INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

UPADE: A Tool for Automating HCI Pattern-Oriented
Designs

Ali Ansari

A Thesis

in
The Department
of
Computer Science
Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada
April 2003

© Al Ansari, 2003

i+l

ional Lib Bibli tional
glfauanal a rary o |omég:e na e
isiti isitions et
%m%?lsicaggwices ngrvllltl;ses b?gliggraphiques
Otiawa ON. KA 0N Otaw ON K1A 04
Canada Canada
Your fis Vove rélérence
Our fis Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reprodutre, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. Ia forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77985-8

Abstract

UPADE: A Tool for Automating HCI Pattern-Oriented Designs

Ali Ansari

Human Computer Interaction (HCI) patterns are a contemporary topic in the
literature of user interface engineering. An HCI pattern offers proven solutions to
common user problems. An HCI pattern abstracts a solution structure that is mostly
described in terms of a set of collaborating design structures. Composing these design
structures to develop a user interface is a tedious task. A tool that supports how to
combine HCI patterns to develop user interface designs will ultimately make the analysis
and design phases more efficient and more productive. In this thesis, we present a tool,
named UPADE to formalize the visual presentation of HCI patterns and their
relationships for the purpose of developing pattern-oriented designs. The tool develops a
structural composition approach to browse, search, and edit a repository of HCI patterns
stored into the database. In addition, the tool supports three different levels of
abstraction, namely the Pattern view, the Design view, and the Code View. The proposed
tool aims to abate disparity between the HCI pattern descriptions and their
implementations. It gives a systematic methodology to glue HCI patterns and supports

the integration of patterns into the user interface development life cycle.

Keywords: HCI patterns, Patterns Engineering Tools, Design Patterns, and UPADE

iii

Table of Contents

LIST OF FIGURES
CHAPTER 1 INTRODUCTION

|

1.1 PATTERN IN SOFTWARE ENGINEERING

1.2 PATTERNS IN HUMAN COMPUTER INTERACTION

1.3 HCI GUIDELINES VERSUS PATTERNS.....ooeeeeeeeeceeeeeeenereeeene

1.4 HCI PATTERNS LANGUAGES

1.5 PATTERNS AS A DESIGN TOOL

1.6 THESIS CONTRIBUTIONS AND RESEARCH METHODOLOGY

1.7 THESIS OUTLINE
CHAPTER 2 TOOLS SUPPORT FOR PATTERN ENGINEERING

2.1 PATTERN ENGINEERING TOOLS IN SOFTWARE ENGINEERING
2.1.1 Automatic code generation from design patterns.
2.1.2 The Smalltalk Refactoring Browser
2.1.3 PSIGENE CASE 100 e ee e s e asb st eeosbeen e s s se s ras s
2.1.4 The Parttern-Lint eeeeenrrer et se st s a et et e e e s ra s saesesaeesenressseseresneensanannn
2.1.5 HOOKS QNA TEMPLAIEScueeeerereenenemenceeceeereeemsenssess s sessseeees s s ss s eras e e

2.2 UML-ORIENTED TOOLSccovveveremererreerennnns
2.2.1 MagicDraw™ reeeeerereaeans eeeeemeeeneeneens
2.2.2 MOAEIMAKEE TOOIS ...t ees e e ses e essseens s sssassssnsssssnnssnsnsaenseses
2.2.3 Framework Adaptive Composition Environment (FACE) .
2.2.4 Pattern-Oriented Analysis and Design (POAD)c.oeeuooeeeereeeeeeeeeeeeeeeeeeeseeeereerearerenens
2.2.5 OTW (Object Technology Workbench)
2.2.6 Objecteering C++ Developer eeerereee oo araes

2.3 PERSPECTIVE: TOWARDS AN XML-BASED ToOL
2.3.1 PCML (Pattern and Component Markup Language).... reeeesereerneenns

2.4 THESIS CONTEXT.......eovueeemrmeenmremcurensiseeensecesescessereemsens

2.5 SUMMARY

CHAPTER 3 UPADE - USABILITY PATTERNS-ASSISTED DESIGN ENVIRONMENT.............

3.1 UPADE OVERVIEWouuoieeeeereeieeeemrresessevesnssnssseesssaenes eeeerereernene—n————.
3.2 UPADE FUNCTIONALITYcvvumenecemenrm et sssescnssscssesnoes cesrereresenerennens
3.2.1 Browsing and searching patterns............ccoceeeu..... et s e e aen

3.2.3.2 UPADE Feedback

3.2.3 Support developers in creating cOMPlExX AeSIGRSueeeeeeoeeeeoeeeeeeeeeeeeeeeereeeeseeeeeenseaseeens
3.2.3.1 UPADE Pattern Composition
3.2.3.2 Modifying a Pattern COMPOSILIONcc.cuveuceeeeceencmrenerenseensesacesesecesssssscnsesassssesssssenssssssssnssessnssnsinsasnns

3.2.4 Generating the code from a high level XML deSCriDIions.uueeeneeeveeeveeeeeeeeerseeeeeereesnenns
3.3 UPADE SCENARIQ........veeeeteererecevereseereeeneseessessssessesensamesessesessssssosssmssaneaes eerersrreeee e enn.

CHAPTER 4 UPADE IMPLEMENTATION

4.1 UPADE FRAMEWORK ARCHITECTUREc.comemimemensnscecmemncaeeenssseons erremeeeeeen et raaes

A2IDBC ..ttt e reae ettt st e s s e a e ne e sre e s e an e

4.3 EXTENDED MARKUP LANGUAGE (XIML) ...erveicreiee e ettt eeeeeseseseseseeasenesemeeaseseesssssssaesmnen
4.3.1 XML as a Neutral Language for Documenting Patterns and Describing the Related Design
KNOWIEAGE ...t eteeres e rereesreeesreeesseeannrenane

O 00 AW

iv

4.3.2 XML as a Device-Independent Language for Implementing Patterns

4.4 SUMMARY

CHAPTER 5 CONCLUSION AND FUTURE WORK

REFERENCES

66
67

68
71

FIGURE 2.1:
FIGURE 2.2:
FIGURE 2.3:
FIGURE 2.4:
FIGURE 2.5:
FIGURE 2.6:
FIGURE 2.7:
FIGURE 2.8:
FIGURE 2.9:
FIGURE 2.10
FIGURE 3.1:
FIGURE 3.2:
FIGURE 3.3:
FIGURE 3.4:
FIGURE 3.5:
FIGURE 3.6:
FIGURE 3.7:
FIGURE 3.8:
FIGURE 3.9:

FIGURE 3.10:
FIGURE 3.11:
FIGURE 3.12:
FIGURE 3.13:
FIGURE 3.14:
FIGURE 3.15:
FIGURE 3.16:
FIGURE 3.17:
FIGURE 3.18:
FIGURE 3.19:
FIGURE 3.20:

FIGURE 3.21
FIGURE4.1:
FIGURE 4.2:
FIGURE 4.3:
FIGURE 4.4:
FIGURE 4.5:
FIGURE 4.6:

List of Figures

AUTOMATIC CODE GENERATION FROM DESIGN PATTERNS MAIN MENU
THE SMALLTALK REFACTORING BROWSER
THE PATTERN-LINT
MAGICDRAW
DESIGN PATTERNS REFERENCE MODELMAKER
PATTERN-ORIENTED ANALYSIS AND DESIGN ...
OoTW
OBJECTEERING C++ DEVELOPER
UML MODELER IN OBJECTEERING C++ DEVELOPER
: PCML (PATTERN AND COMPONENT MARKUP LANGUAGE)
A SCHEMATIC OF THE UPADE FRAMEWORK ARCHITECTURE AND PROCESS ..o
PATTERN ELEMENT ASSOCIATIONS ..ceeoeeeieeenteeeeeeeeeemeneeesesessesesesneesseeesseons
BROWSE PATTERNS BY CATEGORY NAME.
BROWSE MENU BAR.......
PATTERN DESCRIPTION ...
SEARCH RESULT TREE
SEARCH RESULT PANE.... eeeerceteseeerteanarernrsaaraneesansseannasanananaaanen
SEARCH CRITERIA
EDIT MAIN PANE . rereeeeeterrnnnreeanens
CONTROL TOOLBARceeeneeeeeeemeeeeseeseeneeseesseaeees e eseseseseeseseesesessessesssee s s e e s e
ENTER NEW PATTERN «.evonveeeeeeeieeeene teeeneeeennnneees———.
ENTER NEW PATTERN ... cetneteeeereeteetaarenrenrraeneeasrsasesaeesessae e onnnaeeannnenenns
EDITPATH ..ot
DESIGN PANE MAIN PAGE.........oocueeeen.. eeeeerereereeeeireesreeebasansannoresnennanaesenananaeanannns
COMPOSING THE PATTERNS... . rerereereternn————nons
SAVE MAP DIALOG BOX ..eoneeeieneieeeeeeeeeeeeeeeeseteeeeseee e e e e e e
OPEN MAP DIALOG BOX «eoeeeeeemeeeeeaeenaeanns
GENERATE TRANSLATOR cetecetteesnetertatanrtanareseaeeasrnesesanese e aae e e neaeeeran netennnnnnresensns
THEPATTERN LEVEL...ueeeeeeeeennn.... eeeseteesetaeeaeereeern et aaanreetesetatasaneaa st nanenn e aenaanan
THE DESIGN LEVEL ..ot e eeeeeeeeee e ee e e s eeee e seeee e e e
: THECODE LEVEL
A SCHEMATIC OF THE CURRENT UPADE FRAMEWORK ARCHITECTURE .ereeoeeeeeeoeeoeeeoen
UPADE USE-CASE DIAGRAM reeeeteeeeeenttee et aentae s eeeanoeeeneesesaeeesneeaesaaeesaeesnmeaannnn
UPADE DATABASE SYSTEM....ccuoiueeeiereeeeeiteeeeeeeeeeeeeeeeeeemeeee e ereesesessessmsssessss s e s ee e
JDBC DIAGRAM......coeeeeeeeeeeeeeeeeeeeeeneanns
UPADE DATABASE STRUCTURE rerrevererrneeeeennnaoas
A SIMPLIFIED DTD USED BY UPADE EDITOR .o

13
15
16
18
19
21
22
23
23

32
33
35
36
37
38
39

.. 39

40
41
43

.. 43

46
48
48
49
51
52
52
33
58

.59

60

.62

63

vi

Chapter 1

Introduction

In 1977, Christopher Alexander shook the architectural world with his
revolutionary book “The Timeless Way of Building”. He advances that one could
achieve excellence in architecture by learning and using a carefully defined set of design
rules, or patterns; and though the quality of a well-designed building is sublime and hard
to put into words, the patterns themselves that make up that building are remarkably

simple and easy to understand [Jenifer Tidwell 1998].

