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Abstract

Simulation of Position-Based Routing Algorithms in Wireless Ad hoc Networks

with Irregular Transmission Ranges

Hai Xiao Chai

In wireless mobile ad hoc networks (MANETS), there are two main categories of routing
protocols: flooding-based and position-based. Flooding-based protocols waste precious
bandwidth in wireless networks; while position-based protocols attempt to reduce the
bandwidth used for control traffic. Many of the position-based protocols use a unit disk
graph model for the network and thus implicitly assume a uniform transmission range for
mobile hosts. However, this assumption may not be true in reality. Due to the irregular
transmission range, it may not be as straightforward to extract a planar and connected
subgraph on which to perform routing. In [1], a position-based routing algorithm that can
handle irregular transmission range and guarantee delivery of messages is presented. In
this project, we simulate the irregular transmission range scenario and compare the
performance of five routing protocols in this scenario: Dijkstra’s shortest path[4],

Greedy routing[13], Perimeter routing[3], GPSR[10] and RPBR[1].

iii



Acknowledgements

The simulations in this project are totally based on the theory in the paper “Robust
Position-Based Routing in Wireless Ad-hoc Networks with Irregular Transmission
Ranges” by Lali Barriere, Pierre Fraigniaud, Lata Narayanan and Jaroslav Opatrny. In
that paper, the proof of the correctness of the algorithm is provided. Ireally appreciate
the instruction and help from Dr. Lata Narayanan. Without her support, I would not have

been able to correctly implement the routing algorithms simulated in this project.

v



Table of Contents

List of Figures

Introduction
1.1 Flooding-based Routing Protocols
1.1.1 Dynamic Source Routing
1.1.2 Destination-Sequenced Distance-Vector Routing (DSDV)
1.1.3 Ad Hoc On-Demand Distance Vector (AODV)
1.2 Position-based routing protocols
1.2.1 Location-Aided Routing (LAR)
1.2.2 Greedy Routing
1.2.3 Perimeter Routing
1.2.4 Greedy Perimeter Stateless Routing for wireless network

1.3 Organization of the report

Robust Position-based Routing in wireless Ad Hoc Network with
Irregular Transmission Ranges
2.1 Problems caused by irregular transmission ranges
2.2 The Routing Scheme
2.2.1 Overview
2.2.2 The completion phase
2.2.3 The extraction phase
2.2.4 The routing phase

Protocol Simulation

3.1 Requirement and specification
3.1.1 Hardware requirement
3.1.2 Software requirement

3.2 Use case diagrams

3.3 Design

3.4 GUI simulation

3.5 Console simulation

Simulation Results and Analysis
4.1 Results
4.1.1 Effects of density of nodes
4.1.2 Effects of R/r Ratio
4.1.3 Effects of Pheighbor
4.2 Analysis summary

Conclusions

References

<
-

—
—_ O WV dO WP

—
N

13

13
15
15
15

20
21
22
22
24
24
25
27
30
33

34
35
35
41
46
52

54

55



Figl.1
Fig 1.2
Fig 1.3
Fig 1.4
Fig 1.5
Fig 1.6
Fig 2.1

Fig2.2
Fig23
Fig24
Fig 3.1
Fig 3.2
Fig 3.3
Fig34
Fig 3.5
Fig4.1
Fig4.2
Fig4.3
Fig4.4
Fig4.5
Fig4.6
Fig4.7
Fig4.8
Fig4.9
Fig 4.10
Fig4.11
Fig 4.12
Fig4.13
Fig4.14
Fig 4.15
Fig 4.16
Fig4.17
Fig4.18

List of Figures

The transmission range is a disk with radius R.

The transmission range varies between r and R.

Explain whether to retain an edge in the Gabriel graph or not.

An example of LAR.

Two examples of Greedy routing, one fails another succeeds.
Perimeter routing from v, to v s .

Host « and v have inconsistent views on whether to retain the edge
{u, v} in the Gabriel Graph or not.

Virtual edge {u, v } = (u, w, v).

The length of ve(v, w)is 2

The length of ve(x, w)is 3

GUI simulation use case

Console simulation use case

GUI simulation class diagram

Console simulation class diagram

Screen shot of the GUIL

Effect of density of nodes on failure rates.

Effect of density of nodes on lengths of routes.

Effect of density of nodes on the average length of virtual edges.
Effect of density of nodes on the distribution of lengths of virtual edges
Effect of density of nodes on the percentage of virtual edges in GG.
Effect of density of nodes on the percentage of virtual edges in RPBR.
Effect of R/r ratio on failure rates.

Effect of R/r ratio on lengths of routes.

Effect of R/r ratio on the average length of virtual edges.

Effect of R/r ratio on the distribution of lengths of virtual edges
Effect of R/r ratio on percentage of virtual edges in GG.

Effect of R/r ratio on percentage of virtual edges in RPBR.

Effect of Preighsoron failure rates.

Effect of Ppeighsoron the length of routes.

Effect of Preighvoron the average length of virtual edges.

Effect of Preighbor On the distribution of lengths of virtual edges
Effect of Ppeighsoron the percentage of virtual edges in GG.

Effect of Phreighboron the percentage of virtual edges in RPBR.

vi



1. Introduction

An ad hoc network is a kind of a local area network (LAN). In Latin, ad hoc literally
means "for this", meaning "for this purpose only", and thus implies temporary. An ad
hoc network can be temporarily formed by mobile or portable devices when there are
messages that need to be delivered. Devices use the network to communicate with each
other by wireless links. Two nodes that are within each other’s transmission range are
connected neighbors in the network. Not all nodes are within each other’s transmission
ranges; this implies the need for a multi-hop routing protocol, where intermediate nodes
must forward packets on behalf of the other nodes. An ad hoc network does not have a

fixed topology. As the mobile devices move, the topology can change.

Routing in wireless mobile ad hoc networks is different from routing in wired networks.
Wired networks usually have a fixed topology (such as bus, ring and star topology) and
have adequate bandwidth. They don’t need frequent updates of routing tables, and in any
case, broadcasting control packets uses only a small amount of the total bandwidth. In
contrast, ad hoc wireless networks have a changing topology, at the same time as having
limited bandwidth. Ad hoc networks are also different from other infrastructure wireless
network systems such as WLANS (wireless LANs); an ad hoc wireless network is an
infrastructureless network. Each mobile node operates not only as a host but also as a
router, forwarding packets for other mobile nodes in the network that may not be within
direct wireless transmission range of each other. Each node participates in an ad hoc
routing protocol that allows it to discover multi-hop paths through the network to any

other node.



