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ABSTRACT

An Ontological Approach to Conceptual Change:
The role that complex systems thinking may play in providing the
explanatory framework needed for studying contemporary sciences

Elizabeth S.A. Charles, Ph.D.
Concordia University, 2003

The inability to acquire a good understanding of certain scientific concepts,
apparently because other concepts have become firmly habituated, has plagued many
novice and seasoned science students. Chi, Slotta, and deLeeuw (1994), Strike and
Posner, (1992), and Vosniadou (1994) categorize this problem of robust misconceptions
as stemming from fundamental beliefs or "theories" held about the properties of the
concept. One approach to overcoming such limiting habits may involve the reassignment
of concepts from the clockwork explanation of causality (often held by novice learners)
to a scientifically correct emergent causal explanation (Chi et al, 1994; Chi & Roscoe,
2002). Another approach to learning these less familiar causal processes has explored
computer generated multi-agent representations and programming using StarLogoT (e.g.,
Resnick, 1994; Wilensky, 1999; 2001). However, the literature on complex systems
thinking reveals that students have great difficulties acquiring an understanding of
“emergent causal processes” (e.g., Duit, 1998; Jacobson, 2000; Penner, 2000).

Based on these identified concerns, this dissertation comprises a two-part
longitudinal inquiry of complex systems thinking as a means of facilitating conceptual
change. Study 1 employed a “posttest only control group” random assignment
experimental design. Changes in ontological frameworks were assessed using an
ontological coding taxonomy (OMMT) adopted from two sources (Ferrari & Chi, 1998;
and, Jacobson, 2000) and refined for this study. The hypothesis was that first year Cegep
science students receiving a complex systems intervention using StarLogoT would
employ more emergent causal explanations and fewer clockwork explanations as a
general explanatory framework for problem solving. By contrast, students in the control
group would not. The 25 students in the experimental group generated significantly more

emergent framework explanations on both near and moderate far transfer questions than

il



did the 20 students in the control group. Furthermore, they generated significantly fewer
clockwork framework explanations on near transfer questions but not on moderate or far
transfer questions than did the control students.

Study 2 was a mixed method qualitative case study of nine students selected from
the participants in Study 1 using a purposeful sampling procedure. Students’ acquisition
of an emergent causal framework was assessed using an ontological measure referred to
as the Complex Systems Taxonomy (CST) adopted from Jacobson (2000) and refined for
this research. The two central research questions were the following:

*  What aspects of students’ ontological and epistemological beliefs facilitated or
constrained their acquisition of an emergent causal framework?
* What experiences with StarL.ogoT facilitated or constrained this learning process?
The findings were as follows: (1) Although students experienced gains in four of the six
component features of emergent causal processes, their difficulty with the concepts of
“random actions” of agents and “nonlinear effects” of agents constrained their deeper
understanding of emergent causal processes. (2) Although StarLogoT facilitated the
acquisition of certain aspects of this knowledge, it provided no affordance for learning
the concept of “nonlinearity”. Furthermore, aspects of these multi-agents representations
generated conflicting ontological explanations for the concept of “randomness”. (3)
Although the selected StarLogoT simulations demonstrated emergent causal processes,
they represented different types of complex systems (i.e., tightly coupled and dissipative
loosely coupled). Although most students had difficulty with the representations of
dissipative systems, those who had a more advanced understanding of science concepts
gained an understanding of emergent causal processes from dissipative representations.
(4) Conceptual change required metacognitive scaffolding and ongoing metaconceptual
prompts during the instructional phase. However, once students acquired synthetic mental
models, maturation over time and experience with complementary domain curricula was

sufficient for them to elaborate their understanding of emergent causal processes.
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CHAPTER 1
INTRODUCTION

One of the current trends in science education is to look at the generalities that are
present across disciplines. When scientific theories are investigated at the philosophical
level it is possible to abstract a general conceptual framework from the specifics that
differentiate them (Auyang, 1998). These general concepts may also be referred to as
explanatory frameworks (the components as characteristics of ontological categories,
Chi, Slotta, & deLeeuw, 1994). We use these general concepts such as thing, event,
process, causality, relation, part and whole, space and time, to interpret and explain the

world. These general concepts allow us to share ideas and build theories. Auyang states:

The categorical framework is general and not biased toward any theory. It
abstracts from scientific theories, which in turn abstract from the specifics of wide
ranges of phenomena. The shared categorical framework of different theories
reveals both the general way of our thinking and a general commonality among
the topics of the theories thus our consideration must include the phenomena the
sciences try to understand. (p. 9)

But what happens when we do not share similar explanations for a major class of
phenomena? Or worst yet, we do not even “see” similar categorical frameworks
extending across various phenomena? It is theorized that this is precisely why many
science concepts are difficult for the novice to grasp. In science, many underlying
structural and process attributes are not consistent with the surface features of the
phenomena. Novice learners tend to build explanations (mental models) based on surface

features and their intuitive, naive interpretations therefore lead to incorrect conclusions



and misconceptions (Glynn & Duit, 1995; Chi, Feltovich, & Glaser, 1981; Chi, Slotta, &
deLeeuw, 1994; Vosniadou, 1994).

If this is the case, what if we were to take a different approach: identify common
underlying structural and process attributes and teach these instead? Would that facilitate
deeper level understanding? These are the fundamental questions of this present study. I
will argue that teaching students (novice learners) certain principles of complex systems
thinking was possible and that these students were then able to change certain aspects of
the explanatory frameworks they used in both near to the model and far from the model
problem-solving tasks. I will also argue that the behaviors of complex systems, as
demonstrated in the multi-agent modeling language, StarL.ogoT, are consistent with
identified dimensions of the category of “emergence” type ontological beliefs (referred
to as “component beliefs” in Jacobson, 2000) and therefore offer affordances for learning
about underlying emergent causal processes.

Before continuing let me first define a few important terms. To begin, the term
“emergent processes” or “emergence” is used primarily to describe the behavior that
arises from a collective (meta-agent) composed of a large number of smaller parts (the
agents) that do not themselves exhibit behavior at all like that of the whole. Emergence is
also described as the ability to generate complex behavior (complexity) from a small set
of laws or rules. To illustrate this description, patterns generated by birds flocking, ant
trails, the “human wave’, are all examples of emergent processes. Another less visual
example of emergence is a board game. Although there are many built-in constraints
imposed by the rules, the outcomes are too numerous to describe (Holland, 1998). Thus
emergence, as defined in this study, is a phenomenon which relies on the interactions of
multiple agents, all operating under the same constraints (rules) without centralized
control, yet affected by probabilistic causes and feedback loops that generate nonlinear
effects creating dynamic self-organizing systems behaviors.

Many but not all complex systems exhibit emergent behaviors. It should be noted
that in this study I was primarily interested in complex systems thinking that relates to the
understanding of emergent causal processes. Therefore, only references to emergent
causal behaviors were identified and analyzed from the students’ interactions with the

StarLogoT models.



The definition of the term ontological category used here is that it is a personally
held “theory” or “belief” associated with what the world is and what it contains (Flood &
Carson, 1993). It can be said that it is “our way of explaining the world”; hence it
contains basic axioms, and a set of causal predicates that can be judged as true or false
(Keil, 1979).

In this study, I will use the term “emergent causal framework” ontology to refer to
the ontological category that offers an explanation for the behaviors of the particular
types of phenomena that exhibit the behaviors described above (i.e., aggregating,
decentralized control, nonlinear effects, random actions, probabilistic causes, and
dynamic self-organizing nature). Although there may be other less liberal definitions of
the emergent causal ontological category (see Perkins & Grotzer, 2000), I will argue that
this more inclusive definition allows us to bring greater consistency between conceptual
change research (Chi 2000b) and the expanding literature of complexity research (e.g.,
Holland, 1995; 1998; Jacobson, 2000; Wilensky 1999). Later in this dissertation I will
discuss at length the development of the ontological category related to emergent causal
explanations and the mental representations that I assert are evidence of these internally
held explanatory frameworks.

A final point of clarification: the term “emergent processes” or “emergence”
should not be confused with everyday usage or with the usage in qualitative data analyses
where categories and themes “emerge” from the data. Because qualitative techniques are
employed in this study, this latter use of the term will also arise. I will attempt to keep the

context visible so that the intended distinction in meaning will be apparent to the reader.

1.1 The Problem

The literature of schema-based learning theories describes three types of learning:
accretion, tuning and cognitive restructuring (Rumelhart & Norman, 1976). Research
conducted in the area of cognitive restructuring generally is assembled under the heading
of conceptual change. Growing interest in this field led to the identification of difficulties

in learning key science topics such as electricity in physics (Chi, Feltovich, & Glaser,



1981; White, 1993), gas laws and equilibrium in chemistry (Wilson, 1998), and in the
biological sciences such concepts as diffusion, osmosis (Odom, 1995; Settlage, 1994),
and evolution (Anderson & Bishop 1986; Brumby, 1984; Jacobson & Archodidou, 2000).
It is very difficult to achieve cognitive restructuring. Thus far, research has shown
that the presentation of anomalous data — information that contradicts the pre-
instructional beliefs and theories — is generally met with resistance from the learner and
seldom leads to conceptual change (Chinn & Brewer, 1993; Chinn & Brewer, 1998).
There are several researchers who have followed this route and achieved differential
levels of success (Tao & Gunstone, 1999; Chan, Burtis & Bereiter, 1997; Windschitl &
Andre, 1998). They have combined constructivist instructional strategies, such as
collaborative learning, computer-based instruction, knowledge building activities,
metacognitive prompts, multiple analogies, in order to facilitate the acceptance of the
anomalous data. However, these studies have not attempted to build a theory of
conceptual change. Further, they have not addressed the underlying cause of the
misconceptions. Chinn and Brewer (1993) propose that the crux of the problem is the
learner’s efforts to coordinate theory and data. These authors offer four characteristics

that may account for the different responses to anomalous data. They are as follows:

¢ Entrenchment of prior theory
*  Ontological beliefs
* Epistemological commitments

* Background knowledge

Chinn and Brewer (1993) also tell us that in the case of robust misconceptions,
these four characteristics may not play an equal role. It may be that intuitive “naive”
beliefs about the nature of existence and the fundamental categories and properties of the
world (ontological beliefs), and beliefs about knowledge and how it is acquired
(epistemological beliefs), are deeply intertwined with who we are, as well as how and
what we can learn. If we accept their argument, then these beliefs are likely associated

with hopes and fears and therefore are rigorously defended and very resistant to change.



Conceptual change models fall into two primary groups, the more conventional
view known as an accommodation model, posited by Piaget, and elaborated on by Strike
and Posner (1985, 1992) who consider the conceptual ecology of the learner but assert
that, through reason, the more fruitful explanation will be adopted. The other camp takes
a more structural approach, positing that it is the very nature of the explanation, the
underlying beliefs of causation that need to be addressed. Within these models are: (1)
Vosniadou’s “framework theories” (e.g., Vosniadou & Brewer, 1994), (2) diSessa’s
“causal net” (diSessa & Sherin, 1998), and (3) Chi’s “ontological beliefs” (Chi et al.
1994). Although these researchers disagree on several fundamental points related to how
coherent or fragmented these naive “theories” or beliefs are, they agree that these beliefs
need to be altered in order to repair and/or remove misconceptions.

I argue that the problem of robust misconceptions is an important problem to be
solved. I further argue that a general theory of conceptual change is required. In order to
move the debate forward, it is necessary to empirically as well as theoretically explore

the assertions of these models. This present study addresses this need.

1.2 Theoretical Foundation

This study took as its starting point the conceptual change theory proposed by Chi
and her colleagues (Chi, 1993; Chi & Slotta, 1996; Chi et al., 1994; Ferrari & Chi, 1998;
Slotta & Chi, 1996, 1999; Slotta, Chi & Joram, 1995). The basic assumption of their
theory is that all conceptions are classified into ontological categories — ordered
hierarchical trees of super-ordinate and subordinate systems — based on attributes that
are perceived or suggested to the learner. These schema-like associations act as
facilitators or inhibitors of future transfer of knowledge and are part of general accretion
and tuning.

Chi’s theory is intended to explain concepts that, in the case of science education,
fall within the ontological category of “processes”. Within this category there are “event-
type” processes and “emergent-type” processes. [t is hypothesized that most of the

misconceptions occur when concepts (e.g., electricity, osmosis, diffusion, equilibrium,



evolution), which scientifically speaking, belong to the emergent process ontology, are

assigned to other ontological categories (e.g., heat, electricity to the category of “material

substances”; or evolution and diffusion to the category of “events”). Thus it is
hypothesized that novices, unlike experts, assign concepts to ontological categories that
are unable to support explanations of the phenomena, thereby acquiring robust
misconceptions and flawed knowledge acquisition. Slotta and Chi (1999) state, “once an
ontological commitment is made with respect to a concept, it is difficult for this to be
undone” (p.8). The basic assumptions of Chi’s conceptual change theory may thus be
summarized as follows:

1. Concepts acquire membership in ontological categories through common language
(predicates).

2. Concepts are assigned to an ontological tree in a hierarchical structure — therefore
the structure of knowledge in categories is hierarchical.

3. The teaching of a new ontological category is possible.

4. The reassignment of an entity to another ontological category is necessary and
possible for conceptual change and understanding.

5. Ontological attributes are distinct for members of each ontological tree. There are
differences in the attributes of entities that belong to different trees.

6. Novices, more often than not, place entities into ontological categories based on
surface level features.

7. Several concepts display contradictions between their surface features and their deep
level features. On the surface, the attributes of these concepts resemble one type of
ontological category while their veridical attributes belong to another ontological
category. Chi et al. (1994) suggest that many scientific concepts require conceptual

change across trees and that is why they are difficult to learn.

The actual mechanisms of assignment to ontological categories are a very
important part of the discussion and understanding of Chi’s conceptual change theory. It
is postulated that explanatory frameworks are used to organize and express the
ontological commitments present in the learner’s cognitive structure (Slotta & Chi,

1999). These authors argue that explanatory frameworks are the key to operationalizing



the capture of ontological commitments. Therefore it will be by identifying the
ontological boundaries between two explanatory frameworks that the assessment of
conceptual change will be made. Reassignment of concepts from one ontological
category to another is taken to entail learning a new explanatory framework. This may
require learning new terminology, acquiring new mental models through expository and
discovery learning, and may even demand new attitudes and values (e.g., epistemological

beliefs, control beliefs, emotional loadings, and changed motivation).

1.2.1 Complex Systems as a Way of Thinking

Mitchel Resnick, Uri Wilensky, and Walter Stroup have championed research
pertaining to the use of complex systems as a better way of thinking about science. These
authors have used the computer environment and the power of multi-agent modeling
language (MAML) programming to create simulations that demonstrate characteristics of
complex systems that challenge naive ontological beliefs about centralized versus
decentralized control, randomness versus determinacy, order versus chaos. “In the minds
of many, the study of complexity is not just a new science, but a new way of thinking
about all science, a fundamental shift from the paradigms that have dominated scientific
thinking for the past 300 years” (Resnick & Wilensky, 1997, p. 4). Initial studies
conducted by Resnick (1994) and Wilensky (1995) tell us that the use of particular types
of simulations can afford understanding of specific aspects of complexity — knowledge of
the process of emergence and the subsequent development of non-isomorphic levels of
organization. They have demonstrated that the use of Starlogo simulations is a powerful
means of destabilizing simplistic entrenched conceptions and of facilitating multi-level
thinking. Their work has focused mainly on young learners and there have been few other
empirical studies to date.

Jacobson's (2000) most recent work has further explored the relationship between
complex systems concepts and conceptual beliefs. He has demonstrated that novice
learners', when solving specific types of problems, use “component beliefs” (ontological
and epistemological) that are correlated with what he calls “clockwork” theories which
are reductive and influenced by a Newtonian view of science. On the other hand, experts,

in solving the same problems, used component beliefs that were correlated with



“emergent” theories, equated to complex systems concepts. Results from Jacobson’s
study were obtained from a small sample and are non-parametric provisional findings;
however, they indicate a significant qualitative difference between expert and novice
thinking when solving emergent framework questions. Hence, this dissertation study
aspires to contribute to the body of literature that contends there is a relationship between
component beliefs and conceptual change, and complex systems thinking.

In addition, there is a body of literature that argues for the use of elements of
complexity theory in the classroom. Boyd (1999) suggests that it is possible to introduce
elements of “cybersystemics™ into the regular curriculum. Others such as Auyang (1997),
Bar-Yam (1997), Kaput, Bar-Yam, and Jacobson (1999) contend that complex systems
may function as a unifying and cross-disciplinary theme. In fact, at the most recent New
England Complex Systems Institute annual conference, Jacobson, Jakobsson, Lemke, and
Wilensky (2002) challenged the science education community to explore the potential of
using complex systems ideas in the classroom. They stated: “the conceptual basis of
complex systems ideas reflects a change in perspective about our world that is important
for students to develop, as it corresponds to the scientific environment that will exist
when they graduate. This perspective emphasizes both the limits of predictability as well
as the possibility of understanding indirect consequences of actions taken, both positive

and negative, through modeling the independence of our world” (p.2).

1.3 Purpose and Significance of the Study

There were two primary objectives of this research, first to investigate several
assertions made in Chi’s conceptual change model. Specifically, I intended to explore
three of the seven assumptions put forward in the model described above (see assertions
three, four, and five). In essence, the research question was: Does Chi’s theory of
conceptual change hold merit and therefore is it worth pursuing? At present, only one
empirical study has tested this theory in a limited study on the concept of electrical
circuits (Slotta & Chi, 1999). Their results were very promising, however, many
questions still remained unanswered. The significance of this current study’s exploration

was the extension of Chi’s theory of conceptual change.



The second purpose was to explore the question raised by Jacobson (2000)
concerning the development of a cognitive theory of complex systems and how complex
systems thinking can be used to acquire other cognitive skills. Specifically, does a certain
kind of complex systems instruction provide sufficient knowledge of an emergent causal
explanatory framework to enable students to transfer these explanations to unfamiliar but
ontologically analogous problems (i.e., conceptual change)? The significance of the
second aspect of my exploration was the extension of Jacobson’s complex systems
mental models taxonomy. This adaptation and refinement led to the development of an
ontological mental model taxonomy (OMMT) that reflects both Jacobson’s and Chi’s

perspectives on the ontological categories and subcategories.

1.4 Summary of Introduction

In summary, many science misconceptions tend to be robust and difficult to
remove or repair. There are several theoretical models that posit explanations and related
prescriptions for conceptual change. The model developed by Chi and her colleagues is
most promising but needs to be further tested. Chi’s theory postulates that learning of the
ontological category of “emergent” processes will permit the re-assignment of concepts
from the wrong category to better ones. At the same time, developments in computer
programming languages, specifically multi-agent modeling languages (e.g., StarLogo)
allow for the simulation of systems that exhibit emergent behaviors (i.e., complex
systems). These two lines of research are drawn together by Jacobson’s proposition that
explicit instruction of complex systems thinking may provide knowledge of emergent
causal processes and therefore build mental models that reflect the analogous component
beliefs (ontological and epistemological beliefs).

In chapter two, I will summarize the literature in more detail. Chapter three will
describe the theoretical and practical issues related to the development and use of the
coding instruments that play a major role in this study: (1) the Ontological Mental
Models Taxonomy (OMMT); and (2) the Complex Systems Taxonomy (CST). Chapter
four explains the methodology for Study1. Research results for that first phase will be
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presented in chapter five. Chapter six describes the methodology for Study 2, a mixed
method case study design. Chapter seven is divided into nine large sections and displays
the analysis of the different types of data collected from the different activities and
measures designed to generate qualitative data. In chapter eight I will discuss the three

main findings of my research.
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CHAPTER 2
LITERATURE REVIEW

Concepts are construed as intrinsically relational sorts of things. They are not
isolated entities connected only in the service of propositions. No individual
concept can be understood without some understanding of how it relates to other
concepts. Concepts are not mere probabilistic distributions of features or
properties, or passive reflections of feature frequencies and correlations in the
world; nor are they simple lists of necessary and sufficient features. They are
mostly about things in the world, however, and bear nonarbitrary relations to
features frequencies and correlations, as well as providing explanations of those
frequencies and correlations. If it is the nature of concepts to provide such
explanations, they can be considered to embody systematic sets of beliefs —
beliefs that may be largely causal in nature. (Keil, 1989, p.1).

Our ability to evaluate the relative merit of different theoretical positions on
conceptual change requires that we gain an awareness of what is known about concepts
and concept formation. I contend that any principled study of conceptual change requires
some background knowledge of this body of literature.

What are ‘natural’ concepts, how are they structured, what is the process
involved in their acquisition (formation), how do they function, how are they changed,
can we truly share them with others? These questions, and others like them, are the
subject of countless volumes. Spanning the decades, philosophers such as Plato, Locke,
Kant, Frege, Carnap, Wittgenstein, Kuhn, Quine, and Fodor to name but a few, have
discussed the concept of concepts. In the latter half of the twentieth century, the
disciplines of cognitive science, linguistics, and psychology have contributed extensively
to the empirical exploration of these topics, positing theories and explanatory models in
the hope of answering some of these important questions. Although a comprehensive
discussion of this topic is outside the scope of the current study, I will provide a simple
sketch of the key features of the three classes of theories of concepts (see Table 2.1) that
relate to varying degrees to the literature on learners' conceptual change and therefore are

relevant to this current study.
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2.1 General Background of Theories of Concepts

2.1.1 The Classical Logical Definitional School of Thought

The purpose of the Classical theories of concepts was to enable the construction
of logical and scientific reasoning. They describe concepts as structured mental
representations that encode a set of necessary and sufficient conditions for their own
application; that is, concepts are a list of necessary and sufficient features that a concept
must possess —and must not possess — in order to be classified as belonging together.

This description of concept formation had several weaknesses when used to
represent ordinary everyday thinking particularly as it relates to explanations of fypicality
of category features. For instance, classification of concepts such as ‘robin’ compared to
‘ostrich’, are problematic because the supordinate concept of “bird’ could not easily be
explained because ostrich was not typical of the category; in fact, it does not satisfy some
of the necessary and sufficient criteria (Rosch, 1978). Representational shortcomings such
as this lead to the positing of other theories championed by the cognitive school of

concept research.

2.1.2 The Prototype View

The purpose of this school of thought was to represent ‘normal’ thinking and
cognition. Prototype theories form a collection of models that describe most concepts,
including lexical concepts, as complex representations whose structure encodes a
probabilistic supposition of the properties their members tend to have. Features are not
necessary, but rather weighted; therefore, some features are more important in satisfying
the requirement of sufficiency in the determination of concept membership. Under this
heading, concept acquisition takes on a statistical dimension and is described as the
construction of categories based on the likelihood that certain features occur. Hence,

categorization is a heuristic process based on typicality and probability.
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Empirical studies of the ‘typicality’ characteristic drew attention to one of the
major weaknesses of this theory, the instability of category membership. Studies
conducted by Barsalou (1989) and Rips (1989) suggested that typicality was highly
dependent on context; hence the continued search to unravel the mystery of conception
formation.

2.1.3 The Associative Theory-based View

Primary contributions in the advancement of associative theory-based theory of
concepts grew out of the empirical research in developmental psychology (e.g., Carey,
1985); as well as the study of expertise (e.g., Chi, Feltovich, & Glaser, 1981). Attempting
to explain the differences between children’s and adults’ (novice/expert) conceptions, it
identified the constraints and expectations that prior knowledge plays in limiting or
facilitating the acquisition of new information.

Network structure of concepts. According to this model, it is argued that concepts

are structured mental representations that are understood in relation to other concepts
that are embedded in a network. These networks represent complex causal explanations
that may be described as personal ‘theories’' that mediate judgments of similarity; hence,
explaining why we pay attention to some features and not others, as well as why we
assign certain concepts to one category rather than another. Murphy and Medin (1985)
point out that “similarity may be a by-product of conceptual coherence rather than its
determinant — having a theory that relates objects may make them seem similar” (p. 428).
They propose that causal mechanisms contained within theory-like mental structures
may be the means by which feature correlations (i.e., similarities) are represented. In fact,
Murphy (2000) suggests that causal relationships may be critical in categorization of
concepts; more so than theme-based or other types of relationships.

In some sense, then, these explanations are a bit circular. One cannot just explain
why birds have wings. One must explain why they have wings, given that they
fly, live in nest, and so on. Furthermore, one can explain why they live in nests,

1 There has been much debate concerning use of the term theory as well as the status of these personal theories.

For more information on this issue, [ direct the reader to discussion in Laurence and Margolis (1999, p.43)
relating to theory-theory of concepts.
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given that they have winds, fly, lay eggs, and so on. And the explanation for flying
is based on having wings, living in nests, and so on. Rather than a logical chain of
one property or fact explaining another, which in turn explains another, the
properties of many concepts are closely intertwined (Murphy, 2000, p. 364).
Critiques of the associative theory-based theories have identified the lack of
concept stability as its major weakness. Concepts tend to vary from context to context
depending on the personal theory to which they are attached. Laurence and Margolis,
(1999) suggest that, “changes in a small number of the beliefs that make up a given theory

needn’t undermine stability, so long as the subsequent theory is associated with the very

same formally identified symbol” (p.50).

2.1.4 Summary of Literature Review on Theories of Concepts

Conceptual structure as posited by the theory-based view pose three major
concerns that impact on conceptual change research. First, because of the principle
assumption that concepts are embedded in a network, the implications are that change to
one component may involve a change to other components and possibly the entire
system. [ propose that it is reasonable to posit that the resulting cognitive behavior is
likely to exhibit nonlinear (defined as non-additive) and possibly emergent characteristics;
a view that appears to be supported by Limoén (2001). Second, and more importantly
perhaps, is that causal explanations (theories) will be a focal determinant of change in
concept formation and categorization process.

I therefore argue that conceptual change theories that focus on multiple causal
mechanisms are the most promising as explanations of the process of change. Supporting
this conjecture, Ahn (1998) claims that there is reason to believe that self-explanations of
causes are considerably more important than explaining effects in the process of
categorization. While Keil (1989) makes an even stronger case for the role of causation,
suggesting that explanations of causal relationships generate beliefs. Addressing the
differences between novice and experts, he states that: “it seems almost certain that a host

of interconnected beliefs about the mechanisms of objects underlies and constrains the
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novice’s choice of problem groups... [While experts] have probably shifted away from
attempting to characterize the problem space in terms of definitions-like rules and instead
have incorporated a far more complex set of intricate [co-] causal relationships more along
the lines of the homeostasis model [e.g., the feedback control]” (p. 261).

In the following section, I will attempt to link this argument to the conceptual
change models of Chi and her colleagues (Chi et al., 1994; Chi, 2000b; Chi & Roscoe,
2002), and diSessa and Sherin (1998) in describing conceptual change as a process that

addresses the learners’ beliefs about causal relationships between concepts.

2.2 Conceptual Change Theories

A primary concern of this current study is the development of conceptual change
theory. In reviewing the literature I selected three of the premier models I believe hold the
most promise for a genuine theory of conceptual change. Although these models differ on
several major assumptions, there are equally several specific dimensions where they
support each other in a principled manner (see Table 2.2). Hence I will discuss these
features and describe how they relate to this current research.

General Background

The foundations of most conceptual change theories include a Piagetian
motivational theory of cognitive development. Piaget (1975) proposed that
disequilibrium, dissatisfaction, or discord must be created within the child between their
initial conception and the to-be-leamnt one. The attempt to resolve this cognitive conflict

2 of the new idea. This

results in the processes of “assimilation” or “accommodation
notion of dissatisfaction is at the base of several early models of conceptual change.
However, some studies in the field have moved away from theories of cognitive conflict

to theories of knowledge restructuring (e.g., Chi et al., 1994; Vosniadou, 1994).

Assimilation refers to situations in which the learners’ existing theories allow them to explain new
situations; whereas accommodation describes situations in which the learners’ theories cannot account for
or explain the new phenomena therefore must be revised, reorganized, or replaced.
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2.2.1 Dissatisfaction and Knowledge Replacement Theories

Strike and Posner’s (1985) model of conceptual change expanded on Piaget’s ideas
of conceptual change through accommodation and assimilation. These authors contended
that accommodation requires taking into account the alternative conception and comparing
it to the existing conception; if the plausibility status of the alternative conception reaches
a level that exceeds that of the original conception, then there will be a change. Four stages
were identified: (1) dissatisfaction with original conception, (2) intelligible replacement
conception, (3) plausibility of new conception, and finally (4) fruitfulness of new
conception leading to replacement. A central claim of the conceptual change theory
proposed by Strike and Posner (1985) is that new conceptions are understood, judged,
acquired, or rejected in a conceptual context — a conceptual ecology. Hence, old and new
concepts coexist. Cautioning that there were many factors other than the conceptions
themselves that may affect status, they suggested that the learner would experience stops,
starts, and even retreats along the road to change.

In their revised discussion of conceptual change, Strike and Posner (1992)
extended the role of the conceptual ecology. Proposing that misconceptions are not the
product of clearly articulated beliefs, rather, they are artifacts of deeply entrenched
problems in the conceptual ‘ecology’. Raising the issue of stability, they suggested that
misconceptions may be weakly formed, temporal and not consistent; in fact, they may be
influenced by the conceptual ecology. Addressing the issue of conceptual structure they
draw attention to the systemic nature of the conceptual network.

Importance of this model. The importance of Strike and Posner’s model is

twofold: (1) its attention to factors such as motives and goals that influence the learners’
conceptual ecology, and (2) its applicability to classroom instruction. It has been the
cornerstone of most conceptual change instructional interventions, however these studies
have produced some equivocal results (e.g., Chan, Burtis & Bereiter, 1997; Champagne,

Gunstone & Klopfer, 1985; Jensen & Finley, 1996; Limén & Carretero, 1997). Because
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this model does not adequately address how to build an alternative conception, I am
setting it aside here. Perhaps, however, one should return to it for answers regarding
issues of ecological accommodation once a theory of conceptual change processes and

mechanisms has been articulated.

2.2.2 Knowledge Restructuring Theories

If concepts are indeed embedded in stable complex networks of other concepts
that represent naive or personal theories, then conceptual change will be a formable task.
If in addition, these theories are held together by causal self-explanations composed of the
most basic units of our thinking — ontological and/or epistemological beliefs — then how do
we start to unravel the problem of deeply held misconceptions that are ubiquitous in
science learning (see, for example, Driver, 1995 or Pfundt & Duit, 1994)? Consider the
following theories as steps toward clarifying a possible integrated causal approach to

conceptual change.

Vosniadou — Framework and Specific Theories

Vosniadou (1994) argues that concepts are entrenched and constrained within a
larger theoretical structure. This author identifies two levels of theories that control the
learners’ beliefs, naive framework theories and various specific theories. Vosniadou
proposes that the learner’s framework theory is not available to his conscious awareness;
nonetheless, this theory constrains the process of acquiring veridical knowledge about the
physical world. These theories are a function of ontological and epistemological
presuppositions. Specific theories on the other hand, are consciously accessible, exist
within a domain and consist of a set of interrelated propositions that describe the
observed behavior of physical objects. That is, the specific theory is based on the
individual’s observations, as well as the instructional information, and it is developed
within the constraints of the presuppositions of their framework theory. These two

classes of theories come together to create the mental model, the lens, through which the
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learner builds causal explanations of the world (I will elaborate on Vosniadou’s
description of the role played by mental models in the mental models section of the
literature review).

Definition of conceptual change. Vosniadou (1994) identifies two kinds of

conceptual change: enrichment and revision. The former is described as the simple
addition of new information to existing knowledge, and achieved through the process of
accretion. The latter is considered conceptual change and viewed as a substantial change
that is realized by the learner when new information is inconsistent with specific theories
or framework theories. She posits that inconsistencies between new information and
framework theories are more difficult to resolve than inconsistencies with specific
theories.

Difficulties in removing misconceptions. Vosniadou suggests that conceptual

change is difficult because framework theories are coherent systems of explanations that
are based on everyday experiences and grounded in years of confirmation. Additionally,
because these are ontologically and epistemologically based, a shift in any of these beliefs
will create a shift in the entire system of the framework theory and all the other
knowledge built upon it. This assertion is similar to implications of Strike and Posner’s
conceptual ecology.

Failure to learn certain concepts has been attributed to inconsistencies between the
to-be-learnt knowledge and framework theories. These occur when children attempt to
add information to the false existing mental structure. The author describes inert
knowledge as the product of inconsistent information being stored in separate
microstructures and used only in particular situations. Whereas, misconceptions are the
result of learners trying to reconcile the inconsistent pieces of information and in the

process produce synthetic mental models®. 1 contend that this attempt to account for

3 According to Vosniadou and Brewer (1994), synthetic mental models are likely to be formed when the
knowledge acquisition process requires revision of framework theories based thus are part of the
presuppositions constructed on our interpretations of everyday experiences. Synthetic models function as

intermediary steps in the conceptual change process from an initial intuitive model to the scientifically
culturally accepted one.
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anomalous data draws this part of Vosniadou’s model closer to the cognitive conflict
approach. Therefore, her model may be viewed as a bridge between Strike and Posner’s
model and those that will be described next.

Importance of the model. Vosniadou and Brewer’s (1994) empirical findings

suggest: (1) there is a sequence in which concepts are acquired in a conceptual domain;
and, (2) that the importance of mental models is a constraint on the knowledge acquisition
process. These findings have given rise to their theoretical supposition that conceptual
change is gradual and will give rise to misconceptions. They also suggest that there are
developmentally distinct stages in conceptual change: (1) initial mental model, (2)
synthetic mental model — learner attempts to reconcile the science model with initial
model, and (3) scientific mental model. Another group of researchers, Jacobson and
Archodidou (2000), have successfully identified these developmental stages in their study
of conceptual change instruction on the topic of evolution.

Recently, Vosniadou and Ioannides (1998) have made two major refinements to
the original model. firstly they have identified distinctions between types of conceptual
change suggesting that conceptual change can be: (1) spontaneous, or (2) instructionally
based. The former type is a change resulting from enriched observations in social learning
context without formal science instruction. Examples of this would be language learning as
a result of socialization with adults and older children as a child matures. The latter is a
result of formal instruction that requires the building of synthetic models in an effort to
reconcile science instruction into existing theories (e.g., understanding of astronomical
processes).

Secondly, they have elaborated on Vosniadou’s (1994) original assertions
regarding the refinement process. The role played by metaconceptual awareness has been
strengthened and refinement is viewed as the development of “theoretical frameworks
with greater systematicity, coherence, and explanatory power [i.e., more scientific]”
(Vosniadou & loannides, 1998, p. 1222). This feature is an important contribution to the

development of the prescriptive side of the conceptual change debate. Additionally as will
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be shown, it is also a consistent theme between models, although it may be argued that

Vosniadou makes the biggest commitment to its importance.

DiSessa’s and Sherin’s Model

Along the continuum of conceptual change models, the work of diSessa and Sherin
(1998) is positioned closer to that of Chi and her colleagues. Similar to Chi, they too
focus on the deeper issues of process and mechanism of concept formation and concept
change. In fact, it may even be argued that theirs is a fuller model of concept formation. I
will briefly describe this model with a focus on its assertions regarding the processes of
what they call the coordination classes, a major structural component in concept change.

The basic assumptions of the model. Based on the research supporting the

supposition that naive learners possess impoverished causal models for understanding
physics concepts (Gentner & Stevens, 1983), diSessa (1993b) developed his model of
concept formation. He identified this attribution as the “naive sense of mechanism”,
suggesting that this belief of causality is composed of phenomenological primitives (here
forward referred to as p-prims) which are abstracted from common experiences. P-prims
are the smallest unit of particular knowledge elements” and indeed may generate their own
self-explanations. In these cases, diSessa (1993b) states that p-prims are the intuitive
equivalent of physical laws and form the bases upon which one sees and explains the
world. Hence, p-prims account for structures that diSessa calls causal nets. However, p-
prims are not concepts themselves, and multiple p-prims are involved in the creation of
causal nets.

Causal nets may be described as approximately corresponding to what people
intuitively expect of causality, which is logical given their status as composites of p-
prims. In addition, in some instances, they can be interpreted to mean the reasoning
strategies used to explain how some observations are related to the information at hand. In

their words: “Causal nets are, roughly, our replacement for the ‘theories that lie behind

4 Not unlike “Conversation theory” concepts as described by Gordon Pasks (Boyd, 1997).
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observations’. Or the theories implicated in theory-based notions of categories™ (diSessa
& Sherin, 1998, p. 1174). Hence, causal nets may be described as the inference-based
explanations used to make sense of the world, which in turn form the basis of our
theories. These authors link this explanatory mechanism to concept acquisition through a
structural component called a coordination class. In order to understand this
sophisticated interwoven play of components requires some background information.

Background on coordination classes. DiSessa and Sherin (1998) first suggest that

concepts are not all the same. In fact, concepts such as ‘robin’ are different from those
such as ‘velocity’ or ‘force’ and require different cognitive processing. While the former
requires sorting into the category-like concept of bird, the latter two fall into a special
class of concepts that they refer to as coordination classes. These coordination classes are
made of structural components that perform two distinct activities: (1) centered on
gathering information through selecting what to ‘see’ (referred to as “readout strategies”),
and the other, (2) based on the already mentioned causal net activity.

Part one, the readout strategy, or information gathering, is equated to a
metaphorical ‘seeing’, and the shift in the means of seeing is considered to be the core
problem of conceptual change. They state: “In many instances this seeing is a substantial
accomplishment of learning and will depend only very partially on basic perceptual
capabilities. In addition, these forms of seeing sometimes involve explicit strategies and
extended reasoning” (diSessa& Sherin, 1998, p. 1171). I will return to this point shortly.

Elaborating on the readout strategies they identify two subcomponents of this
phase: (1) integration, which refers to the fact that multiple observations or aspects may
need to be coordinated so as to determine the requisite information; and (2) invariance (1
would suggest that it could be considered a type of concept stability), which refers to the
knowledge that accomplishes the readout of information from different instances and
situations must consistently and reliably determine the same information.

Part two of the coordination classes process takes us back to the important

explanatory mechanism, causal nets. Learning new science concepts therefore becomes an
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interlocking cognitive ‘see-saw’ where both readout strategies and the causal net are said
to co-evolve. These authors suggest: “There should be episodes of ‘conceptual
bootstrapping’, where causal assumptions drive the learning of new readout strategies. On
other occasions, ‘noticings’ - for example, that something surprisingly affects something
else - may drive reformulations in the causal net. In general, characteristics of one will
have important influences on how the other behaves and develops™ (p. 1177).

Definition of conceptual change. Hence diSessa and Sherin (1998) define

conceptual change as involving both the separate changes in readout strategies and in the
causal net. They clarify by showing an example, that it 1s possible that no new readout
strategies are necessary in learning a new coordination class, rather existing ones come to
be organized and used differently. On the causal net side, maybe the construction of a
whole new causal net may be required, or an existing one may need to be developed and
reorganized.

Importance of the model. The detail provided relating to the activity of the

coordination classes is an important feature of this model. The suggestion that conceptual
change is a two-part process in which conscious attending to evidence (e.g., data)
followed by conscious attending to the explanations related to causation (e.g., personal
theories) is a development and clarification on Vosniadou’s concerns with
“metaconceptual awareness”. In fact, these authors propose that the causal net is the
source of difficulty in learning school physics. Their recommendation is thus, “among
other things, it [the causal net] needs to become more systematically organized. The
notions of invariance and integration may play a role in the organization and selection of
causal net to be used” (diSessa & Sherin, 1998, p. 1178).

[ argue that missing from this model is the answer to the question: What kinds of
changes occur in the causal net? In other words, if we are to attend to new causation what
is needed to fill in this gap? I contend that we must turn to Chi’s views on a theory of

conceptual change for an answer.
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2.3 Chi’s Ontological Reassignment Theory

A brief introduction to Chi et al’s (1994) theory was presented in the last chapter,
hence the basic assertions of their model should alrecady be familiar; therefore I will take
this opportunity to elaborate upon the elements specific to this current study.
Additionally, in a later chapter, I will detail the developments of Chi’s ontologically-

based coding schema.

2.3.1 Evolution of Ontologically-based Conceptual Change Theory
The original model. Chi et al., (1994) define conceptual change as learning that

changes a preexisting conception. This definition holds a basic assumption that the learner
has some prior idea on knowledge of the concept, which in turn may mean that it has
already been classified into a category. Therefore the meaning of a concept is determined
by its category assignment and conceptual change is defined as a change in category
assignment. On the other hand, the simpler process of “belief revision”, according to Chi
(1992, 1997), occurs when the concept just needs an adjustment to the category (an
addition or deletion of information). Accordingly, the most important aspect of Chi’s
theory of conceptual change is this notion of re-assignment of concept from the initial
category in the ontological tree to the veridical category of the tree. The way the
categories in one tree differ from categories in another is embedded in their ontological
attributes.

Chi’s theory of conceptual change (Chi et al., 1994; Chi & Slotta, 1993) rests on
three assumptions: (1) an epistemological assumption concerning the ontological

assignment and beliefs about the nature of entities in the world®, thereby defining the

3 There is a long tradition of theorizing about ontological categories based on predictability or use of predicates
in natural languages. Keil (1979) describes the term predictability as follows: “it determines which classes of
predicates can be sensibly combined with which classes of terms, and it appears to involve hierarchical
organization in that a predicate P1 may be sensibly combined with a superset of the set of terms that can be
sensibly combined with a predicate P2” (p. 11). Therefore an ontological category would be defined by the set of
terms for which a particular set of predicates could be applied to and the statements judged to be true or false.
Predicates used in such a manner that the statements cannot be judged to be veridical or fallacious, suggest that
the terms do not belong to the same ontological category. An ecxamples that arc often cited would be that of
colour. The predicate “is green” may apply to “the frog” (natural kind) or to “the table” (artifact) or to “the girl”
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criterion of “different”; (2) a metaphysical assumption concerning the nature of certain
scientific concepts (a position that [ contend sets Chi apart from other theorists inasmuch
as she takes an outside-looking-in approach that perhaps is related to her research on
expertise); and, (3) a psychological assumption concerning the learner’s naive conceptions
and miscategorization of concepts that are revealed in a propositional context (i.e., mental

models).

2.3.2 Recent Refinements to the Theory

Two major changes have appeared in Chi’s description of this conceptual change
theory. The first relates to the difficulty in removing misconceptions, the second to the
structure of the categories.

Reconceptualization on removing of misconceptions. In her most recent

publications (e.g., Chi & Roscoe, 2002), Chi clarifies her stance on the structures of
concepts as embedded in naive theories. Furthermore, she explicitly acknowledges the
assumptions that naive theories and scientific theories are often incommensurate; a
statement similar to diSessa and Sherin (1998). Her most important conjecture, however,
is that the major challenge in conceptual change comes from the fact that “students may
lack awareness of when they need to shift [to an alternative ontological category], and
may lack an alternative category to shift to” (Chi & Roscoe, 2002, p. 18). These authors
postulate that in fact the lack of the scientifically appropriate category (emergent

processes) prevents students from requisite recategorization: “students cannot repair

(natural kind). Because these can be proven true or false, however, “is green” cannot be with “an hour” in any
sensible way except metaphorically. Keil states, “a predicate spans a term if and only if that predicate-term
combination makes sensc and can be assigned a truth value, which can be either true or false (p. 11).

This paper will not delve further into the discussion of predictability and the assumption that it can identify
different ontological categories. It will suffice to say that the study of this topic is covered by Sommer’s theory
of the relation between predicates and terms, which represent a class of terms leading to differential ontological
categories membership (Sommer, 1963; cited in Keil, 1979, p. 15 see figure).

Thus, a primary assumption of this study is that natural kinds and artifacts belong to distinct different
ontological categories, which can be identified through a term-predicate relationship. However, it would be
difficult to suggest the same rigid test could hold true for the ontological category of processes, which Chi has
identified. This should not negate the fact that processes fall under different rules of operation and therefore can
be considered to belong to different ways of understanding the world, hence, different ontological categories.
Since there is little literature in this domain, I will base this statement on the work in complexity that uses a
different mode of operation for certain phenomena (referring to statements made by Jim Kaput, Uri Wilensky, and
others at symposium on Complex Systems in Education, presentation at AERA, April 2002).



28

misconceptions if conceptual shift is not possible. This is what makes certain
misconceptions more difficult to repair than others” (p.19).

How then does one gain awareness of or access to these new categories? This is
the major question posed by Chi (2000b), and Chi and Roscoe (2002); and, this is the
major question that I have focused on in this dissertation.

As described earlier, empirical studies using the anomalous data confrontation
models have produced equivocal results relying on constructivist instructional strategies

to bolster the potency of the treatment. Limon, (2001) states:

Despite the positive effects we have reported, perhaps the most outstanding
result of the studies using the cognitive conflict strategy is the lack of efficacy for
students to achieve a strong restructuring and, consequently, a deep understanding
of the new information. Sometimes, partial changes are achieved, but in some cases
they disappear in a short period of time after the instructional intervention. Why
are students so resistant to change even when they are aware of contradiction?
Why are students able to partially modify their beliefs and theories but keep the
core of their initial theory? (p. 364).
This shortcoming of confrontation is exactly what Chi and Roscoe (2002) belicve
is averted when conceptual change is approached from the perspective of reassignment. I
suggest that they indicate an answer to Limon’s first question, and maybe even the
second, in their statement: “The problem is that unless students have an alternate

category to reassign the concept to, such instruction [presentation of anomalous data] will

not be effective” (Chi & Roscoe, 2002, p. 19).

The problems addressed in this dissertation research. Therefore, where do we

start? Initial questions are: Do novice science students possess the suitable alternative
ontological categories? If they already possess the needed alternative category: Does a
shift in explanation require mere facilitation or is it difficult process? If this category does

not already exist, then can we teach them about this category? How can this be
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accomplished, what do they learn, and how long does it take? Finally, if there is a change,

is it long lasting? These are the primary questions that this dissertation elects to address.

2.3.3 Summary of the Ontological Reassignment Theory

In 1993 Chi and Slotta compared their model of conceptual change to diSessa’s
(1993b) model of concept formation. They concurred then that there were several points
of reconciliation between the two models. For instances, the role played by p-prims could
be viewed as low-level instantiation of the category reasoning process. Continuing, they
point to several specific points of agreement such as: (1) intuitive knowledge is
phenomenological in the sense of it being personal empirical knowledge; (2) retrieval of
intuitive knowledge is driven largely by surface features; and (3) while intuitive
knowledge is primitive and requires no explanation, it forms the basis of high-level
reasoning about physical processes. However, there were and still are irreconcilable
differences between diSessa and others regarding the structure of intuitive knowledge®.
For example, Chi and Vosniadou view intuitive knowledge as coherent “theories”, while
diSessa’s view is that intuitive knowledge is fragmented, “knowledge in pieces”.

Although this difference is significant, I will observe that the Chi’s recent focus on
causation draws the two models closer. [ therefore put forward the proposition that the
“coordination class” may be a representation of an ontological category since it acts as the
control mechanism regulating the two phases of concept acquisition — readout strategies
(what we unconsciously choose to ‘see’ of the world) and causal nets (how consciously
we explain what we “see”’). Furthermore, the ontological frame required to explain many
scientific concepts is really an explanation or attribution of different types of “causation”.
The bringing together of the two theories was not the focus of my research, however I
will revisit this argument in the discussion section of this dissertation. Finally, I propose

that Vosniadou’s model, although not focused on causation, suggests that some types of

% Observed in a verbal debate between Andrea diSessa and Stella Vosniadou (AERA Annual Meeting, New
Orleans, 2002).
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conceptual change may be intentional and call for effortful attending to metacognitive
processes in the form of metaconceptual awareness. This possible connection between
intentional learning (e.g., metacognitive and metaconceptual awareness, motivation, and
epistemological beliefs) and conceptual change is a primary focus of the recent publication
edited by Sinatra and Pintrich (2002). Although this aspect of conceptual change is not
directly manipulated in this dissertation study the important role of intentional reflection
in the form of metacognitive activities and metaconceptual awareness was observed in the

learners’ behaviors in Study 2, the longitudinal case study.

2.4 Ontologically-based Misconceptions

Before proceeding, it is important to evaluate Chi’s assertion that many important
misconceptions are ontologically based. Hence a question to be answered was: Is there
empirical evidence from the literature of ontological category-like misconceptions?

There are hundreds of reported cases of different types of scientific
misconceptions (Driver, 1995; Pfundt & Duit, 1994). Some are trivial in that they require
simple restructuring of information, however, the ones that are discussed in conceptual
change literature tend to fit with and support Chi’s ontological supposition. To illustrate
my point, I present a sample of studies in the following section from a variety of

disciplines and sources.

2.4.1 Misconceptions on the Topic of Evolution

There is a substantial body of literature describing the difficulties involved in
changing students’ misconceptions in the learning of evolution (Ferrari & Chi, 1998;
Jacobson & Archodidou, 2000). The problems range from the understanding of the time
frames (e.g., Renner, Brumby, & Shepherd, 1981), to the genetics (e.g., Demastes, Good,
& Peebles, 1995; Jensen & Finley, 1996), to the distinctions between species and

individuals (e.g., Hallden, 1988), the origin and survival of new traits, the role of variation



within a population, and evolution as the changing proportion of individuals with distinct
traits in a population (Bishop & Anderson, 1990;), to the explanation of spontaneous
genetic mutation (Settlage, 1994), the evolutionary changes supposedly occurring as a
result of need (Brumby, 1984), and finally failure to recognize that many aspects of
evolution exhibit “equilibration-type” processes as opposed to “event-type” processes
(Ferrari & Chi, 1998). Therefore a host of attributions ranging from those about
teleological beliefs to those about isomorphic behaviors between levels is represented in

these studies of difficulties in conceptualization.

2.4.2 Chemical Equilibrium, Diffusion, and Osmosis Misconceptions

The literature concerned with the instruction of chemistry has identified a
persistent misconception about chemical equilibrium (e.g., Suits, 2000; Coll, R.K. &
Treagust, D.F., 2002). These misconceplions appear to stem from misunderstanding of
the differential levels of operations, as well as the different symbolic representations, that
are discussed in the course of a normal chemistry lecture (Barnerjee, 1995). On the related
topic of osmosis and diffusion, there is also evidence that similar misconceptions exist
(e.g., Odom, A.L., 1995; Sanger, M. J., Brecheisen, D.M., & Hynek, B.M., 2001). Again
the attributions of isomorphic behaviors between levels as well as assumed static
behaviors once equilibrium is achieved are common themes. These empirical studies lend
support to Chi’s conjecture that there is an ontological base to this class of science

misconception.

2.4.3 Deterministic Causality Misconceptions

From the literature on judgment and decision-making, evidence suggests that both
adults and children exhibit difficulty reasoning about uncertainty with greater tendencies
to attribute deterministic outcomes in problem solving (e.g., Shaughnessy, 1992; Tversky
& Kahneman, 1974). It is arguable that the findings from studies relating to mathematics

and statistics may not cross over to problems encountered in other domains of science;
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however, I contend that this is not the case with attributions of determinism. According
to Metz (1998): “Without an understanding of randomness and probability, formal study
in statistics can have little meaning, and informal [mis]interpretations of patterns and
variability in the world around us will frequently result in spurious causal attributions”
(p. 286). The latter assertion is precisely the one that I propose supports this dimension
to the ontological category of emergent phenomena.

Another interpretation of randomness and probability. In this study I use the
terms randomness and probability in ways that may be unfamiliar to the lay person. For
instances, randomness is an important behavior that accounts for much of the variety and
requisite error observed an emergent phenomena (see Bar Yam, 1997). With regard to
probabilistic behaviors, they occur as the interactions of the multiple agents, and systems,
producing stochastic outcomes thereby making causal mechanisms more complex.

Even using these descriptions of randomness and probability there is evidence of
misconceptions (Wilensky, 1993; 1995; 1997). The early work from the MIT labs
(Wilensky & Resnick, 1995; Wilensky & Resnick, 1999) suggested that conceptions of
randomness as being destructive are prevalent in non-scientific reasoning. Furthermore,
there is abundant evidence that people have difficulty reasoning about parallelism and
probability. Resnick and Wilensky have thus argued, together and independently, that
these misconceptions be considered the “deterministic/centralized mindset”(further

elaboration to follow).