Each Pattern has three-part rules, which express a relation between a certain
context, a problem, and a solution. As an element in the world, each pattern is a
relationship between a certain context, a certain system of forces, which occurs
repeatedly in that context, and a certain spatial configuration, which allows these forces
to resolve themselves. As an element of language, a pattern is an instruction, which
shows how this spatial configuration can be used, over and over again, to resolve the
given system of forces, wherever the context makes it relevant [Alexander C., Ishikawa
S., Silverstein M. 1977]. There are many dissimilarity of Alexander's original definition

of pattern. However, the main elements of describing a pattern are as follow:

e Name: A name for the pattern. Example: Window Place.

e Context: A context for the design problem. Example: Design of a residential room.

e Forces: a Force that requires resolution. Example: People want to sit and also be in
daylight.

e Problem: A problem growing from the forces. Example: If all seating is away from
the windows, then these forces are not resolved, and people will always be
dissatisfied in one way or the other.

e Solution: A known solution, proven in practice. Example: Build seating into the

window like the traditional window seat [Casaday G. 1997].

1.1 Pattern in software engineering

Pattern in software engineering describe general reusable solutions for recurring
problems in different aspects of software development. Patterns typically stem from real
world experiences and their purpose is to condense the knowledge and expertise of
experienced developers. Pattern Language [Alexander C., Ishikawa S., Silverstein M.
1977} is a way of representing and accumulating knowledge of good practices in software
engineering. When related patterns are woven together they form a “language” that
provides a process for the orderly resolution of software development problems. Pattern
languages are not formal languages, but rather a collection of interrelated patterns, though
they do provide a vocabulary for talking about a particular problem. In other word, a
pattern language is a collection of patterns that can solve problems in a particular domain.
It may include a method for connecting patterns into whole "architectures” for the
domain.

Much of the existing writing on patterns is organized as design patterns. Design

patterns make it easier to reuse successful designs and architectures. Expressing proven

techniques as design patterns makes them more accessible to developers of new systems.
Design patterns aim developer to choose design alternatives that make a system more
reusable and avoid alternatives that compromise reusability. Design patterns can even
improve the documentation and maintenance of existing systems by furnishing an explicit
specification of class and object interactions and their underlying intent. Put simply,
design patterns help a designer get a design "right" faster [Gamma E., Helm R., Johnson

R. and Vlissides J. 1994].

1.2 Patterns in Human Computer Interaction

The concept of Human Computer Interaction (HCI) patterns has been proposed as
one step towards building more usable user interfaces. The idea is to capture information
about frequently encountered user problems with software and how they can be solved.
By recording the indications and remedies of typical problems, patterns can improve
design reuse and usability. However, a pattern based design software can only be as good

as the patterns that it is based on [Mahemoff, M.J and Johnston, L.J 1998].

For example, the following table describes the “Container Navigation” pattern

proposed by Hallvard Traetteberg and Martijn van Welie [Traetteberg H. and Welie M.

2000].
Name Container Navigation
Many applications contain aggregated data, which the user must
Context browse through. Quite often, the user wants to invoke a function
taking one of the parts as input parameter.

Problem

The user needs to find an item in a collection of containers.

Forces

¢ The importance for the task that the user sees all containers and
an item at the same time.

e The number of items is large but only a portion of the items
needs to be visible at a particular moment.

® The user may need to switch from one container to the other.

Solution

s

Split up the screen in three areas showing the containers and the

final selection. Split a window into three panes, one for the viewing
a collection of containers, one for viewing a container, and one for
viewing individual items. The selection of a container should
determine ine content of the container pane, and the selected item
should determine the content of the item pane. The selections may
be used as parameters to invoked functions. Each pane should be
specialized to the type of content it presents. E.g. if the containers
form a hierarchy a tree pane providing selection of leaf nodes could

be used. The panes should be individually scrollable and resizable.

Rationale

By configuring the panes according to the western way of reading
(left to right, top to bottom), we support the causal relationship
based on selection. By providing selection, other functionality

besides navigation is supported. The layout should aid in

understanding the causality among the panes. Each pane can be
tailored to the domain and user. Individually resizable panes give

user freedom.

TOPunl oud ASP a2V i

% et i aP; epmter W
. % o POt mddSP oo S WM
o 4 Nl wemd W (mthes RV
L TR weoimptescast s P e -
Y Wwhnaiwpme laghh W
% e susiapm eowwe). 1OW.
T Vahtn o plide et Cla 1%
s -4 InnXsadmnde lued w_
o "4 RE R I A M0 L ARSRAM 2V
. Y N hmm Wnante. tunid 12F.
- 42 Ry etste W 8 aren Sk tammn V1T

Nlgert How ¢ § merge "we sns- mibd dorumont
scme
Dras- Fu, 31 Jan SO 14 040 T

- Pran scorun siciee Ml
I Ovesmtnun. Dos com - Fefe yeo by
Bl Sevroemn omg wn il

Y ¢ nove v men sore memaer rra v own W snr
il 090t wowenry. 17 .

Examples

This is Netscape's Mail/News viewer. In the left pane the set of
containers (in this case newsgroup) is displayed. The other panes
show the list of messages in the selected group and the selected

message.

Known Uses Microsoft Outlook; Netscape Mail/News, Eudora Mail

Related Patterns | GRID LAYOUT

As we described, an HCI pattern abstracts a solution structure that is mostly
described in terms of a set of collaborating design structures. Composing these design
structures to develop a user interface is a tedious task:- A tool that supports how to
combine HCI patterns to develop a user interface design will ultimately make the analysis
and design phases more efficient and more productive. However, current user interface

tools do not clearly support HCI patterns as design tools.

1.3 HCI Guidelines versus Patterns

Guidelines are specific courses of action, based broadly on a set of principles.
Guidelines can be construed as good practices within a general design domain, such as
Windows GUI or Java Swing. They are generally more specific than principles and
require less design knowledge and experience to understand and apply. For example, a
guideline for implementing the user interface architecture can be like: "Provide
contextual help for each choice or object that the cursor can be positioned on” [IBM
2001]. HCI design rules can be derived from the guidelines but that conversion should be
performed as an integral part of the design process, serving to focus attention on critical
design issues and to establish specific design requirements. An immediate response to the
idea of patterns in HCI design may be that it simply replicates what has already been
done through these usable guidelines. The main difference between the HCI guidelines
and patterns is the unambiguous acknowledgement that patterns are more concrete. This
means clearly setting the context in a hierarchical structure of patterns, showing the
problem that pattern will solve, and considering a known solution to the problem. This
makes patterns in general, more useful for designers than guidelines [The Brighton

Usability Pattern Collection (2003)].

1.4 HCI Patterns Languages

An HCI pattern language is a collection of patterns that can solve a set of related

problems in a particular domain. It may include a method for connecting patterns into

whole "architectures” for the domain. It was originally applied in town planning and

architecture, but has recently been taken up by user interface and software designers.

The first HCI pattern language was developed by Jenifer Tidwell. The Tidwell’s
pattern language aims to support high-quality interaction between a person and a user
interface including GUI, Web and mobile applications. The user may first be presented
with a small range of available actions, one of which is taken; then a new set of possible
actions is shown, and the user takes one of those; and so on. Therefore, Tidwell collect
some primary patterns for actions such as: Form, Control Panel, WYSIWYG Editor,
Composed Command, And Social Space. Using these patterns can be fairly simple:
read through the language, and pick out the patterns that you see. The problem
statements and forces in the pattern descriptions may help developer understand how the
artifact does what it does, and what tradeoffs its designer may have been considering. In
other hand, developer can use this language as a tool to help design a user interface

application [Tidwell J. 1998].

1.5 Patterns as a Design Tool

An important factor in improving design quality for interactive systems is our
effectiveness in capturing and communicating the essential elements of good designs.
There have been many successful approaches to this task like: “study of exemplars,
practice under the instruciion of a master, design principles to capture the master’s
implicit knowledge, design rationale for organizing application of principles to cases,

design guidelines making principles specific, and software toolkits embodying

guidelines” [Casaday G. 1997]. However, a new approach that has recently become

outstanding in HCI development is the use of patterns to document the essentials of

are similar to existing cases but always subtly different.

Patterns have a larger scale of the building blocks from which to compose
systems. Given a broad collection of patterns on different scales (e.g. architectural
patterns vs. design patterns vs. language-idioms) it should be possible to combine and
glue together patterns into a design that can be mapped to different programming
languages. Pattern solutions are defined and represented by a general structure of the
classes in the pattern, and an assignment of responsibilities to the participating classes.
These pattern solutions can be customized for varying needs and situations. The use of
design and implementation patterns is either consciously built into a system design, or
pattern-like solutions get created as a result of problem solving and implementation by

first principles.

1.6 Thesis Contributions and Research Methodology

In the previous sections, we briefly described how HCI patterns will help to
maintenance, reuse, reverse engineering, and reimplementation of user interface
applications and we also point how a usable pattern language can help software developer
to design more usable and effective user interface application. The fundamental of this
thesis can be stated as follows:

“How to automate the creation and composition of HCI patterns in order to facilitate the

development of user interfaces while improving their usability”.

