading Models

To support multi-clients accessing the server objects concurrently, multi-

threading models are required for the DCOM architecture.

13

2.4.1. Single-Threaded Apartments (STA)

[n a single-threaded apartment, each object lives in a thread. Each thread must
initialize COM using either Colnitialize or ColnitializeEx.

The basic concurrency unit in an STA is the individual thread that initializes
COM. If two objects, for example A and B, live in the same apartment, and A is
processing a call, no other client can make a call, to either A or B, until A completes its
service. As a result, instance data that is exclusive to an object need not be protected,
because only one thread can ever enter this instance of the object. But this may delay the

server response and thus downgrade the system performance.

2.4.2. Multithreaded Apartment (MTA)

A multithreaded apartment is an easier model compared to STA. Incoming RPC
calls directly use the thread assigned by the RPC run time. The object does not live in any
specific thread. Clients from any thread can directly call any object inside the MTA.
However, MTA requires extreme caution on the shared data. Multiple threads can call an
object method at the same time. Therefore the object must provide synchronized access to
any instance using synchronization primitives such as critical section and semaphores.

Although complicated to implement, MTA objects offer the possibility of higher
performance and better scalability than STA objects since the generic synchronization
that COM performs on STA is relatively expensive [1][2]{3]. A good design technique is
to isolate the critical areas of an application into separate objects and move the critical
objects into MTAs to achieve high overall performance and scalability. Before using

MTA, a thread must initialize COM by calling ColnitializeEx.

14

2.5. Security Issues

One of the most difficult issues in the design of distributed application is that of
security. DCOM provides an extensible and customizable security framework for the

developers.

2.5.1. Access Security

The most obvious security requirement on distributed applications is the need to
protect objects against unauthorized access. Only authorized users are supposed to be
able to connect to an object. Current implementations of DCOM provide declarative
access control on a per-process level. Existing components can be securely integrated

into a distributed application by simply configuring their security policy appropriately.

2.5.2. Launch Security

Another related requirement on a distributed infrastructure is to maintain control
of object creation. Since all COM objects on a machine are potentially accessible via
DCOM, it is critical to prevent unauthorized users from creating instances of these
objects. For this purpose, the COM libraries perform special security validations on
object activation. If a new instance of an object is to be created, COM validates that the
caller has sufficient privileges to perform this operation. The privilege information is

configured in the registry, external to the object.

15

2.5.3. Authentication

The above mechanisms for access and launch permission checks require some
mechanism for determining the security identity of the client. This client authentication is
performed by one of the security providers, which returns unique session tokens that are
used for ongoing authentication once the initial connection has been established. The
initial authentication often requires multiple round trips between caller and object.

DCOM uses access tokens to speed up security checks on calls. To avoid the
additional overhead of passing the access token on each and every call, DCOM by default
only requires authentication when the initial connection between two machines is
established. It then caches the access token on the server side and uses it automatically
whenever it detects a call from the same client. For many applications this level of
authentication is a good compromise between performance and security. However, some
applications may require additional authentication on every call, as for example passing
in credit card information or other sensitive information; in these cases, the object might

require calls to be individually authenticated.

2.5.4. Impersonation levels

A more subtle implication of security in distributed applications is the issue of
protecting callers from malicious objects. Since DCOM allows objects to impersonate
callers, objects can actually perform operations that they do not have sufficient privileges
to perform alone. To prevent malicious objects from using the caller's credentials, the
caller can indicate what it wants to allow objects to do with the security token it obtains.

The following options are currently defined:

16

e Anonymous: The object is not allowed to obtain the identity of the caller. This is the
safest setting for the client but the least powerful for the object.

e [dentify: The object can detect the security identity of the caller, but can not
impersonate the caller. This call is still safe for the client since the object will not be
able to perform operations using the security credentials of the caller.

e Impersonate: The object can impersonate and perform local operations, but it can not
call other objects on behalf of the caller. This mode is potentially insecure for the
caller, since it allows the object to use the client's security credential to perform
arbitrary operations.

These options are defined as part of the Windows NT security infrastructure. Again,

DCOM allows these settings to be both programmatically controlled and externally

configured.

17

3. System Requirements

[n the area of software engineering, the development of software is based on
software requirements. These requirements must be fully satisfied by the system
implementation. After the implementation is completed. the system must be validated
against the requirements. An invalid implementation must be corrected and validated

again. In this chapter, the requirements for the ESSS are presented.

3.1. Hardware requirement

A number of personal computers are needed for installing the distributed ESSS.
Internet connection facility is required for transferring the data between the different
software components of the ESSS. At least three powerful PCs are needed for installing
three server components. To achieve top system performance, a larger number of
powerful PCs might be needed for server components. The number of PCs needed for
installing client side application depends on the number of users. These PCs should be
equipped with color monitors for displaying the graphic user interface. Mouse and
keyboard are also required for entering user input. For testing purpose, at least two PCs

are needed to demonstrate the distributed features of the ESSS.

3.2. Software requirement

The ESSS is a distributed, real-time application designed to be used in Windows
environment. Since Windows 95/98 has weak security features, Windows NT 4.0 or

above, Windows XP, or Windows 2000 are recommended. To guarantee the real-time

18

and distributed feature of the ESSS, the implementation is performed using Microsoft
Visual C++. MFC, and distributed component object models (DCOM). Before using the

ESSS, MFC library and DCOM should be properly installed.

3.3. Requirements for Graphic User Interface

The ESSS consists of two main windows as its user interface: the login window
and the data explorer window. The specifications for these two windows are not intended

to cover all the possible user requirements.

3.3.1. Login Window

Upon the execution of the ESSS program. a login window is displayed to the user.
e User is prompted to enter user [D and password.
e The system starts processing user login information after user clicks on “Login”
button with a mouse.
¢ [nvalid login information pops up a message box informing the user that the system
failed to LOG him onto the system. Upon the acknowledgement of the system
message, the system clears the password fields and the user can try again.

e A successful login brings up the data explorer window.

Clicking on “Cancel” button will terminate the ESSS application.

3.3.2. Data Explorer Window

Upon a successful login, a data explorer window appears. The data explorer
window is a two-way split window that contains left side window and right side window.

On the left side window displays a tree-structured function menu. Nothing is displayed on

19

the right side window before any user request is made. To exit the data explorer window,

click on the X" button on the upper right side comner.

The function menu contains four basic categories — Personal Information,
Paycheck Information, Benefit Elections. and Retirement Savings Plan, which are
represented by a document folder on the left side window. Clicking on one of the folders
once will open the folder and display the functions available for the particular category.
Clicking on the folder once again will close the folder and hide the functions for this
particular category.
3.3.2.1. Personal Information Category
e User can view his personal information by clicking on “Display” icon. The personal

information will be displayed on the right side window.

e User can update his personal information by clicking on “Change” icon. An
information update page will appear on the right side window. By entering the new
personal information into the update page and clicking on “Submit” button, the user’s
new personal information will be updated in the database and the related middle tier
servers. Upon the completion of the update, a message box will pop up to inform the
user whether the update is successful.

3.3.2.2. Paycheck Information Category

® User can view his most recent pay information by clicking on “Most Recent Pay
[nformation” icon. The pay information will be displayed on the right side window.

3.3.2.3. Benefit Elections

e User can view his dental insurance coverage by clicking on “Dental Plan” icon. The

dental coverage information will be displayed on the right side window.

20

User can view his medical insurance coverage by clicking on “Medical Plan” icon.
The medical coverage information will be displayed on the right side window.

User can view his vision care coverage by clicking on “Vision Plan” icon. The vision
coverage information will be displayed on the right side window.

User can view his basic life insurance coverage by clicking on “Basic Life” icon. The

life insurance information will be displayed on the right side window.

3.3.2.4. Retirement Savings Plan

User can view his retirement savings plan account balance by clicking on “Account
Balance™ icon. The account balance for different funds will be displayed on the right
side window.

User can reallocate his total account balance by clicking on “Fund Reallocation”. A
fund reallocation page will appear on the right side window. The user should enter the
new percentage of the total balance for each available fund and then click on
“Submit” button. the account balance for each fund will be reallocated and the
information will be updated in the database as well as in the related middle tier
servers. Upon the completion of transaction, a message box will pop up to inform the
user whether the transaction is successful.

User can change his total fund contribution direction by clicking on “Investment
Direction”. An investment direction page will appear on the right side window. The
user should enter the new percentage of monthly retirement contribution for each
available fund and then click on “Submit” button, the new investment direction for
each fund will be saved in the database. Upon the completion of transaction, a

message box will pop up to inform the user whether the transaction is successful.

21

e User can change the contribution rate to his retirement savings plan by clicking on
“Contribution Rate™ icon. A contribution rate page will appear on the right side
window. The user should enter the new percentage of the monthly income as the
future contribution rate to the retirement savings plan and then click on “Submit”
button, whereupon the new contribution rate for the future investment will be saved in
the database. Upon the completion of transaction, a message box will pop up to

inform the user whether the transaction is successful.

3.4. Requirements for Middle-tier Servers

To support the three-tier distributed application, the ESSS is designed to have
server components run on different PCs. These components form the application-tier of
the ESSS. They should support the following features to meet the performance
requirements.

e The data services should be obtained by calling data-tier component only.

e The data should be loaded and stored into middle tier servers after being retrieved
from the database for the first time. Frequently requested data should be distributed
into different server computers to avoid overloading of database server.

¢ The number of middle-tier servers should be determined from the capacity of the

server computers and the maximum amount of data to be managed.

3.5. Requirements for Data-tier Server

[n some companies, the databases may be built in the UNIX environment, and in

others they may be built in Windows environment. To support the database location

o
2

transparency, a data access server is needed for the data-tier. Only the data access server
can directly access either local database or remote database whether it is on UNIX or on
Windows. Such a configuration allows the middle-tier servers completely independent of

database operations.

23

4. System Design

System design is an essential step in developing a reliable, secure, and user-
friendly application. A complete analysis of users and the system environment is critical

for a successful system design.

4.1. User Description

e The ESSS is to be used by the employees to perform employment-related self-
services.

¢ The ESSS is designed to be easy to use. Low computer literacy is required for
employees to use the system.

