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ABSTRACT

Generalized Risk Processes and Lévy Modeling in Risk Theory

Manuel Morales, Ph.D.
Concordia University, 2003

A generalization to the classical risk model is presented. This generalization in-
cludes a Lévy process as the aggregate claims process. The compound Poisson process
and the diffusion process are particular cases of this more general model. With this
model we attempt to bridge two approaches often used in the literature to generalize
the classical model.

We investigate applications of pure-jump Lévy processes to risk theory, in parti-
cular members of the family of generalized hyperbolic processes. We focus our inter-
est in the normal inverse Gaussian process and in the generalized inverse Gaussian
process. Both lead to purely discontinuous risk processes with infinite activity, i.e.,
these processes have an infinite number of small jumps and occasional larger move-
ments.

We also present an approximation to the classical risk model when the claim
severities belong to the domain of attraction of an extreme distribution, this allows
for all kinds of heavy and medium tailed distributions. The model is based on a
Lévy process with an underlying Lévy measure proportional to the generalized Pareto
distribution.

Most of our results rely on properties that are not only valid for Lévy processes
but for the larger class of semimartingales. As an illustration, we also introduce an
even more general risk process with independent increments that would endow us
with a periodic reserve process that can find applications in reinsurance or in the

valuation of catastrophe insurance options. Although, this periodic risk process does
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not belong to the Lévy family of processes, it does belong to the larger family of
processes with independent increments.

The main contribution of this thesis takes the form of four independent chapters
that illustrate the potential of Lévy modeling in risk theory. Each chapter constitutes
a research paper in itself with different applications of the theory of processes with
independent increments in risk theory. These applications range from new approxima-
tions to the aggregate claim process, to purely discontinuous risk models. Periodicity
is also discussed in terms of a particular semimartingale for which a simulation ap-
proach is used. Together, they show the flexibility of pure-jump Lévy processes and
their suitability as models in risk theory. Although, each of the applications repre-
sents a contribution to different aspects of the theory, all of them, as a whole, reflect

the potential of Lévy modeling.
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Introduction

After a review of the literature, one can see that the use of Lévy processes in risk
theory, other than the compound Poisson process, has been mainly restricted to
Brownian motion and a-stable processes. There exist two different approaches when
incorporating Lévy processes in risk theory: by replacing the classical aggregate claim
process with it or by using it as perturbation to the classical model.

Consider the classical risk process [see for instance DeVylder (1996), Gerber
(1979), Grandell (1991), Embrechts and Kliippelberg (1992) or Prabhu (1998)] given
by

N()
Ut)=utct—> Xi, t>0, (1)

i=1
where u is the initial surplus, ¢ is a constant premium rate, {X,} are i.i.d. random
variables (with c¢.d.f. Fy) denoting the claim amounts, E(X;) = p and N is a Poisson
process with intensity A, denoting the claim occurrences (in a more general setting
N can be a renewal process). We denote by 6 = c¢(Au)™! — 1 > 0 the safety loading
factor.

Then a first approach is the one introduced by Iglehart (1969). He proposes a
diffusion process as an approximation to the classical risk process (1). This approx-
imation relies on the weak convergence of a sequence of processes as in (1), under

certain conditions, to the diffusion process
Up(t) =u+ (c— M)t +oVAW(), t20, (2)

where A~! is the mean of the claims inter-occurrence times, E(X;) = u,

0?2 = Var(X;) and W is a one-dimensional standard Brownian motion.
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Diffusion risk processes have been developed further since then. It turns out
that for these processes there exist closed forms for functionals of (1) that are of
concern in risk theory (ruin probabilities, hitting time distributions). In most of
the useful cases there exist no closed forms for these functionals, like for the com-
pound Poisson process. This mathematical tractability of (2) makes the use of such
processes appealing in risk theory. Further work has been done in this direction such
as Bohman (1972), Gluckman (1970) or Grandell (1972, 1977). Also generalizations
have appeared such as Emmanuel, Harrison and Taylor (1975) or Garrido (1987)
where processes that account for the interest earned on the risk reserve are consid-
ered. Developments in the theory of stochastic processes find their way into the field
in papers like Ruohonen (1980) or Garrido (1989) where they studied risk processes
satisfying a stochastic differential equation.

Another application of Lévy processes as risk models can be found in Dufresne,
Gerber and Shiu (1991) where they propose a gamma process as a model for aggregate
claims. They show that, despite its being composed by an infinite number of small
claims, such a model can still be used in risk theory.

More recently, Furrer et. al. (1997) proposed a more general setting where the
risk process is approximated by an a-stable Lévy process instead of a diffusion, this
generalizes the diffusion approximation of Grandell (1977) since the Brownian motion
belongs to the a-stable family of processes. Their model allows for greater variability
than the diffusion approximation and hence, it performs better than the latter in the
presence of heavy-tailed claims.

A second approach that has been taken to incorporate Lévy processes in risk
theory is the one first introduced in Gerber (1970), where he enlarged the classical

model by adding a diffusion component oW (t) to the classical risk process, yielding
N()

Ut)=u+ct—» Xi+oW(t), t>0, (3)
=1

where W is a standard one-dimensional Brownian motion. This new component adds
extra uncertainty to the aggregate claims process that might account for fluctuations
in the number of customers, in the premiums or return on the investment of the re-

serve. It is a white noise that is proposed to model all of these additional uncertainties.
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The model (3) is known as a perturbed risk process [see Rolski et al. (1999)]. Renewal
theory methods have been applied successfully for these new processes [Dufresne and
Gerber (1991)] in the case of light-tailed claim sizes. Sub-exponential claim size
distributions have been studied in this context by Veraverbeke (1993).

More general settings have been analyzed, as in Bjork and Grandell (1988), Furrer
and Schmidli (1994) and Schimidli (1995), where they considered the case when N
is not necessarily a Poisson process. There exist even further generalizations where
neither NV is Poisson nor the perturbation is a Brownian motion as in Schlegel (1998)
and Furrer (1998). Furrer (1998) generalizes the perturbed model to a process where
the perturbation is given in terms of an a-stable process, this includes the perturbed
model of Dufresne and Gerber (1991) as a particular case. A more general version of
(2) is given in Paulsen (1993, 1998) where the risk reserve process and the perturbation
process are Lévy processes.

In Gerber and Landry (1998) we find expressions for the discounted joint distri-
bution function of the surplus prior to ruin and the deficit at the time of ruin for the
perturbed model. Their study exploits further the concept of a discounted penalty
function. This approach was first introduced in Gerber and Shiu (1998a) and has
been further studied in the context of a perturbed model in Wang and Wu (2000),
Wang (2001), Tsai (2001) and Tsai and Willmot (2002). Extensions to the case of a
surplus with interest have been studied in Cai and Dickson (2002).

In the most recent to date article on Lévy processes in risk theory, Yang and
Zhang (2001) propose a unifying approach using a spectrally negative Lévy process
as the aggregate claim. They reproduce and formalize previous results.

The whole theory has been rebuilt and enlarged around these two approaches, this
idea lies at the heart of our proposal. A unifying approach is proposed in terms of a
general Lévy process.

Lévy processes are stochastic processes with independent and stationary incre-
ments, the Brownian motion, the compound Poisson process and the a-stable motion
are a few examples. This wide family of processes contains many subclasses that have
appealing features for financial and insurance risk modeling [see Barndorff-Nielsen,
Mikosh and Resnick (2001) and Schoutens (2003)].
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We plan to study a unifying model bridging the two approaches. We will consider

a model following the dynamics:
dU(t) = cdt + bdZ (1) , t=>0, (4)

where Z is a Lévy process. Clearly, the classical model (1) is a solution if (4) since
the compound Poisson process is a Lévy process.
It is known [Bertoin (1996)] that a Lévy process Z can be decomposed as the sum

of three independent Lévy processes
ZH) =72V + 2P+ z®@), t=0,

where ZU) is a linear transform of a Brownian motion, Z® is a compound Poisson
process with jumps of at least size one, and Z® is a pure-jump martingale with jumps
of at most size one. This brings the idea that, both, the perturbed models in the
spirit of Dufresne and Gerber (1991), Furrer (1998) and Schmidli (2001)

N()
Ualt) =u+ct—> Xi+nZ(t), t>0, (5)
i=1
with Z a Lévy process, and approximations in the spirit of Iglehart (1969), Grandell
(1977) and Furrer, Michna and Weron (1997)

Up(t) =u+ (c—Au)t+nZ(t), t>=0, (6)

with Z a Lévy process, are models of the form (4).

A general Lévy process can include both diffusion and jump components as well as
only a diffusion component. The two different approaches should become particular
cases of (4) by turning on and off the compound Poisson component.

Results concerning the associated ruin probability for the approximation models
as well as for perturbed risk processes are consequences of their being Lévy process.
Therefore we should expect to find analogous results for a wider class of risk processes
as in (4). For instance, the ladder height decomposition in the classical process is still

valid for a subclass of processes of the form (4) as we discuss in Chapter 4.



In the classical risk model, where the surplus process is as in (1), it is well known

[see for instance Asmussen (2000)] that the ultimate ruin probability

N(@)
P(z) = P inf t>0|x+ct—ZXi<0 <00y, z>0,
i=1
satisfies
W(z)=P{M>z}, 220, (7)

where M = sup{zi]i (f) X; — cr} is the maximum aggregate loss. Moreover M is
0<r
a compound geometric random variable [Kalashnikov (1997)] and its distribution is

given by the so-called Beekman’s convolution formula

vt = 152 (35) ¢ ®)

where § = ¢(Au) ™ — 1 is the safety loading factor and G(z) = p~! [ [1 — Fx(y)] dy
is the so-called ladder height distribution.

The maximum aggregate loss M can be expressed as

S ©)

where {Y;}i=1. x are i.i.d. random variables with c.d.f. G and independent from a
geometric random variable K with parameter p = 1—2—9
In the risk model perturbed by a diffusion of Dufresne and Gerber (1991) there
exist similar results for the maximal aggregate loss
N(t)
L = max ZX" —ct—W(t)
i=1

>0

They show that for the perturbed model there exist expressions analogous to (8) and
9).

Furrer (1998) presents a generalization of Beekman’s formula when the risk process
is perturbed by an a-stable Lévy process. Asmussen and Schmidt (1995) and Schmidli

(2001) give a more general convolution formula for the maximal aggregate loss for a
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risk model described by an ergodic stationary marked point process perturbed by an
a-stable Lévy process.

Yang and Zhang (2001) use a spectrally negative Lévy process to unify previ-
ous approaches. They show that the diffusion model and the perturbed (both by a
Brownian motion and an a-stable Lévy motion) are particular cases of their model.

In the present work, we discuss how other Lévy processes can be used to drive
a risk model. Special attention is paid to the applications of generalized hyperbolic
Lévy motion in risk theory. These models were first introduced by Barndorff-Nielsen
(1977) and Barndorfl-Nielsen and Halgreen (1977) and have recently been applied in
finance [see Eberlein and Keller (1995), Eberlein (2001) and Prause (1999)]. They
show that the medium-tailed hyperbolic distribution fits well to stock returns and
use it in a general option pricing model. A thorough account of more general Lévy
processes in finance can be found in Schoutens (2003).

The family of generalized hyperbolic distributions is large, it contains either di-
rectly or as a limiting case the inverse Gaussian, normal, Student-t, Cauchy, expo-
nential and gamma distributions. In financial applications it is often preferred to
a-stable distributions since their density is known and all of the moments exist. It
has been proven [Barndorff-Nielsen and Halgreen (1977)] that this family belongs to
the infinitely divisible class of distributions, which allows us to define a generalized
hyperbolic Lévy motion. But there are more appealing properties to the family of
hyperbolic distributions. We find our motivation to propose in risk theory the ap-
plication of this family in Chaubey, Garrido and Trudeau (1998). They showed that
an inverse Gaussian distribution and particularly a mixture of an inverse Gaussian
and a gamma provided a good approximation to the aggregate claims distribution in
(1). The ability of these particular distributions to approximate the aggregate claims
distribution suggest the implementation of a generalized hyperbolic motion in a risk
model.

Motivated by the good fit found by Chaubey, Garrido and Trudeau (1998), we
introduce a generalized inverse Gaussian Lévy risk process. Despite the fact of having
an infinite number of small claims in any interval, it still accepts the ladder height

decomposition for its ruin probability. This allows us to use existing results on bounds



for its associated ruin probability. This model is an extension of the gamma process
of Dufresne, Gerber and Shiu (1991) and is yet another example of the processes
treated in Yang and Zhang (2001).

Rydberg (1997) uses the fact that pure-jump Lévy process is the limit of a se-
quence of compound Poisson processes to study the normal inverse Gaussian process.
The normal inverse Gaussian is one of the members of the generalized hyperbolic
family that is closed under convolutions. This makes it a more natural asset model.
As another illustration of Lévy modeling in risk theory, we propose a normal inverse
Gaussian risk process. The normal inverse Gaussian Lévy motion has medium-tailed
finite-dimensional distributions and it has been applied recently in finance. We ar-
gue that this process is a good model for the aggregate claims distribution. The
normal inverse Gaussian Lévy process exhibits a diffusion-like feature along with a
jump-driven structure. This duality makes it another alternative to respond to the
motivation of a perturbed model. This would yield a purely discontinuous risk process
exhibiting, in one single object, small fluctuations and occasional larger jumps. A
more general treatment of these kind of risk processes can be found in Morales and
Schoutens (2003).

Implementing more general Lévy process in risk theory is of particular interest
when bridging financial and insurance models. Examples of this interplay between
financial and insurance mathematics can be found in Gerber and Shiu (1998b, 1999),
Wang (2000) and Avram, Chan and Usabel (2002).

Approximations to the classical risk process can be divided into two cases, based
on the claims distribution: approximations for light-tailed claims and for heavy-tailed
claims. The diffusion approximation of Grandell (1977) deals with the first case and
the a-stable approximation of Furrer, Michna and Weron (1997) deals with the second
case. However, both approximations are linked by a general version of the central
limit theorem and the concept of domain of attraction of an extreme distribution. In
this context we introduce, as another illustration, a Lévy process that lies somewhere
in-between these two approximations. Our approach is based on extreme value theory
considerations, and in consequence, it adapts to the situation at hand to provide a

better approximation regardless if the claim distribution is light or heavy tailed.



Most of the results concerning ruin probabilities for Lévy risk processes rely on
properties that are common to the larger family of semimartingales with independent
increments. Sgrensen (1996) introduces a general risk model driven by a special class
of semimartingales. In this framework, we deal with the case when the aggregate
claims process is driven by a periodic non-homogeneous Poisson process, as in Garrido,
Dimitrov and Chukova (1996). In the classical risk model (1) the claim counting
process N is a Poisson process, but when working under periodic conditions, as for
hurricane losses, this classical approach is no longer adequate. This is of particular
interest when pricing catastrophe insurance options for example.

A generalized model when N is a non-homogeneous Poisson process (NPP) with
a periodic intensity function has been discussed recently in Chukova, Dimitrov and
Garrido (1993, 2000) Garrido, Dimitrov and Chukova (1996) and Morales (1999).
Such a risk process is no longer a Lévy process but still belongs to the class of semi-
martingales with independent increments. Classical expressions for ruin probabilities
can be extended to this general setting. We use the stationarity shown by the periodic
process at complete cycles, to find a similar result for the periodic non-homogeneous
Poisson risk reserve process.

Classical results on risk models with Lévy processes are presented in more detail
in Chapter 1. A review of the theory for Lévy processes is presented in the Chap-
ter 2. Finally, in the last chapters we present the already mentioned illustrations of
Lévy modeling in risk theory. Chapter 3 discusses the potential of the normal in-
verse Gaussian process as a risk model. Chapter 4 generalizes the gamma process of
Dufresne, Gerber and Shiu (1991) to a generalized inverse Gaussian process. Chapter
5 deals with the generalized Pareto-stable Lévy approximation. And Chapter 6 deals
with the periodic risk reserve process in the context of processes with independent
increments. These last chapters represent independent research articles by themselves

but together shed new insight on the potential of Lévy modeling.



Chapter 1

A Review of Lévy Processes in

Risk Theory

Applications in risk theory of Lévy processes have traditionally been in terms of
compound Poisson processes and continuous Brownian motion. This is a consequence
of the mathematical tractability of this process. It is not until recently that other
Lévy processes, such as a-stable ones, have found applications in the theory.

Consider the classical risk process [see for instance DeVylder (1996), Gerber
(1979), Grandell (1991), Embrechts and Klippelberg (1992) or Prabhu (1998)] given
by

N(t
U(t):u+ct—2(:)X¢, t>0, (1.1)

i=1
where u is the initial surplus, ¢ is a constant premium rate, {X;} are i.i.d. random
variables (with c.d.f. Fix) denoting the claim amounts, E(X;) = p and N is a Poisson
process with mean A, denoting the claim occurrences (in a more general setting N
can be a renewal process) and 6 = c(Au)™' — 1 > 0 is the safety loading factor. The

process Zfi(f) X; is refered to as the aggregate claims process.

In the following sections we present a brief account of the use of Lévy processes

as generalizations of the classical process (1.1).



1.1 Diffusion Risk Processes

The first application of weak convergence in risk theory seems to be due to Iglehart
(1969). He showed that a sequence of renewal risk reserve processes converges to a

diffusion process.

Theorem 1.1 [Iglehart (1969) | Consider the following sequence of renewal risk
processes

N ()
Un(t) = tn+ et =D XM, 120, (1.2)

i=1
where for each {n =1,2,...} we have a process as the one defined in (1.1) plus the

following conditions

i) up = un'’? + o(n'/?)

i) cn = cenH?% 4 o(n712)
i) Elr] = A~1, where {;} are the inter-occurrence times of N(t),
i) EX{™) = un=12 + o(n"1/?) ,

v) Var[X™] = 02 = 02 > 0 and

(n) 2+e
vi) (E[XZ ]) is bounded for some €.

Then, for t > 0, n™Y2U,(t) converges in distribution to u + (c — Au)t + o A2 W (¢)

where W is a standard Wiener process.

This limit theorem has been used to approximate the risk process (1.1) by a diffusion.

1.1.1 A First Diffusion Risk Process

Iglehart’s result motivates the approximation proposed by Grandell (1977) for a case
where the claims counting process N can be a more general renewal process. In the
case of our concern, which is the classical model (1.1), both approaches yield the same

approximation. We follow here the presentation of Grandell (1991).
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Let us consider the aggregate claims in the process (1.1) and denote it by S as

follows
N(t)

=Y Xi, t>0.
g=1

S(t) = 0 if N(t) = 0. From sequence (1.2) in Theorem 1.1, we can construct the

sequence

Su(t) = S(nt) — Aunt ’

nx1l, t20, (1.3)
NG + od)n

which converges in distribution to a standard Wiener process W.

Hence the limit risk process for (1.2) becomes

Up(t) = u+ ypuAt — /A(p? + a2)W(t) , t>0, (1.4)

where

n—0o0

Notice that (1.4) is a Wiener process with drift.

Ruin Probabilities

Following Grandell (1977), from (1.3) we can construct the sequence

Ya(t) = @ﬂ%ﬁﬂ N ETOLRO] (15)

This sequence converges in distribution to the two last terms in (1.4) that we denote

by Yp, i.e.
Yp(t) = yuMt — /A(@? + a2 )W (), t>0.

This last equation implies that
]P{g(f) Yo(t) < —u} — P{%g(f) Up(t) < —u}, u > 0.
This yields the following approximation for the probability of ultimate ruin

Pn(u) = P{U,(t) < 0| for some t > 0} = P{Up(¢) < 0 | for some ¢ > 0} = ¢p(u),

11



when n is large. Here 1¢p(u) has the rather simple expression
2
Pp(u) = e T+ | u>0.

~Ru where R is the so-called adjustment

Note that this formula is of the form e
coeflicient [see Bowers et al. (1986)].

As for finite ruin probabilities, (1.4) also gives simple expressions. Denote by 7,, =
inf{t > 0 | Up,(t) < 0} the time to ruin for (1.5) and by 7 = inf{¢t > 0 | Up(t) < 0}

the time to ruin for (1.4). Then, by the same limiting process, we have

Yvp(u,t) = P{r<t}= li_>m P{r, <t}

_ —(C - Au)t —_ u) _2£c;);£2u ((C - )\M)t - U)
d ( Tt +e P ——_P__a?/\t )

where @ is the c.d.f. of a standard normal r.v. This gives the following approximation

for n large
Yn(u,t) = P{r, <t} = P{r <t} =¢p(u,t), u,t =0

For a recent discussion on a diffusion approximation in risk theory we also refer to

Klugman, Panjer and Willmot (1998).

1.1.2 A Compounding Brownian Motion Model for the Risk
Reserve Process

The simplicity of the limit risk process (1.4) encouraged further generalizations to
models taking into account investment income. Emmanuel, Harrison and Taylor
(1975) proposed an extension of (1.4) where the risk reserve earns interest. They

based their analysis on the following risk reserve process

t 2\71/2
Ucop(t) = ePu + (c — M) (g%_l) + [%——N—)] W (et —1) , (1.6)

where the term ef'u represents the accumulated value of the initial reserve u at a

constant interest force 3. The second term is the accumulated value of the premiums
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paid ¢ minus the expected claim cost and the third term is a re-scaled standard Wiener
process.

They showed that (1.6) is a diffusion with mean ¢—Au+0u and variance A(o?+p?).
This process is related to the Ornstein-Uhlenbeck process [see Beekman (1975)] and
is called a compounding Brownian motion by the authors.

The justification of (1.6) came from Harrison (1977) where he gives a weak conver-
gence argument. Basically, the argument goes as follows. He constructs a sequence

of processes that accounts for the interest earned

N (1)

US(t) = e®u+c (eﬂt - 1) — Z ePE=T") x () t>0
CB n ﬂ p i )

where N(™ is a homogeneous Poisson process and {Ti(”)} are its inter-occurrence
times. Then under certain asymptotic conditions for the parameters [see Harrison
(1977)], the sequence {Ugg} converges in distribution to the compounding

n=12,.

Brownian motion process (1.6).

Ruin Probabilities

For this process the ultimate ruin probability is given by [Emmanuel, Harrison and
Taylor (1975)]

_1-%(a+bp)
wCB(U)——_lj‘qTGS_, uwz0,
where \ 12
a= ___2_,u____ and b= ——%— .
BN + 1) o7 T 1)

These diffusion processes modeling risk reserves in the presence of compounding
interest are no longer Lévy processes (this comes from the fact that their increments
are not stationary), however, it is a natural extension once we have the diffusion
approximation (1.4). These models are discussed here for completeness since simi-
lar generalizations can be worked out starting from a general Lévy risk process. In
finance, Ornstein-Uhlenbeck type processes have been recently constructed from gen-
eralized hyperbolic Lévy processes [see Barndorff-Nielsen and Shephard (2001) and
Schoutens (2003) for instance].

13



1.1.3 Reserve Processes Characterized by a Stochastic Diffe-
rential Equation

As the theory of stochastic processes developed, more applications found their way
into risk theory. Ruohonen (1980) derived analytical expressions for the probability
of ultimate ruin for a wider class of risk processes than that defined in (1.4). He gave
solutions for risk reserve processes satisfying a stochastic differential equation of the

form
dU(t) = a[U(t)]dt +b{U ()] dW(t) (1.7)

with U(0) = u and a,b real functions. These results are given in the form of the

following theorem:

Theorem 1.2 [Ruohonen (1980) | If the risk process is a diffusion process satis-
fying (1.7), then the probability of ruin is

B [ exp (—2 IN Mdv) ds

()
Jo exp (—2 IN fé%dv) ds
This expression is a generalization of previous results by Iglehart (1969) and Har-
rison (1977). If we let a[U(t)] = ¢ — Au and b[U(t)] = o/A then Iglehart’s diffusion
is a solution of (1.7). And if a [U(t)] = ¢ — A + BU(t) and b[U(t)] = cv/X then one

solution to (1.7) is the compounding Brownian motion given by (1.6).