2.4.4 A Global Perspective on Ontologically-based Misconception

Spiro and his colleagues (Feltovich, Coulsen, Spiro, & Adami, 1992; Spiro,
Coulson, Feltovich and Anderson, 1988; Spiro, Feltovich, Jacobson, & Coulson, 1992)
have identified a range of misconceptions exhibited by medical students. One of the
common attributions they identified in learners, even in advance stages of learning, was
the tendency to adopt a reductive approach to problem solving; in addition to

oversimplification of the subject matter. They identified three biases: “[1] additivity bias,



in which parts of complex entities that have been studied in isolation are assumed to
retain their characteristics when the parts are reintegrated into the whole from which they
were drawn; [2] discreteness bias, in which continuously dimensioned attributes (like
length) are bifurcated to their poles and continuous processes are instead segmented into
discrete steps; and [3] compartmentalization bias, in which conceptual elements that are
in reality highly interdependent are instead treated in isolation, missing important aspects
of their interaction” (Spiro et al., 1992, p. 26).

If we examine the biases individually, they can be matched to the naive
attributions listed above. Hence, the “additivity bias” may also be described as
attributions of isomorphic behaviors between levels (reductive or non-emergent
behaviors). While the “discreteness bias” shows signs of attributions of static outcomes
or beginning end processes. Finally the “compartmentalization bias” may be related to the
global lack of awareness of emergent properties.

Latest developments. Jacobson’s (2000) research identified specific categories of

attributions that differentiate expert and novice reasoning about emergent phenomena.
These categories will be described in greater detail in the following chapter, however, for
the moment it is sufficient to state that these categories support the data described above

as well as Chi’s ontological dimensions.

2.4.5 Summary of Ontologically-based Misconceptions

In summary, I argue that these studies provide some reasonable confirmation of
the articulated interpretation of the ontological categories described by Chi (2000).
Furthermore, although Spiro et al. (1992) research (i.e., Cognitive Flexibility Theory,
CFT) addressed difficulties associated with advanced knowledge acquisition, I contend
that CFT may also apply to challenges faced in the removal of robust science
misconceptions. For these reasons, I borrowed from the recommendations made by that

theory to design the instructional intervention used in this current study.



2.5 The Alternative Causal Ontological Category

If a possible solution to the removal of robust misconceptions is the reassignment
to an alternative ontological category, then what are the problems associated with the
learning of such categories? Before we attempt to answer this question, however, we must
first define what is meant by the ontological category of emergent causal processes, and
describe why they constitute a ‘different’ causal explanation.

Chi and her colleagues have spent the past decade describing this category using a
variety of terms: “events” (Chi, 1992), “acausal interactions” Chi and Slotta (1993),
“constraint-based interactions” (Chi, Slotta & deLeeuw, 1994; Slotta, Chi & Joram, 1995;
Slotta & Chi, 1996), “equilibration” processes (Chi, 1997; Ferrari & Chi, 1998; Slotta &
Chi, 1999), “CDS” (Chi, 2000b), and currently “emergent” processes (Chi & Roscoe,
2002). I contend that this latest naming is the most parsimonious and consistent with the
existing literature on the processes that Chi has described for years using those varied
terms. Although Chi has not acknowledged the body of literature from the field of
complex systems, and indeed even distances herself from it (Chi, 2000b), I would assert
that her latest writing (Chi & Roscoe, 2002) brings her closer than ever before to affirming
a reasonable connection. I will dwell no further on this detail since I believe it is just a

matter of time for the obvious similarity of descriptions that I will describe below to be

recognized by Chi and others.

2.5.1 Emergent Processes

In order to describe the emergent processes ontological category I first turn to the
literature that describes it best: that is, complexity and complex systems theory (see
definitions in Appendix B). Born out of disciplines such as biology, cybernetics,
mathematics, statistical mechanics, and quantum physics, the theories related to the
phenomena of complexity are undeniably daunting. Nonetheless, the ability of these

theories to explain the behaviors of countless biological, chemical, physical and social
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interactions requires that we take a serious look at their potency as representational

structures in our curricula.

Genesis of Interest in the Topic

Kauffman (1995) identifies complexity as the state at which a system of many
coupled components is “orderly enough to ensure stability, yet full of flexibility and
surprise” (p. 87). He continues to describe this state as one which is just near phase
transition and referred to as the “edge of chaos”. One might assume from these beginnings
that the study of complexity should be reserved for biologists and mathematicians;
however, there is another side to this area of study. It is the conceptual side of
complexity where the behaviors of countless phenomena, including social, economic,
cognitive, and scientific, can be explained using the global structural features of complex
systems.

Waldrop (1992), a science writer, confirms in his book entitled Complexity that at
present the field is still poorly defined as researchers grapple with questions that cut
across the traditional categories. This observation may also apply to the terms used to
define the field. Some researchers refer to it as the study of complex systems, or complex
adaptive systems, while others identify it as the study of self-organizing systems, and
some as emergent systems. These differences should not be viewed as weaknesses, rather,
as a sign of the newness of the area. Indeed, it is difficult to describe individual behaviors
of complex systems because of their interconnected nature. In an attempt to keep the
different terminology to a minimum, in this current study I will define the term “complex
systems™’ to refer to both complex adaptive systems as well as complex non-adaptive

systems unless the adaptive nature is essential to describing the system. I will also use

7 Definition of complex systems: A system is a hierarchically organized collection of a large number of coupled
components defined by stated boundaries. The smallest unit of a system is referred to as an agent. Complex
systems are a category of systems characterized by highly interacting individual agents operating under
specified rules resulting in emergence of meta-agents and/or systems that exhibit differential behaviors to their
component agents. Complex systems may be of the adaptive type (¢.g., human beings, the immune system,
viruses, efc.), which form internal models that learn and evolve over time or the nonadaptive type, which does not
exhibit adaptive qualities (e.g., molecules, galaxies, etc.).
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the term emergence or emergent properties/behaviors of systems, as the exemplification
of the characteristic displayed by some types of complex systems as well as the product
of self-organization.

What is emergence ? A simple explanation of emergence is a phenomenon wherein

the interaction of a system’s parts results in a higher order organization which behaves
differently from what one could predict from knowledge of the parts alone. Hence, the
commonly known cliché “the whole is greater than the sum of the parts” is an apt
description.

Emergence, however, is anything but simple to describe or to understand. In an
effort to explain the phenomenon, I turn to two authors, John Holland and Yaneer Bar-
Yam, who each have written extensively on the subject. Holland (1998) describes
emergence as patterns of interactions that persist despite a continual turnover in the
constituents of the patterns. In an effort to make the concept more accessible, Holland
uses a metaphor of a checkers game where the rules are invariant but the outcome of the
interactions are varied and never dull, particularly in the hands of skilled players.
Accordingly, it is difficult to make predictions about behaviors of emergent systems even
when the rules and initial states are specified. A difficulty that is compounded when the
system is composed of mechanisms that allow for adaptation and learning; that is, overt
internal models with lookahead protocols (these well be discussed more fully later on).
Nonetheless, over time both adaptive and nonadaptive emergent systems exhibit recurring
patterns that are discerned by attending to specific details. Therefore, such patterns are an
important property of emergent systems and can be used to characterize them without
reference to underlying strata.

Bar Yam (1997) describes emergence as the behavior that arises in the collective
that is not exhibited in the behavior of the parts (nor would arise from a simple
summation of behaviors). He is quick to point out that although the collective behavior is
not readily understood from the behavior of the parts, this should not be taken to mean

that the collective behavior is not “contained in the behavior of the parts if they are
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studied in the context in which they are found” (p.10). This subtlety leads to a distinction
between two types of emergent behaviors, local emergence and global emergence. Local
emergence implies that taking a small part out of a large system would result in little
change to the properties of the small part or the properties of the larger system. Examples
of this would be water droplets that contain the properties of water regardless of how
small a quantity of water we look at (e.g., one molecule of H,0 has no fluidity). In
contrast, global emergent properties invest greater interdependence of parts. For instance,
an emergent traffic jam that propagates backwards despite the forward motion of the
individual cars; or the parts of the brain, or a corporation that are different in situ
compared to their isolated parts. Hence, a small part cannot be studied outside of the
larger system and still exhibit the properties it has when embedded in the whole system.

Operationally defining emergence. Although Bar-Yam (1997) points to important

distinctions in the phenomenon of emergence as part of the study of complexity, for the
purpose of this discussion, I selected the more general description that views a system’s
emergent properties as patterns or recurring structures resulting from non-linear
interactions, of lower level parts (agents), governed by specific rules and relationships.
These rules and relationships are the mechanisms that afford emergence, which is the
resultant state of coupling all the lesser processes of self-organization/aggregation,
nonlinearity, stochastic behavior, tagging/selection, flows of information. Consequently,
emergence is the topmost attribute of the selected system that uses the mechanisms of

self-organization® to produce the emergent outcome.

8 Self-organization (as well as the process of selection) is so pervasive in nature that Kauffman (1995), one of the
first scholars to write about the subject, likened it to universal laws. In his book At Home in the Universe, he
builds an argument to explain how these processes made “the emergence of life well-nigh inevitable” (p.43).
Waldrop (1993) describes self-organization as a process wherein “groups of agents seeking mutual
accommodation and self-consistency somehow manage to transcend themselves, acquiring collective properties
such as life, thought, and purpose that they might never have possessed individually” (p.11). Does this mean
that self-organization is part of emergence? Yes, as agents go through the process of self-organization, there is an
emergent meta-agent created as described in the previous paragraphs.

In explaining principles of self-organization particularly in developmental biology, Bar Yam touches on an
essential quality in understanding the beauty of this process, that is, its economy. Self-organization is a process
in which the representation describes the developmental process of formation rather than the final system itself.
It is thus the creation of an algorithm from which the system is to arise. Another parsimonious property is that
randomness or noise acts as a bonus to the unfolding of the algorithm in that it adds the element of chance
variation without breaking the reproduction value. For further information I direct the reader to BarYam’s book.
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2.6 Challenges of Teaching and Learning Emergent Causal Processes
Why do concepts related to the emergent processes category prove challenging to
learners? Chi (2000) suggests three possible challenges to the removal of misconceptions:

(1) the nature of human cognition, (2) nature of instruction, and (3) students’ lack of

awareness about the nature of emergent processes.

Nature of Human Cognition

To support this conjecture, Chi cites two separate sources. First, she turns to
Wilson and Keil (2000) who posit that humans are predisposed to think simplistically in
causal terms (see p.5 this document, as well as diSessa’s explanation of the role of causal
nets, for other support of this argument). Second, she suggests that in normal cognitive
development and learning, rarely are ontological shifts required. In fact, our naive theories
do not often fail to explain the world. This claim is supported by the ontological category
formation literature (Keil, 1979; Sommers, 1963). Furthermore, concept formation
theorists such as Margolis (1999) suggest that we may mistake a paper bag (nominal
kind/artifact) for an animal (natural kind) at a distance but it is soon rectified when given a
second look or more time to process the information. We may also need to shift within
ontological categories such as reassigning the concept ‘whale’ from the category of “fish’
to the category of ‘mammal’. It is argued that we already possess the category of
‘mammal’, therefore the shift is é smooth one. The same may even be said of Vosniadou’s
study of children who eventually shift the concept of Earth from that of a flat object to
one that is spherical and rotates around the sun (Vosniadou & Brewer, 1994). Although

interesting, these sorts of category shifts are outside the scope of this current study.

The Nature of Instruction

The second challenge involved with this category is identified as the problems of

textbook structuring of science content. Chi (2000) identified the following weaknesses:
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(1) too much emphasis on macro level processes, therefore micro level actions are
described in terms of classes of individuals rather than interactions and collective effects;
(2) lack of emphasis on how macro level patterns emerge from micro level interactions; (3)
insufficient emphasis on emergent processes; finally, (4) inadequate attention and
direction concerning when differential strategies are required for problem solving. These
problems too are outside the scope of this current study. However, the instructional
intervention developed for this current study was sensitive to these concerns and
therefore I will refer back to these in the discussion chapter. Unfortunately, the fashion
among intellectuals to decry reductionism has meant that discussions of emergence as

connections among levels has been sidelined (Boyd, submitted).

2.6.1 Qvercoming Lack of Awareness of Emergent Processes

This is the one concern that is central to this current study. Chi (2000) argues that
emergent processes are difficult to pinpoint because they are intertwined with [linear]
causal processes. She also suggests that it is difficult because for everyday practical
purposes the world is seen as functioning in a [linear] causal fashion. “Thus, the adequacy
of operating at the phenomena level in an everyday world, coupled with the absence of
any conflicting feedback from such an operation (such as closing the window to keep the
heat out), prevents the students from being aware that their interpretation is limited at
some deeper level. Without such knowledge and feedback, there is no motivation for
students to seek an alternative [nonlinear] explanation” (Chi, 2000b, p.24).

Further support of this conjecture comes from Resnick and Wilensky who have
argued, together and independently, that such misconceptions be considered to constitute
the “deterministic/centralized mindset” (Resnick, 1994; Resnick & Wilensky, 1995;
Wilensky & Resnick, 1999). They posit that attending to a single level of description,
rather than the connections among levels, leads to constraints on our ability to correctly
explain emergent patterns of behavior in both physical, chemical, and human

organizational processes (e.g., birds flocking, gas equilibration, traffic jams). They assert
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that a possible explanation for this predilection is our commanding but myopic human
experience as “active planning and designing agents in the world. Yet most of the natural
world is composed of agents with much smaller capacities — agents that do not have
enough neuronal capacity to conceive of a plan or enough bandwidth to communicate it to
conspecifics.” (Wilensky, 2001, p. 3). [ add to the argument that we tend to
anthropomorphize these behaviors, perhaps because of our limited experience with these
types of agents, or perhaps because of an innate psychological behavior left over from
childhood where human traits are used to explain inanimate objects (Vosniadou, 1989).

Yet another weakness of human cognition is proposed, that is, our inability to
reason about multiple operations of very large numbers of entities. Wilensky (2001)
states: “Because of our experience as agents and our inability to attend to large numbers
of factors or long periods of time, we do not usually have significant opportunities to

develop robust intuitions about how emergent phenomena arise and maintain themselves”

(p-3).

2.6.2 Summary of Identified Challenges to Learning About Emergent Processes

To summarize, Chi (2000) identifies three inter-related barriers to understanding
the ontological category of emergence. First, novice learners treat macro level behavior as
the linear sum of causal events (lack of nonlinearity understanding). Second, learners fail
to consider the interactions between agents at the micro level (lack of local interactions
understanding). Third, learners fail to understand that the macro level emergent behavior is
the result of the collective interaction of agents and environment - “interactions in
dynamic collections” (lack of emergent process).

Resnick’s and Wilensky’s work, together and independently, have echoed these
three common lacks of understanding as well added the observation of the deterministic
and centralized mindset that guides our thinking and reasoning about emergent phenomena

(Resnick, 1994; Wilensky & Resnick, 1995; Wilensky, 1993; 1995; 1997; Wilensky &
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Resnick, 1999). Additionally, recent work by Wilensky’s team (Stieff & Wilensky, 2002)
supports that there is an over-attribution of static properties to emergent processes.

[ argue that these studies, along with Jacobson’s (2000) expert-novice
categorization, support the contention that non-scientific attributions may be articulated
into the following six categories of habitual assumptions, and studied as such:

* Isomorphic behavior at both macro and micro levels (i.e., reductive bias or
non-awareness of emergence);

* Centralized control assumption;

* Single causal explanation of macro-level behavior from micro-level interactions
(i.e., additive, linear);

* Determinacy assumption;

* Intentionality (i.e., teleological, anthropomorphic); and,

» Static outcomes to processes assumption (e.g., beginning-end processes).

2.7 The Status of Research on the Teaching of Emergence and Complexity

At least two major questions rise out of the body of literature described above.
One is explicitly theoretically based and relates to the practical efficacy of Chi’s model of
conceptual change. The second is related to the mechanisms and instructional strategies
that may lead to the development of understanding emergent causation. In essence, the
two practical questions may be posed: First, can experiential training related to the
emergent ontological category facilitate conceptual change (conceptual change defined as a
shift in causal explanations)? Second, how else can we come to learn and think about
complex systems emergence?

To date, only one known study has attempted to answer the first question, while
the second has drawn attention from a handful of researchers exploring the possibility of
using modelling and simulation with varying levels of affordances to learn about
emergence (Azevedo, Seibert, Guthrie, Cromley, Wang, & Tron, 2002; Bloom, 2001;
Colella, 2001; Hmelo, Holton, & Kolodner, 2000; Klopfer & Colella, 2000; Klopfer &
Um, 2002; Penner, 2000; Wilensky & Resnick, 1999; Stieff & Wilensky, 2002; Wilensky,
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1999; Wilensky & Reisman, in press; Wilensky & Stroup, 2000). In oder to situate this

current study, I will briefly describe the revelant studies.

2.7.1 An Empirical Study on Teaching Emergence

So far, the only empirical study which supports of Chi’s theoretical account of
conceptual change was conducted by Slotta and Chi (1999). Slotta examined the effects of
a training unit composed of a self-designed computer simulation of dynamic systems
related to the diffusion of gases. Using a pretest and posttest experimental design, Slotta
randomly assigned 24 university undergraduates with no science background to one of
two treatment conditions (experimental and control). There were two sessions of
approximately two hours each. The first session presented the ontological training module
while the second was intended to provide the science content, transfer material. The
training module consisted of computer simulation and text covering four attributes of air
expansion and liquid diffusion considered to be an example of “equilibration processes™:
(1) no clear cause and effect explanations, (2) system of interacting components moving
towards equilibrium, (3) combined effects of many smaller processes occuring
simulataneously and independently, and (4) no beginning or ending of the process. During
the training sessions prompts were used to ensure that students were paying attention to
the important parts of the text.

After the training session the subjects were administered both near (air expansion
and diffusion questions) and far transfer (predator-prey populations) questions to
determine their comprehension of the text and asked to apply the four newly learned
attributes to these questions. The test items were muliple choice “problems” on the
subject of electric current based on previous work by Slotta et al. (1995).This
distinguished between those who could transfer concepts of the text and those who did
not.

The control group received the same content on diffusion but no ontological

training. The next phase of the experiment provided the students with specially prepared
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text on electricity based on a conventional physics textbook but with the water analogies
removed. The experimental group was cued to transfer by being told: “they would be
reading about another example of an equilibration process” (p. 21).

Results from the experimental group showed significant pretest and posttest gains
F(1,22) = 6.8, p = 0.02. In order to tease out the differences between those who
understood the material from those who did not, the experimental group was split into
high and low scorers on the training posttest. The interaction of test scores with this
group was also significant, F(2, 21) = 13.8, p = 0.00. Further sorting of the data provided
better explanations of the findings, which revealed that students’ improvement in problem
solving was directly dependent on their understanding of the training.

Slotta also collected verbal protocol data, which was analyzed using the predicate
analysis technique developed in Slotta et al. (1995). Novice explanations included the
following substance predicates: moves, supplied, qualified, rest, absorbed, consumed. He
also identified six expert predicates: system-wide, movement process, uniform state,
equilibrium state, simultaneity, independence. These coding and scoring techniques are
described more fully in chapter 3 of this dissertation. The comparison of pretest posttest
use of predicates also supported a change due to the training. There was a significant
increase in the process predicates F(1,10) = 31.04, p = 0.000 with a decrease in the
substance predicates F(1,10) =20.17, p = 0.001. A further refinement in the analysis
revealed the same clarification between those who understood the training material and
their shift of explanation to the process based ontology. Slotta concluded by stating that:

Thus, a seemingly tangential training about an ontological category has yielded
dramatic results in terms of qualitative reasoning (problem solving and
explanations) in another domain (in electricity concepts) that reflects ‘far transfer’
or deep conceptual change (Slotta & Chi, 1999, p. 29).

2.7.2 Using Models to Teach about Emergent Causation

Papert (1980) asserts that our culture is rich in pairs, couples, and one-to-one

relationships, however, it is poor in publicized models of systemic procedures. In fact, he
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states: “Anything is easy if you can assimilate it to your collection of models. If you
can’t, anything can be painfully difficult” (Papert, 1980, p. vii). Models, specially
computer-based models (e.g., exploratory modeling at described by Wilensky & Resnick,
1999) have proven to be powerful at reifying certain concepts and thereby supporting

certain types of learning. Details of three such studies are presented below.

2.7.3 Using Physical Models to Teach About Complex Systems

Hmelo et al. (2000) studied 6th grade students understanding of the respiratory
system using a design approach and building partial working models of the lungs. This
study shed light on the many affordances for promoting deep learning of systems. They
adopted a Structure Behavior Function model to both describe the system as well as code
the learners’ mental models (based on SBF theory - posited by Goel & Chandrasekaran,
1989). Their results provided evidence that students in the experimental group had a small
but significant increase in their attending to structural relationships. Their understanding
also became more rich, demonstrated by the number of relationships mentioned and their
thinking of how the system worked. However, the students did not mention function as
frequently and mentioned behavior least of all. These results were not unexpected, in fact,
these researchers anticipated that the causal behaviors would be more difficult to observe
because they happen at an invisible level and involved the understanding of dynamic
relationships.

The significance of their research is providing evidence that supports my
contention that understanding of complex systems’ behavior is possible, in that case by
6th graders. However, it confirms the value of instructional tools with greater affordances

for demonstrating emergent processes.

2.7.4 Computer Based Modeling Environments
As previously stated, the research teams of Wilensky and Resnick have conducted

many qualitative studies of the affordances realized by different versions of their multi-
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agent modeling languages (StarLogo, Resnick, 1994; StarLogoT, Wilensky 1997; and the
subsequent simulation models of NetLogo, Wilensky, 1999; and, currently ChemLogo).
Although the study described below took place after my research was in progress, I
present it as an example of one of the few structured inquiries of this particular modeling
tool.

Stieff and Wilensky (2002) examined six undergraduate science majors’
understanding of the process of chemical equilibrium when using a modeling and
simulation package called ChemLogo. This modeling environment is embedded in
NetLogo, which may be considered the next generation derivative of Starl.ogo. The
intervention consisted of a three-part 90-minute interview during which the students were
asked to first explain their understanding of the Le Chatelier’s Principle in chemistry, then
during their observations and interactions with the simulation explain the behavior of the
molecules that were realizing the behaviors described by this principle; followed by the
opportunity to reflect on their reasoning.

Observations reported describe a shift from formulaic problem-solving approaches
and rote memorization (which were exhibited in part one of the 90-minute interview), to
attempts at conceptual reasoning and justification of answers during and after using
ChemLogo. The authors identified four distinct categories of observed changes: (1)
defining equilibrium for a chemical system, (2) characterizing factors affecting equilibrium,
(3) transitioning between submicro-, micro-, and macro- levels during problem solving,
and (4) fluidly moving between various forms of symbolic representation at all three
phenomenal levels. The report featured one student’s (Andrew) experience and identified
a change in his ability to explain and correct his predictions. He was able to deduce
correctly how the micro-level events result in phenomena at the macro-level, a change that
provided him with greater confidence to deduce other more accurate and reasonable

answers.
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2.7.5 Emergent Process Models — Life®

Penner’s (2000) study looked at the development of four 6th graders engaged in a
nine week after-school instruction investigating emergent properties using the computer
simulation Life and “talus slope’. Using a case study approach allowed him to closely
investigate the changes in the students reasoning. He focused on three issues related to
how these students come to develop ways of thinking about emergent systems: (1) How
did they achieve an understanding of the patterns that develop? (2) Did they recognize
that no primary causal factor was necessary? (3) Did they come to distinguish between
micro- and macro-levels of descriptions? (4) How did they explain the effects of small
changes on the resulting development? Resnick’s (1994) framework related to issues of
centralized versus distributed control (i.e., “lead” or “seed”) were used to code the verbal
protocols.

The importance of Penner’s study was the confirmation that a formal taxonomy
based on causal mechanisms could be used to code verbal protocols effectively (Penner
(2001) used Resnick’s conjecture of a “lead” or “seed” attribution). Secondly some of his

participants did begin to experience a shift toward emergent causal explanations.

2.8 Research Questions Pursued in this Study

There is reasonable evidence to support the proposition that appropriate dynamic
models afford better opportunities for certain types of scientific learning . Specifically,
there is some evidence that computer models such as those made with StarLogoT support
the construction of an understanding of emergent processes. To date, inquires about the
effectiveness of models of emergent phenomena have been limited in scale (i.e., small
numbers) and time (short duration). Moreover, with the exception of Slotta and Chi

(1999) researchers have not used a global approach to coding, nor have they specifically

% As a classical example of emergent processes from simple automaton programming, Life could be played
both as a paper and pencil game or on the computer.
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linked the affordances of the models to subsequent of conceptual change. I argue that this
current study therefore is addressing and closing some of these gaps in the literature by

focusing on the following questions related to these issues.

2.8.1 Research Question — Study 1

Does complex systems instruction facilitate the construction of emergent framework
mental models as demonstrated by problem-solving abilities (use of expert-like emergent
explanations) applied to questions that are representative of phenomena with emergent

characteristics?

2.8.2 Research Question — Study 2

1. Based on the results of Study 1, the questions arising were:
a) Does a longer duration ontologically-based intervention support a different
learning experience as demonstrated by more elaborated emergent framework
mental models?
b) Does this intervention increase the transfer of the emergent causal framework to
a wider range of ontologically analogous problems?
c) What are the effects of time on this content knowledge and the students’ ability

to perform these transfer tasks (i.e., ecological validity)?

2. The literature above tells us that there are barriers to understanding phenomena
belonging to the ontological category of emergent causal processes. Therefore, if provided
with appropriate content and learning environments, what do students’ experiences tell us

about acquisition of this content knowledge?
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a) Which of the ontologically-based concepts are more susceptible to change, as
demonstrated by changes in vocabulary, explanations, and heuristic model
employed (i.e., evidence of a shift in ontological framework)? For example:

* Isomorphic behavior of both micro and macro levels behaviors (i.e.,
reductive ontology) fo non-reductive ontology (emergent self-
organizing ontology);

* Centralized control fo distributed or decentralized control
(decentralized control);

* Linear causal explanation of macro-level behavior from micro-level
interactions (i.e., additive, linear) fo multiple nonlinear causal
explanations (nonlinear effects).

* Determinate causality fo indeterminate causality (random actions);

» Intentionality (i.e., teleological) fo stochastic causes (i.e., probabilistic
causes);

» Static processes (i.c., beginning-end processes) fo dynamic homeostatic
behaviors (dynamic nature).

b) What are the affordances of StarLogoT (and possibly other multi-agent
modeling language generated simulations) for promoting the learning of emergent
causal processes?

¢) What role do cognitive scaffolding and other metacognitive support play in this

learning process?

3. What are the practical considerations related to using an ontologically-based
intervention to facilitate conceptual change? Specifically, what does this tell us about the
usefulness or limitations of these types of models as tools for acquiring emergent

framework mental models?
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CHAPTER 3
MENTAL MODEL CODING TAXONOMIES

Mental models are internal mental representations that allow human beings to
apprehend the world. They are believed to be the mechanisms used to support problem
solving, reasoning, and prediction (Johnson-Laird, 1983). In turn, researchers attempt to
understand and make public internal processes, particularly higher-order thinking,
problem-solving, transfer of learning, and conceptual change, by drawing inferences from
the learners’ words and deeds, and by describing the products of these activities as
representations of learners’ mental models (e.g., Azevedo, Seibert, Guthrie, Cromley,
Wang & Tron, 2002; Cavallo, 1991; Chi et al, 1994; Gentner and Stevens, 1983;
Jacobson & Archodidou, 2000; Mason, 1994; Monaghan & Clement, 2000; Taber, 2001;
Vosniadou & Brewer, 1994). The mental representations as used by these researchers (as
well as this current study) should not be confused with the actual internal mental model
employed by the learner (i.e., Johnson-Laird’s perspective).

Once mental representations are elicited, the researcher is faced with the task of
inferring meaning and learning through identified changes in the representations. This is
accomplished through the process of coding the data collected according to some a
priori, or otherwise generated, coding schema. The intention of this chapter is to describe
the development of the specialized coding taxonomy employed in this study as well as

the procedure used to code and analyze the data.

3.1 Issues Related to Mental Models Coding and Analysis

3.1.1 Overview of Mental Models

There is still controversy over whether mental models are temporary structures
constructed as needed, manipulated, then discarded when a conclusion is reached
(Johnson-Laird, 1983; Norman, 1983); or, whether mental models are partly or wholly

stored in long term memory and therefore are relatively stable structures that can be
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modified, elaborated and changed (in Gentner & Stevens, 1983; Vosniadou & Brewer,
1994). This present study takes the latter perspective. Addressing this position, the major
assumptions are: (1) that mental models can be incomplete (i.e., are constructed
differently by novices and experts), and (2) that mental models are evolving, (i.e., can be

changed).

Linking Mental Models to Expert-Novice Research

The claim that learners' mental models are qualitative and exhibit levels of
completeness is supported by the expert-novice literature (several citations in Chi &
Glaser, 1988). Chi, Feltovich and Glaser’s (1981) seminal study of expert-novice
problem representations (mental models) in physics established particular characteristics
of expert models not found in novice problem solvers. In essence, their study reported
several findings: (1) that mental models are contextual and constructed within the
constraints of the activated schema, therefore they are shaped by the initial categorization
process and, (2) the completion of the model constructed is based on the content
knowledge available to the problem solver. Hence, experts are individuals who correctly
categorize problems and have a wealth of content knowledge with which to build their
problem representation (mental models). DiSessa (1983b) also discusses the difference
between experts and novices as the difference between using “common sense and

scientific reasoning” - not so much the “content in knowledge, but rather its organization”

(. 32).

Idealized mental models. Voss, Vesonder and Spilich (1980) conducted

groundbreaking research pertaining to an idealized mental model. By first establishing a
set of necessary “tokens” to describe a half-inning of baseball (expert models), these
authors determined students’ grasp of the game (naive models) through the models
generated. More importantly, Voss et al. (1980) had constructed an expert model that
could be used to describe any sports activity. This general application mental model was
a significant development, one that is sought after in other disciplines such as science
education. In essence, the assumption of this area of research is that there is an objective

scientific explanation of natural phenomena (i.e., veridical scientific explanations) and
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that an expert is someone whose mental model, created to explain those phenomena, is

nearly isomorphic to the consensus of accepted theories of the scientific community.

Evolving Mental Models

Mental models identified in Borges’ and Gilbert’s (1999) study appeared to
evolve over time. Several dimensions to this pattern of change were identified that
included: (1) change in the scope and limitation of the models; (2) change in the
definition of basic notion; (3) adoption of a richer vocabulary; and (4) a move toward use
of more abstract notions and the parsimonious introduction of new entities. Therefore, the
development of the mental model goes toward greater consistency and completeness and
becomes less context-dependent. In fact, the experienced practitioner masters the specific
vocabulary of the domain, and construct less differentiated concepts.

This is in keeping with Vosniadou’s position on development of mental models
(Vosniadou, 1994; Vosniadou & Brewer, 1994). Her work in the field of conceptual
change is predicated upon the assertion that there are three stages: (1) no formal
knowledge (i.e., initial mental model), (2) misconception when models interact (i.e.,
synthetic mental model), and finally (3) true understanding (i.e., scientific mental model).
Jacobson and Archodidou’s (2000) research also identified several distinct stages of
mental model development over the course of a two-part study on the topic of evolution.
The empirical data supported the position that mental models were not only characterized
as stages but also show evidence of change as a result of instruction and not merely

maturation.

The mechanism of change. Although we do not yet know how, there are several
speculations as to how mental models are modified. Borges and Gilbert (1999) posit that
there is a change in the individuals’ reasoning and explanatory capabilities. Learners
move from focusing on the unproblematic and salient objects, to considering the
interactions between these objects and the internal structures that arise from the
interactions. “It appears that only with deliberate instruction can learners come to adopt
more sophisticated models” (Borges & Gilbert, 1999, p.111). This statement may be too

broad to be without challenge; however, Borges and Gilbert are not alone in the
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contention the certain categories of concepts require greater cognitive attention. Hence,
this is in line with Vosniadou’s metaconceptual awareness principle (Vosniadou, 1994),
diSessa and Sherin’s adjustments in readout strategies (diSessa & Sherin, 1998), and Chi
and Slotta’s purposeful shifts in ontological assignment (Chi 2000; Slotta & Chi, 1999).
This current study therefore assessed the mental models of the participants based on those

identified criteria.

Constraints on Changing Mental Models

Vosniadou (1994) defines mental models as an analog representation generated
during cognitive functioning, while preserving the characteristic structure of the thing it
is to represent. The unique feature of Vosniadou’s description is found in her description
of how mental models are generated. She asserts that mental models are drawn from the
underlying knowledge structures of “specific theories” and “framework theories”. In fact,
“understanding the generic mental models individuals use to answer a variety of different
questions related to a given concept can provide important information regarding the
framework theories and specific theories that constrain the knowledge acquisition
process” (p. 48). As these framework theories are refined, it allows for the generation of
new mental models that are better mediators of incoming and outgoing information. As
powers of observation improve, so too does the explanatory capacity, and this feedback
process continues to refine the mental model until the learner develops a scientific mental
model stage. She proposes an iterative process in which mental models interacting with
each other can constrain the knowledge acquisition process in much the same way as
beliefs and presuppositions.

The idea of constraints is also outlined in diSessa’s work (1993b). He introduces
the notion of phenomenological primitives, p-prims, which I assért can be viewed as low-
level mental models that can provide emergent qualities when they interact.
Unfortunately, if the novice does not consciously work toward a reorganization of these
explanatory components, these dynamic interactions create explanations that are
scientifically incorrect (see conceptual change section for more detail). Both these
authors assert that mental models can be changed. This link between conceptual change

theories and mental models is an important one for this present research, particularly
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since evidence of conceptual change was predicated on being determined by the
examination of externalizations of mental models developed over the course of the

treatment.

Conceptual Models

Mental models should not be confused with conceptual models. Although the
literature has many ways of describing mental models (e.g., “problem representations” in
Chi, et. al., 1982; “conceptual explanations” in Slotta, Chi & Joram, 1995) there is only
one accepted definition of the term conceptual model. Conceptual models are external
representations of internal theories. According to Norman (1983) conceptual models are
more or less precise and complete representations of the phenomena represented. They
are such things as scientific analogies (e.g., electric currents as being like hydraulic
circuits), mathematical formulas (e.g., Lotka-Volterra equation: dn;/dt = n; (b-k;n; and
dny/dt = n; (kon;-d) used in predator prey interactions), and computer models (e.g.,
microworlds such as Thinker Tools, icon-based models such as STELLA (examples cited
in Penner, 2001), to name a few). They are external representations that are shared by a
community of practitioners. They are coherent with the accepted practices and knowledge
of the community they represent. Indeed, conceptual models may be said to represent

scientific knowledge.

Methods of Accessing Mental Models

Although we do not yet know the underlying neuro-physiology of internal mental
representations, there are established methods of eliciting and analyzing them. Methods
of gaining access to mental models include verbal protocols, pencil and paper problem-
solving, audit trails, trouble shooting performance, information retention over time, and
observational protocols (e.g., procedural mapping, Royer, Cisero, & Carlo, 1993). Each
method has limitations and all are subject to some level of controversy regarding their use
of inferential methodologies. In the following passage, [ will describe the two methods
used in this study.

Verbal protocols. Verbal protocols such as “think-alouds™ (Ericsson & Simon,

1984) are used to engage learners in realistic activities then elicit their problem solving
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reasoning. These methods were used extensively in the research described in Gentner and
Stevens (1983). The main drawback with think-aloud methods is that they are highly
demanding of both human resources and time, therefore, suited to small case studies but
not to large empirical ones or classroom settings (Royer et al., 1993). Another difficulty
with verbal protocols is the inability of learners to verbalize all thought processes, their
tendency to rationalize behavior, and the potential of unintentional prompting through
nonverbal clues from the experimenter (Royer et al., 1993). Another difficulty is that they
divide the learners' attention part of the time taking away from the task at hand (Ericsson
& Simon, 1984).

Concept mapping. Cognitive mapping is a way of evoking explicitly

representations of cognitive structure that are in memory (Shavelson, 1972). Measures of
knowledge organization are based on schema theories of learning (Ausubel, 1963;
Rumelhart, & Norman, 1976). These theories of associative memory suggest that
concepts have conceptual similarity are stored in associative networks. A further
assumption of these techniques is that knowledge can be represented as networks of
relationships. Royer, et al. (1993) suggest that main weakness of associative knowledge
network methods is the subjective nature of their interpretations, therefore their results

must be validated through triangulation with other assessment tools.

Ways of Analyzing Externalizations of Mental Models.

There are issues surrounding analysis of mental models that are related to coding
methods. One method used most frequently is “content analysis” (e.g., Berelson, 1952;
Krippendoft, 1980). It is best described as a frequency count that attempts to generalize
from the frequency of words used. The benefits of this method is that it can be
generalized across individuals and groups and can be highly automated, particularly with
recent software developments such as NUD*IST (Non-numerical Unstructured Data *
Indexing Searching and Theorizing, trademarks of QSR International Pty Ltd., 2000).
The main drawback is its insensitivity to context (Carley & Palquist, 1992). Although
this weakness may be offset by a follow up inspection which increases the time spent in
total but facilitates the sensitivity to context. This latter method was used to start the

coding of transcript data because of the enormous volume of material.
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Other methods that are more appropriate but more time consuming are
propositional analysis techniques. For instance, Cavallo (1991) used a parsing technique
(adapted from Mosenthal & Kinstch, 1992) involving several procedural and explicit
steps. First, all written work is transcribe word for word, then all verbs in each
proposition were identified, then the remainder of the proposition would be parsed and
place on a grid containing “agent”, “object”, “action”, “reference point”, and “result”.
This method parsed the propositions according to both the macro-structure (procedural
knowledge) and micro-structure (conceptual knowledge). This technique produced grids
of varying degrees of complexity and they were sorted in order of increasing number of
different microstructures categories filled in (see Cavallo, 1991, pp. 115-153, for more
detail).

Another propositional coding method was developed specifically for ontological
coding by Slotta, Chi, and Joram (1995). This technique first establishes taxonomies
based on the ontological assertions of “matter” and “processes” (or in Ferrari & Chi
1998, on “events” and “equilibrations™). It then segments explanation protocols into unit
sizes of single ideas (generally at the phrase to sentence level). The units are then coded
for predicates (verb phrases). Next, the raw frequency of occurrence is counted; these raw
scores are later normalized in order to reflect the relative frequency of one predicate over
the other.

Both these methods of analyzing mental models data are typical of the systematic
and complex considerations that go into this methodology. The threats to reliability are
controlled through the employment of multiple raters and by imposing a requirement of
consensus among them. Because of the additional mediating factor of human error, the
reliability of this additional layer of inference is a valid concern. Consequently, many
studies using such methods of analysis have been subjected to severe criticism. In this
present study I made multiple efforts to ensure reliability through the use of multiple

raters as well as other methods of triangulation.
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3.2 Development of the Ontological Mental Model Taxonomy (OMMT)

The idea of emergence is often contrasted with a reductionist perspective.
The reductionist perspective thinks about parts in isolation. It is the often
vilified “anti-complex systems” view of the world. However, even the idea
of a system is based upon a partial reductionism. To understand this, one
should carefully understand the notion of approximation or “partial-truth”
which is essential for the study of complex systems.

Yaneer Bar-Yam (2000)

Bar-Yam’s statement identifies one of the many difficulties in understanding,
teaching, and assessing the acquisition of complex systems concepts. Such understanding
requires both the taking apart of the learners’ mental model (i.e., coding into taxonomy
categories) to investigate these components, yet also holding them together to appreciate
how they interact to produce the emergent quality of learning. In some sense we engage
in a partial reductive process when we begin to explore how the study of complex
systems can be used for general learning goals such as conceptual change. But we must
keep in mind that both the learning process, as well as the subject matter to be learned

(complex systems), exhibits emergent properties.

3.2.1 Chi and Colleagues’ Coding Taxonomy
Starting with their seminal article, Chi, Slotta, and deLeeuw (1994) identified two

major categories to which concepts may be assigned: (1) “Matter”, and (2) “Processes”
(see Appendix A). The assertion was that the contents of these categories are orthogonal
therefore each potentially contains discreet concepts. In this orthogonal arrangement, they
described a particular subcategory called “Constraint-Based Interaction”, which is
identified as having attributes associated with many scientific concepts. In the course of
articulating the attributes, Chi et al. (1994) established the beginnings of a coding
schema. Based on their theory of conceptual change as ontological reassignment, they
enumerated the attributes of the two categories into a taxonomy of predicates (described

in Slotta et al., 1995). To test this taxonomy, these authors coded explanations for physics



57

problems obtained from experts and novices. The assumption was that experts, when
solving physics problems (heat, light, electrical current), would make greater use of
predicates belonging to the Constraint-Based Interaction category, while novices would
make greater use of predicates belonging to the Matter category. The results of this
original study, as well as several since (e.g., Slotta et al., 1995; Reiner, Slotta, Chi, &
Resnick, 2000), supported their contention and confirmed the dichotomy between the two
categories as well as the predisposition of novices to miscategorize concepts.

Working toward a theory of conceptual change, Chi (1997), and Ferrari and Chi
(1998), refocused on ontological distinctions in the Process category (“Events” processes
versus “Equilibration” processes) and articulated six features that differentiate these
categories (see Table 3.1). Although the categories were refined and the headings
changed (Matter —Events, to Constraint-Based Interactions — Equilibration), the

essence remained the same.

Table 3.1 Chi’s ontologically based categories (adapted from Ferrari & Chi, 1998).

Events Equilibration
1. Distinct actions 1. Uniform actions
2. Bounded by beginning and end 2. Unbounded, ongoing
3. Sequential 3. Simultaneous
4. Contingent and causal 4. Independent and random
5. Goal-directed S. Net effect
6. Terminates 6. Continuous

Under the new rubric, features of the events category are best depicted using the
metaphor of a baseball game, while equilibrations are described using the process of
gaseous diffusion. Ferrari and Chi (1998) suggest that like a game, event processes have
distinct parts, the players that perform distinct functions, the different innings, and so on.

On the other hand, equilibrations have uniform actions; using the diffusion example, all
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molecules move according to the same physical laws. Next, events have an obvious
beginning and end; the first inning begins the game while the ninth is the expected end
(the record is 24 innings). This is contrasted against equilibrations where actions are
ongoing; molecules continuously move even when in equilibrium. Next, events occur in
sequential order, therefore one thing follows another; first the pitcher throws the ball,
then the player attempts to hit the ball, and so on. In equilibration processes this is not the
case, in fact, things occur simultaneously; all molecules move at the same time, and have
the potential to collide. Another feature is the contingent or causal nature of the events
category. For instance, runners advance to home plate only if they cross the other three.
Equilibration processes, however, are independent and random; diffusion cannot be
attributed to a particular molecule moving in a particular direction. The penultimate
feature is goal-directedness, that is, event processes have a purpose, a goal; the objective
of the game is to win. Equilibration processes are not goal-oriented; they are instead a
product of the net effect of random movement (i.e., the molecules don’t aim to achieve
equilibrium). The final feature is that events are complete, they terminate when the goal
is achieved. The process of diffusion is continuous and dynamic, the molecules do not

stop moving even when in a state of equilibrium.

3.2.2 Jacobson’s Coding Taxonomy

Jacobson (1999), working on a cognitive theory of complex systems problem
solving, developed what he calls a “complex systems mental models framework” to code
the responses from participants. His prior research (Jacobson & Archodidou, 2000;
Jacobson, Sugimoto & Archodidou, 1996), as well as Vosniadou and Brewer’s mental
model analysis methodology (Vosniadou & Brewer, 1992; Vosniadou & Brewer, 1994),
formed the basis of this coding schema.

Similar to Chi’s coding, Jacobson’s taxonomy places knowledge representations
into two categories identified by differential and diametrically opposite ontological and
epistemological characteristics, referred to as “component beliefs”, ‘Clockwork Set’, and
‘Complex Systems Set’. In so doing, he first articulates the categories in terms of eight

component beliefs: (1) understanding phenomena, (2) control, (3) causes, (4) actions
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effects, (5) agent actions, (6) complex actions, (7) 'final causes' or purposeful natural
phenomena, and (8) ontology. He then describes how these eight beliefs would be played
out dependent on which of the two component beliefs is held as normal by the respondent
(see Table 3.2). Therefore, someone holding component beliefs identified as clockwork
would possess a reductive understanding of phenomena (e.g., step-wise sequences, with
isolatable parts); while, a complex systems belief would understand phenomena in a non-
reductive manner: the whole-is-greater-than-the-parts.

Turning to the category of “Control”, the clockwork view of control is that it is
centralized (within the system) and/or externally controlled by another agent (external to
the system). The complex system view of control sees it as de-centralized (system
interactions). When it comes to assigning causation, the clockwork view identifies single
causes, while the complex systems view assigns multiple and recursive causes.

In terms of “Actions’ Effects”, the clockwork view assumes that small actions
produce only small effects, while the complex systems view understands that small
actions may produce big effects. The category of agents’ actions is described as
completely predictable by the clockwork view, and not completely predictable (i.e.,
stochastic or even random) by the complex systems view. Under the clockwork
framework, complex actions are the result of complex rules, while the complex systems
framework suggest that complex actions may result from cumulative effects of simple
rules.

When it comes to “Underlying Causes”, the clockwork view assigns teleological
explanations whereas the complex systems view assigns non-teleological or stochastic
explanations. Finally, the ontological perspective of the clockwork framework is of static
structures and discrete events, while the complex systems framework is of equilibration

and self-organized and highly dissipative processes.
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Jacobson’s “component beliefs” categories (adapted from Jacobson, 2000).

Categories of
Component Beliefs

Types of component Beliefs

Clockwork Set

Complex Systems Set

I. Understanding

Reductive (e.g. step-wise

Non-reductive: whole is

phenomena sequences, isolated parts). greater than the parts.
Centralized (within system) orj De-centralized (system
2. Control . .
external agent. interactions).
3. Causes Single Multiple

4. Actions’ effects

Small actions — small effect

Small action—big effect

5. Agents’ actions

Completely predictable.

Not completely predictable/
stochastic/random.

6. Complex actions

From complex rules.

From simple rules.

7. Final causes

Teleological

Non-teleological or
stochastic

8. Ontology

Static structures/events

Equilibration processes

3.2.3 Comparisons of These Two Taxonomies

A comparison of the two coding schema reveals many similarities although they

arise from somewhat different perspectives, one from an effort to build a theory of

conceptual change and, the other from an effort to develop a cognitive theory of complex

systems. It is reasonable to suggest that because these two schemas both attempt, in part,

to reflect the ontological beliefs of the problem solver they would exhibit similarities.

What is not so apparent is that many of Chi’s category descriptions are similar to items

on Jacobson’s code, but not in an isomorphic manner. For instance, the description of

“distinct actions” is identical in meaning to the definition of “reductive”, that is, the

component are treated in isolation; however, the description of “uniform actions” and

“non-reductive” are not the same. In fact, the description of “uniform action” (as well as

the “independent” half of the category “independent and random”) is closer to what

Jacobson describes as “de-centralized” control. Where the descriptions are isomorphic
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are for the items “simultaneous” (Chi), which matches that of “small action — big effect”
(Jacobson), and “net effect” (Chi), which again is the same as the definition for “non-
teleological” (Jacobson). Where the similarity becomes more muddled is for Chi’s
category items of “unbounded, ongoing” and “continuous”, both of which are defined by
terms that appear to say the same thing as Jacobson’s category of “equilibration
processes”. To make this point I turn to Ferrari and Chi’s (1998) description of both
processes: (1) ongoing — “without beginning or end, although an initiating agent external
to the concept of diffusion may upset an existing equilibrium (e.g., placing a sugar cube
in water)” (p.10), and (2) continuous dynamic — “ continuous dynamic interaction and
never terminate, even when there is no visible motion. Thus, at the molecular level,
molecules are continually moving in turn they the process of diffusion” (p.10).

In summary, [ contend that Jacobson’s coding was a major advance in clarifying
the ontologically based category items identified by Chi and her colleagues. Furthermore,
by attaching these category items to the concepts of complex systems his code is
grounded in a theoretical framework that has room for expansion. Both these perspectives

have guided my efforts in refining this coding schema.

3.2.4 Phases in Developing the Ontological Mental Model Taxonomy (OMMT)
First Phase in OMMT Development

Using a process-based method of iterative stages, I refined Jacobson’s Complex
Systems Component Beliefs scale (henceforth referred to as ontologically-based to
distinguish it from the other coding schema based on complex systems components).

Starting with his data analysis results'®, which tested the reliability of the coding schema

19 Jacobson's (2000) used the statistical test of Cronbach alpha to evaluate the reliability of this CSMM
taxonomy. He reported a reliability alpha of .76 and .72, for the clockwork category and complex systems
category respectively. The correlation matrix and the inter-item statistics for each scale were examined.
The reliability alpha for the complex systems scale was improved when several items were removed
resulting in a scale made up of five variables: non-reductive, decentralized, multiple causes, randomness,
and equilibration processes. These variables produced item-total correlations between .55 and .79, and an
overall reliability of .85. The clockwork scale was also revised to include the following variables:
reductive, centralized, small actions-small effects, and predictable. These variables produced an item-total
correlation between .45 and .87, with a reliability alpha of .81. When compared statically, the two scales
produced a significant negative correlation of r = -0.57 (p = 0.02). Significant correlations were also found
between the two component beliefs scales and complex systems concepts. Complex systems component
beliefs and complex systems concepts, r = 0.94, p = 0.000; and, clockwork component beliefs and complex
systems concepts, r = 0.64, p =0.008.
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as an assessment taxonomy, I modified the original grid by removing the items that
produced non-significant results. From eight items the grid was reduced to five: (1)
Understanding Phenomena (reductive — non-reductive), (2) Control (centralized — de-
centralized), (3) Causes (single cause — multiple causes), (4) Agents’ Actions (completely
predictable — not completely predictable), and (5) Ontology (static structures —
equilibration processes). With data collected for the “ant” question I coded'" the
responses using the five-item grid. After the first round of coding I immediately
uncovered the need to replace the item “Actions’ Effects”, thereby bringing the number
of items up to six. Jacobson’s statistical correlations had yielded a reasonably high
reliability for the item “small actions —small effect” on the clockwork scale therefore
this replacement was reasonably supported by the testing. Based solely on these piloted
data, [ decided to also reintroduce the category items of “Final Causes” (but changed the

word ‘final’ to ‘underlying’) to make a seven-item coding taxonomy.

Using the OMMT taxonomy. Using the seven-item coding taxonomy I engaged in

training another rater to code the pretest and immediate posttest data collected for the Ant
question (Study 1). A subset of responses was coded (70 out of the 280 responses —
pretest = 25 experimental group only, plus posttest = 25 experimental group + 20 control
group). The inter-rater reliability yielded a reliability coefficient of .75. Inconsistencies
were resolved through discussion between the raters. However, this low reliability
coefficient and the subsequent discussion revealed some limitations to the taxonomy. The
major difficulties were the overlapping category descriptions, as evidenced in the
discussion above relating to Chi’s categories exemplars. These category items needed
further refinement that would take place in the second study when more detailed answers

were provided to the questions.

Second Phase of OMMT Development

The second round of development used a slightly different approach. Informed by
the qualitative literature on coding methods, my aim was to construct a coding taxonomy

that would enable explanation of all the data. To accomplish this task I returned to the

" This testing of coding was conducted on data collected from a pilot run of questions (June 2000).
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complex systems literature, particularly Holland (1995) and using responses from experts
for the same four complex systems questions, I began the development process by first
expanding the coding grid (Table 3.3). The category headings were also modified in an
effort to reflect this wider perspective on representing ontological beliefs held by experts
on emergent behaviors (i.e., those behaviors exhibited by complex systems) thereby
producing a coding grid based on the following identifying behaviors: Agent’s behavior,
Agents’ interactions, and Agents’ — System interactions, and Systems behaviors. This
coding was comprehensive and enabled explanation of all the data, however there was a
great deal of redundancy. For example, the independent/competitive behavior of the
individual agent, at the system’s level can also be described as decentralized control of
the system. What appeared to be a problem in clarity was in reality a feature of complex
systems called the complexity profile, which relates to the mathematical notion of
information needed to describe the system. However, it is an apt metaphor to explain the
difficulty of building a taxonomy to code for the concepts of complex systems. Bar-Yam
(1997) describes this conundrum in the statement: “The complexity profile must be a
monotonically falling function of the scale. This is because the information needed to
describe the system on a large scale must be a subset of the information needed to
describe the system on a smaller scale — any complete finer-scale description contains the
coarser-scale description” (p. 14).

