INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directiy from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, M 48106-1346 USA
800-521-0600

®

UMI

A WEB BASED STUDENT COURSE REGISTER SYSTEM USING
JSP TECHNOLOGY

GANG CHENG

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL. QUEBEC. CANADA

APRIL 2003
© GANG CHENG, 2003

l*l National Library Bibliothéque nationale

of Canada du Canada
Qﬁhﬁmm%%scmsfm ::qrvm?’gﬁztgraphiques
385 Wellington Street 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Sile Votre rédérence
Ouwr Sie Notre rildrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-77708-1

Canadi

ABSTRACT

A WEB BASES STUDENT COURSE REGISTER SYSTEM USING
JSP TECHNOLOGY

Gang Cheng

Web-based application has been developed rapidly since mid 1990s. With the use of JSP
technology and the output presented by HTML, Java and J2EE technology provide the
enterprise solution for building a modular system. In this report, I describe an online
application web site --- Student Course Register System. The goal is to separate the
application logic from presentation. The project is designed with Model-View-Controller

architecture, and implemented with JSP and Java Bean technology.

i

Table of Contents

T INTRODUCTION........coieeemieenrinnencenreeenessnrnssssasssssssssensssensoseassassnnsassensessenssases 1
2 BACKGROUND........ccccoieireenrreerrrmrceseesarsmsssssenessessressassanessensnesnnesasessensssnenes 3
2.1 Introduction to Java Serviet Technology 3
2.2 Introduction to JSP 5
3 REQUIREMENTS AND SPECIFICATIONS..........ccceecrreemrerrereeeeseseesnssssnsnes 6
3.1 Purpose 6
3.2 Product Perspective 6
3.3 User Characteristics. 6
3301 SIUACHL ..o ettt e e eeee s eeee 7
332 Registry adminiStrative STAFSoo.ovimomiiiieceeeeeeeeeeeeeeeee e, 7
33.3 SORWATE DEVEIOPET.........o.miieieiceeieeeeece e e e es e 7
334 Maintenance SAFErc.ouoiiiiioieiceeee e 7
3.4 Functional Requirements Specification 7
341 Student requirement fUNCHOMScc.ovivivesimemioeeeeceeeeeees oo eeeesee e 10
342 Maintenance staff requirement fUnCtionS................o.ooomevemooeeeeeeeeeeeeeeeeeeeeeee, 12
3.4.3 Registration staff requirement fUNCHONS..................ocoovoomeoieeeeeeeeeeeeeeeeoeeeeeeeee oo 12
3.5 System Requirements 15
351 PIAOIM. ..ot 15
352 JaVa ERVITONIMENL.........ocuiiieiieieiieiee et es e eee e 135
353 JAVAWED SEIVEToooiiiie e e 15
354 Internet COMMECHON.coueurietreieteeeseeeeeete ettt e s s e e eee e see e 16
3.6 User Interface Requirements 16
3.7 Performance Requirements 17
4 DESIGN ...t cntcnrasssessssesasssensssesesessesssenssnsesessnessesasenssssnsanes 18
4.1 Design Rationale 18
4.2 System Architecture 20
4.2.1 Architecture DI@BIaML............c.coeimieiiieiiee et e ee e 20
4.2. 2 Deployment DIagIammoouiuieiricec et 22
4.3 Object Model and Class Diagram 23
4.3.1 Modules in Major COMPORENLS...............c.o.omimeiveeieiseeeee e ee e 24
4.4 System Topology 26

v

4.5.1 Database ASSUMPLONS.cooeeeeremeieceire e es s s s sesesessaesesaesesssess s sens s essesesesenesseen 27

4.5.2 Entity-Relation Diagram of CRS Database.oooevivuimeemeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeese e 28
4.5.3 Database SCREIMAc.ooooiieecieere et ee et eeee e et ee e e esee e eeee e 29
5 TESTING AND RESULTS.....ccoooreerrcereertereeesenresseesessssesnsesesassssesssmessnnns 31
5.1 Environmental Testing 31
5.2 Functional Testing 32
5.2.1 Test Cases for the Maintenance MOdULE.c..o.ooovmioiiieeeeeeeeeeeeeeeeee e 32
5.2.2 Test Cases for the Registration MOdUIE.cccoovmeuimiiereeeeccee e 35
5.2.3 Test Cases for the online registry module............cooooooovoveieiiiiieiiece e 41
6 CONCLUSION AND FUTURE WORKcccocerrmmnnrerncnrseneseneesesesssssenes 46
6.1 Conclusion 46
6.2 Future work 47
6.2.1 Add fUnCHONALILIES..............o.ooueeieieieeieieceteeeieeecee ettt e e e ee e ee e e e emeen 47
6.2.2 Add course time and classroom management SUbSYSIEMooovememeeemecememeereereeeennn. 47
6.2.3 Generate a template web appliCation SYSTEMcoiuimiiioiieeeeeeeeeeeeeeeeeeeeeeeeeean. 47
7 REFERENCES.............ooicerreerecrteernnsrssesssessssessssnsssessessnssesssnessessasassse 48
8 ABBREVIATIONScooeeccrceeeenccsesessesesssesissesassassannsresssessssessnne 49
APPENDICES............cciieereeeereeecsneeesressnseissessanssssessassssssssassssssnsesssssssssssonnns 50
Appendix A: Sample JSP source files 50
A-1.Display available COUISEScoouoiiireeiiieieiieteeece e es e 50
A-2 select a course and put into reGISter fOTMoouivimiiieeeeeeee et 52
A3 TEEISIET ThE COUTSES..........ovveeiteeieieeceeeceeeectete ettt eeee et e eees e s s s e e e e eeeeneess e s e e e 55
A4 record Brades fOr @ COUISE............ocevviuierieeeeeeeeeeee et eee e eee e e e e es e e s e er e s e 56
Appendix B: Sample JavaBean 59
B-1dbacC DEAN............c.ooiiiiii e eeeeee oo e eeee 59
B-2 aVACOUISE DRAN...... ..ot e et ees 60
B-3 TeZIOMMIDEAN..........oooiiiiiieeecee e e 63
B-3 dropCourse DEaNc.ooiviiiiiii e 63
Appendix C: The installation instructions 68
C-TINStAIlNG JDK ... e e e e 68
C-2 Installing Web Server—ReSINI-2. 1.6c..ooeommeeeeeeeeeeeeeeeeeeeeeee e 68
C-3 INStAIlNG MYSQL ..ot e s e ee e e nee e nee oo 69
C-4 Installing JDBC for MYSQL...........oooimimiiiieeieeeeeeeeeeee ettt ere e eee e eeeees s erees 70
C-5 Installing the Web Site fIIESooo i on 70

List of Figures

Figure 2.1: Serviet CONtainer..............oooovooviii oo e 4
Figure 3.1: Use case diagram..........................ooo i, 9
Figure 4.1: System conceptual model............................. 19
Figure 4.2: System Architecture Diagramof CRS... 20
Figure 4.3: The sub-components in JSP package................................o.oo. 22
Figure 4.4: The deployment diagram of CRS system... 23
Figure 4.5: Class diagrams of Modules in Major Components............................... 25
Figure 4.6: System Topology of CRS..... 26
Figure 4.7: ER diagramof CRS database... 28

vi

1 Introduction

Since the mid-1990s, the growth of the Internet as a communications vehicle has been
developed rapidly. Up to now, the Internet has evolved in potentially most parts of our
life. As the base of technology development, the university is also the pioneer of the new
technology application. The online student course register system can simplify the
procedure of the student course registry. This system is convenient to students and the
university management. Online application has changed all the traditional rules of the
university management. This web site contains not only the static content, but also the

dynamic information, which include data query, data exchange, etc.

After many years development, now we have many methods that can be used in
implementing the dynamic Internet application, for example CGIL, Perl, ASP (Active
Server Page), PHP, and JSP (Java Server Page). [2]When developing a web application,
selecting the right implementation technology is very important. A right choice will make
the system can be used not only today, but also in the future. But if we select an
unsuitable implementation technology, the system may go into trouble in the future. The
reason is that we must meet not only the current needs but also some possible needs in
the future when we developing a project. Now days, more and more web applications are
using a multi-ply, J2EE architecture. In this model, HTML is used for the presentation
layer. Most software developers are trying to separate the content of the web site from the
presentation logic. They embed as little as possible logic programs into the HTML file.

This makes it possible to adopt new technologies in sending and receiving information.
By separating the content of the web site from the presentation logic, the programmer can
concentrate on the implementation logic and the web designer can concentrate on the

interface graphic design.

This report describes a university student course registry web site (CRS) that I built using
JSP and Java Bean technologies. In this document, chapter 2 provides the background of

the technologies used in the project, chapter 3 outlines the requirement specifications,

chapter 4 is the software design document, chapter 5 is the testing plan and result, chapter
6 gives the conclusion and the future work, chapter 7 lists the references used in this
project, chapter 8 gives the abbreviations used in this document, and chapter 9 appends

the sample implementation codes and the installation instruction.

2 Background

2.1 Introduction to Java Servlet Technology

Before, Microsoft's Active Server Pages (ASP) is almost the only choice for every web
application developer. But along with the appearance of Sun Microsystems’s Java Server
Pages (JSP), more and more developers are adopting JSP as their development
technology. In fact, JSP and ASP are similar technologies: both add to HTML special
tags, a scripting language, and the ability to call out to external software components. JSP

is based on Java servlet technology. At run time, every JSP is a servlet class.[3]

The servlet container is a part of a web server or application server that provides the
network services over which requests and responses are sent, decodes HTTP based
requests, and formats HTTP based responses. A servlet container also contains and

manages servlets through their lifecycle.

A servlet container (Figure 1) can be built into a host web server, or installed as an add-
on component to a Web Server via that server’s native extension. All servlet containers

must support HTTP as a protocol for requests and responses. [1][4]

J2SE 1.2 is the minimum version of the underlying Java platform with which servlet

containers must be built.

User request form \

Web Sever
Sever Extension
Result diplay page /
Client side Sever side

Figure 2.1: Servlet Container

The following is a typical sequence of events:[5]

e A client (e.g., a web browser) accesses a web server and makes an HTTP
request.

e The request is received by the web server and handed off to the servlet
container. The servlet container can be running in the same process as the host
web server, in a different process on the same host, or on a different host from
the web server for which it processes requests.

e The serviet container determines which servlet to be invoked based on the
configuration of its servlets, and calls it with objects representing the request
and response.

e The servlet uses the request object to find out who the remote user is, what
HTTP POST parameters may have been sent as part of this request, and other
relevant data. The servlet performs whatever logic it was programmed with,
and generates data to send back to the client. It sends this data back to the
client via the response object.