The following are the main contributions of this thesis:

e Develop patterns-oriented design by combining HCI patterns. To improve User
interface application design, we need to stop developing applications from scratch. We
need to use of existing patterns. HCI patterns make it possible to think about user

interface design at high level of abstraction without any consideration to how pattern can

be implemented.

® Generating user interface code from HCI patterns. HCI patterns address the general
problem of how to design a complex interactive software artifact. However, HCI patterns
only address a particular user interface design problem and it is not the code by itself. In
other hand, there is a gap between the pattern description and a particular
implementation, although the pattern includes code fragments in the sample code section.
In contrary, some user interface developer has no difficulty to translate a pattern to the
code. However, they find a complex and hard task, especially when they have to do it
over and over again. This thesis, we will be describe how a HCI pattern tools can reduce

this gap and make design phase more efficient and productive.

For achieving our goals, we have created a first prototype of such an environment
aimed at developing user interface programs with patterns. The tool assists developers
using patterns in three different levels: the Pattern Level, the design level and the code
level. From just a few pieces of pattern information, the tool will create class declarations
and definitions. The user interface developer then could add these codes to the rest of the

application.

1.7 Thesis Outline

First, this thesis will describe existing pattern engineering tools. Then, we will
describe our tool and will explain the architecture and implementation issues. This thesis

is structured as follows:

Chapter 1 (this chapter) introduced the pattern history, HCI patterns, guidelines, and
Pattern language. Later we described, an introduction to pattern as a design tools and
finally we had thesis contributions and research methodology.

Chapter 2 overview the existing tools for supporting patterns engineering.

Chapter 3 describes our methodology for the development of pattern-oriented designs
while describing UPADE. We also explain how to use the tool by using an example.
Chapter 4 demonstrates in detail the implementation of UPADE. We mainly present the
UPADE architecture, overview of JDBC database, and the benefits of using XML as a
tool for documenting and implementing patterns.

Chapter 5 summarizes our main conclusions and outlines the future work in the area of

HCI patterns-oriented design automation.

10

Chapter 2

Tools Support for Pattern Engineering

In this chapter we explore the background to this research, with the aim of putting
our work in context. We survey some of existing pattern tools and we will select some of
conclusive points of these tools to use in our tools and at the end I will show an overview
of XML based tools.

In section 2.1, we give a brief description of existing pattern engineering tools. In
section 2.2, we describe UML-Oricnted base tools that are using patterns. In section 2.3,
we describe a perspective of an XML based tool. In section 2.4, we will explain the thesis

context. And finally in section 2.5, we will give a summery about this chapter.

2.1 Pattern Engineering Tools in Software Engineering
In recent years, much activity has been concentrated on discovering and
documenting HCI patterns. However, little importance has been placed on deploying
these reusable designs to build a user interface application. Deploying HCI patterns to
develop complex user interface is a deadly task that involves integration issues and

iterative development. Yacoub and Ammar [Yacoub, S. and H. Ammar,1999] discussed

11

the potential benefits of using patterns as design components in the aspect of software
reuse. In software reuse, code reusability provides a low percentage of effort savings but
it is the most popular and common approach. Automation of this process will eventually
facilitate the analysis and design phase of the user interface application [Keerthi K Arutla
2000]. In addition, there are further issues tied to pattern creation, pattern composition,
and pattern usage. A tool can facilitate these kinds of activities. However, up to date,
there is little existing tool that supports HCI patterns. A HCI Pattern may be used in
different ways depending on user skills and their roles as a designer, developer or
educator. Therefore, a tool that provides a systematic design methodology to glue HCI

pattern components together is needed. For example a good HCI tool could assist:

® A pattern writer to provide HCI patterns more consistent in terminology, and

more organized.

® A user interface developers to select, organize, and edit patterns relevant to a
specific task, and to find relevant software components, configured

appropriately using knowledge embodied in the patterns.

¢ A student to learn more about the problems, contexts, and solutions that occur

in the field of HCL

2.1.1 Automatic code generation from design patterns

For code generation and pattern instantiation purposes, automatic code generation
from design patterns was developed to add a dimension of utility to design patterns.
Users can see how domain concepts map into code that implements the pattern, and they

can see how different trade-offs change the code. Once generated, the user can put the

12

code to work immediately. The tool displays the sections of a pattern (Intent, Motivation,
etc.) in separate pages. The Code Generation page lets the user enter information with
which to generate a custom implementation of the pattern. This tool is limited to system
design and implementation; it does not support requirements specification,
documentation, or debugging (Figure 2.1) [Budinsky, F., M. Finnie, J. Vlissides, and P.

Yu 1996].

Figure 3 Cocle Generstion page of the Compoelte pattern

FIGURE 2.1: AUTOMATIC CODE GENERATION FROM DESIGN PATTERNS MAIN
MENU.

2.1.2 The Smalitalk Refactoring Browser

“The Smalltalk Refactoring Browser” [Meijers M, 1996] assists developers using

patterns in three ways:

¢ Generating program elements (e.g. classes, hierarchies) for a new instance of a

pattern, taken from an extensible collection of "template” patterns.

13

e Integrating pattern occurrences by binding program elements (e.g. indicating that

an existing class plays a particular role in a pattern instance)

e Checking whether occurrences of patterns still meet the invariants governing the

patterns and make debagging software more efficient.

The tool is implemented in Smalltalk and has been applied to identify pattern occurrences
in several non-trivial (Smalltalk) applications and to reorganize these subsequently. The
fragment model/database store the program being developed as a graph of design
elements such as classes, method definitions, inheritance relations, etc. The suite of
design elements can be extended easily through the introduction of new fragment types.

Design patterns are also design elements and represented as fragments (Figure 2.2).

2.1.3 PSiGene CASE tool

The application PSiGene - A pattern Based Component Generator for Building
Simulation- CASE tool is another tool for binding patterns from a predefined catalog
with class models to form the final application [Schiitze M., Riegel J. P., Zimmermann G.
1999]. This method is application specific (building simulators) and it also generates the
classes and methods for specific patterns from a catalog but doesn’t link them together in

a higher design level.

14

Bm\-/éer Ema]llalk
Buffers Browse Category (ass Protocol Sefector Tool

Refactory-Browser [instance creation [
Refactory-Lint ! i resources classWindowSpec
Refactory-Refactoring class initialization protocoi¥indowSpec

Refactory-Code Tool R selectorWindowSpec
Refactory-OMT-Di verticalCategory¥in
Satnotro-aa qabne verticalClassWind

verticalProtacolWind
verticalSelectorWind,

) instance ' class

S i I
EL i L_j

FIGURE 2.2: THE SMALLTALK REFACTORING BROWSER

2.1.4 The Pattern-Lint

The Pattern-Lint tool was designed to check the compliance of a pattern
implementation [Sefika M. Sane A. Campbell R. 1996]. A set of rules is defined for each
design patterns and the implementation is checked against these rules. The tool is used
for analysis of systems developed from patterns but does not impiement a methodology
to develop applications using patterns (Figure 2.3). Currently this tool is deficient in the

following features:
® This tool does not allow the user to define a pattern and save it for further reuse.

* The tool does not have a feature to save design diagrams; therefore, it could not

open them in the further.

15

T Architecturat styles
Cient_Server
Pipe_Fiiter
Layered Hierarchy
ST

" = Positive evidence
— Violatious

, Query interface
 jmediator = DiskController; colleagues = CPU, Buffe
AringDisk, DetailedDisk, ContiguousDisk |

Re=aryway e ar ot oy - T

FIGURE 2.3: THE PATTERN-LINT

2.1.5 Hooks and Templates

“HOOK&TEMPLATE" is designed to recovery and program understanding by
recognizing instances of design patterns semi-automatically [Pagel, B., and M. Winter,
1996]. The approach taken is specifically designed to overcome the existing scalability
problems caused by many design and implementation variants of design pattern
instances. “HOOK&TEMPLATE” is presented to distinguish between pattern
components that will be implemented by the user and those components that are already

defined for the pattern class collaboration.

2.2 UML-Oriented Tools

The choice of a good UML tool depends on what we want to do. Some of tools
are very good for drawing schemas, others for generating reports, some for checking

models, others for generating the code, some for reversing and few are supporting

16

patterns. Be aware that very few tools really support the UML specification by using the

pattern. In this section, some of these tools will be explain.

2.2.1 MagicDraw™

MagicDraw UML is a modeling tool for object-oriented software development
[MagicDraw, 2003]. It designed to draw all kind of diagrams and does code generation
and reverse engineering for Java/C++/CORBA IDL. MagicDraw stores all model
information in XML files and supports teamwork. HTML reporting facility is included
for classes, use case and other diagrams are based upon XSL. Briefly, MagicDraw is a
UML editor, a code-engineering tool, and An OO model analysis tool. MagicDraw can
generate parts of the model automatically. You can select any object and generate the

classes necessary to make it conform to a Design Pattern (Figure 2.4).

2.2.2 ModelMaker Tools

ModelMaker represents a way to develop classes and component packages
for Borland Delphi (1-6) [ModelMaker ,2002]. ModelMaker is a two-way class tree
oriented productivity, re-factoring and UML-style CASE tool specifically designed for
generating native Delphi code. It has been used to create classes for both real-time
technical and database type applications. ModelMaker is a reverse engineering tool.
ModelMaker supports drawing a set of UML diagrams and from that perspective it looks
much like a traditional CASE tool. Renaming a class or changing its ancestor will
immediately propagate to the automatically generated source code. ModelMaker also
support design patterns. A number of patterns are implemented as 'ready to use' active

agents (Figure 2.5).