Thinking that perhaps the ontological categories identified were insufficient, I
tested this hypothesis using the data. Indeed there were more categories but there was
more difficulty with consistency in coding. The more I moved toward a complex systems
coding grid the further away one got from the initial ontological beliefs. After
consultation with the subject matter expert, I made the decision to separate the coding
taxonomy into two separate rubrics. One related to ontological beliefs (Ontological
Mental Models Taxonomy) and the other related to understanding of complex systems
concepts (Complex Systems Taxonomy). This move put me back on track. Hence the
final assessments of mental models were made using these two conceptually distinct,

although related, coding taxonomies.



Table 3.3  Second phase developments in OMMT coding schema.
) i i 2
Adapted from Jacobson ?Vlhjisrggl\;ol;?: ;Z::fe yt(;:é ;;glllaozz ?how ants find and collect their food:
2000 & Chi 1999 )
Component Beliefs Response Types Coded Response
explaining the behavior of
phenomena

Outcome behavior of
system resulting from the
agents behavior

Deterministic behavior

Probabilistic/Interdeterministic behavior

Behavior of agents with
the system

Reductive behavior

Emergent — self organizing behavior

Organizational
Mechanisms of Agents
How do agents organize
themselves?

Follow complex rules

Follow simple rules: internal models/
building blocks

Attributes of Agents’
Actions

How do agents behave?

Actions occur in sequence (one thing ata time)

Actions occur simultaneous (in parallel)

Actions always predetermined

Actions can be random

Control of System

Where is the control?

Centralized: external to agents (dependence of
agents)

De-centralized: internal to agents (independence of
agents)

Completely predictable
Behavior of System
Partly random: (probabilistic/stochastic)
l;;;z el;t;}else gZISIzcstt;r[ene fect Linear: small actions - small effects
of individual agents’ Non-linearity
actions? smali actions —big effects
Static structures/ Event processes
Ontological processes of | (beginning and end)
system Dynamic equilibrium /homeostatic processes
(on-going)
Developmental Teleological :
Mechanisms of Systems (purposefully driven by external force)
Role of history? Selection & Adaptation processes
Role of time? (Natural selection/tagging.)
Flows: role of feedback (multiplier effect)
Complex System
Properties Diversity: need for variety

(N.B., Shaded rows represent clockwork mental models - CWMM).
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The final ontologically-based coding rubric returned to using the five categories

identified by Jacobson (2000) as producing a reasonably high reliability alpha (o = 0.81).

Using the results of the preliminary coding exercise I reintroduced the category of “Final

causes” because there were a substantial number of data that “fit” this category and

would have been unaccounted for without its presence. The final taxonomy therefore held

six categories and represented all the data generated by the outcome measures used in
both studies (see Table 3.4).

Table 3.4 Final OMMT schema used to the analyze data produced in Study 1 & 2.

Component Beliefs explaining
the behavior of phenomena

Response Types

Coded
Response

1. Ontological
perspective
(understanding
phenomena)

Emergent Self-organization

a. reductive: step-wise sequences - isolated parts, no mention of
interaction.

b. non-reductive/emergent: interaction of parts (agents) resulting
in patterns or recurring structures at a higher level (system).

2. Control of System

Decentralized Control

a. centralized control (within system) - Each player is given
specific and potentially unique rules.

b. decentralized control (within system): Rules are invariant - All
players are given same rules but the interactions change the
results.

3. Actions effects

Nonlinear Effect

a. linear explanations: small actions --> small effects

b. non-linear explanations: small action --> big effect. Inputs and
outputs are not proportional and results cannot be assumed to be
repeatable.

4. Agents’ actions

Random Actions

a. completely predictable

b. not completely predictable / random / chance. Noise within the
system may affect the agent's actions.

5. Underlying Causes

Probabilistic Causes

a. teleological - purposeful, goal-directed. The end point is
determined a priori.

b. stochastic - probabilistic, not goal-directed rather affected by
principles of self-organization. The end point is Indeterministic.

6. Systems’ Nature

Dynamic homeostatic
nature

a. static structures or event processes: Not dynamic - elements
are discreet in time and space.

b. on-going dynamic process that self organize thru flows of
information & feedback resuiting in a state of equilibrium.

(N.B., Grey coloured rows represent clockwork mental models - CWMM).
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Individual Coding Taxonomies to Code the Specific Questions

The generic coding taxonomy provided structure to guide the coding of any

ontologically-based related question. However, the raters being trained to code the

material required greater guidance. I therefore developed specific models of both

clockwork mental models (CWMMs) and emergent framework mental models (EFMMs),

which were used in the final process (see Table 3.5 and Table 3.6)".

Table 3.5 Specific taxonomy used to code Clockwork Mental Models (CWMMs).

Clockwork Mental Model
(CWMM)

Components of coding

Ontological perspective — Reductive

1) Agents act in isolation.

2) Simple stepwise description.

Control of system — Centralized

1) Orders/controls come from outside. Or is within the
system but not attributed to the individual agents within.

(e.g., different agents have different rules; mention of
hierarchy).

Action effects — Linear

1) one thing leads to another. E.g. direct link between
controller and controllee. (e.g., action—>reaction)

Agents’ actions — Deferministic (i.e.,
Predictable)

1) agents’ actions are predictable.

e.g., they (it) will perform the action. There is no mention of
randomness or chance in their actions.

Underlying causes — Teleologic

1) the system knows the end point: e.g., it knows it has to
survive.

Systems’ Nature — Static

1) Explicit descriptions of non-changing system.

12 Prototype of emergent and clockwork answers were developed for each question. For examples see

Appendix C.



Table 3.6  Specific taxonomy used to code Emergent Framework Mental Models.
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Emergent Framework Mental
Models (EFMM)

Components of coding

Ontological perspective — Emergent Self-
organization ontology

Question: 1.Does a pattern emerging? 2.
Is there a difference between agents and
system? 3. What draws the system
together?

1) Local interactions among agents,

2) leads to the creation of something that exhibits a
differential behavior than those of the component agents;

3) this interaction is made possible due to some type of
identification (tagging device /organizing agent),

4) and, communication (flows of information and/or
resources).

Control of system -Decentralized control

Question: Who or what initiafes the
formation of the system?

1) The individual agents are independent of each other, yet
they all operate under the same rules;

Action effects — Nonlinear effects

Question: Are there feedback loops
within the system? Do they amplify or
control the outcome?

1) Positive feedback is a feature of these systems therefore
small actions can exhibit exponential results.

Agents’ actions — Random action
(indeterminacy)

Question: How do the agents behave
before they are part of the system?

1) Agents appear to act in random independent fashion,
Also possibly present in the answer:

2) Randomness allows for variability and variety within the
systemni.

Underlying causes — Probabilistic causes
(Stochastic)

Question: Is the same outcome
guaranteed each time the system forms?

1) The system organizes itself based on the interactions of the
agents as described above, therefore the resulting structure is
never certain, rather it is stochastic which implies that there is
a probability based emergent pattern.

Also possibly present in the answer:

2) Like other probabilistic processes, larger numbers over
longer time periods are more likely to result in the formation
of normal distributions.

Systems’ Nature — Dynamic homeostatic
nature

Question: Is there movement of the
agents within the system?

Agents may move through, and in and out, of the system,
however the system persists in a self-organizing fashion.

1) Once the system, the recurring structure, emerges it
exhibits a more stable quality; yet all the component agents
have the potential to be replaced by other similar
independently operating agents.

3.3 Development of Complex Systems Taxonomy (CST)

The complex systems coding taxonomy expanded on Jacobson’s CSMM coding

rubric using the complexity literature, particularly Holland’s definitions and descriptions

of complex adaptive systems. Adapting the qualitative coding process allowed for adding



and testing the “fit” of category items on the scale. The final product, although a little
lengthy, provided a starting point for future refinement exercises (see Table 3.7. For

definitions of terms see p.133).

Table 3.7 Complex Systems Taxonomy (CST).
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systems) and reflects concepts presented by Holland (1995, 1998), Bar-Yam (1997), Kauffman, (1995),

exhibits, therefore most of the overlapping of concepts has been removed.

The theoretical framework for this coding schema is adapted from the study of complexity (i.e., complex

and others. It is intended to provide a "Fine Grain" description of the behaviors that emergent phenomena

Basic Understanding and Use of Complex Systems Concepts

1. Local interactions of many individual agents.

2. Simple rules produce complex results.

3. Decentralized control - all players have the same rules therefore absence of centralized controlling agent (Le., no
leader).

4. Random / unpredictable behavior of agents.

5. Tags - allow the agents to select among agents or objects. An organizing mechanism. (e.g., internet header on a
message; immune system operation).

6. Flows of information/resources throughout the system using feedback.

7. Internal models - (schemas) gives the agent the power to anticipate - lacit internal models simply prescribes a
current action/ overt internal models uses lookahead protocols.

8. Diversity/ variability - of agents within the system.

9. Modularity (i.c., building blocks).

10. Pattern formation - spontancous order out of chaos (e.g., Turing patterns, and the work of Prigogine).

11. Systems' nature - generally open systems but can be closed (e.g. gas pressure).

12. Muttiple levels of organization

13. Probabilistic/ non-deterministic outcomes - {population size affects the results).

14. Nonlinear effects - (¢.g., butterfly effect).

15. Criticality - lever points wherein small amounts of input produce large directed change; threshold effect (e.g.,
phase changes).

16. Homeostatic - on-going (e.g., dynamic).

17. Adaptation - agent and environment interactions ("Fitness landscape").

18. Selection - suitability of the particular trait an agent has for surviving long enough to reproduce in a particular
environment.

19. Time scale & history are critical features in development of system.

20. Multiple causality
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Purpose and Use of Complex Systems Taxonomy (CST)

The complex systems taxonomy (CST) was used only in Study 2. Specifically, it
was used as an a priori schema to code the transcript data obtained from the five
instructional sessions designed for that study. The CST was used to code the transcripts
because it provided the broadest list of categories that could be identified from these data.
However, this also meant that once coded, this data set would not be an identical match
with the outcome measure data, which was coded to the OMMT.

Comparing the CST categories to the OMMT was accomplished through creation
of a temporary equivalence. For instance, by combining the categories “multiple levels”,
“local interactions”, “flows™ and “tags” these could be compared to the OMMT category
of “emergent self-organization”. I contend that the CST was a better tool for coding
transcripts because of the fine grain level and better understanding it provided in the
exploratory phase of the research. Examining the student’s focus of attention or
explanation of the observed behaviors tells us more about how understanding of concepts
may have occurred. In essence, it tells us: (1) which concepts may be easily understood,
in the process helping to explain the results of this as well as other similar studies; (2)
which concepts may be strongly entrenched in component beliefs; and (3) which may not

be well represented by the intervention.
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3.4 Using the OMMT Coding Schema

3.4.1 Overview of Coding Required in Studies 1 & 2

Data collection measures and methods used in Study 1 and Study 2 generated
three different types of data that required different coding measures and techniques. The
first data set was produced from outcome measures that enabled assessment of
ontologically based conceptual change (i.e., the pretest and immediate posttest from
Study 1; and, the delayed and final posttest from Study 2). This analysis necessitated the
adaptation and refinement of a specialized ontologically-based mental model taxonomy,
OMMT, (Chi et al, 1994; Jacobson, 2000; Ferrari & Chi, 1998; Slotta & Chi, 1999); as
well as the modification of a complex systems taxonomy, CST (Jacobson, 2000).
Development of the OMMT involved several iterations of the taxonomy. The data were
coded with an early version of the taxonomy and later recoded using the final version of
the OMMT. Only the results of the final coding are used in this report.

The second data set generated in this study was obtained from the transcripts
collected during Study 2 instructional sessions. They called for a qualitative approach to
analysis and coding. This method involved the identification of categories emerging from
the data themselves, rather than imposing categories on the data. The third data set to be
analyzed was the students’ concept maps that were scored according to a combined
scoring method described in Ruiz-Primo and Shavelson (1996).

In the remainder of this chapter I will describe the issues and processes related to
the development and application of the ontological coding schema (OMMT) and the
complex systems schema (CST). The two other coding procedures will be discussed in
later chapters. Table 3.8 provides an inventory of the data collected in these two studies

as well as the coding procedures used.



Table 3.8 List of data collected, data analysis technique, and coding taxonomy used.
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Data Collected When Data Analysis Technique Coding Taxonomy Used
Pretest Study 1 Mental model coding 1. Original Ontological - 2000
2. Revised Ontological - 2002
Immediate Study 1 Mental model coding 1. Original Ontological - 2000
Posttest 2. Revised Ontological - 2002
Delayed Posttest | Study 2 Mental model coding 1. Revised Ontological - 2002
2. Complex Systems - 2002
Final Transfer Post Mental model coding 1. Revised Ontological - 2002
Test Intervention 2. Complex Systems - 2002
Transcripts Study 2 Qualitative coding methods Categories emerged from the
sessions Y (categories, themes) data.
Concept Maps Study 2 Qualitative coding methods Combined method (Ruiz-Primo

& Shavelson, 1996).

(N.B. Examples of all these questionnaires are found in Appendix F).

3.4.2 Coding and Scoring Procedure Using OMMT

Coding Procedure for Qutcome Measures

Informed by the literature, I determined that the most beneficial unit (grain level)

to begin the analysis of these data was at the phrase or sentence level” (often the entire

answer for the pretest was made up of one long sentence). Therefore the raters started

first by reading the entire answer, but parsed at the sentence(s) using the following

procedure adapted from Mosenthal and Kintsch (1992a, 1992b): identify the verb

(action), the noun (agent), and the object (agent effect). Next, using the mental model

taxonomy, each parsed statement was coded into one of three possible categories

13 chi (2000) found that “because the main interest here lies within knowledge inferences, coding at the
grain size of the phrase seems to be more at the knowledge level, and the inference is more sensible’ (p.

168).
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(EFMM, CWMM, or NM) according to how it answered the following five questions that
related to five of the six possible subcategories: (1) who or what is controlling the system
—“Control of System”; (2) how do the agents’ behave at the start of the process — “Action
Effect”; (3) what are the effects of the agent’s actions — “Agents’ Actions™; (4) what is
the underlying cause of the system’s behavior — “Underlying Cause”; and (5) how does
the system behave — “Systems’ Nature™? (see generic coding Tables 3.5; specific coding
Tables 3.6, CWMM, and Table 3.7, EFMM; and Appendix C).

The final and sixth category, “Ontological Perspective”, was coded somewhat
differently. Because of the more global nature of this category, it was the only category to
be coded at a large grain level (it was also scored differently, as will be discussed below),
that is, the total answer was taken into account, not just each parsed statement. The
questioning strategy for this category was composed of four components that required
responding to the following: Was there mention of (1) local interaction between agents,
(2) identification of some mechanism that would draw the agents together (tags), (3)
recognition of a flow of information or resources which creates the system out of
independent agents (flows), and, (4) identification of some type of pattern formation as
the agents come together to form a system? If there were answers to any of these four
questions the appropriate letter was entered. If, however, the students’ response did not
address these questions, but instead there was evidence of a stepwise (reductive)
approach to the explanation, coupled with descriptions of the agents as isolated entities
(i.e., no interaction among agents) the answer was coded as CWMM. As before, if neither
mental mode applied, then the NM column was coded.

From the initial testing of the coding scales, it was determined that it was easier to
code each question twice: once to identify evidence of one mental model (e.g., CWMM),
then again to identify evidence of the other mental model (e.g., EFMM). This method
produced greater consistency from the raters. To clarify by way of example, rater #1
started coding all 25 pretest responses for evidence of emergent framework mental
models (EFMM). He would then repeat the process a second time, coding all 25 pretest
answers for evidence of clockwork mental models (CWMM). Rater #2 would by contrast,

start coding all 25 pretest responses for evidence of CWMMs, then repeating the process,
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code for evidence of EFMMs. This method addressed possible threats of an “order effect”

from the coding procedure.

Scoring Procedure

All the data derived from the ontologically-based mental model coding were
scored according to a binary method (1 or 0) thereby indicating evidence (1) or no
evidence (0) of a particular mental model. Although Slotta et al. (1995) discuss the
resulting loss of sensitivity'* due to the inability of this method to distinguish the relative
frequency of a predicate (mental model), in this study, it was not a major consideration
due to the small number of idea units elicited from the written protocols (pretest and
immediate posttest, Study1). However, clarity was of utmost importance in coding and
determining what was sufficient evidence of a particular mental model, hence, the
decision to use binary coding to distinguish among one of three possible states of mental
models: (1) EFMM, (2) CWMM, or (3) NM. Scoring of the “Ontological Perspective”
category was somewhat different. Each of the four subcomponents in the EFMM
category earned 1 point if present. Therefore this category had a maximum score of 4

points®.

3.4.3 Inter-Rater Reliability

The question of reliability was addressed by having three raters (rater #1 = a
biology graduate student, the primary rater for the final coding, rater #2 = the biology
subject mater expert, and rater #3 = myself). All raters coded the delayed posttest
responses, however, only raters #1 and #3 coded the pretest and immediate posttest.
Additionally, only raters #2 and #3 coded the final posttest, post intervention questions.

The training of the raters took approximately 60 minutes and they were provided
with a coding key (see Table 3.6, and 3.7). The inter-rater reliability was established by

comparing the individual coding of two raters for the pretest and immediate posttest data.

14 Slotta, et al. (1995) in reference to the loss of sensitivity state: “this measure, although still yielding the
same basic results, robbed the analysis of any sensitivity to differences between or patterns within the use
of different predicates” (p. 386).

5 The exception to this scoring was the final posttest questions, which were not broken down into
subcomponents for the “Ontological Perspective” category, therefore the maximum score was “1”.
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The number of total responses (25 pretest, 45 immediate posttest) was multiplied by the
number of categories to be coded, then by the number of possible mental model stated
(EFMM, CWMM, NM). Differences between raters were counted as the raw number of
cells that were different. Therefore, if one coded a category as EFMM while the other
coded the same category as CWMM this was counted as 2 changes.

On the pretest scores there was agreement on 418 out of 450 scores yielding an
inter-rater reliability coefficient of 0.93. On the posttest scores there was agreement on
806 out of 846 scores, yielding an inter-rater reliability coefficient of 0.95. The delayed
posttest for the case study (on the ontological mental model taxonomy) produced
agreement on 140 out of 162 scores, yielding an inter-rater reliability of 0.86.
Inconsistencies were resolved through discussion between raters until consensus was

reached.
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PARTI-STUDY 1

Too often, for practical purposes and as well as to maintain control of
experimental conditions, the designs of many educational and cognitive science studies
have been pretest posttest studies; metaphorically equivalent to a cognitive “snapshot”.
However, recent literature tells us that the trajectory for cognitive competencies such as
transfer, scientific reasoning, and most likely conceptual change, require considerable
time (e.g., Bransford, Brown & Cocking, 1999; Hmelo-Silver & Nagarajan, 2002;
Kolodner, 1983; Vosniadou, Ioannides, Dimitrakopoulou & Papdemetriou, 2001). This
perspective informs my epistemological view on learning, therefore it was important to
select a research design that allowed for both assessment of change (i.e., the snapshot) as
well as conduct an extended observation of the learning process (i.e., a two year
longitudinal study). In this chapter I will describe study one — the short-term assessment

of change — that was the first phase of this two part mixed method inquiry.

Overall Research Design

Creswell (2002) describes three models of mixed method designs, two of which
were used in this study: (1) the “explanatory mixed method design”, and (2) the
“exploratory mixed method design”. The former — also referred to as a two-phase model
(Creswell, 1994) — relies on collecting quantitative data followed by qualitative data to
explain findings from a phase one study. The exploratory design model, on the other
hand, collects qualitative data to explore a phenomenon and then proceeds to explain
identified relationships through quantitative hypothesis testing.

Using Creswell’s description, it may appear that this dissertation study more
closely follows the explanatory mixed method design. However, given the relative state
of the literature I needed to first address an issue that confronts all forays into less charted
territory ~— is it worth the journey? Consequently [ began the inquiry with an experimental
research design — referred to as Study 1. The data from this study was analyzed using a
mental model coding taxonomy adapted from the literature (e.g., Ferrari & Chi, 1998, and
Jacobson, 2000). Armed with this knowledge I constructed the intervention and research

design for Study 2, a longitudinal qualitative case study (see Figure 4.1).
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CHAPTER 4
RESEARCH METHODOLOGY

4.1 Research Question and Hypotheses Being Tested in Study 1

Research Question: Does complex systems instruction facilitate the construction

of emergent framework mental models as demonstrated by problem solving abilities (use
of expert-like emergent explanations) applied to questions that are representative of

phenomena with emergent characteristics?

Hypothesis 1: Students in the Complex Systems treatment condition [IV] would
outperform students in the comparison condition by constructing a greater number of
explanations, categorized as emergent framework mental models (EFMMs) [DV], when
solving the near transfer problem of “emergent organization” (Ant colony food
collection). By contrast, students in the comparison condition (i.e., no treatment) would
outperform students in the Complex Systems treatment condition by constructing a
greater number of explanations, categorized as clockwork mental models (CWMMs),
used to solve the same problem.

Hypothesis 2: Students in the Complex Systems treatment condition would
outperform students in the comparison condition by constructing a greater number of
EFMM explanations to solve the far transfer question (Robot mining). By contrast,
students in the comparison condition would construct a greater number of CWMM
explanations to solve the far transfer question (Robot question) compared to students in
the Complex Systems treatment condition.

Hypothesis 3: After treatment, posttest students in the Complex Systems
condition would use more emergent explanations (EFMMs) to solve problems that are
categorized as “emergent” phenomena than before treatment. On the other hand, after
treatment, they would reduce the number of clockwork explanations (CWMM) used to

solve the same problem.
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4.2 Research Design

Study 1 used a “Posttest-Only Control Group Design” (see Figure 4.2). This
design was selected based on its controls for confounding effects of a pretest on the
control group data (Campbell & Stanley, 1966). The dependent measures for this study
were Emergent Framework Mental Models (DV1) and Clockwork Mental Models (DV2).
These two dependent variables are most often referred to by their acronyms EFMMs and
CWMMs respectively. Although not a dependent measure, the category created to
accommodate the lack of codeable evidence, No Model (NM), is described as a

characteristic of the participants’ performance (or lack of performance).

Experimental Design

Study 1
Experimental R 0Oy X, O,
Comparison R 0O,

(R=random assignment; O = observations; X = treatment).

Figure 4.2  Research design for Study 1.

4.3.Participants

The final number of participants (after attrition) was 45 students'® (N=45; 26
women and 19 men) entering their freshman year in the Science Program at a Quebec
College CEGEP (equivalent to grade XII). Ages ranged from 16 to 18 years. Recruitment
was accomplished through an announcement flyer added to the orientation package sent
out to all 500 incoming Science Program students (see Appendix E). Participants were

not paid, however, the incentives were (1) catered lunches during the three-day

16 Attrition: Sixty-six students responded to the request for volunteers. Attendance was confirmed through
mail-back portions of the recruitment letter or email. Fifty-two confirmed and attended the first day session.
Seven did not complete the study, and five did not hand in the consent form. They are not reported in the
number of participants.
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workshop, and (2) opportunity to win over 20 small raffle style prizes drawn periodically
throughout the course of the study.

Twenty-three of the participants (51%) were registered in the Health Science
program and 22 (49%) were registered in the Pure and Applied Science program. The
program that was followed was significant only in that it determined the semester in
which the participant was eligible to take Biology NYA (the general biology course that
introduces most students to the topic of evolution). Thirty participants (66%) had taken
biology in high school, while the other fifteen (34%) had not. All participants had some
experience using a computer prior to the start of the study. In a self-report from the
demographic questionnaire (see Appendix F), based on the three levels of high, medium
and low computer skills, 13 students (28%) classified themselves as having a high level
of computer skills, 24 (53%) as having a medium level, and 9 (19%) as having a low
level. On the question of language of instruction, 31 students (69%) had attended high
schools in which English was the primary language of instruction, while 14 students
(31%) had attended high schools with French as the primary language of instruction.

Participants were randomly assigned to one of two treatment groups, the complex
systems group (n =26, 12 Health Science, 14 Pure & Applied Science) and the
comparison group (henceforth called the control group) that received no treatment, a
placebo, (n =26, 15 Health Science, 11 Pure & Applied Science). Students who dropped
out or did not return the consent forms were not included in the results. No attempt was
made to equalize the group sizes after attrition therefore final group sizes were

experimental group (n=25), comparison group (n=20).

4.4 Instructional Materials

The instructional materials developed for this study combined both lecture and
computer lab activities. The experimental condition required the development of a
“Complex Systems” teaching module, while the comparison condition developed “An
Introduction to College Science” module using existing materials. The main
considerations for the development of these measures were: (1) establishing selection

criteria to ensure appropriateness of content for both conditions (even though the
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comparison group received a placebo, material selection was crucial), and (2) delivery of
instruction. In the following section I will discuss how I dealt with both of these as well

as describe the instructional materials.

4.4.1 Instructional Design and Materials for Experimental Group

Conceptual change literature tells us that constructivist inspired learning
environments offer the greatest support for the restructuring of knowledge (e.g., Duit,
Roth, Komorek & Wilbers, 1998; Limon, 2001; Mason, 1994; 2001). Constructivist
literature informs us that methods such as computer-based modeling (e.g., Penner, 2001;
Resnick & Wilensky, 1997) and case-based instruction (e.g., Hmelo, Holton & Kolodner,
2000; Kolodner, 1993: Spiro, Feltovich, Jacobson, & Coulson, 1992) are powerful tools
for knowledge acquisition. Schwartz and Bransford (1998) remind us, however, that
lectures should not be considered anathema to a constructivist approach. In fact, they
contend that: “the question for constructivists focuses on the kinds of activities needed to
help people best construct new knowledge for themselves. Often, the act of listening to a
lecture or reading a text is not the best way to help students construct new knowledge. At
other times, this may be exactly what students need” (p. 476).

Guided by this literature, and in concert with two subject matter experts (i.e., one
from the field of Cybernetics and the other from Biology), I designed the instructional
intervention for this phase of the research. Day one was composed of practical
information on the conferencing software used for this study as well as that used by the
.College’s science program — First Class Client. Day two was a lecture on the following
four topics: (1) human embryonic development, (2) slime mould colony formation
(specifically the StarLogo T2000 model), (3) requisite variety, and (4) mathematical
modeling of the behavior of gases (see Appendix D). Day three was a computer lab
during which the students explored simulations that are described in the section below.

In addition to the theoretical perspective, there was an ethical side to the choice of
content. All materials were deemed relevant to the College’s science program curriculum

and within the “normal” range of requirements related to comprehension.
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Computer Models Used as Simulations

StarLogo'’ was selected as the model and simulation software because of its
history as a unique multi-agent modeling computer language (also known as object-based
parallel modeling language or agent-based modeling language) designed explicitly for
exploring systems with multiple interaction agents (Wilensky, 2000; Wilensky &
Resnick, 1999). For the sake of simplicity, I will refer to all versions of this programming
language (the original Starl.ogo, StarLogoT, StarLogoT2000, etc.) as “StarLogo”.

StarLogo is a computer language extending the capabilities of “Logo” which was
developed by Seymour Papert (1980) to teach children simple computer programming
(Resnick, 1994). Like Logo, StarLogo uses the “turtle” as one of its two basic
programmable elements; however, StarLogo is capable of programming hundreds or even
thousands of turtles with commands that control their interaction with each other and
their environment. Turtles are located on a finite two-dimensional grid, the squares of
which are called "patches" and these patches are the other programmable elements. As
described by Wilensky and Resnick (1999), “in computer-science terms, Starl.ogo can be
viewed as a collection of agents moving on top of (and interacting with) a two-
dimensional cellular automaton”. Because of the parallel processing features of the
language, it is capable of demonstrating emergent behaviors that are characteristic of
complex systems. StarL.ogo makes it possible to create simulations that explore the
operations of hundreds or even thousands of the individual entities that make up the
aggregate and discover the emergent probabilistic phenomena of multiple simultaneously
interacting agents. Before the advent of parallel processing computer languages, this type
of modeling was unavailable to the school population. Programs like Starl.ogo have
therefore opened a new area of study and explanatory potential (Wilensky & Resnick,
1999).

The MIT research group (headed by Mitchel Resnick), along with the
Northwestern University research team (headed by Uri Wilensky and allied with Walter
Stroup’s team at the University of Utah), has explored the potential of Starl.ogo as a
teaching tool (Wilensky 2000; Wilensky & Resnick, 1999; Wilensky & Stroup, 1999).

17 StarL.ogoT2000 was the actual version of the computer modeling language used. Permission to use the
application was obtained from Dr. Mitchel Resnick via electronic communication, January 15th, 2000.



82

Primarily, these researcher/developers have used the construction of models as the
measure of learning. They have, however, also engaged students in the use of pre-built
StarL.ogo models and followed the knowledge construction from that vantage point. This
current research adopted the latter strategy. The question of which models best
demonstrated the instructional objectives of teaching the concept of emergent processes
as exhibited by complex systems was addressed by creating selection criteria (discussed

fully in an upcoming section)'®.

Reasons for the selection of the Starl.ogo models. The Starl.ogo models were

judged on the criteria that they explicitly demonstrated complex systems behaviors. Four
other science faculty members were convened to rate ten StarLogo models for the criteria
identified on the scoring sheet (see Figure 4.3). Their cumulative scores were averaged,
however there was over 90% agreement among faculty. StarL.ogo models earning a rating
of 11 or higher were considered for inclusion in the instruction. The presentation order
was also based on the rating scores; hence, “GasLab: Atmosphere”, which is slower
paced allowing for more interaction, and is highly relevant to the first-year Science
Program, was selected as the introductory model.

Four StarLogo (Wilensky & Resnick, 1999) models were used in this workshop:
(1) GasLab: Atmosphere, (2) Termites, (3) Ants, and (4) Traffic Basic. They were
installed on 15 Macintosh, G3, 300 MHz computers equipped with dual monitors. These
four models were used as simulations; that is, the programming code was not changed;
students merely entered different parameter values. The StarLogo materials did not

require any modification.

18 As will be shown in Study 2, the issue of the StarLogo model’s affordances for supporting learning of
emergent processes proved to be a very important question.
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Complex System StarL.ogo Models
Characteristic — Rating Sheet 1 2 3 4
> g = > [
SEE | F|B
2 | B
<
[+
Do these Starl.ogo ..
models/simulations represent the Are the characteristic below demonstrated?
identified characteristic? If yes to
what level? Use the scale below to Emergence of different levels of behavior 1 3 -1 3
indicate your opinion.
De-centralized behavior 3 3 3 1
« 0= construct not found (each agent is operating under the same rules)
e 1= lczo.r:struct found but not Randomness : ; p :
explict ts’ actions are not predictable
* 3 =construct found and explicit (agents” ac -u)n hid s l‘ )
* -1=construct is present but at an Dynamic process — ongoing . 3 3 1 3
abstract level (agents continue to move even afier system is formed)
Probabilistic behavior
(behavior of the system is dependent on variables such 3 1 3 1
as numbers of agents, an other variables controlled by
the sliders)
Non-linear behavior 1 1 1 1
(small actions can create big effects)
Other considerations: Does the action occur slowly enough for the student to
observe the behaviors of the agents?
1 =fast 2 1 1 2
2 = ideal
-1 =slow
Relevance of simulation to the First Year Science
Program?
1 =not relevant 5 3 3 1
3 =relevant to science but not 1st year
5 = very relevant to 1st year
Scorer’s name: Total Score: 17 16 12 11

Figure 4.3 StarLogo se

lection scoring criteria form — Study 1.

4.4.2 Instructional Design and Materials for Control Group

The control group received a placebo treatment that consisted of a two-part

presentation: (1) wave function including formulas, and (2) the steps in the “scientific

method” of analysis. Both content areas were presented and prepared by expert teachers

using similar constructivist methods of presentation and group discussion. The

presentation of wave function used filmstrip materials that are part of the regular audio-

visual materials used in Physics NYA. The presentation of the scientific method used a

CD-Rom that comes with the biology textbook used in the Biology NYA course.

To ensure that standards of content validity were met, three members of the

College’s science program vetted the materials. All materials were judged acceptable.
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4.5 Data Collection Measures

4.5.1 Measures of Ontological Frameworks

I selected four complex systems questions from a bank of a possible eight
questions developed by Jacobson (2000) in his seminal study documenting expert-novice
complex systems problem solving capabilities. These questions were developed from the
literature of complex systems (Bar-Yam, 1997), complexity theory (Casti, 1994; Gell-
Mann, 1994; Kauffman, 1995), complex adaptive systems theory (Holland, 1995, 1998)
and others. He also drew on his own research on the learning of biological evolution
(Jacobson & Archodidou, 2000) to build this bank of representative complex systems
questions.

The decision of which questions to use was based on three criteria developed
from Jacobson’s results. Firstly, the questions’ ability to elicit sufficiently large numbers
of complex systems responses as identified through that study’s coding grid. Using his
scoring results from his expert participants, I selected questions that generated a score of
15 or more on the complex systems component belief scale (calculated by adding all the
complex system component beliefs and subtracting the clockwork beliefs scores). This
method identified the following questions: ants (24 points), butterfly (26 points), traffic
(17 points).

Secondly, I gave each question a score of five points if they were general
knowledge and therefore could be answered without knowledge of a specific content
area. It was important that the questions be reasonably unfamiliar so as to assess
reasoning abilities and not content knowledge. [ made the assertion that such questions
would elicit more of the learners’ intuitions thereby providing a clearer picture of their
pre-instruction mental model. This brought in the questions of city planning (17 points)
and increased the question of traffic to (21 points).

Finally, I examined the questions based on their potential for isomorphic pairings
that could be used as a near transfer, far transfer complements and assigned a score of
five points. This score added to the others produced a final roster of questions: butterfly
(31 points), ants (29 points), traffic (27 points), city planning (22 points), mining (19

points), and slime (18 points). These questions were therefore selected as possible
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candidates for the dependent measure. The decision of the final four used in the pretest,
immediate posttest was made in consultation with the subject matter experts (they are
referred to as “Brain Teasers”, see Appendix F.1). Although the robot question was low
on the list, it was viewed as a good compliment to the ant question since they both
evaluated similar emergent organizational processes (the town question was used in later
testing, as well, two additional questions were developed and used in “Study 2”). Once
the choice was made, 1 used Bar-Yam’s table of complex systems characteristics (see

Appendix B) to expand on the concepts before collecting my own experts’ answers.

Construct Validity of Complex Systems Questions

No formal test of construct validity was conducted on the complex systems
questions used. However, based on the complexity literature, as well as Jacobson’s
(2000) research, it was reasonable to suggest that the proposed questions belong to the
category of emergent processes; accordingly, they should elicit responses from experts
that would be categorized as emergent. This basic assumption was tested using responses
from four experts'” in the following disciplines: cybernetics, biology, and artificial
intelligence/cognitive modeling. I purposefully chose not to instruct the experts as to the
manner in which they should answer the questions. This decision was based on the
contention that without instruction as to how to approach these questions, the “native”
mental models would be elicited. The data supported the assertion. In the discussion
chapter [ will return again to this issue based upon the results of Study 2 that adds some

additional support to this conclusion.

4.5.2 Other Data Collection Measures Used

Demographic information was collected using a questionnaire designed for this
study (see Appendix F.2). The main items were intended to determine the participants’

science background and interest. On the practical side, it provided a picture of how

19 Another use of the experts’ responses was to add to the refinement of the ontological coding taxonomy.
From their answers, I was able to create prototypical expert response for each of the questions. To do this I
selected portions of answers that had been coded to the six dimensions of the emergent category. This
proved useful in training the raters since the categories could now be viewed as a finished product.
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familiar the student might be with computers and what type of learning curve I might
expect during their work with the simulations.

Another data source was the Learning Approach Questionnaire (LAQ) measure.
The LAQ was developed by Donn (1989) and based on the work of Biggs and Collis
(1982), Entwistle (1981) and Entwistle and Ramsden (1983). It is a 50-item five point
likert scale instrument designed to measure students' tendency to engage in meaningful or
rote learning as well as assess students' epistemological view of science (e.g., Donn,
1989; also for a copy of the instrument see this author). A study conducted by BouJaoude
(1992) on high school chemistry students determined that the internal consistency
coefficient for this instrument was determined as a Cronbach alpha = 0.77. Although this
questionnaire was administered and analyzed in Study 1, it was used only in the
purposeful sampling procedure that selected participants for Study 2. Therefore, the
manner in which it was used will not be discussed here but in Chapter 6.

Lastly, other data sources included the students’ College records such as their
scores on the Nelson-Denny Reading Test (Brown, Bennett & Hanna, 1981), which is a
standardized testing instrument. This test is composed of two parts. The first part is a
vocabulary section of 100 items each with five answer choices and is limited to 15
minutes. The second part is a comprehension section consisting of eight reading passages
and a total of 36 questions. The time limit for this section is 20 minutes. The reliability
coefficient of the vocabulary score is determined to be 0.92, whereas the comprehension
reliability coefficient is reported at 0.77 (for examples of the test and more detail see
Brown, Bennett & Hanna, 1981). The records provided both “raw” scores for the students
as well as the grade equivalent of these. For example a raw score of 70+ for vocabulary
are considered at grade 16 (above average), while scores of 55+ on the reading
comprehension are at grade 16 (above average). These data were collect for all students

in Study 1 but only used in Study 2 to explain observed differences.
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4.6 Procedure

Day One

During day one, the students were randomly assigned to one of two groups: the
complex systems group (n=26) and the comparison group (n=26). The consent form (see
Appendix E.2) was handed out, since all, but two, participants were under the age of 18
years, the forms required the signature of a parent or guardian. Hence consent forms were
collected only on the second day. The demographic questionnaire was distributed in
individual folders containing notepaper. The students were informed that they were to use
it to record lecture notes, as well as for reflections on the day’s events. The folder was
collected at the end of phase 1. Next the LAQ questionnaire was handed out and the
participants were given 30 minutes to complete the 50 questions. Both groups were then
taken to separate computer labs where they received a demonstration of the conference

software, First Class Client (FCC). The day concluded with a complementary lunch.

Day Two

Experimental group. For the experimental group, the second day began with the

distribution of the written pretest questionnaire, entitled “Brain Teasers” (see Appendix
F.1). It was considered unlikely that the participants would know the scientific
explanations to these questions, therefore, verbal instructions were given reassuring them
to use their “best guess” intuitive responses. The time provided to complete this task was
approximately 20 - 30 minutes.

Once the answers were collected, the lecture portion of the day commenced with a
brief introduction to the objectives of the study and an encouragement to take notes. The
instruction portion began with the presentation from the biologist (the “emergent
organization” material) and lasted for approximately 40 minutes. There was a 10 minutes
coffee break with refreshments served. The presentations by the cybernetics expert (the
“requisite variety” material) lasted 30 minutes, followed by the 15 minute Slime mould
computer model presentation. This was followed by the gas law formula derivation
demonstration. This was intended as a way to set the stage for the StarLLogo models used

on the third and final day of the workshop. This presentation was videotaped as a record
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of the activity. As a final activity for the day, participants were asked to write in their

folders a brief summary of what they had learned from the day’s lectures.

Control group. The control group met in a separate but similarly equipped
classroom (i.e., electronic overheads, computers, etc.) with different teachers. The lecture
portion of the day commenced with a brief introduction to the purpose of the condition
portion of the study. The participants were also encouraged to take notes. The
presentations lasted approximately the same amount of time with staggered coffee breaks

to reduce the contact between groups.

Both groups. Upon completion of the day’s events, all students were respectfully
requested not to discuss the content of the lectures with members of the other group, if
they should encounter them. The pretext used was that of friendly competition between
groups for raffle prizes. They were both provided with coupons redeemable for a free
pizza lunch. Due to the prescribed staggering of lecture times, the lunchtime for the two

groups did not coincide thereby reducing the threat of diffusion of treatment.

Day Three
Experimental group. On the third day of the workshop, the experimental group

was directed to a computer lab with 15 Macintosh G3 computers. They were assigned
two to a computer, no particular criteria for group assignment was used. The room was
small therefore no significance was placed on the differences between groups since
discussion and on-screen activity was easily shared by all.

The first simulation was preceded by a brief lecture by a member of the physics
department explaining rudimentary information required to understand the first
simulation entitled “GasLab Atmosphere”, which lasted 15 — 20 minutes. The
participants, already seated in front of computer screens, were instructed to turn on their
computers, open the StarLogo application, and go to that simulation. They were asked to
access the “Window” menu and go to the “Info Window”. They were informed that they
should browse through the instructions since the lecture presented the factual information

they would need to understand the simulation. They were instructed to explore the default
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setting before experimenting with the available variables: number of molecules, gravity,
initial speed, initial mass. Twenty minutes was allocated for engagement with this
simulation. When time expired, they were requested to stop and discuss their conclusions.
A ten-minute discussion ensued centered on the behavior of the gas molecules and the
science behind the phenomena. A 15-minute break followed.

Upon return, the students began the next simulation (Termites) repeating the
established protocol. Twenty minutes of experimentation was followed by 15 minutes of
discussion during which prizes were given out for the active participation. They were
instructed to follow the same procedure for two more simulation, “Ants” and “Traffic
Basic”. Thirty-minutes was allocated to this activity. When time expired they were asked
to stop and close down the program. Discussion of their findings ensued for 10 minutes at
the end of which the students were asked to write down, in the workshop folders, their
thoughts relating to the activities of the three days. They were informed that these folders
would be collected immediately. Once the folders were collected, the immediate posttest
questionnaires were distributed “Brain Teaser 2” (see Appendix F.1). The students were
given all the time they needed to complete the questions. Once collected, they were
escorted to a classroom where the special celebratory lunch was served.

The control group. The control group was taken to a separate computer lab set up

with PC computers with Internet access. The instruction and experience presented them
with opportunities to explore simulations from both on-line Java Applets as well as some
simulations on CD-Rom. Group discussion and prizes were the same as for the
experimental group. At the end of the session they were asked to write down, in their
workshop folders, their impressions of the three days. The procedure for distribution and
collection of all data, such as the posttests, was the same as the experimental group. They

were provided with similar, but non-simultaneous, breaks and a special celebratory lunch.
4.7 Threats to Internal Validity
Mortality. The final number of participants was 45: experimental group (25),

control group (20). The experimental group decreased by one (4%), whereas the control

group saw decrease of six participants (20%). The control group’s larger attrition was
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adjusted for in the statistical analyses. The experimental group’s low attrition was
ascribed to interest in the topic and not the “novelty effect” since both groups received
similar types of technology-based instruction (i.e., simulations, conferencing software,
etc.).

Instrumentation. The threat of instrumentation was addressed by ensuring that

there were two raters to code all answers. Efforts were made to temper the pace, and
duration of the coding activity. Whenever possible, the data to coded was delivered in

reverse order when given to the independent rater. Finally, inter-rater reliability checks

were made.

4.8 Summary of Methods — Study 1

The experimental design described above provided the basis on which I gathered
data from Study 1. Once collected, these data were analyzed using the ontologically
based mental models coding taxonomy (OMMT) that was modified from the research
independently conducted by Chi and colleagues, (e.g., Ferrari & Chi, 1998; Slotta & Chi,
1999) and Jacobson (Jacobson 2000) as described in chapter three.
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CHAPTER 5
RESULTS & DISCUSSION STUDY 1

Overview

Two studies were conducted in the course of this research. Study 1 began the
process of looking at the question of whether or not conceptual change is plausibly
interpreted as the acquisition and transfer of an ontologically-based emergent framework
mental model (EFMMs). The second phase of the project, Study 2, followed up that
inquiry by using a qualitative exploratory case study approach to examine the process of
change in more detail (i.e., what changed, and how it changed). In this chapter I will

present the results and analysis of the data for Study one (see Figure 5.1).

Questions

1
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Figure 5.1 Overview of research design for Study 1.
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5.1 Results of Research Question 1

Research Question 1: Can complex systems instruction facilitate the construction of
emergent framework mental models (EFMMs) as demonstrated by problem solving
reasoning (i.e., use of more scientifically correct explanations) applied to questions that

are representative of appropriate phenomena?

Hypothesis 1: Students in the Complex Systems treatment condition [IV] would
outperform students in the comparison condition by constructing a greater number of
explanations, categorized as emergent framework mental models (EFMMs) [DV], when
solving the near transfer problem of “emergent organization” (Ant colony food
collection).

By contrast, students in the comparison condition (i.e., no treatment) would
outperform students in the Complex Systems treatment condition by constructing a
greater number of explanations, categorized as clockwork mental models (CWMMs), used

to solve the same problem.

5.1.1 Comparison of Immediate Posttest — Near Transfer Question

To test the main hypothesis that students in the complex systems group would
outperform the control group by constructing a greater number of explanations
categorized as EFMMs [DV1], and conversely be out performed by the control group in
the number of explanations categorized as CWMMs [DV2], to solve the near transfer
question, a ¢ test was used. Table 5.1 demonstrates that as hypothesized, the
experimental group had significantly higher scores for EFMMs (M = 2.96, SD = 2.24)
compared to the control group (M = 0.70, SD = 1.22), t (38.4) = +4.303, p = 0.000 (one-

tailed)®. By contrast, the students in the experimental group (M = 1.24, SD = 1.23) had

20 Variances were unequal and tested accordingly.
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significantly lower scores on the clockwork mental models (CWMM) than did the
students in the control group (M = 2.90, SD = 1.45), t(43) = -4.152, p = 0.000 (one-
tailed). On the other hand, there was no difference between the experimental group (M =
2.72, SD = 1.34) and the control group (M = 2.55, SD = 1.61), t(43) = +.387, p=0.70
(one-tailed) on the number of categories that could not be coded due to insufficient
references to one or the other mental model. This evidence of no codeable mental model

was characterized as No Model (NMs).

Table 5.1 Comparison of scores on immediate posttest near transfer question.

Treatment

Scores on Experimental Control

n M SD n M SD
Emergent Framework Mental "
Models (EFMM) 25 2.96 2.24 20 0.70 1.22
Clockwork Mental Models *
(CWMM) 25 1.24 1.23 20 2.90 1.45
No model 25 2.72 1.34 20 2.55 1.61

* Significance at o = 0.05 on one-tailed f-test.

(N.B. Effect size calculated: EFMM = 1.31, CWMM = -1.24, NM = 0.11)

Figure 5.2 illustrates the near transfer results and the results of the 7 test. As expected,
students in the complex systems treatment condition (experimental group) out performed
students in the control condition by using a greater number of emergent framework mental
models (EFMMs) to solve the near transfer problem. It is important to note that the
results reveal that both groups produced statistically the same number of non-codeable

mental models (NMs).
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Figure 5.2  Comparison of the immediate posttest scores for the near transfer question.

5.1.2 Changes in Mental Models of Experimental Group

To compare pretest and posttest scores on the dependent variables (EFMM,
CWMM), within the experimental treatment group, paired samples ¢ tests were used. The
gains in the students’ EFMMs are indicated in Table 5.2 as means and standard
deviations scores (n=25). The results of the  tests also indicated that the students’
references to EFMMs were significantly increased between the pretest (M = 1.24, SD =
1.48) and immediate posttest scores (M =2.96, SD = 2.24), t (24) = +3.862, p = 0.0005
(one-tailed). In addition, it indicated that the students’ references to CWMMs were

significantly reduced between the pretest (M = 2.28, SD = 1.40) and posttest scores (M
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=1.24, SD = 1.23), t(24) = -2.797, p = 0.005 (one-tailed). Finally, the results indicated
that the students did not change the number of propositional statements that could not be
coded to either model (NM) between the pretest (M = 2.68, SD = 1.25) and posttest
scores (M =2.72, SD = 1.34), t(24) = +.115, p = 0.455 (one-tailed).

Table 5.2  Changes in students’ mental models on near transfer question (n = 25).

Pretest Posttest
Scores on

M SD M SD
Emergent Framework Mental
Models (EFMMs) 1.24 1.48 2.96* 224
Clockwork Mental Model

2.28 1.40 1.24* 2
(CWMMs) 1.23
No Model (NM) 2.68 1.25 2.72 1.34

* Significance at a 0.05 on one-tailed ¢ test.

(N.B. Effect size calculated: EFMM = 0.92, CWMM = -0.78, NM = 0.03)

In conclusion Figure 5.3 describes the results of the within group pretest and
immediate posttest comparison by illustrating the increase in emergent framework mental
models (EFMMs), while there was a decrease in the number of clockwork mental models
(CWMMs). Once again the number of none-codeable mental models (NMs) did not

change significantly between times.
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Figure 5.3  Changes over time between pretest-immediate posttest scores for near
transfer question.

Hypothesis 2: Students in the Complex Systems treatment condition would out perform
students in the comparison condition by constructing a greater number of EFMM
explanations to solve the far transfer “Robot Mining” question?'. By contrast, students in
the comparison condition would construct a greater number of CWMM explanations to
solve this far transfer question compared to students in the Complex Systems treatment

condition.

5.1.3 Comparison of Immediate Posttest — Far Transfer Question

To test the second hypothesis that students in the complex systems group would

out perform the control group by constructing a greater number of explanations

2! This question was considered an assessment of far transfer compared to the near transfer “Ant” question.

Although the robots’ surface features are very different from the ants’ features, both their deep structure
behaviors could be explained as emergent causal processes.
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categorized as EFMMSs, and conversely be out performed by the control group in the
number of explanations categorized as CWMMs, in order to solve the far transfer
question, [ used a #-test. Table 5.3 demonstrates that as hypothesized, the experimental
group had significantly higher scores for EFMMs (M = 0.96, SD = 1.1) compared to the
control group (M = 0.35, SD = 0.75), p = 0.021 (one-tailed). On the other hand, the
students in the experimental group (M = 1.92, SD = 1.3) had slightly higher but
statistically non-significant scores on the clockwork mental models (CWMM) than did
the students in the control group M = 1.7, SD = 0.92), p = 0.258 (one-tailed). By
contrast, there was a small difference between the experimental group (M =3.12, SD =
1.45) and the control group (M = 3.95, SD = 1.23), p = 0.022 (one-tailed), producing a

statistical significance on NM variable.

Table 5.3  Comparison of scores on immediate posttest far transfer question.

Treatment

Scores on Experimental Control

n M SD n M SD
Emergent Framework Mental 25 0.96* 1.1 20 0.35 0.75
Models (EFMM)
Clockwork Mental Models 25 1.92 1.3 20 1.7 0.92
(CWMM)
No model (NM) 25 3.12* 1.45 20 3.95 1.23

* Significance at a = 0.05 on one-tailed s-test.

(N.B. Effect size calculated: EFMM = 0.66, CWMM = (.20, NM = -0.62)

Figure 5.4 illustrates the far transfer results and the results of the ¢ test on them.
As described, students in the complex systems treatment condition (experimental group)

out performed students in the control condition by using a greater number of emergent
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framework mental models (EFMMs) to solve the near transfer problem. It is important to
note that the results reveal that both groups produced statistically the same number of
none-codeable mental models (NMs). Compared to the near transfer results (Table 5.1),
these far transfer results (Table 5.3) show a substantial difference between EFMMs
produced by the experimental group. Possible explanations for these results will be

discussed later in the chapter.
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Figure 5.4 Comparison of the immediate posttest scores for the far transfer question.

To compare pretest and posttest scores on the dependent variables (EFMM,

CWMM), within the experimental treatment group, paired samples ¢ tests were used. The
gains in the students’ EFMMs are indicated in Table 5.4 as means and standard
deviations scores (n=25). The results of the ¢ tests also indicated that the students’

references to EFMMs were significantly increased between the pretest (M = 0.68, SD =
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0.85) and immediate posttest scores (M =0.96, SD = 1.1), p = 0.024 (one-tailed). In
addition, it indicated that the students’ references to CWMMs no significant difference
between the pretest (M = 2, SD = 1.5) and posttest scores (M =1.92,SD=1.3),p =
0.245 (one-tailed). Finally, the results indicated that the students did not change the
number of propositional statements that could not be coded to either model (NM)
between the pretest (M = 3.32, SD = 1.5) and posttest scores (M = 3.12, SD = 1.45), p
=(.067 (one-tailed).

Table 5.4. Changes in students’ mental models for far transfer question (n = 25).

Pretest Posttest
Scores on
M SD M SD

Emergent Framework Mental

Models (EFMMs) 0.68 0.85 0.96* 1.1
Clockwork Mental Model 9 1.5 1.92 13
({CWMMs)

No Model (NM) 3.32 1.5 3.12 1.45

* Significance at o = 0.05 on one-tailed ¢ test.