¢ Once the servlet has finished processing the request, the servlet container
ensures that the response is properly flushed, and returns control back to the

host web server.

2.2 Introduction to JSP

What exactly is a JavaServer Page? [1]In its basic form, a JSP page is simply an HTML
web page that contains additional bits of code that execute application logic to generate
dynamic content. JSP comes out of the gate as a component-centric platform. It’s based
on the a model in which JavaBeans™ components contains the business and data logic
for an application, and it provides tags and a scripting platform for exposing the content
generated or returned by the beans in HTML pages. This application logic involves
JavaBeans™ and JDBC™ objects, which can be easily accessed from a JSP page. For
example, a JSP page may contain HTML code that displays static text and graphics, as
well as a method call to a JDBC object that accesses a database; when the page is
displayed in a user's browser, it will contain both the static HTML content and dynamic

information retrieved from the database.[5]

The separation of user interface and program logic in a JSP page allows for a very
convenient delegation of tasks between web content authors and developers. It also
allows developers to create flexible code that can easily be updated and reused. Because
JSP pages are automatically compiled as needed, web authors can make changes to
presentation code without recompiling application logic. This makes JSP a more flexible
method of generating dynamic web content than Java servlets, whose functionality

JavaServer Pages extend. [5][6]

JavaServer Page technology is an extension of the Java Servlet™ API. Servlets are
platform-independent, 100% pure Java server-side modules that fit seamlessly into a web
server framework and can be used to extend the capabilities of a web server with minimal
overhead, maintenance, and support. [7]Unlike other scripting languages, servlets involve
no platform-specific consideration or modifications; they are Java application
components that are downloaded, on demand, to the part of the system that needs them.
Together, JSP technology and servlets provide an attractive alternative to other types of

dynamic web scripting/programming that offers platform independence, enhanced

performance, separation of logic from display, ease of administration, extensibility into

the enterprise and most importantly, ease of use.[4]

3 Requirements and Specifications

3.1 Purpose

The graduate student course register system is going to allow graduate students to
register course via Internet. This system also allows the course registry staffs of the
department in university to do administrative matters that concern with the student course
registry. This project implements an online course registry web site for a department of
an university. The web site can be accessed anywhere through the Internet, and allows the

users to select and register course or assign new course.

3.2 Product Perspective

The finished product will be installed in a computer, which runs a Java web server
(support JDK1.3) and connected to the Internet. The operating system could be any
system if it supports JDK1.3, Windows, Unix/Linux. Data is stored in a small database,

and a database management system is required.

When accessing the system, users would need an Internet connection through a local
Internet Service Provider. Users would use a web browser, such as Internet Explorer 5.0,
and Netscape 4.7. In addition, user will need an email service to retrieve the online

confirm of their course registry and/or drop.

3.3 User Characteristics

There will be four categories of users: students, registry administrative staffers, software

developer and maintenance staff.

3.3.1 Student

A student, currently registered in this department and has student ID, is a person who
select and register courses through the system. Most of them are assumed to be familiar
with the Internet applications, and have experience of using Internet Explorer or

Netscape.

3.3.2 Registry administrative staffs

A registry administrative staffer is a person who supplies the courses listed in the system.
The registry administrative staffer would need to provide the detailed information of the
courses, and update them on time. The registry administrative staffer would also need to
deal with the course registry and dropping deadline dates management. The registry
administrative staffer would also need to deal with the student course dropping
application. An email service is needed for the registry administrative staff to retrieve the

online registry, and contact the students.

3.3.3 Software Developer
A software Developer is a person who developed the system and may participated in
installing the system. They would have the knowledge of the system and configurations.
The system they built should meet the requirements of the university, and may add more

functionality later on. They need to fix any problems reported by the maintenance staff.

3.3.4 Maintenance staffer

A member of the maintenance staffer is a person whose responsibilities include stores,
updates or deletes the user information, and reports any error occurred in the system.
Maintenance staff would have the knowledge of the system, and access to the student and

course data files regularly.

3.4 Functional Requirements Specification

In this section, a more detailed description of each of the system functions will be given.

A forms-based approach will be used. At the begining, we shall describe a standard

template to be used as a guide for requirement specification. The template may have all

or some of the following fields:

Function’s name

Actor: function’s user,

Purpose: function’s objective,

Description: self-explanatory.

Requisite(s): pre-condition(s) that must be satisfied before the function is invoked.

Remarks: additional commentaries about the function.

As mentioned above, more than one actor may access the same function(s). The services
provided by such functions may vary from an actor to another. Hence, more detailed
description is called for as seen below.

The main functional requirements are divided into three groups which are student
requirements and registry administrative staff requirements, and maintenance staff

requirements. they are shown in the use case diagram (Figure 3.1).

Check personal record

Check available courses

Select course and put into
register form

Update register form

Drop course
Reglster courses

Stop the course registry
@d&:m grade for a D

splav student grades of D
/ dl'op course fora @
dlSPlav student list of D

display a student’s current D
display a student’s @

dlsplaw avaxlable courses

Stop the course drop

registry administrativ,

Add a user

/'

Lo n
g1 Delete a user

Dates managemem

|
Mamtenance

staff

Figure 3.1: Use case diagram

The following is the detailed description of each function:

3.4.1 Student requirement functions

3.4.1.1 Login
Actor: All currently registered graduate students of the department.

Purpose: Login the system to register course

Description: The user login the student course register system with personal user
name and password. The system will automatically recognize if the user is a full
time student or part time student and assign the maximum number of courses that

is allowed the user to register within a term.

3.4.1.2 Check personal record
Actor: All currently registered graduate students of the department.

Purpose: Display the user’s personal record.
Description: The actor can display personal record. The record will show all
courses that actor has finished or registered with the grade and the term in which

the actor take the course.

3.4.1.3 Check available courses
Actor: All currently registered graduate students of the department.

Purpose: Allow the user to view the available course list.

Description: All currently available courses with detailed information concerning
with the courses register are displayed. The information includes course name,
course section, course term, course/lab day and time, classroom, professor name,
tutor name and the course prerequisite. For any current course, if there is no

available position anymore, the course will not be displayed.

3.4.1.4 Check course information
Actor: All currently registered graduate students of the department.

10

Purpose: Allow the user to check the detailed information of a course.
Description: The user can view the detailed information about the course and the
information of the professor. The links to the course homepage and the professor

homepage are provided.

3.4.1.5 Select a course and put into register form
Actor: All currently registered graduate students of the department.

Purpose: Allow the user to select course and put into register form.
Description: The user can select a course from the current available courses list

and put it into the course register form.

3.4.1.6 View register form
Actor: All currently registered graduate students of the department.

Purpose: Allow the user to view the content of the register form.
Description: All courses that the user has put into the register form will be listed

in the register form with their name, section and term.

3.4.1.7 Update register form
Actor: All currently registered graduate students of the department.

Purpose: Allow the user to edit the course register form before the final registry.
Description: The user can modify the course register form by removing the course

from the register form. The register form will be updated accordingly.

3.4.1.8 Register courses
Actor: All currently registered graduate students of the department.

Purpose: Allow the user to register the selected courses.
Description: By submit the register form, the user will finally register all courses

in the register form.

3.4.1.9 Apply to drop course
Actor: All currently registered graduate students of the department.

Purpose: Allow the user to apply to drop the selected courses.

11

Description: By submit the drop application form, the user will send the course
drop application to the course registry staffs. The course drop application must be

sent before the drop course deadline.

3.4.2 Maintenance staff requirement functions

3.4.2.1 Add a user
Actor: Administrative staff who is in charge of the student course register system

Purpose: Allow the user to create a new student information and set access right
for each student.

Description: The actor is allowed to create user personal information. The actor
can change them also. When the student is created, the default access right is to

student and the student status (full time or part time) is also created.

3.4.2.2 Delete a user
Actor: Administrative staff that is in charge of the student course register system

Purpose: Allow the user to delete a student information from the student list, then
the student can not use the system anymore.
Description: By providing the student name and student id, the student

information will be deleted from the student list .

3.4.2.3 Dates management
Actor: Administrative staff that is in charge of the student course register system

Purpose: Allow the user to update the course registry deadline date and update the
course dropping deadline date for every semester.
Description: By providing the course registry due date, the course drop deadline

date and selected the semester, the corresponding term’s dates will be updated.

3.4.3 Registration staff requirement functions

12

3.4.3.1 Display a student’s personal record
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to view a student ‘s personal record.
Description: By providing the student name and student id, all courses that the
student has finished will be displayed with their name, term and the student’s

grade.

3.4.3.2 Display available courses list
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to view the currently available courses list.

Description: The currently available courses list is display with the course
information (course name, section, term, course day, course time, professor name,
classroom, lab time, lab day, tutor name, the capacity of the class, current student

number and the course prerequisite).

3.4.3.3 Display student list for a course
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to view the student list of a course.
Description: By providing the course name, section and term information, the

user can view the student list(name and student id) of the course

3.4.3.4 Display a student’s current course
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to view a student ‘s current registered courses.
Description: By providing the student name and student id, all courses that the

student has registered will be displayed with their name and term information.

3.4.3.5 Cancel course for a student
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to delete a course for a student .
Description: By providing the student name and student id, all courses this
student currently registered will be display. The Actor could select a course from

the list and click delete to delete it from the register list for the student.

13

3.4.3.6 Record grade for a course
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to record the student grades for a course.

Description: By providing the course name, section and term information, the
student list of this course will be listed with student name and student id. Along
with every student, there is a grade input box for the user to record the student’s

grade. By submit, the course ‘s student grade will be saved.

3.4.3.7 Display all student grades for a course
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to view all student grades of a course.
Description: By providing the course name, the student grades will be listed with

student name ,student id and student grade.

3.4.3.8 Add a new course
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to create a new course information and set it to be
available to students.

Description: The actor is allowed to create a new course information. The
information includes the course name, section, term, course day, course time,
professor name, classroom, lab time, lab day, tutor name, the capacity of the class

and the course prerequisite.