There are mainly two types of routing protocols in ad hoc wireless networks: flooding-
based and position-based. Flooding-based routing protocols broadcast routing discovery
messages over the entire network in order to find a route from source to destination.
Each node may cache a routing table. A stale routing table can cause routing failures,
and so, routing tables have to be up-to-date. Therefore, control messages are broadcasted
periodically or whenever a change of topology is detected. In a wireless mobile network,
bandwidth is limited and the topology keeps changing, therefore the cost to update the

routing tables of each node can be prohibitively high.

To avoid wasting bandwidth, one approach is to use position-based routing protocols. In
these protocols, it is assumed that each node knows its own coordinates and the
destination node’s coordinates. With this additional information, all the nodes locally
calculate the next hop to the destination node, or limit the extent of flooding. Many
sophisticated position-based routing protocols (such as perimeter routing[3] and
GPSR([10]) use a unit disk graph model of the network. They extract a planar subgraph
from the original graph and then find a route in it. However, the unit disk graph model is
valid only if all nodes have regular transmission ranges, and moreover, they have the
same transmission range. Regular transmission range means that the area reachable by a
wireless transmitter is a circle of radius r, centered at the transmitter (see Figurel.l).
However in reality, the transmission range may be irregular as shown in Figure 1.2.
Additionally, there may be a slight variation in the power employed by different
transmitters, so that the transmission ranges of different transmitters may not be exactly

identical.



Most of the position-based routing protocols mentioned earlier fail if the transmission
ranges are irregular or not identical. In particular, the extracted subgraph may not be
planar or it may be disconnected. The RPBR[1] algorithm simulated in this project can
guarantee the extraction of a planar and connected subgraph and thus guarantee delivery
of packets. In the simulation, we study the performance of the RPBR algorithm and
compare it with other well-known routing algorithms. In the resuits of the simulation, we
will see that the performance of RPBR algorithm is as good as GPSR, and it never fails in

an irregular transmission environment.
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Fig 1.1 The transmission range is a disk Fig 1.2 The transmission range varies
with radius R. between r and R.

In the next two sections, we describe the main flooding-based protocols as well as

position-based protocols proposed in the literature.



1.1 Flooding-based Routing Protocols

In this section, we will discuss three flooding-based routing protocols in ad hoc wireless
networks. They are Dynamic Source Routing (DSR) [9], Destination-Sequenced
Distance-Vector Routing (DSDV) [17] and Ad Hoc On-Demand Distance Vector
(AODV) [16]. Of there, DSR and AODYV are currently candidates for acceptance as

standards for routing in ad hoc networks.

1.1.1 Dynamic Source Routing (DSR)

DSRI9] uses source routing rather than hop-by-hop routing, with each packet to be routed
carrying in its header the complete, ordered list of nodes through which the packet should
pass. The key advantage of source routing is that intermediate nodes do not need to
maintain up-to-date routing information in order to route the packets they forward, since
the packets themselves already contain the entire routing path. This protocol eliminates

the need for broadcasting a periodic route advertisement and neighbor detection packets.

The DSR protocol consists of two mechanisms: Route Discovery and Route Maintenance.
Route Discovery is the mechanism by which a source node S wishing to send a packet to
a destination D obtains a source route to D. To perform a Route Discovery, the source
node § broadcasts a ROUTE REQUEST packet that is flooded through the network in a
controlled manner and is answered by a ROUTE REPLY packet from either the
destination node or another node that knows a route to the destination. To reduce the cost
of Route Discovery, each node maintains a cache of source routes it has leared or

overheard, which are aggressively used to limit the frequency of propagation of ROUTE



REQUESTSs. Route Maintenance is the mechanism by which a packet's sender S detects
if the network topology has changed such that it can no longer use its route to the
destination D because the nodes listed in the route have moved out of range of each other.
When Route Maintenance detects a source route is broken, § is notified with a ROUTE
ERROR packet. The sender S can then attempt to use any other route to D already in its

cache or invoke Route Discovery again to find a new route.

1.1.2 Destination-Sequenced Distance-Vector Routing (DSDV)

DSDV[17] is very similar to the Routing Information Protocol (RIP) [7]. In DSDV, each
node keeps a routing table, and packets are routed in the ad hoc network using these
routing tables. A routing table is actually a list of the addresses of all nodes in the

network. For each address, the table indicates the next hop node.

Since in ad-hoc wireless networks the hosts keep moving, the routing tables need to be
kept up-to-date. Whenever the network topology changes, as well as periodically, each
node broadcasts a routing table update packet to other nodes. For some reasons such as
packets getting delayed or lost, old update packets may be received later than more recent
one. To avoid stale update packets messing up the routing table, each update packet has a
sequence number given by the original node. When a node receives an update packet, it
checks whether the sequence number is equal to or greater than the sequence number
already in the routing table. Updates are accepted only if the new sequence number is
greater than the old one, or if the sequence number is the same, but the hop metric is

better. Otherwise the update packet is ignored.



1.1.3 Ad Hoc On-Demand Distance Vector (AODV)

AODV[16] is essentially a combination of both DSR[9] and DSDV[17]. It borrows the
basic on-demand mechanism of Route Discovery and Route Maintenance from DSR, plus
the use of hop-by-hop routing, sequence numbers, and periodic beacons from DSDV.
When the source node S needs a route to some destination node D, it broadcasts a
ROUTE REQUEST message to its neighbors, including the last known sequence number
for that destination. The ROUTE REQUEST is flooded through the network in a
controlled manner until it reaches a node that knows a route to the destination. Each
node that forwards the ROUTE REQUEST creates a reverse route going back to node S.
When the ROUTE REQUEST reaches a node with a route to D, that node generates a
ROUTE REPLY that contains the number of hops necessary to reach D and the most
recent sequence number for D. Each node that participates in forwarding this REPLY
back to node S (the originator of the ROUTE REQUEST) creates a forward route to D.
The state created in each node along the path from S to D is hop-by-hop state; that is,
each node remembers only the next hop but not the entire route, as in source routing. In
order to maintain the route, AODV normally requires that each node periodically send a
HELLO message. Failure to receive three consecutive HELLO messages from a
neighbor is taken as an indication that the link to the neighbor is broken. AODV also
suggests that a node may use physical layer or link layer methods to detect link breakages.
When a link goes down, any upstream node that has recently forwarded packets to a
destination using that link is notified via an UNSOLICITED ROUTE REPLY containing
an infinite metric for that destination. When a node receives such a ROUTE REPLY, it

must discover a new route to the destination using Route Discovery again.