¥(u)

Another class of diffusion risk reserve processes was defined by Garrido (1989).
This family is the set of solutions of a stochastic differential equation that takes into
account the investment income earned and for the inflation on the claim amounts.

The stochastic differential equation he considered is of the form
dU(t) = [x(t, U(2)) + BU () — u(B)] dt +o()dW (1), (1.8)

where U(0) = u > 0, w(t, U(t)) is the rate at which premiums are collected and that
might depend on the reserve level U(t), §; and u(t) are the force of interest and the
average aggregate claim rate at time t respectively and W is a standard Brownian

motion.

14



All of these previous diffusion risk processes are members of this new class.

If we let u(t) = A, o(t) = /A2 +02), B = 0 and 7(t,U(t)) = c, then a
solution to (1.8) is the classical approximation to the compound Poisson ruin model
with mean claim p given in (1.4).

Letting u(t) = Ay, o(t) = ov/A, B = 0 and 7(t,U(t)) = c, then the resulting
process is Iglehart’s diffusion reserve process constructed in Theorem 1.1.

Harrison’s compounding Brownian motion process (1.6) is obtained by setting
pt)=p, o(t)=0>0,6,=pF>0and 7n(t,U(t)) =c

But there are also new processes in that family, namely, the Inflated Compounding
Brownian Motion [see Garrido (1987)] that is obtained by letting u(t) = uet®,
o(t) = 0ed®), 7(t,U(t)) = cer®) where A(t) = fot asds (o is the inflation force at t)
and B(t) = fot Bsds. Then the risk reserve process takes the form

t t
Uresum(t) = eBOu+ (¢ — p)et® / ePOds + get® / ePO-DEgw (s) ,  (1.9)
0 0

where D(t) = B(t) — A(t) = [} 6.ds.

Once again, these diffusion processes defined in terms of a stochastic differential
equation, as in (1.8), are no longer Lévy processes. They are discussed here for
completeness and as motivation for further research that goes beyond the scope of

this thesis.

1.2 An a-stable Approximation

Furrer, Michna and Weron (1997) generalize the diffusion approximation of Grandell

(1977). They propose a risk process of the form
Ut)=u+ct+nZat), t20, (1.10)

where Z, is an a-stable Lévy process. This process allows for greater flexibility than
the Brownian motion.
a-stable processes are generalizations of Brownian motion, its one-dimensional

distributions are a-stable. The tails of these distributions decrease like a power
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function. The rate of decay depends mainly on a parameter « € (0,2]. The smaller the
value of «, the slower the decay and the heavier the tails. In this family, distributions
have four parameters, so they are denoted S,(m,v,3), where m and v are location
and scale parameters, respectively, so they are usually set to m = 0 and v = 1,
leaving only « and ( as free parameters. The p.d.f. for these distributions does
not exist in close form, except for the cases @ = 2 (Gaussian distribution), o = 1
(Cauchy distribution) and for a = 1/2 (the one-sided stable distribution). However
their characteristic functions have a explicit form (see Zolotarev (1986) or Janicki and
Weron (1994) for a discussion on a-stable distributions). a-stable processes will be

discussed further in Chapter 2. Meanwhile we give the following definition:
Definition 1.1 A stochastic process Z, is called a standard a-stable process if
i) Zo(0) =0 ,a.s.,
i) Zy has independent increments,

i) Zo(t) — Za(s) ~ Sal0,(t — 8)Y*, B) for any 0 < s < t < oo and for some
0<a<2 | <1

Note that the standard Brownian motion is an a-stable Levy process with o = 2 (see
Samorodnitsky and Taqqu (1994) for a further discussion on a-stable processes).
a-stable distributions can be characterized as the limit of normalized sums of
random variables. Let S, = >, X; where {X,}i=12,.. are i.i.d. copies of a random
variable X. We say that X belongs to the domain of attraction of an a-stable random

variable S,, for a € (0, 2], if there exist constants a, € R, b, > 0 such that

— Sa,

in distribution as n — oco. Notice that this is a generalization of the central limit the-
orem since S, is a standard normal random variable. Iglehart (1969) used the central
limit theorem to construct a sequence of compound Poisson processes converging to
a Brownian motion. Likewise, Furrer, Michna and Weron (1997) define an analagous

converging sequence.
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In order to motivate their approximation, Furrer, Michna and Weron (1997) con-

struct a sequence of risk reserve processes

N(t)
1

UR(t) =ul + Mt — =N "[Yi-p), >0, (1.11)
bn i=1

where u(™, c( are the corresponding sequences of initial reserves and premium rates
such that «™ — v and %’i — ¢, with constants E[Y] = u and b, a slowly varying
function. The counting process N is Poisson with mean X and {Y;},—1 2 . areii.d. with
d.f. given by Fy with support on R*.

Depending on the tail of the claim distribution Fy, the processes in (1.11) will
converge weakly to an a-stable process with index a € (1, 2) or to a Brownian motion
with drift. The first of these limiting processes is the a-stable approximation of Furrer,
Michna and Weron (1997) and the second is the classical diffusion approximation of
Grandell (1977). We refer to Alexander (1996) for a discussion on weak convergence

in risk theory.

1.2.1 Ruin Probabilities

For the a-stable process in (1.10), Furrer, Michna and Weron (1997) worked out some
results concerning finite ruin probabilities. They present the following asymptotic

result for finite ruin probabilities of the process (1.10).

Theorem 1.3 Let Z, be an a-stable Lévy motion with skewness parameter |G| < 1.
Then

1
Plu+ cs — /2 Z,(s) < 1] ~ a——g—ﬁ)\t(u +ect) ™, U —> 00,

where

C. = l-—a
* 7 (2 — ) cos(3ma)

The meaning of f(x) ~ g(z) should be understood in the sense that lim fT(:)Z =1.

z—o00 9

Theorem 1.3 leads to upper bounds for the finite ruin probability with the a-stable

approximation.

17



The general risk process, presented in this section, incorporates Lévy processes
that lead to approximations for ruin probabilities in the case of light and heavy tailed
claim distributions. In the following section we present a first attempt to use non-

standard Lévy motion as aggregate claims process.

1.3 A Gamma Risk Process

The first application to our knowledge of a Lévy process, other than a compound
Poisson, as an aggregate claims model is due to Dufresne, Gerber and Shiu (1991).
They presented a gamma process as a model for the aggregate claims process yielding

the following risk model:
Ult)y=u+ct—G(t) t>20, (1.12)

where u is the initial reserve, GG is a gamma process representing the claims and the
loaded premium c = (1 + §)E[G(1)].

They define a class of increasing processes G in terms of their Laplace transform
E[e™*¢®] = exp {t/ [1-e] dQ(y)} : z>0,t20,-1<a<0, (1.13)
0

where —dQ(z) = az®* le~*®dzx for positive constants a and b. All of its increments
are gamma distributed, i.e., the random variable G(t) has distribution with shape
parameter at and scale parameter b. For o = 0 we have that G is a gamma process.
Another member of this family is the inverse Gaussian process that can be obtained
by setting o = —1/2.

Processes in this family are limits of a type of compound Poisson processes and
are composed by an infinite number of small jumps. Dufresne, Gerber and Shiu
(1991) discuss these and other properties in a risk theory context. Despite having an
infinite number of jumps, these remain somehow small enough as to allow for a certain
regularity of the process. For example, the jumps are always positive so that they
can be used to model claims. The distribution of the aggregate claims process can
be a gamma or an inverse Gaussian, both distributions have been succesfully used to

fit aggregate claims [see Chaubey, Garrido and Trudeau (1998)]. Ruin probabilities
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find simple expressions that allow for the implementation of bounds as in Cai and
Garrido (1998).

Dufresne, Gerber and Shiu (1991) showed that implementation of processes with
infinite claims frequency has potential in risk theory. They started out a new approach
by incorporating more general Lévy processes into the theory. Their treatment was
for a general process with independent increments and with paths of finite variation,
although they did not know the term at the time. Yang and Zhang (2001) formalized
and extended this approach to include the more general class of spectrally negative
Lévy processes. In this thesis we extend results in Dufresne, Gerber and Shiu (1991)
to a wider class of processes giving yet another example of the models described in
Yang and Zhang (2001).

In three previous section we present how Lévy processes have been used to ap-
proximate or to model a risk process. A second approach incorporates Lévy processes
as a perturbation. Lévy processes, namely Brownian motion and a-stable processes,
" have been introduced to account for perturbations in the premium, as seen in the

following section.

1.4 Perturbed Risk Processes

The first appearance of perturbed risk models in the literature seems to have been in
Gerber (1970), where he proposed a model as in (3). Later, in Dufresne and Gerber
(1991), they worked with
N(t)
Up(t)=u-+ct— Y X;+W(t), t20, (1.14)
=1
where W is a standard Wiener process independent of the compound sum Zf\; (f) X;.
This new model, is the same as in the classical case except for the inclusion of a
Brownian motion with drift zero and infinitesimal variance 2V. This intends to
account for additional uncertainties in the premiums or/and in the claims. It is a
white noise modeling the ever-changing economical environment. Theirs is also the

idea of identifying two sources of ruin. Let us consider, as in the classical model, the
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probability of ultimate ruin
p(u) =P{U(t) < 0| for some t > 0} .
In this new model the ruin probability can be decomposed as

$(u) = dalu) + Ps(u) ,

where 4 is the probability of ruin induced by the diffusion, i.e. the surplus level
at the time of ruin is zero, and ¥g is the probability of ruin caused by a claim, i.e.
the surplus level at the time of ruin is negative. Notice that because of the diffusion

nature of the process we have that

Ps(0)=0 and  (0) =¢a(0)=1.

1.4.1 A Renewal Approach to Ruin Probabilities

Dufresne and Gerber (1991) show that 1 — ¢ (u) follows a defective renewal equation

of the form
1—9(u) =qH(u) + (1 - q)/o [1 —2(s)]hy * ho(u — 8)ds , uxz0, (1.15)

where the operator * is the convolution of functions on R* defined as f * g(z) =
fox flz —v)g(y)dy, ¢ = %‘i and hy and hy are p.d.f.’s (and therefore H; and H, are
the corresponding c¢.d.f.’s) given by

hi(z) = %e‘vz ) x>0,
1
ho(z) = ;[1—Fx(fﬂ)] , >0,

From (1.15), by using standard renewal theory techniques [see for example Cox
(1967) or De Vylder (1996)], they arrived to a generalization of the classical Beekman

convolution formula

WV
o

1—tp(u) => g1 —g"H"™ M« H"(w),  u (1.16)

n=0
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The solution (1.16) of the integral equation (1.15) is an infinite series of functions
sometimes called a Neumann series.

Numerical solutions can be obtained from (1.16) using standard methods in risk
theory [see for instance Dufresne and Gerber (1989)]. Similarly, they provided implicit
solutions for ¥(u), ¥q(u) and s(u) since they satisfy defective renewal equations
analogous to (1.15). Note that the Brownian motion W does not appear in the
renewal equation and therefore, although it is a more complex model, the solution is
still within the scope of renewal theory.

The renewal approach has brought new insight into the theory. More recent
references to the perturbed model can be found in Tsai and Willmot (2002) and Cai
and Dickson (2002).

Lundberg-type Bounds

If Fx is sufficiently regular in its right tail so that the moment generating function
exists, then, by following a similar construction as in the classical case, from (1.14)
Dufresne and Gerber (1991) define the adjustment coefficient R (when it exists) as

the positive solution r of
/\/ edFx(z) + Vri= X +er,
0
then the following Lundberg-type bound holds

e > ahy(u) + Ys(u) = ¥(u), foru>0.

Moreover the following asymptotic expressions can be obtained by renewal argu-

ments

wd(u) ~ Cde—Ru,
ws(u) ~ C«Se-—Ru’

for large u and for certain constants C% and C®. The meaning of f(z) ~ g(z) should

be understood in the sense that lim % = 1. For further details and bounds see Cai
T 00

and Garrido (2002).
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1.4.2 Heavy-tailed Claim Size Distributions

Veraverbeke (1993) showed that when the claim-size distribution is sub-exponential
[see Rolski et al. (1999)), then the ruin probability behaves asymptotically like the
integrated tail of the claim-size distribution. His result also extends to exponential
cases where the adjustment coefficient does not exist.

Let us consider the model proposed by Dufresne and Gerber (1991) given by

(1.14), then just as in the classical case we have that
1 —¢(u) =P{L < u}, u=0,

where L = max{> NV X, — ¢t — W(t)|t < 0} is the maximal aggregate loss. With

the usual notation for the ladder-height (or equilibrium) distribution

F)%(:c)zﬁ[ly]-/oz[l—FX(s)]ds, x>0,

we have the following result.

Theorem 1.4 [Veraverbeke (1993)] The following are equivalent
i) F¥ belongs to the class of sub-exponential distributions,
ii) 1 — 1 belongs to the class of sub-exponential distributions,

and either one of them imply

w(u)NL—)\—:l—_-l—]—E@(—S]/:o[l—Fx(s)]ds, 65 u— 0.

The notation of f(z) ~ g(z) should be understood in the sense that lim g—% =1
T—0Q
This gives an asymptotic approximation to the ruin probability in the case of sub-
exponential claim-size distributions. It extends the theory so as to provide results for

claim-size distributions such as Pareto or lognormal.
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1.4.3 Risk Processes Perturbed by an a-stable Levy Process

A further generalization was presented in Furrer (1998) where he considered a risk
process perturbed by a a-stable Levy process. He considered a risk process of the

form

N()

Us(t) =u+ct— > Xi+nZa(t), 20, (1.17)
g=1

where all the variables and parameters are as in the classical compound Poisson
setting and Z,, is a a-stable Lévy process.

In the original perturbed model of Dufresne and Gerber (1991) the use of a Brown-
ian motion does not allow for large fluctuations and it is not adequate to model large
variations. By adding an o-stable process instead, Furrer achieved more flexibility
through the insertion of the new parameter «. By changing « one can control the
variability of the process, the smaller the «, the more dramatic the fluctuations; the
closer to 2, the nicer it behaves.

For a perturbed process (1.17), Furrer (1998) proved the following convolution

formula for the ultimate ruin probability:

Theorem 1.5 [Furrer (1998) | Consider the perturbed risk process in (1.17) with
a € (0,2) and B = —1 (this allows only jumps downwards), then the probability of

ruin Y satisfies

n=0

where FL is the ladder-height distribution

F)%(x):-E—EX—]/Om [1— Fx(s)ds, x>0, (1.19)
and
1 ( 0/7] (a=1)n
Qz)=1 ZI‘(l—I—(oc—l )a: : z>0. (1.20)

This theorem is a generalization of the convolution formula given by Dufresne and

Gerber (1991) since it includes, as a particular case, the risk process (1.14).
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This result relies on the fact that 8 was set to —1 to avoid upwards jumps. This
restriction makes the process (1.17) a spectrally negative Lévy process for which
passage times have nicer expressions.

Furrer’s results are derived from the following theorem in Zolotarev (1964)

Theorem 1.6 Let Y be an a-stable Lévy process with no-positive jumps and v =
E[Y(1)] > 0. Define ¢(z) = P[igg {Y(t) < —z}|. Then 1 is implicitly determined by

the characteristic exponent ¥ of Y in the relation

* s .8
5/0 e **Y(x)dr =1 6 §>0.

The function ¥ is the exponent appearing in the characteristic function of ¥ and it
will be formally defined later on.

If we translate this theorem into a ruin problem context, the Lévy process Y
represents the perturbed aggregate claim and the premium components in (1.17), i.e.

N()
Y(t) = Xi—nZa(t)—ct, t20.
=1

Then the function ¥(z) is the ruin probability for initial surplus z. One can solve
this equation for ¢ and obtain (1.18).

The convolution formulas (1.16) and (1.18) for the risk model perturbed by a
diffusion and an a-stable Lévy motion are linked to a ladder-height decomposition
that is common to Lévy processes, in particular to spectrally negative Lévy processes

[see Yang and Zhang (2001)).

1.5 Ladder Height Distributions

In the classical model (1.1) the ruin probability can be expressed in terms of the
so-called ladder height distribution. This result, as seen in the previous sections,
has been extended to models perturbed by diffusions or by a-stable processes. Here,
we give a brief account of ruin probabilities and ladder heights distributions [see

Asmussen (2000) for a thorough account on ruin probabilities.
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We define the classical claim surplus process as
N(t)
YO =u-U®t)=> Xi—ct, t>0, (1.21)
i=1

(Y(0) = 0) where U is the risk process in (1.1) with initial reserve u. Then, consider
the time to ruin 7(u) = inf{t > 0 | T(¢) > u} in the particular case u = 0. We
write 7. = 7(0). Then we call ladder height the random variable Y(7;). The term
ladder height comes from the ladder-like structure of the process of relative maxima
[see Figure 1.1]. Let us define the ladder epochs 77" = inf{t > 77|T; > Ton}, for
n=201,2,... and 732 = 7,. The ladder epochs {Tﬁ}nEN are the moments at which

the claim surplus process T attains a new maximum.

Figure 1.1: The Surplus Process and the Ladder Heights

M(t)

YA b o e e e T

() b — - — — — _]\

In Figure 1.1 we have depicted the claim surplus and drawn the ladder steps,

the first step of the ladder is precisely Y(7y), the second ladder point is T(71) and
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consequently the second ladder step is T(73) — Y (7). The process of relative maxima

M is the total height of the ladder given by the sum

N(®)

M) =Y [T -1, t>0.

n=1

Since this is a telescopic sum it can be written as

M(t) =sup {T(r})} ,

n=0

which is the maximal aggregate loss.
It is known [see for instance Rolski et al. (1998) or Asmussen (2000)] that the
ruin probability
N()
P(u) =P{inf [t>0]u+ct—Y X;<0| <ocop, u>0,

i=1

satisfies
P(u) = P{M(c0) > u}, u>0.

Moreover M(oo) is a compound geometric random variable [Bowers et al. (1986),
Kalashnikov (1997) or Asmussen (2000)] and its distribution is given by the so-called

Beekman’s convolution formula

1 —p(u) = —%i(—b)n Fg ™ (u),

or

= _ﬁ_e S_o; (1 - 9) — P (w) (1.22)

where 6 = ¢(Ap) ™' — 1 is the safety loading factor and F¥(z) = p=* [ (1 — Fx(y))dy
is the distribution of the ladder heights of the claims size distribution F. FZ is the
so-called ladder height distribution, also known as the equilibrium distribution or the

integrated tail distribution.
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This implies that the ultimate ruin probability 1 is the tail of the distribution of
a compound geometric random variable M(oo) that can be written as a sum of the

form
M(oo0) = ZLZ' ? (1.23)

where M is a geometric random variable with parameter ¢ and {L;},_,, areii.d.ran-
dom variables with distribution F'Z. M and L; are independent where {Li}izy o are
the ladder heights of (1.21). This convolution series and its interpretation as a com-
pound geometric distribution can be found, for instance, in Kendall (1957).

In renewal theory, the equation in (1.22) is known to be the solution of the fol-

lowing defective renewal equation [see De Vylder (1996) and Grandell (1991)]

1— Fg(u) 1 v .
—_ > ) )
1+6 +1+5/0 PY(u—y)dFx(y) , uz0 (1.24)

In turn, in the literature of integral equations, (1.24) is classified as a Volterra integral

¥(u) =

equation and its solution can be expressed as an infinite series, called a Neumann
series, of the form (1.22) [see Pipkin (1991) for instance].

The distribution of the ladder height in the presence of a perturbation has been
studied when the perturbing process is a Brownian motion [Dufresne and Gerber
(1991)], when it is an a-stable distribution [Furrer (1998)] and when it is a spectrally
negative Lévy process [Yang and Zhang (2001)]. In Prabhu (1998) we find a more
general version of this result that is valid for increasing Lévy processes. Asmussen and
Schmidt (1995) and Schmidli (2001) present a more general result for a risk process
described by an ergodic stationary marked point process. Wang (2001) studies a
perturbed model with return on investments. We will discuss in more detail some of

these generalizations.

1.5.1 Maximal Aggregate Loss in the Presence of a Diffusion

In the presence of a perturbation we define the claim surplus process as

N(t)
TH)=uw—-Ut)=> Xi—ct-W(), >0, (1.25)
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(T(0) = 0) where U is the perturbed risk process in (1.14) with initial reserve w.
Dufresne and Gerber (1991) find that, just as in the classical case, the non-ruin
probability 1 — ¢ satisfies
1—9u) =P{L < u},
where L = I?fgi{zi]i(f) X;—ct—W(t)} is the maximal aggregate loss. They show that
the convolution formula (1.16) is the tail of the distribution of the maximal aggregate

loss L and is given by

PL<u} =Y gl — @G« FE™ W), w0,

n=0

where ¢ =1 — i\f, (G is an exponential distribution with parameter { = %, V is the
variance of W) and F% is the so-called ladder distribution. G and F% are independent

and, in this case, are given by
Glz)=1—¢e"*, z>0,

where

and

Jo L = Fx(s)]ds
fooo [1— Fx(z)]dz’

This implies that the ultimate ruin probability ) is the tail of the distribution of

Fi(z) = x>0. (1.26)

a compound geometric random variable L, i.e.
P(u) =P(L >u), uz0,

where the random variable L is sum of the form

M
L=1P+3 [LE” + LEZ)] , (1.27)
i=1
where M is a geometric random variable with parameter g, {Lgl)} are i.i.d. ran-
i=0,1,...

yoon
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distribution F%. M, Lgl) and LZ@) are independent. {LZ(»I)} are the parts of the

i=0,1,...

ladder heights due to the perturbation in (1.25) and {L?)} are the parts of the
i=1,2,...
ladder heights due to a claim in (1.25).
Decompositions of the ruin probability as in (1.23) and (1.27) are valid for a wider

class of risk processes as discussed in Furrer (1998).

1.5.2 Maximal Aggregate Loss in the Presence of an a-stable
Perturbation

Furrer (1998) considers a model where the perturbation is an a-stable Lévy process.
For this new perturbed model Furrer provides the convolution formula (1.18) that
generalizes (1.16). However he does not show that the functions F'¥ and @, in (1.18),
are indeed the ladder heights in a decomposition similar to (1.23) and (1.27). Schmidli
(2001) works with the perturbed process in the context of an ergodic stationary
marked point process and shows that the ruin probability for the perturbed model
of Furrer (1998) accepts a decomposition similar to (1.23) and (1.27). That is, the
functions F¥ and Q in (1.18) are the distributions functions of the ladder heights due
to the perturbation and to the claims process respectively.

We have that the ultimate ruin probability ¢ for the perturbed model of Furrer

(1998) is the tail of the distribution of a compound geometric random variable L, i.e.
Y(u) =P(L > u), u=0,
where the random variable L is sum of the form
M
L=r§+ 3 [+ 1] (1.28)
i=1
where M is a geometric random variable with parameter ¢ = 1 — i\cﬁ, {Lgl)}' o
are i.i.d. random variables with distribution @} and {LZ@)} ,  are ii.d. random
i=1,2,..
variables with distribution FZ. Recall that the functions F% and @Q are given by

(1.19) and (1.20). These are generalizations of the functions in decomposition (1.27).
We can see that the part of the ladder height due to a claim (L(? values) have the same
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distribution F'§¢ regardless of the type of perturbation. Notice that the distribution
Q [see (1.20)] of the part of the ladder height due to the perturbation (L(*)) reduces
to an exponential in the case a = 2, which agrees with the result in Dufresne and

Gerber (1991).

1.5.3 Maximal Aggregate Loss for the Gamma Risk Process

The gamma process of Dufresne, Gerber and Shiu (1991) exhibits the counterintuitive
property of having an infinite number of small jumps in any interval, in spite of which,
it keeps many of the nice features of the compond Poisson process. For instance, the
non-ruin probability 1 — 1 (u) is the distribution function of the maximal aggregate
loss for the gamma process (1.12). The maximal aggregate loss is defined as L =
I?SOX{G(t) — ct}.