3.4.3.9 Delete a course
Actor: Administrative staff that is in charge of the student course register affair

Purpose: Allow the user to delete a course from the available course list.
Description: The user deletes a course from the available course list by provide

the course name, section and term information.

14

3.5 System Requirements
The Internet application typically runs on a web server. In this report, JSP and Java will

be the implementation language. To support these requirements, the system will be built
on a platform, which supports Java. Since Java language is platform independent, the
system could be in either Windows 98/2000/NT/XP or Unix/Linux platform with a Java
web server.

In this Student Course Register System, hundreds of data will be stored. The data access
involves reading and writing. Therefore, it will need a database management system to
manage the data.

Based on the above reason, the following is the system requirements:

3.5.1 Platform

Windows 98/2000/NT/XP or Unix/Linux will be the platform for this project. The
minimum requirements for PC are: CPU 486 or higher, 32 MB memory or higher, and 5
GB hard disk or higher.

3.5.2 Java Environment

Java 2 Standard Edition (J2SE™) v1.3 or above contains the essential Java SDK, tools,
runtime environment, and APIs for developers writing, deploying, and running
applications in the Java programming language. It can be downloaded free of charge from
SunJava.[7]

3.5.3 Java Web Server

Resin-2.1.6 Server is used in this project. Resin is a cutting-edge XML Application
Server. It has the fastest Servlets 2.3 engine, supports JSP 1.2. It can be installed in either
Windows or Unix/Linux system. Resin is open source, the latest server version can be
downloaded free from Resin download site.[8] In this system, most use cases involve

interact with the backend database. Most web pages are dynamic pages, and JSP is used

15

to deal with these dynamic pages. Resin is a fast servlet and JSP engine supporting load
balancing for increased reliability. Processing of JSP 1.2 files is the simplest use of
Resin. Unlike Apache server is good in dealing with static pages, resin server is good in
dynamic pages. So I select Resin as the server for this system.
The system security is also very an important problem when select the web server. Resin
server can be configured as a security server. It has three separate functions for its
security configuration: authentication, authorization and encryption. Authentication can
be used to detect the user who is trying to use the resource. It has two kinds of methods to
realize the authentication:

. login-config: How the client sends the user and password.

. authenticator: How the server checks the user and password to authenticate a
user.

For this system, it is a special web site for special users. We will put the server inside

the university’s intranet. So physically, the server should be secure because it is behind
the firewall. In the future work of this system, I will make the server more secure from

physical, network and administrative aspects.

3.5.4 Internet Connection

A steady Internet connection is required for running the web server. DSL high-speed
connection or cable connection is recommended, though dial-up connection with at least

56k bps modem can also be considered.

3.6 User Interface Requirements

A user friendly GUI (Graphic User Interface) is required for frequent visitors to browse
through the web browser. The web browser should be Internet Explorer 5.0 or higher, and

Netscape 4.6 or higher.

The user interface will be transparent to the user, and extremely easy to learn. No special

skills are required to use the system, just the ability to read and understand the displayed

16

textual information. General options are provided on every page so that a user will

always have the opportunity to restart everything from the beginning.

Important Message
Thank you for using this course regis:isr sysism. According to the
Bk institution of the university, a full time s:udent is allowsd to
I register maximum four courses per term and a part time student is
£ allowed to register one courses per term. Registraty and drop a
£ course must meet the fol.owing time table:

o Fers Brgluter duadliae Drap doudliae

P e e o e A e P P AT P S e et e P e

= —_— :
Mt ADF 3 H Ay Wi | Bow, | e o Tadm

3.7 Performance Requirements

The system will provide the concurrent access at any time. MySQL’s maximum
connection default is 100 users. Depending on the Internet connection and the Resin

server specification, [choice that the system can be accessed concurrently by 80 users.

The system response time to a normal request must not exceed ten seconds. In some cases
remote users may experience longer response-times depending on network-traffic
condition over the Internet. For email service, it will take no more than 15 seconds. It

also depends on the Internet connection speed.

17

4 Design

4.1 Design Rationale

My goal in the CRS(Course Registry System) design is to achieve good maintainability
for easy modifying and expending which depend on the designed architecture of the CRS
system. The CRS is the application that leverages Web server, Web clients (such as Web
browsers) and standard Internet protocols. It also typically leverages existing application
and data from external non Web services. The Application Framework for CRS is
designed to be an integrated and consistent collection of APIs, protocols, services, and
conventions that provides an open, standards based, scalable and complete foundation for
developing and deploying web application solutions. At the heart of Framework is a
single, unifying Java-based programming model for building CRS. The JavaServer
Page™ (JSP) is a key component serving as the preferred request handler and response
mechanism. This ensures us to easily develop high quality, maintainable CRS Web

applications.

Figure 4.1 illustrates a three-tier model of CRS Web applications. The client tier is
composed of multiple clients, which request services from the middle tier. The middle-
tier consists of two sub-tiers, the Web Server and Application Server. The Web server
contains JSP pages as event handler, and the Application server contains JavaBean as
dynamic component of logical rules. They access data from the database tier, apply
logical rules to data, and return the results to the client tier. The JSP page and Bean in

middle tier server plays a vital role in three-tier application.

18

Client Side

Server Side

Application
Server

AppServer

Logical

Figure 4.1: System conceptual model

19

4.2 System Architecture

WebServer

Dynamic Content

Java Bea
<<model>>

intercepted
<<controller>

to client
<<view>>

Figure 4.2: System Architecture Diagram of CRS

4.2.1 Architecture Diagram

The CRS system has to respond to asynchronous events from the users and database.
Users are allowed to view or query and even update information of CRS thus interacting
with the system. The Interactive architecture best addresses these requirements. On the
other hand, the system contains no predefined sequence of action and only responds
according to user inputs (either data input or control input), so I identify that CRS system
is event-driven interactive system. The CRS should also have the characteristics of the

user interactivity and friendliness, the database orientation.

The architecture, shown in Figure 4.2, is a hybrid approach for serving dynamic content,

by using JSP. It takes advantage of the predominant strengths of both technologies, using

20

JSP to generate the presentation layer and to perform process-intensive tasks. We chose
Model View Controller as the most procreate pattern for system design. MVC separates
the Model and View, thus offering a way to increase the system modularity. Here, the
JSP page acts as the controller and is in charge of the request depending on the user's
actions. The JSP page forwards the request to the JavaBean as model. Note particularly
that there is no processing logic within the JSP page itself; it is simply responsible for
retrieving any objects or beans that may have been previously created, and extracting the
dynamic content from that servlet for insertion within static templates. This approach
typically results in the cleanest separation of presentation from content, leading to clear
delineation of the roles and responsibilities of the developers and page designers on our

programming team.

As shown in the system architecture diagram in Figure 4.2, the CRS system consists of

the following subsystems:

e User Interface: The Ul allows the general users to interact with the CRS system
through the web using an internet browser, and also some authorized user to use the
system directly through their personal computer with different privileges by inputs

(mouse clicks, keyboard strokes etc.).

e Web Server: It is major design part of CRS system, to handle the user requests from
user inputs. The JSP page in Web server uses logical rules in JavaBean dynamic
component, to get the results. JSP Package (the Controller) consists of sub-
components for SYSTEM module and for users, as shown as in Figure 4.3
Presentation JSP Pages (the View) generates the presentation pages of the response

from JavaBean, and send to client to display in user interface browser.
e JavaBean: It is dynamic component served as the Modael, it receives the information

from Web server and connects the database with the JDBC. It contains formatting

beans, command beans and application logic.

21

e JDBC: the database connection.

e Database: To store the whole information of the CRS system. To receive the SQL

queries and to give the query results out.

The software to be used in the different subsystems in our design can be listed as follows:

e MySQL as relational database.
e Resin-2.1.6 on Windows NT 4.0 /98/2000 or on Linux/Unix as Web server engine.

e JDBC as the connectivity between the Web server and Database server.

Microsoft Internet Explorer or Netscape Browser.

] JSP and Serviet Package

Students Course register System monitor Administration affair Registration officer Registration affair
TN — o —

Figure 4.3: The sub-components in JSP package

4.2. 2 Deployment Diagram

The deployment structure for current CRS system is relatively simple. The client Web
Browser is on client PC. The Web Server engine is Resin on Windows NT/98/2000 or
Unix/Linux. The connection between Web Browser and Web Server is standard internet
protocols, TCP/IP. The system architecture of CRS ensures that it is platform

independent.

22

WebServer |
on Windows NT98
or Unix /Lmux

-} Server: Resin
| DataBase MySQL

Figure 4.4: The deployment diagram of CRS system

4.3 Object Model and Class Diagram

The object model shows the static data structure of the real-world system and organizes
into workable pieces. The object model describes real-world object class and their

relationships to each other.

Class diagram shows classes and the relationships between classes. The class diagrams of
each component of the system are divided into two sections. Due to the simplicity of the
functionality, we classify the user interface (Ul), WebServer, BeanTemplate, JDBC and
Database into the section of the major modules, the class diagram has been shown in

Figure 4.5. All modules in JSP package are classified in another section.

23

4.3.1 Modules in Major Components
4.3.1.1 User Interface Module

The user interface subsystem consists of only one user interface module. The Ul
subsystem is simple to display the interfaces to general or advanced users. It contains the
static text, images, tables, forms, buttons, check boxes, etc. The users can get
information, click on a command button to select a service, do a form processing, and

display a table.
4.3.1.2 WebServer Module

The WebServer module has two attributes: scriptCompiler and scriptInterpreter, and four
functions: compileScript(), runScript(), setClientRequest() and receiveJSPResponse().
4.3.1.3 BeanTemplet Module

As the logical component, the BeanTemplet module consists of several Bean templates,
which are CourseRegisterBean, AdministrationAffairBean and Bean classes for database
functions.

4.3.1.4 JDBC Module

The IDBC consists of two attributes: driverManager and driver, and three member
functions: getConnection (), creatStatement() and executeQuery().
4.3.1.5 Database (DB) Module

The DB module consists two attributes: Entities and Relationship, and three member

functions: readSQL(), runSQL() and returnRsults().

24

v WebServer

E

&pText ; &scriptCompiler
%IBmage ! &scriptinterpreter
j ox ‘
‘&Button - ScompileScript()
&Table . SrunScript()
@Form f ' 9getClientRequest()
 &lmage | - ®receiveJSPResponse()
~ Sdisplay () ‘

¥selectLink ()

StransferMessage ()

Note: YYYY can be

BeanTemplet substituted by the
table name in the
- database. There

—_ is one Bean class

for every table.