1.2 Position-based routing protocols

In the previous section, we discussed flooding-based routing protocols. They flood
scarce bandwidth in ad—ﬁoc wireless networks with control packets. This is obviously a
waste of the resource. Position-based routing protocols don’t have such a flaw. In this
section, we discuss some position-based routing protocols. This type of protocol assumes
that each node knows its own location, the locations of its direct neighbors, and that of
the destination. However, nodes do not need to know the topology of the entire network,
or locations of any other nodes. The next hop in the route is calculated locally in a

distributed manner.

Most position-based protocols use a unit disk graph to model the ad hoc network and
extract a planar and connected subgraph from that. The following notation will be used
in this report in order to explain these protocols.

Notation:

G=(V.E)

G - a geometric undirected graph (A geometric graph is a graph drawn in the
plane such that its vertices are points in general position and its edges are
straight-line segments)

V - set of vertices

E -~ set of edges (direct communication links)

{u, v} — the edge between u and v
d(u, v) — Euclidean distance between u and v

B(u, p) — a ball with center u and radius p



D , , - the disk determined by « and v with d(u, v) as diameter

A geometric graph is called a unit disk graph if for any two vertices u,v € V, the edge
{u, v} € Eif d(u,v) < 1. Given a geometric graph G, its Gabriel graph GG(G) is a
subgraph in which the edge {u,v} is removed if D , , contains any other nodes [5]. See
Figure 1.3 for an illustration. Since the Gabriel graph of a connected unit disk graph is

guaranteed to be planar and connected [3], it is used widely in position-based protocols.
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Fig 1.31In (a), {u, v/ is retained in the Gabriel graph because there is no other node
in D, y; in (b), {u, v/ is not retained in the Gabriel graph because there is a
nodewinD , ,.

1.2.1 Location-Aided Routing (LAR)

LAR [12] is a modification of the DSR protocol. It still floods route discovery control
packets over the network but limits the flooding region with the help of GPS. Hence the
overhead of control packets is reduced. LAR works on demand. When the source node S
wants to send a message to a destination node D, with the help of GPS, it defines a

rectangular region (Request Zone) within which the flooding is limited. It also considers



that the destination node is moving. The source node stores the speed of the destination
node as well, and estimates where it will possibly be later (Expected Zone). It defines the

Request Zone accordingly. Fig 1.4 shows an example.

Request Zone

Q e’ Expected Zone

Fig 1.4 § will send control messages to B but not to A because A is not in the
Request Zone. The Request Zone includes the Expected Zone.

1.2.2 Greedy Routing

Greedy routing [13] is very straightforward. Each node in ad-hoc networks knows its
direct neighbor’s coordinate. The source node S originates a packet that includes the
coordinates of the destination node D. During forwarding, each node selects the closest
node to D in its neighbor list until the packet reaches the destination node D. This
algorithm is very efficient but it may fail while a node itself is the closest node to the
destination node D in its neighbor list. Fig 1.5 gives two examples, one where greedy

routing is successful and one where it fails.



Fig 1.51n (a), although there is a route from S to D, the greedy algorithm will fail
because A will forward the message to B, which will forward it back to A.
In (b), the algorithm will succeed in finding a route.

1.2.3 Perimeter Routing

Perimeter routing [3] is a distributed algorithm for routing that doesn’t need duplication
of packets. The most important part of this protocol is extracting a Gabriel graph from
the network, which is modeled as a unit disk graph. It is known that the Gabriel graph of
a unit disk graph is connected and planar [3]. Packets are routed only over the faces of
the Gabriel graph. Routing follows the right hand rule. Given a node v on a face f; the
boundary of fis traversed in the counterclockwise (clockwise if fis the outer face)
direction, unless taking an edge would requiring crossing the segment (v, Vg ). In this

case, we switch to the next face. Fig 1.6 is an example.

10



Fig 1.6 Perimeter routing from vy, to v .

1.2.4 Greedy Perimeter Stateless Routing for wireless network (GPSR)

This protocol is a combination of greedy routing and perimeter routing. The greedy
algorithm cannot guarantee packet delivery; in fact, as seen in Chapter 4, its failure rate is
pretty high though it usually generates a short path. Perimeter routing never fails, but its
performance is not good and usually it generates a long routing path. GPSR is a
combination of the two that attempts to use the good qualities of both protocols, while

eliminating the disadvantages of both.

GPSR uses greedy forwarding at first. When the greedy algorithm fails, that is, a node
finds none of its neighbor nodes is closer to the destination than itself, GPSR switches to
perimeter routing. It extracts a planar subgraph and follows the right-hand rule. Once
the packet reaches a node closer than where greedy forwarding previously failed for that

packet, the packet switches back to greedy forwarding to the destination.

11



1.3 Organization of the report

In Chapter 2, we describe the RPBR algorithm [1] in detail. This algorithm works in the
presence of irregular transmission ranges. Chapter 3 describes the requirements and
design of the simulator we have implemented to simulate algorithms for routing in ad hoc
networks with irregular transmission ranges. Chapter 4 gives the results of our

simulations and Chapter 5 gives our conclusions.

12



2. Robust Position-Based Routing in wireless Ad Hoc
Networks with Irregular Transmission Ranges

This chapter explains the RPBR algorithm in detail. For the correctness proof, see [1].