17

ey

PIRTINS

.-

FIGURE 2.4: MAGICDRAW

A drawback to ModelMaker is that software developer are usually locked into a modal
dialog box -typing and remembering class and method names is tedious and error- prone,

unless a namespace browsing facility is provided.

18

L it wiapper patten

H 5] Pe] SomeAction(...): Boolean;
BN Pl SomeValue: Integer

Scope filter

Member type filter

Inheritance filter

| ————

FIGURE 2.5: DESIGN PATTERNS REFERENCE MODELMAKER

2.2.3 Framework Adaptive Composition Environment (FACE)
For code generation and pattern instantiation purposes, the software development
environment FACE (Framework Adaptive Composition Environment) was developed to
guide the process of instantiating patterns. [t starts with a primal-schema, containing the
abstract classes of a pattern and their association, and then proceeds to a meta-schema for
concrete classes, operations and associations [Meijler, T. D., S. Demeyer, and R. Engel,

1997]. In the FACE approach, developing an application may cover two levels:

1) Composing a set of objects, as these will at least initially cooperate in the run-time

application.

2) Composing a "schema” for an application, a knowledge structure that describes the

concepts (represented by so-called "class-components") and their relationships for this

19

application. Such a schema is similar to a "schema” in an Object-oriented/Semantic
Database Management System. FACE currently does not provide other support for the

software process than graphical composition.

2.2.4 Pattern-Oriented Analysis and Design (POAD)

POAD is a new Pattern-Oriented Analysis and Design approach that utilizes patterns
as building blocks (components) at the design level [Yacoub S., Xue H., and Ammar H.,
2000]. The approach glues the design structure of patterns at various levels of abstraction
for developing pattern-oriented designs. The POAD approach produces hierarchical
traceable design models that capiure interaction between patterns (Figure 2.6). Currently

this tool is deficient in the following features:
o This tool does not allow the user to define a pattern and save it for further reuse.

® The user has to browse through the patterns by launching the pattern browser
applet outside this application. And after choosing a pattern, the user has to
comeback to the application to import that pattern. Therefore, this tool is failing in

the usability of pattern.

e The tool does not have a feature to save design diagrams; therefore, it could not

open them in the further.

® The tool does not have any code generation capabilities [Keerthi K Arutla, 2000].

20

AT v - . Ly
® E3 Pattem Level View
DWamngOuaucs Handle l:-s- - —
* G R twet VG S « Tvencs
Da.nam Customer 1 | Schaduler : Reactor P\
D) screauiercueveHanaieevilill ~ ~ o -
D) scnedutessenceHanaie Cerhrace Cultquer -~
! ~ Sthedule Bvencs
D QueueScheduleEvents) ~ ~
D) semcescneduiecvents § v Hanald Eremcs ~ o
(3] Detaileg Pattern View I Cenarator : Templace Mathod I ~&

* ServiceFacilicy : Ceaposice]

Quauingfacilicy : Composite i

e QueuingF acility component s

0mMposed of 3 set of gueue categon ° Queuingfaciiicy : Composite Scheduler : Seactor
[Eacn queue category is compaosed of
one of more quaues Events that %

dicaie an achon for 3 queue is E"‘“‘“‘
delegated o the queue faciity wnich in
lum delegates to the appropnate
queus category. Thus a compasite
pattern is used io construct the whole §

terarchy of the QueuingFacility.

[IvencHandler]

FIGURE 2.6: PATTERN-ORIENTED ANALYSIS AND DESIGN

2.2.5 OTW (Object Technology Workbench)

OTW?® is an Object Oriented modeling tool supporting the entire software

engineering process and the following operation:
e Requirements Analysis
e Modeling
e Constructing
e Deployment

OTW® enables the modeling of the business processes up to the software which

supports them. It can be used by software developers as well as by project managers

21

and employees in various special departments [OTW, 2001]. The menu-driven

instantiation of patterns with OTW is shown in figure 2.7.

L Specification of patterns + definition of
recepies for their instantiation

l11. Defmition of new or restructing of previously developed

modecls and diagrams

4
r
B

IV. Generatmg of application specific source code

5,

FIGURE 2.7: OTW
2.2.6 Objecteering C++ Developer
Objecteering associates Design Patterns and code generators to allow user to
generate code from the dynamic model of the application [SOFTEAM, 2001]. It provides
you with the Gamma State Automated Design Pattern for the automatic conversion of the

UML state diagram model into a class model. The code generator then converts this class

22

model into C++ code. The State Design Pattern gives you a failsafe solution for
generating C++ code, which corresponds to state diagrams, and guarantees a truly

excellent, high-quality result.

Ze |19

‘|z Blelchy]

SN A R

FIGURE 2.8: OBJECTEERING C++ DEVELOPER

P o e N c

umML

FIGURE 2.9: UML MODELER IN OBJECTEERING C++ DEVELOPER

23

Currently this tool is lacking in the following features:
e This tool does not allow the user to define a pattern and save it for further reuse.

e The developer cannot browse existing patterns.

2.3 Perspective: Towards an XML-Based Tool

PML (Pattern Markup Language) is an XML-based format to describe software
patterns. A pattern represents a recurring solution to a software development problem
within a particular context. Patterns identify the static and dynamic collaborations and
interactions between software components. In general, applying patterns to complex
object-oriented applications can significantly improve software quality, increase
maintainability and support broad reuse of components and architectural designs [Suzuki

J. and Yamamoto Y. (1998)].

2.3.1 PCML (Pattern and Component Markup Language)

ObjectVenture announces the specification development of PCML (Pattern and
Component Markup Language), a break through for realizing object reuse by simplifying
the use of design patterns in the software development process. PCML allows patterns at
any level of abstraction to be expressed in a tangible, standard format. By leveraging the
openness and flexibility of XML, this technology enables architects and developers to
easily and effectively describe, package, exchange, and extend their own patterns as well
as those created by others. At the same time, tool and repository providers are

empowered to automate much of this process [PCML (2001)].

24

' L
usas PCMIL (Pattern and Companent Matup Language)
to represent pattems in XM This alows pattems to be created,
axtended, enhanced and exchanged in 3 standed format.

You can find mare Information about POML on ObjectVenture's webate:
http://www.objectventise.comfpari.homl

FIGURE 2.10: PCML (PATTERN AND COMPONENT MARKUP LANGUAGE)

2.4 Thesis Context

As we examine these software automation tools, we should recognize that these
tools automate software implementations in the user interface development. They create
specific classes and methods on the UML workspace. However, they do not automate the
designer’s deliberations. The designer must still analyze the forces and context and then
choose which pattern to use. User interface development and modeling patterns in UML
notation is a complex and high order process. The professional software designer must
still understand and know how to select the appropriate options offered by wizard dialog

boxes. Thus the role of the programmer as designer is not automated.

25

The main goal of this thesis is: to explore and share a diversity of perspectives on patterns
and pattern languages for interaction design, HCI, and related design activities. We aim
to identify user interface developer needs from a pattern tools and how using HCI
patterns will help to reach this goal. As our investigation, we find that there are large
amount of HCI patterns that user interface developer can use. However, there are not any

powerful tools to give power to developer use this HCI patterns.

The important issue is “how we can use the existing software engineering tools in
the Human Computer Interaction”. To enhance our understanding of the concept of HCI
patterns and pattern languages in relation to other theoretical models used in software
design, we need to create a tool that reduce the gap between HCI patterns and user
interface developer. The second goal is to understand how computer tools can best
support the various activities involved in both the creation and consumption of patterns
and potential software components relating to the patterns in HCI area. We aim to
identify ways in which the capabilities of the computer can enhance and support these

activities.

It is also clear that existing pattern tools is not sufficient for our purposes. To achieving

our goals, we try to use some concert of existing tools like POAD.

26

2.5 Summary

In this chapter we have described our principles research fields upon which this thesis
is founded: how we can use HCI patterns and what functionality of tools are useful to
achieve this goal. The aim of this is to provide a general background to existing and
ongoing research in these areas. As we described in this chapter, a good pattern-oriented

tools have to assist:

* A pattern developer to provide patterns more consistent in terminology, and

more organized.

¢ A user interface developers to select and edit a categorized patterns relevant to
a specific task, and to find relevant software components, configured

appropriately by using knowledge embodied in the patterns.

In subsequent chapters we present our own contributions in more detail, and also present

detailed analysis of our tool that will support above benefits.

27

Chapter 3

UPADE - Usability Patterns-Assisted
Design Environment

In the previous chapter we described some of the notion of behaviour preservation
and hinted at the approach that will be adopted in this thesis. In this chapter we present
our approach to demonstrating behaviour preservation in detail and apply it with fuil
rigor to a concrete our pattém engineering tools.

In section 3.1, we depict an overview of UPADE. In section 3.2, we describe the
functionality of UAPDE and how we can use them. In section 3.3, we explained UPADE
scenario with using an example. In section 3.4, we validation UPADE application and in

section 3.5, the results of this chapter are summarized.

3.1 UPADE Overview

In recent years, there has been a substantial increase in the usability, portability and
extensibility of software engineering tools. Such tools will assure the program correctn.ss
and reusability of the design and identify the developer problems. The majorities of these,
however, do not interpret tools are available on a limited platforms. We analyze such

deficiencies and propose an extensible architecture for a distributed software engineering

28

tool framework by using Java and XML technology. The resulting framework ~-UPADE-
provides a unified interface to support the development of user interface designs and
improves software production. UPADE -a prototype written in Java- aims to support HCI
patterns writers and user interface developers. This tool has its foundations in the
software engineering community, where several tools have been suggested for HCI and
patterns-driven designs. The UPADE is a process sensitive tool that aid user interface
developer to browse, to search, to edit, to create HCI patterns, to design and to combine
existing usability patterns, and finally to generate code from the design. Its main user

interface includes the following components, as illustrated in Figure 3.3:

e “Browse” provides a description of the patterns, some illustrated diagrams and

several practical examples.
« “Search” improves efficiency of the UPADE and speed up searching of patterns.
« “Edit” facilitates development of new pattern and editing the existing patterns.

e “Design” develops a systematic approach to glue patterns, supports the

integration of patterns at the high design level and automate pattern composition.

o “Generate” generates program elements (e.g. classes, hierarchies) for a new

instance of a pattern, taken from an extensible collection of "template” patterns.