CourseRegisterB = | Administration YYYYBean

JDBC | : DB
&ydriverManager ; . @Entities
&pdriver - &Relationship
$getConnection() ? ®readSQL()
QcreateStatement() ~ %runSQL()
®executeQuery() ‘ ~ ®returnResults()

Figure 4.5: Class diagrams of Modules in Major Components

25

4.4 System Topology

- WebServer

Client OS 0S

Figure 4.6: System Topology of CRS

The system topology of CRS is shown in Figure4.6 is composed of two subsystems: Web
Server and Web Browser. Ul is a sub-component of Web Browser. The relationship

between UT and Web Server is the peer-to-peer.
The JSP package is a sub-component of Web server. JDBC connects the JavaBean and
DB (database). The relationships between JSP package and JavaBean, JavaBean and

JDBC, JDBC and DB are of Client/Supplier type.

The bottom layer contains the user operating system and the server operating system.

26

4.5 Data Model

4.5.1 Database Assumptions

Based on the requirement analysis and specification for the CRS System, some

assumptions and constraints are made to develop a high-level description of the data to be

stored in the database, which are listed as follows:

A user should be identified by a unique user name, user [D and have a password for
enter the system. Each user has a level as unique privilege identification for access
the system; The user information must be kept in the database;

There are three levels users: students, registry administration staff, and system
administrator.

The system administrator has privilege to access administration subsystem and cerate
user, set user level, delete user, create course, delete course.

The registry administration staff has privilege to access course registry management
subsystem and drop course for student, record grads for a course, display name list
for a course, display student record, etc.

The student has privilege to access individual course register subsystem, view
his/her individual student record and register individual courses and apply to drop a
course.

The system administrator can create/delete a user and an avacourse.

The student user can create a reglist and a dropcourse. The registry administration
staff can create a sturecord.

The system should store some important dates for the deadline of course registry and

drop course.

4.5.2 Entity-Relation Diagram of CRS Database

csection
cterm

dropcourse sname

avacourse

-\ user
reglist
T G G Cam)

\ sturecord o I
. . cnam
prerequisite — —
grade

Figure 4.7: ER diagram of CRS database

The conceptual design of the CRS database is carried out using the ER model, which
allows us to describe the data at a high level of abstraction. Based on the above
assumptions and constraints, five entities and relationships were chosen to build the ER

diagram as shown in Figure 4.7: ER diagram of CRS database

28

Different shapes and lines are used in this ER diagram and they are illustrated as follows.
The rectangles in the diagram represent entities, the black line rectangles represent weak
entities, the diamonds represent relationships among them. The attributes for an entity or
relationship are given in the ellipses. The primary key in an entity is in bold and
underlined, and a partial key in a weak entity is in bold and italic. The relationship set

can be one-to-one (1:1), one-to-many (1:n), and many-to-many (m:n).

4.5.3 Database Schema

The ER diagram is translated into 6 relations. For each relation (schema), its constitution
will be indicated. The primary key is written in bold. A short description will be given to

the attributes marked by *.

4.5.3.1 user

Entity: user

user (uname:text, pwd:text, uid*:number, level*:number)

Level indicates full time student(4), part time student (1), coordinator(0),

administratior(3); uid indicates the student id number for student.

4.5.3.2 avacourse
Entity: avacourse

avacourse(cname :text, csection ‘text, cterm :text, cday:text, ctime:text, croom:text,

pname: text, capacity*: text, snumber*: text, lday: text, ltime: text, tname: text,
precourse*: number)

capacity indicates the maximum number of students allowed in this section;
snumber indicates the number of students that currently register this course;

precourse indicates no prerequisite course needed(0), need prerequisite course(1).

4.5.3.3 sturecord
Entity: sturecord

sturecord(sid:text, cname:text, grade:text, term:text, sname:text)

29

4.5.3.4 reglist
Relationship:reglist

reglist(cname:text, sid:text, csection:text, cterm:text, sname:text)

4.5.3.5 prerequisite
Entity: prerequisite

prerequisite(cname:text, cprename:text)

4.5.3.6 dropcourse
Relationship: dropcourse

dropcourse t(cname:text, sid:text, csection:text, cterm:text, sname:text)

30

5 Testing and Results

Testing is defined as "The process of exercising or evaluating a system by manual or
automatic means to verify that it satisfies specified requirements or to identify differences
between expected and actual results" (IEEE, 1983).

The testing plan for CRS is based on the requirement specification. The goal is to validate
and verification of this product, to ensure the system’s reliability, availability and
maintainability.

The testing strategy [will use is the bottom-up testing, where testing starts with the
fundamental component and works upwards. [chose bottom-up testing as my testing
strategy because each individual object can be tested using its own test driver (user-
interface, in our system), which is very easy to implement. Then, all objects will be
integrated and the object collection will be tested. A stress testing will be conducted to
try to estimate the max number of people that can access, online, the database

simultaneously.

In defect testing, [will use black-box testing. The tests will be conducted in
different phases of the development. One reason that I chose black-box testing as the
testing strategy is because I could start the tests as early as the program specifications are
set. Therefore, the sooner I start the testing, the least defective our developed system will
be. Another important reason for choosing black-box testing is because it was found to

be more effective in discovering faults than white-box testing (Basili and Selby).

5.1 Environmental Testing

The environment testing is used to determine the server side and client side hardware and

software requirements for this system. The results are listed below:

Server side:

e CPU: Pentium III 800.

e Memory: 256 MB.

e Hard Disk Storage: 40GB.

31

Operating System: Windows 2000 from Microsoft.

Server: Resin-2.1.6 with JSP/Servlet engine, from Caucho technology.

Java Environment: Java 2 Standard Edition from Sun.

Internet Connection: DSL from Bell Sympatico High Speed Edition.

Client side:

e Browser: Internet Explorer 5.0 and Netscape 4.7 at Windows 2000.
¢ Internet Connection: DSL from Bell Sympatico High Speed Edition.
e URL:

Server-Client connection:
e Server and client are in the same computer.

e Server and client are connected through TCP/IP protocol.

5.2 Functional Testing

S.2.1 Test Cases for the Maintenance Module
In this section the test cases of the functionality of the maintenance module is

presented.
5.2.1.1

»»»»»»

“:h EEERs a0 2000 20t 0 00 0000 baaay a2 e
Brofi A wy:n g Wy iBcn |Waw Tan

Test function: user login (User’s authority)

32

Rationale:The system has to check the user’s authority, first, to allow each user use the
functionality of the system. Users have different privilege levels.
Notes: There are three major types of users:

1. Current students;
2. Registrar’s officers;
3. System monitor.

Case: On the system’s entry page, there is a form with two input text boxes for inputting
user name and password. All these are necessary information. If any necessary
information of the student is not filled, the page will not proceed to the next page, the
related field name will be in red color which indicates that the specific information
should be filled or corrected. The message “Please fill in correct information™ will be
provided. After filling the form, click the submit button, if the user is a student, main
page for students will be displayed ; if the user is a registrar’s officer, main page for
registrar’s officers will be displayed ; if the user is a system monitor, main page for

system monitor will be displayed.

5.2.1.2
Test function: add a user

Rationale: To test the correct operation of adding a student.

Case: Upon clicking on the “add a student” button, a form with input text boxes for
student name, student id and student level will appear on the page. The student name,
student id and student level are necessary information. If any necessary information of
the student is not filled, the page will not proceed to the next page, the related field name
will be in red color which indicates that the specific information should be filled or
corrected. The message “Please fill in correct information” will be provided. After filling
the form, click the submit button, this student will be added into the user table and the
message “ the student has been added” will be provided in a new page with all of this

student’s information displayed.

5.2.1.3
Test function: delete a user

33

Rationale: To test the correct operation of deleting a student.

Case: Upon clicking on the “delete a student” button, a form with input text boxes for
student name and student id will appear on the page. All of these are necessary
information. If any necessary information of the student is not filled, the page will not
proceed to the next page, the related field name will be in red color which indicates that
the specific information should be filled or corrected. The message “Please fill in correct
information” will be provided. After filling the form, click the submit button, this student
will be deleted from the “user” table and the message “ the student has been deleted” will

be provided in a new page. This student will not be able to use the system again.

5.2.14

:i‘_tg-t__; DDA e (BB s [EiREnT eRime o

Test function: add a new course

Rationale: To test the correct operation of adding a course.

Case: Upon clicking on the “add a new course” button, a form with input text boxes for
course name, course section and course term course day, course time etc will appear on
the page. The course name, course section, course term, course day, course time and
course capacity are necessary information. If any necessary information of the course is
not filled, the page will not proceed to the next page, the related field name will be in red
color which indicates that the specific information should be filled or corrected. The
message “Please fill in correct information” will be provided. After filling the form, click

the submit button, this course will be added into the available courses table and the

34

message “ the course has been added” will be provided in a new page with all of this

course’s information displayed.

5.2.1.5
Test function: delete a course

Rationale: To test the correct operation of deleting a course.

Case:Upon clicking on the “delete a course” button, a form with input text boxes for
ceurse name, course section and course term will appear on the page. After inputting all
these necessary information. If any necessary information of the course is not filled, the
page will not proceed to the next page, the related field name will be in red color which
indicates that the specific information should be filled or corrected. The message “Please
fill in correct information” will be provided. After filling the form, click the submit
button, this course will be deleted from the available courses table and the message “ the

course has been deleted” will be provided in a new page.

5.2.2 Test Cases for the Registration Module
In this section the test cases of the functionality of the registration module is presented.

5.2.2.1
Test function: record student grade for a course

35

mgag. Aﬁ....’ijn.jﬁc\- I g, i

Rationale: To test the correct operation of recording student grades for a course.
Notes: All student grades will be recorded and the course will be deleted from the
avacourse table. In this function there is a form with a set of mandatory fields to be field

by the user then to be confirmed (submit).

Case:When click the “record grades for a course” button, a form with input text boxes for
course name, course section and course term will appear on the page. After inputting all
these necessary information, click the submit button, the student list of this course will
display in a new HTML page with the course name, course section and course term
information. Every student name and student id will display with a select box for
inputting the grad for this student. The available grade values are A+, A,A- B+,B,B-
,C+,C,C-,Dand F. Ifany necessary information of the course is not input, the message “
Please provide the course information” will be provided. If the course grades has been
recorded already, the message “The grades of this course has been recorded already” will
be provided. After selecting grade for every student, click submit button, the student
grades will be recorded into student record. This can be check by “display student grades

for a course” function.