¢ Heavy usage is expected for employees to view paycheck information around each

payday.

4.2. Design Consideration

The ESSS intends to be designed as a three-tier distributed application. The entire
system design includes the design of presentation-tier — the Graphic User Interface, the
design of application-tier — the application services, and the design of data-tier — the

database accesses.

4.2.1. Presentation-tier — Graphic User Interface

Based on the user description, following points are considered in the design of

graphic user interface:

24

The ESSS is a distributed multi-user application; data are transferred between the
server site and client (user) site through the Network. Database access is expected to
be very heavy around the payday. [n order to improve the performance, the data is
loaded and stored into a number of data control servers after being retrieved from the
database for the first time. The data will be returned from the dedicated data control
server for any subsequent data retrieval without accessing the database again.
Different kind of users may have different levels of knowledge in computer usage.
Thus the ESSS is designed to be error-protected. User input should not cause system
error or incorrect database updates. To ensure this, we need to reduce the keyboard
input as far as possible since keyboard input is a potential source of error. In the
ESSS, all the keyboard inputs are protected with data format checking. All the other
interactions between users and the ESSS are mouse-oriented, which effectively
protects the system data from any invalid input.

The ESSS is designed to teach the user about the system incrementally. An
informative message box is popped up for each invalid or incorrect user action, which
allows the user to learn what is the cause and how to correct it.

The ESSS is designed to be consistent. Once the database is updated, the same
information will be updated across the middle tier servers and the user interface. This

ensures the consistency between different end-users.

4.2.2. Middle-tier — Application Services

Based on the requirements for the middle-tier servers, the following points are

considered as the guideline for designing the middle-tier servers. As mentioned in the

introduction of this report, the middle-tier components/servers are going to be

25

implemented using DCOM, therefore DCOM is considered part of our design

consideration.

e The number of servers should be configurable based on the maximum workload each
server can handle.

e Multiple users should be allowed to connect to the servers and be provided with
application services. To support maximum performance of the servers, the concurrent
accesses to the servers should be allowed; to avoid the possible errors caused by the
race conditions, each critical operation should be protected by either the critical
sections or semaphores.

e The middle-tier servers should control the number of requests to the data-tier to
reduce the workload imposed on the database. Thus the frequently requested data
should be kept in the memory of server computers after being retrieved from the
database. To maintain data consistency, the servers should update all the data copies
stored in the server computers and the copies stored in the client objects for each data
update. Critical sections should be used in these active data updates.

® To make the best use of the data loaded from data server through network, and thus
reduce the data traffic over the network, data servers should be implemented as
persistent DCOM server so that the loaded data is always there to serve the user

requests. This can be achieved by implementing the data control server as NT service.

4.2.3. Data-tier — Database Access

From the requirements for the data-tier, the following points need to be

considered in the design of data-tier component.

26

¢ To reduce workload imposed on database, the number of database accesses must be
minimized.

e A setof services will be presented to the middle-tier servers by the data access server.
All the database operations should be conducted through the public interface of the
data access server, and be encapsulated into the data access server to avoid invalid

access to the database by the outside world.

4.3. Task Analysis

There are two distinguished tasks involved in the ESSS: information display task
and information update task. Each of these tasks corresponds to one specific type of user
action, that is: an employee views the employment-related information and an employee
updates or changes the employment-related information.

The detailed descriptions of these tasks and their hierarchical task analysis
diagram (HTA) are respectively given as below:
¢ Information Display Task: The task starts from login session. After successful

login, the employee can perform information display task that includes employee
personal information display, most recent pay information display, dental coverage
information display, medical coverage information display, vision coverage
information display, basic life coverage information display, and retirement savings
plan account information display. The task ends when the required information is

displayed to the user. The HTA diagram is shown in Figure 3.

27

Starting msl?

Wait for login

T

h 4

Enter login info

Login Succeed?

Yes

Wait for action

y
Personal Info || Pay [nfo || Dental Info |(Medical Infoj| Vision [nfo}| Life [nfo || Retirement Info
Display Display Display Display Display Display Display

Ending task
®

Figure 3. Task Analysis Diagram for Information Display

Information Update Task: the task starts from login session. After successful login,
the employee can perform information update task that includes employee personal
information update, retirement savings plan fund reallocation, retirement savings plan
investment direction change, and future retirement savings plan contribution rate
change. The employee will be prompted an information update page to enter his new
information. The task will end when user submits the new information and receives

an acknowledgment of successful update. The HTA diagram is shown in Figure 4

28

Starting task I

A 4

Wait for login

!

Eater login info

No @

] Yes
Wait for action
1
' ! ' !
Personal Info Fund Reallocation Investment Direction |{ Contribution Rate
Update unc re Change Change

Ending task

®

Figure 4. Task Analysis Diagram for Information Update

4.4. System Architecture

The ESSS architecture design is shown is Figure 5. The entire system consists of

five basic modules, the GUI module, the GuiBase module, the Data Control module, the

Security Manager module, and the Data Access module.

User interacts with the system via GUI module. The GUI module provides the

users with convenient graphic user interface. The user can either get the information from

the system or enter the data into the system through the graphic user interface.

29

Database Data Access Server

(MS Access) |+ (DCOM) Data Module
(DCOM)
vm*v IDataAccessSvr
Data Controller Security Manager
AUOOZV AUOOZV Server Modules
(DCOM)
IDataServer ISecuritySvr Nu

View —® Model [——» DataConnect

[H

Guilnterface MVControl ——» SecurityConnect

GUlIBase Module

GUI Module

Explorer-based GUI (EXE)

30

Figure 5. the ESSS Architecture

A GuiBase module is built on top of GUI module to support the processing of
user requests through the GUI module. The GuiBase module interacts with the outside
world via CGuilnterface class that exports the necessary functions for use by GUI
module. The CUiView class is responsible for getting the required information for
displaying the graphic user interface, while the CUiModel class is responsible for
managing and processing the user data. The CMVControl class is responsible for creating
and deleting the Model and View objects as needed. At initialization stage, GuiBase
module creates the proper Model and View objects. It then establishes the connections
between GuiBase and the middle-tier servers — DataControler and SecruityMgr via
CDataConnect and CSecurirvConnect classes.

As mentioned above, two middle-tier servers, the DataControler and the
SecurityMgr, are to be implemented using DCOM technology. One of the great benefits
gained by using DCOM is its capability of dynamic invocation and termination of the
servers. The server is launched when there is an active request to the server. The server
automatically shut down when released by the user process. Thus the system resource is
consumed only when there is an active connection to the server. Since a PC has limited
system resource, this mechanism will improve PC performance.

The basic functionality of these middle-tier servers is to provide necessary
application services to the GuiBase module so that the information display and update
tasks could be completed. These application services are exported by the public interfaces
— [DataServer and [SecuritySvr. In addition to the application services, middle-tier
servers should also keep a copy of the essential data frequently requested by the user.

After the data is retrieved from the database for the first time, the essential data is loaded

31

into the memory of the server computer. When the second user requests the same data as
the first user does, the corresponding middle-tier server simply get the data from its data
storage and immediately returns it to the user via GuiBase module. Therefore database
access is avoided for any subsequent data requests. and the workload for database is thus
greatly reduced. The data services are provided by the DataAccess server through the
public interface IDataAccessSvr. DataAccess server is also implemented by DCOM
technology. It directly accesses the database through its inner class that encapsulates all
the database operations. The only way for the outside world to access the database is

using the methods provided in [DataAccessSvr.

4.5. System Design — Object Model

The diagrams displayed in Figures 6. 7, 8, 9. 10 present the modules and their
classes in details.

o The class diagram for GUI modulc is presented in Figure 6. When the system is
started, CActionCtroler graphic object will be created. Upon the run-time situation, it
creates the other graphic objects. It also initiates the other parts of the system by
calling into GuiBase Module through the exported class CGuilnterface.

o The class diagram for GuiBase module is presented in Figure 7. Inside GuiBase
module, only CGuilnterface class is exported to the GUI module. At the initial stage,
all the related objects are properly created. When a function call is made from GUI
module to a function defined in the exported class CGuilnterface of GuiBase module,
the CGuilnterface calls into other objects of GuiBase to get the services requested by

the GUI module. These other objects may further request the middle-tier services by

32

calling the public functions defined in [DataServer and [SecuritySvr. These public
in‘erfaces are respectively implemented in DataControler module and SecurityMgr
module.

e The class diagram for DaraControler module is presented in Figure 8. When a data
request is received from GuiBase module, it will first search its data storage in
CDataStorage class. If necessary it will call the public functions defined in
[DataAccessSvr, which is implemented in DataAccess module. [t then returns the
requested data to GuiBase module.

e The class diagram for SecuritvMgr module is presented in Figure 9. When a password
information is requested from GuiBase module, it will first search its data storage in
CDataStorage. If data not found, it will call the public functions defined in
[DataAccessSvr to get the password information and return it to GuiBase module.

e The class diagram for DataAccess module is presented in Figure 10. When data
request is received from either DataControler or SecurityMgr, it will get the data

records [rom the database and return them to the caller.