Recall the construction of Dufresne, Gerber and Shiu (1991), they define the

gamma process in terms of its Laplace transform (1.13)

E[e~*%®)] = exp {t/ooo [1—e] dQ(y)} : z2>0,

with —dQ(z) = ax~'e~*®dzx. Then, the distribution of L is still a compound geometric

and accepts the ladder height decomposition
M
L=> L, (1.29)
i=1

where M is a geometric random variable with parameter 1—Jlr§ and {L;},_,, are

i.1.d. random variables with distribution

_ o QW)dy
Jo ydQ(y)
Moreover, M and L; are independent.

We can see that decompositions like (1.23) and (1.27) are still valid for other

F(x) >0. (1.30)

processes. In Prabhu (1998) we find a more general version of this result that is valid
for increasing Lévy processes.
This decomposition will be seen to be common to a large class of Lévy processes.

In this thesis we generalize the gamma process to a generalized inverse Gaussian
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process. A generalized inverse Gaussian process family of processes contains the
gamma and the inverse Gaussian processes as particular cases. It is, thus, a natural
extension to the model of Dufresne, Gerber and Shiu (1991) and another example of
the models in Yang and Zhang (2001). The gamma risk process finds its motivation on
the decomposition (1.29). We show how, for a generalized inverse Gaussian process,
decomposition (1.29) still holds. We also express its ladder height distribution in
terms of the Lévy measure ) of the generalized inverse Gaussian processes. This

leads to an expression similar to (1.30).
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Chapter 2

Infinitely Divisible Distributions

and Lévy Processes

This chapter presents a review of the theory of Lévy processes. Definitions and
concepts used throughout the thesis are also discussed.

Although this review follows the modern presentation of Bertoin (1996), It6 (1969),
Sato (1999) and Loeve (1977), it is also interesting from the historical point of view,
to refer to the original work of Lévy (1954).

For the section on stochastic integrals we follow the construction of Métivier and

Pellaumail (1980).

2.1 Infinitely Divisible Distributions

Consider a r.v. X in a probability space (€2, B(R), ) and its characteristic function
given by

¢u(u) = E, [¢“*] = E, [cosuX] +iE, [sinuX] , ueER,
then we can state the following:

Definition 2.1 The law p is called infinitely divisible (ID) if for any integer n > 0,
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there exists a probability measure u, such that

$u(w) = [bp, (w)]" -

In other words, 1 can be expressed as the n'® convolution power of x4, and X can be

expressed as the sum
X(w):ZYQ(w), we,
i=1

where {Y}}i:l)m’n is a family of i.i.d. random variables having common law p,,. Notice
that the law u, does not have to be of the same family as p.

One can easily verify the following property of infinitely divisible distributions:

Theorem 2.1 The family of all infinitely divisible distributions is closed under linear

transformations, convolutions and limits.

There are two well-known distributions that are infinitely divisible: The Poisson
and the normal distribution. One can easily verify that their characteristic functions,
given respectively by

o?

dc(u) = exp {i,uu - 7u2} : peER,ceR” (2.1)

¢p(u) = exp{A(e”-1)}, AeRT, (22)

satisfy Definition 2.1.
Applying Theorem 2.1 to (2.1) and (2.2) produces a bigger class of ID distribution,

for example those characterized by

K
d(u) = exp {zmu — U;u2 + Z Ai (€ — 1)} .

i=1
This idea of expanding the family of ID distributions with the aid of Theorem 2.1

leads to the Lévy characterization theorem for infinitely divisible distributions.
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2.1.1 Lévy-Khintchine Characterization

The following result is due to Lévy and characterizes the family of ID distributions.

For a proof we refer to It6 (1969).
Theorem 2.2 Every ID distribution p can be written in the form
Pu(u) = e ¥ul) | ueR,

with
b? .
U, (u) = iau + —2—u2 + / [1—e™ + dual_y 1 (x)] v(de), (2.3)
R

where a € R, b* > 0 and v is a measure on Ry = R — {0} satisfying
/ (LA e2)u(dz) < oo |
Ro
The parameters a, b®> and v uniquely determine u. We say that our infinitely di-
visible distribution has a triplet of Lévy characteristics (or Lévy triplet for short)
la, b, v(dx)]. The measure v is called the Lévy measure and the ezponent U, is called
the characteristic exponent of the distribution .

If the distribution p has a finite mean then (2.3) can be alternatively written as
2

b :
U, (u) = ia*u + —2—u2 + / [1— €™ + iuz| v(dz), (2.4)
Ro
where the drift a* is the mean of the distribution [see Sato (1999)]. This is, if the
distribution g has a finite mean the Lévy-Khintchine characterization takes on a
simpler form where the mean of the distribution appears as the drift term. The new

Lévy triplet is [a*,0%, v(dz)] with a* = a + [\, 2v(dz).

Now we present some examples of ID distributions generated by Theorem 2.2.

2.1.2 Normal Distribution

We can see in (2.1) that the characteristic exponent of a normal distribution is given

by
02

\If(u):—é—u2—z'mu, ueR.

It is easily verified that this exponent is of the form (2.3) with @ = —m, ? > 0 and
v(A) =0, VA € B(Ry).
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2.1.3 Poisson Distribution

Consider the Dirac measure 6, : B(R) — [0, co] where
0o(A) = Liay (o) -
The characteristic exponent of a Poisson distribution
Tuw)=A(1-¢"), uveR,

is of the form (2.3) with a = b* = 0 and v(A) = A\d;(A).

2.1.4 Compound Poisson Distribution

The characteristic exponent of a compound Poisson distribution is given by

U(u) = /R (1— &™) Af(dz) |

where A is the parameter of the Poisson point process and f is the law of the jumps.
This characteristic exponent is also of the form (2.3) with a = [ }1 zAf(dz), ¥* =0
and v(dz) = \f(dz).

2.1.5 o-Stable Distributions

These distributions are obtained as limits of normalized sums of 1.i.d. random variables
[see Zolotarev (1986)]. Their density function does not exist in closed form, but its

characteristic exponent is given by
U(u) = cu|®[1 —ifsign(u) tan(an/2)] + imu , ae(0,1Hu(l,2).

For o = 1 we have the Cauchy distribution and for &« = 2 we have the normal
distribution.

This exponent is of the form (2.3) with a = m, > = 0 and v(dz) = ¢tz ldz if

ct—c”
ct—tc— -

z > 0 and v(dz) = ¢~ |z|7* 'dz if z < 0 where ¢ and ¢~ are such that 3 =
The process has no positive (negative) jumps when ¢ = 0 (¢~ = 0) or equivalently

B =—1(8=1). It is symmetric when § =0 (¢t = ¢7).
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The appeal of this family of distributions lies in the parameter a. It controls the
decay of the tail, going from the light-tailed Gaussian distribution to the heavy-tailed
Cauchy distribution. Its Poisson component accounts for sudden and drastic changes
in the, otherwise continuous, evolution of the system. These features render it a more

flexible model to work with.

2.1.6 Generalized Hyperbolic Distribution

This family was first introduced by Barndorff-Nielsen (1977). Its density is given by

fl@; A a,8,6,u) =
a(h, 0, 8, 8)[6° + (& = )N VD2 Ky (a/TH (5 — W7 exp Bz — )]
for z > 0, where
(a2 — p2)N2
Va2 K, (W&i-_ﬁ?) ’
is the normalizing constant and K, denotes the modified Bessel function of the third

kind with index A

a(A a,83,6) =

1

1 o0
Ky\(z) = 5/0 vt exp [—iz(y + y”l)] dy , z>0, (2.5)

The parameter o > 0 determines the shape, § with 0 < |8] < « the skewness and
i € R the location. § > 0 is a scaling parameter. Finally A € R defines subclasses, it
controls the heaviness of the tails. For A = 1 we have the hyperbolic distribution, for
A = —1/2 we have the normal inverse Gaussian, which is one of the two sub-classes
being closed under convolutions. The other subclass closed under convolution is the
variance-gamma distribution, obtained when § = 0.

The name of this family comes from the fact that, for A = 1, the logarithm of
the density gives an hyperbola, unlike the case of a normal distribution which gives a
parabola. This accounts for the slower decay of the tail with respect to the normal.
By changing the axis of the hyperbola we get positively or negatively skewed densities.

Its characteristic exponent is of the form (2.4) and is given by

U(u) = wE[GH] + /00 (€™ — 1 —juz) v(dz) , (2.6)

—O0
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where E[GH] is the mean of the density and the Lévy measure v is given in terms of

Bessel functions of the first and second kind as follows:

|| m2y[J5(6v29)+ N5 (6v/2y)]

4
9= <f0 exp[—|z]|\/ 2y+o?] d + )\e—a]a:l) dz , if A=0 ,

v(dz) =

2] (6v/35)+ N, (5/20)]

i ( s Wzy[fxp[ el y/2y+a?] dy) i 4 <o

\

J and N are modified Bessel functions. We refer to Abramowitz and Stegun (1970)
for further discussion on Bessel functions.

Notice that the Gaussian coefficient b? is zero. Another interesting feature of
this family is that a random variable X having a generalized hyperbolic distribution
can be written as a mean-variance mixture of a normal distribution. That is, X
is conditionally distributed as a normal N(u + (0% 6%) where, in turn, ¢® has a

generalized inverse Gaussian distribution.

2.1.7 Generalized Inverse Gaussian Distribution

This family is a generalization of the inverse Gaussian distribution and has been stud-
ied extensively in Jgrgensen (1982). Barndorff-Nielsen and Halgreen (1977) showed
that this family is infinitely divisible. Its density function is given by

foig(z) = 2(;/{37) ~Lexp {—%(6233_1 + 7233)} , x>0,

where K, is the modified Bessel function of the third kind with index A defined in
(2.5). The parameter domain of the GIG distribution is

6>0, <0, if A<O0,
0>0, >0, if A=0,
060<0, v>0, if A>0.

If A= —1/2 it reduces to the inverse Gaussian distribution.
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The generalized inverse Gaussian distribution has a characteristic exponent of the

form (2.3) with Lévy measure
1 )
V(d:}j) = ;:. [52/ e_mtg,\(2(52t)dt + maX{O, )\}:l e—'y2x/2d$ ’
0

where .
06) = { Sy AW+ MG} im0

J and N are modified Bessel functions.

2.2 Lévy Processes

Following Karatzas and Shreve (1991) and Revuz and Yor (1994), consider a filtered
probability space (Q, F, (F3) P). We write X = {X(t)},5, to denote a R-valued

stochastic process on Q. For a fixed sample point w € €, the mapping t — X, (w);

teRy )

t > 0 is the sample path, or trajectory (realization) of the process X associated with

w. Now we can define some central concepts to this work.

Definition 2.2 We say that a process X is cadlag if for every w € Q the sample path
Xi(w) is right continuous and has a left limit in every t > 0 (cdadlag: from french

continue a droite et admet une limite & gauche).

Definition 2.3 We say a process X is an (F;)-martingale if
i) X is Fi-measurable for allt > 0.
i) Ep(X:) < oo for allt > 0.
ii) V0 < s < t we have that B[ X|F;] = X, .

Definition 2.4 Let 0 =ty <t; < -+ < t,, =T be a partition of [0,t] then we define

the p-variation of a process X over [0,t] by

VP = lim M |X,, - X, P
t;<t

Atj —0
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If the limit Vt(l) < oo for all ¢ > 0 we say that the process X is of finite variation. The
limit V;(z) can be proven to exist for all square integrable martingales. The limiting
process is denoted by < X >; and it is the only adapted and increasing process for

which < X >¢= 0 and X?— < X >, is a martingale.

Definition 2.5 A process X is a local martingale if there exists a strictly increasing
sequence of Fi-stopping times {T, }nso such that the stopped processes X' for all

n > 0 are uniformly integrable martingales.

Any local martingale can be decomposed in its continuous and a purely discontinuous

components as stated in the following theorem [Jacod and Shiryaev (1987)]
Theorem 2.3 Any local martingale X admits a unique decomposition
X =Xy+ X+ X%,

where X§ = X§ = 0, X° is a continuous local martingale and X% is a purely dis-
continuous local martingale. X° is called the continuous part of X and X¢ its purely

discontinuous part.
We also need to define the concept of semimartingale.

Definition 2.6 A semimartingale is an adapted process X that can be decomposed

as
Xt:X0+Mt+At, t>0,

where M is a local martingale and A is a process of finite variation and with Ay = 0.

The continuous part of a semimartingale X¢ is the continuos part of the local mar-
tingale M in Definition 2.6.

The concept of quadratic variation needs to be extended for semimartingales.

Definition 2.7 The guadratic variation for a semimartingale X s defined by

[X]; =< X° >, + }:(AXS)2 ,

s<t

where X is the continous part of X and AX, = X, — X,_.

39



Note that if X is continuous then [X]; =< X >¢ and if X is purely discontinuous
then [X]; = 37, (AX,)?.

Now, we are in a position to state the key definition of this section.

Definition 2.8 A cadlag, adapted process X with Xq = 0 is called a Lévy process
(or process with stationary, independent increments) if the distribution of X; — X,

depends only on t — s and if X; — X, is independent of Fs for 0 < s < t.

We state in the form of a Lemma two important properties of Lévy processes.
Lemma 2.1
i) Lévy processes are semimartingales.

i) If X is a Lévy process then X; follows an ID law denoted f; and its characteristic
exponent Wy(u) = In [ € fi(dy) is such that Uy(u) = t¥y(u), for u € R.

From 4¢) in Lemma 2.1 we can see that the law of a Lévy process is defined by
the characteristic exponent of the ID distribution of the process at time one. We call
¥, the characteristic exponent of the Lévy process X.

The main result of this section is the converse of 43) in Lemma 2.1 and is stated

in the following theorem [see Bertoin (1996)].

Theorem 2.4 Consider a function ¥ as in (2.3)
b? :
U(u) = iau + —2—u2 + / [1— €™ +iuzly_11)y(2)] v(dz) . (2.7)
R
Then there exists a unique probability measure P on F under which X is a Lévy

process with characteristic exponent .

The characteristic exponent ¥ uniquely characterizes the distribution of the Lévy
process in terms of the parameters (a,b? v). These parameters are refered to as
the generating triplet of the Lévy process. The characterization (2.7) is the Lévy-
Khintchine representation of a Lévy process.

It is useful to define the Laplace exponent ¥y. In an analogous way, it is the

exponent appearing on the exponent of the Laplace transform of the law f;. We
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can define it in terms of the characteristic exponent as follows ¥(u) = Vp(—iu).
—'u.X(t)]

Consequently, the Laplace transform of the process X is of the form Ele
et for u > 0.

Notice that if ¥ > 0 in (2.7) there is a continuous Gaussian part in the Lévy
process X, on the other hand, if #* = 0 then X is a pure jump process. Following
Sato (1999) we can classify the class of pure jump Lévy processes into three types

according to the behavior of its Lévy measure v:
i) Type A: If fRo v(dz) < oo then the process is a compound Poisson process.

i) Type B: If f; v(dx) = oo and [ (1A |z|)v(dz) < oo, then the process has an

infinite number of small jumps (infinite activity) but is of finite variation.

iii) Type C: If fp v(dz) = oo and f; (1 A |z[)v(dz) = oo, the process has infinite

activity and is of unbounded variation.

The Lévy measure v governs the occurrence and the size of the jumps of the
process X. The jumps of size in A € R (provided the closure A does not contain zero)
form a compound Poisson process with rate [, v(dz) and jump density %.

The following corollary to Theorem 2.4 will play an important role in our work.

Corollary 2.1 A Lévy process X can be uniquely expressed as the sum of three in-

dependent Lévy processes
Xw) = XV W) + X2 (W) + XD (w), weQ, t>0,

where XY is a linear transform of a Brownian motion with drift, X® is a compound
Poisson process having jumps of size at least one and X©) is a pure-jump martingale,

having jumps of size less than one.

2.2.1 Lévy Processes with Finite First Moment

A subclass of interest is that class whose members are Lévy processes with finite first

moment. For this subclass, we can rewrite the Lévy-Khintchine characterization in
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a simpler form. If the Lévy process X is such that E(X;) < oo then (2.7) can be
alternatively written as
b? '

U(u) = ia"u + EuQ + /R [1— €™ + juz] v(dz) , (2.8)
where the drift a* is the mean of the process [see Sato (1999)]. This is, if the process
has a finite mean the Lévy-Khintchine characterization takes on a simpler form where
the mean of the process appears as the drift term. This form (2.8) might seem
more natural for a risk model. The new Lévy triplet is [a*,b%, v(dz)] with a* =
0+ [iery 2V(dz) = E(X1).

Processes of this type are known as special semimartingales and satisfy Ep[| X:|] <
oo, for any t > 0, or equivalently Ep[|X||] < oo, since the characteristic exponent at
time one defines the distribution for the whole process.

For special semimartingales we have the following decomposition

Lemma 2.2 If X is a special semimartingale it can be decomposed as the sum
Xt:UBt+Zt+O!t, t>0,

where B is a standard Brownian motion and Z a purely discontinuous martingale

independent of B.

This class is easier to work with due to the simplification in the decomposition.
Besides the fact that the assumption of a finite first moment is a rational one, we
would like to have a heavy-tailed model, but not as heavy-tailed as not to allow for
the existence of the first moment. This excludes the a-stable processes with o < 1
but still includes most of the Lévy processes we are interested in. Especially the

generalized hyperbolic Lévy motion, which is the subject of the next section.

2.2.2 Generalized Hyperbolic Lévy Processes

Since the generalized hyperbolic distribution belongs to the ID family of distributions
we can define a generalized hyperbolic Lévy motion. This processes is characterized

by its Lévy representation (2.6).
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In the characteristic exponent we notice that the Gaussian coefficient b* is zero.
The hyperbolic Lévy motion is a pure-jump process. The Lévy measure v for the
generalized hyperbolic process is such that it has infinite mass in every neighborhood
of the origin. The behavior near zero of the Lévy measure v of a generalized hyperbolic

Lévy process has been proven to be [see Raible (2000)]:

op

5 M+1
+2|x|+—7r—x+o(a:),

2 e
.’El/(l‘)—w—}- 5

as © — 0. In consequence, the process X has an infinite number of small jumps in
every finite interval. In contrast to the continuous Brownian motion, the generalized
hyperbolic Lévy motion lies at the other side of the spectrum.

Another feature of generalized hyperbolic Lévy processes is that, unlike the Brown-
ian motion, their drift is a path property of the process. The Brownian motion carries
along its paths information regarding the variance but not the drift. Also in Raible
(2000) we find that, as n — oo,

1)

>
™

1

s<t

and
Xt — ZAXSH{(—oo,—l)U(l,oo)}(AXS) — ct , a.s. .

s<t
This is, the parameters § and p are path properties of a generalized hyperbolic Lévy
motion. In other words, we can recuperate these parameters from a sample path
of the process. In an asymptotic sense: § is the number of jumps larger than 1/n,
normalized by 7/n and p is the slope of the straight line that is left over after removing
all jumps larger than 1/n.

Despite its discontinuity at every point, these processes are mathematically trac-
table and have been used in finance to model stock prices. Their one-dimensional
distributions are generalized hyperbolic and so they have moments of all orders. Be-
sides, simulation and other numerical treatments are available for these processes.
Generalized hyperbolic Lévy motion is the limiting process of a sequence of a type

of compound Poisson processes. It suffices to notice that the Lévy measure v of the
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hyperbolic Lévy motion is not bounded and that it can be approximated by a se-
quence of bounded Lévy measures v, this is by Lévy measures of compound Poisson
processes.

Another interesting feature is that increments of size one have a generalized hyper-
bolic distribution, but in general none of the increments of length different from one
has a distribution from the same class within the large generalized hyperbolic family.
This fact comes from the form of the characteristic function and ) in Lemma 2.1.
The only two members of this family that are closed under convolutions are the nor-
mal inverse Gaussian and the variance-gamma processes. This property makes them
more natural models since all of their increments belong to the same class. For a
further discussion on these process and their applications we refer to Eberlein (2001),
Prause (1999) and Bibby and Sgrensen (2001).

Lévy processes form a large class of processes arising from ID distributions, in
the same way that Brownian motion does from the normal distribution. Many well-
known processes belong to this family, among others we find Brownian motion (the
only continuous Lévy process), compound Poisson and the a-stable processes. For
an overview of the basic theory of Lévy process we refer to Barndorfi-Nielsen (2001),
Sato (2001) and Schoutens (2003).

We will pay special attention to the normal inverse Gaussian Lévy process as a

risk model in Chapter 3.

2.3 Subordination

Let X be a Lévy process. The subclass of increasing Lévy process is that of subordi-

nators as we can see from the following definition in Sato (1999):

Definition 2.9 A Lévy process X = {X(t)},5, on R is a subordinator if it has in-
creasing sample functions a.s. or, equivalently, if it has one-dimensional distributions

with support on [0, 00).

Subordinators form a special subclass of Lévy processes that play an important role

in the theory. The following result found in Sato (1999) characterizes the subclass of
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subordinators:

Theorem 2.5 Let X = {X(t)},5, be a Lévy process with Lévy measure v. Then it
is a subordinator if and only if it is of type A or B, v is supported on [0,00) and
the drift p is non-negative. In this case its characteristic function is of the form

E[e2X (t)] = et (=%) ywhere U is the Laplace exponent given by
@) =t [ (1) ude), 20, (29)

We can see that for subordinators the Lévy-Khintchine representation (2.7) has a
simpler form since the centering function A is not present. This implies that subor-
dinators are of finite variation.

Alternatively, if we define the tail of the Lévy measure as II(z) = [°° v(dw), we
can rewrite (2.9) as [see Bertoin (1996))

\Iliz) =1 +/ e #(z)dx 2>0. (2.10)
0
Note that
a = lim -\?(—S) ,
8§00 S
and that

v(dz) = —dl(z) .

Subordination is a random time change of a stochastic process Y, through an
independent subordinator 7, yielding the new process Z(t) = Y[7(t)]. The tranfor-
mation from Y to Z is called subordination by 7 and Z is said to be subordinate to
Y.

Recall that f; are one-dimensional distributions of increments (of length ¢) and
therefore f; is the law of the increments of length one, which defines Lévy processes
according to Lemma 2.1. Then the following result form Sato (1999) characterizes a

process obtained via subordination.

Theorem 2.6 Let T be a subordinator with Lévy measure p, drift 8 and one-dimensional
law f1. Let'Y be a Lévy process on R with triplet (a,b,v) and one-dimensional law

g1- If T and Y are independent define the process
Z{t) =Y[r(1)] .
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Then Z is a Lévy process on R with generating triplet (a,2,V) where

7= pa pla /m 2g.(da)

7 = fo?,

o0
do) = plds)+ | gulda)olds).
Moreover, the characteristic function of the process Z is of the form
E[eizZ(t)] — g Z2€R,

where Uy is the Laplace exponent of the process T and gy is the characteristics function

of the law ¢;.

Subordination will play an important role when we define a general risk process driven
by a normal inverse Gaussian Lévy process. This is because of the connection between

generalized hyperbolic processes and subordination.

2.3.1 Generalized Hyperbolic Lévy Processes via Subordina-
tion

Generalized Hyperbolic Lévy processes can be introduced via subordination [see for
instance Prause (1999)]. Consider a generalized inverse Gaussian Lévy process 7.
Because of (2.7) we can see that there exists a one-to-one correspondance between
Lévy processes and infinitely divisible distributions. The generalized Inverse Gaussian
distribution is infinitely divisible and has support on the positive axis. Therefore we
can define an increasing Lévy process whose increments of length one are generalized
inverse Gaussian distributed. By definition, such a process is a subordinator and can
be used as a random time transformation.

Now let us consider a standard Brownian motion with drift B(¢) = gt + W(¢)
where W is a standard Brownian motion. Then we find the following result in Prause

(1999) which is a consequence of Theorem 2.6:
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Theorem 2.7 Let B be a standard Brownian motion with drift 8. Also let 7 be a
generalized inverse Gaussian Lévy process. By construction, its increments of length
one are generalized inverse Gaussian distributed. Let us denote by gig(-; 0,7, A) its
density function, where v? = o — 3%2. Then, we can define a process Y wvia subordi-
nation as follows Y (t) = ut + B[7(t)].

The resulting Lévy process Y is a generalized hyperbolic Lévy motion with para-

meters (A, a, 3,0, ).