36

5.2.2.2
Test function: display student grades of a course

—~ S

2R £330

Student grades list:

(i S5t X

Wl 00 B S e 8] oo Jotre folal Pou

Rationale: To test the correct operation of displaying student grades for a course.

Case:Upon clicking on the “Display grades for a course” button, a form with input text
boxes for course name, course section and course term will appear on the page. After
inputting all these necessary information, click the submit button, the student grades of
this course will display in a new HTML page with the course name, course section and
course term information. If any necessary information of the course is not filled, the page
will not proceed to the next page, the related field name will be in red color which
indicates that the specific information should be filled or corrected. The message “Please

fill in correct information” will be provided.

5.2.2.3
Test function: drop course for a student

37

Rationale: To test the correct operation of dropping course for a student.

Notes: We assume the student is valid student and the registration officer get the course
dropping application from the student.

Case: Upon clicking on the “drop course for a student” button, the student’s application
list with student name, student id, the course name, course section and course term will
be listed on the page. Attached with every student name, there is a button. By clicking
the submit button, the selected student’s application will be accepted. A new page will
list all accepted student applications with the message “The applications have been
accepted”. The student name will be deleted from the corresponding course register list
and the course’s register student number will be deducted. This can be shown by “check
the available course” function. At the same time, the accepted application will not appear
again in the student’s application list. This can be shown by re-clicking on the “drop

course for a student” button.

5.2.2.4
Test function: display student list of a course

38

sz-:_ﬁ'EZ‘ o] Gires 3 é;ﬁm

Rationale: To test the correct operation of displaying student list of a course.

Case: Upon clicking on the “display student list of a course” button, a form with input
text boxes for course name, course section and course term will be displayed. All these
information is required to be complete. If any information is not filled, the page will not
proceed to the next page, the related field name will be in red which indicates that the
specific information should be filled or corrected. If the input information is not a current
course, 2 message will provided on a new page, that is “Can not find this course”.

Otherwise, the student list of this course will displayed on a new page.

5.2.25
Test function: display a student’s current course list

Mle I w. fwot Tel wo e Yoot gicamenle. 3 Gon. . |
S UL S e et e 350 D S EGR :

acden TE P v P!

ekt Buses. Wbz rsdaoe

39

Rationale: To test the correct operation of displaying a student’s current course list.

Case: Upon clicking on the “display a student’s current course list” button, a form with
input text boxes for student name and student id will be displayed. All these information
is required to be complete. If any information is not filled, the page will not proceed to
the next page, the related field name will be in red which indicates that the specific
information should be filled or corrected. If the input information is not a valid student, a
message will provided on a new page, that is “Can not find this student”. Otherwise, the

student course list will displayed on a new page.

5.2.2.6
Test function: display a student’s transcript

Dan~n

Dizpluy student student record:

......
— .

: Subest I Clos §

Al Sy @.;%jgm.@ m*{—""u.. g,,,._;!_.._,_;

Rationale: To test the correct operation of displaying a student’s transcript.

Case: Upon clicking on the “display a student’s transcript” button, a form with input text
boxes for student name and student id will be displayed. All these information is required
to be complete. If any information is not filled, the page will not proceed to the next page,
the related field name will be in red which indicates that the specific information should
be filled or corrected. If the input information is not a valid student, a message will
provided on a new page, that is “Can not find this student”. Otherwise, the student’s
transcript will displayed on a new page with the student’s name, student id, all taken

course name, course term and grade.

40

5.2.2.7
Test function: display available courses

Rationale: To test the correct operation of displaying all available courses.

Notes: In this model, all current courses are defined as available courses, no matter if
there are still any available positions in this course.
Case:Upon clicking on the “Display available courses” button, the available courses list

will display in a new HTML page with all information about the course.

5.2.3 Test Cases for the online registry module
In this section the test cases of the functionality of the student online register module is

presented.

5.23.1
Test function: check personal student record

Rationale: To test the correct operation of checking a student’s record.
Case: Upon clicking the “check personal student record” button, ail courses that have
been taken by this student will be listed with course name, taken term and grade. For a

new student, a message like “there is no student record for you™ will be provided.

41

5.2.3.2
Test function: check available courses

Rationale: To test the correct operation of displaying all available courses for student to
select.

Notes: In this model, all current courses are defined as available courses, but only the
course that is not full can be selected by the student to register.

Case:Upon clicking on the “Check available courses” button, the available courses list
will display in a new HTML page with all information about the course. For every course
that has available positions for the student, a “put into register form” button is attached

with it. If the course is full, then there is not a button attached with it.

5233
Test function: check course information

Rationale: To test the correct operation of displaying all information of a course.
Case:Upon clicking on the “Check course information” button, all course name will be
list on the page. Clicking on the course name, a new small window will pop out to
display information(course introduction, course prerequisite and course credit) about this

course and a link to the main page of this course.

5.2.3.4
Test function: select a course and put into register form

)

Put 1nba vagister fors

42

Rationale: To test the correct operation of selecting a course from the available course
list and put it into register form.

Notes: we assume that before entering this module, student’s ID and password has been
verified and accepted. By checking the student’s “level” and his/her current register
status, the capacity of the student register form is assigned. For full time student, 4
courses are allowed to register in a term, for part time student, 1 course a term is allowed.
If the student does not meet a course’s prerequisite, this course can not be put into

his/her register form by this student. A student can not take a course more than once.

Case: Login by a full time student who has not registered any courses, the student can put
maximum 4 courses into his/her register form. If the student didn’t take a course’s
prerequisite courses or the grade is not good enough(below 2.7), when he/she click the
“put into register form” button attached with this course, the message “you are not
allowed to register this course because you do not meet the prerequisite condition” will
appear in a pop up window and the selected course will not appear in the register form..
Otherwise, the student’s register form will display in a new HTML page and the selected
course name will appear in the register form.

If the student’s register form is full, when he/she click the “put into register form” button
attached with this course, the message “Your register form is full” will appear in a pop up
window and the selected course will not appear in the register form.

When the student select a course more that once or select a course he/she has taken
before, when he/she click the “put into register form” button attached with this course,
the message “You have taken this course before” will appear in a pop up window and the

selected course will not appear in the register form.

5.2.3.5
Test function: check/update register form

43

TP

h:q

Yoy 7on verirtar 4 minter nunrie

Vs e semterar

D i S

Rationale: To test the correct operation of checking register form.

Case: By clicking the “check/update register form” button, the student’s register form
will be displayed in a new page with the “submit” button at the bottom of the page. All
selected courses(name, section and term) are display in the form. Attached with every
course, there is a “remove” button. Upon click on a “remove” button, a new page will
display with the updated register form. The removed course will not appear in the new

register form.

5.2.3.6
Test function: register selected courses

Rationale: To test the correct operation of register selected courses.
Case: Upon clicking on the “submit” button on the register form, a new page with the
registered course name list and the message “The following courses have been

registered” will display.

5.2.3.7
Test function: check personal current courses

Rationale: To test the correct operation of checking a student’s current courses.
Case: Upon clicking the “check personal current courses” button, all courses that have

been registered by the student will be listed on the page.

44

5.2.3.8
Test function: apply for dropping course

Rationale: To test the correct operation of application for dropping a course

Case: Upon clicking the “Drop courses” button, all courses that have been registered by
the student will be listed on the page. With every course name that is not been applied for
dropping, there is an “Apply for drop” button. If the drop course application has been
sent with a course, no “Apply for drop” button appears with this course. If the registry
staff has accepted the drop course application, the course will not appear on the page.

By clicking the “Apply for drop” button, the application for drop course will be sent for

this course.

45

6 Conclusion and Future Work

6.1 Conclusion

Separating presentation layer from the logic layer completely is a good design approach.
No more HTML code inside Java code. Java programmers work with pure Java code, so
debugging is much easier. Graphic designers work at HTML with more flexibility. Even
the company has to pay more for graphic designers and maybe it needs more graphic
programmers; the products are for sure more dynamic. Moreover, the product can be

expanded to other devices, such as PDA, WAP, etc.

The work flow for common used JSP page (Java code mix with HTML presentation) is,
first, graphic designer created a HTML page with static information (for example,
“display available course name™);, second, Java programmer replaced the static
information with dynamic information (read available courses information from
database). Therefore, programmers design business logic, graphic designers design a
presentation (HTML), and they will be merged together. Most of dynamic web sites use

this way, because it’s easy and straightforward.

The difficulties of this project are in the design period. A good design can make the
following work easier. I spent many time in designing the database. In the application, I
used not only the Java bean and also the JavaScript technology to deal with the logic.
Sometimes, it is not easy to find a straightforward way to achieve the design goal. I had

to try to use different way and finally selected the best one.

From this project, I have learned the technology of using HTML and JSPs, and designed

the architecture of separating the business logic from presentations in web application.

46

6.2 Future work

6.2.1 Add functionalities

By using the present project, the different kinds of users may find that some useful
functions are not provided by this project, so in the future many functions will need to be

added to this system.

6.2.2 Add course time and classroom management subsystem

As a course registry management system, this system needs to expend its functionalities
in managing course time and classroom when add a new course. By adding course time

and classroom management subsystem, this project will become a

6.2.3 Generate a template web application system

For any software developer, software reuse is an important issue. Software reuse can
reduce the cost of a project. In this project, JSP technology is used. Java language is the
perfect language to write reusable software, this makes the software of this project be
possible as a template of web register application system. In fact, this template also can
be used in e-business web site by online shopping company. When creating a new online
application web site, simply generate a new database, select a suitable application logic

subsystem and a view subsystem and put everything to a web server.