33

CViewCtrler CPayinfoDisplay CPerinfoChange : CRetReallocate ‘
@m _pViewCtrer : static CViewCtder | |G5m _payinfo: Payinfo , @8m perinfo : Perinfo - ;§@m _retinfo : Retinfo i
_pleftView : CLeftView” — | : .L
@m_pﬂlghtwew CAppExeView’ 1 BQCPayinfoDisplay() PernfoChange() ! ; [SetEmplD()
: | 28-CPayinfoDisplay() ~CPednfoChange() | '[§SetReallocatelnfo()
$CViewCtrien) ShowPaylinfo() . M¥SetComboBox() |
~CViewCtder() ! SetPaylinfo() ' §SetEmplD() /
etViewCtder() R : y /
QDestroyViewCtder() : , Yy T
$SetConnectview() ‘/ f CRetInvDir !
$9GetConnectview() ; / {E@m_retinfo : Retinfo :
y
A A ’ / SetEmpID()
N y J/ P il SetRetinvDir)
CAppExevlew ’
: _pPerinfoChange : CPerinfoChange * ' CRetinfoDisplay
| _pPerinfaDisplay : CPernfoDispiay * ?ET“ retinfo - Retinfo
' &M _pPaylnfoDispiay : CPayinfoDisplay ; -
- I ">, JiShowRetinfo()
;] ANCAPpExeView() | {B¥iSetRetinfo()
CleftView i k8 -CAppExeView() {
&m_parentitem[4] : HTREEITEM hSetDepthumber) 1
&3m _childMatnx : HTREEITEM ** | (RDeleteOldView) i
&m_parntCount(4] : int —7 | §8GetDocument() i
&3m _numcChitdAmay([4] : int B8 TaieAction() J ~.
, ; ™~y CPerinfoDisplay
LeftView() i : Perinfo |
CLeftview) | & _perinio : Perinfo |
SetEmployeelDy() ! :) ;
! g PernfoDisplay()
{&GetParentCount() . _CPerinfoDisplay()
etParentindex() \J SetPerlnto()
?GG‘C“"G'““XO . : CBeninfoDisplay ShowPerinfo()
@TakeActlon() b - .
T I z@m_benlnfo : Benlinfo |
, : ShowBeninfo()
. |iRSetBeninfo() |
\/ |2 i CGuilnterface
CAppExeDoc ‘ (from GuiBase)
&m _actionType : ActType " |
@mjmpld :long v /7
CActionCtroler
AppExeOoc() ActionCtroler : static CActionCtroler
-CAppExeDoc() i : Clogin
etCurActionType() ActionCtroler() . :
_user: CString
SetCurActionType() _CActionCtroler) <— \E::_pass: Ctring
setEmployeelD() etActionCtroler{)
etEmployeelDy) DestroyActionCroler() EonLoging

Figure 6. Class Definitions for GUI Module

34

GB::CDataStorage
1M _pDataStarage : satic CDataStorage”

{3 _pEmplnfo : Perinfo *
.&m_pEmpPaylnfo : Paylnfo *

i §§coataStorage()

: §§-CDataStoragey)
§XGetDataStorage()

- [8DesroyDataStorage()
| |§isEmpDatal oaded)
[§isEmpPayloaded()
 [setEmplnfo)

| EGetEmplnto)

S etEmpPayinfal)
 [§GetEmpPaylnfo()
 BModityEmpinfo)

: §8GetEmpBeninfol)
 MSetEmpBeninfo()

' §GetEmpRetinfo()
i§SetEmpRetinfo)

| f§GetContriRate()

- JModifyRetConRate()
| BModifyinvRate)

A

i

CUiModel
{@m_pModel : SaticCUiModel"

{§m _pDataCannect : CDataConnect” *

E§cuiModel(
B-CuiModel)
BicrateModel)
i‘DestroyModel()
BGetEmpinfo)
RGetEmpPayinfo)
BModifyEmpinfo()
[GetEmpBeninfo)
[¥GeiEmpRetinio()
BGetContriRate)
BModifyContiRate()
{Modlfylnvﬂale()

|

‘ CDataConnect , . IDataSener |
z@m_pConn datic CDataConnect’ 1 (fom Datoontler)
!ﬁm_csmnn:aanccmnCAL_secnon | "
{&m _pDataServer : IDataServer : /7 —
[coataConnect) r/ -~ | |
CDSOEC""';;C'O | CSecurityConnect |
- BRGetConnect ! .
§¥CloseConnect) ; _ |
: [OpenDataControler) [RcCSeaurityConnect) f
- CSecurityConnect)
[CloseDataControler) Boccomeon
: WinitConnCS() |
: BiCloConnect}
' BDeleteConnCS() | .
8cetEmpinfog IODenSecur!tysw()
8GetEmpPayinfo) ﬁ;;iﬁg’sﬂ(;vsvﬂ) |
;ﬂMOdifvEmplnfo() [liDeleteCannCS)) |
| [liGetEmpBeninfo(_ !
8T B emitted)
- [§GetEmpRetinfol) : 0 '
é‘MQdifyConmRateo /}ILoadEmp asdn: 00 |
gEModifyIanate() ! y i |
N A
1 / 1
// / i
ety i CMVControl
CUiView ggz;h;io\;;o;g:](')mm
iﬁm-pView:.satic.:CUi\ﬁe'w' ‘ - ICreateModeIVEew()g
:ﬁm_pModel : CUiModet ‘ CGuilnterface ‘ [Eoccetodenien) |
o iew - CUiView' | NisPemitted :
cuview) : &m_pView : CUiView: 7. 0 i
! B-Cuiview) — ¥/
f .CreateView() ﬂlnIWpll@uQno /
i B0esroyview) [EsitApplication()
1
i | [PAtachModelToView) ffGelEmpinfo)
< < [fisPemitied(
‘ EfGetEmpinfo)
I BliGetEmpPayinfo() WGeEnpPayinto) < | CAppExe
ModifyEmpinfo([ModifyEmpinfo)
BGetEmpBeninio() [liGetEmpBeninfo)
‘ BGetEmpRetinfo) .GetEmpBetlnfoo
‘ lGetContiRate([Ge(ContiRate(
! ' iModifyContriRate(IMOd!fyCOntnRate()
: EModifyinveate(WModifyinvRate(

Figure 7. Class Definitions for GUIBase Module

35

CDataAccessConnect CComOb]ectRootEx ‘ CComCoClss |
‘. ! '(tmm DalaAccess) (tmm DataAccess) !
ECDataAccessConnect() - - i
’.~CDataAccessConnect0 /’../'
ﬁGetConnect() B a
oseConnect -/

K 0 - CDataSerer |
MOpenDataAccessSuf) = ! L
WCoseDatahecessSn) | im_dataStorage : CDataStorage;
BiriComncs) - g
Pooecconcs) . BcaeSenen)
§8GetNumEmployee) E&CDataSenerO
Hcetumenpay) ;EModfvEmplnfO)O SMCDataStorage
GetNumPayinio —Jgezgmpﬁym l Bim _empiniList : CList<Emplnfo*, Emplnio > |
BGetNumTaxino(< IL:ad éﬂp ”I ‘?0 |&m_empPayRelList : CList<EmpPay *, EmpPay *>
EGetNumDeductinio(§ \ mpB n?()fo m_empPaynfoList : CList<Pay *, Pay *>
lGetEmpito(%e:EumBenlnfoo Em_empTaxinioList : ClisteTax *, Tax *>
B GetEmpPayRelation| etEmpBeninof . |&m_empDeductifolist : CList<Deduct *, Deduct *>
BGetEmpPayii) lEGetNumFundlnfo() A |
§¥GetEmpTaxinio) GetEmpReti 8CDataStorage) |
| B GetEmpDeductinfo(ﬁmfyfo»gmﬂateo - CDataStorage(
B§odiyEmpinc EVodiyinate] RsEmpiioLceced)
GetNumBeniniof) : BsEmpPayLoaded)
RGetEmpBeninio) " BSetEmpinto(
- EiGetNumFundinfo(S BGetEmpinia)
B§GetEmpRetinfof) . DataServer RSetEmpPay|
Moy ContiRate() — [SetEmpPayiniol)
lIModlfy!anate() [BModifyEmpinfo)) [SetEmpTaxino)

| GetEmpPaylnio)) lSetEmpDeductinio(

' GetEmpinio)(ModiyEmpinio

| %etNumBenlnfoO BGetEmpPayCheckinio(

! eEmpBeninfo() [CiearEmpData)
S fR— BCiatmoPayat)
DataAccessSwr ! BGetEmpRetinio BClearPayData)
from DataAccesy IlModifyContrirated) [iClearTaxData)

[l odifyinvRate() [CiearDeductData)

Figure 8. Class Definitions for DataCtroler Module

36

CComObijectRootEx

{from DataAccess)

SM:CDataAccessConnect

&m_pConn : CDataAccessConnect*
&m_CSConn : CRITICAL_SECTION
&m_pDataAccessSw : IDataAccessSw*

BYCDataAccessConnect()
- CDataAccessConnect)
BGetConnect()
IiCloseConnect(
B¥OpenDataAccessSw)
BiCloseDataAccessSw)
BinitConnCS)
BDeleteConnCS()

BIGetNumEmployee()
BGetEmpPasslnfo()

CComCoClass

ISecuritySvr

!
t
:

{from DataAccess)

———,

E8LoadEmpPassinio)|
' E¥GetPemission()

/ﬁ
| /

CSecuritySwr |

8CSecuritySw)

Y- CSecuritySw()
BGetPemission(),
BloadPassinfo)

y

i

V

SM:CDataStorage

(from DataControler)

Bm_empPassList : CList<Passwordinfo*, Passwordinfo*>

[lsPassinfol oaded()
SetEmpPassinfol)

[l sEmployeePermit()
[CiearEmpData)

Figure 9. Class Definitions for SecurityMgr Module

37

CEmployeeRec

i CPayRec
&m_EmpiD : long ﬁm_Pale long
@im_pass : CString &m_PayPeriod : CString

@im_Name : CString @m _RegularPay : float |

Bim_Address : CString . @m _YtdPayNum : foat |
[&m_City : CString |&m_retd01KRate : foa |
@m _Country : CString - 1
& _State: CSting | PayR
yRec()
&m_Postcode : CStnngl gc CPayRec()

@m_Area:CSting A
gBm_Phone : CString |

' RCEmployeeRec() |
B-CEmployeeRec() :

YJ\ ' CDataConnection

&m_dbObj : CDatabase

" E8CDataConnection()
) ~CDataConnection()
’ CTaxfec EGetDatabaseo
m_PayiD : long BGetNumEmployee) |
|§m FedTaxRate : fioat : BGetNumEm Pa 0 !
'Bm_SecTaxRate : foat | e
 BGetNumPayinfo()
,ﬁm_MedTaxRate foat: |@GetNumTaxinfo)
- . lGetNumDeductinio()
HCTaxHec() ~ [BGetEmpPassiniof)
I~CTaxHec0 | |MChangePassword) |
BGetEmployeelist) |
BiGetEmpPayRelList) -
etPaylnfoList() i
CDeductRec |, =GGetTaxlnfoUist0 |
Bm_PaylD : long B GetDeductinfoList)) |
Bm_MedPreTax : float BiModifyEmplnfo() |
_DenPreTax : float WGetBeneftlist) |
&3m_VisPreTax : float WGetNumFundin) |
&im_Ret401K : foat WiGetContriRate) |
| fGetFundList) |
IBCDeductRec() ModifyContriRate)
- CDeductRec() WModifyinvRate() i