This construction of generalized hyperbolic Lévy motions will be used when we define

a normal inverse Gaussian risk process.

2.4 Processes with Independent Increments

A larger class of processes that includes Lévy processes is that of processes with
independent increments. Consider the cadldag modification of an adapted process X.

Then we have the following definition

Definition 2.10 The process X with Xo = 0 is called a process with independent
increments if Xy — X, is independent of Fs for 0 < s < t.

Although these processes are non-stationary they still share a very important property

with the Lévy family of processes.

Lemma 2.3 (Jacod and Shiryaev (1987)) Let X be a process with independent
increments, then X is a semimartingale. Moreover X; has an infinitely divisible

distribution and its characteristic function is of the form
lu) = B[] = 0%

where \

b )
U, (u) = jau + éuQ + / [1 - e +iuzl_1,1)(2)] (dz) ,
R

with a; € R, b2 > 0 and v; is a measure on Ry = R — {0} satisfying

/ (LA JeP)m(dn) < oo,  V¢>0.
Ro

47



The parameters a;, b? and v; now are functions of ¢ and they are refered to as the
characteristics of the process. This is a generalization of the Lévy-Khintchine repre-
sentation for Lévy processes. The exponent ¥, is called the characteristic exponent

of the process X.

2.4.1 Non-Homogeneous Poisson Process

A non-homogeneous Poisson process is an example of a process with independent but

not stationary increments.

Definition 2.11 An adapted point process N is said to be an non-homogeneous

Poisson process (NPP) if
i) E(N;) < oo for eacht > 0,
ii) Ny — Ny is independent of Fs for all 0 < s < t,

iti) The function B(Ny) = A(t) is continuous. This function is called the integrated
intensity of N;.

Its characteristic exponent is
Ty(u) = (1 — ™) AR,

where A is the integrated intensity function of the non-homogeneous Poisson process

satisfying A(t) = fot Asds.

2.4.2 Compound Non-Homogeneous Poisson Process

The compound non-homogeneous Poisson process is defined in terms of a non-homogeneous
Poisson point process, just as the compound Poisson is derived from the homogeneous

Poisson point process.

It is another example of processes with independent but not stationary increments.

Its characteristic exponent is given by
Uy(u) = / (1 - &) A(t)m(dz)
Ro
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where A is the integrated intensity of the non-homogeneous Poisson process and
vy is the law of the jumps at £. A compound NPP will be a natural model when
incorporating periodicity in the risk model as we will see in Chapter 6.

In the next section we see how we can use this larger family of processes with

independent increments to model a stochastic system.

2.5 Stochastic Differential Equations

We start our discussion by motivating the construction of a stochastic integral [as in
(Oksendal (1992)].

Differential equations are widely used to model deterministic systems evolving
through time. A stochastic analog of a classical differential equation for a process X

is given by
dX;
dt

where W is a reasonable stochastic process. Since W may not have continuous paths

= a(t, Xt) + O'(t,Xt)Wt s t 2 0 ,

and in some cases W; may not even be Fi-measurable. There exists then the need to
replace W by a suitable stochastic process Z. In other words, we have to give a sense

to the limit of

o
—_

k-1

Xy, = Xo+ Y alty, X )At; + Y o(ty, X )AZ,

J=0

<
Il
o

as At; — 0 for some stochastic process Z. If this limit exists then we can apply the

usual integral notation and write
X =Xo+ /t a(s, Xs)ds + /ta(s,Xs)dZs : (2.11)
0 0
The standard convention is that by
dX: = a(t, Xy)dt + o(t, X:)dZ; , t>0,

it is meant that the stochastic process X satisfies (2.11).
The only Lévy process with continuous paths is the Brownian motion. Processes

satisfying (2.11) have been largely studied when Z is a Brownian motion [see Karatzas
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and Shreve (1991) and Revuz and Yor (1994)]. Extensions of the definition of the
integral (2.11) to a wider class of processes Z have been proposed in the last sixty
years. After It6 (1942) first introduced the notion of stochastic integral, the theory
has rapidly expanded. We find among others: Doob (1953) who pointed out the
martingale character of the stochastic integral, later Kunita and Watanabe (1967)
and Meyer (1976) who developed a unified martingale theory for stochastic integrals.
This last extension of Meyer (1976) is for processes Z which are semimartingales.
Later in Métivier and Pellaumail (1980) we find a stochastic integral defined for a
wider class of processes Z that includes the class of semimartingales, and it turns
out to be the widest class with respect to which the stochastic integral can be nicely
defined. For an account on the theory of stochastic integrals see Itd6 and Watanabe
(1976).

Since Lévy processes are semimartingales [¢) in Lemma 2.1] we will focus our
interest in the theory of integrals with respect to semimartingales. This choice is
not restrictive since Lévy processes include a wide class of stochastic processes. In
this case the integral in (2.11) is well defined and we can use a stochastic differential
equation to model random systems. For the existence of solutions to these equations

we refer to Ito and Watanabe (1976), Protter (1992) and Kallsen (1998).

2.5.1 A Chain Rule for Stochastic Integrals

We finish this section by presenting a generalization of the classical result by 1t6. The
key feature of the work of 1t6 (1942) does not lie particularly in the definition of the
stochastic integral as much as it does in the derivation of a complete differential and
integral calculus. The so-called 1t6 formula for Brownian motion is an analog to the
chain rule in classical calculus.

In ordinary calculus we learn that if X and f are two real-valued functions then
af (X) = f(X)dX ,
or more precisely

FX) — F(Xo) = /0 FX)AX,, 30,
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where the integral is defined in the Riemann-Stieltjes sense. It6 introduced a similar
rule for an integral with respect to Brownian motion. Here, we present an extension
for this result for a continuous martingale [see for instance Karatzas and Shreve

(1991)].

Theorem 2.8 Let f be a real-valued function in C% ([0,00)) and let M be a continuous

square integrable martingale then

t t
f(My) — f(My) = /0 f'(Mg)dM, + %/0 F'(Ms)d < X >, t

In what follows we present the approach taken in Meyer (1976) for integrals with

A\

0.

respect to semimartingales. We state the following

Theorem 2.9 Let X be a semimartingale and let f be a real-valued function in

C?([0,00)), then

F0X%) = / F(X,)dX, + 2 / F(x

Y (f(Xs) )~ F(X A, - %f"(Xs-xAXs)?) .

s<t

Notice that this formula has an extra term that accounts for the jumps of the possibly
discontinuous semimartingale. For a more detailed exposition on stochastic calculus
for semimartingales we refer to Métivier (1982) and He, Wang and Yan (1992).
Notice that It6’s theorem is often written in terms of the quadratic variation for
the continuous part of the semimartingale X. Recalling Definition 2.7 and the fact
that [X¢: =< X¢ >; we can rewrite the equation in Theorem 2.9 as follows [see

Elliott (1982)]
f(Xe) = f(Xo) = /f(X )dX, + = /f”(X )d < X¢ >,
+ Y (FX) = F(X-) = f1(X-)AX,)

s<t

We have then a complete theory on stochastic differential equations for Lévy
processes and for processes with independent increments that can be used for general
risk processes driven by a Lévy process. In the following chapters we explore different

aspects of Lévy modeling in risk theory.
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Chapter 3

On a Risk Model Driven by a

Normal Inverse (Gaussian Lévy

Process

3.1 Introduction

Lévy processes have been traditionally applied in risk theory in the form of Brownian
motion and a-stable Lévy motion. This approach can be extended to embrace more
general Lévy processes. We believe that other Lévy processes have features that make
them an object of interest in risk theory. Besides, the theory of stochastic calculus and
Lévy processes that has been developed in the last fifty years has not, until recently,
found its way in financial and insurance applications. For example applications of
the hyperbolic and other Lévy processes in finance have just begun to be explored
[see Schoutens (2003), Eberlein and Prause (2000) and references therein]. Unifying
approaches using stochastic differential equations and semimartingales to model risk
processes have just been initiated recently [Sgrensen (1996) for instance].

Our goal is to extend the use of Lévy processes and processes with independent
increments in risk theory. Implementing more general Lévy process in risk theory will

be of interest when bridging financial and insurance models. The link between the
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American option problem and the discounted penalty function has been discussed in
Gerber and Shiu (1998a, 1998b, 1999) and Avram, Chan and Usabel (2002). Discus-
sions on the duality of premium principle and financial risk measures can be found in
Artzner et al. (1999), Reesor (2001) and Wang (2000).

Throughout this thesis we work with a general Lévy risk process. Consider
Ulty=u+ct+2(t), t>0, (3.1)

where 7 is a Lévy process that would bridge previous models. If 7 is a compound
Poisson process we have the classical model. The diffusion and the a-stable model are
included in (3.1) by setting Z to be a Brownian or an «-stable motion respectively.
Model (3.1) can also include diffusions with jumps, gamma process and other more
general Lévy processes. We explore the model in (3.1) from different perspectives.
In the present chapter, for instance, we let Z be a normal inverse Gaussian which
shows some interesting features as a risk model. Chapter 4 generalizes previous work
of Dufresne, Gerber and Shiu (1991) by letting Z be a generalized inverse Gaussian
Lévy proces. In Chapter 5 we present an approximation to the classical risk process
using extreme value theory, we construct a generalized Pareto-stable Lévy process
and we use it as the aggregate claims process Z in (3.1). Finally, in Chapter 6 we
go beyond the scope of Lévy process and we let Z be a non-homogeneous compound
Poisson process which is a process with independent increments. This illustrates how
some of the appealing properties of Lévy process are common to a wider class of
processes.

In this chapter, we present a general risk model where the aggregate claims, as
well as the premium function, evolve by jumps. This is achieved by incorporating
a pure jump Lévy process into the model. This seeks to account for the discrete
nature of claims and asset prices. We use a Normal Inverse Gaussian (NIG) Lévy
process which allows us to incorporate aggregate claims and premium fluctuations in
the same process. We discuss important features of such a process and their relevance
to risk modeling. We also extend classical results on ruin probabilities to this model
[see Morales and Schoutens (2003) for a more general setting of the discussion of this

chapter].
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In recent years, a case has been made for the use of pure jump Lévy processes in
financial modeling, the purely discountinuous feature of such processes accounts for
the discrete nature of the real world. Diffusions with jumps had been long favored
when it came to asset price modeling, however such an approach is being aban-
doned in favor of pure-jump Lévy processes [see LeBlanc and Yor (1998) and Carr et
al. (2002)]. In such processes the diffusion component is not present and an infinite
number of small jumps drives its evolution. An important class of such processes is
the generalized hyperbolic family. Eberlein and Keller (1995), Eberlein (2001) and
Geman (2002) explore the potential of the generalized hyperbolic Lévy motion (GH)
in finance. Barndorff-Nielsen (1998) and Rydberg (1997) work with the normal in-
verse Gaussian (NIG) process, which is a member of the generalized hyperbolic family
with the property of being closed under convolutions. This property along with the
simple expressions of its Laplace transform and Lévy measure are the motivation to
our approach.

The NIG process is an extension of the Brownian motion that allows for finite
dimensional distributions with semi-heavy tails. In a way, it can be seen as a purely
discontinuous version of the latter. Within the wide spectrum of Lévy processes, it
lies somewhere between the Brownian motion and the a-stable process. Grandell
(1977) and Furrer, Michna and Weron (1997) work out risk models with a Brownian
motion and an a-stable process respectively. A model based on the NIG Lévy motion
allows for greater flexibility than the Brownian motion since its finite dimensional
distributions decay at a slower rate than a normal distribution. Although, the NIG
process does not account for heavy tails as the a-stable process does, it is mathemat-
ically tractable since it has analytical expressions for its one dimensional densities.
We refer to Eberlein and Prause (2000), Voit (2001) and references therein for a dis-
cussion on empirical evidence of non-normality of assets returns and the adequacy of
GH process as models in finance. Further research is needed to empirically asses the
performance of the NIG distribution, and other GH distributions, in the insurance
context.

NIG processes have recently become an object of interest in financial modeling

because they enjoy both diffusion-like and jump properties at the same time. In
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finance, as well as in insurance, this has been achieved by adding extra components
into the model. In finance, large fluctuations are incorporated via a jump process and
in insurance small fluctuations are incorporated via a diffusion. NIG processes, and
generalized hyperbolic processes in general, account for both types of structures.

Another interesting feature of NIG processes is their respresentation as a time-
changed Brownian motion. Generalized hyperbolic Lévy processes, and NIG processes
in particular, can be seen as a Brownian motion running in business time instead of
calendar time. Such a business time can be understood as an alternative time unit, as
reckoned by a different clock, which evolves according to a random process. In finance,
such a clock can be the traded volume or the number of trades of a particular asset.
In the insurance context it could be the aggregate claims process of our portfolio.
Empirical studies [see Chaubey, Garrido and Trudeau (1998)] indicate that the inverse
Gaussian distribution provides a good fit for aggregate claims. It turns out that an
inverse Gaussian business time leads naturally to a NIG risk process.

We work with a general risk model along the lines of Sgrensen (1996),
Ult)=u+ct+ Z(t)—S(t), t>0, (3.2)

where u is the initial reserve, c is the constant loaded premium, Z is a pure jump Lévy
process representing fluctuations in the risk premium, and S is the aggregate claims
process. The fact that Z evolves only by jumps captures the fact that changes in the
premium rate are of discrete nature. As for the loaded premium ¢, it is natural to
define it as ¢ = (1+0)E(Z —S), since it has to be greater than all random fluctuations
to meet the net profit condition.

A very convenient choice for the processes Z and S should be such that Z — S is
a NIG Lévy process. This would lead to simple expressions for the ruin probabilities
just as in the diffusion model of Grandell (1977).

In Section 3.2 we present a brief introduction to NIG distributions and Lévy
processes, Section 3.3 represents the main body of our discussion where we incorporate
appealing features of NIG processes into a general risk model. Section 3.4 discusses
the NIG risk model as a time-changed diffusion model. Finally, Section 3.5 deals with

a simulation approximation of the model.
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3.2 Normal Inverse Gaussian Lévy Processes

The normal inverse Gaussian distribution is a member of the wider class of general-
ized hyperbolic distributions. This larger family was introduced in Barndorff-Nielsen
and Halgreen (1977). The NIG is one of the only two subclasses being closed un-
der convolutions (the other one being the variance-gamma distribution). Its density

function is given by

aée‘SV Kl (Oé\/(SZ + (CL‘ — ,u)z)
T ErG oA

where K, is the modified Bessel function of the third kind with index A given by

nig(x; o, B,0, ) = ePle—n) reR, (3.3)

Ky(z) = / uMTem 3 ) gy z>0,
0

and 2 = a? — 32. The parameter domain is § > 0 ,a > 0,02 > §% and u € R.

The mean and the variance are given respectively by

op

fa2 — 32

da
@)

Its Laplace transform is particularly simple:

EX = p+

VarX =

L(z) = e7#H0=7) 60—z <a, (3.4)

where 72 = o? — (8 — 2)2.

From the form of the Laplace transform (3.4), we can see that the NIG distribution
is closed under convolutions. If X; and X5 are two independent random variables with
NIG densities nig(z; o, 8, 81, p1) and nig(z; o, 3, 2, 2) respectively, then X+ X, has
density nig(z; a, 8, 61 + Oz, u1 + pa).

The NIG distribution was originally constructed in Barndorff-Nielsen (1977) as a
normal variance-mean mixture where the mixing distribution is an inverse Gaussian.
That is, if X is a NIG distributed random variable then, the conditional distribution
given W = w is N(p + fw, w) where W is inverse Gaussian distributed IG(8,y) [see

56



Jorgensen (1982) for a reference on inverse Gaussian distributions]. This gives a
simple way of simulating NIG r.v.’s.
Barndorff-Nielsen and Halgreen (1977) showed that the generalized hyperbolic

family is infinitely divisible and its Laplace transform is of the form

L(z) = e¥® | z€R, (3.5)
with
U(z) =az+ / [€** — 1 — zz|v(dzx) , z€eR, (3.6)
Ro

where ¢ € R is the mean of the distribution and v is a positive measure on Ry =
R — {0} satisfying
/ (LA |zP) v(dz) < oo .

Ro

The exponent (3.6) corresponds to the Laplace exponent of an infinitely divisible
distribution with finite mean [see equation (2.4)]. The measure v is called the Lévy
measure. The parameters a and v uniquely determine any infinitely divisible distri-
bution. Notice that the Gaussian coeflicient is zero.

Because of the infinite divisibility of NIG distributions, we can construct a NIG
Lévy process. Recall that this class of processes is in one-to-one correspondence with
the class of infinitely divisible distributions. Every infinitely divisible distribution
generates a Lévy process and the increments of every Lévy process are infinitely
divisible distributed. We refer to Bertoin (1996) or Sato (1999) for comprehensive
discussions on Lévy processes and to Barndorff-Nielsen, Mikosh and Resnick (2001)
for recent applications.

Let (2, F, (Ft)t>0, P) be a filtered probability space, then the NIG Lévy processes

can be defined as follows:

Definition 3.1 An adapted cadlig R-valued process X = {X(t)},5, with X(0) = 0
is a NIG Lévy process if X (t) has independent and stationary increments distributed

as nig(-; o, B, 8t, ut) and is continuous in probability.

Its Laplace transform function ¢¢(z) = E (e7*X®)) is of the form e™¥*) where ¥ is

the Laplace exponent (3.6) in the Lévy-Khintchine representation of the NIG distri-
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bution. The Lévy triplet for the NIG Lévy process is especially simple as stated in

the following alternative definition:

Definition 3.2 An adapted cadlig R-valued process X = {X(t)},5, with X(0) =0
is a NIG Lévy process if its Laplace transform is of the form Li(z) = ¥ where

U(z) is of the form (3.6) with a = p + %‘S and Lévy measure vp;, given by

Unig(dx) = Kl(oe\azl)eﬂ dz | zeR. (3.7)

We can see that since there is no Gaussian constant in (3.7), the NIG process is a
pure jump process plus a drift term. The drift term is nothing but the expected
value of X(1). In Figure 3.1 we can see different paths of NIG processes. Despite the

apparent continuity, these paths are composed by an infinite number of small jumps.

Figure 3.1: Simulated paths of a NIG Lévy processes for different values of
g

NiG Process (Beta=0) NIG Process (Beta>Q)

: M\WMWW ;:J v,

NIG Process (Beta<0)

E /L // \W W»
A

Time

n

Proces:

2

The Lévy measure governs the occurrence and the size of the jumps of the process
X. The jumps of size in A € R (provided that the closure A does not contain zero)

Vmg (dx)

form a compound Poisson process with rate [, vnig(dz) and jump density 777(017
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At this point we make some remarks about the Lévy measure of a NIG process
that are important to our risk model. First, notice that v, has infinite mass around
the origin. This implies that the NIG process is composed of an infinite number of
small jumps. This pure discontinuity will account for discrete changes in the constant
premium. Second, the jump size distribution has medium or exponentially decaying
tails, i.e. the jump size density behaves as C’|:c|”e_’\|“cl for £ — +oo and for some real
constants C > 0, p and A. This follows directly from the form of its Lévy measure
(3.7) and the well-known [see Abramowitz and Stegun (1970)] asymptotic relation for
the Bessel function K,

Ke(z) ~ \/gac_'%e‘z : as T — 00 . (3.8)

This would make a risk process driven by a NIG motion a good model for medium
tailed claims since the jump size distribution will account for claims over a certain
threshold.

Figure 3.1 also illustrates the role played by the parameter §in (3.7). By changing
the sign of B we control the weight of positive versus negative jumps, this is because
the only element in (3.7) affected by its sign is the exponential term. A parameter § =
0 implies a symmetric NIG distribution and hence an equilibrium between positive and
negative jumps in the corresponding process. A value of 8 < 0 would induce larger
and more frequent positive jumps. And not only that, the disparity between positive
and negative jumps grows exponentially, i.e. positive jumps would be exponentially
larger and more frequent than negative ones, which would be exponentially smaller
and less frequent. The opposite applies for 8 > 0.

This will be an important feature of our model; thanks to the role of 8 we can
incorporate aggregate claims and premium perturbations in the same process. By
changing 0 we can obtain larger jumps downwards that represent the claims along
with small jumps accounting for premium fluctuations. We are interested in paths
like the one shown for g < 0.

Also notice in Figure 3.1 that other possible paths can be obtained. We can see
why this process is appealing in finance modeling, it incorporates fine diffusion-like

and jump-driven structures into one single process.
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Finally, we discuss briefly a second way to construct a NIG process that might
give a new interesting perspective to our model. A NIG Lévy process can also be
constructed via subordination. Consider a standard Brownian motion W. If we add

a drift term 8 we have the new Brownian motion Y
Yi=0t+ W, t>0. (39)

Now, recall that the inverse Gaussian distribution IG(+; «, d) is infinitely divisible and
therefore we can define an inverse Gaussian Lévy process 7. Since the increments of 7
are inverse Gaussian distributed and can only be positive, the process 7 is increasing.
Such processes are called subordinators and can be interpreted as a random time

transform. If we apply this random transformation to (3.9) we get a new process Y
Y, =p07(t) + Wey s t>0. (3.10)

The transformed process (3.10) is a NIG Lévy process with finite dimensional distri-
bution nig(-; o, B, 6t, u = 0). If we add a drift term pt+Y; we introduce the parameter
L.

This construction allows us to see a NIG as a transformed Brownian motion, where
the subordinator 7 represents a business time reflecting a varying market activity.
In terms of our model this means that the NIG risk model is the diffusion model
of Grandell (1977) distorted by a randomly changing business time. We elaborate

further on this in Section 3.4.

3.3 A Purely Discontinuous Risk Model
We consider a general risk model as in (3.2)
Ult)=u+ct+ Z(t) — S(t), t>0. (3.11)

We would like the aggregate claims process S to be a compound Poisson process
with medium tailed claim size distribution. We would also like the perturbation Z

to account for ups and downs in the premium, this is usually achieved by means of
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a diffusion [Dufresne and Gerber (1991)} or of an a-stable process [Furrer (1998)].
Instead we aim somewhere in between these two approaches, we would like Z to
account for more drastical fluctuations than those allowed by a diffusion but not as
dramatic as those implied by an a-stable perturbation.

We can achieve all of these desired properties by letting Z and S be pure jump
Lévy processes defined by appropriate Lévy measures vz and vg. For instance, if
Z — S forms a NIG Lévy process then vg should be the Lévy measure of a compound
Poisson process with medium tailed jump distribution of the form C|z|=e=*%. By
contrast, vz would represent small positive and negative discrete fluctuations. This

reasoning leads to the following characteristic exponent for the process U — u:

U(z) = <c+ —ﬂ—(S) z

v
(3.12)
+ /jo [ — 1 — zzl(_13)(z)] vz(dz) + /_1 (€*® — 1) vs(dz)
where ) -
vs(de) = vz(dz) = %Kl(alﬂ)eﬁ’”daz : z€R, f<0. (3.13)

The condition on J is needed to assure larger negative jumps.

The loaded premium c¢ plays the role of the parameter p and it has to satisfy
c > —%é to meet the net profit condition. The loaded premium is then of the form
c=(1 —I—Q):,iL‘s for some 6 > 0.

In Figure 3.2 we can see a NIG risk process. Notice the diffusion-like structure
perturbed by large negative jumps. This would allow us to have the same features as
the model of Dufresne and Gerber (1991) in one single object instead of considering
two different processes.

The jump sizes, A X, of a NIG Lévy process X with characteristic exponent (3.12),
are such that [see Raible (2000)}, as n — oo

i T (BX) —

s<t

s
T 3
and

Xt —_ Z AXS]I{(—OO,—l)U(—l-,oo)}(AXS) —> ct s a.s. .

s<t
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Figure 3.2: A simulated path of a NIG risk process. § = —4, § = 20, ¢ = 30
and o = /13
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That is, the process carries along its path some information from the distribution.
The parameters § and p are imprinted in the paths of the NIG process. We can
draw some analogies with the classical risk model: in a way ¢ plays the role of the
claim rate A, it is the limit of the normalized number of jumps larger than % As for
the drift, ¢ is the constant premium collected that is visible if we disregard all large
fluctuations and claims.