47

7 References

(V3]

Larne Pekowsky, JavaServer Pages
2000, Publishing by Addison-Wesley

Mark H. Butler, Current Technologies For Device Independence

http://www.hplLhp.co.uk/people/marbut/currTechDevInd.htm

Sun's Java Serviet Technology

http://java.sun.com/products/serviet/

. James Goodwill, Developing Java Servlets,

1999, Sams Publishing

Sun’s Java Server Pages technology

http://java.sun.com/products/isp/

Sun Java J2SE1.3
http://java.sun.com/j2se/1.3/

Sun Java J2EE

http://java.sun.com/j2ee

Resin Server download site

http://www.caucho.com/download/index.xtp

48

8 Abbreviations

CRS Course Register System

ASP Active Server Page

API Application Interface

CGlI Common Gateway Interface

DOM Document Object Model

DSL Digital Subscriber Line

DSSSL Document Style Semantics and Specification Language
EJB Enterprise Java Bean

GUI Graphic User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

J2SE Java 2 Standard Edition

J2EE Java 2 Enterprise Edition

JAXP Java API for XML Processing
JDBC Java Database Connectivity

JDK Java Development Kit

JMS Java Message Service

JNDI Java Naming and Directory Interface
JSP Java Server Page

MVC Model-View-Controller

PC Personal Computer

PDA Personal Digital Assistants

PDF Portable Document Format

PHP PHP: Hypertext Preprocessor

SAX Simple API for XML

SGML Standard Generalized Markup Language
SQL Standard Query Language

SVG Scalable Vector Graphics

49

Appendices:

Appendix A: Sample JSP source files

A-1.Display available courses

<% page language="java" import="java.sql.*" %>

<%@. page import="gscrsbean. prerequisity" %>

<%(@ page import="gscrsbean.avacourse" %>

<jsp:useBean id="avacoursebean" scope="page" class="gscrsbean avacourse" />
<jsp:useBean id="prerequisitybean" scope="page" class="gscrsbean.prerequisity” />
<jsp:useBean id="workM" scope="page" class="gscrsbean.dbacc" />

<jsp:useBean id="userSection" scope="session" class="gscrsbean.tmsection" />

<HTML>
<HEAD><TITLE>Available courses page</TITLE></HEAD>

<BODY text="white" link=#0000ff bgColor=#000000 background=images\background. gif>

< CENTER >
<TABLE border="0" cellpadding="1" cellspacing="0" width="100%" align="center">
<TR><TD class=small bgColor=#{fffd5><B class=sans>

AVAILABLE COURSES

</TD></TR></CENTER>

<TABLE align=center>

<TR bgColor=#aaaaaa><TH>Course Name</TH><TH>Section</TH>
<TH>Term</TH><TH>Day</TH><TH>Time</TH><TH>Professor</TH><TH>Classroom</TH><TH>P
ut into register form</TH></TR>

<%

ResuitSet RS = avacoursebean.executeQuery("SELECT
avacourse.cname,avacourse.csection,avacourse.cterm,avacourse.cday.avacourse.ctime.avacourse.croom.ava
course.pname.avacourse.capacity,avacourse.snumber,avacourse.lday.avacourse. Itime.avacourse. tname.avac
ourse.precourse FROM avacourse WHERE avacourse.snumber<avacourse.capacity™);

String t1:
String t2;
String t3:
String t4:
String t5:
String t6;
String t7:
String t8:
String 19:
String t10:
String t11:
String t12:
String t13;
String t14.;
String precou:

50

int i=0;

while (RS.next()) {

%>

<FORM action="mainsr2-1.jsp" method="POST">

<%

i+
t1=RS getString("cname");
=RS.getString("csection");
t3=RS_getString("cterm");
t4=RS.getString("cday");
t5=RS.getString("ctime");
t6=RS.getString("croom");
t7=RS.getString("pname"):
t8=RS.getString("capacity"):
t9=RS.getString("snumber"):
t10=RS.getString("lday");
t11=RS.getString("Itime");
t12=RS.getString("tname");
t13=RS.getString("precourse"):
int pre=Integer.parselnt(t13);
if(pre==1)
tl4="yes":

else t14="no":

if(i%2==1){
out.print("<TR bgColor=#ccccce><TD><input TYPE=textbox size=8 NAME=cname VALUE="+11 +
"></TD><TD><input TYPE=textbox size=3 NAME="csection' VALUE=" + t2+ "></TD> <TD><input
TYPE=textbox size=6 NAME="cterm' VALUE=" + t3+"></TD><TD><input TYPE=textbox size=6
NAME='cday’ VALUE=" + t4+"></TD><TD><input TYPE=textbox size=10 NAME='ctime’ VALUE="
+ t5+"></TD><TD><input TYPE=textbox size=10 NAME="pname' VALUE=" + (7+"><TD><input
TYPE=textbox size=6 NAME='croom’ VALUE=" + t6+"></TD><TD><font size=2
color=darkblue><INPUT type=submit value="Put into register form™></TD></TR>").

H
else if(1%2==0){
out.print("<TR bgColor=#eeeecc><TD><input TYPE=textbox size=8 NAME=cname VALUE=" +t] +
"></TD><TD><input TYPE=textbox size=3 NAME="csection' VALUE=" + 2+ "></TD> <TD><input
TYPE=textbox size=6 NAME="cterm’ VALUE=" + t3+"></TD><TD><input TYPE=textbox size=6
NAME='cday’ VALUE=" + t4+"></TD><TD><input TYPE=textbox size=10 NAME='ctime' VALUE="
+ t5+"></TD><TD><input TYPE=textbox size=10 NAME="pname’ VALUE="+
t7+"></TD><TD><input TYPE=textbox size=6 NAME="croom' VALUE=" +
16+"></TD><TD><INPUT type=submit value='Put into register
form></TD></TR>"):

}
I check prerequisite
if(pre==1){
ResultSet RS1 = prerequisitybean.executeQuery("SELECT prerequisity.pcname FROM prerequisity
WHERE prerequisity.cname=""+t1+"");

out.print("<tr><td>Prerequisite: </td>"):
while (RS1.next()) {

precou=RS.getString("pcname”):
out.print("<td><input TYPE=textbox size=8 NAME=precou VALUE=" + precou+"></td>").

h

%>
</tr>
</FOEM>
<%

51

}
RS1.close():
%>

<TR>

<TD colSpan=4><IMG height=1 alt=pixel src=" images\grey-pixel.gif" width="100%" align=top
vspace=6>

</TD>
<TD colSpan=4><IMG height=1 alt=pixel src=" images\grey-pixel.gif" width="100%" align=top
vspace=6>

</TD>

</TR>

</FORM>
<%

}

RS.close();
%>
</TD></TR>
</TABLE>
</CENTER>
</BODY></HTML>

A-2 select a course and put into register form

<%(@ page language="java" import="java.sql.*" %>

<%i(@ page import="gscrshean.avacourse" %>

<%(@ page import="gscrsbean.reglist" %>

<%(@ page import="gscrsbean.sturecord" %>

<%/@ page import="gscrsbean.regform” %>

<jsp:useBean id="avacoursebean" scope="page" class="gscrsbean.avacourse" />
<jsp:useBean id="reglistbean" scope="page" class="gscrsbean.reglist" />
<jsp:useBean id="sturecordbean" scope="page" class="gscrsbean.sturecord” />
<jsp:useBean id="workM" scope="page" class="gscrsbean.dbacc" />
<jsp:useBean id="userSection" scope="session" class="gscrsbean.tmsection” />
<jsp:useBean id="regformbean" scope="session" class="gscrsbean.regform" />
<HTML>

<HEAD>

<TITLE>Content</TITLE>

</HEAD>

<BODY text=vellow link=#0000ff bgColor=#FFFFFF background=images\background.gif>

<table align="center">

 <tr><td bgcolor=#eeeecc align="center">

You have put the following courses into vour register form:

<ftd></tr>
</table>

<FORM method="POST" action="mainsr2.jsp">

52

<table align="center">
<%
String sname=userSection.getUserName():
String sid=userSection.getUserPassword();
String cname=request.getParameter("cname”);
String csection=request.getParameter("csection”);
String cterm=request.getParameter("cterm").
String [] precous=request. getParameter Values("precou"):
double GPA=0; //average GPA for a course
double count=0: /ftotal GPA
int mark=0: //is there a prerequisite has not been taken? 0:no: 1:yes.
double pregpa=0://gpa of a prerequisity course
String precou:
String DEC="";
if(regformbean. getStatus()==0)
out_print("<tr><td width=500 align=center>You are not allowed to
register more course! </td></tr>"):
else {
/ check repeat status
if((reglistbean. searchcourse(cname, sidy==0)||(sturecordbean.searchcourse(cname.sid)!=0))
ResultSet RS = sturecordbean.executeQuery("SELECT sturecord.grade FROM sturecord WHERE
sturecord.cname=""+ cname +" AND sturecord.sid=""+ sid +""):
ResultSet RS2 = reglistbean.executeQuery("SELECT * FROM reglist WHERE reglist.cname=""+ cname
+lll AND regﬁSt.Sid'——m'{’ sid +Il|l');
String t1:
int c=0;
while (RS.next()) {
cHt;
t1=RS. getString("grade"):
}
RS.close():
while (RS2.next() {
cH+;
3
RS2 .close():
if(c!=0)
out._print("<tr><td align=center width=500>You have registered this
course before!</td></tr>");
else {
{{~~=eee————check prerequisite
if (precous == null)
{//mo pre
int result=regformbean.addCourse(cname. csection. cterm):
if(result=1)
out.print("<tr><td width=500 align=center>Your register form is
currently full!<Ad><Ar>"):
if(result==2)
out.print("<tr><td width=500 align=center>This course has already in
vour register form!<Ad><Ar>");
else{
int st=regformbean. getStatus():
for(int i=0:i<st:i++)
{
cname=regformbean.getCourseName(i):
csection=regformbean. getCourseSection(i):
cterm=regformbean.getCourseTerm(i);

53

if(cname!="")
out.print("<TR bgColor=#aaaaaa><TH>Course
name</TH><TD>"+cname+"</TD>
<TH>ection</TH><TD>"+csection+"</TD><TH>Term</TH><TD>"+cterm+"</TD></TR>");
H
H
}
else{
int cnum=precous.length: //number of prerequistie courses
String pregrade="":
for (int i = 0; i <cnum; i++)
{
precou=precous{i];
ResultSet RS1 = sturecordbean.executeQuery("SELECT sturecord.grade FROM sturecord
WHERE sturecord.cname=""+ precou +" AND sturecord.sid=""+ sid +"");
String t2;
int j=0:
while (RS1.next())
{
jH
pregrade=RS 1. getString("grade");
}
if(==0)
mark=1;
RS1.close():
if(pregrade.equals("A+")) pregpa=4.3:
else if(pregrade.equals("A")) pregpa=4.0:
else if(pregrade.equals("A-")) pregpa=3.7:
else if(pregrade.equals("B+")) pregpa=3.3:
else if(pregrade.equals("B")) pregpa=3.0:
else if(pregrade.equals("B-")) pregpa=2.7:
else if(pregrade.equals("C+")) pregpa=2.3;
else if(pregrade.equals("C")) pregpa=2.0:
else if(pregrade.equals("C-")) pregpa=1.8:
else if(pregrade.equals("D")) pregpa=1.5:
else pregpa=0.0:
count+=pregpa:
}
if(mark==1)
out_print("<tr><td width=500 align=center>You have not taken all the
prerquisity course!</td></tr>"):
elsef
GPA=count/cnum:
if(GPA<2.7)
out.print("<tr><td width=500 align=center>You prerquisity ourse GPA
doesn't meet the requirement!<Ad></Ar>"):
else{
int result=regformbean.addCourse(cname, csection. cterm);
if(result==1)
out.print("<tr><td width=500 align=center>Your register form is
currently full!<Ad></r>"):
if(result==2)
out.print("<tr><td width=500 align=center>This course has already in
your register form!!</td></tr>");
elsef{
int st=regformbean.getStatus().