(N.B. Effect size calculated: EFMM = 0.29, CWMM = -0.06, NM = -0.14)

In conclusion Figure 5.5 describes the results of the within group pretest and
posttest comparison by illustrating a small increase in emergent framework mental models
(EFMMs), while there was a small and statistically non-significant decrease in the
number of clockwork mental models (CWMMs). There was also a small but non-

significant decrease in the number of none-codeable mental models (NMs).
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Figure 5.5 Changes over time between pretest and immediate posttest scores for far
transfer question.

5.2 Discussion of Results for Study 1

The single most important purpose of Study 1 was to address empirically the
question: Did complex systems instruction facilitate the construction of emergent
framework mental models as demonstrated by problem solving abilities applied to

questions that are representative of phenomena with emergent characteristic?

Between Group Results

Based on the “posttest only control group” random assignment experimental
design no test of group equivalence was necessary. The findings of the between group
immediate posttest (see Table 5.1) supported the hypothesis that students in the
complex systems intervention would exhibit superior performances on the near transfer

task compared to students in the control condition, by constructing a greater number of
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emergent framework mental models (EFMMs). The second hypothesis that the control
group would out perform the treatment group on the variable of clockwork mental models
(CWMMs), by producing a larger number of these mental models, was also upheld. The
results showed that both groups performed equally in relation to the number of responses
that did not generate sufficient evidence of students’ mental models (NMs) on specific
dimensions of the coding taxonomy.

The results of the immediate posttest far transfer task (see Table 5.3), also upheld
the hypothesis that students in the treatment group would outperform students in the
control condition on the predictive variable of emergent framework mental models
(EFMMSs). However, both groups performed equally well on the clockwork mental
models (CWMMs) variable, therefore this hypothesis was not supported. The results
also showed that the control group produced a larger number of no models (NMs),

compared to the treatment group.

5.3 Conclusions Drawn from the Results

5.3.1 Emergent Framework Mental Models (EFMM) Results

Before adopting the conclusion that the complex systems intervention facilitated
the creation of alternative explanatory frameworks as measured by emergent framework
mental models (EFMM), let us explore another interpretation of the results. What if the
increase in EFMMs was merely a change in vocabulary and not the application of an
alternative explanatory framework?

This explanation was ruled out because of the few occasions in which new
terminology was used. In fact, only two cases out of 25 employed any of the terms that
may be directly linked to the complex systems lecture (e.g., requisite variety, and self-
organizing). Moreover, the number of no models (NMs) coded did not change

significantly in either near or far transfer, suggesting that it was not merely learning of
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some new words. In fact, the NM results support that it was equally difficult to generate
explanations for these questions before and after the intervention.

Therefore, the demonstrated increase in the students’ ability to use emergent
explanatory frameworks (EFMMs) appears to be more likely attributed to a new way of
explaining phenomena. Hence suggesting that the complex systems thinking can facilitate
the generation of emergent framework mental models, and therefore the creation of a
qualitatively different representation (i.e., conceptual change). Furthermore, these findings
support previous research conducted by Slotta and Chi (1999) in which students were
provided with a training module that presented ontologically-based content and later
tested on a different content area to determine far transfer of the ontological model and
what they refer to as, “deep conceptual change”. Further support for Slotta and Chi’s
(1999) results was also garnered from the change in predicates used by the students in
this study. Although these predicate data were not used to code the identified mental
models, I contend that this evidence can be developed for future research through the
development of larger banks of questions, and the collection of more answers that
produce more novice-expert predicate differences. This will provide other means of

triangulating results between coding taxonomies.

5.3.2 Clockwork Mental Models (CWMM) Results

The results for the clockwork variable (CWMM), on the other hand, were
equivocal for both the between groups and within group comparisons. The explanations
associated with them lead to more profound issues related to conceptual change theories.
For instances, the near transfer results supported the interpretation that the treatment
facilitated the replacement of clockwork mental models, whereas the far transfer results
suggested that both mental models co-exist.

This is an important issue to clarify because the conceptual change literature has
varying opinions on the topic of what happens to misconceptions, are they removed,

replaced, restructured (also described as accommodation in some literature,) versus the
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position of concept reassignment (or assignment) to an intentionally acquired explanatory
framework that is more scientifically accurate (e.g., Chi et al, 1994; aspects of which are
supported by Vosniadou et al., 2001). The latter view, however, does not rule out the
possibility of a conceptual change process that includes the learner holding two
explanatory frameworks, which may be categorized as “synthetic” mental models with
varying degrees of naive to expert beliefs (e.g., elements of clockwork components beliefs
— CWMMs — and emergent framework component beliefs — EFMMs). The results of
Study 1 could not clarify this question of what could we expect to see from learners’
mental models to suggest that conceptual change had occurred using the definition of
assignment to the scientifically accepted emergent causal explanatory framework. Because
the evidence from Study 1 did not sufficiently clarify this question, it was deemed

necessary to conduct a follow up inquiry (i.e., Study 2).

5.3.3 Summary of Conclusions and Contributions of Study 1

This study’s results were similar to Slotta’s and Chi’s (1999) in that it, too,
reported changes to the students’ emergent framework mental models, what those authors
call “process based predicates™. It is distinct from that study in as much as its focuses
equally on the changes to both ontological frameworks. Additionally, the refinement of
the ontologically-based taxonomy and the complex systems instructional measure brings
this research closer to those studying the learning of complexity (Duit et al, 1998; 2001;
Jacobson, 2000; Penner, 2001; Perkins & Grotzer, 2000; Resnick, 1999; Stieff &
Wilensky, 2002). I contend that this is a benefit for future cross study comparisons and
the increased understanding of the cognitive processes involve in learning emergent causal
frameworks.

The main contribution of this first study is therefore a clarification of the
dimensions of the ontological category, thereby making the coding of change more precise.
The main finding from this study is that it appears that not all novice learners hold naive

clockwork mental models when answering emergent ontology questions. It is possible
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that this finding is population and age related; that is, science students in post-secondary
educational institutions. In fact, a handful of students held more than one of the sub-
category dimensions of the emergent framework ontological taxonomy. This evidence
supports that it is possible to acquire emergent framework mental models without explicit
instruction. In the discussion, chapter 8, will discuss the further conditions that appear to

correlate with acquisition of this knowledge observed during Study 2.
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PART I - STUDY 2
ACQUISITION OF EMERGENT CAUSAL FRAMEWORKS FROM MODELS AND
COGNITIVE COACHING

There were two main concerns for Study 2: (1) to explore in detail if and how
students acquired specific emergent causal concepts from complex systems thinking; and
(2) to determine if and how these concepts provided opportunities to construct “generally
applicable” representations, that facilitated transfer of the emergent causal explanatory
framework (Kolodner, 1983; Bransford, Brown, & Cocking, 1999). Both these concerns
were addressed by focusing on the affordances™ for learning provided by the
intervention, both the computer simulations and the cognitive coaching (scaffold).

The multi-agent modeling literature tells us that specific types of computer
representations are powerful tools for learning complex systems thinking (e.g., Penner,
2001; Resnick, 1994; Wilensky & Resnick, 1999). However, this literature does not
systematically detail studies of which of the many types of simulations offer better
affordances for learning of these concepts. Secondly, although the literature addresses
some of the issues related to which concepts may be more difficult to acquire for reasons
of conflicting ontological beliefs or other deeply held attributions (e.g., Duit, et. al. 1998;
2001; Resnick, 1994; Wilensky & Resnick, 1999), it does not tell us which concepts —
among the six identified thus far in this current study — are easier or more difficult to
learn. Finally, the literature does not tell us if and how the conceptual knowledge
acquired through engagement with these models may provide the general application

representations (i.e., emergent framework mental models), which support a shift in the

%2 Jacobson and Archodidou (2000) describe affordances as “opportunities for action” (terminology
articulated by Gibson 1979). Gibson’s notion of representational affordances may be illustrated by
examples such as digital video, or high-resolution images that engage the human visual-perceptual system
in substantially different ways than text alone (in effect, reinventing Marshall McLuhan, ‘the medium is the
message’). In Hmelo, Holton, and Kolodner (2000), the authors investigate the affordances of promoting
deep learning provided by a design approach using the construction of physical models. In this current
study, the multi-agent model simulations’ affordances for promoting learning of specific aspects of
emergent causal explanatory frameworks are explored. I will be focusing on three issues related to the
affordances of these models: (1) to facilitate and support the construction of specific complex systems
concepts; (2) to challenge naive beliefs possibly viewed as anomalous data; and (3) the constraints of these
affordances resulting from the multi-agent models chosen.
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novice learners’ choice of ontological explanatory framework (i.e., ontological

conceptual change). I argue that these gaps in the literature a partly addressed by this

phase of the dissertation research.
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CHAPTER 6
RESEARCH DESIGN & DATA ANALYSIS METHODS — STUDY 2

6.1 Qualitative Case Study Design

This study employed a qualitative case study design. Case study research is
particularistic, descriptive, and heuristic (Merriam, 1998): Particularistic, because case
studies focus on a specific instance, event, program or phenomenon; descriptive, because
it results in “thick” and rich descriptions of the phenomenon; and, heuristic, because it
sheds light on a particular phenomenon thereby leading on toward new meaning and
relationships. I contend that it was important to select this design because it allowed me
to focus closely on how students reason about the behaviors of a computer driven multi-
agent modeling environment portraying different types of complex systems all of which
display emergent causal processes. Furthermore, the inductive nature of the design leaned
toward theoretical explanations, not limiting itself solely to straightforward description.
Finally, multiple cases were used to strengthen, validate and stabilize the findings (Miles
and Huberman, 1984).

Recommendations for collecting qualitative data are: in-depth open-ended
interviews, direct observation, and written documents (Patton, 1990). This research
collected data from both pre and post intervention interviews. All interventions were
audio and videotaped in order to permit the researcher to closely observe the interactions
and reactions of the subjects to the intervention. Several written documents were
produced by the subjects as another data set in the qualitative case study: (1) delayed
posttest results from emergent framework questions; (2) final posttest results from
emergent framework question including one on evolution; (3) concept maps of complex
systems concepts; and (4) student records including Nelson-Denny Reading test, and
course grades (see Appendix F for audit of data sources).

One of the key limitations of case study design is the sensitivity and integrity of
the investigator (Merriam, 1998). Because of limited opportunities for training, and the

close proximity of observer and observed, there may be unintentional bias and loss of
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perspective. Merriam (1998) reminds us that the researcher is both the primary
instrument of data collection as well as the primary data analysts therefore attention and
accounting for bias is important. Lastly, but not least, in all such research designs ethical
considerations must be addressed. Guba and Lincoln (1981, cited in Merriam, 1998) tell
us that case writers can make the data say anything they may want. Therefore, both the
reader and the authors must be wary of these biases and look for alternative explanations
and possible externally imposed agendas; particularly, in policy making, socially and
politically driven case study research. I will address these issues of threats to credibility

later in this chapter.

6.2 Theoretical Framework for the Development of the Intervention

6.2.1 Approach to Instruction

Study 2 employed an inquiry-based learning methodology for the instructional
intervention. Edelson, Gordin and Pea’s (1999) research tells us that this approach is
particularly suited to the development and understanding of science concepts through
direct exploration and confrontation with ones’ knowledge boundaries. They prescribe
the use of modeling tools (e.g., ThinkerTools, White, 1993) to facilitate the task of
cognitive challenge and the recognition for knowledge reorganization. In this study, as in

Study 1, students worked with StarLogoT as the chief instructional tool.

6.2.2 Importance of Cognitive Coaching as an Instructional Strategy

Metacognition is the ability to think explicitly about one’s ideas or conceptions
compared to merely thinking with the conceptions. Furthermore, it is knowledge about
thinking that can be shared and reported to others. In this way, future performance may
be analyzed and assisted through external supports — cognitive scaffolds — or it may be
self-directed as one learns to manage one’s own decision-making and problem-solving
processes (Paris & Winograd, 1990). On the other hand, metaconceptual awareness is the
ability to be aware of the explanatory frameworks one has constructed and the

presuppositions that constrain these explanations (e.g., Vosniadou & Brewer, 1994;
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Vosniadou et al., 2001). Therefore, it may be viewed as a higher level metacognitive
activity aimed at the questioning and evaluating of prior beliefs. Vosniadou and
colleagues suggests that the metaconceptual awareness may facilitate assimilation of new
information into existing structures thereby resulting in conceptual change.

Studies in the field of science education suggest that metacognition is a vital part
of scientific reasoning (e.g., Kuhn, Amsel & O’Loughlin, 1988; Hennessey & Beeth,
1993). In fact, Hennessey and Beeth (1993) suggest that learning scientific knowledge of
a conceptual nature requires examination of one’s conceptual understanding and the
cognitive processes that produce that understanding. Any instructional strategy aimed at
teaching scientific concepts such as emergent causal processes should ensure that
metacognition is facilitated.

Research furthermore informs us that metacognition is facilitated in learning
environments that provide cognitive scaffolds. These forms of support fall under the
heading of scaffolded instruction and build on the work of the cognitive psychologist
Ivan Vygotsky who posited a “zone of proximal development” in which learner and
teacher/coach engage in the co-construction of knowledge (Wood, Bruner & Ross, 1976).
Additionally, research findings suggest that cognitive support in the form of dialog,
structured questions, and other meta-level strategies can facilitate conceptual change
(e.g., Mason, 1994; Palinscar, 1986); an added benefit of this method is the development
of self-directed learning skills.

In this second study, I operationalized this support by borrowing from a technique
referred to in the literature as “cognitive coaching”. References to this mode of
instruction are found under a variety of headings ranging from computer-based
instruction to educational administration (e.g., Barnett, 1995; Costa & Garmston, 1994;
Lepper, Drake, O’Donnell-Johnson, 1997; Paris & Winograd, 1990). Regardless of the
source, the single ubiquitous feature appears to be the use of human coaches, tutors, or
mentors performing the mediating role of cognitive scaffolding thereby supporting the
acquisition of higher-level reasoning skills such as problem solving and transfer.

The literature describes three aspects to this technique of cognitive coaching: (1)
the cognitive, (2) metacognitive, and (3) affective. Under the heading of cognitive, there

is reference to the cognitive support provided by modeling of expert problem solving
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strategies and shared cognition such as probing questions and self-explanation. Under the
label of metacognition, there are reports of reflective learning and self-regulation that is
promoted with this type of instructional environment. Lastly, the literature refers to the
role of the affective domain in motivating and nurturing learning (e.g., Costa &
Garmston, 1994; Lepper, Drake, & O’Donnell-Johnson, 1997). Empirical evidence from
Paris and colleagues’ studies (reported in Paris & Winograd, 1990) support the
contention that subjects experienced significant improvement in cognitive abilities when
provided with coaching as a cognitive scaffolded. Summarizing the technique they state:
“cognitive coaching combines assessments of learning with sensitive instruction; it
integrates cognitive explanations and motivational encouragement” (Paris & Winograd,
1990, p. 38).

In respect to the role of the coach/tutor, the literature points to the interplay
between the affective and cognitive factors. Lepper et al. (1997) suggest that successful
tutors “seek to both inform and inspire students; they give roughly equal attention and
weight to motivational and to informational factors during the tutoring sessions; and their
decisions as tutors are based on concurrent ongoing assessments or models of the tutee’s
affective and cognitive states” (p. 126). In describing the role of the coach/tutor, four
types of motivational goals are identified: (1) confidence, which boost the student’s
feelings of self-esteem; (2) challenge, presented in the form of meaningful learning
materials; (3) curiosity, which enjoins the students in the excitement of the subject
matter; and (4) control, good tutoring fosters a sense of self-efficacy and control (Lepper
et al., 1997).

This research turned to these aspects of the literature to inform the instructional
design of Study 2 for two reasons: (1) because of the benefit as a general technique to
support the development of both cognitive and metacognitive awareness while offering
an emotionally supportive environment; and (2) probably more importantly, because of
the growing body of research that suggests the need for cognitive scaffolding in
facilitating conceptual change and other high level cognitive development (e.g., Mason,

1994; Vosniadou et al., 2001).
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6.3 Case Study Research Methodology

6.3.1 Purposeful Sampling Procedure

According to Creswell (2002) the selection of a sample for qualitative research is
based upon how well participants help the researcher understand the central phenomenon;
this is called purposeful sampling. The criterion for selection is how “information rich”
(Creswell citing Patton, 1990) are the individuals who are selected. This study employed
the purposeful sampling strategy of “theory” sampling. That is, the participants were
selected because it was thought that they could help the researcher discover specific
concepts within the theory of conceptual change learning. The Learning Approach
Questionnaire (LAQ, Donn, 1989) is reported to have a high predictor of performance
factor (BouJaoude, 1992) therefore it was chosen as the criteria for selecting the sample
for the case study. It was important that the participant have a high degree of internal
motivation in order to complete the scheduled sessions. In addition, it was hypothesized
that possessing a deep approach to learning and a relating style would facilitate the
acquisition of the concepts and transfer. All students selected scored between 3 to 5,
which according to Cavallo (1991) places them in the top half the population on this

measure. Therefore they could be identified as high meaningful learning.

Sample Size

Creswell (2002) suggests three to five cases in a case study. This research started
with 11 students® and ended with a “near complete” data sets on nine students. Although
one of these nine students did not complete session 5 and the final interview because of
health problems, I choose to retain her data because it contributed to demonstrating the
different types of student experiences.

Participants and Settings

2 Eleven students began the case study project but only eight completed all five sessions plus the final
interview. Two of the eleven completed two sessions but fell behind because of scheduling conflicts
resulting in missed sessions. It was determined that although they were willing to continue that the data
would be too difficult to compare with the other students; therefore they were politely released from their
commitment. One other student, Monique, fell ill after session 4. Her data was included in the analyses
because it was determined that because of the amount of data collected from her, it was a substantial
contribution to the study thereby adding a dimension that would be beneficial to understanding how
emergent framework mental models are constructed.
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The participants in this study were drawn from the sample of students who
participated in Study 1, therefore they were familiar with the researcher and with aspects
of the intervention. As a reminder, all the participants were between the ages of 17 ~18,
they were all** enrolled in the second semester of the science program in a Quebec
college, CEGEP (equivalent to grade XII). All participants signed a Study 2 consent
form, unless they were under the age of majority, in which case their parents sign (see

Appendix E.3).

Data Collected

The applicable data from the first study was rolled forward and provided
background information such as demographics details, college grades, LAQ scores and
Nelson-Denny scores. Additionally, this phase of the study collected transcript data,
concept map drawings and outcome measures, all of which have been described in detail

elsewhere.

6.3.2 Procedure

The treatment consisted of five, 60 minute one-on-one constructivist learning
sessions (see Figure 6.2 for summary of sessions). Each session was comprised of two
major components: (1) three models (simulations — see Appendix D.4) programmed in
StarLogo T2000 computer language (see Figure 6.3 for summary of simulations’
affordances for teaching emergent causal concepts as estimated by four independent
experts); and (2) the cognitive scaffolding provided by a human coach. The objectives of
the coaching were to scaffold the cognitive load of learning the particular aspects and
behaviors of these models. Great effort was made to limit any direct instruction unless the
participant showed a substantial lack of understanding or frustration; defined as periods
of over 10 to 15 minutes without describing or explaining anything new, or taking the
discussion in a completely unrelated direction. Therefore students’” developed awareness
and learning of emergent causal processes should be viewed as the outcome of self-

directed discovery rather than direct instruction.

4 . . . . .
4 All but one participant was still enrolled in the second semester of the science program. However he was
taking a comparable course on the topic of evolution.
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Session 1

Before engaging in the first session, the student was asked to sign a consent form
alerting him or her to the fact that they would be audio or videotaped during the five
sessions (same as mentioned above). Furthermore, the student was informed that she
would be asked repeatedly to discuss aloud her decisions and reasoning. For some
students it was easy to engage in this “think aloud” protocol while for others, it required
continual prompting through questioning and verbal descriptions of their actions, or the
effects of their action as demonstrated by changes in the simulation.

During this first session each student in this one-on-one format was reintroduced
(or introduced) to the Starlogo simulation software. Because six of the nine participants
had used the simulations in Study 1 their learning curve was not steep as the three who
took a little longer to become familiar with its features. No student found it impossible or
too difficult to use the simulations, although some simulations were more challenging, as
will be discussed in the results section.

To start the student was asked to open the simulation entitled “Slime” that
represents the life cycle of the slime mould. They were asked to read the instructions in
the “INFORMATION” window (for example see Appendix D.5) that provided the
“setup” directions on how to use the simulation (e.g., the controlling mechanism referred
to as the “slider” which changes pre-defined range of variables, which were manifested as
behavior or changes of the “turtles”). In addition, this window included suggestions on
“things to notice” once engaged in the simulation therefore, the functioning of the
simulation was transparent. It is important to remember that Starlogo is intended for
students K-12, therefore the reading level of the embedded text information is age
appropriate.

After one run of the simulation at the default setting, the student was asked to
describe his/her observations relating to the behavior of the slime mould —also referred to
from time-to-time as “turtles” the programming terminology. Concurrently, throughout
the entire exercise she was encouraged to engage in the “think aloud” protocol and
describe her actions, observations as well as elaborate on her reasoning.

Next, the student was asked to change one or more of the variables controlling the

behavior of the slime mould. The coach provided encouragement for systematicity in
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using sliders, however, it was not a rigid requirement due to the self-directed inquiry
approach. After two to three instantiations, the researcher called upon the student to
explain the observed behaviors — the intention was for the student to demonstrate the type
of inferences, explanatory frameworks, constructed from these experiences with the

models.

Observation Points of Session 1

The following are the types of questions used as prompts and formed the basis of the

observation data collected:

1. What changes to the “sliders” did you try?

7 What were the results of these changes? (i.e., describe your observations).

3. How would you explain the behaviors? (i.e., what inferences could be drawn from
these behaviors?)

4. Could you predict behavior of future changes in the controlling variables?

5. If you were told that these behaviors were typical of some complex systems, could
you name the most identified behaviors/characteristics that could be then be used to
construct a list of attributes or behaviors of complex systems in general?

6. Can you relate these bebaviors to anything in your life experiences?

(NB. Participants were treated as independent cases and the way the session unfolded

was dependent on their level of interest and the need for coaching. Therefore, some of the

questions listed above may or may not have been asked instead more paraphrasing or

direct tutoring may have been necessary).

Most likely Observations From Slime Simulation

1. Emergent levels of organization — particularly through visible aggregation and pattern
formation.

2. Local interaction of agents.

3. Dynamic homeostatic behaviors and self-organization.

4. Random action of agents.

5. Small scale fluctuations lead to nonlinear effects.
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Session 2

Session two followed the pattern of inquiry-based learning that was established in
session one but this time with the GasLab: Free Gas sirrllulation. The student was first
asked to experiment with the simpler GasLab simulation (2-molecule gas) to ensure his
understanding of the type of behaviors exhibited by the molecules (i.e., turtles). They
were then asked to run the “Free Gas” simulation in which many gas molecules engaged
in a behavior that created something quite different from the individual level of the two
Gas molecules. This was followed by a request to comment on the differences between
these two different outcome results from similar individual behaviors.

Once experimentation of the variable options were exhausted the student was
asked to compare the behavior of the GasLab simulation to the behavior of the Slime
mould simulation. The coach prompted for comparisons of observed similarities and
differences. Each student was asked to draw up a personal list of characteristics they
identified as common to the complex systems they had investigated (i.e., the two
simulations).

In the final minutes of the session the student was given a concept-mapping task.
He was provided with 12 terms generally associated with complex systems. These terms
were placed on “post-it notes” squares and stacked on top of each other on a flat 11x17
board. The student then was asked to arrange these terms so that related concepts would
be close together (i.e., construct a concept map). No specific instruction on how to make
a concept map was given, however, the coach questioned each student as to his/her prior
experience in making these types of maps. All students were new to making concept
maps, however all appeared to arrange the terms in such as way as to form prepositional
associations (i.e., links and nodes). When questioned specifically on their mapping
strategy, all students confirmed that they had in fact used some type of propositional

association strategy (i.e., reading their maps like prepositional phrases).

Observation Points of Session 2

1. Observation of development of hierarchical levels, this time with more subtle and
abstract content. Different behavior of agent (individual gas molecule) and

system/meta-agents (gas laws, e.g., pressure energy, Pv=nRT).
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2. Behavior of closed systems to reach equilibrium state with time.

3. The effect of numbers of agents on the attainment of equilibrium state.

Most Likely Observations From Gasl.ab Simulation

1. Emergent levels of organization — however, the macro-level was more abstract and
required an understanding of graphs.

2. Local interaction of agents.

3. Dynamic equilibrium and self-organization.

4. Probabilistic nature — particularly related to large numbers and the formation of
“normal distributions” (Wilensky & Resnick, 1999).

5. Small scale fluctuations lead to nonlinear effects.

Session 3

The third session was one designed to demystify the operation of Starlogo. The
student was given the programming tutorial documentation and asked to follow the
instructions. While entering the programming code she was asked to describe what her
thoughts were on how the simulations were put together. This exercise called for
precision in coding protocol. The hour session was insufficient to complete the entire
tutorial, however, it did provide the participant with sufficient experience to arrive at an
understanding of the programming language and functioning of the simulations. The

session concluded with the concept map exercise.

Observation Points of Session 3

1. To “see” the programming from the turtles’ point-of-view.

2. To discover that organization arises through simple algorithmic decisions. For
example, organization, like the behavior of ‘gliders’ can arise from three lines of
programming code. Therefore, don’t look for the complicated features, check out the

possibility of simple rules first.
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Most Likely Observations From StarL.ogo Tutorial

1. Precision required for the programming. This would be a great teaching point to teach
the role of error in the creation of variety. That is, the role of random noise in the
system.

2. Simple rules.

3. Random actions.

Session 4

In the fourth session the student was asked to read a portion of an article®
describing specific systems’ concepts (see Appendix D.6). The article and the concepts
were selected because of their relevance to the complex systems represented by the multi-
agent models and the emergent causal processes described. The objective was to provide
the student with some formal structure and terminology to accompany their growing
intuitions of emergent causal processes. The document acted as a metacognitive tool to
trigger discussion, elaboration of ideas and reasoning about the phenomena observed in

session one through four.

Observation Points of Session 4

The participants were asked the following questions:

1. What do you understand from the text? The meaning of each concept was explored.

2. Does having a definition make the concept clearer or does it do little to help clarify
understanding?

3. Delayed posttest questions: (a) Ants foraging; (b) Butterfly and weather patterns; (c)
Traffic formation; and (d) Town planning.

4. Concept map exercise.

%> The level of language in the text was somewhat sophisticated but the content offered the most condensed
yet explicit definitions regarding self-organization and emergence that I could find in a search of this
literature. It was important that the definitions be as accurate and not summarize to the point of being
patronizingly vague or too dependent on a higher level of interest in complexity.
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Most Likely Observations From Session 4

The second half of the session collected data using the outcome measure,
emergent framework questions. The decision to assess the students before the end of the
intervention was made to ensure that no data would be loss because of attrition. The

session concluded with the concept mapping activity.

Session 5

In the fifth and final intervention session the student was asked to explore the
simulation entitled “Wolf-Sheep” predation. The procedure unfolded in a manner similar
to sessions one and two. The student experimented with the pre-defined variables and
was asked to think aloud through the process. Questions or prompts were provided when
necessary to elicit more of the student’s reasoning and beliefs. The session concluded

with the concept mapping activity.

Observation Points of Session 5

1. Same list of questions as sessions 1 & 2.

2. Concept mapping exercise.

Most Likely Observations From the Wolf-Sheep simulation:

1. Emergent levels of organization.

2. Local interaction of agents.

3. Dynamic equilibrium and self-organization.

4. Flows of resources (i.e., multiplier effect).

5. Small scale fluctuations lead to nonlinear effects.
Session 6

This final opportunity to assess the learning was conducted as an interview. The
student was asked questions concerning her recall of the terms and concepts learned. Data
collection was conducted through the use of the final posttest outcome measure. These
questions were posed to the student and responses were aural. In the final minutes of the

session the student was asked to once again turn to the concept maps constructed one
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year prior. She was asked to review it and make any changes or modifications that better

reflected her present understanding of the complex systems behaviors.

Observation Points of Final Interview

I. Recount what you remember about the instructional sessions?

2. Can you explain what you remember about complex systems and their
characteristics?

3. IfTI were to say that this was a way of thinking about observations (phenomenon) did
you ever have the opportunity to use this way of thinking in your courses?

4. Final Posttest Questions: (a) Birds flocking; (b) Evolution of corn seeds.

5. Concept mapping exercise.

6.4 Data Collection Methods — Study 2

Data consisted of the observations of the coached instructional sessions,
interviews, and written artifacts produced during the sessions. The data from the
instructional sessions were audio taped, and session 3, 4, and 5 were videotaped as a
means of preserving greater authenticity and atmosphere, that is, to enrich the description
of the subject’s composure and attitude to help when transcribing and analyzing the data.
There were two transcribers for the audiotapes, however, the primary transcriber
established the style and checked for accuracy. Authenticity and accuracy of
transcriptions was established through random selection of one transcript from each
subject and comparing it against the audiotape. The tapes were deemed to be accurate and
a few of the muttered and unrecognizable words were clarified in the process, however,
no significant changes were required.

All written documentation (includes pretest-posttest questions, and concept maps)
was added to the data corpus. Additionally, the principal researcher kept a reflective
journal documenting observations on the coaching process and progress. These
reflections included brief summaries and reviews of technique and suggestions for

modification of procedure for the next session.
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Table 6.1 Review of list of data collected and analyzed in both studies.

Data Collected When Data Analysis Technique Coding Taxonomy Used
Pretest Study 1 Mental model coding 1. Original Ontological —- 2000
2. Revised Ontological — 2002
Immediate Study 1 Mental model coding 1. Original Ontological — 2000
Posttest 2. Revised Ontological — 2002
Delayed Posttest | Study 2 Mental model coding 1. Revised Ontological — 2002

2. Complex Systems — 2002

Transcripts Study 2 Qualitative coding methods Categories emerged from the
sessions Y (categories, themes) data.

Lo . Combined method (Ruiz-Primo
Concept Maps Study 2 Qualitative coding methods & Shavelson, 1996).
Final Transfer Post Mental model coding 1. Revised Ontological — 2002
Test Intervention 2. Complex Systems — 2002

6.5 Data Analysis Methods — Study 2

Both Merriam (1998) and Yin (1994) describe methods of analyzing case studies.
According to Merriam (1998), there are three main methods of analyzing qualitative data:
(1) descriptive accounting of findings, (2) category constructions, and (3) theorizing;
whereas Yin (1994) suggests two general strategies: (1) the descriptive framework, and
(2) the development of theoretical propositions. Although using different words, both
authors suggest that the descriptive level is the less in-depth analytical technique. At the
descriptive level meaning is conveyed through the compression and linking of data,
which is then presented in a narrative format. Most case studies generate some type of
narrative presentation, however, many strive for the more sophisticated method of
analysis involving the construction of categories or themes that captures recurring
patterns flowing throughout the data. To emphasize this point, Merriam (1998) states:
“category construction is data analysis” (p. 180).

Construction of categories. Categories are not the data themselves; rather they are

abstractions derived in both a systematic and intuitive manner. Glaser and Strauss (1967)
suggest that the categories should be “emergent” (this meaning should not be confused
with the way “emergent” has been used thus far in this study); that is, they should be born
out of the data and in so doing be a perfect fit thereby explaining most of the data
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collected. Categories may also be considered lenses through which the data may be
viewed. In many instances, including this current study, categories are informed by the
purpose of the study as well as the literature. I therefore began the data analysis process
by first looking at my purpose statement and made the decision to focus on evidence of
mental models (e.g., observations, explanations, vocabulary use, analogies, and
relationships of concepts). This should not suggest that I ignored the possibility of
emerging data categories that more aptly describe the evidence. For instances, categories
related to epistemological beliefs, need for social interaction, and coaching behavior (see
Table 6.2). These are very interesting categories but lie outside of the scope of this
dissertation, however, they may provide new directions to follow for future studies.

Construction themes. The next level of data analysis is more abstract and involves

the construction of explanations through the linking of categories. In case study research,
this is considered the cross-case analysis. Merriam’s (1998) description of this process is
consistent with the qualitative post-positivist movement, by comparison, Yin’s (1994) is
reminiscent of the quantitative approaches suggesting the identification of dependent and
independent variables. Whichever approach is selected, Yin tells us that “the analysis of
case study evidence is one of the least developed and most difficult aspects of doing case
studies” (p. 102). This current research viewed this challenge of constructing themes and
testing the links between categories as an important part of the data analysis. The
decisions of which themes I constructed and which I chose to follow will be discussed in

the upcoming section.

6.5.1 The Process of Constructing Categories

The process of constructing categories from the raw data started with the
following procedure: transcripts from one student were annotated and a preliminary
coding scheme was recorded in a coding logbook. Because of the theoretical nature of the
research design, a priori coding schema were used to develop certain categories. One
such category used the complex systems taxonomy (CST). The decision to use this
taxonomy, rather than the ontological mental models taxonomy (OMMT), was made
because it provided a broader palette from which to describe emergent causal processes.

Another a priori category was cognitive strategies. In the first round of coding they were
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identified as ‘descriptions’ and ‘sense-making’. Also identified were the categories of
emotional response, for example, frustration and fatigue, as well as the larger category
defined by the coaching itself. Development of a coding scheme for the latter category
was put on hold until the categories for the learners were fully developed.

Undertaking a second round of coding using the same documents provided a finer
articulation of the cognitive strategies category. ‘Sense making’ was elaborated into
concepts of ‘paraphrasing’, ‘explanation’, and ‘analogies’. I then went back to the
literature to look for further theoretical descriptions and explanations of these cognitive
processes. Entwistle (1988), and Marton (1981) provided insight into the cognitive
processes involved in concept formation, whereas Keil and Wilson (2000) provided me
with greater insight on possible ways to code for the category heading of ‘explanation’.

The category of ‘emotional responses’ was changed to ‘social interaction
behaviors’ and ‘motivation’ (motivated to participate because of: need for social contact;
feelings of importance; money; interest in topic) and defined to include such concepts as
‘anxiety level’, ‘tolerance for ambiguity’, ‘need to please’, ‘feelings of contribution’,
‘need to appear smart’. In this round of coding, another category appeared to emerge,
that of epistemological beliefs (see Table 6.2).

The third round of coding took the categories developed in the first and second
round and applied them to two other case studies in the cohort. The two selected were
believed to be quite different from the original case. The data fit the categories, as
defined, and few data points remained uncategorized. Nonetheless, there was a further
articulation of the cognitive engagement category where it was felt that metacognitive
strategies were being used in the sense-making process. Furthermore, there appeared to
be examples of what could be described as “meta-model” thinking®® where the student
attempted to use the new explanatory framework to problem solve using the computer
models representations as analogies. It was therefore decided to make this a category unto
itself. A testable coding scheme appeared to emerge (will be shown later in Figures 6.4

and 6.5) through these repeated cycles of testing and refining or modifying or eliminating

the categories.

6 [ suggest that this metacognitive activity is distinct from metaconceptual awareness since the focus is on
thinking or reasoning with the representational model rather than evaluating the explanatory framework.
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Category reliability check. After the third round development I decided to bring in

another point of view to ensure that the identified categories indeed fit all the data.
Selecting a totally new transcript (i.e., one that was not part of the database used for the
study and not transcribed by the research assistant), I met with the research assistant (RA)
and provided him with some background information concerning the types of things that
had been coded; for example, evidence of cognitive strategies such as explaining through
examples, or evidence of complex system’s concepts. The RA was asked to use his
judgment and intuitions to identify any other categories that he recognized from the
transcript. In other words, to let the categories and coding emerge from the data itself - a
grounded theory approach.

What followed was a three-stage process. First, we each independently read and
annotated our copy of the same seven-page transcriptions. Then we looked at the coded
document and discussed his coding decisions. The RA had made several interesting and
unique observations, which were discussed and evaluated based on their significance to
the generation of useable categories. The categories that appeared to be most fruitful were
added to the already existing list of categories. Some categories such as psychological
interpretations were left out because of their subjective nature and the belief that they are
not central to the research.

The final task was to compare the documents coded by the RA. Although the RA
did not address all the complex systems categories, the agreement on the other categories
was very high. In several instances we discussed the name assigned to the coded passages
or words that describe sub-elements of the major cognitive strategies category, in other
words, the dimensions of the category. By the end, there was consensus on the segments

of text that were coded and the category assignment of those segments of text.

6.5.2 The Process of Development Themes

The process of developing themes was informed by Merriam (1998), who tells us
that the importance of themes is to test out explanations and hypotheses through the
linking of categories. Figures 6.2 and 6.3 provide a visual representation of the stages in
this procedure starting with the raw data at the bottom of the page and moving upward

through the emerging categories, as described above, to the construction of themes. It is
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important to note that as the themes emerged they also influenced the types of questions
that could be explained by the data, hence modifying the central questions of the
qualitative phase of this dissertation study. Table 6.3 (also referred to as a “data display”
in Anfara, Brown, & Mangione, 2002) demonstrates another way that I explored the
potential hypotheses and explanations as I attempted to link the categories of data. This
also was a way to ensure having multiple data sources for triangulation of the data

analyses.

Table 6.3 Finding themes within the data and testing of possible links.

Questions that could be Pretest/ Transcript | Concept | Delayed | Nelson | GPA | NYA
explored through the Imm.Post Map Posttest | Denny science
linking of data. Study 1 Study 2 courses

1. Interaction of sessions
and learning of Emergent
Causal Processes (ECP) X X
affordances of
simulations

2. Learning of ECP and
transfer to explanatory
framework, elaborations
of EFMMs

3. Interaction of
students’ profiles and X X X X X X
ECP.

4. Use of analogous
models and improved X X
understanding of ECP.

5. Affordances of
understanding specific
EFMMs concepts

- emergent self-organ.

- probabilistic causes X X
- dynamic nature

- decentralized control
- random actions

- nonlinear effects

6. Synthetic mental
models.

7. Correlations of coding
schema OMMT and X X
CST.
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6.6 Issues Related to Data Verification and Researcher Ethics

Verification of data. The protocol for verifying the data collected from each

instructional session was as follows: (1) meet with non-participant observer at the end of
each week to discuss the progress of the sessions; (2) critically review ficld notes and
make a random check of audio and video quality; and (3) use the reflections from the
field notes and discussion with non-participant observer to make modifications for the
next session.

Confidentiality of data. The researcher upheld the requisite “human research

ethics” measures to insure confidentiality of the entire data corpus. All students are
referred to by their pseudonym and raw data were shared only with my committee
members and coders.

Ethics of conducting human research. Because my role was that of a researcher

/coach and not a teacher, I did not actively insist that the student attend to faulty mental
models, however, [ prompted for reconsideration of their statements (e.g., “do you really
think that is what would happen?”; “could you explain that to me again.”). However, in
my commitment to do no harm, if a student appeared to be creating a new mental model
(e.g., “aha, I never thought it was that way...”), which was a classic misconception, [
would actively intervene to halt this construction before it was reinforced.

Other considerations. As a researcher with a limited science background, it was
important to ensure the veracity and accuracy of the science content. All the instructional
materials pertaining to the science content were authenticated and accepted by three
members of the science program faculty (i.e., one from each of the major departments:
biology, chemistry and physics). They also evaluated the credibility of the selected
resources (i.e., web-sites, handouts, etc.). In addition, these same individuals, along with
an expert in the field of cybernetics were responsible for the group instruction delivered
in the first phase of the research.

During the case study sessions, since I was the sole administrator, I curtailed
discussion that pertained to direct science phenomena that reached beyond my level of
accurate knowledge. I also was cautious with my use of scientific analogies. Whenever,

questions or discussion moved into areas of science, or complex systems, that were
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beyond my scope, my response was generally “to get back to them with an answer”.
Fortunately, these situations did not arise very often, and when it did, it was primarily
with one student whose cognitive skills were far in advance of the norm. I have identified
only one occasion where I misunderstood this student’s questioning and mistakenly
provided him with an inaccurate answer, which I attempted to rectify in our subsequent

session.

6.7 Establishing Validity (i.e., Trustworthiness and Authenticity)

Different authors suggest that validity of case studies should be established
through a variety of methods (Erickson, 1986; Patton, 1990; Merriam, 1998; Yin, 1994).
Some of the generally agreed upon ways of establishing validity include: (1) the
collection of different data sources thereby allowing for the cross-validation of findings
(i.e., triangulation); (2) the use of two or more evaluators to review material in each case
and make independent judgments and interpretations (i.e., inter-rater reliability); (3) an
adequate amount of data collected over an adequate amount of time to provide a range of
cases (i.e., confirming and disconfirming cases); (4) accuracy of facts and interpretation
of data evaluated by the cases themselves.

Attempting to reduce the first and third threats to validity, this study used multiple
measures to generate the data corpus over an extended period of time. Because the data
collection process spanned almost two years it allowed me to collect a substantial amount
of evidence of the students’ changes over time. I was able to establish a good rapport
with the nine students thereby increasing the “emic” component of the data. Subsequently
gathering evidence of both confirming and disconfirming cases.

The second recommendation to improve validity was addressed by having several
different individuals code the data to obtain an inter-rater reliability correlation score.
Lastly, accuracy of the facts and interpretation of the transcripts was attempted by having
the participants themselves review the data — what Creswell (1994) calls “members
checks”. Because the final session occurred months after the case study intervention, the
written transcripts were available for the students to review. Additionally, I provided the

student with his/her summary case reports and reviewed it with each respectively. This



132

allowed for some corrections as well as confirmation of their opinions as to how they had
experienced the intervention. A final effort to confirm conclusions regarding concept
maps was made by sending JPEG versions to the student by email. I requested feedback
if the maps were not representative of their current understanding. No one requested
changes, although I did receive a few emails of salutations confirming that they had

received the mailing.
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CHAPTER 7
RESULTS OF THE CASE STUDY INTERVENTION

Case study is a part of scientific method, but its purpose is not limited to the
advance of science. Whereas single or a few cases are poor representation of a
population of cases and poor grounds for advancing grand generalization, a single
case as negative example can establish limits to grand generalization.... Case
studies are of value in refining theory and suggesting complexities for further
investigation, as well as helping to establish the limits of generalizability” (Stake,
1998, p. 104).

Overview of the Chapter

The mixed method data analysis allowed for in detail exploration of individual
student’s experiences as well as qualitative cross-case comparisons and statistical
comparisons on the results of outcome measures (i.e., delayed posttest and final posttest).
It also permitted the triangulation of different types of data thereby adding to the
credibility of the data analysis. Because of the multiple data collection and analysis
reported in this chapter, I have divided it into six distinct sections. The content of each
section is described below and in Table 7.1. Additionally, a glossary of the terminology

used throughout this section is provided in Table 7.2.
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Overview of the data analyzed and reported on in chapter 7.

Triangulation of data sources

'i' - -‘2"5';" | 1}.4 ”;:" k‘ ) - . ' 4 ; i 1 - ) - "
Section Transcripts Study 2 Qualitative coding methods 1) CST used for
7.1 sessions (categories, themes) emergent causal
73 concepts
74 2) Other categories

; emerged from the
7.5 data.
7.6
Section Concept Study 2 Qualitative coding methods Combined method
72 Maps {Ruiz-Primo &
Shavelson, 1996).
1. concept pairing
2. criterion maps
Section Delayed Study 2 Mental model coding OMMT
7.7-79 Posttest f test analyses
Final Posttest | Post Mental model coding OMMT
Intervention
t test analyses
Section All data Study 2 Correlational analysis
7.10




135

Table 7.2 Glossary of complex systems terminology used throughout chapter 7.
COMPLEX
SYSTEM CODING DEFINITIONS EXAMPLES
TAXONOMY
* Ascending hierarchical organizations reveal the * Slime mold
phenomena of emergence. Emergence organized . R .
through communication and control mechanisms of the Bird flocking
hierarchy. ¢ Traffic jams
* Emergence makes use of the mechanisms of: (1) * Termites
tagging, (2) internal models, and (3) building blocks. .

EMERGENCE Mechanisms from lower levels provide constraints and Economy GDP
suggest what to look for at higher levels. Emergent * Immune system
phenomena show up in a multitude of science
disciplines: * Nervous system

* atoms - structure * Genome vs.
Phenotype
* gases and fluids
gases and * Individual vs.
¢ molecules in chemistry Population vs.
* organelles in microbiology Species
* cells in biology
* organisms
* ecosystems
Self-Organization * Self-organizing system comes together based on rules.

They exhibit goal seeking behavior. The reasons that
animate things do not fall into entropy. Negentropic or
homeostatic activities prevent entropy.

1. Local interactions.

* Local interaction of many individual agents result in the
formation of higher level entity.

2. Simple rules
produce complex
results.

* Simple rules produce complex resuits through a
complex interplay of local interactions.

3. Decentralized
control

* Emergent systems exhibit organization without
centralized control. (i.e., decentralized control). Agents
are independent and competition among themselves.

4. Random behavior

* Behavior of the individual agent is uncertain because of
the innumerable possible local interactions.

5. Tags

* Tags are an organizing mechanism that allows the
agents to select among agents or objects that would
otherwise be indistinguishable. They are filtering,
specialization, and cooperation devices. Tags are the
mechanism behind hierarchical organization-the
agent/meta-agent/meta-meta-agent/...organization.

I[nternet header on a
message

Immune system
operation.

Pheromone trails.
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6. Flows

* Feedback (positive
or negative)

Flows of information/resources throughout the system
using networks involving: node — connectors —
resources.

Flows through networks vary over time. Moreover,
nodes and connections can appear and disappear as the
agents adapt or fail to adapt.

Feedback is where the influence of an element impacts
on other elements through a series of relationships that
return to the initial point, i.e., feeds back on itself.

Multiplier effect is the result of (positive feedback).
Example of positive feedback (amplification of the
initial state. Out of control if it goes to far). Helps
achieve contained contraction or replication and
growth or can lead to uncontained and unstable
contraction or growth.

Recycling effect - also defines the constraints.

Local adaptation -
survival advantage
in evolution

Species - food web
interactions -
biochemicals for
ecosystem

Tropical rainforest

Predator/prey
relationships.
Example of negative
feedback (a way of
maintaining a steady
state).

Runners’ experience
of a metabolic high
can turn into burn
out of the
metabolism and
death.

7. Internal models

* Internal models (schemas) give the agent the power to

anticipate - tacit internal models simply prescribes a
current action/ overt internal models uses lookahead
protocols.

8. Diversity/
variability

Diversity also known as “requisite variety”. A control
system must have adequate variety. The variety of the
control system must be greater than the variety of the

controlled system or the environment.

* Ecosystems - tropical

rain forest.
Phenomenon of
convergence - nature
filling in a void to
accommodate
necessary number of
interactions. If a
species disappears
then another takes its
place.

Genetic variation
Mammalian brain

NY city's economy
based on
neighborhood
merchants
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9. Modularity

Hierarchical nature of systems allow for recycling of
useful components.

Building blocks are the components of a complex
system that can be used and reused in a great variety
of combinations like a set of Lego building blocks.
These reusable components make it possible to make
sense of novel situations. Subassemblies are building
blocks of the emergent complex system.

10. Pattern formation

Pattern formation: Prominent among simple
mathematical models that capture pattern formation
are local activation / long range inhibition models.

* Turing patterns, and
the work of Prigogine.

Weather - cells of
airflow, protein -
alpha and beta
structure,

* Physiology -
processes of pattern
formation in
development,

* Brain/mind - various
patterns of
interconnection and
pattern recognition
mechanisms (on-
center off-surround),

¢ Magnetic bubble
memories

* Patterns of species in
phenome or genome
space

* Economy/society -
patterns of
industrial/residential/
commercial areas.

11. Open/closed
systems

Generally emergent systems are open systems but can
be closed (e.g. gas pressure).

12. Multiple Levels

Systems are nested. Therefore complex systems are
made up of many subcomponents that may
themselves be nested systems.

Economy —
Organizations—

Departments —

Individual
employees—
Bodies — organs —
cells

13. Probabilistic

Probabilistic behaviors have non-deterministic
outcomes. Population size affects the results. The
larger the sample size the more reliable the prediction
of outcome and the more the outcome reflects a
“normal distribution” curve. The smaller the sample,

* Bell curve
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the more likely that individual differences will make
it difficult to predict the outcome.

14. Nonlinearity

Nonlinear systems are more complex than linear
systems. A feature of nonlinear systems is that
different starting points lead to different end points
and can cause the model to become unstable.
Behavior is often counterintuitive.

* Lorenz's attractors
* Weather patterns

* Predator/prey
interactions

* Genetic drift

15. Criticality

Lever points wherein small amounts of input produce
large directed change; threshold effect (e.g., phase
changes).

16. Dynamic
equilibrium

Homeostasis /Dynamic equilibrium with fluxes in
and out.

The notion that organisms (systems) exchange
information, materials and/or energy with their
environment in order to survive therefore over time
the materials that make up the organism (system) has
partially or totally changed.

Multiple (meta) stable states. Small displacements
(perturbations) lead to recovery, larger ones can lead
to radical changes of properties. Dynamics on such a
landscape do not average simply. Mathematical
models are generally based upon local frustration
e.g.. spin glasses, random Boolean nets. Attractor
networks use local minima as memories. Examples:
weather - persistent structures, proteins - results of
displacements in sequence or physical space,
physiology - the effect of shocks, dynamics of e.g.
the heart, brain/mind - memory, recovery from
damage, economy/society - e.g. suggested by
dynamics of market responses.

* Human body
* Institution
¢ Standing wave

* Traffic jam

17. Adaptation

Adaptation is defined as agent and environment
interactions. An example is “fitness landscape”.

"Fitness landscape". Part of a Hill-climbing algorithm
in which the search space turns into a fitness
landscape, where every point in the space
(“horizontal”) is associated with a “vertical” fitness
value, so that a landscape with valleys and peaks
appears. Problem-solving then reduces to “hill-
climbing”: following the path through the fitness
landscape that leads most directly upward.

* Evolution

18. Selection

Selection suitability of the particular trait an agent
has for surviving long enough to reproduce in a
particular environment.

It is also defined as information (a la Shannon’s

* Natural selection
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theory). Selection as information is relevant to the
issue of multiple selection: replication (reproduction)
with variation, and comparative selection
(competition) as a mechanism for POSSIBLE
increase in complexity. Consistent with modern
biological views of evolution it is essential to
emphasize that selection does not have to increase
complexity.

19. Time scale.

Time scale is a critical feature in development of
complex systems.

20. Multiple
causality

Emergent systems are dependent on multiple actions
and interactions to create their complexity. Therefore
the number of agents in an environment with multipie
components to interact with will create infinite
possibilities of outcome.
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7.1 An Overview of Who Acquired Which Concepts from Complex Systems Intervention

The results in Table 7.3 represent the itemized scores for 15 out of the possible 20
categories identified in the complex systems taxonomy (CST) for all nine students over
the course of three instructional sessions that employed simulations. There are two
important aspects of this global perspective that will be discussed: (1) the combined
scores (far right column), and (2) the scores for the individual sessions (see section 7.3).

Looking at the combined “raw score” (far right column blue shading) shows us
that all the students discussed, and possibly learned, something of emergent causal
processes over the course of each session. Examining the “percentage score” (far right
column no shading) shows us how the individual’s score compares to the combine totals
for all students for the session in question. From this we can see that there was a range of

individual differences resulting from the intervention.

Table 7.3 Complex systems concepts identified by student and reported by session.