The martingale approach of Schmidli (1995) and Sgrensen (1996) can be applied
to a NIG risk model as in (3.11) to work out expressions for the ruin probability. We
refer to Grandell (1991) for a review of martingale methods in risk theory.

From the general theory of processes with independent increments [see Jacod and
Shiryaev (1987)] we have that, if X is a Lévy process with Laplace exponent W, then
the process

. e—rX(t)
M(t):_(gt—\ll(;')_’ ’I"GR, (314)
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is a local martingale for r within the right domain. The finite dimensional distribu-
tions of M" are the Esscher transforms of the finite dimensional distributions of X.
[The Esscher transform has been extensively used throughout the actuarial literature,
for instance Gerber and Shiu (1994a, 1994b, 1996) and references therein]. We can

define a new measure Q in the following way:

Definition 3.3 Let X = {X(t)},5, be a Lévy process on some filtered probability
space (Q, F,(Fi)iz0,P). We define an Esscher transform as any change of P to a
locally equivalent measure Q with a density process M(t) = 92|, of the form (3.14)

for some r in the domain of definition of the Laplace exponent V.

In other words, this means that, for any A € F;, the new measure Q is given by
Qi [A] = Ep[M" ()1 1ay] -
Now, recall that the ruin probability is defined as
Y(u) =P{r < oo} , uz0, (3.15)

where 7 = inf [t > 0: U(t) < 0] is the first time the process falls below zero. Since
U —u is a Lévy process we can write its associated ruin probability 1 in terms of the

new measure as follows:

1

'Q[)(u) = EP[I[{T<00}] = EQ [Wﬂ{r<m}

j| _ EQ[e{r(U('r)—u)+T\II(T)}I[{T<OO}] .

If we can find a value r = R in the domain of definition of the ¥ such that ¥(R) =0

and 7 < oo a.s. we could simply write
Y(u) = Egle™ e ™, wu>0. (3.16)

This approach to the ruin problem can be found in Asmussen (1987) and he has
attributed the idea to von Bahr (1974) and Siegmund (1975).

Equation (3.16) defines a straight forward simulation scheme to compute the ruin
probability for our model. A first concern is how an Esscher transformation affects

the NIG Lévy process. It turns out that a NIG Lévy process stays a NIG process
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under an Esscher transform. In fact, all Lévy processes are transformed into Lévy
processes under an Esscher change of measure [see Jacod and Shiryaev (1987), Raible
(2000) or Morales and Schoutens (2003)]. Yong Yao, then a graduate student at Iowa
University was the first to mention this property of Lévy processes in the actuarial
literature [see discussion of Gerber and Shiu (1994a) in page 168 and appendix in
Gerber and Shiu (1994b)]. For the NIG process the parameter 3 plays the role of the

Esscher parameter r as stated in the following Lemma:

Lemma 3.1 Let X = {X(t)},5, be a NIG Lévy process on some filtered probability
space (0, F, (Ft)is0,P). And also let Q be an equivalent probability measure defined
through the Esscher density process of Definition 3.3. Then, the process X under Q

is again a NIG Lévy process with parameter [3 =0-r.

Proof. An Esscher transformation defined through the density process (3.14) as in
Definition 3.3 implies an Esscher transformation in the one-dimensional distributions.
Let nig(dzx) be the density function of X (1) and L its Laplace transform. The Esscher
transform nig,(dz) of X (1) is

e " nig(dx)

m’gr(dx):—f(—r , IB—7r <a.
Clearly, the Laplace transform of nig,(dz) is
L(z+r)
L(z) = =211 — .
(2) L0 16— (r+2)| <«

Since X (1) is a NIG random variable, L is the Laplace transform given in (3.4) and

we can write
L, (z) = exp{¥(z + 1) — ¥(r)} ,

where ¥ is the Laplace exponent in (3.4). This exponent becomes

Uz +r) = W) = —plzr)+6{y—Va?—[F- (2 + )P}

=8 {y- /TP

= —pz+6 [V B—P -V (B -r) — P ,
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which is the Laplace exponent of a NIG random variable with parameters (o, g =
B—=rd,pu). m

Now, since a NIG process stays a NIG under an Esscher change of measure with
the parameter § acting exactly as the Esscher parameter r, we can write the ruin

probability ¢ as in (3.16) as stated in the following result:

Proposition 3.1 Let U be a risk reserve process driven by a NIG Lévy process as in

(8.11). Its associated ultimate ruin probability v satisfies:

i) If—%‘sgcéa%then

¥(u) = Eqle™ e ™, w20,

: 2 £ . . .
for R = éf—z-%‘szl and where Q is an equivalent measure induced by an Esscher
5

transform with parameter R.

it) If ¢ > %}5 then

*
—r*y
€

w<u)<E{ uw=0),

ple— VT < 00] ’

for some r* in such that § — o < r* < a+ [, where P is the original measure.

Proof. i) We had already stated that, for | —r| < o,
'Lﬁ(u) = EQ[C{T(U(T)_u)+T‘I’(T)}H{T<OO}] , U = 0. (317)

Now, if there exist a value r = R in the domain of definition of ¥ such that U(R) = 0
we would have half of the proof. Notice that, for a NIG distribution, the Laplace
exponent U is finite for all r in the domain of definition, including the endpoints.
This implies a restriction in the possible values for ¢ to insure that such a number R

exists. This can be seen if we solve the equation ¥(r) = 0, which implies the following

relation

er=0(y =), —a—=pf<r<a+p. (3.18)
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The function in the right-hand side takes the value d at both endpoints. If a positive
solution R is to exist, the line cr should intersect the curve 6(y — ) at a lower point
than §v. This is, ¢(a+f) < 6 which implies the upper bound for ¢ in the proposition.

Now, if we take derivatives we can see that the function V¥ is a convex function
and that ¥'(0) = —(c+ %é) Since we assume that ¢ + %5- > 0 to meet the net profit

condition, we have that a positive solution R would exist as long as —%‘5 <e< 2

atf’
Solving (3.18) yields R = %ﬁ—)ﬁy) which is only positive and well defined in the
§

specified range.
In order to complete the proof we have to show that, under Q, 7 < oo almost
surely. Since the process U — u is still a NIG Lévy process as stated in Lemma 3.1,

if we compute Eq[U(1) — u] we find

_ (ﬂ_R)(S _
EolU(1) —u] = c+ T V'(R) .

Now, since ¥ is convex and strictly increasing on the positive axis, we have that
—¥'(R) < 0 which implies that, under the measure Q, the process U — u drifts away
to —oo and 7 < 0o Q-almost surely and I <o) = 1.

it) If ¢ > -&i—:% we have that there is no solution R in the domain of definition of
the Laplace exponent such that U(R) = 0. However, if we use the fact that M" is a

martingale, and therefore supermartingale, we have for ¢t > 0,
1Z2Ep[M"EAT) =2 Ep[M ()7 < t]P(T < 1), IB—rl<a.

This last inequality follows from the optional stopping theorem and the fact that
M7(0) = 1. If we substitute the expression for M" and we get

—ru —ru

e e
< )
P[e_rU(T)—T\I’(r)|7- < t] EP[Q—T\I/(T)lT < t]

]P’(T<t)<E u>=0.

This last inequality comes from the fact that U(r) < 0 conditioned on the set 7 <
oo. Now, via Jensen’s inequality and the previoulsy established fact that ¥'(0) < 0
because of the net profit condition, we have that there exists a point 7* in the domain

of the function ¥ such that attains its minimum. If we let t — oo,

Ep [e‘i‘l’(r) lT<t]
this leads to the form that has become standard in the actuarial literature [Grandell
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(1991)]:

*u

e’
¢ (U) < E]P’ [e—T\Il(r*)

WV
o

s U

T < 0]

|
Notice that from Proposition 3.1 we can recover Lundberg’s inequality for the

NIG risk process
P(u) < e,

where R = sup{r|¥(r) < 0}. In the first case of Propostion 3.1 this yields the exact
adjusment coeflicient R for which ¥(R) = 0. In the second case this yields r*.

Proposition 3.1 defines a straight forward simulation scheme to evaluate ruin pro-
babilities in the case R exists. This imposes a certain condition on the loaded pre-
mium. Although it might seem restrictive at first, such condition depends on other
parameters that can be adjusted to allow for greater flexibility.

Altogether, we have shown that the NIG Lévy process can be the basis of a risk
reserve process for which classical ruin theory results still hold. Its counterintuitive
but appealing features make it a model that accounts for the discrete infinite activity
of the real world. We say discrete infinite activity because the evolution of real
processes seem to be governed by discrete jumps that, as we zoom into smaller time

intervals, appear to be infinitely many.

3.4 On the NIG Risk Process as a Transformed
Diffusion Approximation

Grandell (1977) constructed a sequence of risk reserve processes {Un},.,,  of the
form

Un(t) = Un + ot — 0nSn(t) , t=0,

where uy,, ¢, = Onpn are the corresponding sequences of initial reserves and premium
rates such that u, — u, 02 — o2 and ¢, — ¢ = Bp. The aggregate claim processes
S, is compound Poisson with mean £, and variance o2. He showed that for claim

sizes in the domain of attraction of the normal distribution, the sequence {Un},,_; 5

67



converges weakly in the Skorokhod topology to the diffusion process
Up(t) =u-+ Bpt — oW (t), t>0, (3.19)

as n — oo, where W is a standard Brownian motion.

Compare this last equation (3.19) to the subordination construction of the NIG
process (3.10). Notice that the diffusion approximation is of the form (3.10) with a
variance factor. If we are to incorporate the parameter ¢ we have to set p = ¢ and
then we can consider the following generalization of (3.19) via subordination through

the inverse Gaussian Lévy process 7:
Up(t) = u+ Bor(t) —oW[r(t)], ¢>0. (3.20)

T is a subordinator with one-dimensional distribution given by

_ 2
exp {______%(ac 5t/%) } : x>0,

IG(z;0t,v,) = 5

23
where 72 = a? — (80)>.

The process Up(t) in (3.20) is a NIG Lévy process with one-dimensional distri-
bution nig(-;a, Bo,dt, n = 0). This can be seen if we apply the following result of
Sato (1999):

Theorem 3.1 Let Z be a subordinator with Laplace exponent ¥ and let Y be a Lévy
process with characteristic function 1. If Z and Y are independent then the cha-
racteristic function of the process X (t) = Y(Z(t)) obtained through subordination is
given by

E[e#X(1)] = Y- WA JER.

In this case the subordinator is an inverse Gaussian process and

2
\Il(z):&ya[1~1/1—|—;3z‘, ze€R,

and the transformed process is the Brownian motion with drift (3.19) having charac-

teristic function

gz

2,2
L(z) = exp <7Jﬁaz - —2—) , zeR.
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If we apply Theorem 3.1 we get that the subordinated process in (3.20) has cha-

racteristic function given by
E[eizﬁp(t)] = VA = fhe—1e ()] z€R, (3.21)

where 2(z) = a® — (B0 —iz)2.

Equation (3.21) is the characteristic function of a NIG Lévy process with para-
meters («, B0, 0, u = 0).

Notice that in order to introduce the variance parameter ¢ into the construction
via subordination of the NIG process (3.10) we need to force p = . This is, we need
to incorporate the variance into the collected premium. This is not such an unusual
choice since the risk due to the variability of the aggregate claim process should be
reflected in the premium.

If we wish to incorporate the parameter p we get a step further in the generaliza-

tion yielding
UNjg(t) = /J,t + ﬁp(t) , t>0. (322)

This last process is the NIG risk process that we introduce in Section 3 with parame-
ters («, 8o, 6, ).

The NIG risk process (3.22) is a transformation of the diffusion approximation of
Grandell (1977). Our risk process is a still a diffusion but operating in business time.
The subordinator 7 is a random time transformation that accounts for different speeds
at which the market evolves. In a way, the business time does not flow continuously,
but by an infinite number of jumps of different lengths which are represented by the
inverse Gaussian process.

The NIG risk process (3.22) is a generalization of (3.19). If we set 7(t) = ¢, the
business time flows just like regular time and we recover the diffusion risk process.
In fact, the NIG risk process (3.22) is embedded in a larger class of risk processes

defined via subordination. Consider the following model
U,(t) =u+ ut + oWt (t)], t>0, (3.23)

where W is a Brownian motion with drift 4 and 7 is any subordinator representing a

randomly changing business time. If 7 is an inverse Gaussian subordinator we obtain
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the NIG model (3.22) which is of the form (3.23) as we had stated. The diffusion
model is also of the form (3.23) by setting 7(¢) = ¢. We can also recuperate the
a-stable model, if 7 is an «/2-stable subordinator and the drift term g = 0, then
(3.23) is the a-stable model of Furrer, Michna and Weron (1997) [see Sato (1999) and
Cherny and Shiryaev (2002) for a reference on semimartingales as a time-changed
diffusions].

In finance they often refer to the time change 7 as the clock of the process [see
Ané and Geman (2000)]. For instance, if 7(t) = ¢ then the process runs in calendar
clock. Other subordinators 7 are used to model different clocks, for example 7 might
be the traded volume which reflects the business activity. In insurance, when talking
about a clock for the process (3.23), the natural analogy for traded volume will be
the aggregate claims process. This is the measure of insurance business activity, it
represents the total claims filed up to time ¢.

The inverse Gaussian distribution is traditionally used to model aggregate claims
[see Chaubey, Garrido and Trudeau (1998)]. This gives another interpretation to the
NIG risk process (3.22). The NIG risk process models risk reserves with a Brownian
motion. However, this Brownian motion does not run in calendar time but in a

business clock defined in terms of the aggregate claims process of the company.

3.5 Simulation for the NIG Risk Model

Proposition 3.1 endows us with a straight forward simulation approximation to the
associated ruin probability for the NIG risk process. If the adjustment coeflicient
exists then we can simulate the risk process U under the Esscher-induced change of

measure. Under this measure the stopping rule for the simulated paths
7 =inf{t > 0|U(t) < 0}

is well defined since 7 is finite Q-almost surely. Then, for each path we evaluate the

RIU(M)~ and we average over all simulated paths.

expression e
This scheme requires the simulation of a NIG Lévy process. As we had previously

pointed out this is simple because all the one-dimensional densities f; are NIG dis-
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tributed. If we want a NIG process with parameters («, 3, d, ) we simulate a process
skeleton by generating NIG random variables at time increments of length A. That
is, we simulate NIG variates with parameters (o, 4, A, pA).

If we use the mean-variance representation of the NIG distribution we have that,

if W and Y are independent random variates distributed as standard normal and

IG(d, /a2 — 3?) respectively, then
X=p+8Y +VYW ,

is a NIG random variate with parameters (a, (3,0, ). There exist now standard
techniques to simulate normal and inverse Gaussian variates [see for instance Devroye

(1986) |.

3.6 Conclusions

We present a risk model based on a normal inverse Gaussian Lévy process. We show
how the infinite activity feature of such family of processes can be used to account
for discrete premium fluctuations as well as for semi-heavy tailed claims. Despite
its counterintuitive properties, the NIG risk process still can be incorporated into
standard risk theory results as shown in Proposition 3.1.

The subordination construction of the NIG process implies that our risk model is
a generalization of the diffusion risk model of Grandell (1977). The fact that the NIG
is still a diffusion but operating in business time allows for larger fluctuations making
it a better and more flexible model to fit risk reserves with exponentially decaying
claims. The concept of business time for a transformed risk reserve process is used
to generalize the diffusion model. In such a generalized process, time evolves by an
infinite number of small jumps with occasional larger time jumps. The random time
increments can be seen as a randomly varying market activity.

The mean-variance representation of NIG random variables allows us to easily
simulate a skeleton for the NIG risk process and hence to evaluate its associated ruin

probabiities using Proposition 3.1.
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Our discussion is mainly introductory. We present the NIG Lévy process as well as
some of its features within a fisk theory context. Further research is needed to asses
the performance of such processes compared to other risk models. Other directions
to be explored for the NIG risk process are those bridging financial and insurance
mathematics: risk measures and option pricing. In conclusion, risk processes driven
by NIG, or other Lévy processes, have merits to be considered an object of further

research in risk theory.
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Chapter 4

Risk Theory with the Generalized

Inverse (zaussian Lévy Process

4.1 Introduction

Dufresne, Gerber and Shiu (1991) introduced a general risk model defined as the limit

of compound Poisson processes. They work with a model
Ult)=u-+ct—Z(), t>0, (4.1)

where Z is an increasing Lévy process. Such model is either a compound Poisson
process itself or a Lévy process with infinitely many small jumps. Their construction
is based on a non-negative non-increasing function ¢) that governs the jumps of the
process. This function, it turns out, is the tail of the Lévy measure of the process.
They show that the gamma process is one of the processes that can be generated
this way and use it as a model for the aggregate claims. We enlarge their model
to a Generalized Inverse Gaussian (GIG) Lévy process. Although mathematically
more complex, such a process keeps some of the nice properties of the simpler gamma
process.

Dufresne, Gerber and Shiu (1991) constructed a general aggregate claim process S

with independent and stationary increments. They define it in terms of a non-negative
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and non-increasing function ) defined as

Moreover, the function ) should be such that
/000 zdQ(z) < 00 . (4.2)
The process S is uniquely defined by its Laplace transform
L(z) =E[e*0] =7 - 2>0, (4.3)
where the exponent V¥ is given by

U(z) = /000 [e™* — 1] dQ(z) , z>0. (4.4)

This last equation can be recognized as the Laplace exponent of a Lévy process with
sample paths of finite variation [see Bertoin (1996) or Sato (1999) for an account on
Lévy processes]. The measure ¢(dz) = —dQ(z) is the Lévy measure of the process S.

From the theory of Lévy processes we have that S is either a compound Poisson
process (if Q(0) < 0o0) or a process with an infinite number of small jumps (if Q(0) =
00). In both cases, the process S can be seen as the limit of a sequence of compound

Poisson processes {S.},., described by their Laplace transform
]Lge)(z) — oth[em*m1]dQe (@) , z2>0, (4.5)

where the measure (). is the restriction to the interval [e,00) of the tail of Lévy
measure @), i.e.

dQ(z) = dQ(x)l(e,0) () , z>0.
We can see that

lim dQ.(z) = dQ(z) , x>0,

which implies that the sequence of compound Poisson processes {Sc}.., converges
weakly in the Skorokhod topology to the process S defined by (4.3) [see Jacod and
Shiryaev (1987)].
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Notice that (4.4) implies that S is a Lévy process with Lévy measure —dQ(z),
moreover, condition (4.2) implies that S is of finite variation.

Dufresne, Gerber and Shiu (1991) explore the process S for
q(dz) = —dQ(z) = z e %dz , x>0,

and
q(dz) = —dQ(z) = z™3/?e%dx z>0.

The first choice of Q) leads to a gamma process while the second leads to an inverse
Gaussian process. These processes are such that their one-dimensional distributions
are gamma and inverse Gaussian respectively.

Here we extend this aggregate claims process S to a generalized inverse Gaussian
Lévy process (GIG). Such a process is a non-decreasing (subordinator) Lévy process
exhibiting the intriguing property of having an infinite number of small jumps. More-
over its intervals of length one follow a generalized inverse Gaussian (GIG) distri-
bution. A standard reference on GIG distribution is Jgrgensen (1982). The inverse
Gaussian process and the gamma process of Dufresne, Gerber and Shiu (1991) are
particular or limiting cases of the GIG Lévy process, which in turn is another example
of the spectrally negative Lévy processes discussed in Yang and Zhang (2001).

Section 4.2 introduces some basic facts about the GIG distribution. In Section 4.3
we construct the GIG Lévy process and describe some of the properties that make it
appealing to ruin modeling. In Section 4.4 we extend ruin theory results to the GIG

Lévy process.

4.2 Generalized Inverse (Gaussian Distribution

The class of generalized inverse Gaussian distribution is described by three parameters
and it has support on the positive axis as we discussed in Chapter 2. It has been

extensively studied by Jgrgensen (1982). Recall that its density function is given by

fgig(x) = 2(%)/\(%)';)75%—)\_1 €Xp {"‘%(521‘_1 + 7215)} s z>0 , (46)
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where K is the modified Bessel function of the third kind with index A given by

1

Ki(z) = /°° ulem T ) gy, z>0.
The parameter domain of the OGIG distribution is
6>0, <0, it A<O0,
6>0, >0, if A=0,
00, v>0, if A>0.
If A = —1/2 the density (4.6) reduces to that of the inverse Gaussian distribution.
The gamma distribution is a limiting case of the GIG distribution (4.6) for A > 0 and

v > 0 and 6 — 0. These make the GIG Lévy processes a natural extention to the

gamma processes.

Figure 4.1: Some GIG densities for different values of A and w = év
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The Laplace transform of the GIG is

K, (6% /1 — %%)
Lera(z) =

K)\<5fy>( B %)Aﬂ
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for 6 > 0 and v > 0. Its domain is z < 4?/2 when A < 0 and z < 7?/2 when X < 0.

Figure 4.1 shows some GIG densities for different values of the parameters.
Barndorff-Nielsen and Halgreen (1977) showed that the GIG distribution is infi-

nitely divisible. We use this property to construct a Lévy process in the following

section.

4.3 Generalized Inverse Gaussian Lévy Process

Let us recall some basic facts about Lévy process. Let (Q, F, (F)i»o,P) be a filtered
probability space.

Definition 4.1 An adapted cadlag R-valued process X = {X(t)},5, with X(0) = 0 is

a Lévy process if and only if its characteristic function is of the form ¢i(s) = e=*¥(®)
where
b? ,
U(s) =ias + —2—82 + / [1— e +isal_1,1)(z)] v(dz) seR, (4.7
Ro

while a,b € R and v is a positive measure on Ry = R — {0} as discussed in Chapter
2. The parameters a, b* and v uniquely determine X. The measure v is called the
Lévy measure and the exponent U is called the characteristic exponent of the process

X.

This class of processes is in a one-to-one correspondence with the class of infinitely
divisible distributions. Every infinite divisible distribution generates a Lévy process
and the increments of every Lévy process are infinite divisible distributed.

The Lévy measure v governs the occurrence of the jumps of the process X. If
b> > 0 and the Lévy measure is identically zero then the process is a Brownian
motion (the only continuous Lévy process). If the Guassian coefficient b = 0 the
process is entirely composed by jumps, if in addition fRo v(dz) < oo then the process
is a compound Poisson process where the distribution of the jumps is ﬁ% and
the jumps epochs occur at rate [ v(dz). On the other hand, if fp v(dz) = co and

Jr, 1 A\ [zlv(dz) < oo, then the process has an infinite number of small jumps but is
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of finite variation. Finally, if fp v(dz) = co and [, 1A [z|r(dz) = oo, the process
has infinitely many jumps and is of unbounded variation.

If the Gaussian coefficient ? = 0 and if the Lévy measure v is defined on (0, co)
such that [;°(1 A z)r(dz) < oo then the corresponding Lévy process is called a
subordinator. Its increments are always positive.

If 2 = 0 and the Lévy measure v satisfies

/R (1 Ale])v(de) < oo | (4.8)

then the process X is of finite variation and we can discard the centering function in
(4.7) and simply write
U(s) =ias + /R [1—e*"] v(dz), seER. (4.9)
0
Particularly, increasing Lévy processes, also called subordinators, satisfy (4.8). For
an account of the theory we refer to Sato (1999) or Bertoin (1996) and for recent
applications to Barndorff-Nielsen, Mikosh and Resnick (2001).

Notice that the general aggregate claim process S defined by (4.4) has a charac-
teristic exponent of the form (4.9) with Q(z) = [ ¢(s)ds where g(ds) = —dQ(s) is
the Lévy measure. This is because the measure ¢(ds) is non-negative and the incre-
ments of the process can only be positive making S a subordinator. Also notice that
the jumps of S larger than € form a compound Poisson process with jump rate Q(e)

: 1 g(dz)
and jump density IOR

In the spirit of Dufresne, Gerber and Shiu (1991) we define the generalized inverse
Gaussian Lévy process in terms of a non-negative and non-increasing function @,
which, as we have seen, is the Lévy measure of the process. Barndorff-Nielsen and
Shephard (2001) show that the Lévy measure in the Lévy-Khintchine representation
of the GIG(\, 6, ) distribution is
L

g(dz) = —

{52 / e”””tgx(%zt)dt+ma,x{0,/\}} e e 24y >0, (410
0

where \

any) = {%y (I3 (VY) + Nj (V)] }— ,  y>0.