CEmpPayRec .
&m_EmpiD : long -
' PayiD: long . :
ggm e . CDataAccessSwr
ESCEmpPayRec() - : :
| E$- CEmpPayRec(): B8CataAccessSw() |
A " 'B¥-CDataAccessSw() |
: - B¥ModifyEmpinio
 ¥GetEmpDeductinfo(|
: E¥ChangePassword()
! ~ [GetNumDeductinfo
. 'CComCoClass © ! RGetEmpTaxinfo(
o ; B GetEmpPaylnfo)
;o N BEGetEmpPayRelation()
! __BGetNumTaxinfo) |
- — BGetNumPayinfo()
'ﬁGetNumEmpPayo
s BGetEmpinfo()
%etf’asswordlnfoo
i 1 ' BGetNumEmployee()
§ lDataAccessSvrg; % etNumBeninio
N /" [fiGetNumFundinfof)
B8ModityEmpinfo(JlGetEmpBeninfo
gGCstEmpPDEdUC":;fSO ;gGGetEmgﬂeunfo(g)
| BRLNANgerasswo - @ModifyContriRate
‘GetNumDeductlnfo() ﬁMggigl(r:lo»Rate() 0
BGetEmpTaxinio() ’ :
HiGetEmpPaylnfo() 1
BGetEmpPayRelation()
GetNumTaxinio()
BGetNumPayinfo()
BGetNumEmpPay()
GetEmplnio(CComObjectRootEx
BGetPasswordinfo()
GetNumEmployee()
BGetEmpBeninio()
[GetEmpRetino()
ModifyContriRate()
BModity invRate)

Figure 10. Class Definitions for DataAccess Module

38

4.6. System Design — Dynamic Model

We present sequence diagrams for the major use case scenarios. These are

respectively displayed in Figures L1, 12, 13, 14, 15.

o The use case sequence diagram for loading an application is presented in Figure 1.
The use case starts from a call to InitApplication() which in turn creates Model and
View objects. Then it establishes the connections with middle-tier servers by calling
CoCreatelnstanceEx().

¢ The use case sequence diagram for exiting an application is presented in Figure 12.
The use case starts from a call to Exitz() which in tumn deletes Model and View objects.
It then disconnects middle-tier servers from GuiBase by calling Release().

¢ The use case sequence diagram for user login is presented in Figure 13. The use case
starts from user entering password information. [t goes into SecuritvMgr to check the
user permission by calling IsPermitted(), and create the data explorer window if
permission is granted.

e The use case sequence diagram for personal information display is presented in
Figure 14. The use case starts from a user requesting to view his personal
information. The request is transferred to the data-tier server through middle-tier
DataControler server. Finally the data is retrieved from database by the data-tier
server and returned to the user via DataControler server.

® The use case sequence diagram for personal information update is presented in Figure
15. The use case starts from user entering new information through information
update page. The new data is transferred to the data-tier server through middle-tier

DataControler server and finally set into database.

39

B.CUIView

— GB.CDataConnect

ﬁm. rityConn ;‘ SM:CSecuritySvr

_
_
[
|
_

1: s=>uv=8:o:c
Cmee s 3 Om§<Oo::o_c

|
|
_
!
|
_

f

_

[

_

_

__ 3. Oum:mmoczzmsc
o :)
|

_

|

|

_

|

J

_
f _
_ oy _
_ _ LV Teemsesuiyswd |
| _ | _ i | _OOOHB.mSm.m:ommxc
_ | ! J | I '
_ ! _ { _ I _ _
_ _ | _ I _ { _
| ! _ I [I | |
| [| | | 5: _.omam:_unm.mm_:ac | [{
_ _ [I E s e — | =1 _
_ [_ | _ _ [m _.omamau.ummm_:aa
| _ | _ | _ | ~ =
| 7: CreateModelView() | _ | _ | |
_ b e | _ | _ | _
| . 8 oam.mz_oamb | | | _ |
“ " _r’yl L 9: Oum:Om_EoO::o_mé L “ __ __
_ _ ! | ! 10: Ooo_‘mmG_aﬂm:ommxc | |
_ _ | | _ TS _ _
| | | 11: Oam~m<_msc _ | ! ! _
_ _ | ThhreaEviewd | ! , ,
_ _ I R — _ | _ |
__ __ “ 12: >=mo:§8m:.o<_m<<c _ __ __ “ __
! _ I _ _ _ [| |
| | _ _ | _ _ | _
| _ | ! _ | | | |

40

Figure 11. Use Case Diagram for Loading Application

> ~>mo§<moim ; GB:CUView 88§8¢ meoom.qmnl: DC.CSenviceModule ﬁmm”mmeau@ SMCExeMcdule
_ Bt | _ | ! _ | | _ |
_ N _ _ | _ _ | | |
2 patiay A m | | |
_ — ! _ _ _ _ | _
_ | oo -iv_ | | : _ ! _
| _ _ 4: DestroyView() _ ! | | | | | | | |
| i _ Ly _ | _ | |
| | | | 5 Destojhockl) | | | | |
_ _ _ e : _ _ _
_ _ | _ _ 6: QloseDataControler() | _ _
_ _ _ | _ RN | | _
| _ _ _ _ | _ | _ |
| _ _ _ | _) 7 Release() | | |
_ ! _ | | | by ~ |
| | _ _ _ | 8 QloseSecuritySw() _ _ |
| _ _ I Y () N |
| _ | ! | _ | _ | 9 Releasey) |
| _ | | | | ! | L N
_ _ _ _ | ! ! _ | v“
_ | _ | _ | _ _ _ _
| _ | _ _ _ _ | | !
| | | | | | | | | i

Figure 12. Use Case Diagram for Existing Application

41

AN e

" AE:CAdliveQtroler | | GB:CGuilnterface ﬁmw 8<o%.a__ ﬁom .CSecurityConnect ﬂ _ M:CSecuritySvr | | SM:CDataStorac mg AE:Exp _ma;a&msﬁ
ke B I |
| | _ I _ | | _
1: OnEnterPass() | _ _ | | |
N | | | | | |
| _ [| _ _ _ _
_ | 2 _mvgd:mac_ | | | [[
_ L _ . | _ |
| _ l_ _ | | | _
! ! I3: _m.uo:,:nmac_ ! ! ! !
| ! AN _ | _ |
{ ! [| | | | |
“ __ " T _%9%83 __ “ __
| | | [T T T T T2] _ I
| _ [_ _ | | |
_ _ | _ 5: GetPermission() _ _
_ _ | | [. N | |
| _ _ _ | M_ _ |
| | | | _ _ _
_ _ _ | | 6: _mm:ﬁo<om_um3.5 _
_ _ _ | | b IV_ |
o _ | | | | _ |
| if permitted | _ | 7. DoModal() | _ | |
S S SO i RN
_ _ _ ! _ _ _ !
| I i | | | | _
_ | f | _ | _ |
[J J _ _ _ _ |
_ | _ | J ! ! _

Figure 13. Use Case Diagram for User Login

42

_ | |
ly. , | | _ | |
_msmcwﬁm _ ! _ | !

| |
“ 2: ModifyEmpinfol) “ " “ __

[> | | | |
_ | 3: ModifyEmpinfoy) | | _
_ _ o _ _ |
| _ | _ | ! _
_ _ _ 4: ModifyEmpl | |
| | | ModiyEmpinc) | |
! | _ _ [_ _
_ _ _ _ m z_oqm?mau_:ﬂv |
_ | | _ e —— |
| | | | | 6: MadifyEmpinfo)
| . | | _ |- >
_ _ _ | _ | 7
| | | | | _ |
| | _ _ | _ _
| | | | | _ |
_ | | I _ | |
| | [_ ! ! |
| _ ! | | R |
_ | | | | | |
| ! _ | _ _ _
_ | _ _ | | |

i i e

_
_
_
|
_
_
!
|
_
|
_
_
|
|
_
|

. Modify Emplinfo()

18: MadifyEmpinfo()!

_
9: ModifyEmplinfo()

{
|
_
_

3

Figure 14. Use Case Diagram for Personal Info Display

43

ﬁgﬁgjg _E__E‘EW:E:BE DACDHaComed! || DCCDutaSionae | | AE PedrtoDiplay
o Usr
_ . _ | _ | _ ! f _ _ _
: TekeAction) | _ _ _ _ _ _ _ _ _
— > [_ | _ | _ _ I ! |
_ | 2 CatEmpink) _ _ | _ ! ! | _ |
|) _ ! _ _ ! | ! ! ~
| _ |3: GatEnpinio()] | _ | | _ | | |
| | b e | I | | I | | |
_ _ _ 4: GetErrpinkol) | _ _ ! | f _
_ | _ [oommee = _ | _ _ | _ _
_ _ | _ | & GetErmpiréol)| _ | | | | !
[_ _ | _ M | _ [_ | _
| | | | | 6: GelEnrpirdol) _ [[_ —
[_ _ _ | | - D _ | ! _ .
_ [_ _ | _ 17: GetEnvpinkal)| [_ _ |
| | | | | | I >l i | | !
_ _ _ _ | _ _ | 8: GetErrpini() | _ _ |
| | | | i | | sl | | |
[_ _ [_ | _ | _ GetEmg | | |
| | | | | | _ | _‘w &ivv_ _ _
| | _ _ _ | _ ! 10 Set _ ! !
_ _ _ ! | _ ! - 0 SETRD,) !
_ | _ [_ | _ _ _ [_ _
| | _ | ! | | ! | _ _ _
| _ _ | | N _ | _ | | |
_ | _ _ | :._mmmaﬂa _ _ _ | _ _
_ _ _ _ _ [_ | _ [_ m
| | | | | < | | | | | |
_ _ _ | | | 12 ShowEnino _ _ _ | |
|] ! [A T R B [6&
| _ _ | I | ! I f _ I I
| [i | _ i ' | | | | }
| | | I f | | I] | | [

Figure 15. Use Case Diagram for Personal Info Update

44

4.7. Data Flow

Figure 16 describes how the data is retrieved and stored between the three tiers in
the distributed system. When the application is started, the login information is loaded
from the data server via middle-tier, SecuritvMgr server. The login window is then
presented to the user. After the user enters the login information, the system compares the
entered information with loaded login information. A successful match will bring the data
explorer window to the user. For information display, the data will be loaded from data
access server via middle-tier server and displayed to the user with the requested
information. For information update. the new data will be entered by the user and then be

transferred to the database via middle-tier servers and data-tier servers.