2.1 Problems caused by irregular transmission ranges

In the previous chapter, we discussed some position-based routing algorithms; all of them
assume that each mobile host has a transmission range R, as shown in Figure 1.1 in
Chapter 1. However, in reality, this is not always true. Transmission ranges can be
affected by various reasons such as obstacles or perturbations. Figure 1.2 shows the
concept of irregular ranges. We see that the area a mobile host can reach is not
necessarily a disk and the range can vary in a non-uniform manner between r = (I-¢) R
and R, € > 0[1]. Two mobile hosts at distance d > R are not able to communicate
directly; at distance d <r, they are surely able to communicate directly; at distance r < d

<R, they may or may not be able to communicate directly.

The irregularity may create some unidirectional communication links. Moreover, a small
variation in the transmission ranges can make the extraction of the Gabriel graph fail.

See Fig 2.1 for an example. Assume link uv and uw are bi-directional communication
links, and w is in the disk D, , . The distance d(u, v) is between r and R, therefore, v may
or may not be able to reach w. [If v can reach w, then both v and u agree that the edge
{u,v} should be removed in the corresponding Gabriel graph. If v cannot reach w,
according to v, the edge {u, v/} should be retained because there is no node in the disk D, .;
according to u, the edge {u, v/ should be removed because there is a node w in the disk

D, ,. Removing the edge {u, v} may disconnect the network, but keeping the edge may

13



cause the graph to be non-planar. Thus perimeter routing will not be consistent and

might fail.

Fig 2.1 Hosts u and v have inconsistent views on whether to retain the
edge {u, v/ in the Gabriel Graph or not.

RPBR is a distributed protocol that ensures message delivery in a connected network

whenever the ratio of the maximum transmission range to the minimum transmission

range is at mostv2 [1]. This restriction guarantees that for any edge {u, v}, if there is
another host w in the disk of this edge, then at least one of u and v knows the existence of

w.

14



2.2 The Routing scheme

Before we explain the details of the routing scheme, we make the following assumptions.
Assumptions:

Assume a set of mobile hosts spread out in a Euclidean plane; each mobile host knows its
own position (x, y). The minimum transmission range is r and the maximum
transmission range is R. Any two hosts at distance d < r can communicate directly, at
distance d > R cannot communicate directly, at distance r < d <R may or may not be
able to communicate directly. Bidirectional communication is enforced by requiring that

a communication link is valid only when an acknowledgement is received.

2.2.1 Overview

This routing protocol consists of three phases, the completion phase, the extraction phase
and the routing phase. The completion phase will add virtual edges to the graph G and
get a super-graph §(G) of G. This phase can guarantee that the Gabriel graph extracted
from S(G) is planar and connected. Once the completion phase is done, the extraction
phase will extract a connected and planar spanning subgraph from S(G). Message
delivery is done at the routing phase. There is no central controller for all the

computations and all phases are executed locally at hosts.

2.2.2 The completion phase

Each host u establishes a adjacency list L(u) and broadcasts a neighbor discover request.

Any host v receiving such a request immediately responds to u with its own coordinates.

15



If u receives the response, it adds v into L(u). This neighbor discovery process
guarantees bidirectional communication links. All the nodes V and the edges E between
a host and its neighbors form the graph G. Every node added to L(u) is marked

unprocessed. For every unprocessed v, u runs the processing function as follows.

Processing of {u, v} by u

Foreveryw € L(u),if wE D, , andw & B(v, r) (as in Fig 2.1) then
- u sends the message “(new, w)” to v, together with the coordinates of w;
- u sends the message “(new, v)” to w, together with the coordinates of v:
- u marks v processed.

End-Processing

While processing, every node is ready to receive new node messages from its neighbors

and to update its adjacency list L.

Updating the adjacency list of u

When node u receives a message “(new, w)” from neighbor v, u checks whether w € L(u).
If it is already there, then do nothing.
If not, then « adds w to L(u) and marks it unprocessed. The edge {u, v} is set as a
virtual edge; w is a virtual neighbor of u. [1] Node u stores the path of the virtual
edge ve(u, w) = (u, v, w). The length of ve(u, w) is 2 because it consists of two
edges. See Fig2.2.

End-updating

16



Fig 2.2 Virtual edge {u, v } = (u, w, v).

When processing of a virtual neighbor, if an edge is already a virtual edge, it will be

embedded in a new virtual edge. See Fig 2.3 and 2.4 for an example.

Theoretically, the length of a virtual edge (the number of edges in the path corresponding
to a virtual edge) is not limited. Any virtual edge can only connect nodes at Euclidian
distance less than R.

Since the processing of edges may induce sending messages to virtual neighbors, a virtual
routing protocol is required. The following sending and forwarding functions are in the

virtual routing protocol [1].

17



Fig 2.3 {v, u}, {u, w} and (v, x} are
direct communication links; (v, w}
is a virtual edge. ve(v, w) = (v, u, w).

The length of ve(v, w) is 2.

Fig 2.4 {x, w/ is a virtual edge, : -
ve(x, w) =[x, v, w}. {v, w}is
also a virtual edge, therefore ,
ve(x, w) = (x, v, u, w). The length

of ve(x, w) is 3.

18



Sending a message
If node u wants to send a message M to a neighbor v (v could be virtual neighbor),  calls
send(v, M)

- if vis a direct neighbor, the message (v, M) is transmitted to v;

- if vis a virtual neighbor, ve(u,v) = (u, w, v), u calls send(w, (v, M)).

End-sending

Note: if w is a virtual neighbor of u, ve(w, u) = (w, x, u), u calls send(x, (w, (v, M))). u
repeats the process and eventually, the message will be sent through a path consisting of

direct connected edges.

Forwarding a message

When node u receives a message («, M) from a neighbor,
- ifM=(v, M’), v #u, then u calls send(v, M),
- otherwise u stores M;

End-forwarding

When a node marks all nodes in its adjacency list L processed, it has completed the
completion phase and enters the extraction phase. Note: A node u may find a virtual
neighbor v after entering the extraction phase. In this case, it stops the extraction phase
and returns to the completion phase to process the edge {u, v;. Switching between the
completion phase and the extraction phase does not affect the correctness of this

protocol [1].

19



At the end of the completion phase, S(G) is generated. Every node knows the coordinates

of its neighbors (direct or virtual) and the actual paths corresponding to virtual edges.