J and N are modified Bessel functions.

Since the GIG distribution is infinite divisible and with support on the positive
axis we can define a positive Lévy process Sqrq described by its characteristic function
d(s) = e'¥c1a(s) where Wgpe is the characteristic exponent of the GIG distribution,

\Ilgjg<8) = /R [eisx - 1} q(da:) s seR. (411)

This last equation (4.11) is of the form (4.4) with Q(z) = [ ¢(dt). Notice that
since Sgy¢ is a subordinator, its Lévy measure satisfies f0°° zq(dz) < oo. Moreover,
Q(0) = [;7q(dz) = oo and the process Sgr¢ is composed of an infinite number of
small jumps.

Such a process is a generalization of the gamma and inverse Gaussian process.
From the form of its Laplace transform we can see that the GIG distributions are
not closed under convolutions. It follows that all increments of length one follow a
GIG distribution. However, increments of other lengths follow an infinite divisible
distribution that does not belong to the GIG class. This is because, by construction,
Ele*5e1®M] = ¢,(2) = [¢1(2)]"-

Nonetheless, we can compute this class of infinite divisible densities using the

Fourier inversion formula

fi(z) = %/000 cos(uzx) gt (u)du . (4.12)

4.4 Ruin Theory for the GIG Lévy Process
A general risk model based on a GIG aggregate claim process would be
U(t) =u+ct — Sgre(t) , t>0, (4.13)

where Sgi¢ is a generalized inverse Gaussian Lévy process, u is the initial surplus, ¢
is a constant premium rate defined as ¢ = (1 + 6)E [Sgre(1)] where 6 is the security

loading factor. For an account on the classical risk model we refer to Grandell (1991).
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Chaubey, Garrido and Trudeau (1998) show that the inverse Gaussian distribution
provides a good fit for aggregate claims for a wide choice of claim size distributions.
The extra parameter of the GIG distribution might make it a more flexible distribution
to model aggregate claims. This is yet to be explored. But if this turns out to be
the case and aggregate claims are well described by a GIG distribution, then a risk
model based on a GIG Lévy motion like (4.13) would be a natural model.

Despite the fact that such an aggregate claim process has an infinite number of
small claims in any interval, the fact that it is of finite variation, implies that the
claims remain small enough as to assure that the mazimum aggregate loss is still a
compound geometric random variable.

For the process (4.13), the maximum aggregate loss is the random variable defined

by
L = sup{Sgic(t) — ct}, (4.14)
>0
and the ruin probability is
Y(u) =P{nf[t > 0| u+ct — Sgre(t) < 0] < oo} , uz0. (4.15)

In the classical compound Poisson model [see Grandell (1991)], L is related to the
ruin probability ¢ as indicated by the following relation:

Y(u) =P(L > u), =0, (4.16)

i.e., the ruin probability ¢ is the tail of the distribution of the maximum aggregate

loss. Moreover, L is a compound geometric random variable with parameter —li—

g and

jump distribution given by
fo 1 - y) dy
fo 1 - G(y)]

where G is the claim distribution of the original compound Poisson risk process. This

F(z) = x>0,

last fact, along with (4.16) implies the following equation for the ruin probability in

the classical case

D(w) = _9_9 2:: (1 - 0) _FTW), w0, (4.17)
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where " indicates the n-fold convolution of F' [see equation (1.22)].
For the GIG process we cannot talk about a claim size distribution equivalent
to G in (4.17). However, all of these relations are preserved if the aggregate claim

process is a GIG Lévy process as stated in the following result.

Theorem 4.1 Let U be the process in (4.13). Also let L and 1) be as in (4.14) and
(4.15) respectively. Then, the ruin probability 1 is related to L as in (4.16). Moreover,

L is a compound geometric random variable of the form

M
L=> L,
=0

. . . . 0
where M is a geometric random variable with parameter 135 and {L;},_,, = are

i.i.d. random variables with density

m(z) = TQ—(@— , z>0.
Iy sq(s)ds
Recall that Q is the tail of the Lévy measure q(dz) of the GIG Léuvy process giwven by

(4.10).

Proof. This is a direct consequence of the fact that Sgr¢ is a limit of a sequence of
compound Poisson processes as in (4.5).

The converging sequence {S.},., is defined by its characteristic function
$9(2) = Bl 5,

where ¢.(dz) = —dQc(z) = —Ij¢,00)(z)dQ(z). Therefore, the claim rate is [ ge(z)dz
and the claim size density is Tg’%ﬁé%'
0 €
For such a compound Poisson process the maximum aggregate loss L. is a com-

pound geometric r.v. of the form

M
Le=) L,
=0

and it has the following characteristic function [see Asmussen (2000)]:

1

_ 1+6
de(2) = T 12_;9¢L§(Z) , z2>0, (4.18)
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where ¢r¢ is the characteristic function of the random variable L{ with density

Qc(x)
157 sge(s)ds

This is the classical ladder-height decomposition for the classical risk process. More-

me(z) = z>0. (4.19)

over, we have that the sequence of ruin probabilities 9. is such that
Ye(u) =P(Le >w), u>0. (4.20)

Now, notice that the density (4.19) converges to

Q(z)
I sq(s)ds”’

as € — 0. This is because Sgr¢ is a subordinator and [~ z¢(z)dz < co. In

m(z) = z>0, (4.21)

consequence, its characteristic function ¢re converges to the characteristic function
¢, of the density m. In light of this we have that the characteristic function (4.18)
converges to

1

_ 1+9
#(z) = ek z2>0, (4.22)

as ¢ — 0. This last equation is the characteristic function of a compound geometric
random variable with rate ﬁ—g and with jump distribution given by (4.21). Further,
because of equation (4.20), we have that the ruin probability ¢ is the tail of the

compound geometric distribution described by (4.22). This completes the proof. m

Remark 4.1 The result in Theorem 4.1 is valid for a wider class of Lévy processes.
In fact, it is true for any risk model with a subordinator as the aggregate claims

process.

This result allows us to do risk theory with the GIG Lévy process even though is
composed by an infinite number of claims. In practice, the fact that the ladder height
distribution (4.21) is given in terms of the integral (4.10) might be seen as a setback.
However this integral might be computed numerically. Or as Dufresne, Gerber and
Shiu (1991) had already pointed out for the gamma process, this property leads to

upper and lower bounds for the ruin probability.
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4.5 Ruin Probabilities for the GIG Risk Process

Theorem 4.1 shows that the ladder height decomposition is still valid for the GIG risk
process. This allows us to derive equations analogous to those in the classical case.

For instance, the ruin probability (4.15) satisfies

Plu) = 1_?_0; <1J1r9>n[1—M*<">(u)] . u>=0, (4.23)

where M is the distribution function of the density m in (4.21). This last equation is
the analogous to equation (4.17).
Furthermore, equation (4.23) is of the form (1.22) and therefore 1 satisfies the

following renewal equation analogous to (1.24)

_1-Mu

v =T

)+1i0/0u¢(u-y)dM(y), uz0. (4.24)

Just as in the classical case, the computation of (4.23) and (4.24) is complicated.

This situation is aggravated by the form of the distribution M. Recall that

Q) _ [Zad)
Jt—dQ@)] [y ta(t)dt

where ¢(dz) is the Lévy measure of the GIG process given by (4.10) and that involves

m(z) = x>0,

all three modified Bessel functions.

However, we can compute bounds for the ruin probability (4.15) using existing
results for compound geometric tails. For instance, Cai and Garrido (1998) give lower
and upper bounds for ruin probabilities satisfying equations of the form (4.23). These
bounds are given by

M e < M) EGM@)/
0+ M(u) S 14+ 0+E(L)M(u)/u’

uz0, (4.25)

where M(z) = 1 — M(x) and E(L) is the expected value of the maximum aggregate
loss random variable.
We have gone around the problem of computing convolutions of M, but we still

have to deal with M(z) and E(L) in (4.25). These two functions are given in terms
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of the Lévy measure (4.10) as follows:

LS £ 107 [i" e a(26%t)dt + max{0, \}] e ~7E2d¢dy

M(z) = f [52 fo e—“tg,\(252t)dt+max{0,)\}] —1*/2y » >0
(4.26)
and
E(L) / M@ (4.27)
where

2 -1
00) = { FyIRWD MG L o,

Integrals involving modified Bessel functions can be computed numerically. Here

we illustrate the particular case A = 1/2 and A = —1/2. For this choice of the

parameter A, the function g, takes a much simpler form thanks to the following

relations [see Abramowitz and Stegun (1970)]

J1 (y) = \/%sin(y) and N, (y) = —\/%cos(y) : y>0.

This yields

g%@):g_%@):{f;y[J;<@>+N;<@>]}‘1:W—%, y>0.  @42)

Using (4.28) we get that, for A = 1/2, equation (4.26) becomes

i [l [52 S £ dt + L] e dedy
M(z) = o2t 2] >0,
I [52 3 St + 3| e e
I P 4] ey

I [52ﬁi//—2— ] e2/2dy

[ [51}1522) fyoo £8/2¢=7E/2g¢ 4 % fyoo 5—16—725/%5] dy
51;}\1/_{22) fooo r=1/2e=722/2dy + % f0°° e—’z/2dzx

2 ooé]_"(l)oos 2 1 [® 2
= 2 “feFeg +—/ - ‘jffd}d.
5v+1/w[wz/yf“§2y“ e| ay
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This last equation comes from the fact that I'(3) = /7 which reduces the denominator

to the constant %Ljd. As for the numerator, if we integrate by parts, we can rewrite

2 o] %]
v . Y 6F( ) % _ﬁy .2 _1 _.’ﬁg
M(z) = &th{/z s e TV —vy ) ETreTTE dy

00 [e] 9
+/ %/ & e—%fdgdy} ., z20. (4.29)
z y

The function inside the integral is the ladder height density m. If we change the order

of integration in (4.29), it simplifies even further yielding

_ v [20(3)4, 1
M) = (57—}-1{ Y F($’§)

(4.30)

where [(u; @) = [° 2% 'e~®dz is the incomplete gamma function [see Abramowitz
and Stegun (1970)].
Consequently, E(L) is given by

%/Ooo M (z)dx

If we substitute M by (4.29) and compute the double integrals by changing the order

of integration we have that

1 42 [26 3692 1/2\°
E(L) = 557+1{;§—8\/_ Z(‘") } (4.31)

In this last equality we use the fact that T'(3) = 1T(3), I'($) = 2I'(3) and T'(2) = 1.
Substituting (4.30) and (4.31) into the expressions (4.25) yields lower and upper

bounds for the ruin probability of the GIG risk process with A = %
Bounds for the ruin probability for the inverse Gaussian case (A = —%) can be

derived in the same manner. The middle integral in the numerator and denominator
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of (4.26) simplifies since max{0, —%} = 0 implying the following forms for M and
E(L):

i@ = HEWre - 22 el - qar@h] b )

and

1y [26 36v?
E(L) = -1|22_227 )
(L) 64 l:’y?’ 82
Equations (4.30) and (4.32) generalize similar expressions for the gamma and the

inverse Gaussian processes in Dufresne, Gerber and Shiu (1991).

4.6 Numerical Results

We carry out the numerical evaluation of the bounds defined by (4.25), (4.30) and
(4.31) for the case A\ = % The incomplete gamma functions were computed using
well-known analytical expantions [see Abramowitz and Stegun (1970)]. In Table 4.1
we present bounds for the ruin probability of a GIG risk process with parameters
_1 . _1 _ : -
A=3,7=15;and 6= 10+/2 which correspond to an expected aggregate claim value

of 158.58. Different values for the safety loading 6 are shown.

4.7 Conclusions

We have extended the gamma risk process of Dufresne, Gerber and Shiu (1991) to a
wider class of Lévy processes generated by the GIG distributions. We showed that
they share the same counterintuitive property of having infinitely many claims, and,
in spite of which, they accept a ladder height-like decomposition.

This ladder-height decomposition has been used in the literature [Cai and Garrido
(1998)] to produce bounds for the corresponding ruin probability. We implemented
these bounds and show that they are given in terms of Bessel functions. These take
on a simple form in the case A = %— Numerical results for this case are provided.

The fact that increments of length one follow a GIG distribution makes it inter-

esting for applications since aggregate claims are better fitted by an inverse Gaussian
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Table 4.1: Upper and lower bounds for ruin probabilities of the GIG risk
process for different values of §. The parameters of the underlying GIG

distribution are A = 1, v = & and § = 10v2.

ér“, . maa et ] L L U - é& .
0.66326 0.98363 0.44067 0.94662
0.65770 0.97583 0.43457 0.92315
0.61729 0.92653 0.39216 0.79689
0.55677 0.86706 0.33443 0.67772
0.49452 0.81577 0.28126 0.59248
0.43243 0.77028 0.23358 0.52618
0.37240 0.72934 0.19182 0.47239
0.31606 0.69223 0.15601 0.42769
0.26465 0.65842 0.12584 0.38998
0.21893 0.62752 0.10081 0.35780
0.17918 0.59920 0.08030 0.33012
0.14530 0.57319 0.06367 0.30612
0.11692 0.54924 0.05030 0.28518

distribution. The extra parameter of the GIG would make a more flexible model for
aggregate claims.

These larger class of processes contain the particular cases of the gamma and
inverse Gaussian processes explored in Dufresne, Gerber and Shiu (1991). This implies
that the bounds we provide here can be used in those particular cases. This is yet a
further improvement since, the bounds we implement, have been shown to be tighter
than those they use in their paper.

A topic of future research remains the study of the GIG risk process in the context
discussed in Gerber and Shiu (1998a) where they studied the discounted penalty

function.
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Chapter 5

Approximating the Risk Reserve
Process Using Extreme Value
Theory: With Applications in

Reinsurance

5.1 Introduction

A general insurance portfolio consists of several independent contracts issued for a
limited time period (usually one year). During this period the company faces claims
from policyholders, multiple claims from the same portfolio are possible. If we assume
that the risk characteristics of such a portfolio are preserved through different periods
then a homogeneous Poisson process describes, in a natural way, the occurrence of
claims in this portfolio.

In the classical risk model, the aggregate claims process for such a portfolio is
given by

N()

SH=>Y, t

A\
o

(5.1)
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where {Y;} are i.i.d. random variables (with c.d.f. Fy) representing the claim amounts,
E(Y;) = p and N is a homogeneous Poisson process with parameter .

The corresponding risk reserve process is
Ult)y=u+ct—S(t), t>0, (5.2)

where S is the aggregate claims process defined in (5.1),  is the initial surplus, cis a
constant premium rate defined as ¢ = Au(1 + 60) and 6 is the security loading factor.
For an account on the theory we refer to Grandell (1991) or Rolski et al. (1999).
Risk theory is concerned with functionals of the reserve process, one that is of
particular interest is the associated ultimate ruin probability ¢». This functional is
often used as a measure of the riskiness of the portfolio and it can be used as a risk
index for reinsurance purposes. The ruin problem in risk theory involves the, possibly

defective, random variable
Tu)=if{t>0:U({)=u+ct—S(t) <0}, u>=0.

The main interest lies in evaluating the probability of ruin over a finite or an infinite

horizon, this is
Yi(u) = P{T(u) <t}, 0<t<oo; and 9(u)=P{T(u) < oo}, (5.3)

respectively, where the functions ¢ and 1, are functions of the initial level u. Formulas
for functionals of the probability of ruin have been worked out yielding complicated
expressions that are not always easy to evaluate [see Asmussen (2000) for a thorough
discussion].

Simulation is one approach used to estimate ruin probabilities [see Vazquez-Abad
(2000) and references therein|. Implementing a simulation scheme to estimate the
probability (5.3) is not straight-forward. One of the problems is that there is no
stopping rule if we simulate the risk process (5.2) as the time-to-ruin random variable
may be defective. Some of the simulated paths will never fall below zero because of the
net profit condition 8 > 0, making a straight-forward simulation inviable. A change of

measure or the ladder-height decomposition can be used to define simulation schemes
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that deal with this problem, however their implementation still depends heavily on
the claims distribution Fy.

Another approach has been to use Lévy processes to approximate the original risk
process (5.2) as we discussed in Chapter 1.

In this chapter we use extreme value theory to construct a Lévy motion that
approximates the classical risk theory under different underlying claim distributions.
The present approach leads naturally to a simulation scheme that allows us to appro-
ximate the sequence of classical risk processes converging to either a Brownian or to
an a-stable process at any step of the convergence.

We start by decomposing the aggregate claims process (5.1) into two independent

sums, one containing the small claims and the other one the large claims as follows

N(t) N(&) N(t)
Y=Y Yilog(Y)+ ) Yileoy(Ys), 20, (5.4)
i=1 i=1 i==1

for any threshold ¢ > 0. Then we approximate the large claims by a generalized
Pareto-stable Lévy process (using extreme value theory techniques) and the small
claims by a Brownian motion (using the classical approach of Grandell (1977)). The

approximating process is then of the form

N(@)
Y Yimk+ngWO) +J(1), 20, (5.5)

i=1
where W is a standard Brownian motion and J is a generalized Pareto-stable Lévy
process independent of W. n and & are constants.

What we call a generalized Pareto-stable Lévy process is a particular type of

compound Poisson process. It is a compound sum of the form

N
> Zi,  t20,
i=1

where NV is a Poisson process and {Z;},_, , are i.i.d. random variables following a
generalized Pareto distribution. Approximation (5.5) circumvents some of the diffi-
culties posed by an aggregate process of the form (5.1). We will see that a generalized

Pareto distribution is either a Pareto or an exponential distribution. This reduces
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to some extent the ruin problem. Instead of dealing with a general sum (5.1) where
the random variables {¥;},_,, = follow an arbitrary distribution Fy, we now have
to deal with a perturbed model (5.5) where the process J is always the compound
sum of Pareto or exponential random variables. For processes of this form we show
that there is always a straight-forward simulation approximation that can be used to
compute ultimate ruin probabilities, which is not the case for a general process of the
form (5.1). Our approximation is then a simulation scheme that allows us to estimate
ruin probabilities in the classical case for all kinds of claims distributions. The ap-
proximating process (5.5) can be recognized as a perturbed risk model, such models
have been extensively studied in the literature: Bounds for the ruin probability can
be found in Cai and Garrido (2002), some expressions for the joint distribution prior
and at ruin can be found in Wang and Wu (2000).

The decomposition (5.4) and its approximation (5.5) are of particular interest in
a reinsurance context, since it gives a way to define a risk measure for excesses-of-
loss using the concept of distortion and its relation to relative entropy [see Reesor
(2001)]. These concepts have appeared recently in the actuarial literature: Wang
(1996), Wang, Young and Panjer (1997), Kamps (1998) and Artzner (1999) follow
an axiomatic approach to insurance prices and embed premium principles into more
general risk measures. We will present an application of our generalized Pareto-stable
process to the pricing of reinsurance layers in this context. We will consider the
second sum in (5.4) and its corresponding approximation term in (5.5). We exploit
the fact that the generalized Pareto compound Poisson process is a Lévy process and
define a distorted risk measure via an Esscher transform. Other distortions are also
considered.

Let us briefly recall some facts about Lévy processes discussed in Chapter 2. Lévy
processes are in a one-to-one correspondence with the class of infinitely divisible distri-
butions. Their characteristic function ¢,(s) = E (e”X (t)) is of the form e~*¥(*) where
V¥ is the so-called characteristic exponent in the Lévy-Khintchine characterization.

The compound Poisson process, the Brownian motion and the a-stable motion are

well known examples of Lévy processes. If the Lévy measure v is the null measure
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then we obtain the Brownian motion defined by its characteristic exponent
b2
\I/(s):ias+—2—52, seER.
The compound Poisson is obtained by setting a = f_ll zAv(dz) and with v(dz) =

AdF(z) where the jumps occur at rate A with law dF', yielding
U(s) = / (1 —€**) Av(dz), seR.
Ro
The a-stable Lévy process has the following characteristic exponent
U(s) = / (1 —€*® +iszl_11y(z)] v(dz), seR,
Ro

with Lévy measure given by v(dz) = ¢tz7**dz if > 0 and v(dz) = ¢ |z|7* ldz
ct—c~
ctte=

if x < 0, where ¢t and ¢~ are such that 8 = The process has no positive
(negative) jumps when ¢t = 0 (¢ = 0) or equivalently § = —1 (f = 1). It is
symmetric when 8 = 0 (¢t = ¢7). The parameter « is restricted to the interval (0, 2).

These processes lie at different latitudes in the wide spectrum of Lévy processes.
For an account of the theory we refer to Sato (1999) or Bertoin (1996) and for recent
applications to Barndorff-Nielsen, Mikosh and Resnick (2001).

In Section 5.2 we present some basic notions of extreme value distributions. In
Section 5.3 we present the generalized Pareto-stable Lévy motion as a sequence of
compound Poisson processes. The problem of simulating the ultimate ruin proba-
bility is explored in Section 5.4. Numerical illustrations for the simulation of ruin
probabilities are presented in Section 5.5. Finally, in Section 5.6, we briefly discuss

basic concepts concerning distorted measures and relative entropy and hint some

applications to reinsurance of our approximation.

5.2 Extreme Value Theory

In the following we attempt to give a brief account of extreme value theory (EVT).
EVT has been developed in connection with applications in hydrology and climatology
and it is only until recently that it has found its way into insurance loss modeling

[Beirlant and Teugels (1992) and McNeil (1997)].
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Just as the normal distribution arises as a limit of sums of sample averages, the
family of extreme value distributions arises as the limit of normalized sums of sample

extrema. The family of extreme value distributions is given in the following definition.

Definition 5.1 The standard generalized extreme value distribution (GEV) is given

by

I
He(w) = (5)
e~ for£=0.

with 1+ £z > 0.

The parameter £ is a shape parameter that defines three families. If £ > 0 we have the
Fréchet distribution, if £ = 0 we have the Gumbel distribution and if £ < 0 we obtain
the Weibull distribution. The generalized extreme value distribution is obtained from
the standard GEV distribution by introducing a location and a scale parameter x and
o > 0. The GEV distribution is defined as He .o (x) = He(=£).

The following theorem is the basic result in EVT.

Theorem 5.1 (Fisher-Tippet Theorem) Let X1, X,,... be i.i.d. random wvari-
ables with distribution function F and let M, be the mazimum of the first n ob-
servations M, = max{Xy,...,Xn}. If there exist norming constants ¢, > 0, d, € R
and a random variable H such that

Mn - dn
Cn

— H

in distribution as n — oo, then H has distribution function of the form Hg for some

3

If this condition holds we say that F is in the maximum domain of attraction (MDA)
of H.

Characterizations of the family of distributions that fall in the domain of attraction
of GEV distributions have been studied. We can find thorough accounts of the theory
in Embrechts, Kliippelberg and Mikosh (1997) and Reiss and Thomas (2001).
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Distributions in the MDA of the Fréchet distribution (¢ > 0) have heavy tails,
among others we find the Pareto, Cauchy, Burr and a-stable distributions.

Distributions in the MDA of the Gumbel distribution (¢ = 0) have medium tails.
The normal, lognormal, exponential and gamma distributions are some examples.

Distributions in the MDA of the Weibull (¢ < 0) are short tailed such as the
uniform and the beta distributions.

Of all these families of distributions we focus our concern on the Fréchet and the
Gumbel distributions since many of the most commonly used distributions in loss
modeling fall in their MDA.

Another distribution that plays an important role in EVT is the generalized Pareto
distribution (GPD).

Definition 5.2 The standard generalized Pareto distribution is given by

1—(1+€&x)7¢, if  €#0,
Gg(il?): A (57)

1—e™", if £E=0.

forxa 204 € >20and0 <z < -1/ if € < 0. By introducing location and scale

parameters (1 and o we get the generalized Pareto distribution Ge,qo(x) = Ge(5£).