54

for(int i=0i<st:i++)
{
cname=regformbean.getCourseName(i):
csection=regformbean. getCourseSection(i):
cterm=regformbean. getCourseTerm(i);
if(cname!="")

out.print("<TR bgColor=#aaaaaa><TH>Course
name</TH><TD>"+cname+"</TD>
<TH>Section</TH><TD>"+csection+"</TD><TH>Term</TH><TD>"+cterm+"</TD></TR>"):
oy
%>
<fd></fr>
</table>
<table align=center>

 <tr><td><INPUT type="submit" value="Continue to select course"></td></tr>
<ftable>
</FORM>
<FORM method="POST" action="mainsr3.jsp">
<table align=center>

<tr><td><INPUT type="submit" value="Send or edit register form"></td></tr>
</table>
</FORM>
</BODY></HTML>

A-3 register the courses

<%@ page language="java" import="java.sql.*" %>
<%(@ page import="gscrsbean reglist" %>
<jsp:uscBean id="reglistbean" scope="page" class="gscrsbean.reglist" />
<jsp:useBean id="workM" scope="page" class="gscrsbean.dbacc" />
<jsp:usecBean id="userSection" scope="session" class="gscrsbean.tmsection" />
<jsp:useBean id="regformbean" scope="session" class="gscrsbean.regform" />
<HTML>
<HEAD>
<TITLE>Content</TITLE>
</HEAD>
<BODY text="#FFFFFF" link=#0000ff bgColor=#FFFFFF background=images\background.gif>

<table border="0" cellpadding="0" cellspacing="0" width="400" align="center">
<tr><td width=100% bgcolor=#003399 align=nowrap >
 - You have register the following courses:
<ftr>
<%
String sname=userSection.getUserName():
String sid=userSection. getUserPassword():
int level=userSection.getUserLevel():
String cname;
String csection;
String cterm;

55

int s=regformbean. isEmpty():
if(s==0)
out.print("<tr><td width=400>Your register form is currently empty!</td></r>"):
elsef
int st=regformbean.getStatus();
for(int i=0:i<st:i++)
{
cname=regformbean. getCourseName(i):
csection=regformbean._getCourseSection(i):
cterm=regformbean. getCourse Term(i):
if(cname!=""){
reglistbean_createreglist(cname.sname. sid_csection.cterm.0);
int re=regformbean.deleteCourse(cname.csection.cterm):
out.print("<tr><td width=100>" + cname + "<td width=100>" + csection +"<td width=100>" + cterm):
regformbean.updateStatus(): }
]
s

H
%>
</TABLE>
</BODY></HTML>

A-4 record grades for a course

<%@ page language="java" import="java.sql.*" %>

<%(@. page import="gscrsbean.reglist" %>

<%@ page import="gscrsbean.temp" %>

<jsp:useBean id="reglistbean" scope="page" class="gscrsbean.reglist" />
<jsp:useBean id="workM" scope="page" class="gscrsbean.dbacc" />
<jsp:useBean id="tempbean" scope="session" class="gscrsbean.temp" />

<HTML>
<HEAD><TITLE>Content mainad10-1</TITLE>
<META http-equiv=Content-Type content="text/html: charset=gb2312">
</HEAD>
<BODY text="#FFFFFF" link=#0000ff bgColor=#FFFFFF background=images/background.gif>
<P> :</P>

<!--Begin of different code -->
<!-Begin of different code -—>
<table border="0" cellpadding="0" cellspacing="0" width="100%" align="center" valign="bottom">
<FORM action="mainad10-1-1.jsp" method="POST">
<table border="0" cellpadding="0" cellspacing="0" width="100%" align="center">
<tr><td bgcolor=#eeeecc align="center" >
Please input student grades:

56

</td></tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" width="100%" align="center">
<%
String DES="";
String cname=request.getParameter("cname"):
String csection=request.getParameter("csection").
String cterm=request. getParameter("cterm"):
int i=0:

/l====check whether all necessary parameters are available:
if(cname.equals(DES))

out.print("
<center>Please provide course name!</center>

"):
else if(csection.equals(DES))

out.print("
<center>Please indicate the course section!</center>

"):
else if((cterm.equals(DES)))

out.print("<center>

Please indicate the course term!</center>

"):
else {

tempbean.setSTR 1 (cname):

tempbean.setSTR2(csection);

tempbean.setSTR3(cterm);

ResultSet RS = reglistbean executeQuery("SELECT reglist.sid reglist sname FROM reglist WHERE
reglist.cname=""+ cname +" AND reglist.csection=""+ csection +" AND reglist.cterm=""+ cterm +"""):

String tl:
String t2;
out. print("<tr><td >Course Name: " + cname
+" : . Section: "+csection +" :; : : Term: "+cterm +" <Atd></tr>"):
%>
<TR>
<TD colSpan=4><IMG height=1 alt=pixel src=" images/grey-pixel.gif" width="100%" align=top
vspace=6>
</TD>

</TR>
<%
while (RS.next()) {
I++;
t1=RS.getString("sname"):
t2=RS.getString("sid"):

out.print("<tr><td>"+i+"<input TYPE=textbox NAME=sname VALUE=" + t1 + ">"+"<input
TYPE=textbox NAME=sid VALUE=" + R2+"></td></tr>");
%><tr><td><select name="grade">
<option selected>A+
<option>A <option>A- <option>B+ <option>B <option>B- <option>C+ <option>C
<option>C- <option>D+ <option>D <option>D- <option>F
</select></td></td>
<%

}

RS.close():
if(i==0)
out. print("<tr><td>This course is not a current course! </td></tr>");

H

57

if(i!=0){

%>

<ftd></tr>
<tr><td align="center"><INPUT type="submit" value="Submit">
<INPUT type="reset" value="Clear™></td></tr>

<%

}

%>

</TABLE>

</FORM>

</TABLE>

</BODY></HTML>

58

Appendix B: Sample JavaBean

B-1 dbacc bean

package gscrsbean:
import java.sql_*:
public class dbacc {
String sDBDriver = "org.gjt. mm.mysql.Driver”:
String sConnStr = "jdbc:mysql://localhost/gscrs™
Connection conn = null;
ResultSet rs = null;
public dbacc() {
try {
Class.forName(sDBDriver):
H
catch(java.lang.ClassNotFoundException €) §
System.err.printin("dbacc(): " + e.getMessage()):
H
H
public ResultSet executeQuery(String sql) {
rs = null:
try {
conn = DriverManager.getConnection(sConnStr):
Statement stmt = conn.createStatement():
rs = stmt.executeQuery(sql):

}
catch(SQLException ex) {
System.err.printIn("dbacc.executeQuery: " + ex.getMessage()):

System.err.printin("Run Query:"):
if(rs==null)
System.err.printin("Run Query null:"):
else
System.err.printin("Run Query ok:"):
return rs;
h
public void executeUpdate(String update)
{
try {
conn = DriverManager.getConnection(sConnStr);
Statement stmt = conn.createStatement():
stmt.executeUpdate(update).
}
catch(SQLException ex) {
System.err.printin("dbacc.executeUpdate: " + ex.getMessage()):

H
H

59

B-2 avacourse bean

package gscrsbean;
import java.sql.*;
public class avacourse {
String cname:
String csection;
String cterm:
String croom;
String pname;
int capacity:
int snumber:
String ctime;
String cday;
String Itime:
String Iday:
String tname:
int prerequisity:
String prel:
String pre2:
String pre3:
String pre4:
String pre5:
String sDBDriver = "org. gjt.mm.mysql.Driver":
String sConnStr = "jdbc:mysql://localhost/gscrs™:
Statement stmt =null:
ResultSet rs = null:

public avacourse() {
try {
Class.forName(sDBDriver):
H
catch(java.lang.ClassNotFoundException e) {
System.err.printin("mylogin(): " + e.getMessage()):
}

H

public int createavacourse(String cname, String csection. String cterm. String cday. String ctime, String
croom.String pname. int capacity.int snumber. String Iday.String Itime, String tname.int prerequisity) {
int count=0;,

try {
if (rs !=null) rs.close():
if (stmt != null) stmt.close():
Connection conn = DriverManager.getConnection(sConnStr):
stmt = conn.createStatement();
StringBuffer query=new StringBuffer(300):
query.append("INSERT INTO avacourse VALUES ("):
query.append(cname);
query.append(™ . "):
query.append(csection);
query.append("™ . "™):
query.append(cterm);

60

query.append("' s m):
query.append(cday).
query.append(™ , '),
query.append(ctime);
query.append("™ . ');
query.append(croom);
query.append(™ . ")
query.append(pname):
query.apmﬂd('" . m):
query.append(capacity).
query.append(" .).
query.append(snumber);
query.append(™ . '"):
query.append(lday);
query.append(™ . "):
query.append(ltime);
query.append(™ . *):
query.append(tname):
query.append(™ . ™).
query.append(prerequisity):

query.append(™')").
System_err.printin("Query sentences is: " + query.toString() +"\n").
stmt executeUpdate(query.toString()):
ycatch(SQLException ex) {
System.err.printin("addCourse.executeQuery: " + ex.getMessage()):
return 1:
H
return 0;,
}

public int defprecourse(String cname. String prel.String pre2.String pre3.String pred4.String pre3) {
String DES="";
String[] A=new String([5]:
A[O]=prel:
A[l]=pre2:
A[2]=pre3:
A(3]=pred:
A[4]=pre5:
int C=0: //counter used for counting the number of prerequisity courses
for(int i=0:i<3:i++)
{

if(!A[i].equals(DES))