UPADE specification allows patterns at any level of abstraction to be expressed in a
tangible, standard format. By leveraging the openness and flexibility of Java and XML,
UPADE enables developers to easily and effectively describe, search, exchange and
extend their own patterns as well as those created by others. At the same time, UPADE

develop a systematic approach to glue patterns, supports the integration of patterns at the

29

high design level and automate pattern composition. Finally, UPADE generates program

elements from an extensible collection of the code.

As a tool for automating the development of HCI designs, the UPADE embodies three

key functionalities.

First, the most important functionality provided by the UPADE is the possibility
given for both pattern writers and developers, using existing relationship between
patterns, to define new patterns or create a design or a new pattern by combining existing

usability patterns.

Secondly, in order to facilitate patterns composition, the tool supports different
hierarchical, traceable, HCI design levels. In our case study, three levels are possible:
Pattern Level, Design Level, and Code Level. At the pattern level, developer can see
description of the patterns, search a specific pattern, create a new pattern and save the
pattern into the database. At the design level, developer can glue HCI patterns to design a
user interface application, replace one pattern occurrence by another, and automate
pattern composition. And finally at code level, developer can see the structure of the
design in terms of classes, methods, associations and inheritance relationships in a

particular programming language.

Thirdly, the UPADE provides a mechanism to check and control how patterns are
created or modified. By using the database information, UPADE automatically examines

the patterns and offers a feedback to the designer.

This feedback received from developers conduct us to investigate XML

(Extensible Markup Language) as an easy and adaptable structure to document patterns.

30

XML has proven its powerfulness as a markup language for documents structured
information in different fields. With patterns being represented as structured information,
XML can the logical choice for not only structuring the knowledge about patterns, but
also for generating the code from a high-level description of HCI design. In this way,
UPADE is intended to provide a multi-platform device-independent authoring
environment for accessing and manipulating usability patterns. UPADE supports the
generation of a complete and operational user interface from patterns. The user interfaces
that are generated may be based upon a Markup Language or a programming language.
The rendering support will be provided by style sheet languages such as Cascading Style
sheets (CSS) or Extensible Style Language (XSL). We have identified the potential
candidates for visual -The Extensible Hyper Text Markup Language (XHTML), Scalable
Vector Graphics (SVG) and Wireless Markup Language (WML) - and speech markup

(VoiceXML) Figure 3.1.

31

Usability Patterns
Representation Usability Patterns
Markup Luncuage Implementation

Markup Language

Pattern Design

Code

FIGURE 3.1: A SCHEMATIC OF THE UPADE FRAMEWORK ARCHITECTURE AND
PROCESS

3.2 UPADE Functionality

Each pattern is defined by the attributes and associations enumerated [PCML
(2001)]. Each pattern describes a collaboration of elements that provide a soiution to a
problem. A graphic representation of a pattern’s association with other elements is

provided in Figure 3.2.

32

(Context] [Force] LProblem } r Example]
N T

t] f I Motivated by

[Consequenc "]]q Pattern p l l’l Solution J

Ry Classifiedby g | Iy

[Related Patterns] [Name] [Reference J

FIGURE 3.2: PATTERN ELEMENT ASSOCIATIONS

A brief explanation of the pattern elements is as follow [PCML (2001)]:

e Process Pattern is a collection of general techniques, actions, and/or tasks

(activities) for developing a user interface development.

o Intent is a short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular design issue or

problem does it address?

¢ Consequence represents pattern usage. It describes how a pattern supports its

objectives and the trade-offs in doing so.

o Context represents the environment within which a pattern describes itself and is

a general motivation for its existence.

o Force represents a motivation of a pattern. It essentially amplifies the problem a

pattern is trying to address and then serves as a constraint on the solution.

33

* Problem represents a design need that is to be addressed by a pattern. It

essentially distinguishes the use of one pattern over another.

* Solution solves the problem described in a pattern. It is composed of a number of

participants and defines the static structure and dynamic interactions of them.

* Related Patterns represents a relationship between two patterns. A pattern
relationship is purely descriptive, but it does have an attribute that specifies what
type of relationship it is. This element would be used to refer to a like pattern or to

describe a pattern nesting.
* Reference represents the place or the person that create the pattern.

UPADE is designed to grant the following functionality to the software developers:

3.2.1 Browsing and searching patterns

UPADE in “Browse” mode can provide user interface developers and HCI
patterns developer with just-in-time details and information on both products and process
patterns. The information is depicted into unified format consisted of the pattern elements
such as pattern name, context that give description of the pattern, some illustrated
diagrams and several practical examples. The UPADE provides a unique repository for
storing HCI patterns and these pre store HCI patterns will be available for pattern

developers as demand.

When software developers run the UPADE application, UPADE will be open in
‘Browse’ panel by default, which will be similar to the one in Figure 3.3. In ‘Browse’

mode, UPADE produce and deliver patterns information, which software developers

34

need. The information is described into incorporated format consisted of pattern process,
pattern category, pattern name, pattern description with all the relative information and
examples. As you can see, the structures of Process and Category tree are presented in
an explorer style. By default, UPADE will be browsing patterns with their Process name.
However, software developers will be capable of switching to the browse by Category
name simply by selecting the “browse by category” from combe box that located in top
of tree panel, which is similar to the one in Figure 3.3. As you can see in Figure 3.4,
when the software developers select any pattern category from the tree, the relevant
patterns would be itemized instantly in a ‘Menu Bar’, which appears in top of the

‘Browse’ Panel.

[\E UPADL Usability Patteins Assizted Design Cnvironment
File TYools Help

FIGURE 3.3: BROWSE PATTERNS BY CATEGORY NAME.

35

Once the software developer clicks on any specific pattern in the ‘Menu Bar’, all
the relative information of that pattern will appear in the ‘Text Box’ area. As we can see
on the following example, once the developer selects “The Chain of Responsibility”

button from “Menu Bar”, all information of this pattern will appear on “Text Box” area

(Figure 3.5).

UPADE Uzabaility P atterns sisted Dezign L nvitonment
File Toois Help

§ @B obsewver U mS% oroker | [P Mirror . g Bridge
A DRONNE I S . _

FIGURE 3.4: BROWSE MENU BAR

36

3
e}
X!

té‘ UPADE {lzability Patterns Azzisted Deuign Favoonment
File Tools Help

|»

|Chain of Responsibility

‘| Intent : Aveoid coupling the sender of a request to its receiver by
g@iving more than one object a chance to handle the request. Chain
i} | the receiving objects and pass the request along the chain until an
i} | object handles it.

‘| Example : NO data available ...
.| Problem : NO data availabie ...

Context : The particular object which can fulfill a request may
vary with time or with the specifics of the request. For example,
| the window which handles a mouse event, the class which handles

FIGURE 3.5: PATTERN DESCRIPTION

To improve the UPADE efficiency, we provide the “Search” functionality.
UPADE in *“Search” mode will accelerate finding new information about specific HCI
pattern and will reduce the time needed to design a user interface application. The
following window is the “Search™ selection screen presented to the developer when
developer has selected the “Search” tab (Figure 3.6). Here on the Search Tab, you can
search for particular pattern or pattern criteria by simply typing a keyword and selecting
appropriate criteria from ‘Criteria Combo Box’ and then clicking on ‘Search’ button.

Let's look more closely at the searches that Software developers are able to make.

At the simplest level, Software developer types in a word or part of a word in
“Keyword Text box” located in top of the “Search’ Pane and selects appropriate criteria

from “Criteria Combo Box” which word is belong. Then, the developer clicks on the

37

“Search” button. UPADE search engine will search the UPADE database for the word
that the developer typed in “Keyword Text box™ and write back a list of all patterns in
Tree format in the “Search” result Panel. For instance, if Software developer decides to
search for information related to “Bridge Pattern”, in the first step, developer type
“bridge” or part of pattern name into the ‘Keyword Text box’ and then by selecting
“Name” from ‘Criteria Combo Box’, inform UPADE that this word is belong to the
pattern name. Then, the result of search will be appearing in the “Search Result Tree”
(Figure 3.6). Finally, the developer needs to select one of the results from “Search
Result Tree” to see the related pattern information in the “Search Result Pane” (Figure
3.7). The Criteria that “UPADE Search” supporting is “Name”, “Solution”, *“Context”,

“Problem”, “Consequence” and “All” (Figure 3.8).

Kg; UPADE Usability Patterns Assisted Design tnvinonment
File Tools Help

l Search)
Clear Results -

Enter a query and press the search Button...

Keyword:

Criteria:

FIGURE 3.6: SEARCH RESULT TREE

38

E"; UFADE - H:ahility Patteins Assisted Dexign Environment

Keyword:

Criteria:

Chain of

Responsibility

: Avoid coupling the sender of a request to its
eiver by giving more than one object a chance to
gndle the request. Chamn the receiving objects and
hss the request along the chain until an object handles

FIGURE 3.7: SEARCH RESULT PANE

Egs UPADE -- Usability Patterns Assisted Design Environment
File Tools Help

Keyword:

Criteria:

ery and press the search Button. ..

FIGURE 3.8: SEARCH CRITERIA

39

3.2.2 Facilitating the process of capturing patterns (Edit)

UPADE in “Edit” mode helps developers to create their own patterns or modify
an existing pattern. Since patterns are reusable components, a well-developed pattern
should be saved for reuse in other designs. By adding “Edit” tab into the UPADE,
developers can create their own patterns and illustrate those patterns. Therefore, “Edit”
will be allowing end users full control over their design standards, and the
implementation patterns in code that meet those standards. The patterns applied by
UPADE are sensitive to class and object characteristics. The use of characteristics allows
developer to say how certain elements of a code pattern are applied to classes, objects and

their parts. When a software developer selects the “Edit” tab, UPADE will open a new

panel that is similar to the one in Figure 3.9.