1 2 3 4 5 6 7 8 9 (10111 112115
S | g8 | g g 3 | 8l % 3| & g 3°%
iz | g A 2
w ﬁ 172] g
norman| 84 | 4.6 23 21| 13 ] 04 0.1 19.1
40% | 22% 11% | 10% | 6% | 1.9% 0.4% 10%
perny | 9.1 | 22 | 0.7 | 22 [ 0.7 | L1 0.1 | 15 04 179
43% { 10% | 3.3% | 10% | 3.3% | 5% 0.4%| 7% 2% [9.5%
emilie | 12 | 24 | 03 | 0.1 0.4 0.1 15.4
57% | 11% | 1.4% | 0.4% 1.9% 0.4% 8%
moniq | 6.7 | 2 03 04102103 ] 01 |01 10.1
32% | 9.5% 1.4% 1.9%] 1% | 1.4%] 0.4%| 0.4% 5%
walter | 96 | 44 | 05 | 23 [ 03} L1 0.3 0.2 18.9
46% | 21% [ 2.4% | 11% | 1.4% | 5% 1.4% 1% 16%
mitch | 125| 66 | 1.1 | 3.2 | 0.6 | L5 0.2 25.7
60% | 31% | 5% | 15% | 3% | 7% 1% 14%
sidney (122§ 63 | 03 | 41 25| 04|04 ;01|03 ]02]03 26.8
58% | 30% | 1.4%| 20% | 12% | 1.9%| 1.9% | 0.4% | 1.4% ] 1% | 1.4% 14%
greg 1141 78 | 1.3 | 52 | 1.6 | 1.3 1 03 | 04 0.3 0.7 | 309
54% {37% | 6% | 25% | 8% | 6% | 5% |14%| 1.9% 1.4% 3.3%| 16%
sam 1151 64 | 1.1 | 21 | 1.9 | 0.5 04 | 05 1.6 | 25.6
55%|30% | 5% | 10% | 9% | 2% 1.9%1 2% 8% | 14%
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T HEEAEEEEEREERE
e |Z/=3| & ° 5 8 3 8| & 5| Elze
s |22 |2 2|3 a2l 2| 3| 2| 8| 3|3
[ @ |0 174 = Q) = = o
2 |ej@a || = | & 8§
b

Jnorman| 37 | 27 07| 15| 07 0.2 9.5
28% | 21% | 5% | 11% | 5% 1.5% 9%
 Tpenny | 44 | 21 [ 06 | 17 [ 01 02 0.1 0.1 93
34% | 16% | 5% | 13% | 0.8% 1.5% 0.8% 0.8% 9%

Jemiie | 41| 14 | 03 |09 ] 02 6.9
31% | 1% | 2% | 7% | 1.5% %

" { moniq 1 2 0.2 3.1
A 7.7% 15% 1.5% 3%
walter | 48 | 23 | 14 | 2 0.1 0.1 10.6
37% | 18% | 11% | 15% 0.8% 0.8% 10%

mitch | 58 |56 |37 3 | 13 02 ] 02 0.2 0.2 202
45% | 43% | 28% | 23% | 10% 15 | 1.5% 1.5% 1.5% 20%

sidney | 43 | 32 | 1.4 | 43 | 04 0.2 0.1 01| 14
33% | 25% | 11% | 33% | 3% 1.5% 0.8% 0.8% | 14%

greg | 84 |79 |68 51|02 02 | 02 02 1 02 {292
64% | 61% | 52% | 39% | 1.5% 1.5% | 1.5% 1.5% | 1.5% | 29%

sam | S6 |31 15| 2 |06 03]01]03 0.2 14
43% 3% | 11% | 15% | 4% | 2% |0.8% | 2% 1.5% 14%

4| 8| 2] 2103{03]05]01 0105|178

20% | 40% | 10% | 10% | 1.5% | 1.5% | 2.5% | 0.5% 0.5%| 2.5% | 13%

L penny |22 (23|08 13] 01 0.2 0.1 | 03 7.5
11% | 11% | 4% | 6.5% | 0.5% 1% 0.5% | 1.5% 5%

emilie | 49 | 47| 16 | 16| 03 0.1 0.6 13.8
24% | 3% | 8% | 8% | 1.5% 0.5% 3% 10%

moniq | NA [ N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | NIA
walter | 65| 63 | 22| 24 | 07 0.7 | 02 0.1 01| 08 | 202
32% | 31% | 11% | 12% | 3.5% 3.5%| 1% 0.5% 0.5%| 4% | 14%

mitch | 7.7 | 84 | 0.6 | 54 | 08 10 | 02 0.1 0.1 | 244
38% | 42% | 3% | 27% | 4% 0.5%| 1% 0.5% 0.5% | 17%

sidney | 143 | 76 | 0.7 | 24 | 08 05|01 ]01}02]01]o01 27.1
71% | 38% | 3.5% | 12% | 4% 2.5%[0.5% | 0.5%| 1% |0.5% | 0.5% 19%

| greg 6 [10] 4 | 2706 0.8 | 0.5 03] 01|03 25.7
: 30% | 50% | 20% | 13% | 3% 4% |2.5% 1.5% | 0.5% | 1.5% 18%
Slsam |52 8 [ 1532 0.8 0.6 | 04 02 | 20
: 26% | 40% | 7.5% | 16% 4% 3% | 2% 1% | 14%
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Table 7.1 further shows us that the kinds of complex systems concepts acquired
vary widely depending on the student and the simulation they were working with (i.e., the
session). From this presentation of the data we can also see that some concepts were less
likely to be recognized and discussed during the intervention. In the following section I

will discuss the significance of each of these observations.

7.1.1 Summary of Complex Systems Concept Identified
Table 7.4 provides a summary of the results from the larger data display (as
shown in Table 7.3). These scores support the contention that students’ experiences were
different but that they all appeared to have identified some emergent causal process from

the complex systems intervention.

Table 7.4 Summary of complex systems concepts identified during the three sessions.

Summary Students
scores for

3 © @ ) @ »
Emergent 9 a 3 § ;57 g =3 @ |
causal g 2 3 = @ g 2 Q
concepts S 5
‘Raw scores 46 B | 3 13 50 7 67 § 8 | 61 -
% of
combined 10.7% 8% 8% 3% 11.7% | 16% | 15.7% | 20% 14%
totals

[llustrating these data in a bar graph (see Figure 7.1) provides a better perspective
from which to make cross case comparisons. Based on increments of 10 points, it appears
that students could be classified into at least four groups of Emergent Causal Processes
Identifiers (ECP Identifiers). Greg, was identified as an outlier at the high end and
classified as at a “sophisticated level” ECP Identifier, whereas Mitch, Sidney and Sam all
fell within a 10 point spread (60 — 70 points) and could be described as “high-moderate”
ECP Identifiers. Walter and Norman were within the range of (40 — 50 points) and could
be considered “moderate” ECP Identifiers, compared to Emilie and Penny whose scores

of (30— 40 points) classified them as “novice” ECP Identifiers. Even when Monique’s



143

score was compared to averaged scores she still was classified as an outlier on the low
end.

The importance of these data and these classifications will become clear as 1
continue describing the results of this research study. For the present, nonetheless, they
should be viewed as a first level description of the qualitative results gathered that
support the contention that complex systems instruction can facilitate the acquisition of

awareness, and possibly learning, of emergent causal processes.

100
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60
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norman penny emilie  monique walter mitch sidney greg sam

Figure7.1  Bar graph of individual student’s results for Emergent Causal Processes
identified over three sessions.

Identifying differences and similarities between the students’ experiences helps us
to understand more about what variables are important to the learning of emergent causal
processes. In other words, it allows us to closely examine which of the variables (the
intervention, the learner, the conceptual knowledge) played a greater role in producing
the results observed on the outcome measure. In the upcoming sections I will continue to
describe these differences and similarities between students as well as the interactions

between their characteristic and the different simulations used during the sessions.
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7.2 Individual Expressions of Understanding Revealed in Concept Maps

Concept maps “are idiosyncratic representations of domain-specific knowledge.
Consequently, they are neither ‘representative’ nor ‘typical’ of any group.
Nevertheless, as examples, the maps offer insight into some of the characteristics
that are frequently seen in students with differing levels of conceptual
understanding” (Wallace & Mintzes, 1990, p. 1038).

This dissertation study did not use concept maps as a primary assessment
measure. Nor did it investigate the mapping process as a dependent measure. Rather,
concept maps were viewed as a means of generating another source of data to describe
the process of conceptual change; in the process it provided a pictorial data set for
triangulation purposes. It also allowed me to answer the research question: Did the
intervention facilitate the learning of emergent causal processes?

The rigor for validity involved in generating the list of concepts used was limited
to a review of the literature, whereas, establishing reliability was restricted to inter-rater
scoring of the node counts. In the analysis phase, I did not investigate possible
interactions between the concept mapping task and the students’ cognition; although
future analysis may contribute another dimension to understanding the larger questions
examined in this study.

Engagement in the concept mapping activity, however, generated rich transcript
data and more importantly solicited strong metacognitive responses from the learners.
This is not surprising given the cognitive processing required as well as the
metacognitive awareness evoked by the activity. In fact, de Simone and Schmid (in press)
suggest “concept mapping might be seen as being a “scaffold” because it requires the
learner to purposefully draw upon their prior knowledge and metacognitively assess the
way they are selecting and organizing the information” (p. 3). Consequently, the

metacognitive awareness was viewed as a beneficial by-product of the process.
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7.2.1 The Concept Mapping Process

Adhering to the three criteria — a task, a response format, and a scoring system —
described by Ruiz-Primo and Shavelson (1996) helped to document the concept mapping
process and thereby created an audit trail for this event. In the following section, I will

describe each of these criteria and what I did to satisfy them.

The task. Ruiz-Primo and Shavelson, (1996) tell us that the “task” is defined in
three parts, (1) what the learner is required to accomplish, (2) the constraints of the
performance, and (3) the “task content structures”. The latter is described as “the
intersection of the task demands and the constraints with the structure of the subject
domain to be mapped” (p.578). In this study students’ task demands were
straightforward: construct a concept map reflecting their understanding of complex
systems’ behaviors. The task constraints included using the terms provided, however, it
was not limited only to those terms only. The students were allowed to arrange the terms
in any manner that best reflected their changing understanding. Lastly, no constraints
were placed on the structure of the maps therefore the final organizational structures were

evaluated as evidence of students’ conceptual understanding.

Response format. In this study the student was presented with the 12 terms related

to complex systems’ behaviors on “post-it” notes and asked to arrange them on a board in
such a way as to express their understanding of how the terms may be related. Maps from
the first mapping session (session 2) therefore appeared a little clumsy because of this
technique, even though students were given the opportunity to draw links or add
comments. After the initial activity, the interviewer transcribed the maps into pencil and
paper representations. All subsequent mapping activities were made in this dual mode
with the student provided first with the paper version of their map, and if they required
more freedom to move nodes around, they were provided with the post-it notes on a
board. These two modes of response formats were viewed as supporting each other,
therefore, they should not account for any variation or change in the concept maps

produced between students or sessions.
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Criteria Used to Score Concept Maps in Study 2

Informed by the literature (Ruiz-Primo & Shavelson, 1996; Jonassen, Reeves,
Hong, Harvey, & Peters, 1997), I selected two criteria to evaluate the students’ concept
maps: (1) concept pairings (Bell & McClure, 1990), and (2) organizational structure
(DeSimone & Schmid, in press).

Criterion 1. The importance of the concept-parings (i.e., node-link-node
relationships) was established using criterion maps (experts’ maps). The literature tells us
that comparisons to experts are always controversial because there is substantial evidence
that experts’ knowledge representations vary dramatically one from another. However, I
attempted to address this limitation by using an averaging technique (e.g., average of
experts, average of high achieving students, etc.) as described by Acton, Johnson and
Goldsmith (1994). Their findings suggest that average ratings of experts improved the
comparisons. Because of my access to a limited number of experts I used a standard

textbook definition of complex systems as a starting reference point (see Appendix B).

Establishing the weighting of the links based on the text definition. Among the
twelve concepts, three were lexical concept: “complex system”, “simple system” and
“system”. Of the possible pairings it was anticipated that “complex systems” lexical
concept would form a central node and be closely linked with the following concepts:
decentralized, dynamic, random, self-organizing and probabilistic (represented as
“yellow” rectangular nodes in the concept maps); whereas, “simple systems” would not
be directly linked to these terms (represented as “blue” rectangular nodes in the concept
maps). Therefore the former relationships were assigned a score of 1 point for each direct
link. The remaining concepts, centralized, algorithmic, static, predictable, (represented as
“white” rectangular nodes in the concept maps) could be linked to either “simple
systems” directly, or to “complex systems” but in an indirect fashion; that is, qualified by
direction of links and/or propositional statement between nodes. No score therefore were

assigned to these and less predictable paired relationships.



147

Establishing the weighting of the links based on criterion maps. Based on the

maps collected from four experts, [ determined the weightings to assign for the links
between nodes. Starting with the map (Figure 7.2) I established that many concepts were
indirectly linked to the central node “complex systems”. Furthermore, in addition to that
node, the term “self-organization” also formed a central node on other experts’ concept
maps (see another example Figure 7.3). Three of the four experts generated maps
supporting these linked pairs. Hence, these consistently paired relationships were

assigned a weighting of 3 points. They are as follows:

self-organizing paired with  probabilistic / random =3 pts

"

self-organizing dynamic =3 pts

"

probabilistic random =3 pts

Two levels of pairings were thus assigned. The former as described by the
textbook definition of complex systems, and the latter based on these averaged criterion-
map paired relationships. If these terms were linked to a paired concept in more than one

fashion, each link was scored as a separate pairing.

Criterion 2. As a second criterion to examining and scoring the students’ concept
maps I drew upon DeSimone and Schmid’s technique for analyzing the deep structure
and quality of concept maps (see DeSimone & Schmid, in press). However, because
concept mapping in this study was used primarily for eliciting verbal protocols (i.e., more
claborated conceptual reasoning thereby richer transcript data), as opposed to being used
as a main assessment activity, I chose to adopt a simplified version of their analysis and
scoring technique. Instead of examining the maps at the many possible levels of labeled
relationships structures, I applied the scoring only to the organizational appearance of the
map. Hence, hierarchical maps were assigned 3 points, cluster formations were assigned
2 points, and chain formations assigned 1 point. In the event of maps that were
somewhere between a cluster formation and a hierarchical formation, I assigned a score
of 2 points. Only obvious vertical relationships with evidence of subsuming levels of

organization were assigned as hierarchical maps.
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7.2.2 Scoring of Concept Maps

Examining the scores for session 6 (post intervention) the results show that Greg
scored 12 points (Figure 7.4) and Mitch scored 11 points (Figure 7.5) and made a
considerable number of desirable concept-pairings; followed by Sam with 9 points
(Figure 7.6) and Walter with 9 points (Figure 7.7). By comparison, Sidney scored 7
points (Figure 7.8) and Norman scored 5 points (Figure 7.9) both displayed a moderate
degree of desirable concept-pairings. Finally, Emilie with 3 points (Figure 7.10) and
Penny with 2 points (Figure 7.11) both scores are substantially lower than the average.
Monique’s maps are not shown because she did not complete session 5 and 6, which were

crucial in the development of the other students’ maps.

Table 7.5  Scoring of Concept maps on criteria 1 & 2 over time.

Quantitative g @ g = S @ % @
Scoring of 3 é = = a 3 Q 3
Concept Maps o = =<

Criteria 1 1 i 0 2 3 4 2 2

Session 2 | cpiteria 2 || I 1 2 2 2 2 2
-initial

Sub total 2 2 2 4 5 6 4 4

Criteria 1 3 1 0 7 9 5 9 7

Session 6 | criveria 2 2 1 3 2 2 2 3 2
-post

Sub total 5 2 3 9 11 7 12 9

Total 7 4 5 13 16 13 16 13

Change +3 0 +1 +5 +6 +1 +8 +5

In summary, the change over time resulted in large gains for Greg, and
moderately large gains for Mitch, Sam, and Walter. Whereas, Norman’s results showed
moderately small gains, Sidney and Emilie showed very small gains. Penny was the only
student to show no change between assessments. Although these quantitative results
allow for comparison across cases as well as triangulation with other results, additional

and rich information was gained from a qualitative inspection of the maps.
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Over the course of the next few pages I will present the concept maps created by
the students in session 2 and the final meeting, session 6. These maps almost speak for
themselves in as much as they show some dramatic changes in understanding of
emergent causal concepts that are framed within the context of complex systems
thinking. As the scores above suggest, the maps clustered the students into three
groupings: (1) “sophisticated”, (2) “moderate”, and (3) “novice”, understandings of
complex system relationships. I will present the maps in decreasing order of elaboration
therefore the first ones with represent the most sophisticated understandings.

This quantitative scoring method established a baseline of difference within cases
(time series), as well as allowed for between students comparison. Afterwards, I
examined the concept maps in a qualitative fashion for evidence of qualitative changes

both across time, as well as cross-case analysis.

7.2.3 Group 1. “Sophisticated” Understanding of Complex Systems Relationships

Both Greg (Figure 7.4) and Mitch (Figure 7.5) produced hierarchical type maps
and demonstrated elaborated understanding of the term “complex systems” and its
relationship with the concept of “self-organization”. In particular, both students appeared
to recognize the important connection between it as a central node and the many other
associated influences; for example, random action (Mitch) and probabilistic lined to
random behaviors (Greg). A further level of understanding was revealed by Greg’s
addition of the term “emergence”, also viewed as a central node. He independently chose
to add this term, and, as we can see, he connected it directly to “complex systems” as
well as “self-organization”. | contend that, from the perspective of this study, this was an
important conceptual shift.

An important consideration. Although not accounted for on the scoring schema,

how students came to understand this relationship between “emergence” and the other
complex systems concepts merely through observations and interactions with the
StarL.ogo environments was important to this study. The intentional omission of this term
therefore provided a means to assess the sophistication of the students understanding.
(N.B., when the term is present in the student’s concept map it is identified as a “green”

elliptical shaped node).
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Sam’s concept map (Figure 7.6) was a cluster formation and looked very different
from those described above. However, his organization of terms revealed a level of
sophistication that placed him in a unique sub-category of group 1. His identification of
concepts was more similar to the expert (Figure 7.3) in that he created a central node out
of both “self-organization” as well as “dynamic”. Because of these relationships I argue
that Sam’s clumping of terms into equilibrium-type complex systems and dynamic-type
complex-systems demonstrated a higher-level view of complexity. When asked to
explain this organization, Sam was able to be reflective and in fact made a small revision

to his map based on the conversation below.

I: What's happened between then, which is a long time ago and now (laughs) to
make you change? 199

Sam: I think I changed a lot of the way I studied. So I tried to link things
a bit together. Not like a concept map, but I tried to link... I do try to
go from cause to effect, the results a lot, I guess. So I use just complex
system as the basic centre, and I'm working off of that. So I decided that
dynamic and static were two different kinds of complex systems, and that all
these others were descriptions of a dynamic system while, centralized and all
these others were descriptors of static system. And, there, I don't, I don't
agree with what I said at all anymore, because to me a static system doesn't
have to be a simple system. 201

Sam: Systems that are self-organizing don't have to change that much, and if
it's predictable, it's static, if it's algorithmic behavior it follows rules,
so it's got to stay pretty much, in a certain area, it's not dynamic like a

system that might, rely on chance and random behavior, and isn't centralized.

I: 0K, and why did you take away self-organizing? You don't think a dynamic

system can be self-organizing? 207
Sam: I think it can... On a bigger scale, I guess. If you look at it from a
big scale, a system that relies on random behavior, might, organize itself in
the end, but I mean... 209
(pause 4s)

Sam: You see I hadn't thought of that. Now I'm not sure anymore. 213
I: No, no, I'm not suggesting that you're wrong... 215

Sam: I know, but you brought it up and...(laughs) I didn't question that.218

Sam: Because a dynamic system you look at on a bigger scale, to be self-
organizing. While a static system I think is more self-organizing, but on a
smaller scale. 221
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Sam: Pretty much. Like I'm saying it goes, up and down. Like if you're
looking at a chart, and it goes up and down, it's not continuous, if you're
looking at it from far enough away, it does look like, one straight line I
guess, if you're looking at it from far enough away, and that's... That's
the way I was thinking about it, I guess. 229
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7.2.4 Group 2. “Moderate” Understanding of Complex Systems Relationships

Walter, Sidney and Norman all fell into this classification. Whereas Walter’s
(Figure 7.7) map is more similar to Greg and Mitch (see above) in its somewhat
hierarchical organization, Sidney and Norman produced a cluster type concept map.
Walter like Sidney, views “self-organization” only as a link between types of systems —
simple system and complex systems. Compared to Sidney (Figure 7.8), Walter
demonstrated some understanding of the probabilistic nature of complex systems and the
role of random actions. As argued in the section above on scoring, I contend that this was
an important recognition therefore placing Walter’s understanding above that
demonstrated in Sidney’s maps

Sidney does not have many important linked relationships. For instances he did
not suggest any link between “self-organization” and “random” or “probability”. In fact,
most of his node-link relationships were single attachments radiating out from the central
nodes of “complex system” and “simple system”. Nonetheless, he demonstrated that he
had elaborated his understanding demonstrated through the additional terms attached
(shown in pink).

Finally, both Walter and Sidney added the term “emergent” to their maps,
suggesting that they were aware of this concept as a central feature of the intervention. In

fact, Walter described why he added the term in the excerpt below.

I: Yeah, it wasn't part of the set of things I gave you. The ones in grey were

the ones that you added. Which I thought was a good thing to add. 237
Walter: Yeah. 239
I: I was very pleased that you added those. 241

Walter: Well yeah, because we observed these things in the computer programs
that we were looking at. 243

I: And what's an emergent property again, how would you describe that? 245
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Walter: From what I remember it's just, um from observing the system there's
certain properties that are characteristic of that system, that you begin to
notice after you observe it for awhile. 247

I: OK and an example...?

Walter: (talking over I) I remember, I remember like the... The clusters
there, of like the ants, like the ant hills or whatever... 255
Walter: Like that, that I could... I felt that that was an emergent property,

because you know that they're going to, form clusters. But you don't know
exactly where they're going to be, exactly, because it's still governed by
probability or whatnot, but you know that they're going to occur. 259

Norman (Figure 7.9) like Walter also had a somewhat hierarchical structure to his
concept map. Like Sidney, he too displayed the radiating type of relationship of concepts
suggesting a less sophisticated relationship between terms.

Two important differences in Norman’s map are (1) is removal of the term
“random”, and (2) his failure to add the term “emergent”. Unlike other students within
this classification, Norman did not integrate the purpose of the study with this activity. It
appears that from a metaconceptual point of view he experienced the simulations as
completely separate from the assessment activities. This point will become clearer when
looking at the results of the outcome measures.

Although Norman experiences a substantial change between session 2 and 6 as
evidenced in the changes in his maps; and although he demonstrated a moderate
understanding of emergent causal processes through the connection of the terms “self-
organization” and “probabilistic” behavior; he also appeared to seriously hampered by his
component beliefs. Looking at his concept map the placement of the term centralized
directly beneath self-organization without additional qualification, and placing
decentralized under algorithmic are tell tail signs of the conceptual struggle describe
earlier (see page 147 for excerpts of discussion relating to this). I contend that this is
more evidence of the strong clockwork component beliefs guiding his thoughts and

limiting his understanding of emergent causal processes.
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7.2.5 Group 3. “Novice” Understanding of Complex Systems Relationships

Penny and Emilie fall into the third classification of maps. Both students
constructed very different types of representations, however both are at a “novice” level
of understanding. Whereas Emilie (see Figure 7.11) drew a hierarchical map, Penny (see
Figure 7.10) created a chain-like map quasi-procedural type map (Ruiz-Primo and
Shavelson, 1996). Therefore it may be that Penny viewed this knowledge in more of a
procedural fashion or maybe she felt safer sticking with a simple explanation because she
did not know how to describe her developing understanding. This interpretation is
consistent with DeSimoni and Schmid’s (in press) findings that students’ fall into one of
three classification of mapping strategies. From their description it appears that Penny
could be labeled a “safe player” whereas Emilie would be best described as “limited
processor”. Both these types of strategies may have affected how much either student
acquired knowledge from this concept mapping process. For instances, even with the
direct intervening of the coach, and although she is dissatisfied with her map, Penny does
not change the arrangement of her map. I contend that this “safe player” strategy is
mainly due to her understanding of the concepts. As will be demonstrated elsewhere,

Penny found the content itself to be challenging.

Penny: Um, it's, here it says it has self-organization... 973
I: Mm-hm. 975
Penny: ...which, is part of both of them? 977
I: It's part of both of them? 979
Penny: Yeah. 981
I: 0K, both of...? 983
Penny: Both simple and complex. 985
I: OK.

Penny: Which is, I think, what I thought before. 289
I: Mm-hm. 991
Penny: First I think I put it under, simple, but then I changed it. 993
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(pause 7s) 995
I: Yeah. (pause 18s; papers ruffling in background) 999
I: Yeah this was the last... OK, you have self-organization... Yeah.

First you had a sort of linear description... 1001

Penny: Yeah. 1003

IL: ...with self-organization as simple, and then you went to, you re-drew
it, and you had, self-organizing system connected to complex, and simple.

And with this thing... 1005
(pause 4s) 1007

Penny: Um... Well this part for sure. But uh, after seeing different, uh,
systems, and how they're not linear, I don't know if I should have put them

linearly, even though, it makes sense... 1009
I: Mm-hm. 1011
Penny: ...to me, right now, but... Somehow I think, it should be arranged,

but I don't know how. 1013
I: How? OK. 1015
Penny: I don't, like... (pause 8s) 1019
I: It's OK, you know, it's just it was... 1021
Penny: No, it, it still makes sense. 1023
I: 0K... 1025

Penny: Well because like, when I put it this way, it doesn't mean that, this
whole stack that follows that, it just means that they're all, related. 1027

Emilie’s map. Examining Emilie’s concept map, we also see a great deal of
difficulty in the development of her understanding. From her transcript data [ interpreted
her efforts to create a hierarchical structure more as a reflection of her clockwork mental
model. It appeared that the general framework used to understand the simulations, what
may be better described as an “analogy”, appeared to be a non- emergent hierarchy (i.e., a

political system). If fact she explicitly states this on several separate occasions.
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Session 4

Emilie: Now I'm thinking more than one, like, one sort of system. Like, sort
of like mini-system I was going to say, in the um, in the, let's say, in the
bigger system. Then you have like different kind of structures in each
system, kind of like... Hm. Kind of like politics.

Later in session 4 she again states:

Emilie: I don't know, um, like you got, what do you got you have Liberals,
you've got Conservatives, and they're all in the same kind of, you know
they're all in Ottawa, and, you know, they're always obviously fighting all
the time, but I think it's they're all part of the same system which is
politics, and you know, the way Canada is going to work, or...

Again during session 5 she says:

Emilie: I don't know, I guess I always understood the um, I don't know, the
social world better, like um... I guess, it wouldn't only be political but...
So now, you know, I don't know when I talk about systems and complex systems
and then simple systems driving from that, of a system I think more like a
country, a complex system, would be kind of smaller than this huge system, it
would be more like uh, provinces as I said.

And then each system, sorry, each simple system, would be um, would be like a
town. Or you know either, coh now, that I think rural and urban, I should
maybe still do that. Um... 481

Finally, there appeared to be a robust reductive clockwork component belief in
Emilie’s thinking. In fact, it almost seems to be a stubborn streak in which Emilie resist
“seeing” the evidence as demonstrated by the simulations as well as the coach’s prompts.
Her reaction is best described by Chinn and Brewer’s (1993) description of the fifth
reaction to anomalous data “reinterpret but retain original theory”. Therefore in addition
to trying to understand the content knowledge she is also challenged by her component
belief. Below is an excerpt from her discussion in which she insists that systems can be
reduced. Of all nine participants, Emilie was the only one who appeared to demonstrate

this level of conceptual conflict and this level of entrenched clockwork belief.

Emilie: It's just... it’'s not more confusing, it's just what I.. I don't
know. It's just that, well I still stick to what I say earlier, is that I
would not think of let's say one making, of like decomposing a complex
system, I would not think of it, like there's only one way to do that. Like
in politics I see this totally in a different way, or... Not totally, but I
don't know, still kind of a different way, I would put... 954
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I: OK, you've mentioned that a couple of times. Decomposing a complex
system. Do you think you can really do that effectively, of should it be the

other way around? 956
Emilie: What do you mean, the other way around? Like... Like the way you

analyze a new sentence, is that what... 958
I: Yeah, the way that you would try to understand it. 960

Emilie: I think you would more like go and put things back together, and
sort of, you know, separate them, because you end up with... 92

(pause 1@sec)

I: Think about your body? If we broke it apart would you be the same? 972

Emilie: Sure, why not? (laughs) I don't know... 974
I: Could we put you back together again, afterward? 976
Emilie: Probably not. 978
I: Yeah, and why is that? 980
(pause 5s) 982

Emilie: I don't know, probably because you're used to some certain structure,
and the way they are, and like, the idea of putting them back together, we'll
not put them back in the right place, or they'll not necessarily know how to
function. And, I don't know, the sort of so-called human body. I don't
know.

Because I'm, I'm thinking of like all those things they do with, I don't
know, like take the example of fish, like fish that are, or I don't know some
animals, they take them into the zoo, in order for them to reproduce, and,
like, they've never really tried to put them back in their environment, like,
if they, if they've been born in the zoo, and they've been fed by a human,
and if they've never really caught their own prey, and then if you want to
put them back into nature, they would not necessarily know how to survive or
how to react. So... I don't know. I'm thinking that this would probably
not... 986
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7.2.6 Summary on Results of the Concept Mapping Activity

The concept maps show that most students evidenced considerable development
in their understanding of the concepts regarding complex systems behaviors. Over half
were able to construct relationships between the key concept nodes of “complex system”,
“self-organization” and “probabilistic behaviors”. This understanding was also seen in
the transcript data (evidence discussed in the next section). Four students were able to
identify the importance of the concept “emergent behaviors” by deciding on their own to
incorporate the term into their concept maps. This marked a significant development in
their understanding of how complex systems are related to emergent causal processes. |
contend that this was noteworthy because some of these changes to their maps were made
at the final interview, one year after the end of the intervention (i.e., session 6).

Lastly, one other important observation was made from these concept maps. It
appeared that the concepts of “random” and “predictability” were particularly
problematic for some students — a common finding in the literature (e.g., Wilensky 2001).
In fact, Norman completely removed the term “random” from his final map; and links
“predictable” to simple systems. For others, like Sidney, it appeared that although he had
developed a good understanding of randomness as accounting for change he still did not
link it to the probabilistic nature of complex systems. This was surprising given his
transcript data indicated otherwise. However, he demonstrated a more sophisticated
understanding of “predictability” by annotating the link with the conditional statement of
“at a higher level”. This suggested that his understanding of “predictability” was more in
line with the greater stability exhibited by higher levels meta-agents as demonstrated by
the simulations. On the other hand, Greg, Sam and Walter, from their maps appeared to
understand the important relationships between “randomness” and “predictability”.
However, as will be shown in the following section, this should not suggest that it was

without a certain degree of cognitive struggle.
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7.3 Two Independent Case Studies — “The Student’s Voice”

The main intention of this upcoming section of the results chapter is to provide
two contrasting case study examples of the types of restrictions that component beliefs
appeared to place on the development of emergent framework mental models;
additionally, the different ways students used aspects of the intervention to facilitate
change in their conceptual frameworks. In so doing I will address two aspects of the
research questions:

(2.a) Which of the ontologically-based concepts are more difficult to change? (2.c)
What role do cognitive scaffolding and other metacognitive support play in this

learning process?

Why did I select these two cases and not others? Although other cases also
provided important insights into the challenges involved with learning about emergent
causal processes, I contend that these two cases are most closely contrasted because of
the seemingly similar starting points of the participants. Both students demonstrated some
level of emergent framework component beliefs, but their experiences produced very
different stories.

Lastly, these cases bring to light one of the significant considerations regarding
ontological barriers. Both these students struggled with the attribution of “determinate
causality” but from slightly different perspectives. I contend that although the concept of
“random” actions appeared to be one that the students accepted, it was also challenged by
a deep ontological commitment to “determinate™ causality. This point will become clear

as these cases are developed in the following section.

7.3.1 Greg’s Case Study Report

What did Greg learn about complex systems thinking and emergent causal
processes? How did he come to acquire this knowledge? Two things that I focused on

with Greg were: (1) the mental model that he changed (i.e., deterministic behaviors); (2)
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the mental model that he elaborated (i.e., emergent self-organization) particularly through

the concept of “flows of information”.

Greg’s Pretest Results

From the pretest answers Greg demonstrated evidence of only one clockwork
attribution, that of “determinate” causality (i.e., predictability). His answer displayed
evidence of predictability and procedural protocols — in other words, “if-then” types of
statements. Although not coded as CWMM his answers did not meet the coding rubric’s
requisite level of evidence for five out of the six EFMM categories (see Chapter 3 for
OMMT coding taxonomy). The coders did infer some evidence of probabilistic “Final
Causes” in the proposition: “when there are multiple attractions the stronger one will

attract more ants”.

The ants walk around smelling and when they are attracted they aggregate
towards the center of attraction [food].

They then remove the food and take (it) back home.

When there are multiple attractions the stronger one will attract more ants.

Greg’s pretest results for the “Ant” question suggested that he was typical in his
lack of EFMM attributions; however, there was evidence from the other answers that he

understood a great deal about systems. In fact, he uses the term systems twice.

Butterfly answer:

This uses chaos theory on an exponential basis. What happens is that the
disturbance is amplified as the particles within the system communicate
[react]. This rarely occurs because many disturbances counteract each other.

Traffic answer:

Traffic jams form when one car stops or slows down. Since reaction isn’t
instantaneous there is a lapse between the first and second car slowing down.
This happens exponentially if the cars are close enough to be affected.

Robot answer:

They would need to distinguish gold and then begin to remove it. But they
would factor in structural integrity of the mines. This more complex system
requires many robots working in tandem. Once a mine is empty they split up
and search again.
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These additional data placed Greg as an outlier in the cohort of participants. Thus
identifying him as one of the individuals that I would choose to follow more closely to
determine how he would elaborate his EFMMs and if he would restructure the CWMM

(predictability) of which there was evidence.

Final Posttest — Pre-Case Study Interview

One of the questions in the pre-case-study interview probed for explanations of
the student’s prior beliefs and questioned if there was change: “Did any of your ideas or
beliefs change because of the workshop, and if so, which ideas or beliefs?” Greg’s
answer to this question revealed his use of a conceptual anchor (i.e., conceptual model),

his knowledge of Boolean algebra.

G: Um, none of them really changed I guess, because like I came in not
knowing much about complex systems, well not much, not anything about complex
systems.. But I just realized that, in the end, like almost all matters of
science, like math and chemistry, do relate a lot in the end, by simple
mathematics, and rules and concepts. Like I'd always thought that, but now,
I've made it much stronger.

I: Anything specific? Was there any one thing specifically that was sort of
the moment, where you said ‘ah, this is how I can relate all of these
together’?

G: Um, there was when we were asked to write our own notes for a little bit,
on I forget what subject it was..

I: OK.

G: ..and it was then that like, in my own notes, I tried to explain it to
myself. So that’s like, that would be actually a moment where I felt, hey,
this is like Boolean algebra.

I: OK.

G: And it just started from there.

I will show how other students also used a conceptual model to build their
understanding of complex systems. Each model would have its strengths and weaknesses.
In addition, I contend that in this case, the logic of Boolean algebra provided Greg with a
very robust model on which to build his understanding but it also provided him with the

limitations of a conceptual deterministic model (i.e., at the level of the logic truth table),
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which he would be challenged by. This problem was a challenge to several of the
students who understood the procedural nature of the computer models by interpreting

this as always having a deterministic outcome.

7.3.1.1 Greg’s Conceptual Struggles (Determinate causality versus Randomness)

Greg when provided with an ontological prompt during session 1, answered with
an explicit statement describing the Slime mould model as being deterministic. His view
was that the computer program limited the options and therefore the outcome was

determined a priori, therefore predictable.

I: So, do you think there’s anything driving these kinds of system? Are there
some variables that make it more deterministic or is it all happening without
having any kind of plan?

G: Yeah, I think it’s more of a deterministic system. Because like even
looking at the way that this is set up there was a minimum number of turtles
that you could have and I think it starts off as a system that has a plan and
that all the other variables just act on whether like it’s your plan is to
have a one circle or a lot of small groupings or clusters so you have a
deterministic system.

He would again challenge his understanding of how the elements of chance
operated within these systems. From session 2, when returned to a second look at the
Slime mould model he again debated the operations of the system. This time he
articulated his beliefs in a running discourse that took him through the untangling of
where the element of randomness was attributable and where it was not. He eventually

reflected on the non-isomorphic relationship between the individual and the system.

G: No, it’s like making, um, axioms or something. if you start off with
something like although you say it’s the probability of it happening, it
will happen over time. It’s not really a probability as much as it depends
as a rule.

I: But, isn’t the rule being given to the individual?
G: But even though the rule is being given to the individual. I guess like,
lets say if I said, if I switch the nose angle up to 18@. Its increases the

probability of them conglomerating into groups..

I: Mm-hm.
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G: With them staying there. But the thing is for the individual it increases
that but the whole system, it means it will have those groups, like what are
the chances.

I mean it just make it kind of a rule, like I switch it and it happens.

It’s not really the chance of it, it has an increased chance but that
increased chance makes it a rule. It’s like an axiom of it.

I: OK. Are you suggesting that within this particular system it becomes
deterministic?

G: Yeah. If you change certain things.
I: OK.

G: For the individual it’s still chance, it alters your chances for the
whole system

I: You think so?

G: I find, well look at this, here I have a nose angle like that .. see at
zero how quickly it expands, right away.

I: OK. Let me understand this more clearly.

G: It’s because the individual, like because the system has order. So like
order isn’t based on chance, order is based on rules, more .. So by changing
the chance of the system, no, by switching the chance of the individual you
change the order of the system

I: OK.

G: Which is why, like last class [session] I said that these things like
they’re not really affecting the individual as much as they are affecting
the system because they change the order of the system whereas they only
change the chance of the individual. Like chance isn’t always the outcome,
it’s just the most likely outcome.

I: So, if I'm understanding you correctly, if we’re looking at the different
levels, at the level of the individual, it’s probability..

G: yeah.

I: But on the level of the system , it almost becomes deterministic?

G: yeah.

G: yeah. And that’s the whole basis of a complex system though, isn’t it?

Like it has um, like the individuals wont mirror the system itself. The
system itself has a sense of order. It’s not determined by the individual.

His understanding of the concept of randomness again showed signs of challenge

and development in session 5 when constructing his concept map. At this point he
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recommended removing the term “random” since he didn’t see it as truly representative
of complex systems’ behaviors. He decided that the term “unpredictable” should replace
it. This level of debate was a very sophisticated one. As described under the heading of
affordances for learning emergent characteristics, I point to this as an example of the
limitations of the Multi-Agent simulations employed in this study. Hence the
comprehensive understanding of the concept of randomness may be difficult to acquire
because the simulations have not built in the generation random “noise” within the
system. Therefore, I did not judge this as an example of Greg’s inability to understand
predictable actions versus unpredictable (random action) environments, rather, his
coming to terms with the representation presented by this conceptual model; therefore, a

challenge for him to overcome.

(looking at his old concept map)
G: Take off random. I really wouldn’t think that they’re that random anymore.
I: No?

G: Alright. Like I don’t think.. I'd say more unpredictable. Am I allowed to
add words?

I: Yeah, absolutely.

G: I’d dalso say that [unpredictable is] not being the same as random.

I: To you random means?

G: It’s just like. Um it’s not even totally unpredictable. It’s just that

it’s not always predictable. Whereas random means likeé totally unpredictable.
So this is sometimes predictable.

Eight months after the instructional intervention Greg demonstrated his
integration of this concept into his EFMM. Using his knowledge from his science
courses, particularly biology, he expressed a substantial development in his

understanding of the concept of randomness.

G: 0K, I think the one thing that I'd do, ts that I would add random to the
single system, to the simple system.

I: Why?
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G: Because uh.. There’s the uh, the factor of change involved. And just like
the small, minute things that each uh, each simple system does.. That, that
will get uh, like, absorb into the complex system without really having any
real effect on it, unless there’s a lot of random events. But uh, you know
there has to be randomness somewhere, it’s not like, as I'm far I’m
concerned, I mean random events happen.

I: OK, and what's made you change this idea?
G: Um, well I don’t know why I took random out in the first place. I really,

can’t remember. So uh.. So for me it’s not really changing it, it’s just uh..
Just you know..

The coach takes out the notes and reminds him of the debates he had concerning
this concept. Since he cannot remember exactly what his original thinking was, he was
asked to explain once again how he now wished to construct his concept map. Before
taking biology Greg did not appreciate the role that random noise, like mutations, played
in providing the system with opportunities for variety thereby changing the direction of
the system’s outcome. In session 6 however, he was able to eloquently express the
function of randomness within the complex system stating: “it creates possibilities”. He
also appeared to have integrated this concept with that of probabilities which provide the

system with a sense of order.

G: 0K, so you want me to explain it like a friend to you?
I: Yeah. (laughs)

G: OK, well, I'd say, a complex system is uh, is made up of simple systems.

Of which it can be uh, I'm trying to get away from this light but not in my
face, OK.. A complex map is made up of simple systems. And these simple
systems are random, and dynamic. Like, they follow simple rules, but there’s
also the whole probability of chance. Like chance is a factor. And so that
creates um, randomness, and that creates possibilities, also. That if there
were no random events, then you wouldn’t have those possibilities. Um, but
all these chance events, they, when they get absorbed into the complex
system, they have very little effect. 1It’s like throwing a pebble into a
river. Sure, you might course the river in a one in billion chance or
something, but chances are it does nothing. It’s not going to affect the
flow of the river in any way. Uh, so, what that means is that complex
systems, they follow more rules of probability, and they, they.. They I kind
of guess being mathematically defined, with algorithms I guess, because
they’re more likely to, have, um, a real sense or order, that the simple
system itself won’t have. So what that means is that it’s self-organized,
and it’s uh, um. It’s called emergent properties. Um.. A complex system is
obviously a system, I think that’s, a little bit uh, redundant. And there is
the chance of uh, unpredictable events, for example, you did throw the
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pebble. That pebble might stop the flow of the water, by the grace of God or
something, so nothing is for sure I guess, there is always the element of
chance involved. But they’re by and large more predictable than simple
systems. And.. I think I used everything here.

In a closing comment regarding this concept Greg says:

G: I guess it’s just, they’ve become morel like, more apparent to me, like..
That you need probability and chance, I guess I just finally realized it
today a little bit more, that you need, like there has to be, different
levels, otherwise it’s like it’s not a complex system. That’s the whole,
notion of it. And that there’s some type of emergent properties in the
system. Because otherwise you wouldn’t use a system to, to describe it.

7.3.1.2 Emergent Framework Component Beliefs — Greg’s Elaborations

Emergent Self-organization (higher-level understanding)

The other concept that Greg developed was that of “emergent self-organization”.
Greg developed an understanding of self-organization through the recognition of the
mechanism of “flows”. By grappling with what works to keep the system together he
enriched this particular mental model. It started with a minor comment on the interaction

of the Slime mould in session 1.

G: Umm, the angle I guess, it’s a factor that states whether it will stays
where it is or go and search out another group, because if you have a large
enough nose angle and it kind of turns into a circular motion it smells the
one behind it and the one behind it smells the other and they just never move
they can stay in the same place without, without moving and the more you
have, the larger of a chance that they never will move from the circle.

So if you have a small nose angle it forces them to seek out other smells so
it kind of causes a lot more movement and smaller groups aggregate into
clusters.

He developed the idea further by reciting the thing that keeps the emergent system
together in the case of the GasLab model. It is not clear if he realized at this point that it

is the rules of collisions that is guiding and organizing this particular system.

G: Although I think the system will eventually just still follow the same
pattern it just wont be as (pretty?). It will be a lot more gentle so...
Cause like, um, it’s just like a few principles like even looking at the
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screen there’s no reds, less reds than blues. And, you know, the green is
always the majority.

I: Right. And, if you were to look at the histogram?
G: Yeah, it’s still like the curve.
I: Do you know why?

G: Why? It’s err, it’s just the bell curve.. I couldn’t tell you the reason
exactly. it’s like, without thinking about it makes sense to have more of
them in the average. I think it’s just that if you think about when they um,
collide, if you have 2 greens they’re more likely to stay green. And if you
have a red and a blue they’re more likely to stay green. If you have a red
and a green, one will stay green, for sure. And a blue and a green one will
stay green. So like everything favors the average value pool. Like I mean ..

Exploring the concept of emergent self-organization further, he began to see how
the environment can affect the way the system behaves and in so doing he developed an

explanation that allowed him to draw an analogy which reflects a high level far transfer
skill.

G: And also, just like this has no exterior environment affecting it. Like I
mean, I still think you’d have the system formed but it wouldn’t form in the
same way. And, it would have like constant pressure from the exterior. I
think it would actually make it more orderly because it has to respond always
to the same pressure.

I: OK. That’s a really interesting point. So one of the key things that you
would have to consider then would be the environmental pressures. What made
you think of that?

G: The environmental pressures or the other question?
I: Well the environmental pressure.

G: Um, its just don’t know, like, I was thinking about, like if you have an
area that’s always hot obviously the trees would grow all this time..and so
your system has order in the fact that like all these trees have like, they
respond to the your outside environment and they also respond to each other
by somehow by roots and stuff.

And it’s here too they’d all have something in common that takes away some of
the chaos in the fact that they have an exterior environment that they’re
responding to and that that should cause more order and keep some sort of
flow throughout the system so that it stays the some.

Here is an example of how he reasoned it out in the session 5. He recognized the

behavior and in a metacognitive type of effort to make sense of it he says the following:
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G: um, what’s weird thought is the system, um, in a sense acts like it has
conscious thought. Like when you think of it in terms of um like edge of
chaos.

It’s just like it wont let itself end so like it forces those last sheep to
always be able to reproduce or something to form more sheep. Or, I don’t know
like, that aspect of systems I just find kinda crazy.

Just like they that they can keep going and such, periodic functions. It’s
like, I don’t know, I just find it weird.

After a few exchanges discussing the system’s moving towards equilibrium he concluded

with the following:

G: So it’s just enough to, I guess, it’s like, this I think would be the
ideal complex system like there’s no chance of either party being extinct.
Cause like with the other one if you ever had like a really low sheep count,
if there was a disease or something, then you’d loose it.

More like a low count. Whereas here, it’s kind of perfect because they’re
both relatively high, and they don’t like shift around too much, and there’s
not like edge of chaos really.

Five exchanges later he described the concept of “flows of information”
throughout the system. It appeared that his dialog with the coach acted as a form of self-
explanation and metacognition. This was very important because this relationship of
information flowing within the system and holding it together is a very important one.
One that Greg was able to articulate in his answers to the “ant” question. Here we can see

how he again reflects on this behavior of complex systems.

G: I think that could be because for something like this the grass affects,
like a sheep is the only thing that’s um correctly affected by the grass, so
they kind of um, they take the stress from that and then like its kind of
filtered, like a little bit, through the sheep to the wolves wouldn’t feel it
as much, and it wouldn’t affect them as much as it would the sheep, I think.

After quite a bit more discourse he came to the following realization:

G: Ok. Yeah. As a complex system, like which it seems to be, I would call it
self-organizing.

G: Yeah. That’s why I said that like it seems like someone like’s controlling
it. Because like that I guess is another way of looking at self-organization.
Because like, um, like as the individuals work there’re not, like I mean,
they don’t know what’s happening here, like how their being organized and
stuff.

But like as a whole system it is working.
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But it’s just the fact that complex systems are their individuals don’t
organize themselves but the whole system does.

An important understanding of this type of complex system, which is non-
adaptive was made when he described the types of systems where history and learning do
not play a role. He was the only one to mention this concept and realize its importance in
interpreting complex systems behaviors. One of the limitations of these computer models
was their lack of history and adaptation. However, the complete new “start up” also
models certain types of complex systems like stock markets, and weather patterns, that do
not adapt per se, but exhibit patterns and trends. The system is always reacting to the

current set of conditions.

G: yeah. Um. For this I don’t think there’s the numbers of sheep and wolves,
I don’t think it affects it very much. It’s only for the first initial state.
Because, since it’s always oscillating, like I mean, um, like as soon as you
have a very few sheep, I mean, you lose all your wolves. Or if you have no
wolves, or like a very small number, what you had earlier is irrelevant. It’s
like a new system. It’s like a cycle, I guess. So I don’t think um it’s just
for the initial state. and after that it like evens out to what it would be
with any number of sheep or wolves.

Greg’s use of particular analogies support this growing understanding. For example, here

is one that he draw using the stock market to make is point:

G: I’d.. in a way I see the stock market as being like this. Like when the
money is worth a lot people invest and then they build it up there’s such
inflation that there’s a crash.

(sound of his hand hitting the table to emphasize the crash).

Not like a huge crash like there was. Like it is Um, like there’s some sort
of crash and then people pull back and then they start building up again.
Like there’s a cycle like that.

Like I mean, I think it reaches a point where people have mathematically
figured out the stocks without even knowing what they’re buying.

Like they’re still making money because they like they mathematically figured
out when to buy and stuff.

Using the evolution as complex systems graphic, Greg explained what he understood. He

expressed himself very well and described the concept of homeostasis.

G: yeah. You've got simple systems that all follow simple rules they um act
in similar fashions.
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I: Mm-hm..

G: That 1like um they are part of a higher level which is like the self-
organizing complex systems, I mean, you have simple systems inside simple
systems.

I: Mm-hm..

G: Inside complex systems. And these.. complex systems they don’t, like you’re
not able to know like how they act based on the actions of the simple system
and they can give rise to even more complex systems. And it’s all yeah.

I: and the notion of time?

G: time, um.

(Time lapse 3 seconds.)

I: again this really is meant to help you explain evolution so..

G: ok. evolution. I think, well it’s just that there two conflicting things.
Like I mean we learn that complex systems are usually, like they find a state
of equiltibrium and how they act. Like I mean although the, for example the
wolf and sheep populations like fluctuate.

There’re never too high or too low, that like you would loose all your wolves
or sheep. But also like because of time and chaos, systems change over time.
They, evolve.

Like that’s the whole point of like evolution that we change. so in that
sense I guess that time, like um, when you really think about it um although
it shows like something is being like a system in that it’s continuous, like
in whatever way, it also changes it I think over the long run.

I: OK. And do you think all complex systems evolve or just some complex
systems?

G: I think they all have to evolve because they’re all affected by stress
from the outside. So like I mean they all have to change in certain ways.
Like they never have the same conditions like as they had before,

Post-Case Interview.

In the final interview, Greg’s understanding of emergent self-organization was

very strong. Here is an excerpt from his answer to the “V-formation created by birds™:

G: How is it a complex system? That, um. In a few ways it’s like uh.. I
seem right about this, because I almost did my comprehensive assessment on
this.. Like, things that, the, the flock can fly in a straight line, even
though edach individual bird is not flying straight, it might be moving a
little bit to the left, a little bit to the right, but it gets damped over
the whole um, system, like, if, if the bird in front of you moves 5 feet to




179

the left or something, you’re only going to move half that amount, so that’s
two feet, and the bird behind you will move a foot and then, half a foot, or
whatever, and so over the whole system, there’s a lot less change than the
one individual that moved five feet, like the whole, like average I guess, of
movement is smaller, because it’s damped over the whole amount of birds. So
that um, as a whole, it will stay as a V, even though certain birds aren’t
flying in the, like in the exact V formation. So it’s uh, I guess that’s an
emergent property, the V, even though like, it’s not like each bird is
purposely trying to do that, like each bird is not a V itself, it’s just the
whole V comes out of the system. And uh, so.. That’'s the end of the complex
system in terms of the shape and formation.

His conclusion about complex systems:

G: So I guess that um, I would add to your three definitions that complex
systems are relative I guess, depending on how you look at them. Like it can
be considered simple if you’re looking from above, and as complex if you’re
looking from below.

I: OK, and you also mentioned the word interact, which I think you’ve
mentioned on several other occasions.

G: Yes, OK.

G: OK yeah, the exchange of information, it's uh.. Like it’s the interaction
with the environment which creates most of the probability and randomness, in
a system. Like it’s all, a response to interaction.

7.3.1.3 Summary of Greg’s Experience

Greg’s case is an example of a learner who appeared to hold some emergent
framework “component beliefs” before entering the study; and more importantly was
immediately affected by the initial intervention (see later section 7.6 for details). It may
therefore be argued that was not a typical novice learner.

[ contend however that although his experience may indeed portray the
“sophisticated” ECP identifier (Emergent Causal Processes identifier. For reminder, see
p. 142), he nonetheless demonstrates that even these individuals are challenged by some
components of the clockwork ontological framework. This close examination of his
conceptual acquisition provides insight into what may provoke the requisite changes. It
appears that the cognitive coaching in this case coupled with metacognitive and
metaconceptual reflections allowed him to eventually resolve the inconsistencies between

is understanding of randomness and this new way of thinking about how it operates
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within complex systems. More will be discussed about this experience compared to the

other students later in this chapter.