2.2.3 The extraction phase

In this phase, the Gabriel graph of S(G), denoted by GG(S(G)), is extracted. The vertex
set of GG(S(G)) is V, the set of nodes. The edge set, includes those edges in S(G) that
satisfy the Gabriel graph condition described before. The following is the function to

validate edges.

Validating {u, v} by u

u checks every node v in L(u),
- ifthereexistsw € L(u) N\ D, ,, u deletes {u, v}
- otherwise the edge {u, v} is kept in GG(S(G)).

End-validation

After processing all nodes in L(u), it has completed the extraction phase and is ready to
enter the routing phase. As in the extraction phase, if any node is aware of a new
neighbor, it returns to the completion phase, then runs the extraction phase and finally
comes back to the routing phase. This switching between phases does not affect the

correctness of this protocol [1].

20



2.2.4 The routing phase

Routing in GG(S(G)) is performed according to the strategy of GPSR which combines
both the greedy algorithm in G and perimeter routing in GG(S(G)). When greedy routing
fails, it switches to perimeter routing and when greedy routing is applicable, it switches
back. Also, perimeter routing in GG(S(G)) can be applied alone. Note that perimeter
routing may route message through virtual edges, in such cases, the virtual routing

protocol is used.
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3. Protocol Simulation

In this chapter, we describe the requirements and design for our simulator for routing
algorithms. The simulator allows for two kinds of simulations: The GUI simulation for
studying and analyzing the routing protocols and the console simulation for running
several simulations with the purpose of collecting statistics. Both of them are developed

inJAVA.

3.1 Requirement and specification

In the GUI simulation, the following functions will be implemented:
- Generate new simulation
- Showthide direct neighbor links
- Show/hide ranges of nodes
- Show/hide virtual edges
- Show/hide the Gabriel graph
- Move nodes
- Select source and destination nodes
- Drawadisk D, ,
- Show actual path corresponding to a virtual edge
- Show/hide Dijkstra’s shortest path
- Showr/hide the route found by RPBR
- Show/hide the route found by the greedy algorithm

- Show/hide the route found by perimeter routing
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Show/hide the route found by GPSR
Modify inner range r of a node, R/r ratio, node density, and probability of

being a direct neighbor.

In the console simulation, users will be asked to input the following:

Number of run times

Width of the area

Length of the area

Density of node

Inner range of node and R/r ratio
Probability of being direct neighbor

Output file name

In the output file, besides the above parameters, the following data is provided for

each run:

Length of the shortest path as discovered by Dijkstra’s algorithm
Length of the route found by RPBR

Length of the route found by the greedy algorithm

Length of the route found by perimeter routing

Length of the route found by GPSR

Average length of virtual edges

Distribution of lengths of virtual edges

Percentage of virtual edges in the extracted Gabriel graph
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- Percentage of virtual edges in routes found by RPBR

For statistical purposes, we collect the average over several runs:

- Normalized length of routes found by all algorithms

- Failure rate of all algorithms

- Average length of virtual edges of all runs

- Distribution of lengths of virtual edges over all runs

- Percentage of virtual edges in the extracted Gabriel graph of all runs

- Percentage of virtual edges in routes found by RPBR of all runs

3.1.1 Hardware requirement
Minimum Requirements:

- PC’s with at least 266 MHz Processors, 32 MB RAM
- Since the console simulation will output results to a file, extra disk space is

needed.

Optimal Performance:

- We recommend a PIII processor with 1 GHz and 128 MB RAM.

3.1.2 Software Requirements

- Microsoft Windows 9x/XP/NT/2000, Linux or UNIX.

- Java runtime environment 1.3 and above



3.2 Use case diagrams

In this section, we show the use cases for the GUI simulation (Figure 3.1) as well as the

console simulation (Figure 3.2).

GU! Simulation

- direct neighbor
Tecincludese» | discovery

Generate New Network
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Set Parameters

Show/hide
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complete and extract
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Fig 3.1 The GUI simulation use case.
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Fig 3.2 The console simulation use case.

26




3.3 Design

The class Simulation generates and controls the user interface, and contains the main( )
function. In the GUI version, it generates all components in the interface such as buttons,
text fields and drawing area. It also includes the initialization function that randomly
generates nodes. The drawing area in the GUI interface is realized by the class
DrawCanvas, which represents all the drawing components such as nodes, edges, routes

and so on.

For the unit disk graph G(V,E), we define the class Node for V and the class Edge for E.
Position is a simple class to represent coordinates of nodes or points. Local calculations
such as neighbor discovery, distance computation, finding the next edge according to the
right hand rule, and the processing and extracting functions in RPBR are implemented in
the class Node. In the GUI version, the class Node also draws the nodes, neighbor links,
the Gabriel graph and ranges in the drawing area. The class Edge can instantiate both
normal edges and virtual edges. It can calculate the length of virtual edges. In the GUI

version, it draws disks, edges and virtual edges in the drawing area.

For routing algorithms, we declare five classes corresponding to the five protocols. The
routing algorithms are implemented in these five classes. They are Dijkstra, Robust,
Greedy, Perimeter and GPSR. Each algorithm class can run the corresponding routing
algorithm to find the route and calculate the length. In the GUI version they also draw

the routes.
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Class diagrams

In this section, we give the overall class diagrams for both the GUI simulation and the

console simulation.
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Fig 3.3 The GUI simulation class diagram.
Figure 3.3 is the class diagram for the GUI simulation, showing the relationship between

the different classes.
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Fig 3.4 The console simulation class diagram.
Figure 3.4 is the class diagram for the console simulation, showing the relationship

between all the classes.



3.4 GUI simulation

Fig 3.5 shows a screen shot of the GUIL. All the function buttons are on the top. Initial
parameters and results of route paths are on the left. It lists all the nodes in the route in
order. It also shows the number of virtual edges, average length of virtual edges,
percentage of virtual edges in the Gabriel graph and percentage of virtual edges in the
RPBR route.

In the middle is the drawing area in which the ad hoc network model is shown.

In the top left of the drawing area, the area of the plane and the number of mobile nodes
are displayed. The lengths of routes found by the different routing algorithms are also
displayed. By clicking on a routing algorithm, the route found by the algorithm will be

displayed. The routes found by different algorithms are shown in different colors.