Notice that if £ > 0 we have a reparameterized Pareto distribution, a shape
parameter of £ = 0 yields the exponential distribution and if £ < 0 we obtain a type
IT Pareto distribution. We will focus only on the case £ > 0 since this is the more
relevant for insurance loss modeling.

The GPD proves to be important in loss modeling as implied by the following

theorem.

Theorem 5.2 (Pickands-Balkema-deHaan Theorem) Let F' be a distribution
function with right endpoint p and let FI®) be its excess distribution function over
the threshold xo defined as

Flod(z) = P(X — 20 < 2| X > 20) , x

V
o

Then, for £ € R the following are equivalent:
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i) F € MDA(H:).
i1) There exists a positive, measurable function B such that

lim FPo(zy 4 20(2)) = Ge(z) .

To—TE

This last theorem suggests that the exceedance over a threshold of a certain d.f. F €
MDA(H;) can be approximated by a GPD with shape parameter £. This notion lies
at the heart of our approach.

Another concept of importance is that of the domain of attraction (DA) of an
a-stable distribution and arises in connection with a general version of the central

limit theorem.

Definition 5.3 Let S, = > .., X; where {X;}im12,. are i.i.d. copies of a random
variable X. We say that X belongs to the domain of attraction of an «a-stable distri-

bution Sy, for a € (0,2], if there exist constants a,, € R, b, > 0 such that

Sn—a'n

— S,

n
in distribution as n — oo. We write X € DA(a) and say that X satisfies the general

central limit theorem with limit S,.

Notice that the case o = 2 yields the classic central limit theorem since Ss is the
standard normal distribution. For a comprehensive reference on a-stable distributions

see Janicki and Weron (1994).

5.3 Generalized Pareto-Stable Lévy Approximation

The general central limit theorem implied in Definition 5.3 lies behind the two existing
limiting approximations in risk theory. Consider the following sequence of risk reserve

processes

M) () = o™ (O — Y; ¢ 5.
UM(t) =u® 4 ¢ - ; : >0, (5.8)
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where u(™, ¢ are the corresponding sequences of initial reserves and premium rates
such that u™ — « and é%—;—?ﬂ — ¢ where the constants a,, and b, are those of
Definition 5.3. The counting processes N(t) and the random variables {Y;},—;» . are
as in (5.1).

Depending on the tail of the claim distribution Fy, the processes in (5.8) will
converge weakly to an a-stable process with index o € (1, 2) or to a Brownian motion
with drift. The first of these limiting processes is the a-stable approximation of Furrer,
Michna and Weron (1997) and the second is the classic diffusion approximation of
Grandell (1977).

Proposition 5.1 Let U™ be a sequence of processes as in (5.8).

i) If Fy is in the MDA of the Fréchet distribution (Fy € MDA(Hg) for 1/¢ €
(1,2)) then (5.8) converges in the Skorokhod topology to

Uy(t) =+ ct — A Zu(t), >0, (5.9)
as n — oo, where Z, is a a-stable Lévy motion.

ii) If Fy is in the MDA of the Gumbel distribution (Fy € MDA(H¢) for £ =0)
then (5.8) converges in the Skorokhod topology to

Uiy (t) = u+ct — /A(p+ o)W (t) , t>0, (5.10)
as n — oo, where E(Y) = u, Var(Y) = o and W is a standard Brownian
motion.

Proof.

i) If Fy is in MDA of the Fréchet distribution then its tail decays as a power
function [see Embrechts, Kliippelberg and Mikosh (1997)], i.e

1-Fy) =y "Ly, y>0,

for some slowly variate function L and some « € (1,2). This characterizes the

DA of an a-stable distribution with index o € (1,2). Therefore Fy € DA(«)
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and we have

E?:l (Y3) — an

2 — S, , (5.11)

for centering constants a, = nE(Y) and b, = naL(n). Notice that B(Y) < co
since a € (1, 2).

Condition (5.11) applied to the sequence (5.8) yields the risk reserve processes
in Furrer, Michna and Weron (1997). They show that such a process converges
to (5.9).

ii) If Fy is in MDA of the Gumbel distribution then E(X*) < oo for all k > 0 [see
Embrechts, Klippelberg and Mikosh (1997)]. In particular Var(Y) = ¢? < co.
This implies that Fy € DA(2), i.e. is in the DA of the normal distribution and

iz (Vi) —an (z/") RN - (5.12)

for centering constants a, = nE(Y) and b, = o/n.

Condition (5.12) applied to the sequence (5.8) yields the risk reserve processes
in Grandell (1977). He shows that such a process converges to (5.10).

=

Both approximations rely on the convergence of a sequence of risk reserves. The
restriction of the parameter £ is needed to ensure the existence of the a-stable Lévy
process. As we have seen this limit can be a Brownian motion or an a-stable Lévy
process. We will construct an approximating sequence of risk reserve process that can
be as close as needed to the limiting process but before we present a brief motivation
to our approach.

Let us consider the a-stable Lévy process of Furrer, Michna and Weron (1997)

with Lévy measure given by
o

Such a model was proven to be a good approximation for a classical risk reserve with

heavy-tailed claims distribution. We analyze further the approximation of Furrer,
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Michna and Weron (1997) by decomposing it into two sums containing the small and
large jumps.

Decompositions of a Lévy process in terms of a compound sum of large jumps
and a Brownian motion has been suggested recently in Asmussen (2001). Following
his model, consider an a-stable Lévy motion with Lévy measure (5.13), which can be

approximated by the following process:
X(t) = pet + oW (t) + Ne(2) t>0, (5.14)

where W is a standard Brownian motion and N, is the compound Poisson sum of the

jumps larger than e

N.(t) =3 AX(SI(IAX(s) = o).

s<t

The constants y, and o2 are given by

e = ~—/ zv,(dr)
e<|al<1

o / r2v,(dz) .
Jzl<e

Our motivation is found in the process of large jumps N.. Its Lévy measure is the
restriction to a finite interval of the Lévy measure of an a-stable Lévy process and is

given by:
. o
v (dy) = N lieoo (V) (5.15)

The process N, defined by such a Lévy measure is nothing but the large jumps of
an a-stable process defined by (5.13). The Lévy measure (5.15) defines a compound

Poisson process with jump distribution given by

€

F)(/e’a)(y) =1- (El;) ) ) Z €, a € (1; 2) s (516)

NCNSYEAN
€ €

Notice how the Poisson rate goes to infinity as € approaches zero. This gives an

and Poisson rate given by

infinite number of small jumps.
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We can see that, in a way, the a-stable motion of Furrer, Michna and Weron (1997)
always approximates the large claims with the Pareto distribution (5.16), regardless
of the underlying claim distribution. Our approach aims to improve this in the sense
that the large claims will be approximated by a generalized Pareto distribution instead
of the Pareto distribution (5.16). Extreme value theory models exceedances over a
threshold e using a generalized Pareto distribution. This yields a generalized Pareto
distribution that approximates better the claim distribution for large claims.

Now we can construct our approximation. Let J = {J(t)},5, be a Lévy process

with characteristics exponent given by
WJ@):i/‘[1—e“y%-wyL_LU@D]mxdy), sER, (5.17)
Ro

where the Lévy measure in (5.17) is proportional to the density function of the GPD

with location parameter 5 > 0 and shape parameter £ = 1/a, i.e.

/\mf)_aﬁﬁ(o,oo)(y)dy ) if % =ae€ (1) 2) y

Va(dy) = (5.18)

36 Bl 0,00) (¥)dly , it £=0,
for some A > 0. The process J is a compound Poisson process if 3 > 0. If § =0 and
¢ =1/a > 0 the process J is an a-stable Lévy motion with non-positive jumps as in

Furrer, Michna and Weron (1997). If & = oo the process J is a compound Poisson

process with Poisson parameter A and an exponential jump distribution with mean

3.

Notice that (5.17) is the limit, as € — 0, of the sequence of characteristic exponents
\I/(J‘:)(S) = /]R [1 — e syl 1y (y)} v{(dy) , seR, (5.19)
0

where the Lévy measure is the restriction of the measure (5.18) to a finite set away

from zero i.e.

Nopmigmileom@)dy, i l=ae(1,2),
v (dy) = 520,
1G] e P (¢ 00)(y)dy , if  £=0,
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where (1 and By are functions such that

as € = 0, and
Ba(e) NP

€

i

as € = 00. Such functions will be seen to be the scale function 8 of Theorem 5.2, f;
will be the scale function needed for a distribution in the MDA of the Fréchet and 3,
the one needed for a distribution in the MDA of the Gumbel distribution.

This sequence of characteristic functions defines, in turn, a sequence of Lévy
processes Je(a) converging weakly in the Skorokhod topology to J (see Jacod and
Shiryaev (1987) for a reference on limits of stochastic processes). This is because the
sequence of Lévy measures (5.20) converges to the measure (5.18).

Because of the decomposability property of Lévy processes we have that {Je(a)}

e>0
is a sequence of compound Poisson processes of the form

N2 ()
JEOW =3 v t>o0, (5.21)
i=1
where {Y;(E’a)} are i.i.d. following a generalized Pareto distribution with loca-
i=12,..

tion parameter € given by

1——(—0‘[3—1—(5L)a, y=e€, if a€(1,2),

afi(e)+y—e
FE(y) = (5.22)
_ly=e)
1—e %@ | Yy 2e€, if a =00,

The Poisson process N has rate
A = / v (dy) . (5.23)
Ro
If & = o0, the rate )\Ea) of the sequence of compound Poisson processes (5.21) becomes

A = \eTBm@ (5.24)
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On the other hand, if « € (1, 2) equation (5.23) becomes

Al — {_@&[TA(E)T“ . (5.25)

Now we are in a position to present our approach. The sequence (5.19), not the
limiting process, is the basis for our approximation. Theorem 5.2 implies that, for a
compound Poisson sum of r.v. following a distribution F’, the sum of excesses over a
high enough threshold ¢ is, approximately, a compound Poisson sum of i.i.d. general-
ized Pareto random variables. We can decompose the aggregate claims process (5.1)

into the sum of small and big jumps as follows

N() N()

N
S(t) = E;Yz = Zlyi]l(o,e)(yi) + ZY;]I(QOO)(Y;) , t>=20,
= i= =1

for any threshold € > 0.
Under considerations from extreme value theory, the second term can be appro-
ximated by a compound sum of generalized Pareto r.v. as suggested by the following

result:

Proposition 5.2 Let S be an aggregate claims process as in (5.1). Its aggregate

process of claims over a threshold € is defined by

N(t)
Se(t) = Yiljeoapy(Yi),  t>0,
i=1

where {Y;} are i.i.d. random variables with c.d.f. Fy such that E(Y;) = p and N is

a homogeneous Poisson process with parameter . And let Je(a) be the sequence of

processes defined in (5.21) and (5.22). If Fy € MDA(Hy) then

lim [P[Se(t) <y] - P[J™() <yl[ =0, ¢>0, (5.26)

The positive functions 3y and P2 in the definition of Je(a) are those of Theorem 5.2.

Proof. Notice that the characteristic exponent of the process S, is of the form

T, (s) = /R [ — Y] \ddFyyse(dy), seR, (5.27)
0
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where A and Fy|y>¢ are the claim rate and the conditional claim size distribution

given respectively by

A= A1 = Fy(d)], (5.28)
Fy‘y>€(y) = P(Y < y]Y > 6) . (529)

Since the generalized Pareto-stable process J% is the compound Poisson process

described in (5.21), its characteristic exponent can be written as
vl () = / [1 -] XGRS (dy), seR. (5.30)
Ro
Now, since Fy € MDA(H.) we have [see Embrechts, Kliippelberg and Mikosh (1997)]

lim [ Fypys (y) - B (y)| = 0. (5.31)

This is, the generalized Pareto distribution function F}(f ’a), defined in (5.22), converges
to the original conditional distribution function of claim sizes Fy|y~. as the threshold
€ becomes large.

Recall that the rate Al in (5.28) is proportional to the tail of Fy and that A
defined in (5.23), is given in terms of the functions B; and f,. Since these functions
(61 and ;) are those of Theorem 5.2 we have that

lim [A€ — A\ =0. (5.32)

E—00

This is because Fy belongs to H1. If it belongs to the domain of attraction of the
Fréchet then the tail of Fy deca;'s as a power function and A is close enough to
(5.25) for a large enough e. If it belongs to the domain of attraction of the Gumbel
then the tail of Fy decays as an exponential function and Al is close enough to (5.24)
for a large enough e.

Equations (5.31) and (5.32) along with dominated convergence imply that
- T
eliglo Vs (s) =¥ (s)| =0, forallseR.

This is, the difference of the characteristic exponents of both processes goes to zero

as the threshold € increases. This implies weak convergence of the random variables
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Se(1) and Je(a)(l) which for Lévy processes is equivalent to weak convergence of the
processes S, and J'* [see Jacod and Shiryaev (1987)]. This implies the result (5.26).
n

Proposition 5.2 means that the one-dimensional distributions of the processes
S. and J are equal for a large enough threshold e. This is what allows us to
approximate the original sum of excesses S, with the sum J of generalized Pareto
distributed random variables. In this way we reduce, to some extent, the difficulties
agsociated with the claims size distribution Fy when computing ruin probabilities.

We have that the sum of claims over a high enough threshold € can be approxima-
ted by one of the processes J& defined in (5.21) for some high enough e. Consider
the aggregate claims process S as defined in (5.1), because is a Lévy process it accepts

the following decomposition into two independent Lévy processes:

N() N(#) N@)

S@ =3 Y= Yilog(¥) + 3 Ylee(¥:), t>0.
=1 i=1 i=1

By Proposition 5.2, if € is a high enough threshold, the second term can be approxi-
mated by J yielding

N(t)

SE) ~ Y Vil (YD) +J00), ¢

i=1

WV
o

We are approximating the large jumps by a generalized Pareto-stable Lévy process
thanks to approximations used in extreme value theory. Now we focus on the com-

pound Poisson sum of small jumps of the original aggregate claims process

N(t)
X(t) =) Yilog(Y), t20. (5.33)
=1

the Lévy process X, has characteristic exponent
()= [ L-e¥odw),  seR,
Ro
where the Lévy measure (). is given by

Qe(dy) = Mo, (y)dFy (y) -
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Consequently we have that
BUX(0] = ¢ | vQud).
0

and

Var[X(t)] = t/ ¥’ Qc(dy) -

Ro
The sum of small jumps (5.33) is a compound Poisson process with claims following

a distribution with finite support. This distribution is given by
Qe(dy) _ Lo

Jg Qc(dx) Fy(€)

which is the conditional distribution Fy|y<. given that ¥ < ¢ and the claim epochs

occur at rate A = [p Qc(dz) = AFy(€). The variance of X, is then given by Ac(u? +

dFY|Y<e(y) = dFY(y) ) y > 0 )

o?)t where p. and o? are, respectively, the mean and variance of the conditional
distribution Fy|y .

This compound Poisson sum can be approximated via the classical diffusion appro-
ximation of Grandell (1977). This is possible because we have separated the large
claims. We have the following Lévy approximation of the aggregate claims processes

where the sum of small claims has been replaced by a Brownian motion with drift.

S(t) = GPS(t) = Aeptet + \/A(u2 + D)W () + J(t),  t>0, (5.34)

where Je(a) is the EVT compound Poisson approximation of the exceedances and W
is a standard Brownian motion.

The accuracy of the approximation (5.34) depends on the choice of € and on the
function ;. One of the goals of EVT is to approximate the tails of distributions in

terms of the generalized Pareto distribution. The mean excess function defined as
e(u) =EB(X —u|X >u), u>0,

plays a crucial role in optimally choosing the threshold ¢ and the scaling functions
Bi. The choice of f(¢) and e depends on whether Fy is in the MDA of the Fréchet
distribution or in that of the Gumbel distribution [see Embrechts, Kliippelberg and
Mikosh (1997)]. In both cases, the functions §; have been shown to be proportional
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to the mean excess function. Besides, the mean excess function can also be used to
determine the value e. A standard technique in extreme value theory is to plot the
mean excess function of the distribution we want to approximate. A good choice
for a threshold value is then the point at which this mean excess function becomes
linear. Recall from the literature [see Embrechts, Kliippelberg and Mikosh (1997) for
instance] that the mean excess function of a generalized Pareto distribution is linear
in u.

Notice that such an approximation based on a generalized Pareto-stable distri-
bution is sensitive to the tails of the underlying claim distribution. If Fy is in the
MDA of the Fréchet (o € (1,2)) then the process J' behaves like the large jumps of
the a-stable approximation of Furrer, Michna and Weron (1997). Our approximation
differs from theirs in the small jumps X, in Furrer, Michna and Weron (1997) the
small jumps are approximated by an a-stable Lévy process whereas in our approach
we deal separately with the small jumps using a Brownian motion.

If Fy belongs to the MDA of the Gumbel distribution then the process X. is the
diffusion approximation of Grandell (1977) for the claims under the threshold e. The
difference lies in how large claims are handled. In Grandell (1977) the influence of
large claims is also modeled by a Brownian motion. Our approach deals with the

large claims separately using a compound Poisson process Je(oo).

5.4 Ruin Probabilities for the GPS Lévy Process

The generalized Pareto-stable approximation (5.34) can be recognized to be a per-
turbed aggregate claims process in the spirit of Dufresne and Gerber (1991). For such
a model, the ultimate ruin follows a convolution formula which leads naturally to a
simulation scheme. Such simulation scheme can always be implemented regardless
of the original claims distribution Fy. This is because through the GPS approxi-
mation we substitute the original compound sum by a compound sum of generalized
Pareto random variables. Generalized Pareto random variables are either Pareto or
exponential, for which our simulation scheme is easy to implement.

Consider a risk reserve process where the aggregate claims process has been re-
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placed by the GPS approximation defined in (5.34) yielding

U.(t) =u+ct — [E,uet+\/ W+ aAWE) + 9], t>o0. (5.35)

Recall that w is the initial surplus, c is a constant premium rate defined as ¢ = Ap(1+6)
where @ is the security loading factor, A is the rate of occurrences of the claims and
p is the mean of claims severities as defined in (5.2). Now, the drift Ay is the
expectation of the compound sum of small claims thus if we decompose ¢ in terms of

Actte as follows:

c=x+0) = D [urso+r [Tuarw)] a+o)
’ 6 (5.36)

[Aeue +) / ” dey(y)} (146).

Substituting equation (5.36) into the risk reserve process (5.35) we have

Ul(t) = u +c"t — [\/Ae(ug ToW(t) + J§a>(t)] L 20,
where
¢t = A/ ydFy (y) (14 0) + Acpel .

Notice that if we choose the threshold e high enough then A fe * ydFy(y) is approxi-

)

mately the expectation of the process J and ¢* can be approximated by

@ =\ (11 6,)

where
By = 6(1 + —(Ag“—;;) . (5.37)
)\ He
AE“) is the rate of the jumps of Je *) as defined in (5.23) and u(a) is the mean of the

distribution of the jumps of Ji (this distribution is the generalized Pareto-stable
distribution given in (5.22)).
Thus we have the following generalized Pareto-stable approximation to the classical

risk reserve (5.2)
ngg(t)—u+c°‘)t—[\/ (12 + YW (t) + Tt ] , t=0. (5.38)
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where u is the initial surplus.

(@)

Since J¢ ' is a compound Poisson process, the approximation can be seen as a

@)

classic risk reserve process with I ag aggregate claims process and perturbed by a

Brownian motion 1/A(u2 + 02)W. Recall that, because of the way we have defined
@) we have that A% 1 is the mean of the process J&.
Consequently, we have the following approximation for the corresponding ruin

probability
Yu) = Plinf{t>0]u+ct—S() <0} < oo
~ P[inf{t>0|u+0(°‘ — VN (E T oW (L) — J@() }<oo]
= Yops(u) .

Dufresne and Gerber (1991) found an expression for the ultimate ruin probability
for a perturbed model of the form (5.38). The ultimate ruin probability is given by
(1.16) which in this context yields

1 — ¢aps(u 292 1= )P H ™« HF (), w0, (5.39)
k=0
where 65 is the security loading of the approximating process as defined in (5.37), H;

%ﬂ (¢! is the premium rate and

is an exponential distribution with parameter { =
D is the infinitiesimal variance of W) and H, is the so-called ladder distribution. H;
and H, are the distributions of two independent random variables. In this case they
are given by
Hi(z)=1-¢7", z>0,
where
2¢le)

SN

and
1- (@)
[ 1= FE(s)] ds

This implies that the ultimate ruin probability ¥gps(u) is the tail of the distri-

Hy(z) = z>0. (5.40)

bution of a compound geometric random variable L, i.e.
wgps(u) = ]P(L > ’I.L) , w20 s
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where the random variable L is sum of the form
=L+ Z [ @ 4 1 2)} (5.41)

where M is a geometric random variable with parameter 6, {Lgl)} are i.i.d. ran-
i=0,1,...

dom variables with distribution H; and {ng)}i_l , are iid. random variables with
distribution Hy. M, Ll(l) and LZ@) are independent.

This allows a straight forward simulation algorithm for the ultimate ruin proba-
bility of our approximating GPS risk reserve. It is sufficient to simulate K copies of
the random variable L as defined in (5.41) and then compute the estimate for the tail

of its distribution
Yaps(u) =P(L > u) = E [[{154] ~ ZH{Lk>u} (5.42)

where L* are the simulated copies of L.
Notice that each simulated random variable LF is a function h of the random

variables in the decomposition (5.41)

L*=h <Mk, L {Lf, 1P+ ) .
4=1,2,...,Mj,

In order to simulate L* we need to simulate these random variables first. This poses
no problem since M and L§1) are geometric and exponential random variables, re-
spectively. As for the copies of LZ@), the distribution Fl(f’a) is a generalized Pareto
distribution, therefore it is either a Pareto or an exponential distribution, as given
in (5.22). The transformation defined in (5.40) for a generalized Pareto distribution
stays in the generalized Pareto family. This is, H» is also an exponential or a Pareto,
which are easily simulated. Implementing a simulation for the original process is
not always plausible, it depends on the underlying claim size distribution Fy. Our
approximation circumvents this inconvenient since a simulation algorithm is always
available.

The particular form (5.41) of the ruin probability for the GPS allows for the im-

plementation of well-known bounds for compound geometric sums. Cai and Garrido
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(2002) have established bounds for the ruin probability of a perturbed ruin model
with heavy tailed claims distribution as in (5.38).
In the last section we present some numerical results for some particular cases of

claim distributions.

5.5 Numerical Results

We present numerical results for two risk reserve processes, one in each domain of
attraction. These two examples serve only as illustrations since, under extreme value
theory considerations, they are approximated by distributions in their same class.
However, the same exercise can be done with any other claims size distribution be-

longing to the domain of attraction of the Gumbel or the Fréchet.

Table 5.1: Comparison of ¥(u) for a classical risk process (A=1, § = 0.05 and
Pareto claims) with Ugpg(u), its corresponding GPS approximation (100,

000 simulations).

(+-0.003
0.223 0.393 0.345  (+-0.003
0.122 0.219 0.188  (+0.002
0.044 0.066 0.055  (+-0.001

20
20
20

o =22

The first risk process has Pareto claims with distribution function

(LAY
RO)=1-(55) . v>o0.
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with 8 = 0.5, a safety loading factor # = 0.05 and claims occurrence rate A = 1. We

chose the scaling function to be

a

which is proportional to the mean excess function of the Pareto distribution.

Table 5.1 shows results for different parameter values of § and «. We compare
the ultimate ruin probability of the classical risk reserve as given by (5.2) with our
estimate of ultimate ruin probability given by (5.34). Since there is no closed form
for this process in the Pareto case, we present bounds for the ruin probability. Such
bounds have been calculated following Cai and Garrido (2002). We also include the
threshold ¢ used for the GPS approximation. We performed 100,000 independent

replications.

Table 5.2: Comparison of ¥(u) for a classical risk process (A\=1, § = 0.5 and
exponential claims) with ¥gpg(u), its corresponding GPS approximation

(100, 000 simulations).