7.3.2 Norman’s Case Study Report

What did Norman learn about complex systems thinking and emergent causal
processes? How did he come to acquire this knowledge? Two things that I focused on
with Norman were: (1) his facility with some notions of emergent causal processes;
however, (2) the entrenched clockwork belief in centralized control and determinism, and
his struggle to acquire an alternative explanation.

From the original testing”’Norman appeared to have a good grasp of emergent
type processes. He was one of the few who identified the requisite flow of information
through the system, supported by a pheromone (organizing mechanism), which creates
the pattern of an “ant chain”. The mention of these three components that are important to
the process of self-organization and emergence was an important indicator that Norman,
like Greg, was among the small group of individuals who already had some knowledge of

this concept and used this mental model to explain phenomena.

Ant question

Specific cast of ants dre sent out to explore and find a route to food
source. Then they exchange information and create an ant chain that goes
along a pheromone route from the anthill to the food source and back..

However, his far transfer task indicated that he did not apply this explanatory
model to other similar phenomena. In fact he doesn’t mention any emergent processes in
his response (i.e., no signs of local interactions, tagging or organizing agent, flows of

information, and pattern formation).

Robot question

Assign each robot a different task [dig, extract, return load] they would
be coordinated by a computer located on a satellite that would act or.

% Norman belonged to the control group therefore his results are from the immediate posttest.
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What was apparent in both answers was Norman’s attribution of centralized
control, in that each agent was assigned a specific task (“specific cast of ant” — “each
robot”) as well as the notion of an external controller of the agents (“a computer... on a
satellite”). These responses also provided evidence that he did not imply organization to
random behaviors of the agents but in fact attributed a predictable and purposeful
behavior to the agent (“explore and find a route™). The analysis of Norman’s data were

therefore to look at what happened to these attributions, what changed if anything.

7.3.2.1 Emergent Framework Component Beliefs — Norman’s Elaborations

Understanding Emergent Levels of Organization

There was evidence that Norman easily observed and identified several concepts
without difficulty. One of these was the differential behavior of agents and meta-agents
(i.e., emergent levels of organization). Starting as early as the first session, he described
the organization that occurred because of the rules being followed by the individual, as
well as the differential types of results which is a prelude to describing the emergence of

a meta-agent (i.e., the colony).

Session 1
I: Are the turtles trying to cause an aggregate?

N: no, it happens by chance. But they [the aggregates] are the product of
the setting of the individuals...

I: ok

N: so indirectly it will be because of the individuals... The formation is
dependent of the individuals... The result is by chance.

I: ok.

N: yes. It has err... the, the commands of the simple units [the turtles]
are to follow pheromone which makes the colony. That wasn't the purpose but
that's what was at the end result.

They came together and became a bigger... you could consider the aggregates
as another organism. That doesn't have the functions of the separate units.
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He again elaborated on this during session 2, through the following statement:

Session 2
N: ...here, this was the case, too. Like, when they catch up [to] the
pheromone trail... they tended to form, uh...forms [colonies], and are no

longer just turtles moving around.

I: 0K, just explain it a little bit more to me, you know, so that I can
understand it a little bit more.

N: Well.. Well the principles that... I’ve observed from this slime
simulation was that... The complex systems didn’t, didn’t show the
characteristics of the units [individual]. And, it’s the same thing with
the molecule, [in the] chemical reactions (referring to the Gasiab
simulations).

Although Norman had a great deal of difficulty expressing himself in English, he
appeared to describe the differences between the behaviors of the StarLogo agents (i.e.,
slime mould in the Slime simulation, and molecules in the GasLab simulation) and the
meta-agent. In session 5 when he was specifically asked about how complex systems
operate, he responded that there were differences between the ways that the system
functions compared to the individual within the system. Although he was able to make
this distinction, he was tentative in explaining and elaborating on his understanding,

provided the following insight:

Session 5

N: Of complex systems... Well, um, that uh, some things, or some
phenomenon, take place at the level of the complex system, and not at the
level of the individual.

Understanding Concepts of Multiple Causality (a category on CST)

Norman’s discussions provided evidence that he was able to understand the
simultaneous nature of the agents reactions to the stimuli of the pheromone in the slime
simulation. He explained that there was the likelihood that, at the same moment in time,
there are several pheromone trails forming that are of differing intensities and that it was
possible that the slime mould may not get to the strongest one because of limitations of
one of the variables. This description also shed light on his ability to reason out the

stochastic quality of the interactions that exist in these complex systems.
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Session 1

N: maybe, the trails aren't the same intensity at the same moment. So that they
have to go with the one that’s nearest but if they can also find more
{pheromone] at the same time that are stronger... if they have a small [nose]
angle... By the time they find one [a trail] it has evaporated... and the
threshold wouldn't help. Their sensitivity wouldn't help anyway because... they
would have found it too late.

By session 5 he was also able to detect the indirect relationship between agents
that do not interact in a direct manner. For instances, he explained how the wolves and

the grass, in the Wolf-Sheep predation simulation, have an indirect relationship.

N: If there is a change in the... in the grass, the change in the delay (i.e.,
the variable that controls the rate of growth for the grass). I think like,
the result would have been that less of the wolves would have changed their
reproduction rates, according to the change that have occurred with the grass.
To uh... not intentionally but as a result of the grass delay, which maintains
the equilibrium.

7.3.2.2 Norman’s Conceptual Struggles

Where the real difficulty for Norman appeared to be was with the concepts of
decentralized control and deterministic causality (i.e., predictability). I will discuss

evidence of each of these in turn.

Attribution of Centralized Control

N: Because each turtle secretes the pheromone
I: uhm.

N: the more pheromone there is, the more concentrated they become. (can't make
out

From the very first evidence of Norman’s mental model, it was apparent that he
held some notions of a central organizational structure; either with the queen ant sending
out food gathers to collect food, or a centralized computer directing the behaviors of the
robots in their hunt for gold. However, it appeared that it was not so much the behavior

that he could not identify but the words describing the behavior. He continually described
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the behavior of the turtles as “they”, implying that “all” do certain things or respond to

certain conditions; he, however, never explicitly used that qualifier.

Session 2

N: Uh, decentralized system, I think, would be uh associated with uh,
randomness? And chance. Since it uh, doesn’t relate to our, non-
determinism instruction. Whereas, [a] centralized unit that is, follows
orders.

Norman struggled to understand the way that the terms centralized and
decentralized were used in this context. In session 2 he engaged in a long back and forth
dialogue trying to reason out what type of control was being exhibited in the case of a
living organism an its DNA instructions. In essence, was that an example of decentralized
organization, compared to the central nervous system and the functioning of the brain? In
order to provide a flavor of the type of reasoning I selected a few excerpts of the
exchange. In this conversation, Norman was engaged in assembling the terms in a
concept map. One of the terms was centralized and the other was decentralized. He
responded to prompts to describe an example of where the commands do not come from

a single source.

Session 2

N: Like a, living organism that, has information in, like I should say, its
DNA. That’s where uh, all the, instructions come from.

I: Yes, except, is that an example of centralized control, do you think?
(pause 5s)

N: When you were saying with humans.what example would you use?

I: The brain, maybe.

N: The brain right.

I: Yeah. The brain controls everything else.

N: Mm-hm.

I: That would be a central system. However, your DNA, how’s your DNA...

N: Like in, you would need it, since it’s not a, system... Like it’s just
information.
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I: No, no. 1It’s, definitely an important part of the system. But, you
know, it’s a very good example. Your DNA is where?

N: In the nucleus, of the, each cell.. From where the, it makes its
commands.

I: (talking over N): Yeah, but it’s, the operative words there, that you
just used, is that in each...

N: Cell.

Continuing this conversation, the coach encouraged Norman to explore this line
of reasoning until he described how the DNA that is present in the cells could be an

example of decentralized control.

Session ©

I: But, on the other hand, I think that, what you suggested was some really
interesting ideas. The DNA, inside the cell, it’s like the instructions
for each cell, right?

N: Mm-hm.

I: Sort of like, the programming of each turtle. And yet, the turtles,
what they did, with that instruction...

N: They made up systems..OK, and they attract other units...

N: Yeah, I think... Oh yeah, it’s decentralized, uh, if uh all the cells
that compose the liver, uh, the instructions come from all the cells, they
are the same. Because they all have the, DNA, so yeah, that would be,
decentralized.

Although it appeared that Norman had come to some resolution as to where
centralized and decentralized should be placed on his concept map, in subsequent
sessions he experienced similar struggles with these terms. He saw the ultimate control of
the system as being in the hands of one central controlling body. Even when he described
cases where there were more localized control, such as in the case of the muscles, and so
forth. These concepts did not become easier for him to understand or come to terms with

as the sessions progressed.

Session 6

N: Uh. Well. When, a system.. OK, when there’s a complex system, it tends
to uh.. Like assign it’s.. Well.. Well, the command centre seems to be a..
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Well, what, what coordinates the whole system. So it would be centralized,
yeah. It would have a centralized command centre.

I: OK.

N: Well the, the orders to coordinate all the elements of the complex
system would tend to be in one singie place, meaning that the...

I: How does that work?

N: How does that work?

I: Yeah. Give me an example.

N: The human body and the brain. The robot and its satellite.

I: OK.

N: Or wherever the command centre would be.

(pause 4s)

N: Uh.. Yeah, basically giving order from, some place, to coordinate, to
make the coordination. And decentralized, if there’s simple elements have
not, grouped enough, for them that would lead to a complex system, uh, each
one goes his way, and their actions do not, are not specifically aimed to

the better being of the higher system.

I: OK.

N: So that would be a decentralized state.

I. OK.

Attribution of Randomness versus Determinate Causality

Norman showed evidence of understanding the notion of random behaviors. For
instances, he specifically mentioned the word “random” in his description of the slime
moulds’ actions (see above excerpt for centralized control). He further suggested it was
possible to control the degree to which the agents exhibited random movement through
the manipulation of the variables (i.e., the sliders) contained in the simulation. In session

2 he also explained the behaviors of the molecules as random.

Session 2
N: Well yes, but uh, now we, we can control the randomness...

I: OK.
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N: so, and it’s part of the program. When they collide, they choose a,
random direction.

I: To deflect off of, yeah.
N: I don’t know if I understood it correctly, but also the speeds are, kind
of, random.

Norman nonetheless, found himself in a conundrum because he did not know how
to deal with the assertion that things could have random starts although they formed
patterns and developed into stable states. He described a recent lecture from one of his
Philosophy courses in which the topic of determinism was discussed. As a point of
clarification, the concept of casual determinism versus random actions is highly
interwoven with probabilistic causes. In fact, I would argue that one may need to accept
the notion of randomness at the agent level to fully appreciate the probabilistic causes at
the system level. Therefore Norman’s consciousness of the implications on the notion of
randomness that he was experimenting with was an important step in learning, however
he was not able to come to terms with how these processes within a “microworld”

simulation were not meant to be explained in a deterministic fashion.

Session 2

N: It’s a, philosophy [from one of my courses]. We were talking about uh, a
division, that’s called determinism.

I: OK.

N: We’re, we’re talking about, [that] everything has a cause... and, causes
lead to certain results, [certain] things. And uh, this is, what is
causing... Like, here, on these simulations, we have control over the
variables.

I: Right.

N: And, we can uh... Yeah we, we can get basic principles out from them,

from looking at the, what takes place, and predict that this would happen.
And, in life that occurs. It’s just that we, we aren’t, we don’t have the
consciousness [to know] about those [things], all those factors that can
lead to, the [result]... So uh, with human behavior, how a human will
respond to certain things...
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7.2.2.3 Summary of Norman’s Experience

Norman, like Greg, began the research study with some level of emergent
framework “component beliefs”. He appeared to construct some elaborations on aspects
of the concepts involved but seemingly struggled with others. Unlike Greg, his
conceptual struggles over the concept of randomness did not resolve itself with time.
Furthermore, unlike Greg, he appeared to be restricted by a more robust clockwork
component belief specifically related to the concept of decentralized control and
deterministic causality. Although for a time during the intervention phase of the study,
supported by the cognitive coach, he seemingly began to make clearer observations and
explanations (i.e., perhaps best described using diSessa & Sherin’s (1998) notion of
“causal net” bootstrapping) he reverted to his old explanations in the final session held
one year later. Furthermore, Norman, unlike Greg, was unable to understand the role and
the limitations of the models. Schwarz (2002) refers to this as the results of
misunderstanding the epistemic form and suggest that meta-modeling knowledge may be
an important part of learning from models in science education. Later in the chapter [ will
describe other students of Norman’s experiences with the concept of “randomness” as
well as the other categories of concepts identified from the transcripts using the CST

coding.



189

7.4 Interaction of Intervention, Learner, and Conceptual Knowledge

7.4.1 Section Overview

One of the major themes constructed from the categories to emerge from the
transcript data suggested an interaction not only of the student with the content
knowledge (i.e., the anticipated effect of “component beliefs” on the learning of emergent
causal processes reported in other research) but also an interaction with the simulations’
conceptual and physical representations. I refer to these as the intervention’s affordances
for learning emergent causal processes. This section attempts to describe how these
affordances appeared to affect the amount or kinds of awareness, and possibly learning,
of the specific concepts as assessed using the complex systems taxonomy (CST). In so

doing, this section addresses the qualitatively inspired research question:

2.b) What were the affordances of StarLogoT (and possibly other multi-agent modeling

language generated simulations) for promoting the learning of emergent causal

processes?

7.4.2 Simulations’ Affordances for Learning Emergent Causal Processes

In order to describe the differences between the students’ experiences with the
simulations I constructed the following 4-point scale based on a hypothetical assumption
that all the simulations should provide opportunities for learning the six major categories
of complex systems identified in the CST.

*  High affordance = above 34%
* High Moderate =33% - 17%
* Low Moderate = 16% - 8%

e Low=T7%-3%

Although there was no empirical data to support this claim, the anecdotal
evidence collected from the experts’ ratings (see sample rating form in Figure 6.3)
suggested that it was reasonable to use this assumption as a starting point. Hence, a
measurement of awareness scale could be as follows: All things being equal, the learner

should generate a score equaling 17% utterances (i.c., observation data) for each of the
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six categories. Clarifying by way of example, if a student discussed the topic of
probability for more than 17% of their utterances, then it would be considered that the
simulation offered a high moderate affordance for learning that concept.

Using the scale described above, the evidence showed us that the students’
combined scores over the three selected sessions produced results that fell within the
range of scores indicating a high and high moderate degree of awareness (and possibly
learning) of two complex systems concepts: “multiple levels of organization” with 43%,
and “local interaction” with 30%; a low moderate degree of awareness for the category of
“probabilistic nature” with 15%; and a Jow degree of awareness for the category “random
actions” which produced 4% of the total observation data (see Table 7.6). The other
categories in the coding taxonomy produced fewer than 3% of the total observations and
therefore were considered to indicate a weak affordance for learning. In short, thereby
suggesting that these categories required closer inspection to determine if indeed the lack
of observation data were more likely to be the result of the individual or the intervention.

The evidence also suggested that the types of simulations presented influenced the
students’ experiences and awareness of the complex systems concepts. For instance,
when looking at the total averaged “raw” scores (Table 7.6 far right shaded column) we
see that GasLab simulation generated substantially fewer observations (total = 100)
compared with the Slime simulations (total = 187.7) and Wolf-Sheep simulation (total =
140.6). In fact, the Slime simulation produced 87% more observation data compared to
GasLab, and 34% more than Wolf-Sheep.

These percentages suggest that students’ demonstrated a substantial amount of
awareness, and possibly experienced learning, of the categories of “multiple levels” and
“local interactions” during the indicated sessions. Therefore it would not be surprising if
these percentages were also highly correlated to the changes observed on the related
OMMT sub-category, specifically “emergent self-organization” (identified also as item
#1). In addition, the category of “probabilistic nature” also indicated a moderate level of

awareness thereby suggesting that an equivalent change may be observed in the OMMT

category by the same name.
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Table 7.6  Observations coded for 9 CST categories.

1 2 3 4 5 6 7 8 9
‘215 so| wo| =} ml go|l ezl gx| 89

o | GEV BB 2T\ BY)B| B|3E|3E 2353
Systems 25 35| 382 L s2| @d3| 58| «%

. 8 4. - = 3 ‘5 3 Q S a @
Characteris 8 a el o 9 o e

: - g | = &5
tics ﬁ : 3} M T @ o
. - . Q-

Session 1 934 | 427 | 218 | 98 8 2 5.2 0 13 | 1877
Slime
% of total 50% | 23% | 12% | 5% 4% 1% 3% 0% | 07% | 100%
observations
Session 2 41 | 293 | 223 3.5 0.3 0.5 1.1 0.6 1.4 100
Gasl.ab
[+
% of total a1% | 29% | 2% | 4% | 03% | 05% | 1% | 06% | 14% | 100%
observations
Session 5 508 | 553 21 3.6 03 5.3 26 0.6 i1 | 140.6
Wolf-sheep
0,
% of total 36% | 39% | 15% | 3% | 02% | 4% | 2% | 04% | 08% | 100%
observations
Overall total | 1853 | 1273 | 651 | 169 | 86 78 63 1.2 38 | 4283
% of total 3% | *30% | *15% | 4% 2% 2% 1% | 03% | 1% | 100%

(N.B. Shaded categories represent items that when combined are similar to the “Emergent-self-organization
category in the OMMT). * Indicates high percentage of awareness.

Individual Summaries

Slime simulation. Looking at the individual simulations’ affordances (Table 7.6)

for learning of these concepts it appears that the Slime simulation was particularly good
at generating observation data regarding these concepts: “multiple levels of organization”
(50%), “local interactions” (23%), “probabilistic nature” (12%), “random actions” (5%),
and “tags” (4%).

GasLab (Free Gas) simulation. On the other hand the GasLab simulation provided

the student opportunities to identify and explain the complex systems concepts of:
“multiple levels of organization” (41%), “local interactions” (29%),” probabilistic

nature” (22%), and “random actions” (4%).
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Wolf-Sheep simulation. Lastly, the Wolf-Sheep predation simulation appeared to

afford the learning of the following concepts: “multiple levels of organization” (36%),
“local interactions” (39%), “probabilistic nature” (15%), and “random actions” (3%).

Additionally, it produced observational data for the concepts of “flows” (4%).

7.4.3 Summary of the Opportunities for Learning Provided by Simulations

Table 7.6 indicates that all three simulations provided affordances of at least high
moderate for two complex systems concepts: “multiple levels of organization and “local
interaction”. They provided a low moderate affordance for the complex system concept
“probabilistic nature” and a low affordance for the complex systems concept of “random
behavior”. The other categories in the coding taxonomy produced fewer than 3% of the
total observations and therefore were considered to indicate a weak affordance for
learning.

All the simulations provided opportunities to observe and discuss “multiple levels
of organization”, local interactions” and “probabilistic nature” albeit to different extents.
Only the Slime simulation provided opportunities to observe and discuss “tags” but it did
not provide opportunities to observe and discuss “open systems”; the Wolf-Sheep
simulation did not provide opportunities to observe and discuss “random behavior”. All
the simulations had only weak affordances (< 3%) for all the other complex systems
concepts. However, despite the similarities in the affordances of the simulations,
students did not acquire the complex systems concepts equally well from all simulations
as will be discussed shortly. In addition, in the upcoming section I will speculate as to
possible reasons for these different results in the opportunities to learn the CST concepts

from the different simulations.
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7.5 Explaining the Affordances for Learning CST Concepts

The objective of this section is to provide a picture of how awareness and possibly
learning of the three concepts, rated as “high” to “moderate”, were experienced by the

students. These concepts are “local interactions”, “multiple levels or organization” and

“probabilistic causes™. In part this section also addresses two research questions:

2. If provided with appropriate content and learning environments, what do students’
experiences tell us about acquisition of this content knowledge?
3. What does this study tell us about the usefulness or limitations of these types of

models as tools for acquiring emergent framework mental models?

7.5.1 Category of “Local Interactions”

How did students gain awareness and knowledge of the concept “local
interactions”? “Local interactions” refers to the behaviors of agents as they operate
within the environments of the simulations. In order to be coded at this node, the student
had to generate evidence of their awareness of individual agents (e.g., slime mould,
molecules, sheep), and that these agents’ actions were not isolated from each other but in
fact significant changes arose that because of the different ways in which they could
encounter each other or affect each other. In short, the student needed to demonstrate that
they could reason about both the individual behaviors of the agents as well as the impact
of potential interactions such as attractions or collisions. In order to code for this
category, I adopted several key predicate indicators (many of which appeared to be used
regardless of the simulation content): interact, attract, collide, aggregate, come together,
hit across, form, react to, cluster, move towards, affect, communicate with, organize,
change each other. There were also another group of predicates used to demonstrate local

2228

interactions, which I suggest were telltale signs of “teleological beliefs”*® that constrained

the development of the concept “probabilistic causes”: find, look for, build, and join.

2 . . .
® The data showed that the students who used these predicates were more likely to attribute purpose to the
actions of the slime mould and the colonies as demonstrated by other utterances in their verbal protocols.
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Therefore these predicates provided insights into more than just how student acquired the
concept of “local interaction”.
Turning back to the specific concept being examined, here are statements by

Norman and Walter related to adjusting variables involved in a simulation:

Norman: the pheromone concentration are formed when they aggregate. 11
Norman: yeah. Because they were apart and now they're coming together. I don't
know maybe this will happen with these two. 27

Walter: well, there are a bunch of turtles moving around randomly and they seem
to be giving off these green secretions in their wake and it seems as when they
get a strong enough secretion they kind of like come together. They kind of
like gttract each other. 5

Greg dialog provides an illustration of this level of awareness generated from

engagement with the Slime simulation.

Greg: uhm. Unless there's a large enough group centered in one area, they won't
aggregate there at all. so that makes it impossible unless you increase the
numbers... what about 2000... 23

Greg: um, I'd say that the nose angle just makes it since it's at 180, they can
pretty much smell behind themselves and they just form groups of small clusters
from wherever they start off as ... 56

Greg: Ahh. I don't think there're enough turtles to actually aggregate to keep
together. 100

Session 2 — GasLab Simulation

Results from sessions 2 and 3 were similar in that they too reflected different
types of references and levels of discussion that were coded as awareness of “local
interactions”. For example, Emilie uses the term interaction and basically describes what
she sees on screen, whereas Penny appears to have come to some realization that

collisions (“hitting each other”) are resulting in some larger event.

Emilie: There, there would be always the less, the less number, like the less
number of interactions, that decreased. Because they kind of have to travel
further, and that takes time. Like, in order to reach one another. 133
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Penny: Yeah. If you look at just look at the molecule itself, it's consistent

because, since if, well, if they're hitting each other then they're agffecting
which event takes place. 1049

Mitch, on the other hand, fittingly describes the interaction of molecules in the
GasLab simulation as collisions and goes into a science-based explanation of what the

interactions produce.

Mitch: Because, it is a system that... Whereas, a collision between a fast
and a slow particle, it... They're all elastic collisions, so the energy is
considered, in one way or the other. So every elastic collision's going to
change the speed of each particle in the system, but it's not going to change
the speed of the whole system. So, that's why the average speed is staying
around 8.8 or 8.9... 11

Session 5 — Wolf-Sheep predation Simulation

The Wolf-Sheep simulation also produced these differential, but all on
category, responses. For instances, Walter describes the ecological chain-like

interaction of the three variables in this final session’s simulation.

Walter: well, the sheep eat the grass. The wolves eat the sheep. 116

Walter: obviously, when there's no sheep there's going to be no more wolves
eventually because they're all going to die out. Because they're not going to
have nothing to eat. 169

Greg: I think that could be because for something like this the grass affects,
a sheep is the only thing that's um directly affected by the grass, so they
kind of um, they take the stress from that and then like its kind of filtered,
like a little bit, through the sheep to the wolves wouldn't feel it as much,
and it wouldn't affect them as much as it would the sheep, I think. 271

Summary of Affordances for Local Interactions

From the above it is apparent that the each simulation provided a different
opportunity to learn about the concept of local interaction. Awareness and possible
learning observed from the slime simulation may be attributed to perceptual level display
of tightly coupled interactions and aggregation of mould into colonies. On the other hand,
local interactions in the wolf-sheep simulation may have been observed because of the
expected causal change of events, “sheep eat the grass. The wolves eat the sheep”.

Hence, one explanation for the increase in observations may be because students are
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intuitively familiar with these moderately coupled interactions that make up ecological
systems.

Another explanation, however, may be a consequence of their changing ability to
observe (i.e., “readout” strategies) different causal processes. In this interpretation of the
data, the increased number of observations would be described as a consequence of better
understanding of relationships between agents and not necessarily attributed to the
representational affordance of the simulations. Alternatively, it may be an interaction of
the two. Both alternative explanations could be explored further through other data in this
current study and perhaps in future studies.

Differences between types of simulations. The GasLab: Free Gas simulation

offered weaker representational affordances related to local interactions. These results
suggest that dissipative complexity models (whose organization is most apparent at
statistical means) may be less likely to generate observations of local interaction, which is
congruent with the type of complex system represented by the model. Consequently, it
should be viewed as one step towards establishing credibility of the findings. In fact, the
modest level of local interaction recognition may be explained by the cognitive
scaffolding that cued students to look for similarities across simulations; therefore, in no
way attributable to affordances to promote the concept of local interaction generated by
this simulation. A fuller discussion of this point is found in the next chapter.

It appears that examining the individual students’ experiences would provide a
better explanation for the weak affordance for learning with this simulation. Figure 7.12
provides a good overview of these differences. With that said, it is worth noting that two
students, Mitch and Greg, nonetheless showed high percentage of their time focused on
this concept with observations of 43% and 61%, respectively.

How can these students’ differences be explained? Both students belong to a
cohort of high academic achievers and both had above average scores® in NYA physics
and chemistry: Greg, 97 (intro. chem. 99), Mitch, 84 (intro. chem. 86). It may be argued
that Sidney also achieved high grade in chemistry (80) but is reported to be aware of this

for a mere 23% of his observations. Looking at his grade in physics (70) revealed a more

2 Introductory physics is a course in mechanics (Physics NYA avg. 69.5); introductory chemistry is a
course in chemical bonds and states of matter (Chemistry NYA avg. 68). Sam’s grades for both 68 phys
NYA/ 63chem NYA.



likely correlation between variables, hence plausible alternative explanation. These

results suggest that there may be an interaction between the student’s level of

understanding of physics (specifically collisions) and the ability to observe local

interactions. Further investigation into this possible relationship is required.
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Figure 7.12  Line graph comparison of students’ observation data relating to local

interaction of agents over the three sessions.

Final word. This difference between learning with this simulation compared to the

other two was demonstrated for other concepts as well. Consequently, these results lead

to possible explanations that may have important implications for future research. This

will be discussed in the next chapter.
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7.5.2 Category of “Multiple Levels of Organization”

The multiple levels of organization within the system are an important component
of the aggregation emergence process. Typical items from the sessions coded at this node
are described below. A typical observation for this category would be that individual
agents behaved in one manner while systems (meta-agents) behaved in a different
manner. Observation of differential behaviors often resulted in terms such as “random” or
“unpredictable” individual agent actions versus “stable” or “orderly” meta-agent actions.
Additionally, descriptions could extend to homeostatic behaviors, although that concept
was a unique node on the complex systems coding taxonomy (CST).

Therefore what the students appeared to learn was that individual turtles behave
randomly (Slime simulation) or unpredictably (other simulations) but when they form a
meta-agent or change states, this new level of organization behaves in a more stable and
predictable fashion. This observation created some constraints in the students’
understanding of where the term “predictable” fit into a concept map related to complex
systems. Consequently, it may account for some of the difficulty experienced in
removing the ontological barrier related to attributions of determinacy. This possible
interaction between the concept and what is observed from the intervention is examined
more fully in the discussion chapter.

[t should also be noted that the data analysis for GasLab (session 2) and Wolf-
Sheep predation (session 5) was not as clear-cut as for Slime mould (session 1). In
essence, coding for levels of organization required reading several phrases to capture the
distinction that the students made between either the agent and the meta-agent attribute of
net changes (e.g., pressure, total energy within the system), as described for GasLab; or
between the individual and population levels as well as the level of the system itself, as
described in Wolf-Sheep. For instances, key terms or phrases such as “population”,
“system”, and references to the graphical readout “parabolic curve”, “sine wave”, to list a

b

few, were identified as evidence of reference to the macro-level.

Session 1 — Slime Simulation

Greg: yeah, you can see that sometimes they leave but the whole system stays
constant no matter if they leave or join the clusters the system seems to
follow the same pattern. 273
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Walter: they [the groups] seem to be constant. They seem to be... well the
people are always changing in them but the groups themselves, they stay in the
same position. Um, I think they've actually moved a little bit though.

273

For Emilie this concept is somewhat challenging although she does make a correct

observation.

Emilie: The group would be functioning kind of, well, at this, at this point
the group would be functioning kind of, you know, in a stable way, but the
individuals like some of them would not be...would not be...would not...I don't
know how to put this. 647

Session 2 — GasLab Simulation

Sam: Cause there's only a certain amount of energy in the entire thing.
It's just that the individual molecules changes... All together [however] they
own the same amount of energy throughout. 426

I: so to paraphrase, there's one characteristic behavior that's happening to
the overall system, which is it's in equilibrium. But the individual within the
system... 428

Sam: Is constantly changing. 430

An important observation relating to the differences between the two models
(Slime and GasLab) is apparent from Sam’s statement (see above) and Sidney (see

below).

Sidney (talking over I): Well I don't view this as an equilibrium space, I mean
because in this case they're ultimately forming, they're ultimately going
toward a goal, it's not kind of like they're going back and forth, back and
forward, it's kind of like in the long run they're going to form one big amoeba
type shape, and they won't be exiting and coming back, it'll be, it will remain
the same. 034

At the time this difference did not seem to be of great importance but later it
suggested an important nuance and understanding of the difference between systems that
are dissipative and those that are tightly coupled and organizing, that is, moving toward a

neg-entropic state.
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Session 5 — Wolf-Sheep Simulation

Sidney: I don't think it was the simpler one with which we had the altruistic
and the selfish ones, because in that one it did not have to eat grass, or uh
eating something. And in that case when, where you added more of one, the
other one didn't counter-balance it, so there's not kind of an equilibrium
state. And what's really odd is the population is somehow, the entire

population, or like the population of the... sheep and the wolves has reached
some kind of constant stability. They're going up and down but in a small, a
small frame. And I would call this like uh, a stable state. Because... 177
I: Mm-hm. 179
Sidney: ...because what's happening is at, at one point the sheep are...the
sheep population is greater than the wolf population, and the next moment it's
the reverse. 181
(pause 5s)

Sidney: But this is where I have everything equal, where I have the, the
initial sheep and the initial wolves the same. But I want to try let's see
now. Now I'm going to make the wolves' population twice the number.

I: OK, but what do you think is going to happen once you do that? 187
Sidney: At first I would think perhaps maybe now that the wolves would, would
finally overpower the sheep, but somehow I don't think so. 189
I: OK... 191
(pause 4s)

Sidney: You can see what's happening once again. They've reached, they're
reaching the, these are gonna, like a parabolic curve they're taking. 195

Sidney: Well that beats the top one. And once again they've reached some kind
of equilibrium state. 199

Summary of Affordances for Multiple Levels of Organization

All students appeared to acquire and use the concept “multiple levels of
organization”. However, there reference to it decreased over the three simulations.
Whereas 50% of the total observations made during the Slimé simulation referred to
multiple levels of organization, during the GasLab and Wolf-Sheep simulations the
percentage of statements coded to this concept falls to 41% and 36% respectively. The
three simulations offered great affordances for learning this concept. Possible reasons for

these results will be discussed in the discussion chapter.
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7.5.3 Category of “Probabilistic Causes”

As described above, all the simulations generated a fair number of observation
data coded as “probabilistic causes”. This category was defined by two key features
related to probabilistic behaviors: (1) the significance of large numbers of agents to the
probabilities of system formation and subsequent behaviors of the meta-agent; and (2) the
importance of the environment/conditions and changes of components therein to the

probability of system formation.

Effect of numbers. For example, early on in session 1, Greg, recognizes the

significance of large numbers of agents on the formation of slime colonies.

Session 1 — Slime Simulation

I: what general principles, can you identify from what you've observed?

Greg: I feel what's the important variable is the number. The number of

turtles. Cause it's just, like... as long as they're packed in a region no
matter whatever other variables there are, they'll automatically try to
aggregate in a certain way... Like towards more large clusters in the pack.

Whereas like, if you have a small number [of turtles] no matter what your other
variables are, like a random chance will make it so that it wont be able
to...come to be a cluster at all... I'd say that's probably going to be one
variable. 192

Walter: so when you have a denser environment, the probability of something
happening is going to be more frequent. And when you have a scarce, sparse,
environment, um, the probability of like I guess, here in this case a

deflection happening is not going to be as significant. 296
Sidney: ...and therefore they'll all, ultimately they will hit, they're so
close-by to each other. But I would suppose that if you had less numbers it
would take a little bit...like... it wouldn't be more of an equilibrium and you
will have a long time while one of the molecules will remain fast, slower,
neutral, and some... and even less you know, it will even... it will take a
longer time for the...the molecules to become fast and slow and... 102

Effect of environment/conditions. Reaction to conditions within the environment

and the probabilistic outcome of such responses was another common observation for the
GasLab and Wolf-Sheep simulations. There is substantial evidence that most students
could describe and explain the effects of changes caused through control of the variables

(i.e., sliders) or the random starting positions of the agents.
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Walter: yeah. So basically what happened we have figured that one out, they're
going to collect in more groups cause they're going to have a wider field of
vision there. They're going to be able to catch onto the pheromones more
easily. 338

Mitch: OK, they're starting to pool. Because they have, they can, it's like a
field of vision. If you can see more, you can.. If you have a wider field of
vision you can see more, so that if they can sniff in a wider field of
sniffing, they'll be able to of course find more pheromone, and they'll,
they'11l concentrate in that area. 132

Norman: maybe, the trails aren't the same intensity at the same moment. So that

they have to go with the... the operation... 217
I: ok. right. 219
Norman: and if they can find more at the same time whereas...those with a small
angle. By the time they find one it has evaporated. 225
Penny: when you increase the angle you increase the chance of... if you
increase the angle that a turtle is able to see, you increase the probability
of it contacting or bumping into another turtle. 215
I: 0K 217

Penny: it happens faster that's because they're so close, they're so packed in
so they're going to bump into each other, but I'm sure that with the lower
numbers it's going to take longer ... 219

Penny: Like to some extent they all [the pre-identified variables in the
sliders] increase the chance, but do it more, like they increase the chance
more that the others. 230

Even though Monique has great difficulty with the ability to express herself in
English, the statement below suggests that she understands the probabilistic nature of
the systems’ behavior. She relates the movement of the turtles as dependent upon the
concentration of pheromones, knowing that there is the potential of multiple

simultaneous sources of pheromone within their environment.

Monique: But they [the turtles] keep on moving still but like, it's really uh,
I don't know how to say it... Where there’s chemicals, more chemicals, I don't
know. If there's, like really strong chemicals in a place, they're all going
to go there but, since there's other places also, where there is strong
chemicals so that's... Yeah, I think, that's, that's why, they keep on moving,
to one from another place. Because they, they have chemicals where they are,
but they also sense like there's other chemicals around... 208
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Session 2 — GasLab Simulation

Sidney: I would suppose that there's a greater chance of...one of the molecules
hitting at an angle where they'll lose this elastic energy than gain elastic
energy, slightly...not by a lot, but there's a, I guess the chances like,
dictate that...they'll, the chance that they'll when they collide they'll gain
energy or lose energy they'll rather lose energy than gain energy. 158

Sidney: I have a feeling it's gonna, all of them will be turning to red,
because now the chances that they will, that they will hit are gr-,
significantly greater and therefore now it'll be kind of static equilibrium and
they'll reach a state where they will all be red. 256

Session 5 — Wolf-Sheep Simulation

Norman: With the... We didn't have... If there is a change in the... 1in the
grass, the change, delay. I think like, the result would have been less of a,
the wolves would have changed their, their reproduction rates, according to the
change that have occurred with, with the grass, to uh... Not intentionally but
as a result of the grass delay, which maintains the equilibrium. 271

Mitch: You start in a different position. If all the sheep start next to one
wolf, they're all dead. 594

Mitch: Well, you run it a hundred times, and... If you run it enough times to
get through every single positioning, I guess, using some form of statistics,
how many times it reacts depending on this type of situation. Like if you have
50 of the wolves are near 50 of the sheep, those 50 get eaten right away, but
the other 20@ sheep don't get eaten, so they all reproduce. I guess if you
figure out, using a graph to figure out how long the thing would take to end...
598

Sam: ok. So it delayed. So um, when it went down the amount of sheep... sorry,
when delay went up the amount of sheep decreased so there was more chance for
the grass to spread so the amount of sheep increased radically. And then, it

continued doing that up and down, but the wolves probably... 89

(pause.3secs)
Sam: ... yeah there was a drought when the sheep weren't there for a while so

the wolves just decreased the population until they disappeared. But the sheep
and the grass could probably act in, fairly stable for the rest of the way. Oh

no, as the sheep increase now there's no more wolves. 99
I: umm. And then the grass isn't changing. 92
Sam: so the grass will end up probably dying down... or reducing, possibly.

94




204

Summary of Affordances for Probabilistic Causes

There is substantial evidence to support the statement that all the simulations
supported the moderate development of probabilistic causal reasoning. One explanation
is that unlike the other categories, there is no interaction between the type of system
represented by the models and the opportunity to learn the concept of probabilistic
reasoning. Another explanation would be that there was a change in the observation and
explanatory capabilities of the students and therefore a development of their causal nets.
In other words, as they proceeded through the instruction the student became more aware
of the effect of numbers and the importance of the environmental conditions in
determining the outcome of the interactions (i.e., system formation). This explanation
was triangulated against the concept map data (see section 7.2). Both showed that more
students made a substantial improvement in their understanding of the concept of

“probabilistic” causes and its relationship to other causal processes.

7.6 Explaining the Weak Affordances for Learning of CST Concepts

While it appears that all three simulations offered support for the concepts of
“local interactions”, “probabilistic nature”, “multiple levels” and “random actions”, this
support was not equal across concepts. In fact, the percentages of awareness varied quite
substantially particularly among learners (looking back to Table 7.3), the most noticeable
of these being the concept of “random actions”. Seemingly, all the simulations did not
provide sufficient modeling of this concept to support a strong awareness or construction
of this understanding.

Interpreting the evidence for “random actions”, as well as the other low awareness
categories (nonlinear effect, decentralized control and homeostatic behavior/dynamic
equilibrium), as apparently weak affordances for learning these concepts may not
necessarily be the correct conclusion to draw. It may be argued that a low level of
observation data does not necessarily mean a lack of awareness or understanding of a
concept. Indeed, it may indicate that the learner readily recognized the behavior described
by the concept and choose to focus instead on other concepts that were more challenging

or interesting. In an attempt to accept or reject this important alternative explanation, [
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will to present excerpts from the transcript data to support my conclusions regarding this

issue.

Concept of Decentralized Control

Pursuing this interpretation, [ would agree that the evidence suggests this might in
fact be the case for the concept of “decentralized control”. All students understood that
all agents were programmed with identical programming; and most accepted that
identical programming could result in pattern formation and emergent levels of

organization. For instances the following excerpts:

Monique: Yeah, so that's why they all go to the same place. Like everyone,
it's like uh, if I know that there's a party, I'm not going to tell everybody
to go, but I'll decide to go myself, I'm just going, and others are going to
be going, so that's why it's going to be a full house.

Norman: Oh yeah, it's decentralized, uh, if uh all the cells that compose the
liver, uh, the instructions come from all the cells, they are the same.

Because they all have the, DNA, so yeah, that would be, decentralized.

Walter: yeah. They all seem, they all follow the same variables, the same
program.

Penny: Well, aren’t they all suppose to be the same? They're all suppose to

behavior in a certain way....That each, um, particle follows the same set of
rules.

Sidney: They all have to follow a rule, that's the thing, in this simulation
they're all following a rule...

Sam: they all follow a general rule but I mean, how they go by it is ...
the rule is that they're all ltooking for pheromones.

Mitch: Algorithmic behavior, and they all follow rules...

Greg: yeah, [all] the individual must follow the rules.

Furthermore, this interpretation is supported by the literature (Resnick, 1994;
Wilensky & Resnick, 1999). However, it was at this higher-level discussion related to the
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self-organizing outcome of decentralized control that difficulties in understanding were
revealed. Norman’s struggles exemplifies this argument (see pp.183-186).

Therefore, the low number of observations is not related to a limited opportunity
for learning this concept, but may be better described as a behavior that is taken for
granted by this population and age of student. However, at the level of ontological
commitment, it is still an issue for some students who experience cognitive conflict as
they attempt to come to terms with the inconsistency between data and theory. Norman’s
experience when he explains the behavior of the ants as being controlled by their
assigned role is a good example of the “reinterpretation” response to anomalous data as

described by Chinn and Brewer (1993).

Concept of Nonlinear Effects

No such counter evidence exists in the transcript for the concept of “nonlinear
effects”. Only a few students even come close to mentioning what could be interpreted as
this effect of emergent causal processes however, the exception was Greg who first
specifically mentions the concept in a discussion during the Gas[L.ab simulation. This
excerpt captures some of the problems that may be related to the affordance of
nonlinearity by the simulations; in essence, a confounding of the several concepts. While
the simulations amply support the acquisition of the concept of probability they do so at
the expense of the concept of nonlinearity. For the most part systems with large numbers
attain stability with individual changes having little or no effect (e.g., numbers of fast or
slow molecules). While small populations are the only ones affected by these changes.
Additionally, there may be a confounding that is part of the whole notion that all agents
do the same thing therefore there is little experience with the idea that one agent’s action

may therefore result in a nonlinear process.

GasLab Simulation

Greg: And, any small individual changes from like one thing changing from red

to blue or something wont really affect the whole system because like because
there're so many more you have, if the red turns to blue, you'd have a blue
turn to red at the same time. But if you have a smaller system its not the
same way like you have a lot more changes and like one change of like one from
red to blue affects the system to a larger proportion. 117




207

Another example came from Sidney when answering the butterfly question. Once
again the limitation of how to interpret the importance of large numbers gets in the way
of his viewing the possible nonlinear effect. Therefore his awareness of the behaviors
observed when the simulations had a large number of turtles does not facilitate his

reasoning for the significant effects of small changes.

Sidney: In this case I would use it as a concept of numbers. Numbers causing
a reaction. Because I don't believe... well I don't believe that one
butterfly could cause this, this snowstorm. If tons of butterflies were
flapping their wings think about like they're moving the air very rapidly,
they're causing waves to go through the air, and these waves being
amplified.. being superimposed might create a sudden disturbance on the..on
the clouds, causing a snowstorm to occur. 171

Sidney: Numbers having an effect on the reaction. Or whether the reaction
proceeds or not. Or adds to the grandeur of the reaction. How big will the
reaction be. 195

True example of nonlinearity. One of the few real statements of understanding

nonlinearity in the sense that one small change may lead to exponential growth/collapse

affects is made by Greg as he engaged in the wolf-sheep simulation.

Wolf-Sheep Simulation

Greg: um. It's just that the thing that I guess, like the really small
changes, like seem to have the largest effect I find. Like when we worked
with that, with the ants and whether they turn left or right like their
tendency, like although it seems entirely irrelevant at the time like it has
an effect. Like I guess, every aspect of a system is important in the end.
Given the whole system itself. Like switching something very small can have g
large effect on the system. 101

Greg: it's just like I mean. Um, what this is affecting is, how quickly the
sheep will die... Theoretically, most of the sheep will be eaten by wolves.
Like you wouldn't find many of them not be eaten. So, it only affects a small
number of sheep you would say, pretty much like [muttered], most of them are
eaten to keep the wolves, but it makes it far more, um, periodic I guess.

[mutters something else too low to catch] 114
I: ok... so if I can paraphrase what you said. That a small change in the

metabolism produced a big change in the overall system. It made it much more
periodic? 116

Greg: yeah. Say like here. I guess with this change all the sheep died. 118
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An example of these possibly confounded notions (i.e., “nonlinear effects” with
the functioning of systems containing small numbers of agents) is demonstrated in
Mitch’s statements. He dismisses the potential to observe nonlinear effects (i.e., the line
going up and down) and interprets them as the result of the small numbers of agents
within the system. This was a more common observation made by students and

reinforced by the simulations.

Mitch: Because a lot of them are just running around and, haven't even
touched anything yet. 291

I: In terms of the stability of the system, how stable is it? 293
Mitch: Well, it's stable. The equilibrium point is not, it's not a straight

line, versus when it was, the number was at 2000, it was virtually a straight
line. This one's going up and down, and the line's jagged. 295

In conclusion, although the experts’ rated the simulations as displaying “nonlinear
effects” (see Figure 6.3), I contend that the paucity of student observations of
nonlinearity is more a case of an interaction between this limited affordance and the
learner’s mental models. Indeed, Greg was more like an expert learner than the other
students. Therefore this evidence suggests that observations of this concept require a
more sophisticated understanding of emergent causal processes and in fact it may be that
experts “see” the deep structure (e.g., nonlinear effects). Hence the interaction of

intervention, concept, and individual attributions needs to be taken into consideration.

Concept of Random Actions

Was learning of the concept random actions not supported by the simulations or is
there another explanation? Random behaviors were illustrated by movement of the turtles
and was somewhat controlled by the pre-defined variables “sliders™ in the Slime
simulation. The students also encountered the term in a direct fashion during session 3
when they engaged in a programming tutorial and were allowed to set the degree of
randomness for the starting positions of the turtles. From a perceptual level it appeared
that all the simulations offered equal opportunities to observe randomness of agents’
actions; and, if fact, the GasLab simulation demonstrates “Brownian motion”, a classic

example of random behavior.
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Why then did students not provide more evidence of this awareness; and why did
some appear to be challenged by this concept? To answer these questions required first
the examination of the individual student’s results (see Figure 7.13). From this data there
appeared to be two categories of experiences. In one category, students like Greg, as
described in this case report (section 7.3), and Mitch (in the excerpt below) were
hampered by the fact that within a computer environment all parameters are predefined
and therefore can eventually be determined, even if it takes a long time; consequently,

this is perceived as being a sign of no “real” randomness and more a function of statistics.

Mitch: That it‘'s uh... Oh, it depends on... Chance, is how it happens.

Those happened twice, or three times, that it stopped, and once that it went
to... If_vou kept, vou kept on going to the simulations, you could

figure out how many times it would happen, find out the stats for it. 582

Mitch: Well, you run it a hundred times, and... If you run it enough times
to_get through every single positioning, I guess using some form of
statistics, how many times it reacts depending on this type of situation. Like
if you have 50 of the wolves are near 5@ of the sheep, those 5@ get eaten right
away, but the other 20@ sheep don't get eaten, so they all reproduce. I guess
if vou figure out, using a graph to figure out how long the thing would take to
end. .. 598

As was described in the last section case report on Greg, it was possible to
overcome this limitation of viewing randomness as merely something that can be
logically reasoned away. Instead, he came to recognize the deeper role that randomness
plays in producing the probabilities expressed by the system. With the aid of the coach
and with the benefit of time and domain knowledge acquired in biology, Greg was able to
“see pass” the confines of the computer environment and explore the concept as it exist in

unrestricted and adaptive environments.

G: Because uh.. There’s the uh, the factor of change involved. And just like
the small, minute things that each uh, each simple system does.. That, that
will get uh, like, absorb into the complex system without really having any
real effect on it, unless there’s g lot of random events. But uh, you know
there has to be randomness somewhere, it’s not like, as I’m far I’'m
concerned, I mean random events happen.

Like chance is a factor. And so that creates um, randomness, and that

creates possibilities, also. That if there were no random events, then you
wouldn’t have those possibilities.
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On the other hand, there were students like Norman (also described in a case
study — see section 7.3), who although generated a considerable number of utterances
coded at the category of “random” (see Figure 7.13) were still possibly constrained by
their synthetic mental models, composed of clockwork component beliefs regarding the
attribution of causal “determinacy”. Furthermore he did not appear to understand how to

use the model and where to extend it past the limitations of the computer environment.
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Figure7.13  Bar graph of summary scores for nine students over three session
generated on the category of random action (identified from CST coding).

In summary it was important to look more closely at the meaning behind the
students’ understanding of random. There are different ways and levels of understanding
this concept as it relates to day-to-day “random” events, compared to its role in emergent
causal processes. These important nuances make it a different concept to assess and a
difficult one to learn. Moreover, there is the current usage of the term in the popular
vernacular of adolescences (e.g., “Yeah, I just had a random thought ...”) that had to be

teased out of the analysis.
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7.7 Changes in Mental Model Using OMMT — Delayed Posttest

In review, Study 1 established that students in the ontologically based intervention
(a two day workshop attending to complex systems concepts), compared to those in a
placebo control group, produced a statistically significant difference between the pretest
and posttest, thereby suggesting conceptual change had occurred. The students appeared
to acquire an emergent explanatory framework (EFMM) and applied it to answer
problems with familiar settings (near transfer problems). By comparison they reduced
their tendency to use CWMMs when solving these problems. The results for problems
with unfamiliar settings (far transfer problems) were less conclusive, although they too
were statistically significant. Therefore, the second study was designed to take an in-
depth look at this change process.

By comparison, Study 2 was concerned with the process of concept acquisition as
discussed in the sections 7.1 through 7.6 of this chapter. It also was interested in
assessing the transfer of this knowledge acquisition as a general application explanatory

framework. The following research questions guided this exploration:

1.a) Does a longer duration ontologically-based intervention support a different
learning experience as demonstrated by more elaborated emergent framework mental
models?

b) Which dimensions of the ontological categories change?

c) What are the effects of time on this content knowledge and the students’ ability to
perform these transfer tasks (i.e., ecological validity)?

d) Does this intervention increase transfer of the emergent causal framework to a

wider range of ontologically analogous problems?
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7.7.1 Review of Assessment Measures

Changes in case study students’ mental models (explanatory frameworks) were
determined through comparison of the post-case (referred to as Delayed Posttest) results
with those collected from Study 1 (the post-workshop, referred to as Immediate Posttest).
Study 2 used a similar dependent measure to Study 1 (see Appendix F.1 & F.2) and the
same revised OMMT (see pp.65-67).

7.7.2 Changes in Mental Models Recorded in Delayed Posttest

Addressing Research Question la

Does a longer duration ontologically based intervention (five weeks) support a
different learning experience as demonstrated by more elaborated emergent framework
mental models? In order to answer the question, I compared the students’ responses from
the delayed posttest to the immediate posttest. The results described an increase in the
number of emergent framework mental models (EFMM:s) used by students in this
heuristic process, but, little or no change in the number of clockwork mental models
(CWMMs) concepts used (see Table 7.7). There was a decrease in the number of
categories for which no evidence of model (NM) was found.

To determine if these changes were statistically significant, I performed a within
group paired samples ¢ test on the three similar questions. The results of analysis
indicated that the students’ use of EFMMs were significantly increased between the
delayed posttest (M=12.7, SD= 5.8) and the immediate posttest (M= 5.6, SD= 5.6),
p=0.000 (one-tailed). As anticipated, it also indicated that the changes in the CWMMs
were statistically insignificant with the delayed posttest (M= 3, SD=2.8) and immediate
posttest (M= 3.4, SD= 3), p=0.314 (one-tailed). However, the decrease in NMs were
statistically significant with delayed posttest (M= 5.9, SD= 3.2) and immediate posttest
(M=10.7, SD= 3.1), p=0.003 (one-tailed).
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Table 7.7 Study 2 gains in students’ mental models for all three questions (n =9).

Immediate Posttest Delayed Posttest
Scores on
M SD M SD
Emergent Framework N
Mental Models (EFMMs) >-6 3.6 12.7 5.8
Clockwork Mental Model
34 3 3 2.8
(CWMMs)
No Model (NM) 10.7 3.1 5.9* 3.2

* Significance at a = 0.01 on one-tailed independent samples ¢ test.