Number of Nades: 148 in 633 * 460 area.

Length of Dijkstra's path 6 Penmeter routing f:ned (unreachable)
Greedy routing faited. Length of GPSR path.

F1g 35 Screen shot of the GUL
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The following sections give more details about the GUI, including the drawing

components, the parameters and the functions.

Drawing components:

Node: Small orange circles are nodes, the red one is the source and the blue one is the
destination.

Range: 2 rings represent the inner and outer range of a node. The outer range is light
gray; the inner range is cyan.

Disk: Light gray disk with the length of an edge as diameter.

Direct neighbor link: Light gray dotted lines represent direct communication links.
Virtual edge: Magenta edges are virtual edges. Black dotted line shows the actual path of
the virtual edge.

Gabriel graph: Yellow thick lines represent the edges of the Gabriel graph.
Dijkstra’s path: Dijkstra routes are shown in blue.

RPBR route: RPBR routes are shown in orange.

Perimeter route: Perimeter routes are shown in red.

Greedy route: Greedy routes are shown in black.

GPSR route: GPSR routes are shown in dark gray.

Parameters:
Position: Current mouse position. This can help to estimate the position of a node.

Inner Range: The inner transmission range of a node.

R/r ratio: The ratio R/r = the outer range / the inner range. The value is from 1 tov/2 .
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Node density: Number of nodes = area of plane / node density.

Probability: The probability of whether a node between inner and outer range can be
reached directly.

To bring a change of parameters into effect, a new model must be created by clicking the

“New” button.

Functions:

New: Randomly generate new wireless ad hoc network model according to the initial
parameters.

Clear Range: Clears node ranges, disk, and actual path of virtual edges.

NB: Show/hide direct neighbor links.

VE: Show/hide virtual edges.

GG: Show/hide the Gabriel graph.

Click to select: Select source/destination node, select 2 nodes of an edge to draw a disk,
select 2 nodes of a virtual edge to draw actual path.

Dijkstra: Show/hide the route discovered by Dijkstra’s algorithm.

Robust: Show/hide the route found by RPBR.

Greedy: Show/hide the route found by Greedy routing.

Perimeter: Show/hide the route found by perimeter routing.

GPSR: Show/hide the route found by GPSR.

All routes will also be represented by a list of coordinates of nodes in the left text field.
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3.5 Console simulation

In the console simulation, the user can specify the number of times the simulation is to be
run, the width and length of the area, node density, inner transmission range, R/r ratio,
probability to be a neighbor when distance of two nodes is between R and r, and the name

of the output file.

In the output file, it confirms all the parameters specified by the user: the normalized
lengths of routes found by all algorithms, average virtual edge length, distribution of
lengths of virtual edges, percentage of virtual edges in the Gabriel graph, percentage of

virtual edges in the route found by RPBR, and failure rate for each algorithm.

Note that “-1”” means routing failure. We ignore cases where length of Dijkstra’ path is

-1, which means the destination node is not reachable by the source node.

In the end of the result file, we can see the average normalized length of each routing
protocol and its failure rate; we can also see the average virtual edge length, distribution
of lengths of virtual edges, percentage of virtual edges in the Gabriel graph and

percentage of virtual edges in the route found by RPBR.
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4. Simulation Results and Analysis

In this chapter, we describe the results of our simulations of the four algorithms: Greedy
routing[13], perimeter routing[3], GPSR[10] and RPBR[1]. They are all compared with
Dijkstra’s shortest path algorithm{[4]. We study the failure rates of the algorithms, and the
lengths of routes produced by them. For RPBR, we also study the average length of
virtual edges, the percentage of virtual edges in the Gabriel graph produced by RPBR and

the percentage of virtual edges in the route found by RPBR.

In all simulations, we use a fixed sized area of which the width and length are both 1000
units. For each scenario, we run the simulation 1000 times. We use a fixed inner range

of 60 units. Other parameters are changed in order to observe the effects.

Note that Dijkstra’s algorithm is implemented here strictly for comparison; since it is not
distributed and local, it cannot be used as a routing algorithm in ad hoc networks. In our
experiments, we consider an algorithm to have failed when it doesn't terminate even
though the number of hops in the route being constructed by the algorithm exceeds nlogn
where 7 is the number of nodes in the network. Recall that the greedy algorithm fails
when all of a node's neighbors are further from the destination than the node itself.
Perimeter routing may fail if the graph being routed on is disconnected or non-planar.
We also note that the only circumstance in which Dijkstra's algorithm fails is when the
graph is not connected; we ignore such cases in our description of the results on failure

rates.

34



To make the results on lengths of routes found by the different algorithms more
meaningful, we normalize the length of the path found by each algorithm to that
discovered by Dijkstra's algorithm for the same case. Since perimeter routing and GPSR
may fail in some cases where RPBR succeeds, to provide a fair comparison, we only
consider the cases when both perimeter routing and GPSR succeed. However, we do
consider cases in which the greedy algorithm fails, because otherwise the performance of

GPSR, Greedy and RPBR would be identical.

4.1 Results

In this section, we analyze the effects of density, R/r ratio and Ppeignsor 0N the
performance of the algorithms. We say that the density is //x, when there is 1 node in
each x square units on average. Therefore, as x increases, the density decreases. We also
define Preignsor to be the probability that for an arbitrary node v in the network, a node at

distance between r and R from v is a neighbor of v.

4.1.1 Effects of density of nodes

In this section, we study the effect of the density of nodes on the performance of the

algorithms. We fix the R/r ratio to be 1.4 and Preighsor to be 0.5 in these experiments.
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Fig 4.1 Effect of density of nodes on failure rates.