5. End applicaton

‘|

L. Strt applicauon'

3 Create explorer window Data Explorer

ain W]
Login Window Window

2.2. Load login info

4.1. Display and update information

Security Manager Data Controller
2.1. Load login info 4.2. Load and store information
y
Data Access Server Database

Figure 16. Data Flow and Sequence Diagram

45

S. System Implementation

The system implementation directly determines the reliability and usability of the
ESSS. An efticient implementation of graphic user interface is the key to the effective
use of the system since the GUI provides the only way for the interaction between the
system and its users. To achieve top system performance, the server components must be
implemented carefully. An analysis of the system features is also needed for a complete

implementation of the ESSS.

5.1. Implementation Consideration

As mentioned earlier, the ESSS is designed to be a real-time, distributed system.
Thus it is advantageous to use C++. Visual C++, distributed component object models
(DCOM) to implement the entire system. Multithread technology should be used in the
implementation of server components to improve the system response time. To keep the
top system pertormance as number of the user increases, the ESSS must support system

scalability and load balancing.

5.2. Implementation Details

[n this section, we respectively explain and examine the implementation of GUI
module, GuiBase module, DataControler module, SecurityMgr module, and DataAccess
module in details. Corresponding to five modules, five different program projects are

constructed by using Microsoft Visual C++.

46

5.2.1. GUI Module — the Graphic User Interface

Based on the user descriptions and task analysis, we choose Windows Explorer
style to build our user interface. The advantages of this choice are their simplicity. These
on-screen controls provide contextual information for the users, allowing them to make a
correct choice before proceeding. To reduce the data transmission over the network, only
login information is loaded into the system from the database at the starting of the ESSS.
The implementation of GUI module is completed according to the class definitions given

in Figure 6.

5.2.2. GuiBase Module

The GuiBase module is the essential part of the user process. It is built as a
Dynamic Linked Library, and will be loaded by the GUI process once the ESSS
application is launched by the user. It serves as the base module for the GUI module. [t
provides all the necessary operations for the GUI module to complete the user tasks. It is
responsible for establishing the connections with the middle-tier servers. To get the best
system performance GuiBase also keeps the essential data of the ESSS in its local
memory.

One of the classes, CActionCtroler, defined in GUI module is inherited from class
CGuilnterface in GuiBase module. Thus every protected or public method in
CGuilnterface class is a part of members in CActionCtroler class. At the initial stage of
the ESSS, CActionCtroler is created by the system, which in turn calls InitApplication()
defined in CGuilnterface. The primary task of InitApplication() is to create the Model

and View through Model-View Controller, it then establishes the connections with two

47

middle-tier servers — the DataControler and the SecuritvMgr by calling
CoCreatelnstance Ex() to create the remote server object. CoCreatelnstanceEx() wiil
return status information in HRESULT type. This status information informs us whether
or not the remote server object is created successfully. We can use the following code to

test its status:

HRESULT hr = CoCreatelnstanceEx(...);
if (SUCCEEDED(hr)) {

// continue

!
else {

/I error handling and terminate program

Although in most of the cases, CoCreatelnstanceEx() and some other functions return
zero for signaling success. it is not safe to simply test if it is zero since there are some
other cases in which successful operations return nonzero. In all cases, we should use
macro SUCCEEDED or FAILED to test the operation status. The implementation of

GUIBase module is completed according to the class definitions given in Figure 7.

5.2.3. DataControler Module

DataControler server is one of the middle-tier servers and is the essential
component of the ESSS. It provides most of the application services required to complete
the user tasks. All the dynamically changeable data is managed by the DataControler
server and the amount of these data is about four-fifths [or “80%"] of the total data
managed by middle-tier servers. In addition, DataControler server provides more

application services than the SecuriryMgr server does. As a result, DataControler might

48

need to be executed in several powerful PCs in which all the system resources should be
reserved for providing the ESSS services.

When implementing DCOM server, one must decide which type of server is most
appropriate. One type of server, the ordinary DCOM server, always unloads itself when
no more client connecting to it. The other type of server is the so-called “NT service”, a
persistent server that exists even when there is no more client connection. The advantage
of ordinary DCOM server is its automatic release of system resource. This characteristic
is crucial for an ordinary PC where system resource is limited. The benefit of the NT
service server is its ability of reducing the amount of network traffic. Assume only one
client is currently connected with a DCOM server of NT service type, and assume that
the required data is already loaded into DCOM server. After finishing the user task, the
client calls Release() to releases server and then quits. Although there is no more client
connection to the server, the server does not unload itself and the data managed by the
server still exists. When another client makes a new connection to the server, the existing
data can be reused. As a result, the subsequent network data transmissions and database
accesses are avoided. If ordinary DCOM server is used, all the data kept in the DCOM
server will be destroyed when the server unloads itself. When another client makes a new
connection, the server must reload the data through the network transmissions and
database accesses.

Since there is a significant amount of data managed by the DataControler server,
we implemented DataControler server as an “NT service” to avoid frequent data
transmissions and database accesses. To protect multiple clients from accessing the

shared data simultaneously, we use a critical section as shown in the following format:

EnterCriticalSection(&m_clientISect);

49

/fenter critical operation codes here

LeaveCriticalSection(&m_clientfSect);

The implementation of DataControler module is based on the class definitions presented

in Figure 8.

5.2.4. SecurityMgr Module

SecurityMgr is a middle-tier server responsible for controlling user access to the
system. Upon receiving the client request for verifying password information,
SecuriryMgr will look at its local memory to determine whether or not the password
information is already loaded from the data server. In case the password information is
not loaded, it will loads the password information from data access server, sets the
password information into its local memory, and then return password information to the
client. SecurityMgr only manages a small amount of data — the password information, so
it is implemented as ordinary DCOM server. When no more active client is connected to
SecurityMgr, it will unload itself to release the system resource. Although the next client
request will cause a new data transmission, the workload imposed on the network will not
be very heavy because the amount of data transmitted over the network is limited. The
complete implementation of the SecurityMgr module is conducted according to the class

definitions given in Figure 9.

5.2.5. DataAccess Module

DataAccess is a data-tier server responsible for offering the data services for the

middle-tier servers. To guarantee the safe operation of database accesses from the outside

50

of the data access server. the database operations are encapsulated in the data access
server. To do so, we implemented DataAccess server to export a set of services and
functions. The database can be accessed by the outside world only through these services
and functions defined in the public interface. Thus if these services and functions are
carefully coded, the safe database operations will be guaranteed.

As discussed in the previous sections, middle-tier servers are implemented to
minimize the database access by keeping the frequently requested data into their local
memory. For this reason, DataAccess server does not need to keep the data retrieved from
database. Once database service is requested, it opens database and makes corresponding
database operation. It immediately closes the database after the database services are
completed. This will help the system keep the minimum number of database connections.
The implementation for the DataAccess module is performed according to the class

definitions presented in Figure 10.

5.2.6. Project Settings

To complete their common tasks, dependency relationships between these
modules must be preserved. In order to successfully compile and build these modules, we
need to make appropriate settings for these different projects.
® DataAccess module is built as a data-tier server component, only providing the data
access services to the other modules. So it does not depend on any other modules. As
a result, no specific settings are needed to build this module.

® DataControler module is built as a middle-tier server component, an NT service. It
not only provides the application services to the client, but also requires the data

services from the data-tier server when needed. Thus we need to do some settings for

51

DataControler module. First of all, we must include a header file named
“dataaccess.h” that tells the compiler the complete definition of data-tier services
available for the DataControler module. To allow the compiler to find the specified
include file, we need to add a corresponding path to the project path-include list,
which can be done by using the sub-menu “options..."” of the main menu “Tools™.
Moreover we must add a file named “DataAccess_i.c” into the project, which allows
the compiler to know all the interface definitions. This file can be added by using the
sub-menu “Add to project” from the main menu “Project”.

SecurityMgr module is built as a middle-tier server component. It has the similar
functionality as DaraControler component. Therefore same settings need to be
performed for SecuriryMgr module.

GuiBase module is built as a presentation-tier DLL component, responsible for
initializing the application, establishing the connections to the middle-tier servers,
requiring the needed application services from middle-tier servers, and providing the
corresponding data to the graphic user interface. Therefore GuiBase module depends
on DataControler module and SecurityMgr module. To successfully compile the
GuiBase module, the header files, “DataControler.h” and “SecurityMgr.h”
respectively from DataControler and SecurityMgr projects, must be inserted into the
project. To allow the compiler to find the interface definitions for all the middle-tier
servers used in the GuiBase module, the files “DataControler_i.c” and
“SecurityMgr_i.c” must be added into the GuiBase project.

GUI module is built as a presentation-tier EXE component, responsible for starting

the ESSS application and providing the graphic user interface to the users. It will load

52

“GuiBase.dlIl” into its workspace and requires application services from the middle-
tier servers through the functions implemented in the GuiBase module. Thus GUI
module depends on GuiBase module. All the functions accessible to the GUI module
are exported from the class CGuilnterface of GuiBase module. Therefore the header
file, “Guilnterface.h”, needs to be included in the GUI project. To successtully
compile the project. the compiler also needs to know the external functions provided
in the GuiBase. For this purpose we need to add “GuiBase.lib™ into the GUI project,

which can be done by adding “GuiBase.lib" into the project settings.

53

6. Installation and Execution

After the implementation of the ESSS is completed, we need to distribute and
configure the different components of the ESSS into their designated computers so that

they can work together in a distributed environment.