C++:

}

for(int j=0:j<C:j++)
{

int count=0;
try {

if (rs I= null) rs.close();
if (stmt != null) stmt.close();

61

Connection conn = DriverManager.getConnection(sConnStr):
stmt = conn.createStatement():
StringBuffer query=new StringBuffer(300);
query.append("INSERT INTO prerequisity VALUES ("),
query.append(cname),
query.append(™ . "),
query.append(A[j]).
query.append(™)");
System.err.printin("Query sentences is: " + query.toString() +"\n"):
stmt.executeUpdate(query.toString()):
jcatch(SQLException ex) {
System.err.printin("addPreCourse.executeQuery: " + ex.getMessage()):
return 1;
H
return 0;

}

public int deleteavacourse(String cname. String csection. String cterm) {
int count=0;

try {
if (rs != null) rs.close():
if (stmt != null) stmt.close():
Connection conn = DriverManager.getConnection(sConnStr):
stmt = conn.createStatement();
StringBuffer query=new StringBuffer(100):
query.append("DELETE * FROM avacourse "):
query.append("WHERE avacourse.cname="");
query.append(cname):
query.append(" ");
query.append("AND).
query.append(" avacourse.csection="").
query.append(csection):
query.append("™ "):
query.append("AND "):
query.append(" avacourse.cterm=""):
query.append(cterm);
query.append(™ "):

System.err.printIn("Query sentences is: " + query.toString() +"\n"):
stmt.executeUpdate(query.toString()):
tcatch(SQLException ex) {
System.err.printin("deleteavacourse.executeQuery: " + ex getMessage()):
return 1;

H
return 0;

public ResultSet executeQuery(String sql) {
try {
if (rs '=null) rs.close():

62

if (stmt != null) stmt.close();
Connection conn = DriverManager.getConnection(sConnStr);
stmt = conn.createStatement();

1s = stmt.executeQuery(sql):

H
catch(SQLException ex) {
System.err.println("dbacc.executeQuery: " + ex.getMessage()):

System.err.printin("Run Query:"):
if(rs==null)
System_err.printin("Run Query null:");
else
System.err.printin("Run Query ok:"):
return rs;

1
1)

B-3 regform bean

package gscrsbean:
import java.sql.*;
public class regform {

String studentname:
String studentid:
String [] coursename:
String [] coursesection:
String [] courseterm;
int status;

public regform(){}

public void createRegform(String sname. String sid.int s) {

studentname=sname:
studentid=sid;
status=s;
coursename= new String[s]:
coursesection= new String(s]:
courseterm= new String(s]:
for(int i=0;i<s:i++)
{
coursenameli}]="":
coursesection[i]="":
courseterm{i]="":

return;
H

public int getStatus(){ //how many course the student can register

63

return status:
}

public void updateStatus(){ //change status when register a course
status--:
}

public int checkStatus(){//if the student have select full course
for(int i=0;i<status:i++)
{
if(coursenamefij]=="")
return i;
¥
return -1:

public int checkRepeat(String cname){//if the couse has been in the form
for(int i=0:i<status;i++)

{System.err.printin("cname is"+cname):
System.err.printin("coursename”+i+" is"+coursename[i]):
if(coursename(i].equals(cname))

return O;
}
System.err.printin("Not found repeat!"):
return 1:

3

public int isEmpty(){//is there any couse in the form
for(int i=0:i<status:i++)
{
if(coursename(i}!="")
return 1;
1
return 0:

H

public int addCourse(String cname. String csection. String cterm) {
/fput a course into register form
int t=checkStatus();
if(=-1)
{
System.err.printin("register form full!"):
return 1:
}
else {
if(checkRepeat(cname)==0)
{ System.err.printIn("repeated course!"):
return 2;
H

64

elsef
coursenameft]=cname:
coursesection[t]=csection:
courseterm{tj=cterm:
return 0;

-

public int deleteCourse(String cname, String csection. String cterm){
System.err.println("begin todelete course:"+cname):
for(int i=0:i<status:i++){
System.err.printIn("course{i] name: " +coursenamefi]):
if(coursename(i].equals(cname)&&coursesection(i].equals(csection)&&courseterm[i].equals(cterm))
{ System.err.printIn("delete course!"):
coursenamefi]=""":
coursesection[i]="":

courseterm{i}]="":
return O:
}
H
System.err.printin("Did not delete course!"):
return 1;
H

public String getCourseName(int s) {
return coursenamel(s|:
H

public String getCourseSection(int s) {
return coursesection(s):
H
public String getCourseTerm(int s) {
return courseterm(s):

H

B-3 dropcourse bean

package gscrsbean:

import java.sql.*:

public class dropcourse {
String cname:

65

String sname:
String sid:
String csection:
String cterm;
String sDBDriver = "org. gjt. mm.mysql.Driver":
String sConnStr = "jdbc:mysql:/localhost/gscrs™
Statement stmt =null;
ResultSet rs = null;

public dropcourse() {
try {
Class.forName(sDBDriver);
}
catch(java.lang. ClassNotFoundException e) {
System.err.printin("mylogin(): " + e.getMessage()):

}
H
public int createdropcourse(String sname. String sid. String cname. String csection.String cterm) {
int count=0;
try {

if (rs = null) rs.close():
if (stmt != null) stmt.close():
Connection conn = DriverManager.getConnection(sConnStr);
stmt = conn.createStatement():
StringBuffer query=new StringBuffer(300):
query.append("INSERT INTO dropcourse VALUES ("):
query.append(sname):
query.append(™ . "™):
query.append(sid):
query.apmnd(m . m):
query.append(cname);
query.append(™ . ")
query.append(csection);
query.append(™ . "™):
query.append(cterm);
query.append(™)"):
System.err.printin("Query sentences is: " + query.toString() +"\n"):
stmt.executeUpdate(query.toString()):
}catch(SQLException ex) {
System.err.printin("createdropcourse.executeQuery: " + ex.getMessage()).
return 1:
H
return 0;

public int deletedropcourse(String sid, String cname, String csection, String cterm) {
count=0;

try {
if (rs = null) rs.close():
if (stmt != null) stmt.close():
Connection conn = DriverManager.getConnection(sConnStr);

66

int

stmt = conn.createStatement():

StringBuffer query=new StringBuffer(100):

query.append("DELETE * FROM dropcourse "):

query.append("WHERE dropcourse.cname="");

query.append(cname);

query.append(™ "),

query.append("AND "):

query.append(” dropcourse.sid="").
query.append(sid):

query.append(™ "):

query.append("AND ");

query.append(" dropcourse.csection="");
query.append(csection):

query.append(™ "):

query.append("AND "):

query.append(" dropcourse.cterm="");
query.append(cterm):.

query.append(™ "):

System_err.printIn("Query sentences is: " + query.toString() +"\n"):
stmt.executeUpdate(query.toString()):

ycatch(SQLException ex) {
System.err.printin("deletedropcourse.executeQuery: " + ex.getMessage()):
return 1:
H
return 0;
H

public ResultSet executeQuery(String sql) {
try {
if (rs !=null) rs.close():
if (stmt != null) stmt.close():
Connection conn = DriverManager.getConnection(sConnStr):
stmt = conn.createStatement()-

rs = stmt.executeQuery(sql):
!
catch(SQLEXxception ex) {
System.err.println("dbacc.executeQuery: " + ex.getMessage()):

}
System.err.printin("Run Query:"):
if(rs==null)
System.err.printin("Run Query null:");
else
System.err.printin("Run Query ok:"):
return rs;
}

67

Appendix C: The installation instructions

C-1 Installing JDK

In order to run this web site, you need to install JDK as Java environment.

C-1.1 Widows

For Windows environment, you can download the Java 2 SDK at Sun’s Web site:

http://java.sun.com/j2se/1.3/download-windows.html. When the download is complete,

double-click the file, the installer starts running. To complete the installation, you need to

configure two environment variables: JAVA_HOME and PATH. You can do this through

the control panel.

C-1.2 Linux
For Linux environment, you can point your browser to

http://java.sun.com/j2se/1.3/download-linux.html. Download and save the file in the

/tmp/ directory. You also can find the installation document at the same Web site. Install

the JDK according to the instruction of the installation document.

C-2 Installing Web server—Resin-2.1.6

C-2.1 Windows

Download the resin-2.1.6.zip at the Web site: http://www.resin.com/download-widows,

unzip resin-2.1.6 and execute resin-2-1-6/bin/httpd, the Web server will be set up.

Browse http://localhost:8080, the resin default page should be shown.

68

C-2.2 Linux

Download the resin-2.1.6.tar.gz at the Web site: http://www.resin.com/download-linux

and save it to /tmp/. As root, cd to /tmp and type tar —vzxf resin-2.1.6.tar.gz to install the
resin-2.1.6 Web server. Execute resin-2.1.6/bin/httpd.sh to start the Web server. Browse

http://localhost:8080, the resin default page should be shown.

C-3 Installing MySQL
C-3.1 Windows

Download MySQL from http://www.mysql.com/download/mysqi-3.23 html.

Save the ZIP file. When the file is finished downloading , open it from the directory
where it was saved and extract the zip file to a directory. You’ll find the SETUP.EXE file

in that directory. Run it to install MySQL.

C-3.2 Linux

Download MySQL from http://www.mysql.com/download/mysql-3.23 html.

If you download the RPM version, save them to /tmp, cd to /tmp and ,as root, do an rpm
—install on each of the files to install them. If you download the tar.gz version, following

the install procedure provided by the installation document to install MySQL.

69

C-4 Installing JDBC for MySQL

Download the latest version of the MM.MySQL driver from

http://sourdeforge.net/projects /mmmysql. Open a command prompt(Windows) or use the

command cd /tmp(Linux). Run the following command:
jar xf mm.mysql-(version number)-you-must-unjar-me.jar
From the directory created by the above command, copy the file mm.mysql-(version

number)-bin.jar to the lib directory of the Resin-2.1.6.

C-5 Installing the Web site files

Copy all jsp files, .html files and images to the Resion-2.1.6/doc. Copy all _java files to
the Resion-2.1.6/doc/WEB-INF/classes. Copy MySQL database files to the directory

mysql/data(Windows) or var/lib/mysl(Linux).

70