IRV AT R,

O T P O
R ST

FIGURE 3.9: EDIT MAIN PANE

40

As we can see from Figure 3.9, the main interface of Edit pane is separated into the three

areas:

1-

Construct Pane: This Panel contains eleven different layouts which they are named
as follow: “Identification”, “Example”, “Problem”, “Context”, “Forces”,
“Rational”, “Solution”, “Implementation”, “Consequence”, “Related Patterns”,
and “Reference”. These layouts provide a detailed specification of pattern elements.
In “Edit” mode, UPADE will being open by default in the “Identification” pane that

it has exposed in Figure 3.9.

“Navigation Pane”: This Panel contains eleven different buttons as same as
Construct Pane’s layout which give power to software developer to navigate

processing of pattern creation or modification.

Control Toolbar: The Control Toolbar is displayed at the bottom of the “Edit” pane

under the “Construct Pane” Figure 3.10.

FIGURE 3.10: CONTROL TOOLBAR

It is composed of group of buttons with following functionality:

= Save: Saves the current layout in the “Construct Pane”.

= Save all: Saves all layouts in the “Construct Pane”, using the current pattern

name in the “Identification” layout.
* Back: Takes you back to the previous layout pane or page in the history list.
* Next: Takes you forward to the next layout pane or page in the history list.

* Delete: will delete current pattern from the database.

41

» Clear: will clear all the text in all the panes in the “Construct Pane”.

3.2.2.1 Appending a New Pattern to the database

Once the “Edit” Tab selected, Software developer can start to add new patterns to
the database. In UPADE, if pattern enter for the first time it is just need to follow the
following steps and add your new pattern. However, if the pattern name already exists on
database, UPADE will fill all information that exists for this pattern in the all “‘Construct

panes” layouts.

1- First, pattern developer need enter the name of pattern into the “Pattern

name” in the “Construct Pane” (Figure 3.11).

2- Then, the developer needs to select the Process, Category, and any Sub
Category name from the related Combo Box. If the names do not exist in the
combo box list, the developer simply can type into the combo box text area

(Figure 3.12).

3- Next, by selecting “Next” button in the “Control Toolbar” or selecting
appropriate button from “Navigation Pane”, the developer can enter pattern

specific information or modify existing data (Figure 3.12).

4- At the end, the developer can save all information in to the UPADE database

for future usage (Figure 3.12).

42

JPADE Usability Polternz Azzsted Design Envitonment

File Tools Help

- Category: - S
R = T D R o B
Architachural Rattem><55 X800,

SunCaiegorr .

IO TR RO S L T e

Save courent pane! |3

FIGURE 3.11: ENTER NEW PATTERN

1- Create an Implementation class with defines a public interface.

2 Create subclesses of the Implemeration class {o iraplement each operation as needed.

3- Create an Abstraction class which maintains an association to the [rplementation class and prov;
perztions.

4 Foreach client class that needs to use an Implementation subclass, sabclass the chent from the Al

%t Delete ; “Clear -

FIGURE 3.12: ENTER NEW PATTERN

43

3.2.3.2 UPADE Feedback

In “Edit” mode, UPADE give a different feedback to developer by pop up
different Massage Boxes. For example, when user traverses panels by using “Next” or
“Back” button from “Control Panel” and reach to the end of panel, UPADE will pop up
the appropriate Massage Boxes. If developer decides to save or deletes a pattern to or
from UPADE database, UPADE also have a related feedback. In the “Edit” mode, when
developer traverses in the different panel layout, UPADE shows the “Path” in the top of
each layout Panel (Figure 3.13) which gives enough information to the developer that this

layout belongs to which pattern.

PPaiicm

FIGURE 3.13: EDIT PATH

3.2.3 Support developers in creating complex designs

UPADE in “Design” mode help developer to glue HCI patterns and design a user
interface application, replace one pattern occurrence by another, and automate pattern
composition. As we know, a pattern is a some what generic description of a solution

provided to address one or a common set of problems in a certain context. Although a

pattern describes a solution, it does not put any constraints on how that solution may be
realized. A pattern may; however, describe how it relates to other patterns and even how
it may be composed of other patterns. In this way, the abstract nature of patterns is
preserved while the realization of solutions and idioms is reserved for strategies. For this
reasons, UPADE gives an environment to glue HCI patterns together. Firstly in “Design”
mode, UPADE can support the designing activities from more general to specific.
Secondly, “Design” supports combination and organization of existing patterns. For
example, The Software developer can glue Page Managers Patterns into the other
Information Architectural Patterns like Navigation Support Patterns and Information
Containers Patterns. Moreover, the designer has the freedom to organize Navigation
Support Patterns and Information Containers Patterns inside the layout, the developer can
move these patterns in the design phase and even developer can delete the useless ones
from the design. The purposes of these activities aim to explore how to organize and
combine the existing patterns to customize and format the new patterns. Finally,
“Design” editor provides a mechanism to check the usage of patterns. It can
automatically examine the compatibility of certain patterns and give the related
instruction to the designer consequently. When software developers select “Design” tab,
UPADE will open a new panel that is similar to the one in Figure 3.20. As we can see
from Figure 3.14, the main interface of “Design” pane is separated into the three areas:

Browse Tree Panel, Control Menu Bar, and Drawing Pane.

e “Browse Tree Panel” is the section that developer can browse the entire pattern

existing in the UPADE database.

45

e “Control Menu Bar” is the place that the developer can navigate the drawing

process.

e “Drawing Pane” is area that the developer can glue the HCI pattern by simply

using drag and drop mechanism.

ot |
g UPADE - Usabibity Patterns Asisted Dengn Envionment

FIGURE 3.14: DESIGN PANE MAIN PAGE

3.2.3.1 UPADE Pattern Composition

Once the “Design” Tab select, developer can start to compose patterns with the

following order:

46

First, the pattern developer needs to browse the tree in the “Browse Tree Panel” to

find pattern name (Figure 3.15).

Then, developer needs to select the pattern name and drag and drop it into the
“Drawing Pane” area (Figure 3.15) and repeat steps ! and 2 till all necessary

patterns put into the drawing area.

Next, by selecting “Link Mode” button from “Control Menu Bar”, the developer
can connect each pattern to the other by choosing appropriate connectors that are in

the Combo Box located in the Control Menu box (Figure 3.15).

At the end, the developer can save the pattern composition map into the XML format
for the usage in code generation mode. When developer select “Save Map” button
from “Control Menu Bar”, a new dialog box will be pop up (figure 3.16) to ask

developer entering a name for pattern composition map.

47

ded Gegn b nene et

Lookin: |27 upadev2003.2 ~| _El_' ‘éé_' HE

File name: ﬁE&pE;TES_T@mI;;,

Files offype: JJustXML dacs ~>| cancel

FIGURE 3.16: SAVE MAP DIALOG BOX

48

3.2.3.2 Modifying a Pattern Composition
First, pattern developer needs to open an existing pattern composition map or
work in currently opens Map. When developer select “Open Map” button from “Control

Menu Bar”, a new dialog box will pop up (figure 3.17). The developer needs to select

from the file list.

Files oftype: [Just XML docs

FIGURE 3.17: OPEN MAP DIALOG BOX

When the proper Map files opened, the developer is able to change any relation between

patterns, delete any pattern or add new pattern to the Pattern Composition by clicking

them. After modification, the developer can save it again.

49

3.2.4 Generating the code from a high level XML descriptions

UPADE in “Generate” mode aims developer to generate program elements like
classes, hierarchies which this elements taken from an extensible collection of "template”
HCI patterns code. Please note that this part of UPADE hasn’t been implemented
completely in the current prototype. It will be realized in next version of UPADE. We
saw that the current code generation solutions of the day did not support a development
organization's need to build their own design pattern and combine implementation rules
with those patterns. UPADE was created to do this directly. UPADE allows Software
developer full control over their own design principles to implements a user interface
code that meets those principles. UPADE is a tool that allows developer to create rules
for how code is created from patterns sample code. The patterns applied by UPADE are
sensitive to class and object characteristics. The use of characteristics allows developers
to say how certain elements of a code pattern are applied to their classes, objects and
parts. The main problem of the “Generate” is how automatically and faultlessly applies
the policies and rules of implementation. This rules need to be put into effect over the
entire sets of classes and objects. These types of rules can be competently expressed and
automated by using XML capabilities. We hope, the developer will be intrigued by the
power of basing implementation strategies around the pattern code. In this phase,
operational behavior of the”Generate” is like a translator (Figure 3.18). First, it takes in a

very compact specification of classes and objects (an object model), and code templates.

50

FIGURE 3.18: GENERATE TRANSLATOR

Next, it follows the rules expressed in the code templates that UPADE provide
them. UPADE can generate code files and their contents by using the XML Language.
The object model syntax is easy to create, read and understand. The rich capabilities of
the template statements allow developer to express coding decisions in advance that take
the object characteristics into the account. UPADE will allow developer to take the code
in the pattern, and express them in to a template. Therefore, developer can create code by

using the pattern faster and more consistently.

3.3 UPADE Scenario

Since user interface developer want to work on different levels of abstraction,

UPADE provide three mutually consistent levels:

* The Pattern Level: where developer can see description of the patterns, search a
specific pattern, create a new pattern and save the pattern into the database. For these

reasons, UPADE restrain Browse, Search, and Edit tabs (Figure 3.19).

51

FIGURE 3.19: THE PATTERN LEVEL

The Design Level: where developer can develop a systematic approach to glue
patterns, supports the integration of patterns at the high design level, replaces one
pattern occurrence by another one and automates pattern composition. For these

reasons, UPADE contain Design tab (Figure 3.20).