6.1. The Distribution of Dynamic Linked Library

During initialization of the ESSS, the “GuiBase.dII” generated from GuiBase
module will be loaded into the workspace of “ESSS.exe” application. To allow the
“ESSS.exe” to find the “GuiBase.dIl”, “GuiBase.dII” must be set in one of the following
locations:
¢ Windows NT system32 directory.

e The directories specified in the path setting of Windows NT system environment.

e The same directory where the executable “ESSS.exe” locates.

The easiest way is to set the output files of the GUI project and the GuiBase project to the
same common directory. This can be achieved by compiling the object files into their

common locations.

6.2. Server side configuration

Each DCOM server must be registered into the system registry of the computers
where they can be launched upon client’s request. Usually the server project is built by
“ATL COM AppWizard” to support automatic registration of the server interface and

their classes at the compile time. Therefore, if the server is built on one computer and is

54

going to run on the same machine, the registration step is not needed for that server. For
DataControler server, we should repeat the server registration process. This is because
that only the ordinary DCOM server can be registered by the automatic registration. On
the other hand. if the server is built on one computer and is to be executed on another
computer, we also need to do the server registration process. If a server is implemented as
NT service, it can be either registered as ordinary DCOM server or registered as “NT
service”. Otherwise it can be registered only as ordinary DCOM server. To register
DataControler as “NT service™ we enter the following command at command line:

DataControler /Service
To register SecurityMgr as ordinary DCOM server, we use the following command:

SecuritvMgr /RegServer
The registration for all the other ordinary DCOM servers uses the same process as that of
SecurityMgr server.

For DataControler server, we can remove the scrver registration from the system registry
by using the following command at command line:

DataControler /UnregServer
All the other servers follow the same un-registration process.

When server registration is done, we have to set the server access permission and
launch permission, which can be performed by using “DCOMCNFG.EXE" provided in
the Windows NT package. When “DCOMCNFG.EXE” is executed, a DCOM server
configuration dialog box appears. First of all, one should make sure that the check box
“Enable Distributed COM on this computer” is checked on the “Default Properties” page.

The other settings on this page should be kept unchanged. We then need to go to the

55

“applications” page, which displays all the DCOM objects and interfaces being registered
in the system. To make a configuration for a particular server. one should find and select
the server to be configured. then click “properties” button. Another dialog box will
appear. To allow particular clients capable of launching and accessing the DCOM server
remotely, one should set the related options from Security page and Identity page. From
“Security” page. one can give the access permission to the particular users from remote
computers by clicking the corresponding “Edit..." button and then add these users onto
the AccessPermission list. Similarly. one can give launch permission to the particular
users from remote computers by clicking the corresponding “Edit...” button and then add
these users onto the LaunchPermission list. From “[dentity” page, one should select “This
user” from three of the option radio buttons. By clicking “Browse..."” button, One can
select a user from user list. The selected user should have an account on that particular
server computer and should be able to launch the server. One should also type in the
password needed for that particular user to log onto that computer. After the above
process is completed, the server is ready to receive the client requests and provides the

services to the client.

6.3. Client side configuration

Client side configuration includes the registration for the Proxy and the

registration for the remote server.

56

6.3.1. Registration for the Proxy

Proxy is used by the client in the process that performs Marshalling and
Unmashalling for the calls between the client and the server. Before registering the server
Proxy, one should generate Proxy DLL using “nmake.exe” program provided by the
Microsoft visual studio. When server project is established, a Proxy makefile is generated
by the AppWizard. The name of the make file is set by the AppWizard to be the project
name postfixed with “ps.mk”. In the following we use DataControler server as an
example to explain how to generate and register the Proxy DLL.

Among the project files for DataControler server, one can find a Proxy makefile
named as “DataControlerps.mk™. This file should be copied to the computer on the client
side to generate a Proxy DLL and then make proper registration. One can enter the
following command at the command line to generate the Proxy DLL file:

nmake DataControlerps.mk

“nmake.exe” is one of the Microsoft program maintenance utilities that builds
projects based on commands contained in a description file. The output of “nmake.exe”
for Proxy maxefile is the Proxy DLL file named as “DataControlerps.dll”. This Proxy
DLL can be registered using “regsvr32.exe” program that is provided with Windows NT
package. At the command line, type the following command:

regsvr32 DataControlerps.dil
The result of the registration, either successful or failed, will be informed to the user. If
one wants to remove the Proxy registration after it successfully registered, one can use
the following command:

regsvr32 /u DataControlerps.dll

The registrations for all the server proxies should follow the same procedures as
described above. Once the server proxies are successfully registered, we can go to the

next step.

6.3.2. Registration for Remote Servers

The servers should be registered on both server computer and client computer. It
is natural to think that the server should be registered on the server computer since
system need to find the server when a client request arrives. For the same reason, the
server should also be registered on the client computer. When a client needs the services
from the server. it will ask the service control manager (SCM) to create the server object
for him. The SCM will look at the system registry to find the location of the server. If the
server locates remotely, the local SCM will ask the remote SCM to create the specified
server object. The client then gets the services from that server by calling its public
functions.

There are two methods to register the server on the client computer. For the first
one, just follow the same server registration procedure described in the server
configuration. This method needs to copy the server component into the client computer.

The second method requires the export of the server registration information.
After the server is registered in the server computer, one can search the registry database
to find the corresponding server class and its interface, which can be accomplished by
using “regedit.exe” program provided by Windows NT package. The execution of
“regedit.exe” program provides the user with menu-supported presentation of registry
database. By using the export options from the menu, one can get the registration

information for the server class and its interface, and further save them as registration

58

files. These files can be copied into anywhere in client computer. Simply double click on
these registration files from Windows NT explorer, the server will be registered into the
system registry in the client computer.

After the registration is completed on the client computer, one should use
"DCOMCNEFG.EXE" program to reset the location of the server, which allows the client
system manager to launch and access the server on the specified location. Execution of
“DCOMCNFG.EXE"” program will bring up a dialog box to the user. Clicking on the
“properties” button on that dialog box will bring up another dialog box from which one
can set the location of the server. Simply deselect “Run application on this computer” and
select your dedicated computer as remote server provider. The setting for the server
location is then completed.

The registration procedure described here looks complicated. As mentioned
earlier. there exists another method for running the distributed application without the
needs to perform server registration on client computer. This method requires the client
codes to pass the detailed server location when calling CoCreatelnstanceEx() to create
server object. The advantage of this latter method is its simplicity and control over the
server. Its disadvantage is evident. Whenever the server changes its location, the client
codes need to be changed and recompiled.

Using server registration on client computer can guarantee the server location
transparency. One needs not to know the server location when implementing client codes.
The disadvantage is that a particular client must always get services from a particular

server, which makes it harder to achieve automatic server load-balancing.

59

6.4. Settings for Database Connection

For project demo purpose, the data accessed by the ESSS is stored in the
Microsoft Access database. To allow the data-tier server to operate the data stored in the
database, we use ODBC as connection interfaces from data-tier server to access database.
To do so. we need to set a database connection using Microsoft ODBC driver for Access.

The database connection for the ODBC driver can be established by using the
“ODBC” from Control Panel. Clicking on “ODBC” icon brings up “ODBC Data Source
Administrator” dialog box from which one can add a new User DSN. When “Add”
button is clicked. a list of ODBC drivers is presented to the user. Select “Microsoft
ODBC for Access” and click “Finish” button, one is then prompted to enter the Data
Source Name and its Description. Enter “Access Connection”. After this information is
entered, the database connection is established. One can also add a new file DSN by
using the similar procedure. From the file DSN page, click “Add” button and select
“Microsoft ODBC for Access” from ODBC driver list, then click “next”. One is
prompted to enter the name of the file data source. Enter the name as “Access
Connection”. The Microsoft Access database is then ready to be accessed by the ESSS

data access server.

6.5. Using the ESSS

According to the configuration guidelines described above, we have conducted
following settings for the ESSS to be used in a distributed environment. We used two
Pentium III personal computers to execute the ESSS. Windows NT workstation is

installed for these two PCs.

60

On the first PC. we installed Microsoft Access database with database tables
properly created. We then inserted sufficient data values into these tables. We also
established a new ODBC connection that is to be used by DataAccess server. We
installed DataAccess server and properly register it as ordinary DCOM server. On the
same PC, we installed DataControler server and SecuritvMgr server. DataControler
server is registered as NT service, and SecuriryMgr server is registered as ordinary
DCOM server. We then registered DataAccess server. DataAccess proxy DLL is also
registered by using “nmake.exe” and “regsvr32.exe”. On the second PC, we installed the
starting program for the graphic user interface. This includes “ESSS.exe” and
“GuiBase.dll”. Actually the “GuiBase.dll” is to be loaded by “ESSS.exe” to its own
working space and is the base of the graphic user interface. Finally, on the second PC we
also made server registrations for the two middle-tier servers and configured them to run
on the first PC. After the above settings, the ESSS is ready to be used from the client
computer. In the following sections, we describe how the user tasks can be completed

with the help of graphic user interface.

6.5.1. Login Window

Login window is shown in Figure 17. To LOG onto the system, user needs to
enter a valid user [D and password. There are two buttons displayed on the login window.
Clicking on “Login” button will prompt the system to process the user’s login
information. If login is successful, the user will be presented with data explorer window.
For an invalid login, a message box will appear, informing users of the login failure.
Once the user acknowledges the message, the system will flush the login fields and wait

for a new login session. Clicking on “Exit” button will terminate the ESSS.

61

User Login [X| |

L
Please enter your user name and passwardtologin: ~-.. = -~

—

| - togn™ 2] .~ E

Figure 17. Login Window

6.5.2. Data Explorer Window

After the successful login, the system presents the data explorer window to the
user. As shown in Figure 18, data explorer window is a two-way split window. On the
left side window displays all the functions available to the user. These functions are
initially hidden inside four document folders. Upon double click on one of these folders,
the hidden functions will appear and user can then make selections on these functions.
The right side window is reserved for displaying and updating the employment-related
information. At the start of the data explorer window, nothing will be displayed on the
right side window. To exit from the ESSS, user can click on ‘X’ button on the upper right

corner of the data explorer window.