Figure 7.14 describes the results of the immediate posttest and delayed posttest
comparison by illustrating the increase in emergent framework mental models (EFMMs),
while there was a small decrease in the number of clockwork mental models (CWMMs).
However the number of none-codeable mental models (NMs) changed significantly

between times.

total scores
—§3—EFMM
120 1 s~ CWMM
---#-- No Model
100 A
80 1
60 -
40 1
20 1
0 . . Time
Immediate Posttest Delayed Posttest

Figure 7.14  Change in mental models over time (i.e., between immediate posttest and
delayed posttest).
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The change to EFMMs described above supports the findings from Study 1 in as
much that the there were substantial gains in the number of items coded at the emergent
framework ontological category. Unlike Study 1, the number of CWMMs did not
decrease, but remained unchanged; whereas, the number of NMs reversed trends going
from no change to show a considerable decrease. In fact, CWMMSs and NMs are almost a

perfect switch (compare Figure 5.2 to 7.14).

Examining the Results from a Qualitative Perspective

These results can also be looked at from a more qualitative perspective (see Table
7.8). This perspective describes the raw numbers generated by the scoring of all three
questions and shows that the students were better able to provide answers to all the
questions. Particularly noteworthy, however, was their improved ability to provide
answers for the “Butterfly weather pattern” and “Traffic jams” questions. It is important
to note that nowhere in their case study training did the students receive information on
the content knowledge related to “Ants”, “Butterflies”, and “Traffic” (although some did
explore the simulation after the assessment). What is also very important is that the
change in CWMMs was almost nil for these questions. In fact, there was a decline in
CWMMs for the “Traffic” question.

The increase in EFMMs can therefore be attributed to a reduction in NMs. This
suggests that students were more able to provide explanations for these types of
questions. The results also support the claim that students were not likely to gain
CWMMs as a result of the training.

One possible explanation accounting for these changes may be “maturation”
and/or non-treatment related experiences (i.e., course content, information from a media
source, etc.) between the immediate posttest (August, 2000) and the delayed posttest
(April 2001). I contend that the data does not support either of these explanations. In fact,
the session one transcripts of the control group students (Norman, Penny and Emilie)
showed no evidence of “intuitions” or spontaneously generated analogies to emergent
type phenomena. However, some students from the experimental group (Walter, Sidney,
Monique, Sam and Greg) did show evidence that they had continued to construct a

conceptual understanding of the CST concepts between posttests, as demonstrated by
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references to everyday experiences in which they had cause to recall the treatment (e.g.,
when caught in a traffic jam; when observing social groupings, etc.). This result does
suggest that there was some between treatment conceptual change experiences; a topic

worthy of its own study but outside the scope of this current research design.

Table 7.8  Changes to mental model categories between immediate — delayed posttest.

Emergent Framework Clock Work _ No Model
Mental Model (EFMM) Mental Model (CWMM) (NM)
Simulation - - -
Immediate |Delayed Immediate |Delayed Immediate |Delayed
Posttest Posttest Posttest Posttest Posttest Posttest
Ants 27 44 13 14 24 13
Butterfly 9 28 9 9 36 23
Traffic 1 ) 9 4 36 17
Collective 50 114 31 27 9 53
scores

7.7.3 Changes in the Six Dimensions of the EFMM Category

Research Question 1b

Which dimensions of the mental models changed? Examining the data with this
question in mind provided insight into which ontological barriers were more changeable
and which were not.

Figure 7.15 illustrates the results of the immediate posttest, whereas figure 7.16
illustrates the results of the delayed posttest. Both figures visually demonstrate the
relationships between the numbers of propositions coded to the dimensions of CWMMs

and EFMMs.
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Immediate posttest results for 3 questions over 3 categories (bar graph).
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Figure 7.16  Delayed posttest results for 3 questions over 3 categories (bar graph).
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Converting the visual display into a table allowed for the inspection of differences
between the immediate posttest and delayed posttest. As indicated in Table 7.9 there were
substantial differences among the dimensions of the EFMM category. For example, in the
delayed posttest the students were more likely to understand and apply “emergent self-
organization”, “probabilistic causes”, “decentralized control”, and “dynamic nature”
explanations compared to “nonlinear effects” and “random actions” explanations. These
results again suggest that students were holding synthetic mental models composed of

both clockwork and emergent framework beliefs.

Table 7.9  Change in EFMM over time (immediate posttest — delayed posttest).

Emergent m m & Y
g S¢S 8% 28 28 &3 g<
Framework ITa 39 e 2 Sa 6o €8
Mental S&¢ S 2 8§ 2 3 S ag.
Models <83 s = g
3, ~ =
N, @ o
. = Q.
Immediate «
Posttest — _ — - = =
3| §1 3| ®| 3| 8| 3|8, 3| ¢8| 3| ¢%
sl el 3|l el 3|l e|3|e|3|e| 3| ¢
& Delayed g ‘fop_ s | 8| g §_ =3 §_ o §_ o “:"_
Posttest 2 = = o =S H
o ® o o ® @
Collective 75 42 4 18 6 10 6 12 7 20 2 12
scores
Change t?tw. +17 +13 +4 +6 +13 +10
observations

Table 7.10 shows that there were few differences among the dimensions of the
CWMM category. From a non-statistical perspective it appeared that the category of
teleological behaviors were substantially different from the others. In fact there was
100% decrease in propositions coded to this category. This shows that the category of
“emergent self-organization” accounts for a substantial amount of the changes observed
in the delayed posttest. Additionally, the ability to describe the “probabilistic nature” and
“decentralized control” of the systems featured in the outcome measures were also

increased. Looking at the delayed posttest scores for each of these categories suggests
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that students more frequently produced explanations using “emergent self-organizing”
framework and “probabilistic nature” framework, with “decentralized control”
framework in a close third place. By and large they continued to have difficulties with

the concepts of “nonlinear effects”, “random actions” and “dynamic nature”.

Table 7.10  Change in CWMM over time (immediate posttest- delayed posttest).

Clockwork om 99 C >y &3 &
Mental 2o 22 2 2 8 G 8 g
O C o+ ot o (=] =2 s g
Models ga g 8 ™ a o 88 >
i [= = [te]
Immediate <3 § F Z a8 o
& Delayed & = 3
[+
w
Posttest
Results =1 o | 9 3 =) = o | 9| 3| ¢
[1] (1] 1] @ [ 1]
3 o 3 ) 3 & 3 ) 3 & 3 &
[5] L [13 < (1] < o < [4] < o -
a @ o @ o @ Q @ o @ o ®
& el g | 8§ Q| s | B e I B
=S 2 & ] (] o
Collective 6 6 6 5 4 3 4 3 8 5 3 5
scores
Change i?tw. 0 -1 1 -1 -3 +2
observations

7.7.4 Summary and Explanation of Results for Delayed Posttest

These results might partly be explained as a consequence of familiarization with
the questions since they were used as the pretest and immediate posttest. This argument is
unlikely for two reasons: first, the delayed posttest was administered eight months after
the immediate posttest; and second, the evaluation was not merely quantitative but also
qualitative. As a consequence, it may be argued that this length of time should account
for some normal forgetting of terminology if this were no more than a learned response.
Thus, if the experimental students actually remembered their responses, it supports the
strength of the initial training. If, however, there was normal forgetting, then the case
study produced an even bigger effect than is reported.

The qualitative differences in responses generally took the form of elaborations of

explanations. Because of these longer statements (the delayed posttest was aural) the
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students were able to more fully express themselves. In so doing, it provided the raters
with more content to code and thereby the potential to identify more evidence of any
existing mental models. The fact that there was a reduction in CWMMs even with this
greater opportunity supports the interpretation that students were less likely to produce
this category of reasoning.

It may be argued that the students learned to format their answers in such a way as
to avoid using CWMMs explanations. This may explain the experience of the
experimental group. However, there was evidence of fewer CWMMs from the control
group who did not receive the possible reinforcement of the pretest-immediate posttest
results.

Taking all these alternative explanations into account, | contend that the change
demonstrated in the delayed posttest is indicative of a genuine change and elaboration in
mental models. That said, we must look at the data to distinguish if this change occurred
for all students or was it experienced only by a few, but large enough to affect the
averages. In both the following sections (7.9 and 7.10) [ will conduct these cross-case

comparisons.
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7.8 Changes in Mental Models One Year Later — Final Posttest

Background Information

The final assessment data (referred to as the Final Posttest) were collected in an
interview (April 2002) 12 months after the conclusion of Study 2 (April — May 2001).
Composed of two completely new questions (see Appendix F.5), their objective was to
assess problem solving transfer skills at different levels of difficulty. The extreme time
gap provided added challenge to demonstrate knowledge of transfer. In this case, the
transfer task required to apply a structural base (i.e., emergent frameworks mental
models) to the concept of evolution, which was a target’® domain acquired as part of the
students’ compulsory science program (Biology NYA). The intent was to provide a test
of the proposition that ontological training can result in conceptual reassignment or
conceptual change as proposed; as proposed in the earlier research reported in Slotta and

Chi’s (1999) paper.

Assessment Measures for Final Posttest

Question 1 — “what programming would be required to have robotic birds display
a similar behavior resulting in the V-shaped formation that is created by a flock of
birds?” — was selected from the bank of complex systems questions (collected by
Jacobson, 2000). Similar to the previous assessment measures, it called for the student to
problem solve in un-instructed content areas. Therefore it was an assessment of their
ability to transfer the emergent explanatory frameworks (EFMMs) acquired during the
intervention (Study 1 and/or Study 2).

Question 2 — “describe how the process of evolution might proceed for corn
plants under different environmental constraints” — required that the student explain

several mechanisms of evolution, which are taught in an introductory Biology course®'.

30 This notion of base and target are borrowed from the literature on analogical reasoning (e.g., Gentner &
Gentner, 1983; Duit, et. al, 2001). The definition of a base is something that is known to the learner, while
the target is the unknown. I contend that transfer of the structural components of the emergent explanatory
framework (EFMMSs) is similar to the process of analogical reasoning in that it acts as a base. In the
problem-solving task selected for this final assessment, the process of evolution was the target.

3 Biology NYA is the compulsory biology course for all Science Program students. It is given in semester
two (for Health Science students) and semester 3 (for Pure & Applied Science students) of the respective
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This problem assessed both declarative and procedural knowledge of that content area, as
well as solicited the requisite transfer of the explanatory framework. In essence, [
hypothesized that if the student had acquired a structural level understanding of evolution
then they would be able to explain the phenomenon as an example of an emergent
process, thereby using EFMMs. If they had not, then their explanations would not
necessarily contain EFMMs but, in fact, might reflect many of the naive evolution
misconceptions described in the literature (Jacobson & Archodidou, 2000; Jensen &
Finley, 1996; Anderson & Bishop, 1986). The demands of the question were particularly
challenging because of the time delay between the students’ engagement with the

intervention, as well as the delay between the biology course and assessment.

7.8.1 Results of Final Posttest

Research Question Addressed in this Analysis

1.c) What are the effects of time on this content knowledge and the students’ ability to

perform these transfer tasks?

To answer this question, I compared the final posttest and delayed posttest scores
on the dependent variable of EFMM. The results of a paired samples ¢ test analysis (see
Table 7.11) indicated that the students use of EFMM were significantly different between
the final posttest (M= 4.5, SD= 3.8) and delayed posttest (M= 12.7, SD=5.8), p = 0.000
(two-tailed).

The corollary to the above question considered the effects on the CWMMs and
the NMs. Comparing final posttest CWMM scores (M= 2.11, SD=1.7) and delayed
posttest CWMM (M= 3, SD=2.8), p = 0.26 (2 tailed) showed no change to CWMMs

two-year science programs. Evolution is covered as a major topic generally occupying three to four weeks
(15% - 20%) of the course content. Although the students would have been assigned to different sections
taught by different teachers, the course has common standards and common tests. No formal effort to
control for possible teacher-learning interaction was attempted. An analysis of the Bio NYA grade and
EFMMs generated by the evolution problem-solving response produced correlation r = 0.71, df=6, 0. =
0.05.



222

over time. Looking at the final posttest NM scores (M= 4.8, SD=3.15) and delayed
posttest NM (M= 5.9, SD=3.2), p = 0.48 (2 tailed), also reported no statistically

significant change between assessments.

Table 7.11 Study 2 change in students’ mental models from delayed posttest to final
posttest one year later (n =9).

Immediate Posttest Delayed Posttest Final Posttest

Scores on
M SD M SD M SD

Emergent
Framework Mental 5.6 5.6 12.7* 5.8 4.5 3.8
Models (EFMMs)
Clockwork Mental

34 3 3 2.8 2.11 1.7
Model (CWMMs)
No Model (NM) 10.7 3.1 59 3.2 4.8 3.2

* Significance at . = 0.01 on one-tailed independent samples # test.

These results indicate that students reduced the number of EFMMs used to
explain the behaviors of the systems in question. On the positive side, the change was not
matched by a symmetrical gain in CWMMSs. There was also a small decline in the

number of NMs recorded.

7.8.2 Cross-Case Comparison — Final Posttest Results

Examining the results from a qualitative perspective shows how the individual
student responded to the final posttest questions (see Table 7.12). From this point of
view, we can see that some students produced a substantial number of EFMMs even one
year later. Additionally, the number of CWMMs had not increased. However, some
students still had difficulty producing responses that could be coded to either mental

model, this probably indicates that certain sub-category dimensions were still difficult to
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use as an explanatory framework therefore could be viewed as evidence of synthetic

mental models.

Table 7.12  Summary of final posttest mental models categories by individual cases.

Final Posttest EFMM CWMM NM
Norman 1 3 8
Penny 2 4 )
Emilie 0 3 9
Walter 2 4 7
Mitch 7 2 3
Sidney 6 0 6
Greg 11 0 1
Sam 7 2 3
Total 34 19 43

(N.B., shading represent students who produced a substantial number of EFMMSs. Also note that Monique
was removed from this table since she did not complete this phase of the study).

7.8.3 Comparisons Between Delayed and Final Posttest — Cross Case Comparison

Accounting for the Change in EFMMs

Did the EFMM change correlate to old patterns? Accounting for the observed
change in the emergent framework mental models called for a closer examination of the
data. Comparisons between the students’ final posttest with their delayed posttest
produced a high correlation of r = 0.92, (r = 0.81 with equalized scores) df =7, a = 0.01.
This suggests that the differences in EFMMs were within the students’ established mental
models pattern.

A non-statistical examination of the data also supported this finding (see Table
7.13). For instances, Sam produced high EFMM scores on the delayed posttest (average
of 4 EFMM points per question) and maintained these high levels on the final posttest

(average of 3.5 EFMM points per question) even while his mean EFMM score changed
(delayed posttest M=6.3; final posttest M= 3.5). 4
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Table 7.13  Average EFMM score per final posttest and delayed posttest questions.
52’4:: per Delayed Delayed Posttest Final Posttest _ Change btw.
Question Posttest (equalized score) Final - Delay (norm)
Norman 2.3 1 0.5 -0.5
Penny 2.3 2.3 1 1.3
Emilie 2.7 1.7 0 1.7
Monique 2 1.7 Ak A
Walter 4.7 2.7 1 -1.7
Mitch 5 4.3 3.5 -0.8
Sidney 5.7 4.7 3 -1.7
Greg 7 4.7 5.5 0.8
Sam 6.3 4.3 3.5 0.8

Total 38 20.7 18 -2.7

(NB. The entry *** = missing data).

Looking at the “equalized” scores* on the EFMM variable (Table 7.13) it showed

that three students (Mitch, Sam, & Greg) produced almost equivalent results on the

delayed posttest and the final posttest even after a one-year gap and could be considered

“sophisticated” EFMM producers. Norman also shows little change but his delayed

posttest score was reported very low EFMMs. Although Sidney produced an almost equal

number of EFMMSs compared to Mitch and Sam, his decline was considerable (loss 1.7

points out of a possible 6). On the other side of the table, the results also showed that

three students (Walter, Emilie and Penny) loss a substantial amount of their acquired

ability to use this explanatory model and could be described as “novice” EFMM

producers.

In summary, these results (see Table 7.13) are very promising and suggested that

almost half the case study students were still able to use the emergent causal explanatory

framework even after a one-year period in which no planned reinforcement of the

intervention was administered. Therefore this ontological training may be beneficial for

science education. More about this will be discussed in the upcoming chapter.

32 Method for obtaining the “equalized” scores is described in section 7.8.
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7.9 Cross-Case Comparisons of Explanatory Frameworks (Mental Models)

In order to understand the phenomena more fully, the next questions to be
explored concerned the differences among the students. This analysis was guided by the
specific questions: (1) Which students used emergent explanatory frameworks (EFMMs)
as part of their heuristic processes? Was there evidence of pre-existing EFMMs or were
they generated only after the intervention? (2) Was there evidence of pre-existing
CWMMs and if so did they change? (3) Was there evidence that those who expressed
neither mental model (NMs) experienced changes (i.e., acquired some framework)? As
well as the more global questions: Did change mean a shift and/or replacement in mental
model? Or was change an elaboration to an existing mental model?

To answer these questions I examined the data on two levels. Firstly, on the level
of the equalized scores (a process described below) which allowed me to compare
equivalent gains and losses. Secondly, on the level of the elaboration of mental models

that involved looking at the raw gains in emergent frameworks.

Overview of Method Used to Compare Cases

Comparisons of individual’s gains and losses were possible because of the coding
method whereby propositional phrases were coded into all six dimensions of the
ontological category as either EFMM, CWMM or NM, therefore the total score always
equaled six (Total=6 points). Therefore a gain in one of the three framework totals
indicated a loss in either of the other two. For example, Penny’s scores, as indicated in
Table 7.14, always total 18 for the three posttest questions, however, the frameworks
used in her explanations changed over time. Hence it was possible to study where the
changes were occurring and what those changes might mean to the students’

understanding and use of this alternative explanatory framework.

Table 7.14  Individual changes in mental models between immediate posttest and
delayed posttest — example from Penny.

Penny EFMM CWMM NM Total
Delayed Posttest 7 1 10 18
Immediate Posttest 0 7 11 18
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Elaborations. Further information on changes in mental models was possible
because the EFMM category of “emergent self-organization” was a unique category that
could generate a maximum score of 4 (“emergent self-organization” column max score =
4 points). For instances, if a student elaborated on the mechanisms related to the
emergent process, they would generate more points under this category. That said, any
question that produced a total greater than six indicated that the student had produced
more Non-reductive explanations.

By way of another example, Greg generated more elaborated responses to
questions as he proceeded through the treatment. Therefore his total scores as he went
from pretest to delayed posttest were 19, 24 and 27 respectively, indicating that he had
elaborated on the dimension of “emergent self-organization” (see Table 7.15). Using

these results I could better describe the gains in the EFMMs of the individual student.

Table 7.15  Greg changes in mental models over time — raw scores.

Greg EFMM CWMM NM Total
Delayed Posttest 21 0 4 25
Immediate Posttest 14 2 8 24
Pretest 6 2 11 19

However, in order to compare all the students against each other and to describe
where the changes in CWMM and NM had taken place, I equalized the EFMM scores by
removing the gains from the elaborated “emergent self-organization” category thereby
producing a table with equalized comparative scores (see Table 7.16). With both types of
tables it was possible to interpret the results from both the with-in case perspective as

well as perform cross-case comparisons.

Table 7.16  Greg changes in mental models over time — equalized scores.

| Greg EFMM CWMM NM Total
Delayed Posttest 14 0 4 18
immediate Posttest 8 2 8 18
Pretest 5 2 11 18
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7.9.1 A Summary of Changes to Mental Model — Equalized Scores

Changes in EFMMs.

To answer the questions, which students changed and what did the change mean
to the stability and coherence of the mental models represented, requires the examination
of the equalized scores. Table 7.17 shows that some students began Study 1 with prior
knowledge of and ability to use emergent mental models. In fact, Sam (9) and Greg (5)
both answered the pretest questions with a strong demonstration of emergent explanatory
framework (EFMMs). One other experimental group student, Walter (2), and two control
group students, Norman (2) and Emilie* (1), also provided modest displays of EFMMs
on their initial assessment measure (pretest for experimental group; immediate posttest
for control group).

The immediate posttest (end of 2 day workshop in Study 1, August, 2000) showed
that all experimental group students provided EFMMs explanations when answering the
problem solving tasks. In fact their gains ranged from 3 to 4 points (n=6); with the
exception of Walter, who loss one point between assessments, which is not significant
(see Table 7.18 for gains and losses).

The change between the immediate posttest and the delayed posttest (end of
session 4, Study 2, April, 2001) also produced a substantial increase with individual gains
ranging from 1 to 10 points (n=9). The biggest changes were from Mitch (+10), Sidney
(+10), Walter (+7) and Penny (+7); whereas, Sam (+1), Norman (+1) and Monique (+1)

reported few changes between these assessment measures.

33 Upon interviewing Emilie it was shown that she had copied the answer to the Butterfly question off the

Internet therefore displayed signs of emergent frameworks when in fact she did understand emergent
phenomena.



Table 7.17 Summary of mental models categories by individual cases.

N Assessment Mental Model
ame sse EFMM CWMM NM
Norman Delayed Posttest 3 5 10
Immediate Posttest 2 3 13
Penny Delayed Posttest 7 1 10
Immediate Posttest 0 7 11
Emilie Delayed Posttest 5 8 5
Immediate Posttest 1 6 11
Monique Delayed Posttest 5 3 10
Immediate Posttest 4 4 10
Pretest* 0 1 17
Walter Delayed Posttest 8 6 4
Immediate Posttest 1 8 9
Pretest* 2 8 8
Mitch Delayed Posttest 13 0 5
Immediate Posttest 3 0 15
Pretest* 0 6 12
Sidney Delayed Posttest 14 2 2
Immediate Posttest 4 0 14
Pretest* 0 6 12
Greg Delayed Posttest 14 0 4
Immediate Posttest 8 2 8
Pretest* 5 2 11
Sam Delayed Posttest 13 2 3
Immediate Posttest 12 1 5
Pretest* 9 3 6

(N.B. the EFMMs scores are “equalized” scores, therefore the rows are a constant sum = 18.

Note that * indicates the Pretest scores obtained from Study 1. Also note that the first three students
belonged to the control group and therefore did not take the pretest).

Change in CWMMs.
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The results of the pretest assessment showed that all students used CWMMSs in

their problem solving (see Table 7.17). In order to understand the meaning of the

CWMMs, it is best to relate them to the NMs column. In this way, it is possible to
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describe if a report of low clockwork models (CWMMs) represented real change or
merely insufficient ability to answer questions™.

Turning to the pretest scores, Walter (CWMM =8, NM=8), Mitch (CWMM =6,
NM=12), and Sidney (CWMM =6, NM=12) expressed a substantial numbers of
CWMMs; Monique’s low score (CWMM =1, NM=17) was attributed to unanswered
questions thereby producing no codeable propositions (hence her score of NM=17). On
the other hand, Greg’s (CWMM =2, NM=11) and Sam’s (CWMM =3, NM=6) low
CWMMs scores, were not attributable to unanswered questions, but is a true reflection of
CWMMs use, and NMs.

The immediate posttest showed that most experimental group students provided
fewer CWMM s explanations in this second assessment (see Table 7.18). The reductions
ranged from 2 to 6 points (n=6). Walter (0) and Greg (0) did not decrease their CWMMs
between these measures. Monique (+3), however, gained CWMMs. This is explained by
the fact that she had acquired some understanding and therefore attempted to answer the
questions when she had not done so in the pretest (note NMs=10, a change of —7). The
immediate posttest column also showed that the control group students began with
CWMMs. Norman (3) was at the low end while Emilie (6) and Penny (7) held somewhat
higher CWMMs.

Differences between the immediate posttest and the delayed posttest generally
were insignificant with three students showing decreases (Walter, Greg, and Monique)
and one with no change (Mitch, CWMM= 0 change, NM= —10). Penny (CWMM= -6,
NM=—1) had a substantial change in the number of CWMM s she produced in the
delayed posttest. By contrast, Sidney (CWMM=+2, NM= —12), Sam (CWMM= +1, NM=
—2), Emilie (CWMM= +2, NM= —6), and Norman (CWMM= +2, NM=—3) all produced
gains in their CWMMs. However, they had varying degrees of losses to NMs, with
Sidney, Mitch and Penny being most able to add propositional statements reflecting

either mental model.

3 Ppossible explanations for unanswered questions, or questions that were so poorly answered that they did
not provide evidence of either mental model were: (1) not understanding the question, (2) fear of failure
therefore limited risk taking, (3) lack of content knowledge, or (4) limited ability to express themselves.



Table 7.18  Differential changes to mental models categories by individual cases.

Name Assessment Mental Model
EFMM CWMM NM
Norman Delayed - Immediate 1 2 -3
Penny Delayed - Immediate 7 -6 -1
Emilie Delayed - Immediate 4 2 -6
Monique immediate - Pretest 4 3 -7
Delayed - Immediate 1 -1 0
Delayed - Pretest 5 2 -7
Walter Immediate - Pretest -1 0 1
Delayed - immediate 7 -2 -5
Delayed - Pretest 6 -2 -4
Mitch Immediate - Pretest 3 -6 3
Delayed - Immediate 10 0 -10
Delayed - Pretest 13 -6 -7
Sidney Immediate - Pretest 4 -6 2
Delayed - Immediate 10 2 -12
Delayed - Pretest 14 -4 -10
Greg Immediate - Pretest 3 0 -3
Delayed - Immediate 4 -2 -4
Delayed - Pretest 9 -2 -7
Sam Immediate - Pretest 3 -2 -1
Delayed - Immediate 1 1 -2
Delayed - Pretest 4 -1 -3

(N.B. The first three students identified belonged to the control group and therefore did not take the

pretest).

Summarizing and Interpreting the Changes
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From these results, it appears that although all students increased their ability to

respond to the questions using emergent framework mental models (EFMMs), not all

were able to do so with a relative reduction in their clockwork mental models (CWMM:s).
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Only two students (Mitch and Greg™) reported high levels of EFMMs with low
levels of CWMMs and low levels of NMs, indicating that their mental models were
becoming increasing more coherent and stable. However, it should not be forgotten that
Greg began Study 1 with a moderate level of pre-existing EFMM:s.

Sam® and Sidney also produce substantial increases to EFMMs but maintained
moderate CWMMs, with small NMs. These results suggest that although their mental
models were becoming more coherent, (i.c., losses in NMs) they were still somewhat
unstable because of the reappearance of CWMMs.

According to Vosniadou and colleagues (e.g., Vosniadou & Brewer, 1994;
Vosniadou et al., 2001) synthetic models are formed in the problem-solving context as
learners attempt to reconcile the “new” view with the existing underlying ontological and
epistemological presuppositions, which are referred to as “component beliefs” (in
Jacobson & Archodidou, 2000). Therefore, this evidence from the current case study of
students appearing to move between the “new” emergent framework beliefs (EFMMs)
and existing clockwork presuppositions (CWMMs) may also be described as examples of
different levels of synthetic menial models.

Walter and Emilie both generated a moderate number of EFMMSs but also held
onto moderately high CWMMs, and moderate NMs, thus suggesting that they too held
synthetic mental models but to a greater extent. Furthermore, their levels of NMs suggest
that their mental models were still a in the process of gaining coherence.

Finally, Penny, Monique and Norman all produced moderate to low numbers of
EFMMs, held onto moderate to high levels of CWMMs, and high NMs (10 points).
These results indicate that not only did these three hold synthetic mental models, but
more importantly, their high NMs scores point to a real problem in understanding the
material or their ability to express themselves. Both explanations are plausible in some
cases. In fact, Penny’s CWMM to EFMM ratio was 1 to 7 which supports the contention

that she did not have conflicting mental models (i.e., synthetic models). Rather, she

35 However, it should not be forgotten that Greg began Study 1 with a moderate level of pre-existing
EFMMs. Consequently, his change (+9) between pretest and delayed posttest was not a substantial as
Mitch’s gains (+13).

3 Sam also started the study with high EFMMSs. His change (+4) is very moderate by comparison to
Sidney’s gains of +14 points between pretest and delayed posttest.
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appears to be unable to understand the material. For example her discussion with the
coach in session 5 reveals her difficulty with understanding (see p.). Norman, on the
other hand, maintained high CWMMs that were not moderated by the intervention.
Despite the fact that English was Norman’s third language he appeared to understand the
material. His struggle, however, was with particular dimensions of the emergent
framework (EFMM) and therefore he did not show a shift to this explanatory model (see
pp.143-149). English was also a second language for Monique and this may explain her
difficulty to reduce the number of NMs and increase the EFMMs. Her struggle was with
expressing herself and understanding some of the language used by the coach and the
materials used in the intervention. When she finally grasped a concept she was able to

understand it but it took her much longer than the other students.

7.10 Triangulation of Data Sources

Triangulation of data collected from different sources is a recommended practice
used primarily, but not exclusively, in qualitative research studies to establish validity
(i-e., trustworthiness and authenticity). This procedure of drawing together and
comparing data collected from different techniques addresses the threat of experimental
bias, which may be inherent in particular data sources, investigator bias, and methods
(Creswell, 1994). The benefit of employing a mixed methods research design as in this
current study was that it provided these requisite differences between data sources.

In order to conduct the triangulation, I brought together the results from the three
main data collection instruments used in the case study: (1) OMMT, (2) CST, and 3)
concept maps. I also considered data from other documents, for example the students’
scores on the Nelson Denny Comprehension and Reading test, as well as their course
grades. Comparing these sources to each other provided both quantified correlational
results as well as a qualitative picture of the experience from the individual students’
perspective.

Table 7.19 shows the results of correlational analyses between the OMMT data,

specifically the two ontological perspectives of emergent frameworks mental models



(EFMMs) and clockwork frameworks (CWMMs), and the other data collected. For
example, the EFMMSs produced a statistically significant positive correlation (r=0.89,
a = 0.01) with the results of the CST measure (number of emergent causal processes
identified). By contrast the CWMMSs produced a low negative correlation with CST
results (r= -0.40). Correlations of the OMMT results and the totals produced from the
concept map scoring procedure reveals the same relationship of significant positive
results for EFMMs and low negative correlations with CWMMs.

Examining the results of the correlational analysis between the objective data
sources (i.e., Nelson Denny vocabulary and comprehension scores, and the students’
GPA for the four semesters at the college) also shows the same pattern. In fact, the
Nelson Denny comprehension score correlated against the CWMMs produces a high

negative correlation, however, not statistically significant.

Table 7.19  Correlations between different data sources collected in case study.

Nelson Denny
OMMT CSTtotals | Concept Map GPA’s
scores Vocabulary Comprehension
EFMMs 0.89% 091* 091* 091* 0.87*
CWMMs -0.40 -0.46 -0.56 -0.60 -0.32

df .= 7, * indicate significance at o = 0.01

These consistent correlation results supports the claim that the data collection
instruments were measuring the same phenomena. This statistical triangulation of the

data sources adds trustworthiness to the data analysis methods.
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In conclusion, a non-statistical comparison of the data sources describes a similar

overlapping of results. Specifically, the classifications of student experiences identified

from the CST results (ECP Identifiers), as well as the concept map results

(Understanding of ECP Relationships), lastly the OMMT results (EFMMs Producers).

These three data sets show the same students, more or less, classified as equivalent levels

of understanding across these measures (see Table 7.20). This consistent pattern is

another way of demonstrating the triangulation the three data sets collected in this study.



Table 7.20  Classification of case study students across the three data sources.
Classification Descriptions from Data Sources
ECP Identifier ECP Relationships | EFMMs Producers
Sophisticated Greg Greg
Greg
Mitch . Mitch
High moderate Sam ngh Sam
. am
Sidney
Walter Walter Sidney
Moderate Norman Sidney
Norman
Penny Penny Walter
) Emilie Emilie Norman
Novice Monique Penny
Emilie

(N.B. EFMM Producers based on final posttest results).
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CHAPTER 8 — DISCUSSION

This dissertation study produced results that fall under three main headings. First,
there are results related to the interaction of the learner and conceptual knowledge. This
aspect of the findings addresses important considerations regarding ontological barriers
that constrain the learning of emergent causal processes as described in the literature
(e.g., Chi et al., 1994; Chi & Roscoe, 2002; Jacobson 2000; Penner, 2001). Second, there
are results related to the interaction between the learner and the intervention. This aspect
of the findings responds to practical concerns regarding the usefulness of modeling tools
such as StarLogoT for helping students acquire conceptual knowledge about complex
systems; thereby contributing to the growing body of literature related to the use of these
multi-agent representations (e.g., Resnick, 1994; Wilensky & Resnick, 1999; Wilensky,
2001). Finally, there are results related to what appeared to change in the learner’s
ontological framework, and how this change appeared to take place. I contend that this
aspect of the findings contributes to the literature on conceptual change theory. By
providing insight into the conditions under which conceptual change was or was not

observed we are better able to shape the development of this theory.

8.1 Discussion of the Theoretical Results — Overcoming Ontological Barriers

Chi (2000) proposed that there are three major limitations (inter-related barriers)
to the understanding of the ontological category of emergence: (1) assignment of micro
level behavior as linear, (2) lack of consideration of local interactions between agents,
and (3) a lack of understanding that macro level emergence is the result of collective
interactions of agents and environment — “interaction in dynamic collection”.
Additionally, the literature concerning science misconceptions identified six ontological
barriers®® that in many ways overlap with those described above. Slotta and Chi (1999)

further proposed that ontological training could remove these barriers.

38 1) Isomorphic behavior of both micro and micro levels behaviors (reductive ontology) to emergent

aggregation behaviors (non-reductive ontology);
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The results of this current study shows that not all of these identified barriers are
equally challenging, in fact the instructional intervention demonstrated great
effectiveness in changing at least two (i.e., attributions of reductive behavior and
isomorphic hierarchical levels) of the six subcategory dimensions. However, the evidence
also suggests that two of these ontological barriers (i.e., attributions of linearity and
causal determinacy) are not affected by the chosen intervention, and at least one of these
appears to form a firmly entrenched belief that requires special conditions before it may
be addressed. In the following sections I will discuss how the intervention appeared to
support the acquisition of understanding of emergent causal processes, thereby building
on both Chi and colleagues’ work in the field of conceptual change as well as Jacobson’s
work in the study of how complex systems thinking may form part of a cognitive theory

of learning.

8.1.1 Overview of Results from the Case Study Intervention

The evidence in this work shows that the intervention — specifically the
simulations used in sessions one (Slime mould), two (GasLab), and five (Wolf-Sheep
predation) — produced non-equivalent distributions of awareness to (and possibly learning
of) the main complex systems concepts. For instance, the concept of “local interactions”
was acknowledged 22%, 24%, and 34.5% for sessions one, two and five respectively.
This small but steady increase is the type of result one would expect from an instructional
intervention, which produced a significant improvement in learning, the dependent
variable. However, the changes observed in this study also suggest several levels of
interactions between the intervention, the concepts and the students.

If we look at the evidence supporting students’ awareness of the concept
“multiple levels of organization” we see a different picture. Whereas 50% of the total

observations made during session one (Slime simulation) referred to multiple levels of

2) Centralized control to distributed or decentralized control (decentralized control);

3) Linear causal explanation of macro-level behavior from micro-level interactions (i.e., additive, linear)
to multiple nonlinear causal explanations (nonlinear effects).

4) Determinacy to indeterminacy (random actions);

5) Intentionality (i.e., teleological) to stochastic causes (i.e., probabilistic causes);

6) Static processes (i.e., beginning-end processes) to dynamic homeostatic behaviors {dynamic self-
organizing nature).
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organization, during sessions two (GasLab simulation) and five (Wolf-Sheep simulation)
the percentage of statements coded to this concept falls to 35% and 32% respectively. A
similar decline in percentage of observations is recorded for the concept of “random
actions” with session one accounting for 5%, compared to 3% for session two and 2.5%
for session five.

Looking at the concept “probabilistic nature” shows us still another picture with a
rise in awareness from 11% in session one, to 19% in session two, only to fall back to
13%) in session five. Lastly, the concepts of “homeostatic behaviors” and “nonlinear
effects” do not appear to generate enough substantial discussion to result in codeable
scores that rise above 2% awareness.

From the perspective of general complex systems thinking (i.c., total of all
concepts in the taxonomy) the evidence shows that session one (Slime simulation) was by
far the most effective and generated 87% more codeable units compared to session two
(GasLab simulation) and 34% more than session five (Wolf-Sheep simulation).

I think that these differences can be explained as a consequence of both the
affordances for learning these concepts that are offered by the intervention as well as the
individual differences of the students, particularly their initial mental models. Over the
course of the next few pages I will discuss each of the important concepts learned from

the intervention.

8.1.2 Limitation of Understanding Macro-level Emergence

Differences of understanding of the concept of multiple-levels may be viewed
from several different perspectives. For the sake of a finer-grained examination of these
findings, I have categorized them under three headings®: conceptual, perceptual, and

individual differences.

Clarification of Differences Between the Models Used in the Intervention

Understanding the concept of “multiple-levels” requires that the learner is able to

appreciate the different behaviors exhibited by the “agent” (as an independent unit within

3 Although I would agree that we should not lose sight of the fact that these may all be highly interrelated
and therefore the learning of this concept may itself be an example of an emergent process.
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the system), as well as part of the “meta-agent” (the emergent aggregate unit at a higher
level of organization within the system). The literature (Duit et al., 2001; Jacobson &
Archodidou, 2000; Penner, 2000) and Chi (2000) suggest that grasping this concept is not
an easy task.

How did the learner come to understand this concept? I suggest that the
simulations offered great affordances for this concept. For example, the Slime simulation,
as an example of a tightly coupled organized complexity model, exhibits emergence
through a physical and perceptual coming together (aggregation) of agents. Once these
agents are in their aggregate form, they display perceptually different behaviors.

The GasLab simulation, as an example of a random disorganized, dissipative,
complexity model, exhibits emergent aggregation at more abstract levels. For instance,
the meta-agent behaviors may be seen at the statistical level of probabilities where larger
populations of molecules produce more stable and predictable results. In addition, the
meta-agent may be understood at the mathematical symbolic level in which the equation
Pv=nRT operates to relate different pressure, or temperature values (interpreted as energy
and speed on the GasLab simulation) depending on the number of molecules and their
initial velocities.

On the other hand, the Wolf-Sheep predation simulation is an example of a
complex system somewhere in-between these two other types of complexity models. Like
the GasLab simulation, it too requires the learner to be cognizant of a somewhat abstract
level of organization (i.e., the oscillating sine wave population variation which is the
graphical interpretation of the symbol level Lotka-Volterra equation: dn,/dt = n;(b-kin;

and dny/dt = ny(kyn;-d) used in predator prey interactions).

Conceptual Differences

If one accepts the argument put forward in this research that emergent causal
processes, as an ontologically distinct category, are difficult to understand and may be at
the root of many scientific misconceptions, then the subcategories themselves may offer
different levels of challenge. I contend that the evidence supports the conjecture that

when learning about multiple-levels of organization (emergent levels) students were less
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likely to understand this concept when working with dissipative models of complexity
than when they were working with tightly coupled organized models of complexity.

One explanation might be that dissipative systems are a more difficult to
understand subcategory of the emergent causal processes. Therefore they may require
more time, cognitive effort, scaffolding, or a certain type of “ontological readiness” to
facilitate understanding. In fact, the observed difficulty of understanding the concept of
“multiple levels of organization” from dissipative models correlates with the literature
regarding misconceptions and difficulties in understanding dissipative systems: diffusion,
gas laws and equilibrium in chemistry (Wilson, 1998); electricity in physics (Chi,
Feltovich, & Glaser, 1981; White, 1993); and diffusion and osmosis in the biological
sciences (Odom, 1995; Settlage, 1994).

By contrast, students appeared to have little difficulty with understanding
“multiple levels” from the Slime simulation. It may be that its representation of tightly
coupled organizing complexity is more accessible to novice learners. After all we
experience such on a daily basis (e.g., social groupings like families and friends,
neighbourhoods, schools, etc.). Furthermore they are more easily identified in nature,
colonies of ants, flocks of birds, sheep, for example. Therefore Chi’s observation of
limitations to understanding the ontological category of emergence (labeled item #3) may
rest more in the subcategory of understanding the concept of emergent levels of order

arising from highly dissipative systems.

Perceptual Differences

Whereas the Slime simulation produces a visible clustering of agents (mould) into
the higher-level meta-agent (colony), there are no such visual observations in the other
two simulations. There the learner is dependent on other visual devices such as window
displays of graphs. Learning such abstract meta-level states may impose a greater
cognitive workload or demand a higher level of knowledge in order to understand the
different representation. From the multimedia literature we are told that visual
representations such as text and images presented simultaneously are more taxing to
working memory (Mayer & Moreno, 1998; Clarke & Paivio, 1991). It is therefore

possible that a similar cognitive overload is at work when students attempt to decode both
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the animation of the agents’ lower level behaviors and the graphs of the systems’ higher-

level behavior.

Individual Differences

The evidence shows that except for Greg, Mitch, and Sidney, the students
required appreciable amounts of scaffolding to interpret the output graphs being produced
during the GasLab simulation. This suggests that this type of simulation requires more
time-on-task, and more cognitive scaffolding in order for learners with weaker science
backgrounds to gain the full benefit of learning about the emergent processes represented

as well as the behaviors of dissipative systems at the level of the individual.

8.1.3 Limitations of Considering Local Interactions Between Agents

In comparison to the five other emergent framework mental model (EFMM)
subcategory dimensions identified throughout this study, the evidence supports that
“local interactions” (part of the “aggregation emergence” dimension) is possibly the most
susceptible to learning using the chosen intervention. In essence, all students appeared to
show substantial gains in awareness as they proceeded through the instructional sessions,
and all students appeared to transfer some of this knowledge to their explanation of the

ontologically analogous problems.

Explanations

Understanding of “local interactions” arising from the simulations may be
explained as a consequence of two features: (1) the surface level visual cueing of tightly
coupled interactions and aggregation that were seen in the Slime simulation, and (2) the
causal chain cueing in the GasLab, and Wolf-Sheep simulations. In short, the collision of
one molecule in the dissipative loosely coupled system still created a change in trajectory
which would result in another collision and so on. Meanwhile, the ecological systems’
food chain of “sheep eat the grass... wolves eat the sheep”, with moderately coupled
interactions, was also easily apparent.

I argue that the steady increase in observations of local interactions from one

session to the next could also be explained as a result of the students’ improving ability to
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observe emergent processes at a more structural level (i.e., readout strategies). For
instances, students “saw” more than the direct interactions between the wolf, sheep, and
grass, and in fact described the indirect relationships in this food chain. Although not all
students were able to identify the nonlinear effects of these local interactions, they all
spent considerable time trying to explain how the grass affected the overall balance and
survival of the systems.

Other studies looking at learning of complex systems concepts have also reported
similar results. Using conceptually similar, although very different, measures and media
(“talus slope” and “Life” simulation), Penner (2000) reported that students increasingly
recognized that micro level interactions were important to the systems’ behavior.
However, it was difficult for them to “see” how small changes could result in large
changes, for example through positive feedback as is discussed further in the section on

nonlinearity).

Individual Differences

The evidence suggests that awareness of the concept of “local interactions” was
not only related to the opportunities provided by the simulations, but also by the abilities
of individual students. In fact, Greg and Mitch both demonstrated high levels of
awareness of this concept during their engagement with the GasLab simulation (61%, and
43% respectively). These scores are far above the norm and highlight a potential
interaction of prior domain knowledge (e.g., the physics of particle collisions) and
ontological concept development. This would be unremarkable if they both also
demonstrated high levels of emergent framework mental models on the pretest
assessment measure, however they did not. Greg, however, did show significant gains in
the testing directly following the initial intervention (i.e., the immediate posttest) thereby
suggesting that he had experienced a change, which was more in line with a switch being
turned on. By comparison, Mitch did not have the same experience, although he too
showed some changes in his emergent framework mental models (see Figure 7.17).

How then do we explain the substantial difference in awareness related to the
GasLab model? As discussed in chapter seven, the examination of the larger data corpus,

showed that both Greg and Mitch belonged to a cohort of high academic achievers and
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both had above average scores in their science courses, particularly in college
introductory level Physics. These results suggest that there may be an interaction between
the student’s domain knowledge and their ability to perceive these collisions as
interactions of objects that although inanimate, engage in a flow of energy through the
system; therefore, displaying behaviors that could be described using a general
explanatory model, which could also apply to systems as diverse as slime mould. In fact,
it may be that the successful results reported by the StarLogo researchers (e.g., Resnick,
1994, Wilensky, 1999, 2001) were due to this ability to “think like a turtle”. That is, most
of the research up to now has been conducted with younger children. It may well be that
there is a fine line between anthropomorphizing and the ability to think at the level of the
individual agent; and, that Greg and Mitch, although not children but advance-level
science students, could think at this level and could “see” the collision of gas molecules
as interactions and all that they entail (i.e., flows of energy through the system, etc.).
Further investigation into this possible relationship is required.

Additionally, looking at the specific fine grain differences, Mitch as early as
session one, began describing the interactions of agents (the slime mould in this
instances) using predicates that better describe molecules (e.g., “collisions”, “collide”,
“hit across”, to list a few). This may explain his underlying understanding of the
importance of local interactions and consequently this dimension of the emergent

ontological category.

Significance of Results for the Concept of “local interactions

This evidence, taken in concert with Study 1 (few emergent framework mental
models in the category of local interactions used in problem solving explanation),
establishes support for Chi’s supposition that novice learners may indeed have limitations
in their appreciation of differences in phenomena based on ontologically distinct
behaviors (listed as item #2: “lack of consideration of local interactions between agents”).
The results of Study 2 as discussed above provide evidence that ontological instruction

may help remove this barrier.
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8.1.4 Limitations of Assigning Solely Linear Attributions to Micro-level Behaviors

The evidence shows that there was little awareness and recognition of nonlinear
effects in all the simulations. However, the experts’ evaluations of the simulations (see
chapter 3) suggest that there were at least three different types of nonlinearity exhibited
by these simulations (saturation, positive feedback loop, and negative feedback loop);
albeit at higher levels of abstract knowledge. Consequently it was not surprising that all
students did not recognize it as a concept in session 1, and only four made passing
references suggesting this knowledge was available through the GasLab and Wolf-Sheep
simulations.

My interpretation of these results is that in addition to the weak opportunities
provided by the simulations for learning this concept, there are possibly ontologically-
based restrictions. In fact, Chi (2000) identifies this as the first of the three ontological
barriers based on novice learners’ predisposition to explain micro-level behaviors as
linear in nature and leading to linear predictable outcomes (labeled item #1).

Therefore, is it a question of StarL.ogo’s affordances for teaching this concept or
is it the concept itself? As stated before, Penner’s (2000) study examining the use of a
“talus slope” tool and the “Life” simulation, reports that students provided evidence of
some recognition that small micro-level changes can have significant macro-level effects.
Unfortunately he does not provide details on the number of students and percentage of
change, therefore it is difficult to compare these tools to StarLogo models. However, his
study suggests that other tools may be more successful representations of this
phenomenon. Therefore the removal of this barrier through training is still an unanswered
question. What can be stated from the evidence is that students like Greg, Mitch, and
Sidney (to a lesser degree), who are conceptually prepared and understand other aspects
of emergent behaviors are able to appreciate the impact of nonlinearity in the systems
created in StarLogo. This effect is amplified through the coach who was able to prompt

for more elaboration and metacognitive explanations.

8.1.5 Adding a New Item to Chi’s List of Ontological Barriers

One of the ontological barriers not identified in Chi’s (2000) three major

limitations is the attribution of causal determinacy (i.e., difficulty in acquiring the
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concept of random actions). This current study shows that, possibly because of weak
affordances of the models for learning this concept, students experienced difficulty with
the notion of randomness. This finding is supported by a recent study conducted by
Klopfer and Um (2002) of fifth and seventh grade students using StarLogo in a learning
environment with scaffolding called “Adventures in Modeling”. They inform us that
students experienced difficulties with learning the concept of random events; although in
the latter portion of their 14 sessions intervention (twice weekly for seven weeks, 45
minutes with seventh graders and 90 minutes with fifth graders) students were reported to
grasp this concept.

I contend, however, that this apparently weak affordance is not sufficient to
explain the observations in this study. The evidence shows that all students at some level
were challenged by this concept. In fact, it was the main stumbling block for Greg who
otherwise acquired an understanding of all the emergent causal processes without
exceptional cognitive struggle. What this suggests perhaps is that even though students
accept the randomness of some happenings, as indicated in their answers to the question
about ants foraging, at a deeper level they struggle to accept the lack of some means of
predicting future outcomes, even if these predictions are infinitesimally small or remote.
This deep level understanding is further confounded by the limitations of the
programmed environment of the simulations, which indeed may confirm beliefs that there
is some level of predictability because random number generation machines are behind
these calculations. In fact, this is the level of discussion that Greg, Mitch, and Sidney all
at some point conducted with the coach.

How then did any of the students show signs of acquiring a deeper level
understanding of this concept? The evidence suggests that Greg was the only student to
describe random actions at the deeper level of understanding as an element of true in
causal determinacy and “noise”. He appeared to accomplish this as a consequence of both
cognitive scaffolding and other domain knowledge. In essence, during the final interview
session, one year after the intervention, Greg was asked to explain his concept map.
During this discussion, he elaborated on the role played by random actions in the

behavior of systems. This required him to reflect and in doing so, he referenced his
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course work from biology and how the “noise” of random events creates the
“possibilities” of the future states.

I argue that for most learners the clockwork attribution of causal determinacy may
be at the root of this conceptual challenge. Either because of the learners’ component
beliefs, as in the instantiation of the case study Norman, or because of the confounding of
concept and programming limitations as demonstrated by Sidney, Mitch and overcome
by Greg. The contention that the attribution of causal determinacy is a key obstacle to
understanding emergent causal process, may come as no surprise to those investigating
the cognitive processes involved in reasoning about uncertainty (e.g., Shauhnessy, 1992;
Tversky & Kahneman, 1974). In fact, Metz (1999) points to the spurious causal
attributions that result from misunderstanding of randomness and probability (already
discussed in chapter two of this dissertation). What is surprising is that this same barrier
also may account for a major difficulty in learning emergent causal processes such as
evolution. This contention is supported by research from Zaim-Idrissi, Désautels, and
Larochelle (1993). In their study working with 15 graduate level biology students
(master’s level), they concluded that the majority of the sample held deterministic forms
of reasoning about the topic of evolution, therefore accounting for one direction to the
process of evolution and attributing an omnipresent and omnipotent property to the
process of natural selection. These authors uncovered several inconsistencies in the belief
systems of the study’s participants, primarily, the conflict between deterministic and
probabilistic reasoning. Although I disagree with some of the conclusions made by these
authors, I argue that their findings of deterministic reasoning on the topic of evolution,
even with graduate level students, supports the evidence found in this current study.

Therefore, it is possible that this causal determinacy atiribution may be one of the
most widely interconnected beliefs that affect other related beliefs such as probabilistic
causes, and even decentralized control. It may well fit Chinn and Brewer’s (1993)
description of the evidentiary supporting schema. They state: “It appears, then, that well-
developed schemas are not necessarily entrenched. The key is whether the schema is also
embedded in evidentiary support and is used to support a wide range of other theories and
observations that the person believes” (p. 17). Future research is required to try and

untangle the possible confounding of the interventions’ limitations and the ontological
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belief. Additionally, more investigation is required to understand the importance of this

attribution and its possible connections with other clockwork beliefs.

8.2 Discussion of the Practical Results

8.2.1 Addressing Differential Affordances for Learning

To start off the discussion, differences between the simulation models’
affordances for learning certain concepts is not surprising in itself given that the models
used during the different sessions simulated three entirely different types of domain areas
(biology, chemistry, and ecology) and three different types of complex systems.
However, the literature does not discuss these differences. In fact it tells us that models
built with multi-agent-modeling languages are powerful tools for supporting the learning
of complex systems concepts such as decentralized control (Resnick, 1994; 1996; 1999;
Resnick & Wilensky, 1997), multiple levels of organization (Resnick, 1994; Wilensky,
1999; Wilensky & Resnick, 1999) and even probabilistic reasoning (Centola, McKenzie
& Wilensky, 2000; Resnick & Wilensky, 1997; Wilensky & Stroup, 1999). These
atfordances for learning emergent causal processes as demonstrated by the complex
systems in the StarLogo simulations even extend to younger children using the Wolf-
Sheep model that allowed them “ to ‘dive into’ the model (Ackermann, 1996) and make
use of what Papert (1980) calls ‘syntonic’ knowledge about their bodies” (Wilensky and
Resnick, 1999, p.18). Why then did my findings suggest that the simulation models were
not all equally effective at producing awareness of specific complex systems concepts?