-
_.2 Tools Help

FIGURE 3.20: THE DESIGN LEVEL

The Code Level: where developer can see the structure of the design in terms of
classes, methods, associations and inheritance relationships in a particular
programming language. For these reasons, UPADE includes Generate tab (Figure

3.21).

pr-
.¢ Tools Help

52

FIGURE 3.21: THE CODE LEVEL

It is better to exploit detailed examples to depict UPADE functionality by using
the design level. For instance, user interface developer decides to create a web
application. To create a web application first we need to define web site architecture that
it is base of the collected information from the user analysis. Then, create a flow diagram
that the developer can identify all web pages within the web site and show the pathways
linking to each page. To create such a web site, we can use “Information Architecture
patterns” such as Sequential, Hierarchical, Grid, and Composite Patterns. A complex and
large web application is generally organized using a combination of several architectural

patterns figure 3.22.

Hiegarchice! Pattem

[BIEN

Figure 3.22: A Composite Pattern combining Sequences Pattern,
Hierarchical Pattern and Grid Pattern.
To establish a prototype of this web page, user interface developer needs to go throw the
following steps (Figure 23):

e Select “Design” tap from the UPADE main interface.

53

* Browse down the “Browse Tree Panel” to find appropriate patterns. In our
example, the user wants to create a home page by using homepage pattern,
convenient pattern, path pattern, toolbar pattern, shortcut pattern, and browsing
index pattern and some other informational pattern like Sequential, Hierarchical,
and Composite.

¢ In the poroduct_oriented pattern, select Architectural Patterns and then select
information.

¢ Ininformation node, select and drag and drop the Composite in the drawing pane.

¢ Continue pervious step until no more pattern are needed.

¢ Press link mode button from Control Menu Bar and choose correct relations from
the combo box that are located in the Control Menu Bar.

¢ Connect the entire pattern with appropriate relation.

e Select save button to save the pattern composition diagram in the XML format.

Note that if the user wants to modify an existing diagram they can follow section 3.2.3.1

and 3.2.3.2 of this chapter.

54

Figure 3.23: Web site creation by using architectural patterns

3.4 Validation of UPADE

One of the key differences between UPADE and other user interface development
tools (such as UML tools) is that developers are in control. Developers are able to define
the objects and their characteristics. Developers also are able to define their patterns,
modify them and use them to create the code based on pattern characteristics. UPADE
was designed to be customized and extended, with the realization that most people have
achieved a local set of conventions for style and structure, and only need a tool to assist

them in creating code more quickly that honors those conventions.

55

3.5 Summary

In this chapter we described our UPADE HCI pattern engineering tool. The tool
helps user interface developer to browse and search the existing HCI patterns. Developer
can also edit and create new HCI pattern by combining existing HCI patterns. In the next

chapter, we will discuss the UPADE implementation issues.

56

Chapter 4

UPADE Implementation

In this chapter, we describe in detail the implantation of UPADE. The UPADE
Framework Architecture is presented in section 4.1 followed by a brief overview of the
JDBC database in section 4.2. In section 4.3 we will point out the benefit of using
Extended Markup Language in pattern engineering tools. In section 4.4 a summery of the

topic in chapter 4.

4.1 UPADE Framework Architecture

UPADE is an ongoing research project instructed by Dr. Ahmed Seffah. In this
research, we are examining the original solution of employing usable HCI patterns as a
framework for integrating usability in CASE tools while increasing the usability of
systems. A schematic of the UPADE framework architecture and process are shown in

Figure 4.1.

57

~ Pattern ' Pattern] Pattern
Browsing Searching | : - Composition

Code Generation

FIGURE 4.1: A SCHEMATIC OF THE CURRENT UPADE FRAMEWORK ARCHITECTURE

58

The component level view of the UPADE tool is shown in Figure 3.32.

Client Side %

UPADE User

UPADE tool Server Side

(Java Application) XML

Browse |{ Search Edit lDesign Generatel

Server

Application Database

LA DL T X LYY Y Y Y ¥]
R D AR D I D SN S G ED GD ED AD ED GD 6D D D EE 6D e
- . -y

e e - - - - - - -

FIGURE 4.2: UPADE USE-CASE DIAGRAM

As we can see in Figure 4.1, UPADE has been implemented using Java, the JDBC
and XML. The UPADE allows developers to take advantage of the Java platform's
"Write Once, Run Anywhere” capabilities for industrial strength, cross-platform
application. Java Database Connectivity (JDBC) technology is an API that lets developer
access virtually any tabular data source from the Java programming language. It provides
cross-DBMS (Database Manager System) connectivity to a wide range of SQL databases.

A view of the UPADE database system is shown in the figure 4.3.

59

FIGURE 4.3: UPADE DATABASE SYSTEM

60

4.2 JDBC

Java Database Connectivity (JDBC) provides Java developers with a standard API
that is used to access databases, regardless of the driver and database product. With a
JDBC technology-enabled driver, a developer can easily connect all corporate data even
in a heterogeneous environment. JDBC requires at least JDK 1.1, a database, and a third
party JDBC driver. JDBC presents a uniform interface to databases. If a database is
changed, the application only needs to change its driver. There are plenty of JDBC
drivers available now that support popular databases. A suitable JDBC consists of two
layers [Cay S. Horstmann, Gary Cornell (1999)]; the top layer is JDBC APL The Java
application communicates with the layer below it, the JDBC driver manager API, by
sending various SQL commands. The JDBC driver manager API communicates with
various third party drivers, which actually connect to the database and execute the SQL
commands. This gives the tool the flexibility to change the remote database and the
drivers at any time, without making any changes to the existing code Figure 4.4. Right
now, UPADE uses the JDataStore as its remote database and JDBC driver to connect to
this remote database. In future, if we decide to change UPADE database to another
database like Oracle database, all we have to do is buy a JDBC driver for Oracle from
any third party and tell our application to use this new driver to connect to the database.

Figure 4.5 shows the current UPADE database structure by using JDataStore.

61

S{PITCA O) ;
]

We don’t need to
change UPADE
when database

changed

FIGURE 4.4: IDBC DIAGRAM

62

UPADE Database Systems
Structure

UPADE Application
program/Queries

FIGURE 4.5: UPADE DATABASE STRUCTURE

63

4.3 Extended Markup Language (XML)

As we discussed above, UPADE can compose patterns and use them in the code
generation. XML (Extended Markup Language) is the new technology, which allows
patterns at any level of abstraction to be expressed in a tangible, standard format. By
leveraging the openness and flexibility of XML, this technology enables architects and
developers to easily and effectively describe, package, exchange and extend their own
patterns as well as those created by others. At the same time, tool and repository
providers are empowered to automate much of this process. This makes our user
interface application more efficient and productive and programmer does not have to
worry about checking the validity of the document. And also there are a lot of XML
document parsers available in the market, which parse the document and gives the
content of the document. This saves a lot of time for the programmer. In the following,
we summarize our investigations regarding XML as the underlying structure for

manipulating patterns and for automating the development of user interface designs.

4.3.1 XML as a Neutral Language for Documenting Patterns

and Describing the Related Design Knowledge

Using XML for documenting patterns has already been explored. For example, the
Amsterdam pattern catalog is documented using an XML. The following table
describes the DTD (Data Type Definition) we defined and used for sharing via the
Web our pattern language with IBIS designers Figure 4.6. Once used by the developers
we interviewed, however, it became quite clear to us that this DTD, like those

proposed by others, forced all pattern writers and users to closely adhere to and master

64

a specific format and terminology for documenting patterns. This constitutes another
key obstacle towards a flexible, pattern-driven design approach. With a view to
offering maximum flexibility with regard to the choice of pattern documentation
format (e.g. Gamma, Alexander, Portland), we are establishing and introducing
terminology rules uniting the characteristics of the format we adopted and those

belonging to other formats as part of the DTD (Data Type Definition) we defined.

U

Table A SO RS 1T i By (12
XML Notation

<!ELEMENT pattern (PatternName, AliasNames, ContextUse,
UsabilityProblems, Force, Examples, Rationale, DesignSolution,
Implementations, Consequence, RelatedPatterns, References)

<!ENTITY % fieldtext "#PCDATA">

<!ELEMENT PatternName (%fieldtext;)*>
<!ELEMENT AliasNames (%ofieldtext;)*>
<'ELEMENT ContextUse (%fieldtext;)*>
<!ELEMENT UsabilityProblems (%fieldtext;)*>
<!ELEMENT Forces (%fieldtext;)*>
<!ELEMENT Examples (%fieldtext;)*>
<!ELEMENT Rationale (%ofieldtext;)*>

<!ELEMENT DesignSolution (%fieldtext;)*>
<!ELEMENT Implementations (%fieldImp;)*>
<!ELEMENT Consequences (%fieldtext;)*>
<!ELEMENT RelatedPatterns (%ofieldtext;)*>
<!ELEMENT References (%ofieldtext;)*>

FIGURE 4.6: A SIMPLIFIED DTD USED BY UPADE EDITOR

Our idea was sparked by the <peers> concept introduced by the UIML (User Interface
Markup Language) language. UIML proposes describing the components of a user
interface using general vocabulary, then defining the rules that establish the
correspondence between the internal terminology used by UPADE editor and the one
used by a given pattern language. By adopting a solution of this sort, pattern writers

and users have the option of working in the documentation format of their choice,

65

while eliminating any terminological ambiguity. Our work at the current time is
focused on the definition of terminology rules that enable us also to import and
integrate pattern languages such as “Common Ground”, “Experience”, “Brighton”, and

“Amsterdam” in the UPADE, in addition to the adopted notation.