6.5.2.1. Information Display

Users can view the specific information by clicking on the corresponding
icon/function displayed on the left side of the data explorer window. These operations
include personal information display, dental coverage display, medical coverage display,
vision coverage display, basic life coverage display, and retirement savings plan account
balance display. As shown in Figures 19, 20, 21, 22, 23, 24. and 25, both employee name
and employee number are shown on the display page along with the requested
information. When a new information display is requested, the old information will be

flushed from the right side window, the new information will be presented.

Fle Edi’ we;'n__g_
B IES %ﬂlé[{:
= Personal Information

B Oisplay

" Change

—3 Paycheck Information
. |

I Most Recent Pay Information
Benefit Elections

Bl Oental Plan

Bl Medical Plan

Bl Vison Plan

Sl Basic Lie

Retrernent Sawings Plan

w

Account Balance
Fund Reallocation
. Investment Direction
Contribution Rates

g5 |

Figure 18. Data Explorer Window

63

B E@ Yow beb 0 e : =
"g:’Ef‘l?l

DS & &,
"y Pessonal Information i o
- Name: T detfLi
- Paycheck Irformaton Emplayee Number: - 1000
Bl Most Recent Pay Infomation T
) Henelt Elechons o R
Bl Oentd Plan Permanent Residence:)
@l Medcal Plan - — -
Bl Bauclie Address: 176 Danbury Road
"2 Retrement Savngs Flan T : ST, S
Bl Accoun Balance . Clty: - s Woeodbury . |
= FundResfocanon R elan T
= tnvestment Ovechon Country? United States
7 Contnbution Rates - S
State: " Connecticut
Postal code: . .- 06610

Phane number: . ° 2036886888

Ready

Figure 19. Personal Information Display

Fle [@ View Heb i T

QUntitled - AppE xe [=]8] x]

Ded|? e '&l:, ~=me!
“y Petsonal Information N -
BB Ouploy me:’

T Change

W Mozt Recent Pay inlormation
=Y Benefit Electons
Bl Oenta Plan

Figure 20. Pay Information Display

quntitled AppEac

W Ouolay ?N".';:.“ .
T Change -Employee Number:

3 Senelé Electons Dental Caverage Information:

Ml VisonPn ‘Caverage Level:
-~y Retsement Savings Plan Cogil:

™ FudReatocaron Dependents:

Ready - - ‘ =
Figure 21. Dental Coverage Information Display

= :

S Most Recent Py Informabion
—y Beneft Electons

R -Mn’_’lnmm' s "Irt

Medical Caverage nfomatl

RS

Figure 22. Medical Coverage Information Display

65

RQunttled ApgE xe
Fle ER Viw: el R s
D@ 2T e &l -=m Lo e

ber: . 1200

WM Dnolay Name: B
T Chonge Employee Num

=} Beneft Eiectons Vision Covenng_[ula;.-l'aﬂdﬁ:

Contnbution Rates

Ready
Fle” £di > Viow -Help - T : : ; :
D@ Y PG, - =W z
3 Personal Infamebon B TS T AN
S Dwuolay Nam o J_eju.!
T Change

M Most Recent Pay Infamation

SRS T4 Ay
Beneii Elections Life:Caverage Infi
R NS S

UL

Figure 24. Basic Life Coverage Information Display

66

WUnttled Appk xe [=18]x]
Fla EQ View Heb - I A oo oo - -
D@t =M 2
_J Personal Informaton . - R
I Display Name: o Jefflf - -
™ Change Emplayce Number: 1000 . . :
=y Paycheck Infaimanion . e . Lt
Bl Most Recent Pay Infosmation
Y denei Elections
BB Denta Plan
SR Medca Pln
B Vioon Plan
M BasclUie
=y Retvement Savings
m BT
™ FundRealocaion
™ levestment Duection
™ Contnbution Rates

Reticement Fund Information: . - -

Ready l - G RO mant 7 f e

Figure 25. Retirement Account Balance Display

6.5.2.2. Information Update

Users can update or change the specific information by clicking on the
corresponding icon/function displayed on the left side of the data explorer window. An
information update page will be presented to the user. To update or change the
information, the user needs to enter the new information on the update page and then
submit it to the system (see Figures 26, 27, 28, and 29). For the current version of the
ESSS, the user is able to perform personal information update, retirement fund
reallocation, retirement investment direction change, and retirement contribution rate
change. At the end of each submission, a message box will be popped up to inform the

user whether or not the transaction is successful.

67

Quntitted Appk xe
Be ER Viw Hep

ME] B

D@ W] x-melél[_

=) Pessond Infomation

B Osplay

™ Chage
=4 Paycheck Infomanon

MME Most Recent Pay infoimeton
23 Benett Electons

L
g
!
é
:

Ready

mmg, ' , — —

Enter your residential address belaw:

" Address: vlgﬂﬂ Ridgebury Roed

oy [thqeheld
:» _Cmmy - IUmted States _'_l

~] Postal code: [06877 E
Home telephone number. IZUJ |12]4557

. Ste: . [Connecnaut

|3 Swomit 4

Clear I

Figure 26. Personal Information Update

‘Unmlcd Appk xe
Fle ER Vv Hob:o . -

D@ RS R 'a!'f;...

= T

=y Personal Information

i Onoly

T Cheng=
3 Paycheck infomaton

B Mozt Recertt Pay intormation
X Beneft Elections

Ready . -

Figure 27. Retirement Fund Reallocation

68

QUntitled - Appk xe
s E&' View Hel .
DS ¥ /=y, =M R
=y Persond Infumation

W O:solay
9 ;!;:m,‘ Iniormation Change Your Retirement Investment Direction

S Mot Recent Pay Intaimaion
Y BenettElecnons

= 3"“‘" ":‘;‘ Fund name Maximum

@ VinonPln W .
Il Baucide IUO.A

=y Retsement Savingz Plen . -
@l Account Babnce Growth-~ . - T 100%
. FundReaslocanon oo - B

et Fra
lStable 100%
IS&P 100%

Reaty ' TR

Figure 28. Retirement Investment Direction Change

‘Ur\llllcd AppE xe - {&] x]
Be E® Yew Hp -~ - . T o RnTRaer ot

Contrbution Aates

Roady

Figure 29. Retirement Account Contribution Rate Change

69

7. Future Extension

For the current version of the ESSS, total 11 functions have been implemented,
which are grouped into four basic categories — Personal Information, Paychieck
Information, Benefit Elections, and Retirement Savings Plan. More functions or
categories can be added for the future version of the ESSS:

e A time reporting category can be added, which may allow user to enter weekly time
sheet and display past time sheet.

e A function to view previous pay information may need to be added to the paycheck
information category.

¢ Functions that allow the user to change benefit election on an annual basis should be
implemented in the future version.

¢ Function that allows the user to print out the requested information should also be

considered in the future implementation.

70

8. Conclusions

Employee Self Service System (ESSS) was developed on Windows NT by using

Microsoft Visual C++ and Microsoft Distributed Component Object Model (DCOM).

The ESSS is a three-tier. distributed application capable of running on a number of

different computers according to the configuration. It is designed and implemented to be

a user-centered, employment-related self-service system. It is easy to learn and easy to

use for all the users (employees). The primary goal has been achieved, which can be

summarized as below:

The ESSS is easy to learn. One basic window covers all the needs for information
display and update.

The ESSS is error-protected. Employees are allowed to make any possible operations
without causing system failure.

The ESSS is secure. The security for server component is set on the component basis
with different security levels to control server access. This inciudes launch
permission, access permission, and Windows NT permission.

The ESSS is efficient. Users can make self-services without going through human
resource individuals. The simple menu items listed on the left side window can help
user quickly determine his needs.

The ESSS is scalable. As the number of user increases, the system can be
reconfigured to use more middle-tier servers to maintain the top system performance.
The ESSS is fast. The implementation is done using object-oriented C++ language

capable of generating efficient application program.

71

e The ESSS is reliable. Two or more middle-tier servers can be used to improve the
system reliability. The failure of one server will not stop the whole system from
functioning.

e The ESSS supports efficient data access. The frequently requested data is stored in
the middle tier servers and the subsequent requests for the same data can be retrieved
without accessing the database again.

e The ESSS supports component reuse. The ESSS can be re-built into Web-based
application with the modification of only GUI module. All the other components can
be reused.

From the experience of designing and implementing the ESSS, we are convinced that
the three-tier distributed application is more efficient, more reliable, and more scalable
than the conventional two-tier application. The Distributed Component Object Model

provides an excellent middle-tier standard for implementing the distributed applications.

72

References

[L] D. Rogerson, Inside COM (Programming Series), Microsoft Press, 1997.

[2] R. Rosemary, DCOM Explained, Digital Press, 1998.

[3] J. Maloney, Distributed COM Application Development Using Visual C++ 6.0, UCI
Press, 1999

[4] F. Bolton, Pure CORBA, Sams Press. 2001

[5] M. Henning and S. Vinoski, Advanced CORBA Programming with C++, Addison-
Wesley Pub Co., 1999

[6] DCOM Technical Overview, hup:/msdn.microsoft.com/library/default.asp?url=/librarv/en-

us/dndcom/html/msdn_dcomtec.asp

[7] Software Technology Review, hup://www.sei.cmu.edu/str/descriptions/com.html

[8] Y.M. Wang, Y. Huang, and W.K. Fuchs, Progressive Retry for Software Error
Recovery in Distributed Systems, [EEE Fault-Tolerance Computing Symp., pp. 138,
1993

(9] K.P. Birman, Building Secure and Reliable Network Applications, Manning

Publications CQ., 1996

[10] OSF DCE Specification, http://www.opengroup.org/pubs/catalog/t201.htm

73

Appendix — IDL Files

/I DataControler.idl : IDL source for DataControler.dll
I

#] This file will be processed by the MIDL tool to
/1 produce the type library (DataControler.tlb) and marshalling code.

import "oaidl.idl";
import "ocidl.idl";

typedef struct _EmpData {
ULONG emplD;
BSTR empName;
BSTR address:
BSTR city;
BSTR country:
BSTR state:
BSTR postcode;
BSTR area;
BSTR phone;