One plausible explanation is that the research described above, to my knowledge,
has not conducted systematic comparisons of models’ differential abilities to offer
opportunities for learning the complexity concepts identified in this current study.
Another possibility is the difference in modes of use — modeling versus engagement as a
simulation — produces different affordances for learning concepts. Most of the reports
cited refer to the reasoning capabilities of students as they engaged in building models
with StarLogo. Only recently have there been studies of the effectiveness of pre-built
simulation models, exceptions being ChemLogo (Stieff & Wilensky, 2002); and to a
lesser extent HubNet (Wilensky & Stroup, 1999) and NetLogo (Wilensky, 1999). The
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ChemlLogo inquiry in particular deals with learning of specific domain knowledge
(chemical equilibrium) therefore does not help to explain my findings. I therefore
conclude that further investigation of possible differences between models’ affordances

for learning about complexity is needed.

8.2.2. The Role of Model-based Reasoning

Given the important role the models played in this study as supports for transfer

of emergent causal reasoning, it is necessary to take some notice of how they function.
From the body of literature related to learning with models there is substantial evidence
that models are powerful tools for learning and reasoning (Lehrer & Schauble, 2000;
Papert, 1980; Resnick, 1999; White & Frederiksen, 1998; Wilensky & Resnick, 1997).

What is newly apparent from these results is the interaction of the individual
students’ characteristics and their use of the models. Although students were similar in
their model engagement strategies, there were differential amounts of model-based
reasoning, which may also be considered analogical reasoning (Lehrer, Horvath, and
Schauble, 1994). In short, some students used the models as analogies to transfer
knowledge from one known concept (called the “base” or “source™) and to solve a
problem in an unknown domain (called the “target™). Indeed they exhibited “thinking
with” the model.

For example, Greg, Mitch, and Sidney were comfortable “thinking with” the
StarL.ogo models to reason out the problem solving questions. On the other hand, Penny
and Walter applied only the Slime simulation model during their problem-solving
reasoning. By contrast, Sam, Norman, Emilie and Monique did not demonstrate evidence
of using the models from the intervention in their problem-solving activities. However, of
those four, Sam was the only one who was also a high producer of emergent causal
explanations (high level ECP producer). Therefore Sam’s experience provides what
Stake (1998) considers the case study that puts limits to “grand generalization”. Hence,
although three of the more successful students used overt “thinking with the model”
strategies in their problem-solving reasoning, it cannot be asserted that this a necessary

part of learning to use emergent causal frameworks.
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Furthermore, if we equate model based reasoning with analogical reasoning, we
find that other research involving learning in this content area supports that analogical
reasoning as a means of maintaining learning. Duit et al. (1998) found that “analogies
also proved a valuable means for students to reconstruct understandings during
interviews carried out 10 months after the instruction” (p. 1065). This is indeed true for
this current study. In fact, the explanatory framework of the slime mould simulation
again was the featured model used to reason out the “Bird flocking” question, during the
final posttest, even one year after the intervention.

Those students who were more capable of using models as part of their reasoning
strategy also appeared to be more metaconceptually aware of applying their emergent
framework mental models to understanding or explaining both the problem solving
questions as well as the behaviors of later simulations. Perhaps it may be necessary to
explicitly teach students how to interpret models and how to use them. In fact, Schwarz
(2002) suggests that meta-modeling knowledge may be an important part of learning

from models in science education.

8.2.3 Understanding the Use of and how to Use Models

There are two empirical studies that report on findings of a relationship between
students’ general understanding of models (i.e., meta-modeling™ understanding) and the
understanding of physics content knowledge (Schwarz, 1998; Schwarz & White, 2001).
Therefore one reasonable explanation may be that not only are there different affordances
of different types of simulations for learning certain characteristics of emergent
phenomena, there may also be an interaction of the students understanding of how to
learn with models. The evidence from this case study strongly shows that Emilie, in

particular, was extremely uncomfortable learning with models and expresses this in her

10 Schwarz (2002) defines meta-modeling knowledge as: “people’s understanding of the nature, utility, and
evaluation of models, their understanding of the process of modeling, and how this understanding is used in
their reasoning with models... Meta-modeling knowledge is different from metacognition or the awareness
and regulation of cognition, reflection may provide a critical mechanism that produces awareness or
understanding for both metacognition and meta-modeling knowledge™ (ICLS 2002, p. 414).

Her description of meta-modeling knowledge extends to the notion of knowledge of epistemic forms and
games, as described by Morris & Collins, 1995.



249

final interview. Although this is probably not a gender-determined issue, it is worth
noting that two of the three females were less comfortable using the simulations.

This possible relationship between the use of models to teach emergent causal
processes and the epistemic form is an important direction to follow in future research.
Whether we should also look at the possible connection to gender related learning styles

is an issue I would suggest may also be considered.
8.3 Discussion of the Theoretical Results — Conceptual Change Theory

8.3.1 Issues Related to Changes in Mental Model

Overall Changes Observed

The delayed posttest data strongly supports that for some of the students, the
ontological training facilitated the creation of emergent framework mental models
(EFMMs). However, four of the students’ scores accounted for most of the 126%
increase in EFMM responses (see Table 7.7 and Figure 7.14). By contrast, the change in
CWMM was a mere reduction of 13%. Compared to the results obtained from the near
transfer task in Study 1 this figure was surprising (see Figure 5.2). However, these results
were consistent with the far transfer task that produced small changes in clockwork
frameworks (see Figure 5.4). Furthermore, the changes to the no model category (NM)
showed a substantial decline of 45%. This was a dramatic change from the results of both
the near and far transfer tasks in Study 1.

These results suggest three independent but related possibilities: (1) similar to
Study 1, ontological training supported the acquisition and use emergent framework
mental models (EFMMs). In fact, all nine students gained some level of awareness of
emergent causal processes and all demonstrated some level of transfer ability in solving
emergent analogous problems; (2) clockwork mental models (CWMMs) do not change
substantially as a result of emergent ontology instruction, and possibly emergent
frameworks mental models indeed do not replace clockwork mental models but clarify
circumstances for their use; and (3) where no prior evidence of mental models existence,
students with emergent ontology training will more likely acquire and use emergent

framework mental models in future testing. I assert that the issues raised by the second
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and third findings are important for the discussion of conceptual change theory

development.

Addressing What Appeared to Happen to CWMM

The result described above is a reasonable outcome of the ontological intervention
in this study, particularly given that the intervention made no direct attempt to remove the
clockwork framework (CWMMs). In fact, Chi (2000) suggests that her model does not
support the use of conflicting evidence. Therefore should the results here be considered
conceptual change? I contend that if we are to consider Vosniadou’s suggestion that the
process of conceptual change includes the generation of syathetic models, then we should
be looking at these changes not as a zero sum game where losses in one category must be
accompanied by gains in another. I suggest instead that it is the stability and coherence of
the new mental models that are important and a testimony of change. This is in keeping
with diSessa and Sherin’s (1998) discussion of invariance (what I refer to as stability)
and integration (what I refer to as coherence). Therefore, I have described the evidence
from this study in a taxonomy of synthetic models ranging from the stable coherent
models that could qualify as conceptual change by most people’s definition, to the fragile
representations with unstable changing ontological assignments (losses and gains in
CWMMs) or incoherent models with a large percentage of ‘no identified models’
suggesting that the learner does not have an organized explanatory model, or is unable to

explain themselves clearly, or a mix of both.

Mental Models Coherence and Stability

What do the changes mean? What we need to look at are two issues: (1) the
relative change between categories, and (2) the consistency of change. One consistent
trend across students*' was the general increase in EFMMs over time. In determining the
relative coherence and stability of the observed changes I focused only on examining
changes between CWMMs and NMs,

The logic of the argument is that while increasing EFMMs, the student
consistently reduced the number of CWMMs, but did not increase the NMs, then they

4 Walter was an exception but only marginally so with a 1 point decrease between the pretest and
immediate posttest.
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were in fact increasing their understanding of EFMMs (i.e., evidence of a “stable” mental
model). However, if the student consistently increased the number of propositional
statements that could be coded (i.e., losses of NMs) they were in fact increasing the
“coherence” of whichever mental model showed gains. In essence, they had begun to
think more deeply about the question, maybe because of new content information or
because they were more willing to take risks (see Table 8.1). Mental models lacking

“stability” and “coherence” would qualify as “Novice” mental models.

Table 8.1 The meaning of changes in mental model categories.

Mental Model
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=8 8 g 22 =
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+ - - and coherent (i.e., Group
integrated into
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models, they are unstable, | Mental Model S
* - - but the learner is aware of (i . am
their explanations increasing Sidney
coherence)
therefore more coherent.
With losses in CWMMs Synthetic 2A Walter
the learner is moving Mental Model
towards a more stable
mental model but with (increasing
gains in NMs it means stability)
+ - +— that they are unsure and
therefore lack coherent
understanding. Therefore
they cannot bring their
ideas together to generate
coherent explanations.
With gains and losses in Novice Emilie
EFMMs, and gains in Emergent Norma
+H— - /- NMs it suggest that the Mental Model man
mental models are Penny
unstable and incoherent .
Monique
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With this analysis, we see that most students in this case study showed evidence
of synthetic mental models. This supports Vosniadou et al.’s (2001) contention that this

may be a necessary part of the conceptual change process.

8.3.2 What are the Necessary and Sufficient Conditions for Conceptual Change?

Necessary and Sufficient Conditions?

It appears that the intervention (simulations) and conscious application (metaconceptual
awareness) may be sufficient to evoke the of use emergent framework mental models to
solve ontologically analogous problems. It appears that some naive CWMMs such as
centralized control can coexist with EFMMs to create what Vosniadou considers

synthetic mental models (i.e., misconceptions according to Vosniadou).

Degree of Novice Attributions

It appears that not all naive learners have a full compliment of all the clockwork
mental model CWMM attributions. Like other cognitive attributes, the degree to which
naive learners hold emergent framework EFMM or clockwork CWMM mental models is
dependent on their prior experiences. Trying to create a profile of learners with high

levels of EFMMs has lead to the following conclusions:

1. It does not appear that the pre-existence of EFMMs is highly correlated with high
grades in science. Mitch, Emilie both received high grades in high school science
(averages of over 90%) but both scored low in EFMMs. However, Sam who had very
high pretest EFMMs scores was strong in biology and physical science, but average 80’s
for physics, chemistry and math. Therefore high grades in high school science may be a

necessary but not a sufficient requirement for EFMM.

2. There appear to be several common characteristics among students who scored high in
EFMMs, such as:

A. They had taken biology (senior level) in high school. For example Sam enjoyed
biology, and had been introduced to complex systems (as a concept) in his high school

biology course. He proudly states: “I was really lucky, [ had a really good teacher. She
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went through complex systems, just explaining the relationships between certain things.
She didn’t really go into details, but I guess like, simple relationships”. Norman as well
had taken biology and also had high pre-intervention EFMM scores. (This relationship
holds for three others who took part in Study 1). However, Greg who shows signs of
EFMMs in his pretest did not take a senior level biology in high school. On the other
side, Emilie, who had taken senior level biology, had no EFMMs, and in fact was one of
those who never demonstrated many EFMMs. Her results also suggest that her answer to
the ant question was attributable to content knowledge. Since approximately 30% of
Study 1 students had taken biology in high school, but less than 10% answered the
questions with EFMMs, suggests that a background in biology may be another necessary
but not sufficient component to explaining the existence of EFMMs in students’ pre-

instruction answers.

B. Sam and Greg shared another common feature, their extremely high scores on both
parts of the Nelson Denny Test. Their comprehension scores placed them above 16 years
of schooling. Once again there are examples of students with high Nelson Denny scores
that are not among those who exhibited EFMMs. However, the delayed posttest and
transcript data support that among those who best understood the complex systems
concepts, all had very high Nelson Denny scores (Greg, Sam, Mitch, and Sidney). On the
other side, those students who had greater difficulty with these concepts scored low on

the Nelson Denny (Monique, Penny, Emilie).

C. Finally, as an interesting observation, both Sam and Greg reported being avid readers
of science fiction. One reported this in the pre-case study interview, whereas the other
was in response to a direct question at the final interview. In response to a direct question
regarding the problem solving questions used in the initial study (called the
“brainteasers”), Sam responds that he had read a lot science fiction and in fact the robot
question had reminded of Isaac Assimov’s “laws of robotics”. In the final interview
(session six) when Greg was asked about his reading habits, he confirmed that he enjoyed

reading, specifically science fiction. He states:
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Greg: Yeah I know. Because, it’s just like it makes you open to new possibilities. Because like,
you know people are like um, writing about things that, are theoretically impossible right now, or
Just that like, people haven’t thought about, like no-one’s ever designed it. So, like, just like you
have to, accept it for the book, so, you like, you just learn to accept things that are kind of more
far-fetched, that are more, like that, differ from the way of thinking...

Therefore understanding emergent attributes may indeed be a matter of awareness
of certain behaviors of entities and therefore a highly learnable ontological category.
However, it requires that both high comprehension levels as well as greater openness to
different ideas about how the world “works” presumably, in other words, the existence of

appropriate ontological beliefs.

8.4 Summary of the Three Main Findings

1. A major limitation to the development of a robust understanding of emergent causal

processes is the clockwork attribution of causal determinacy.

2. The affordances for learning aspects of emergent causal processes offered by the multi-
agent models/simulations are highly related to the type of complex system represented
and also to the students’ background understanding of science. In particular I found that
more students had difficulty learning with representations (simulations) of dissipative
system complexity compared to those using representations of tightly coupled

organization models of complexity.

3. I conclude from this study, in the context of previous work, that significant conceptual
change requires not only robust conceptual representations (e.g., models that can be used
as analogies) but also metacognitive scaffolding and ongoing metaconceptual prompts
during the instructional phase. Once initiated (i.e., once synthetic mental models are
created), maturation over time and experience with complementary domain curricula

appear to have positive effects on the development of more elaborated emergent

framework mental models.
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8.5 Implications of the Study

8.5.1 Implications for Conceptual Change Theory

Was change replacement or elaboration? The evidence from this study, and recent
research (e.g., Jacobson & Archididou, 2000; Vosniadou et al., 2001), supports the
assertion that conceptual change was more a process of elaboration than replacement of
original conceptual belief. Students in this study appeared to construct qualitatively
different and more elaborated representations (i.e., emergent framework mental models)
as they progressed through the intervention. With time, they also appeared to be able to
apply these mental models on a more frequent basis as well as to a broader category of
questions.

Furthermore, the evidence supports this position on elaboration, rather than
replacement. In other words, while emergent framework mental models increased an
equivalent decrease in clockwork mental models was not necessarily experienced. The
results of this study show that in fact only two students in the final posttest appeared to
demonstrate no clockwork mental models while using a high number of emergent
framework mental models in their answers. This finding supports Vosniadou’s contention
that conflicting mental models can co-exist in a synthetic explanatory framework. In fact,
instruction, introduces the novice learner to the alternative framework, hence it sets up
conditions under which learners construct these synthetic models.

Concerning the assertion that conceptual change as a gradual change, the results
of this study show that the process of change was not a smooth continuous linear process.
Not only did learners hold synthetic mental models composed of varying degrees of
emergent and clockwork component beliefs, the trajectory of mental model change
showed that the change is not a one-way increase in the use of emergent frameworks.
This evidence suggest that the new emergent framework mental model was not
necessarily stable or coherent, whereas the evidence regarding clockwork mental models
shows that they were more stable and exhibited a small decline for some students.

This evidence may be explained as a normal part of acquiring new causal

explanations as described by diSessa and Sherin (1998) posited “readout strategies” and
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“causal nets”. The slow but steady change in observing instantiations of emergent causal
processes (i.e., “integration” and “invariance”™); coupled with the “see-saw” like
oscillation of the application of emergent framework mental models to explain
ontologically analogous questions (i.e., “causal nets”), which do not change as quickly,
may create the observed effect. Put another way, the knowledge of emergent causal
processes integrated with existing knowledge in new ways so that this new causal
explanations could be consciously tried out. Because this new causal explanation is not
firmly integrated, it is not always used when appropriate. However, more opportunities to
observe emergent causal processes and more opportunities to apply them to appropriate
and varied cases could build coherence of this alternative mental model.

On a similar vein to Chi and colleagues (e.g., Chi & Roscoe, 2002; Slotta & Chi,
1999), Vosniadou et al. (2001) state that conceptual change theory “should also try to
relate these internal representations to external variables that influence them” (p.395).
This study attempted to link the external variable of intentional instruction of emergent
causal processes to the development and reassignment of explanations to emergent
framework mental representations (EFMMs). I contend that identifying which parts of
this internal mental representation changed is a contribution to the conceptual change

literature, and to the development of a conceptual change theory.

8.5.2 Educational Implications

Three main educational implications can be drawn from this study. The first
implication concerns the ease with which certain students can acquire components of
emergent framework mental models from short-term interventions. Even with only the
six hours of treatment over the two-day workshop, certain students showed considerable
gains in learning about emergent causal processes and were able to apply some of these
concepts to transfer problems.

The second implication refers to the need for a greater understanding of emergent
causal processes by curriculum developers (e.g., instructional designers) and teachers so
that they are more aware of the many opportunities to apply this knowledge. In fact,
many teachers and curriculum developers lack an appreciation of the constraints imposed

by their own linear, reductive thinking. Therefore, part of the challenge will be to convey
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to the educational institutions that prepare teachers, instructional and educational
technologists an understanding of the benefits of emergent causal thinking as a general
problem-solving application framework. Ammunition for this argument could be the
results from studies such as this current one with evidence that suggests that once
students became more familiar with this type of thinking, they were more willing to take
up the challenge of explaining less structured and more complex types of questions.

In addition, until recently there has been a lack of representational tools to readily
convey emergent processes as demonstrated by complex systems and thereby provide the
necessary scaffolding for learning these concepts. While these tools are making their way
into the educational system, there is a need to develop the easily accessible curricula
topics that demonstrate complex systems behaviors. For instances, there are several
topics such as respiration, and cardiovascular circulation in the health sciences and the
behavior of geological and ecological systems in the natural sciences that are better
taught as complex systems. Here are a few examples of recent studies that have explored
different aspects of teaching particular content from the current science curriculum with a
complex systems perspective: Azevedo and Cromley (2003), Hmelo, Holton and
Kolodner (2000), and Hmelo-Silver, Pfeffer, and Malhotra (2003).

The third implication may be that this alternative explanatory framework may be
beneficial for all disciplines not just science. If students are better able to explain the
social, political, and economic interactions they encounter with more than a linear
perspective they may in fact do a better job of understanding the unpredictable, and
probabilistic nature of many of these phenomena. In fact, some proponents of complexity
theory suggest that interpreting political interactions in terms of complex adaptive
systems would have foretold of recent world events better than the current linear,

reductive models.
8.6 Future Directions
This study shows us that it is possible to use newly available representational

technologies to create specific content models to teach general knowledge of emergent

causal processes. However, affordances of different models for learning specific
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emergent causal processes are interwoven with the content domain knowledge and
representational characteristics. If we are to make better use of existing models, we need
to know more about their capabilities. Therefore, these potentially confounding
interactions of content and model representation of emergent process need to be closely
monitored.

Greater attention needs to be paid to what types of emergent causal process
understandings are required for learning particular science phenomena. At the same time,
there is a need to better comprehend the affordances of various media, not just computer
simulations, for helping students construct the mental representations necessary to
understand important complex systems knowledge of relevance to the natural and social
sciences. Once these specific subcategory dimensions can be more explicitly identified,

we can then go about the task of matching intervention to concepts to be acquired.

8.7 Conclusion

This inquiry began with three major points of focus: (1) does ontological training
facilitate conceptual change? (2) by observation of learners, what can we learn about this
cognitive reorganization process (i.e., conceptual change)? and, (3) what can be learned
about the prescribed tools and teaching methods that form the treatment condition? The
two-part study that spanned the period of approximately two years, allowed me to gain
insight and some answers to these questions.

The results of Study 1 showed that ontologically-based change, characterized as
gains in emergent framework mental models, was possible for students in the treatment
condition. Compared to control group students, the experimental group students were
able were able to acquire and apply aspects of this explanatory framework in problem
solving, however, this ability was limited mainly to questions that closely resembled the
treatment condition.

The results of Study 2, by contrast, provided greater insight into the types of
synthetic mental models the nine case study students constructed as they moved toward
more coherent and stable mental representation containing more components of the

emergent framework mental model (EFMM) taxonomy. This conclusion was supported
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by evidence of more scientifically appropriate explanations to questions that were similar
to the treatment condition as well as those that were similar only on the deep conceptual
level. Evidence of this ability to use structural knowledge, as opposed to surface features,
to reason and problem solve was a particularly encouraging result because of the
consistent difficulties described in the cognitive research literature involving learning for
transfer. These findings lend support to the possible uses of emergent causal explanatory
frameworks in facilitating both conceptual change, defined as an ontological shift, as well
as a way to support learning for transfer.

Furthermore, the results suggested that the representational affordances of multi-
agent models and simulations for learning aspects of emergent causal processes are
highly related to the type of complex system represented and also to the students’
background understanding of science. These results lead us to question how our
development of the tools which facilitate learning of the emergent causal process
concepts of “randomness” and “nonlinearity”. Moreover, this finding suggests that now
more than ever it will be important to form a union between technology designers and
cognitive scientists in order to make the best use of these powerful representational tools.

Finally, the results added moderate support to the conjecture that conceptual
change requires not only robust conceptual representations (e.g., models that can be used
as analogies) but also metacognitive scaffolding and ongoing metaconceptual prompts
during the instructional phase. This line of inquiry needs to be expanded to examine the
significant role played by the affective domain such as epistemological beliefs,
motivation, and self-regulation, in the process of conceptual change.

Each of these findings leads us to other interesting points of departure for further
inquiry. Undoubtedly this is a fertile area of research that will keep researchers,

instructional designers, and educators occupied for years to come.
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APPENDIX A

Two ontologically distinct categories of Matter, and Processes
(adapted from Chi, Slotta, & deLeeuw, 1994).

"is red", "is heavy", "has weight",
"occupies space”,
(rock, building)

"is fixed", "is broken"
(lamp)

Processes

"1s an hour long"
"happened yesterday"
(recess, thunderstorm”

Constraint-
based
Interaction

Procedure

"1s carried out”, "has
sequence”

(tying shoe) “equilibrium”, "evolution" (fog,

) e traffic jam)
"is caused by" "has a beginning
and ending" (kiss, fight)
"dom
flipping coin) .
"is on purpose” (fieping (lighting, (electrical

(fight, kiss) speciation) current)
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Building on Bar-Yam’s table of complex systems (Bar-Yam 1998)

System Element Interaction Formation Activity

Bar-Yam’s example

Physiology Cells Chemical Developmental Movement

messengers biology Physiological
Physical support functions
Life Organisms Reproduction Evolution Survival
Competition Reproduction
Predation Consumption
Communication Excretion
RESEARCH QUESTIONS

Ant colony Ants Communication:  Trail of ants Movement:

(food (releasing releasing

collection) chemical chemical;

markers) following
Cooperation: chemical;
(following transporting food
chemical

markers)

Weather Butterfly Coupling of Vortices Physical laws of
(all the other energy Energy generative
possible inversions inversions mechanisms
components of
the system —

e.g., fronts)

Traffic Cars & other Reaction to red Traffic fiow Movement —

vehicles break light of (e.g., traffic jam,  slowing down or
vehicle in front or unobstructed  speeding up
traffic flow)

Robot Robots Communication Assembly line Movement

(release signal) Search

Cooperation Signal

(follow signal) Follow signal
Mine
Transport

Town planning  Services Cooperation = Civic system Survival
e.g., housing sharing & Expansion
food distribution
health, Competition =
transportation, profit making
financial, energy, Reproduction =
sanitation expansion
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V-formation Birds Communication:  V-formation Follow vortex
Reaction to Movement = fly
natural or
generated
vortices.

Cooperation:
Reaction to
changes in
physiological
markers (e.g.
fatigue)

SIMULATIONS

Slime Slime mold Reaction to Colonies of Movement:
chemical slime mold Release
markers chemical;

Foliow chemical;
React to
concentration of
chemical
Gas law Gas molecules Collisions Equilibrium Collisions of
molecules
PV =nRT according to laws
of
Thermodynamics
Wolf-Sheep Wolves; sheep; Predation Ecosystem Survival
grass Reproduction Reproduction
Consumption Consumption
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Prototypes of Answers Coded Using
Ontological Mental Models Taxonomy (OMMT)

Table C.1
Prototypical Answers to Butterfly Questions Coded to EFMM Taxonomy
EFMM Components of coding Butterfly question
Ontological 1) Local interactions among agents, As an individual butterfly’s flapping its
perspective: 2) leads to the creation of something that wings may create a temporary vortex which
exhibits a differential behavior than those | could potentially interact with other local
Emergent of the component agents; vortices. If there is a steep temperature
3) this interaction is made possible due to inversion present this initial condition could
. . . . feed energy into the system.
some type of identification (tagging
device),
4) and, communication {flows of
information and/or resources).
Conirol of 1) The individual agents are independent Prigogines theory of order generation in
system of each other, yet they all operate under highly distributed systems.

Initial causes

Decentralized

the same rules;

2) the systems organizes itself through the
interactions of these independent agents
both with each other as well as with the
environment.

Rules are not involved. Physical laws,
generative mechanisms and initial triggering
conditions are involved.

Action effects

1) Because the system is organized
through individual and independent

Like many atmospheric systems that are
chaotic, it can be poised on the cusp of an

potential to be replaced by other similar
independently operating agents.

Non-linear actions, it is possible that one agent’s instability, and it can take only a miniscule
actions can have exponentially significant | M4dge 10 push the system into one “basin of
results. fit’t.rgctlon or another..Once the process is

initiated the system will tend to slide towards
the center of the chosen basin.

Agents’ actions | 1) Agents at the lowest level appear to act The initial condition is unpredictable. The
in random fashion. single butterfly creating a vortex sufficiently

powerful, in a location which will set the

Random chain of events into motion cannot be

predicted.

Underlying 1) The system organizes itself based on the | If a vortex is created is created it is by

causes interactions of the agents as described chance. If it grows it is by chance. If a large
above, therefore the resulting structure is number of vortices are created

Probabilistic probable. simultaneously {t is more likely that one of
2) Like other probabilistic processes, them may contain sufficient criergy and be
larger numbers over longer time periods close enough to a stecp temperature tversion

: > . to create an amplifying effect.
are more likely to result in the formation of
normal distributions.

Systems’ Nature | 1) Once the system, the recurring structure, | The weather system has many different
emerges it exhibits a more stable quality; phenomena that create vortices and o

Dynamic 2) yet all the component agents have the lemperature inversions. As one vortex dies (is

dampened) another one is formed. Only when
all the elements interact in a certain way do
these events grow to a discernable size to be
considered a visible weather pattern.
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Prototypical Answers to Traffic Questions Coded to EFMM Taxonomy

Initial causes

the same rules;
2) the systems organizes itself through the
interactions of these independent agents

EFMM Components of coding Traffic question

Ontological 1) Local interactions among agents, Cars interact by responding to the car directly

perspective: 2) leads to the creation of something that in front of them. The rules of operation are as
exhibits a differential behavior than those | Simple as respond to a signal, red tail lights.

Emergent of the ¢ omponent agents; Thereﬁ')re, when an individual driven sees fed
3) this interaction is made possible due to l;rake hght.s go on they foo must put on tht.m

. . . . rakes. This starts a chain of events in which
some type of identification (tagging the drivers behind also respond to this red
device), brake light, an so on and so on. This flow of
4) and, communication (flows of information from one driver to the next
information and/or resources). creates a wave of cars with decreasing
speeds.
Control of 1) The individual agents are independent All drivers must operate under the same rules
system of each other, yet they all operate under otherwise there will be not only traffic jams

but fatalities as cars crash into each other.

actions can have exponentially significant
results.

Decentralized both with each other as well as with the
environment.
Action effects 1) Because the system is organized If one driver chooses to slow down, as
through individual and independent indicated by their bake lights, then all drivers
Non-linear actions, it is possible that one agent’s behind them must slow down as well.

Agents’ actions

1) Agents at the lowest level appear to act
in random fashion.

The behavior of the individual driver is
totally unpredictable. There is no way to
determine ahead of time what of many

2) Like other probabilistic processes,

larger numbers over longer time periods
are more likely to result in the formation of
normal distributions.

Random possible things could make an individual
driver slow down. (discomfort, distraction,
distegard for rules, external conditions).

Underlying 1) The system organizes itself based on the | Once the initial conditions establishing the

causes interactions of the agents as described slowing down of an individual car occurs, the

above, therefore the resulting structure is formation of a traffic jam s dependent on

Probabilistic probable. many different factors, however, it is never

certain that this simple act alone will cause a
traffic jam. It may not if the driver resumes
speed, or changes lanes, etc. However there
are factors which will make it more likely
that the initial condition will form into a
traffic jam. One of these is numbers. The
larger the number of cars on the road, the
more likely this initial action will cause a
jam. Another is alternative routes available. If
there are multiple lanes available it is less
likely that the initial condition will result in a
Jjam.

Systems’ Nature

Dynamic

1) Once the system, the recurring structure,
emerges it exhibits a more stable quality;
2) yet all the component agents have the
potential to be replaced by other similar
independently operating agents.

Cars are always on the road and they are
always slowing down and speeding up.
Therefore these signals of red bake lights are
always going on and off. Therefore to have a
single incidence of this slowing down
produce a traffic jam will be dependent on a
variety of things, one of them is time of day.
During certain times day the volume of cars
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increase therefore the likelihood of forming a
jam increases. Once a jam is formed it
maintains itself by acting as a backward
moving wave: as cars in front leave the jam,
cars at the rear enter the jam. When the
volume of cars is reduced, the potential for a
Jjam is still there, it is just at an insufficient
numbers to reach that critical self-organizing
point. Therefore the traffic system exists
without the traffic jam.

Table C.3

Prototypical Answers to Robot Questions Coded to EFMM Taxonomy

EFMM

Components of coding

Robots question

Ontological
perspective:

Emergent

1) Local interactions among agents,

2) leads to the creation of something that
exhibits a differential behavior than those
of the component agents;0

3) this interaction is made possible due to
some type of identification (tagging
device),

4) and, communication (flows of
information and/or resources).

Individual robots would communicate with
each other and with the ship through some
type of signaling system. The signals would
enable them to identify cach other, the local
of the ship, the discovery of gold deposits,
locations that are easier, trails to follow, etc.
Once gold is located the signal can be used to
draw other robots to the location and form
some type of physical trail of robots moving
back and forth from the deposit to the ship.

Control of
system

Initial causes

1) The individual agents are independent
of each other, yet they all operate under the
same rules;

2) the systems organizes itself through the
interactions of these independent agents

All robots would be programmed to the same
thing: search for the particular markers, if
sufficient gold deposit is identified send out
signal to draw other robots to the site. In the
case of multiple signals respond to the closest
one.

actions can have exponentially significant
results.

Decentralized both with each other as well as with the
environment.
Action effects 1) Because the system is organized If one robot identifies the location of a gold
through individual and independent deposit, the signal will draw many others to
Non-linear actions, it is possible that one agent’s the site.

Agents’ actions

1) Agents at the lowest level appear to act
in random fashion.

The individual agent is programmed to search
randomly until they identify a deposit or they
are attracted by some signal.

probable.

2) Like other probabilistic processes,

larger numbers over longer time periods
are more likely to result in the formation of
normal distributions.

Random

Underlying 1) The system organizes itself based on the | Once the initial signal is sent out, the system
causes interactions of the agents as described ofmultiple robots working togetheris
Probabilistic above, therefore the resulting structure is dependent on the number of robots that are in

the location to receive the signal. It is also
dependent on the number of other signals that
may be within the system (other robots also
sending signals). Once sufficient numbers of
robots are working together, they will attract
more robots to join them by amplifying the
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initial signal. In addition, as the trail of robots
grows the physical obstacles within the
environment will become worn thereby
making the path easier to move along.

Systems’ Nature

Dynamic

1) Once the system, the recurring structure,
emerges it exhibits a more stable quality;
2) yet all the component agents have the
potential to be replaced by other similar
independently operating agents.

In this process, an individual robot may at
any point be part of the digging crew,
transportation crew or delivery crew. Once a
site is exhausted, the individual will go back
to randomly searching until there is another
discovery and the formation of another crew.

Table C.4

Prototypical Answer Coded to CWMM Taxonomy

CWMM Components of coding Example for Butterfly question
Ontological 1) agents’ act in isolation. Storms are local. One to one relationships.
perspective: 2) simple stepwise description. Actions are cumulative therefore one
butterfly is too small to matter.

Reductive

1) orders/controls come from outside. Or is Weather systems are controlled by higher
Control of within the system but not attributed to the level (top down) forces.
system individual agents within.

E.g., different agents have different rules.
Centralized e.g. mention of hierarchy.

Action effects

Linear

1) one thing leads to another. E.g. direct link
between controller and controllee.
€.g., action—sreaction

Small actions and small sizc cannot affect
large systems.

Agents’ actions

1) agents’ actions are predictable.
e.g., they (it) will perform the action. There

Implication that agents’ actions can be
calculated and factored out.

Static

system.

Predictable is no mention of randomness or chance in
their actions.
Underlying 1) it knows the end point. E.g., it knows it Underlying cause of storms cannot be
causes has to survive. aitributed to agent levels probabilities.
Storms are determined by larger forces
Teleologic outside our control.
Systems’ Nature | 1) explicit descriptions of non changing The effects of the butterflies are local and

therefore do not account for changes 1o the
system. All actions are local and terminate.
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Appendix C.2
Example of Coding EFMMs Only

Sam: I believe ants must find their food through random
random behavior
wanderings and communication with other ants who have had luck.
chance happenings
They all wander, one finds food, returns with information on its
independent behavior of the individual
location and a number of ants collect it.

Delayed Posttest

Sam: How do Ants find their food? I think that ants go about
finding their food by sending out "scouts”, ants that wander

randomly, maybe following paths or general directions in which

Random behavior

they previously found food, maybe not. As these ants walk, I
role of history probabkilistic behavior

think they leave a trail of pheromones that they can follow back

to the ant hill. If per chance they find food, they can go back

probabilistic behavior
to the ant hill by following their trail and "stimulate" other
ants to follow it back to the trail of food, all the while

positive feedback — flows
following the pheromone. As for rules and a complex system, I
would think that the simple rule the ants follow involves nothing

much than finding the said food. In other words going out and

Simple rules — algorithmic behavior

perhaps wandering aimlessly until they find the food or run into

an obstacle which would break the randomness, for they would have

to act in response to this new stimulus.

variability

So it's probability I guess, once again. Yeah. Cause the chance
Probabilistic behavior

that they'd wander in one direction might be because of the

weather. Like if it's wet on one side and dry on the other they'd

most likely take the dry side. So the brobability that they'd

take one path might lead them to the food.
Probabilistic behavior

5: When looking at the entire system, we would look at the ants,
their goal (food), stimuli (obstacles and weather), which are all
directed by a sense of "chaos" for it is impossible to figure out

where or when the ants will encounter any of these. The ants are
Probabilistic behavior

the components that interact

with their environment and follow general rules, even if those
rules are to wander randomly. The environment, food and stimuli,
only follows the basic rule that it must be present at some place
or another. The system comes together and is organized by the

goal,

Self-organization — goal seeking driven by internal forces
that of finding the food, which is the basic rule to the entire
system. If the ants, don't have a goal the system is unorganized

and_the components cannot come together.

Self-organization
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APPENDIX D
INSTRUCTIONAL MATERIALS

Appendix D.1
Study 1 — Complex Systems Lecture

Part |

(a) Emergence. Discussion of cell development in human embryos was used as a vehicle
to inform participants on the concept of emergence in complex systems. An eight-minute
video clip on cell division and embryonic development was used to demonstrate the
process. The materials for the lecture were projected using a PC computer and LCD
station set up in the classroom. The total time of this presentation was one hour.

(b) Aggregation. The concept of aggregation was demonstrated using the StarLogo
computer model called “Slime”. The model was used at the default setting since this
setting best describes the notions of necessary and sufficient conditions for aggregation.
Slime model (aka turtles) are programmed to move around in random fashion searching
for deposits of pheromone — unpredictable movement of agenis. These deposits must
meet a specified level of potency before the turtle will stay with the deposit.

(¢) Requisite variety. The process of requisite variety was delivered using traditional

overhead projection materials. Content was adapted from lecture material on systems’
behavior used for the Educational Cybernetic course in the Educational Technology
program.

Source Materials Used

To demonstrate human embryo development, a clip from the Biology NYA textbook*
CDRom was used.

Requisite variety was explained using overhead transparences that were developed by the
cybernetics subject matter expert. Further information could be obtained from the

following web address:http://artsci-ccwin.concordia.ca/edtech/ETEC606/index. htm.

* Campbell, N.A, Reece, J.B., & Mitchell, L.G. (2000). Biology: Concepts and Connections, 3rd Edition.
Menlo Park, CA: Benjamin Cummings, Inc.



291

Appendix D.2
Screen Shots of Slime Mould

. individual agent . aggregation of
o - agentsinto o
meta-agent '
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Screen Shots of Simulations Used in Study 2
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Figure D.1

GasLab Free Gas simulation start up condition.
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Figure D.2

GasLab Free Gas simulation, running condition. Graphs describe the normal distribution
of speed and energy within the system.
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Wolf Shieep Predation

[250 ]
count-sheep count-wolves

Population Sizes (1)

Figure D.3
Wolf-Sheep Predation simulation start-up condition.
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Figure D.4

Wolf-Sheep Predation simulation running condition. The graph describes the system after
3 to 4 minutes. Note the oscillation of the sheep and wolf populations.
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Appendix D .4

Reading Material for Session 4

Reading material may be found at the following website:

Self-Organizing Systems FAQ for Usenet newsgroupcomp.theory.self-org-sys
http://www.calresco.org/sos/spsfag.htm#9.3

1. Introduction
1.1 Science of Self-Organizing Systems

The scientific study of self-organizing systems is relatively
new, although questions about how organization arises have of
course been raised since ancient times. The forms we identify
around us are only a small sub-set of those theoretically
possible. So why don’t we see more variety? To answer such a
question is the reason why we study self-organization.

Many natural systems show organization (e.g. galaxies, planets,
chemical compounds, cells, organisms and societies).Traditional
scientific fields attempt to explain these features by
referencing the micro properties or laws applicable to their
component parts, for example gravitation or chemical bonds.
Yet we can also approach the subject in a very different way,
looking instead for system properties applicable to all such
collections of parts, regardless of size or nature. It is
here that modern computers prove essential, allowing us to
investigate the dynamic changes that occur over vast numbers of
time steps and with a large numbers of initial options.

Studying nature requires timescales appropriate for the natural
system, and this restricts our studies to identifiable
qualities that are easily reproduced, precluding
investigations involving the full range of possibilities that
may be encountered. However, mathematics deals easily with
generalised and abstract systems and produces theorems
applicable to all possible members of a class of systems. By
creating mathematical models, and running computer
simulations, we are able to quickly explore large numbers of
possible starting positions and to analyse the common features
that result. Even small systems have almost infinite initial
options, so even with the fastest computer currently
available, we usually can only sample the possibility space.
Yet this is often enough for us to discover interesting
properties that can then be tested against real systems, thus
generating new theories applicable to complex systems and their
spontaneous organization.

1.2 Definition of Self-Organization
The essence of self-organization is that system structure often
appears without explicit pressure or involvement from outside
the system. In other words, the constraints on form (i.e.
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organization) of interest to us are internal to the system,
resulting from the interactions among the components and
usually independent of the physical nature of those
components. The organization can evolve in either time or
space, maintain a stable form or show transient phenomena.
General resource flows within self-organized systems are
expected (dissipation), although not critical to the concept
itself.

The field of self-organization seeks general rules about the
growth and evolution of systemic structure, the forms it
might take, and finally methods that predict the future
organization that will result from changes made to the
underlying components. The results are expected to be
applicable to all other systems exhibiting similar network
characteristics.

1.3 Definition of Complexity Theory

The main current scientific theory related to self-organization
is Complexity Theory, which states:

Critically interacting components self-organize to form
potentially evolving structures exhibiting a hierarchy of
emergent system properties.

The elements of this definition relate to the following:

o Critically Interacting - System is information rich,
neither static nor chaotic

o0 Components - Modularity and autonomy of part behaviour
implied

o Self-Organize - Attractor structure is generated by
local contextual interactions

© Potentially Evolving - Environmental variation selects
and mutates attractors

0 Hierarchy - Multiple levels of structure and responses
appear (hyperstructure)

0 Emergent System Properties - New features are evident
which require a new vocabulary

We explore and explain the terms comprising this definition
in this FAQ. The form of the definition given here is the
slightly rephrased result of a discussion on the SOS newsgroup,
where the editor of this FAQ offered an initial definition and
the concept was refined, but the elements included are found in
most treatments of self-organization, in one form or another.

2. Systems
2.1 What is a system ?

A system is a group of interacting parts functioning as a whole
and distinguishable from its surroundings by recognizable
boundaries. There are many varieties of systems, on the one
hand the interactions between the parts may be fixed (e.g. an
engine), at the other extreme the interactions may be
unconstrained (e.g. a gas). The systems of most interest in

our context are those in the middle, with a combination both
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of changing interactions and of fixed ones (e.g. a cell). The
system function depends upon the nature and arrangement of
the parts and usually changes if parts are added, removed or
rearranged. The system has properties that are emergent, if
they are not intrinsically found within any of the parts, and
exist only at a higher level of description.

2.2 What is a system property ?

When a series of parts are connected into various
configurations, the resultant system no longer solely exhibits
the collective properties of the parts themselves. Instead any
additional behaviour attributed to the system is an example of
an emergent system property. A configuration can be physical,
logical or statistical, all can show unexpected features that
cannot be reduced to an additive property of the individual
parts.

2.3 What is emergence ?

The appearance of a property or feature not previously observed
as a functional characteristic of the system. Generally,
higher-level properties are regarded as emergent. An automobile
is an emergent property of its interconnected parts. That
property disappears if the parts are disassembled and just
placed in a heap.



APPENDIX E
DOCUMENTATION OF ETHICAL STANDARDS

Appendix E.1
Recruitment Letter

Dear Student,

One of the College's faculty members, Elizabeth Charles is looking for students to take
part in a research project which follows the Science program orientation event of 14
August, 2000. This research will provide students with specific skills (outlined below) as
well as examine the potential of a contemporary scientific way of thinking and its benefits
on learning.

Specific Skills:

1. How to use First Class Client software in order to communicate with other students
and faculty.

2. How to facilitate working in a collaborative and cooperative manner (i.e., working as
members of a team).

3. How to use simulation software (i.e., use of simulation software).

4. How to observe phenomena and develop hypotheses (i.e., working with simulations
and interpreting data).

5. How to approach scientific inquiry from a systemic point-of-view.

6. How to summarize and critique data findings (i.e., group discussions and writing
summaries after working on simulations).

7. Participating and understanding the research process.

If you agree to participate you will be expected to attend one full day and two half day
sessions starting 15 August to 17 August. You will also be asked to participate in an on-
line learning group until midterm. This involvement will take up no more than one to two
hours per week. The primary aim of the follow-up sessions is to keep you on track and act
as on-line mentoring. Please note that it would be beneficial to own a computer and have
an Internet connection but it is not essential.

By now you must be asking yourself, what's in this for me? As with most research, it will
be mainly the FUN of being part of an ongoing quest for knowledge about how human
beings learn. As well, these workshops will allow you to meet some of the people at the
College - both faculty and students - as well as get better acquainted with the physical
layout of the College. You will receive a FREE LUNCH each day. And, finally, your
name will be entered into a drawing for one of TWO GRAND PRIZES of $250 for
participants who complete the full project (workshop & follow-up).

If you are interested or wish further information, please contact us at the following email
address: echarles@place.dawsoncollege.qc.ca
Or at 931-8731 ext 3214 and leave a voice message
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Appendix E.2
Consent Form — Study 1

STUDENT CONSENT FORM
Elizabeth Charles is asking for your help in completing a research project entitled "A Systems Approach to Science
Education". This project will study the effects of systems-based instruction on the learners’ approach to problem
solving of several interesting topics (e.g., evolution, diffusion, etc.). To do so this research will use computer
simulations, web-based and traditional instruction. Ms. Charles is asking for your permission to collect data, starting
today and ongoing until the end of your first year at Dawson College. These data will be in the form of written
questionnaires and interviews that will assess your understanding of the material covered by the instruction. She also
is requesting permission to collect information from questionnaires that assess goal orientation, learning preference,
and formal reasoning. As well, she would like your permission to access the resulis of your Dawson College English

Placement Test and grades from your science courses.

ALL INFORMATION COLLECTED FOR THE PURPOSE OF THIS RESEARCH WILL BE KEPT
STRICTLY CONFIDENTIAL. NO NAMES OR ANY OTHER IDENTIFICATION WILL BE USED IN ANY
PUBLICATION(S) THAT MAY RESULT OUT OF THIS STUDY AND, NO NAMED DATA WILL BE
RELEASED TO ANY DAWSON FACULTY

Your cooperation is voluntary. You have the right to decline participation in any part(s) of this study. Also, you have
the right to discontinue your cooperation at any time. Your non-participation or withdrawal will in no way affect your
standing in any course(s) or program(s). Please indicate your wish to participate by filling in the appropriate section

below. If you do not wish to participate draw a large X in the middle of this form.

Any questions or concerns you have with respect to this research should be addressed to Elizabeth Charles via email at

echaries@place.dawsoncollege.qc.ca or via a phone message at 931-8731 local 3214,

L agree to participate in this research project conducted by Elizabeth Charles. I have care fully read the above
description and understand the agreement. I freely consent and agree to participate in the collection of data for this
research project.
Name (please print)
Student ID

Student's signature Date

(Parent's signature if a minor)

I would like a copy of the study's findings when they are available. __yes__no



Appendix E.3
Consent Form — Study 2

STUDENT CONSENT FORM

Elizabeth Charles, is asking for your help in completing a research project entitled “A
System’s Approach to Science Education”. This project will study the effects of a
systems-based activity on the learners' approach to problem solving (e.g., evolution,
diffusion, ecology, etc.). It will provide you with an opportunity to explore new concepts
in science education, namely, complex systems thinking.

It you agree to participate you will be expected to schedule six one-hour sessions over a
period of six consecutive weeks during which you will be asked to work with computer
simulation software called StarLogo. You will be expected to talk about your experiences
and understanding of complex systems concepts gained through the use of these
simulations; this is generally referred to as a “think aloud” protocol. No formal
preparation and no homework will be assigned.

Furthermore, if you agree to participate you will be paid $10/session.

She is asking for your permission to collect data, which includes: interviews (audio and video taped),
written questions, and questionnaires that assess goal orientation, and learning preference. These forms of
data collection are intended to assess your understanding of the material covered by the simulations. As
well, she would like your permission to access the results of your Dawson College English Placement Test
and grades from your science courses.

ALL INFORMATION COLLECTED FOR THE PURPOSE OF THIS RESEARCH WILL BE KEPT
STRICTLY CONFIDENTIAL. NO NAMES OR ANY OTHER IDENTIFICATION WILL BE USED IN
ANY PUBLICATION(S) THAT MAY RESULT OUT OF THIS STUDY AND, NO NAMED DATA
WILL BE RELEASED TO ANY DAWSON FACULTY.

Your cooperation is voluntary. You have the right to decline participation in any part(s) of this study. Also,
you have the right to discontinue your cooperation at any time; however, you will be paid only for the
sessions attended. Your non-participation or withdrawal will in no way affect your standing in any
course(s) or program(s) at the College. Please indicate your wish to participate by filling in the appropriate
section below.

Any questions or concerns with respect to this research should be addressed to Graeme Welch, the Dean of
Pre-University programs and the chair of the Human Research Ethics Committee, 931-8731, ext. 1685.

If you agree to sign below, it will be taken as evidence that you have carefully read, and freely consent to
participate in the rescarch project as described above.

Name (please print)
Student ID

Student's signature Date
(Parent's signature if a minor)

If you would like a copy of the study's findings when they are available, please check the appropriate space.
Yes __No

Thank you for your time and cooperation.
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APPENDIX F
DATA COLLECTION INSTRUMENTS

Appendix F.1

Pretest — Immediate Posttest (Brain Teaser Questions)

BRAIN TEASER QUESTIONS

Name Date

DIRECTIONS: You are not expected to know the "real" scientific explanations, however, you may have
some personal "theories" or understanding about the following phenomena from science articles, novels or
movies. Therefore, please answer these questions using your intuition (best guess) or knowledge from
informal learning experiences.

1. How would you explain how ants find and collect their food. What rules do you believe they follow?
Try to explain using only the space provided. If you don't know, just make a "X" in the space provided.

2. It has been said that a butterfly flapping its wings in Brazil can jiggle the air and thus can help cause a
snowstorm in Alaska. Is this possible? If so, how would you explain this phenomena? What type of
rules would permit this to occur? If not possible, what rules do you believe would prevent them from
occurring? Try to explain using only the space provided. If you don't know, just make a "X" in the
space provided.
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3. How would you explain the formation of traffic jams? Are there rules that would direct this type of
activity? Try to explain using only the space provided. If you don't know, just make a "X" in the space
provided.

4. Suppose large deposits of a cancer-curing mineral were discovered on a distant planet. It is too
dangerous and costly to send human astronauts to mine the mineral. If thousands of robots were sent.
What type of programming would be necessary to ensure that the robots would be able to find the
mineral, mine it, take it back to the space ship and then return to their exploration and mining tasks? In
other words, what type of rules and strategies should the robots have to follow? Use as much space as
required.

Thank you very much for your cooperation.
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Appendix F.2

Demographic Questionnaire

DEMOGRAPHIC BACKGROUND

DIRECTIONS: Please answer these questions in the space provided.

NAME: ILD. #
(please print)

5.(2) What language(s) do you speak at home?

{b) What was the main language used for instruction at the high school you attended?

6.What is your age?

SCIENCE BACKGROUND INFORMATION

DIRECTIONS: Please answer these questions in the space provided.

7.What science courses did you take in high school?

8.Do you have any other relevant experience in science or medicine (e.g., summer job as a lab technician; voluntary

at a hospital)?

9.Do you read science magazines?

10.  If yes which ones?

I1.  What type of science topics interests you the most?

12 Have you ever participated in a science fair?
13, Ifyes, did you ever win an award or honorable mention?__
14.  Briefly describe the project you exhibited?

15. Have you ever participated in a science camp?

16.  Ifyes, when and how often2

17. Before today, have you ever been a participant in a research project?

18.  Ifyes, briefly describe it.

What type of computer skills do you have? ( ) High ( ) Medium { )Low

19.  What software do you use most often?

20. Do you know any programming fanguages?




Appendix F.3

Final Posttest

EVOLUTION
DELAYED POSTTEST — CASE STUDY

1. Monsanto (an agricultural engineering company) has developed genetically identical corn seeds in
their laboratory in California. They sell them to farmers across the world, for example: (1) a farm south
of Montreal (cool, short growing season, moderate temperatures); or (2) a farm in Kenya, East Africa
(warm, longer growing season, short rainy season). Assuming that the corn will evolve over time, and
using your intuition about these types of systems, try to describe how the process of evolution might
proceed by directing your answer to include the following:

a)  Will the number of seeds planted have an effect on the process of their evolution? What would
happen if you planted 100 seeds? What would happen if you planted 100,000 seeds?

b) What elements in the environment do you think could affect the evolution of this population of
corn? Discuss how the effects would progress.

¢)  Are there any conditions under which you would expect drastic changes in the genetic make-up
and appearance of the offspring (i.e., a new species of grain)?

2. You have most probably observed the migration of birds in the spring and fall. Again using your
intuition, what programming would be required to have robotic birds display a similar behavior
resulting in the V-shaped formation that is created by a flock of birds?

Thank you very much for your cooperation.



306

Appendix F .4

Concept Map Terms

INSTRUCTION FOR CONCEPT MAPPING
OF COMPLEX SYSTEMS TERMS

Please take a look at the terms listed below, then place them into any arrangement
that you believe best describes your understanding of their meaning and
relationship to each other. If you do not see any way that a term is related to the
others, place it on the bottom of the page. After you have completed this task I

will ask you to explain your decision.

(The terms are listed in alphabetical order that has not significance to their meaning).

* algorithmic

* centralized

* complex systems
* decentralized

* dynamic

* predictable

* probabilistic

* random

¢ self organizing
¢ simple systems
¢ static

®* system