4.3.2 XML as a Device-Independent Language for

Implementing Patterns

Given the wide variety of IBIS applications, pattern implementations should exist
in various formats. For example, the Web convenient toolbar pattern that provides
direct access to frequently used pages such as What’s New, Search, Contact Us, Home
Page, and Site Map, can be implemented differently for a Web browser and a Personal
Digital Assistant (PDA). For a PDA, this pattern can be implemented as a combo box
using the Wireless Markup Language (WML). For a Web browser, it is implemented
as a toolbar using embedded scripts or a Java applet in HTML. UPADE should provide
advices to pattern users in terms of selecting the suitable implementations for their

context. Selection rules should be embedded in the tool.

Furthermore, rather than using different programming languages for coding the
different implementations, we are investigating XML as a unified and device-
independent language for implementing patterns. By using XML-compliant
implementations, patterns can be translated into scripts for script-based environments
like HTML authoring tools, beans for Java GUI builders like VisualAge, and pluggable
objects like Java applets and ActiveX components. Generating a specific

implementation from an XML-based description is now possible because of the

66

availability of XML-based scripting languages. Among them, the user interface
Markup Language, UIML is a potential candidate. UIML descriptions of a user
interface can be rendered in HTML, Java, and WML. Tools like the [BM-Automatic
code generator from design patterns encourage us to investigate the generation of code

from XML-based pattern implementations.

4.4 Summary

In this chapter we described the implementation issue of UPADE application. We
demonstrated how UPADE has been implemented by using Java, the JDBC and XML
and how these languages made UPADE a usable application for user interface

developers.

67

Chapter 5

Conclusion and Future Work

In the last few years, much activity has been concentrated on discovering and
documenting HCI patterns. However, little importance has been placed on how to apply
these patterns and combine them to create a complex design. Automating the process of
developing patterns-oriented designs can facilitate the usage of patterns while improving
the usability of applications. This thesis addressed these challenges. He mainly showed
how user interface developers could reuse the existing well- documented HCI patterns to
create a complex design. The proposed UPADE prototype allows the developer to define
HCI patterns, and compose them. The developer also can import a previously defined
HCI pattern, modify it and reuse it again and again to define new ones. Therefore, we can
say that UPADE allows user interface developers to reuse part or complete design over

and over.

However, as discussed in this thesis, pattern engineering automation tools are
useful tools as long as designers who are highly skilled in HCI patterns use them wisely.
For this reason, we tried in UPADE to abate disparity between HCI pattern descriptions

and their implementation. It is the developer responsibility to assess if the

68

implementations suggested by UPADE will be applied correctly or not. If user interface

developer needs are more specialized, then of course they need to develop the code.

Compared to existing user interface development tools such as GUI builders,

UPADE has benefits and detriments. Some of the UPADE are:

e Facilitates the process of browsing and searching HCI patterns. UPADE provides
user interface developers and HCI patterns developer with just-in-time details and
information on both patterns and the process of combining them. The ‘“Search”
feature aims to accelerate finding about specific HCI pattern and will reduce the time

needed to design a user interface application.

® Facilitates the process of gluing patterns. UPADE helps developers to glue HCI
patterns and reuse well-developed and documented HCI patterns to design a complex

system.

o Supports pattern modification and creation. UPADE helps developers to create their
own patterns or modify an existing pattern. All the modified patterns can be saved for

reuse in other designs.

e Code generation. UPADE aims to support the generation of programs from a high

level description of patterns

The UPADE prototype we developed has been tested on several sample programs
to establish a base-level confidence that it operates correctly. Naturally, extensive testing

would be required.

An other interesting issue in this context is the number of well-known HCI

patterns. User interface developer will have some limitation to compose the pattern to

69

An other interesting issue in this context is the number of well-known HCI
patterns. User interface developer will have some limitation to compose the pattern to
develop a complicated user interface application. Therefore, there is a potential to search

new HCI patterns and add them to the UPADE database for later usage.

Another important issue is the code generation. We need more time to finish our
own Markup Language. We can cope with these limitations where feasible by expanding
and refining our reusable knowledge base as we gain more experience. Nonetheless, the
analysis for heuristic guidelines is rather human-dependent, and the certainty of
compliance is much less. And finally, Architectural models like patterns are abstract;
however, they have many possible ways for implementation. We try to captures many of

these possibilities, but conformance checks cannot be absolutely guaranteed.

70

References

Alexander C., Ishikawa S., Silverstein M. (1977). A Pattern Language: Towns,

Buildings, Construction. Oxford University Press; (1977)

Borchers J. O. (2001).A Pattern Approach to Interaction Design. John Wiley & Sons;

first edition (May 16, 2001).

Budinsky, F., M. Finnie, J. Vlissides, and P. Yu (1996). Automatic Code Generation
from design Patterns [Internet journal] January 4, 1996. IBM Systems Journal, Vol 35,
No. 2. Available from <http://researchweb.watson.ibm.com/journal/sj/352
/budinsky.html> [Accessed June 9th, 2002].

Casaday, G. (1997) Notes on a pattern language for interactive usability [Internet
Publications] ACM,1997. Available from http://www.acm.org/sigchi/chi97/proceedings/

short-talk/gca.htm [Accessed January 11th, 2003].

Cay S. Horstmann, Gary Cornell (1999). Core Java 2, Volume 2: Advanced Features
(4th Edition). New Jersey ,Prentice Hall PTR; Book and CD-ROM edition (December 27,

1999).

Gamma E., Helm R., Johnson R. and Vlissides J. (1994) Design Pattern: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

Keerthi K Arutla, (2000).Tool Support For Pattern Oriented Analysis And Design.
Master thesis, Department of Computer Science and Electrical Engineering.

Morgantown, West Virginia 2000.

71

MagicDraw (2003). Introducing MagicDraw. Product info, 7-April-2003. Available

from < http://www.magicdraw.com/> [Accessed April 15th, 2003].

Mahemoff, M. J. and Johnston, L. J. (1998), Pattern Languages for Usability: An
Investigation of Alternative Approaches, Asia-Pacific Conference on Human Computer
Interaction (APCHI) 98.

Meijers M, (1996) Tool Support for Object-Oriented Design Patterns, Master’s Thesis,
Utrecht University, CS Dept, INF-SCR-96-28, August 1996. Available from

<http://www .serc.nl/people/florijn/work/patterns.htmi > [Accessed August 2th, 2002].

Meijler, T. D., S. Demeyer, and R. Engel (1997). Making Design Patterns Explicit in
FACE, A Framework Adaptive Composition Environment, in Software Engineering

Notes, ESEC/FSE, Vol. 22, No 6, Nov 1997, pp94-110.

ModelMaker (2002), The Borland Delphi Productivity / CASE tool Borland technology,
1994-2003. Available from <http://www.modelmakertools.com
/mm_what_others_say.htm> [Accessed April 22nd, 2003].

Nielsen J. Norman N. (2001) User Interface Architecture. IBM; Second Edition
(December, 2001).

OTW, (2001). Object Technology Workbench supports C++, Java, Delphi, as well as
SQL-DDL and CORBA-IDL, OTW Software, Inc. Available from
<http://www.otwsoftware.com/english/otw/product.shtml > [Accessed August 20th,
2002].

Pagel, B., and M. Winter (1996).Towards Pattern-Based Tools, EuroPLoP preliminary
Conference 1996 Available from <http://www.informatik.fernuni-hagen.de/

import/pi3/publikationen/abstracts/EuroPLoP96.pdf> [Accessed August 12th, 2002].

72

PCML (2001). Pattern and Component Markup Language (PCML) specifications.
ObjectVenture Inc. Draft 3,(2001-2002) Available from <http://www.objectventure.net
/files/docs/PCMLSpecification.pdf > [Accessed Nov 21st, 2002].

Schiitze M., Riegel J. P., Zimmermann G. (1999). PSiGene - A Pattern-Based
Component Generator for Building Simulation. Journal Theory and Practice of Object

Systems (TAPOS), Vol. 5, No. 2, pp. 83-95, 4 1999

Sefika ,M., Sane A., Campbell R. (1996).Monitoring Compliance of a Software System
with its high-Level Design Models, Proc. Of [CSE'96,1996. Available from
<http://choices.cs.uiuc.edu/sane/patlint.pdf> [Accessed August 2th, 2002].

SOFTEAM (2001). Objecteering C++ Developer. Objecteering Software inc. Available
from < http://www.objecteering.com/products.php> [Accessed April 20th, 2003].

Suzuki J. and Yamamoto Y. (1998). UML Exchange Format & Pattern Markup
Language. UML'98 (June 1998) Available from <http://www.yy.ics.keio.ac.jp
/~suzuki/project/uxf/> [Accessed Nov 20th, 2002].

Tidwell, J. (1999). COMMON GROUND: A Pattern Language for Human-Computer
Interface Design. [Internet journal] 17th May 1999. Available from
<http://www.mit.edu/~jtidwell/interaction_patterns.html> [Accessed January 9th, 2003].
The Brighton Usability Group (2001). The Brighton Usability Pattern Collection.
[Internet].the University of Brighton, UK Available from
<http://www.cmis.brighton.ac.uk/research/patterns/home.html > [Accessed Feb 2th,

2002].

73

Traetteberg H. and Weliec M. (2000). Interaction Patterns in User Interfaces (July 2000)
Available from < http://www.cs.vu.nl/~martijn/patterns/PLoP2k-Welie.pdf > [Accessed
April 23th, 2003].

Yacoub, S. and H. Ammar (1999).Tool Support for Developing Pattern-Oriented
Architectures, Proceedings of the Ist Symposium on Reusable Architectures and
Components for Developing Distributed Information Systems, RACDIS'99, Orlando,

Florida,August 2-3, 1999

Yacoub S., Xue H., and Ammar, H. (2000). Automating the Development of Pattern-
Oriented Designs. Department of Computer Science and Electrical Engineering, West
Virginia University, Application-Specific Systems and Software Engineering

Technology, ASSET 2000, Richardson, Texas, March 24-25, 2000

74