} EmpData;

typedet struct _PayCheckData {
ULONG empiD:
BSTR name;
BSTR payPeriod:
float curPay;
float curFedTax;
float curStaTax:
float curSecTax:
float curMedTax:
tloat curDenPreTax;
float curMedPreTax;
float curd01K;
ULONG ytdNumPay;
} PayCheckData;

typedef struct _CoverData {
ULONG empID;
ULONG benType;
BSTR coverType;
ULONG cost;

} CoverData;

typedef struct _DepenData {
BSTR name;
BSTR relation:

} DepenData;

typedef struct _FundData {

BSTR tundName;
float amount;

74

ULONG dirRate;
} FundData:

[

object.

uuid(99015419-4D39-1 L D6-B6F3-0002A5633A88).

helpstring("[DataServer I[nterface”).

pointer_default(unique)

|
interface [DataServer : [Unknown
{

[helpstring("method GetEmplnfo”)]

HRESULT GetEmplnfo({in] ULONG empld. [out] EmpData *empData);

[helpstring("method GetEmpPaylnfo™)]

HRESULT GetEmpPayInfo([in] ULONG empld, {out] PayCheckData *payData);

[helpstring("method ModifyEmplnfo™)]

HRESULT ModityEmpInfo([in] ULONG empld. [in] EmpData *empData);

fhelpstring("method GetNumBenInfo")]

HRESULT GetNumBenlInfo([in] ULONG empID, [out] ULONG *num);

(helpstring("method GetNumDependent”)]

HRESULT GetNumDependent([in] ULONG emplID. [out] ULONG *num);

[helpstring("method GetEmpBenInfo")]

HRESULT GetEmpBenlnfo([in] ULONG emplID, [in] ULONG numCover, [in] ULONG
numDepen, [out, size_is(numCover)| CoverData *pvecCoverData, [out. size_is(numDepen)] DepenData
*pvecDepenData);

[he!pstring("method GetNumFundinfo")]

HRESULT GetNumFundInfo([in} ULONG emplID, [out} ULONG *num);

{helpstring("method GetEmpRetlnfo”)}

HRESULT GetEmpRetInfo([in] ULONG emplD. {in] ULONG numFund, [out] ULONG
*contriRate. [out, size_is(numFund)] FundData *pvecFundData);

[helpstring("method ModifyContriRate”)|

HRESULT ModifyContriRate([in] ULONG emplD. [in] ULONG contriRate);

[helpstring(“method ModifyInvRate")|

HRESULT ModifylnvRate([in] ULONG empID. [in] ULONG numFund. [in] ULONG
contrirate, [in} ULONG rateType. [in] BSTR empName, {in. size_is(numFund)] FundData
*pvecFundData);

|5

uuid(9901540D-4D59-11D6-B6F3-0002A5633A88),
version(1.Q).
helpstring("DataControler 1.0 Type Library")

]
library DATACONTROLERL b

{
importlib("stdole32.tIb");
importlib("stdole2.tib");

[
uuid(9901540A-4D59-11D6-B6F3-0002A5633A88).
helpstring("DataServer Class")

|

coclass DataServer

{
i

[default] interface [DataServer;

75

// SecurityMegr.id! : IDL source for SecurityMgr.dll
n"

/' This file will be processed by the MIDL tool to
// produce the type library (SecurityMgr.tlb) and marshalling code.

import "oaidLidl";
import "ocidL.idl”;
[
object,
uuid(08E97B47-4CA4-1 I D6-BOF3-0002A5633A88).

helpstring("[SecuritySvr Interface™),
pointer_default(unique)
]
interface [SecuritySvr : [Unknown
{
(id(1). helpstring("method LoadEmpPassinfo”)| HRESULT LoadEmpPassinfo();
(id(2), helpstring("method GetPermission”)] HRESULT GetPermission([in] ULONG
empld. [in] BSTR empPass. [out] ULONG* permit);
[id(3), helpstring("method ChangePassword")] HRESULT ChangePassword([in}
ULONG empld, {in] BSTR oldPass, [in] BSTR newPass. [out] ULONG* isOK);
}:

uuid(08E97B3B-4CA4-11D6-B6F3-0002A5633A88).
version(1.0),
helpstring("SecurityMgr 1.0 Type Library™)
I
library SECURITYMGRLib
{
importlib("stdole32.tlb");
importlib("stdole2.tlb");

[
uuid(08E97B48-4CA4-1 1 DG6-B6F3-0002A5633A88),
helpstring(”SecuritySvr Class")

|

coclass SecuritySvr

{
b

[default] interface [SecuritySvr;

Il DataAccess.idl : IDL source for DataAccess.dl|
/]

/I This file will be processed by the MIDL tool to
// produce the type library (DataAccess.tlb) and marshalling code.

import "oaidl.idl";

76

import "ocidl.idl";

typedef struct _EntryPasslInfo {

ULONG empld:
BSTR empPass;

} EntryPassInfo;

typedef struct _Employee {

ULONG emplD:
BSTR empName:
BSTR address:
BSTR city;
BSTR country:
BSTR state;
BSTR postcode:
BSTR area:
BSTR phone;

} Employee;

typedet struct _EmpPaylnfo {

ULONG emplD;
ULONG payID;

} EmpPaylInfo;

typedef struct _PayInfo {

} Paylnfo:

ULONG payID:
BSTR payPeriod;
float regularPay;
float ret401KRate:
ULONG ytdPayNum:

typedet struct _FundInfo {

} FundInfo;

BSTR fundName;
float amount;
ULONG dirRate;

typedef struct _TaxInfo {

} TaxInfo;

ULONG payID;
float fedTaxRate;
float secTaxRate;
float medTaxRate;
float staTaxRate;

typedef struct _Deplnfo {

} Deplnfo;

BSTR depName;
BSTR depRelation;

typedef struct _DeductlInfo {

ULONG paylD:
float medPreTax;
float denPreTax;
float visPreTax;

77

float retPreTax:

} Deductlnfo;

typedef struct _BenefitInfo {
ULONG emplD:
BSTR benName;
BSTR coverType:

tloat cost:

} Benefitlnfo:

typedef struct _RetFundInfo {
BSTR fundName;
float amount;
ULONG dirRate:

} RetFundInfo;

(

!

object,

uuid(383A4EF0-4BEC-1 1 D6-B6F3-0002A5633A88).
helpstring("[DataAccessSvr Interface”).
pointer_default(unique)

interface [DataAccessSvr : [Unknown

{

{id(1), helpstring("method GetNumEmployee")|

HRESULT GetNumEmployee([out] ULONG* pNumEmployee);
(id(2), helpstring("method GetPasswordInfo™)}

HRESULT GetPasswordInfo([in] ULONG numEmployee, [out.

size_is(numEmployee)] EntryPassInfo* pvecPasslInfo):

*pvecEmplnfo):

[id(3). helpstring("method ChangePassword")|

HRESULT ChangePassword([in] ULONG empld. [in] BSTR newPASS);
(helpstring("method GetEmplnfo")|

HRESULT GetEmplnfo({in] ULONG numEmp, [out, size_is(numEmp)| Employee

[helpstring("method GetNumEmpPay")|

HRESULT GetNumEmpPay([out] ULONG *num);
[helpstring("method GetNumPayInfo")|

HRESULT GetNumPayInfo({out] ULONG *num);
(helpstring("method GetNumTaxInfo™)]

HRESULT GetNumTaxInfo([out] ULONG *num);
[helpstring("method GetEmpPayRelation")]

HRESULT GetEmpPayRelation([in] ULONG num, {out, size_is(num)]

EmpPayInfo *pvecEmpPay);

*pvecPaylnfo):

*pvecTaxInfo);

*pvecDeductinfo);

[helpstring{"method GetEmpPayInfo")]
HRESULT GetEmpPayInfo([in] ULONG num. [out. size_is(num)} PayInfo

[helpstring("method GetEmpTaxInfo")|
HRESULT GetEmpTaxInfo([in] ULONG num, [out, size_is(num)] TaxInfo

[helpstring("method GetNumDeductInfo")]

HRESULT GetNumDeductInfo([out] ULONG *num):

[helpstring("method GetEmpDeductinfo”)]

HRESULT GetEmpDeductInfo({in] ULONG num, [out, size_is(num)] DeductInfo

[helpstring("method ModifyEmplInfo”)]
HRESULT ModifyEmplnfo([in] ULONG empld, [in] Employee *pEmp);

78

{helpstring("method GetNumBenlnfo")]

HRESULT GetNumBenlInfo([in] ULONG empID. [out] ULONG *num);

[helpstring("method GetNumDependent”)}

HRESULT GetNumDependent([in] ULONG emplID. [out] ULONG *num);

[helpstring("method GetEmpBenlnfo™)]

HRESULT GetEmpBenlInfo([in} ULONG empID, [in] ULONG numBen, [in]
ULONG numDep. [out. size_is(numBen)] BenefitInfo *pvecBenlnfo. [out, size_is(numDep)| Deplnfo
*pvecDeplnfo);

[helpstring("method GetNumFundinfo™)}

HRESULT GetNumFundInfo([in] ULONG emplID, [out] ULONG *num);

[helpstring("method GetEmpRetInfo")]

HRESULT GetEmpRetlnfo({in] ULONG emplID. {in] ULONG numFund. [out]
ULONG *contriRate. [out. size_is(numFund)] RetFundInfo *pvecRetFundInfo);

{helpstring(“"method ModifyContriRate")]

HRESULT ModifyContriRate{[in] ULONG emplID. (in] ULONG contriRate):

[helpstring("method ModifylnvRate™)]

HRESULT ModifyInvRate([in] ULONG emplID, [in] ULONG numFund. [in]
ULONG contriRate. [in] ULONG rateType, [in] BSTR empName. [in. size_is(numFund){ RetFundInfo
*pvecRetFundInfo):

}i

uuid(383A4EE3-4BEC-11D6-BGF3-0002A5633A88).
version(1.0),
helpstring("DataAccess 1.0 Type Library”)

I
library DATAACCESSLib

{
importlib("stdole32.tlb"):
importlib("stdole2.tlb");

[
uuid(2CO0A2146-4BF7-11D6-B6F3-0002A5633A88).
helpstring("DataAccessSvr Class”)

coclass DataAccessSvr

{
}s

[default] interface IDataAccessSvr;

79