Figure 4.1 shows the effect of density on the failure rates of the algorithms. The failure

rates increase along with the density decreasing. We can see the greedy algorithm fails

more than others. The failure rate of perimeter routing is also high because irregular
transmission ranges cause the Gabriel graph to be non-planar or disconnected. GPSR
combines greedy and perimeter routing; when the greedy algorithm fails, it switches to
perimeter routing. Recall that perimeter routing can fail when transmission ranges are

irregular, so GPSR can fail too, but its failure rate is better than perimeter routing. As

expected, RPBR never fails.
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Fig 4.2 Effect of density of nodes on lengths of routes.
Figure 4.2 shows the effect of density on the length of routes produced by the algorithms.
Generally, when the density decreases, the length of routes found by the algorithms
increases. This is because when the network is less dense, it is more possible to detour to
find a route. However, for perimeter routing, when the network is too dense, it will cover
more edges hence more hops. Greedy is the best in position-based protocols; in fact, its
performance is almost identical to Dijkstra's algorithm, but this is only because the cases
where it fails have been ignored. Perimeter routing produces the longest routes. RPBR
and GPSR combine the advantages of the greedy algorithm and perimeter routing,
therefore they are in the middle. The average length of the routes generated by RPBR is
very close to that of the routes produced by GPSR. It is a little bit higher because it uses
virtual edges, which have average length two. Since virtual edges only comprise a very

small percentage in RPBR routes, they only increase the length a little.
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Fig 4.3 Effect of density of nodes on the average length of virtual edges.
Figure 4.3 shows the effect of density on the average length of virtual edges. The average
length of a virtual edge is very close to 2 regardless of the density of the nodes. The
average virtual edge length is a little higher when the network is denser. In a dense
network, the area inside B(u,R) but excluding B(u,r) contains more nodes that the node
cannot see directly, and so there is an increased likelihood of forming virtual edges, as

well as virtual edges of length greater than 2.
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Fig 4.4 Effect of density of nodes on the distribution of lengths of virtual edges.
Figure 4.4 shows the effect of density on the distribution of lengths of virtual edges and
the maximum length. Regardless of the density, over 95% of virtual edges have length
2. When the density decreases, the percentage of virtual edges with length 2 increases,
meanwhile, the percentage of virtual edges with higher length ircreases. The maximum
length of a virtual edge can be higher than 4 when the density is higher than 1/2500, but
the percentage of such long virtual edges is lower than 0.01%. In all our simulations, no
virtual edge of length greater than 6 was encountered. The maximum length of virtual
edges decreases along with the decrease of density; as expected, long virtual edges are

more likely to be formed when the network is denser.
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Fig 4.5 Effect of density of nodes on the percentage of virtual edges in GG.
Figure 4.5 shows the effect of density on the percentage of virtual edges in the Gabriel
graph. The percentage of virtual edges in the Gabriel graph is higher when the network is
less dense. This is interesting because when the density decreases, the total number of
virtual edges and the number of edges in the Gabriel graph both decrease. It is hard to

predict which decreases faster. The result shows the latter decreases faster.
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Fig 4.6 Effect of density on the percentage of virtual edges in RPBR routes.
Figure 4.6 shows the effect of density on the percentage of virtual edges in the route
produced by RPBR. The percentage of virtual edges in the RPBR route is higher when
the network is less dense. This follows the pattern of the previous chart. We notice that
the percentage of virtual edges in RPBR is close to 0 when density is 1/1000. This is
because in such a dense network, the greedy algorithm hardly fails and so RPBR can find

most routes by using the greedy algorithm without switching to perimeter routing.

4.1.2 Effects of R/r Ratio

In this section, we study the effect of the R/r ratio on the performance of the algorithms.
We fix Preighbor to be 0.5, a fixed inner range of 60 units and density to be 1/2500 in these

experiments.
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Fig 4.7 Effect of R/r ratio on failure rates.
Figure 4.7 shows the effect of the R/r ratio on the failure rates of the algorithms. Once
again, Dijkstra's algorithm and RPBR never fail. When R/r ratio increases, the failure
rate of the greedy algorithm decreases a little because nodes can have more neighbors,
and can reach a greater distance in one hop. The failure rate of perimeter routing and
GPSR increase when R/r ratio increases because the number of nodes between r and R
increases thus the irregularity of the transmission range increases.
When R = r, the transmission range is regular and then there are no virtual edges, and so

the failure rate of perimeter routing and GPSR is 0 as well.
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Fig 4.8 Effect of R/r ratio on lengths of routes.
Figure 4.8 shows the effect of R/r ratio on the length of routes produced by the
algorithms. In general, the lengths of routes decrease when the R/r ratio increases. This
is because nodes can reach further neighbors. Still perimeter routing has the worst

performance, greedy routing has the best and GPSR and RPBR are in the middle.

| r—o— VE length

Fig 4.9 Effect of R/r ratio on the average length of virtual edges.

43



Figure 4.9 shows the effect of the R/r ratio on the average length of virtual edges. When
R = r, there are no virtual edges. Along with the increase in the R/r ratio, the average
length of virtual edges increases too. That means that the increase of irregularity of the
transmission range will increase the length of virtual edges by a small amount. However

it is always very close to two.

100 %
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0% e
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length

Max Length

Fig 4.10 Effect of R/r ratio on the distribution of lengths of virtual edges.
Figure 4.10 shows the effect of the R/r ratio on the distribution of lengths of virtual edges
and the maximum length. The percentage of virtual edges with length 2 is always more
than 97%. When the R/r ratio increases, the percentage of virtual edges with length 2

decreases, and the percentage of virtual edges with length 3 and 4 increases. The



maximum length of virtual edges increases with the increase in R/r as well. This means

that when the R/r ratio is high, longer virtual edges are likelier to be formed.

——VE in GG

Fig 4.11 Effect of R/r ratio on percentage of virtual edges in GG.
Figure 4.11 shows the effect of the R/r ratio on the percentage of virtual edges in the
Gabriel graph. The percentage of virtual edges in the Gabriel graph increases because
there are more virtual edges when the R/r ratio increases. Obviously the number of

virtual edges increases when the R/r ratio increases.
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Fig 4.12 Effect of R/r ratio on percentage of virtual edges in RPBR routes.
Figure 4.12 shows the effect of the R/r ratio on the percentage of virtual edges in routes
produced by RPBR. The percentage of virtual edges in RPBR path increases as well for

the same reason as in the previous chart.

4.1.3 Effects of Pyeighbor

In this section, we study the effect of Preighbor on the performance of the algorithms. We

fix the density to be 1/2500 and R/r ratio to be 1.4 in these experiments.
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Fig 4.13 Effect of Pheighboron failure rates.
Figure 4.13 shows the effect of Preighboron the failure rates of the al gorithms. When
Phreighbor 1s 0, this means that the graph is a unit disk graph with radius r, and when itis 1,
we have a unit disk graph with radius R. In both cases, the transmission range is regular.
So, perimeter routing and GPSR don't fail. Generally, an increase in the value of Preighbor
decreases the failure rate because a higher value of Preighbor means more nodes in the

uncertain range can become direct neighbors. Again, RPBR never fails.
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Fig 4.14 Effect of Preighsor on the length of routes.
Figure 4.14 shows the effect of Ppeighsor on the length of routes produced by the
algorithms. As mentioned above, Ppeigneor being O or 1 means that the transmission range
is regular. Generally, the length of routes is smaller when Ppeignsor is larger because

nodes can see more neighbors.
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Fig 4.15 Effect of Ppreighvoron the average length of virtual edges.
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Figure 4.15 shows the effect of Preignboron the average length of virtual edges. When
Phreignbor €quals 0 or 1, there is no virtual edge. The average length of virtual edges is
longer when Preighbor is smaller. When Prgighsor is small, a node can see fewer nodes

and therefore, long virtual edges are likelier to be formed.

100 %

80 %

60 %
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Fig 4.16 Effect of Preignsor on the distribution of lengths of virtual edges.
_ Figure 4.16 shows the effect of Preighsor on the distribution of lengths of virtual edges

and the maximum length. At least 92% of virtual edges have length 2 regardless of
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the value of Preignbor - As mentioned before, when Preignbor €quals 0 or 1, there is no
virtual edge. There are more longer virtual edges when Preighvor is smaller. Along with
the increase in Preignoor, the percentage of virtual edges with length 3, 4 and 5 decreases
and the percentage of virtual edges with length 2 increases. Even though the percentage
of virtual edges of length higher than 2 is as high as 8% when Phpejghbor is 0.1, it is
interesting to observe that the overwhelming majority of these long virtual edges have

length 3; even in this situation, it is extremely rare to have very long virtual edges.

8l [ VEnGG

0 01 02 03 04 05 06 07 08 09 1

Fig 4.17 Effect of Preignboron the percentage of virtual edges in GG.
Figure 4.17 shows the effect of Preignsor 0n the percentage of virtual edges in the Gabriel
graph. The percentage of virtual edges in the Gabriel graph is highest when Preighbor is
0.4. Since when Ppeighsoris 0 or 1, there are no virtual edges, the percentage of virtual
edges in the Gabriel graph is 0 in these situations. Also when Preighbor is close to 1, there
are unlikely to be many virtual edges in the graph because most nodes within distance R

can be seen directly by the node. However, when Preighboris close to 0, we would expect
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more and longer virtual edges, so it is curious that the percentage of virtual edges in the

Gabriel graph is low.

2.5
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Fig 4.18 Effect of Preighbor on the percentage of virtual edges in RPBR routes.
Figure 4.18 shows the effect of Preighboron the percentage of virtual edges in the route

produced by RPBR. The percentage of virtual edges in the route found by RPBR is

highest when Preighor is 0.3. Tt follows the pattern of the percentage of virtual edges in

the Gabriel graph as expected.
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4.2 Analysis summary

We summarize the results of the simulations below:

1.From the point of view of performance, Dijkstra's algorithm always produces the
shortest path; Greedy is the second; RPBR and GPSR are the third; perimeter routing
produces the longest routes. The routes generated by RPBR are on average a little
longer than those generated by GPSR. This is because RPBR uses virtual edges,
which have average length two. Since virtual edges only comprise a very small
percentage of the RPBR routes, they only increase the length of the routes by a small

amount.

2.In all the simulations, Dijkstra's algorithm and RPBR never fail. Greedy routing has
the highest failure rate; perimeter routing has the second-highest failure rate, followed
by GPSR. In Chapter 3, we explained why Greedy routing is more likely to fail. The
reason perimeter routing's failure rate is higher than that of GPSR is because GPSR

can switch between the two algorithms, and it fails only when both algorithms fail.

3. The average length of virtual edges is a little bit higher than two; this means that most
of the virtual edges have length two. In fact, the percentage of virtual edges with
length greater than 2 is less than 8% regardless of density, the R/r ratio and the
value of Preigheor- In all simulations, no virtual edge longer than 6 was ever
encountered. When Phpgignbor (the probability of being a neighbor when a node is at

distance between r and R ) is O or 1, there are no virtual edges. The percentage of
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virtual edges in the Gabriel graph is highest when Phpeighporis 0.4 or when the R/r ratio

is 1.4.

4.Overall, the percentage of virtual edges in the routes found by RPBR is very low (less
than 2%). Furthermore, as mentioned above, most virtual edges correspond to actual
paths of length 2. Clearly, the use of virtual edges will only increase the length of the
route by a small amount. At the same time, we have the advantage of guaranteeing

packet delivery in an irregular transmission range environment.
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5. Conclusions

Routing in ad hoc wireless networks must take into account the infrastructureless nature
of ad hoc networks as well as the low bandwidth of wireless networks. Position-based
routing algorithms attempt to avoid the high cost of flooding to find routes. However,
they assume uniform transmission ranges and may fail in the presence of irregular
transmission ranges. This report examines the performance of four different routing
algorithms for ad hoc networks. We designed and implemented a simulator for
generating ad hoc networks with irregular transmission ranges and to run routing
algorithms. We ran extensive simulations of Dijkstra’s shortest path, Greedy routing,

perimeter routing, GPSR and RPBR in order to compare their performance.

RPBR is a position-based routing protocol: it avoids flooding route discovery packets
over the network and does not need to maintain routing tables. Also, it can deal with
irregular transmission ranges. Both perimeter routing and GPSR may fail with irregular
transmission ranges. RPBR can always extract a planar and connected subgraph to

perform routing on and thus guarantees the packet delivery.

The RPBR algorithm never fails. It introduces the concept of virtual edges to guarantee
the delivery in ad hoc networks with irregular transmission range. It also includes the
advantages of the greedy algorithm so its performance is almost as good as GPSR. Since
the average length of virtual edges is two, the use of virtual edges can increase the length
of routes found by RPBR. However the average percentage of virtual edges in RPBR

routes is less than 2%, that means they only increase the length a little.
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