(+-0.002)
00547  0.0541 (+-0002) 4 -1.13%
00238 00234 (+0001) 4 -1.68%

0.2195 0.2238  (+-0.003) 6 1.98%
0.1259 01227  (+0.002) 6 -2.56%
0.0723 0.0715  (+-0.002) 6 -1.04%

0.2897 0.2786  (+-0.003) 8 -3.84%
01910 01931  (+-0.002) 8 1.10%
0.1259 01227  (+-0.002) 8 -2.56%

The second risk reserve process to be compared has exponential claims with dis-

tribution function given by
Fy(y)zl—e_%, y>0,
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a safety loading factor § = 0.5 and claim occurrence rate A = 1. We chose the scaling

function to be
ﬁg((‘:) - 6 )

which is the mean excess function of the exponential distribution. The true value

reported is the theoretical value which in the exponential case is known to be

___Bu
e +P | u>0.

v =13

Table 5.2 shows results for different parameter values of 8. We compare the ulti-
mate ruin probability of the classical risk reserve as given by (5.2) with our estimate
of ultimate ruin probability given by (5.34). We also include the relative error of
our approximation with respect to the true value and the threshold ¢. We performed
100, 000 independent replications.

These two distributions are representative of the families defined by the domain of
attraction of the Fréchet and the Gumbel distribution. The approximation lies within
an acceptable 5% of the true value or within the theoretical bounds. Further testing
reveals that the accuracy of the approximation strongly depends on the threshold e.
For a heavy tailed distribution the threshold has to be quite high to yield a decent
approximation whereas for the medium tailed distributions a somehow lower value

does it.

5.6 Pricing of Reinsurance Premiums

The problem of calculating insurance premiums is an important topic in the actuarial
literature [see for instance Wang (2000) and references therein|. Given a random loss
X we want to define a premium principle p that, in turn, would define a suitable
loaded premium p(X) for the random loss X. Among other properties, such principle
should meet the net profit condition p(X) > E(X). Wang (1996) discusses insurance
premiums following an axiomatic approach. He defines suitable properties that a
premium principle should posses and then search for insurance premiums satisfying

the stated requirements. This leads to the concept of coherent insurance premium or
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coherent risk measure in a broader sense [see Artzner (1999) and Artzner et al. (1999)].

We use the following definition from Reesor (2001):

Definition 5.4 An insurance premium p is said to be coherent if for any two random

losses X and Y we have
i) Monotonicity: If P(X <Y) =1, then p(X) < p(Y).
it) Positive Homogeneity: For all k 2 0, p(kX) = kp(X).
i) Translation Invariance: For all k € R, p(X + k) = p(X) + k.

i) Subadditivity: p(X +Y) < p(X) + p(Y).

At this point, we would like to acknowledge that there is not consensus yet in the
actuarial literature on this axiomatic construction of risk measures. Subaditivity, for
instance, is highly contested by some researchers [see discusion to Artzner (1999) for
instance]. Without any further discussion on the ongoing debate regarding coherent
measures, we adopt, for illustration purposes, the axioms as stated in Definition 5.4.

Notice that if p is coherent then it satisfies the net profit condition p(X) > E(X).
A natural way of loading a net premium is to transform the underlying probability
measure of the random loss X so that the new expectation under the new measure
would act as a coherent premium for the risk. It turns out that if we search for the
closest (in some sense) probability measure P? to the original measure P, we obtain
a very tractable transformation that serves our purposes. Such a measure P? is the
so-called minimum relative entropy measure and its closedness to the original measure
PP is given in terms of the relative entropy distance [see Reesor (2001) for a thorough

discussion].

Definition 5.5 A minimum relative entropy probability measure is the solution to

the following optimization problem:

r%in H(P*, P) , (5.43)
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subject to the constraints

E[GZ(X>]:CZ7 7;—':].,2,...,M,

[ =1,

and P* is absolutly continuous with respect to P (P* < P). The distance H(-,-) is the
relative entropy distance [see Reesor (2001)].

Without further discussion on relative entropy we state the following result that gives

the form of this kind of measures.

Theorem 5.3 If there is a measure which is the solution of (5.43), then it is defined

by its Radon-Nikodym derivative with respect to the original measure PP as follows:

dP? M
op &P {Z 0:Gy(X) — ¢(19)} ; (5.44)

where {Gi};_ 4y are the constraints in (5.43), U is a vector of parameters and ¢

Reesor (2001) establishes the relation between relative entropy and the distortion

s defined as

M
e?®) = Fp {exp [E %:Gi(X)

i=1

provided that Ep {exp [Zf\il ﬂGi(X)}} < 00.

approach of Wang, Young and Panjer (1997). In either one of these contexts, there
exist conditions that assure the existence of a coherent insurance premium in terms
of a Choquet integral. We will not elaborate further on the Choquet integral and
its role in definig coherent insurance premiums. Instead we state a result that links
relative entropy, distortion and coherent risk measures and that will be the basis for
our application. But before we just define the concept of distortion as found in Wang
(1996).

Definition 5.6 A distortion function g is any non-decreasing function on [0,1] such

that g(0) = 0 and ¢g(1) = 1.
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In terms of such a distortion function we can distort a probability distribution for
premium calculation purposes as follows: Let F' be the distribution function of the
random loss X. In terms of the distortion function g we can define a new distribution
function F*(z) = 1—g¢[1—F(z)]. As we have mentioned, a probability transformation
via a distortion function g and a probability transformation via relative entropy are

equivalent.

Theorem 5.4 A minimum relative entropy measure PY defines a distortion function

g (and vice versa) in the following way:

g(z) = exp [Z 0:6:(z) - ¢(z9>} ,

where G; and ¢ are as in Definition 5.5. Moreover, if g is a concave function then

Eps defines a coherent insurance premium.

Now we can use the generalized Pareto-stable Lévy approximation to price a
reinsurance layer above a retention level e. Because of Proposition 5.2, the GPS
process J& can be used to model claims in excess of a threshold e. Since J& is
a Lévy process we can focus on the random variable Je(a)(l). We would like to find
an insurance premium for this risk using a probability transformation that satisfies
an optimization problem like in (5.43). By doing so, we circumvent the problem
of working an insurance premium for a process based on the original claims. We
use extreme value theory to approximate the exceedances over a retention € by a
generalized Pareto-stable Lévy process eliminating the case-by-case dependance of
the classical process.

We choose the following setting as an illustration:
r%in H(P*, P),

subject to the constraint
Ee[J(1)] = C,

[ -1,
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and IP* is absolutly continuous with respect to P (P* <« P). Notice that we are forcing
the mean Ep[Je(a)(l)] to equal a certain value C. In this setting the function G is the
identity function.

By Theorem 5.3 we have that such a transformation exists and is given by its

Radon-Nikodym derivative with respect to the original measure P as follows:

1

s = exp [1J00) ~6(9)] DR, (549)

where ¢ is defined by e*®) = E [exp (19.]5(0‘)(1))]. The measure transformation de-
fined by (5.45) can be recognized to be an Esscher transform of the original measure
[see Raible (2000) for a discussion on Esscher transforms for Lévy processes].

Since the GPS Lévy process is the compound Poisson process defined in (5.21),

we have that the density process %i in (5.45) is given by
P o BJD(1) — ” [ — 1] M@ dFE (y) 9 eD (5.46)
le; - P € 0 € € Y Y ) ) .

where D is a neighborhood of R containing zero.

Now, this density process is well defined if Eplexp(9Ji*(1))] < co. Recall that
the jump size distribution Fl(f’a) for a generalized Pareto process can be either an
exponential or a Pareto distribution. If it is a Pareto distribution, then the moment
generating function Ep[exp(z‘}Je(a)(l))] does not exist for a neighborhood D of zero
and the density process % is not defined. In light of this, we focus first on the case
where the original claims size distribution belongs to the domain of attraction of the
Gumbel distribution so that F}(f’a) is an exponential. The case of the Fréchet domain
of attraction is dealt with in a different fashion that avoids the use of the Esscher

transform.

If Fl(/e’a) is an exponential distribution the density process in (5.46) becomes

9
% = exp {19J§“>(1) — Al {————1 _;2(6)19 — 1]} , U< @l@ :

By Theorem 5.4 we have that if ¥ < 0 then, the new measure constructed via %

defines a coherent insurance premium for the reinsurance layer modeled by Je(a)(l) in

the following way: p(Je(a)(l)) = Eps [Je(a)(l)]. Recall that such transformation can be

seen as induced by a distortion function g defined through Theorem 5.4.
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This is only one distortion or probability tranformation that leads to a coherent
insurance premium for the reinsurance layer Je(a)(l). Wang (1996) discusses other
choices for the distortion function g that lead to suitable coherent risk measures.

In order to deal with the case when the original claims distribution belongs to
the Fréchet domain of attraction, we can use, for instance, the proportional hazards
distortion of Wang (1995). If we let g(z) = z*, for a < 1, we have a concave distortion
function that implies a probability measure transformation. Because of Theorem 5.4

we have that

g(X) = aX*
= exp|[(a —1)In(X) + In(a)]
= exp[IG(X) —¢(9)] ,

where G(z) = —In(z), 9 = 1 — a and ¢(¢) = In (5).

We have that the last equation is the density process % leading to a transform
measure PY. Such a probability measure is a minimum relative entropy measure as
in (5.43) subject to the constraint Ep[— In( e(a)(l))] = (C. This distortion leads to
a proportional transformation of the hazard rate of the random loss, this is where
the name proportional hazards come from. The effect of such transformation is to
inflate the fatness of the tail of the loss distribution. From Theorem 5.4, we have that
the expectation Eps under this transformed measure defines a coherent insurance
premium for the reinsurance layer J{* (1) when the claims distribution belongs to the
Fréchet domain of attraction.

In this section we have described how we can define loaded insurance premiums
for a reinsurance layer with retention limit e. The use of the generalized Pareto-stable
approximation simplifies the case-by-case dependance that using the classical model
would bring otherwise. The distortions we presented are only illustrations, varying the
constraints in the optimization problem (5.43) or using different distortion functions

g bring about a wide range of suitable insurance premiums.
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5.7 Conclusions

Motivated by the adequacy of a-stable Lévy motion to approximate risk reserve
with heavy tailed claims we construct a new approximation in terms of a general-
ized Pareto-stable Lévy process. We discuss how the a-stable Lévy reserve of Furrer,
Michna and Weron (1997) approximates the large claims with a Pareto distribution.
This leads to the idea of splitting the claims of the aggregate claim process into large
and small claims and treat them separately.

We use the EVT classification of distributions in terms of domains of attraction to
approximate the large claims. The recent work on approximations of small jumps of
Lévy processes suggest the use of a Brownian motion to model the small claims. Our
approach is then the Lévy process resulting from the independent sum of a compound
Poisson process and a Brownian motion. This leads naturally to a simulation scheme
that allows us to estimate the ultimate ruin probability of the approximating process.

This represents a universal simulation approximation for the ultimate ruin proba-
bility in the classical model. The GPS approach can be implemented for a classical
risk process with any claims distribution belonging to either the Fréchet or the Gum-
bel domain of attraction. This is because we have reduced the problem of simulating
a risk process with an arbitrary claims distribution Fy to simulating a risk process
with a Pareto or an exponential claims distribution.

The generalized Pareto-stable approximation can be used to define a loaded pre-
mium for a reinsurance layer above a retention level e. We discuss how using the
concept of coherent risk measure and its links to relative entropy we can transform
the original probability measure to obtain a coherent premium principle. By using
the generalized Pareto-stable Lévy process instead of the original process, we can
define a premium principle that holds for all kinds of light and heavy tailed claims
distributions.

In the numerical results we present empirical confirmation of the accuracy and
applicability of our approach. Figures 5.1 and 5.2 show that, once a high enough
threshold ¢ is chosen, the proposed approximation yields estimates for the ultimate

ruin probability that lie within 5% of the true value or, at least, within well-established
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theoretical bounds.

Further analysis should be made on the role of the threshold e¢. The applicability
to the GPS approximation of bounds for the ruin probability in the perturbed model
should be studied further. The theoretical bounds presented in Cai and Garrido
(2002) are of a very general form. And therefore, they can be applied to, both, a
classical risk model as well as to a perturbed model. This might provide grounds
to compare the performance of the GPS approximation with respect to the classical

model and the influence of the threshold e.
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Chapter 6

On a Periodic Risk Reserve

Process: A Simulation Approach

6.1 Introduction

The problem of modeling claims occurring in periodic random environments is dis-
cussed in this chapter. In the classical approach of risk theory, the occurrence of
claims is modeled by counting processes which do not account for claims following a
periodic pattern. We discuss how the use of the classical approach to model a perio-
dic portfolio might lead to the miscalculation of important risk indices, namely the
associated ruin probability.

In previous chapters we worked with a general risk model
Ult)=u+ct—Z(t), t>0, (6.1)

where Z is a Lévy process. In order to deal with periodicity we have to allow Z to
belong to a larger family. We let Z be a non-homogeneous compound Poisson process.
Such processes belong to the family of processes with independent increments.

From the theory of semimartingales with independent increments we have that

the process
ea[Z(t)—ct]

e¥ile)
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is a martingale, where ¥, is the Laplace exponent (or Lévy-Khintchine representation)
of Z(t) — ct. This leads to extensions of well-known results to the periodic model [see
Asmussen and Rolski (1994)] and, in our approach, allows us to implement a straight
forward simulation scheme.

We present a periodic model, in terms of non-homogeneous Poisson processes,
that has potential practical applications. We base our discussion on some properties
of the proposed periodic intensities. We adapt existing simulation techniques to this
periodic model, which provides a practical way to evaluate ruin probabilities.

A general insurance portfolio consists of several independent contracts issued for
a limited time period (usually one year). During this period the company faces
claims from policyholders, multiple claims from the same portfolio are possible. For
some portfolios, these claims are caused by periodic phenomena. This, for instance,
is the case of property insurance issued in geographical areas where hurricanes or
floods are of concern. Assuming that the risk characteristics of such a portfolio are
preserved through different periods, then a non-homogeneous Poisson process with a
periodic intensity describes, in a natural way, the occurrence of claims in this portfolio.
This periodic case has been discussed in Asmussen and Rolski (1994) and Chukova,
Dimitrov and Garrido (2000). The discussion in Asmussen and Rolski (1994) relies on
martingale properties of the non-homogeneous Poisson process, whereas the approach
in Chukova, Dimitrov and Garrido (2000) comes from reliability theory. Here, we
propose a practical simulation approach that relies on the periodic nature of certain
intensities.

As in the classical risk model, the aggregate claims process for such a portfolio is
given by

N()

Zt)y=Y Y, t>0, (6.2)

where {Y;} are i.i.d. random variables [with c.d.f. Fy, E(Y;) = p and with m.g.f.
My ()] representing the claim amounts. N is a non-homogeneous Poisson process
(NPP) with periodic intensity A(¢). This intensity is a function of time and drives

the seasonality at which claims occur.
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This compound process is fundamentally different from the classical compound
Poisson process as implied by the following definitions.
Following Cinlar (1974), we first give a formal definition of a non-homogeneous

Poisson process.

Definition 6.1 A non-homogeneous Poisson process (NPP) Ny is a counting process

such that
i) E(Ny) < oo fort >0;
ii) Niy— N; is independent of Ny, for 0 < s <t (i.e. it has independent increments).

iti) Ny — Ny is Poisson distributed with mean A(t) — A(s). Where the function
A(t) = E(Ny) is continuous.

The function A(t) is called the integrated intensity of N; and it has the following

representation
t
A(t) = / A(s)ds , t>0,
0
for some positive function A;. If A(t) = At for some constant A\, N; is a homogeneous

Poisson process (PP).
Chukova, Dimitrov and Garrido (2000) introduced the following notion

Definition 6.2 A non-homogeneous Poisson process Ny is said to be periodic with

period < if its intensity function X, is pertodic, i.e. it satisfies
Alng +1t) = A1), n=0,1,2 ..., t>0,
or in terms of the integrated intensity
Alng +t) =nA(s) + A(t) , n=012,..., t>0.

This definition of periodicity is given in connnection to random variables exhibiting
the so-called almost lack of memory property. These random variables were first
introduced by Chukova and Dimitrov (1992). For a review of the results on almost

lack of memory see Morales (1999).
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In Figure 6.1 we show realizations of two different counting processes. The one
on the left is a sample path of a homogeneous Poisson process with mean A = 5/6,
and the one on the right is for a periodic non-homogeneous Poisson process with
period ¢ = 6 and with an intensity such that A(6) = 5. Both processes have the same
expectation over the period ¢ = 6. However the way in which claims occur in time
is different, as described by their corresponding intensity functions depicted in the
left upper corner of each graph. We can see that while the one on the left is always

constant the one on the right shows a high season in the middle of the period.

Figure 6.1: Homogeneous and non-Homogeneous Poisson Processes

Another difference between an aggregate claims process driven by a PP and one
driven by a NPP is that the latter depends on the initial season s. The initial season s
is the point at which we start our observation or measurement of the process. This is
not a problem in the homogeneous PP since its intensity is constant in time, but the
NPP depends on the level of the intensity function A, which will affect the seasonality
of the NPP.

Non-homogeneous Poisson processes are not Lévy processes but they belong to
the wider class of processes with independent increments. From the theory of semi-
martingales with independent increments [see Jacod and Shiryaev (1987)] we have

that the characteristic exponent of a periodic non-homogeneous compound Poisson
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process is

(1) = /R (1— ™) A(tw(dz), te0,d, (6.3)

where A; is the integrated intensity of the Poisson point process and v is the law
of the jumps. This uniquely characterizes a periodic non-homogeneous compound
Poisson process. Notice that at point ¢ = ¢,2¢,3¢,... ,ng,... this characterization
does not depend on t and it reduces to the characteristic exponent of a compound
Poisson with Lévy measure A(¢)v(dx).

Figure 6.2 shows the same intensity function A under different initial season s. In
the upper graph we have a periodic intensity with a high season in the middle of the
period, while the second graph shows the same intensity but starting at a different
initial season s. The resulting seasonality is different, now with two high seasons, one
at the beginning and another at towards the end of the period. These two intensities
will produce different NPP and, as a consequence, they will produce different risk

processes with different ruin probabilities.

Figure 6.2: Effect of the of the initial season s
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Consider the model used for risk reserves under periodic environments [Asmussen

and Rolski (1994)]

USt)=u+ot—29@1), t=0, (6.4)

123



where Z(®) is the aggregate claims process defined in (6.2) with initial season s. Here
u is the initial surplus, ¢ is a constant premium rate defined as o = A\*u(1 + 6) where
6 is the security loading factor and A* = A—EQ is the average intensity of the NPP over
the period ¢. The net profit condition for this model is ¢ > A\*1 [Asmussen and Rolski
(1994)].

Risk theory is concerned with functionals of the reserve process. One of particular
interest is the associated ultimate ruin probability 1. This functional measures the
riskiness of the portfolio and can be used as a risk index for reinsurance purposes
[Bowers et al. (1986), Asmussen (2000)]. The ruin problem in the periodic model is

based on the random variable
T (u) =inf {t > 0: UO(t) =u+ ot — Z)(t) <0} .

The main interest lies in evaluating the probability of ruin over a finite or an infinite

horizon:
P (u) = P{TO() <t}, 0<t<oo; and ¥ (u)=P{T®(u)= oo},

where the functions () and ¢t(8) are functions of the initial level u as well as of the
initial season s.

It is well known [Grandell (1991)] that if the premium p is a function of time
such that o(t) = p(l + 0)A(t), then the reserve process (6.4) is equivalent to the

transformed process
Ut)=U® [A'@)] =uv+pdl+0)t—2Z(t), t>0, (6.5)

where Z, is a compound Poisson process driven by a PP with mean one. The time
scale A7}(¢) is called the operational time scale of a NPP. Since the process in (6.5) is
a classical risk reserve process driven by a PP with mean one, the periodic problem

has been reduced to the non-periodical case.

The problem arises when we work in a more realistic setting where the premium
charged for a contract is constant over a year (or period ). In this case g is not a
function of time but is proportional to the average of the intensity over the period ¢,

ie. o= u(l+ 0) where X\* = i\éﬁ
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In Asmussen and Rolski (1994) they derive Lundberg-type bounds for the ultimate
ruin probability 1(*). Their analysis is an extention of an approach introduced in
Gerber (1973). It relies on the fact that the NPP is still an infinitely divisible process
and therefore, from semimartingale theory of processes with independent increments
[Jacod and Shiryaev (1987)], we have that the process

12 () ~et]

eft (@)

is a martingale, where k; is the cummulant function (or Lévy-Khintchine representa-
tion) of S(t) = Z*)(t) — ot. This is a rather general property that holds for a wide
class of risk reserves processes and yields Lundberg-type bounds for the associated
ruin probabilities [see Sgrensen (1995) and Morales and Schoutens (2003) for some

examples]. Note that since Z(*) is a compound NPP then
ki(0) = AWMy (a) — 1] — Xt + O, ta 0.

Notice that x; is periodic with period ¢ and that at the end of each period it reduces

to
Kla) = X¢[My(a) = 1) — pA*s(1+0)a, a0,

since A®)(¢) = A\*¢. This is the cumulant function for the classical (homogeneous) case
[see Asmussen and Rolski (1994)]. Recall from the literature [Bowers et al. (1986)]
that the adjustment coefficient R is defined as the solution of xK(R) = 0.

Our approach relies on path-wise properties of the chosen intensity A to approxi-
mate, via simulation, the ultimate ruin probability in the periodic case.

The main problem that arises when simulating ruin probabilities is that, for certain
simulated paths, the event ruin does not occur and there is no stopping rule for the
simulation. We deal with that problem by changing the measure to one, under which
the ruin event occurs with certainty. Then, switching back to the original measure, we
obtain an estimator of the ruin probability. This application of importance sampling

in risk theory can be found in Asmussen (1985) and Vazquez-Abad (2000).
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6.2 The Model

Consider the periodic risk reserve process presented in (6.4)
UGt =u+ot —Z9(), t=20, (6.6)

where Z(®) is a periodic compound Poisson process driven by the integrated intensity
A® . Henceforth, we make the assumption that ¢ = 1. This is in no way restrictive
since the length of a period can be arbitrarily set by the company.

Chukova, Dimitrov and Garrido (2000) considers intensities having a beta shape
and argue that the beta function is flexible enough to account for different seasonal
patterns. However, working with this function requires approximations of the incom-
plete beta function and, in addition, might yield discontinuous intensity functions A.
Here, we use a function proportional to the normal density to model the claims arrival
intensity. This has the advantage of being continuous and requiring only values of a

standard normal distribution for numerical computations.

6.2.1 Bell-Shaped Intensities

We consider bell-shaped intensities of the form

A t—1/2)2
A(t) = e : fort €[0,1),
ov2m
An+t) = A1), for | n=0,1,2,..., (6.7)
where
A* A*

A=

FL)-a(-L) W) -1’

and ® is the standard normal distribution function. In Figure 6.3 we show different
shapes of this family of intensities parameterized by ¢ and A*. The value o drives
the variability of the seasons while the factor A* is the area under the intensity over
a period, i.e. A®(1) = )\*. These intensities show a high season in the middle of the
period, its amplitude depends on the factor o, the smaller it is the more extreme the

seasons are. This choice for the intensities is in no way restrictive. Given an initial
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Figure 6.3: Different Bell-shaped Intensities
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season $ > 0 we can replicate almost any seasonal pattern in a rather smooth fashion,
as can be seen in Figure 6.4. By changing s we go from a pattern with a high season
in the middle (Figure 6.3), to one with a high season at the begining and a low season
towards the end of the period (Figure 6.4). This three parameter family is defined
through

A = At +s) , s>0.

where the additional parameter s is the initial season.

Figure 6.4: Bell-shaped Intensities with Different Initial Seasons
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The difference between this family and the beta family proposed in Chukova,
Dimitrov and Garrido (2000) is that for the bell-shaped intensities the change in the

seasons is always smooth whereas in the beta intensities this change can be sometimes
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abrupt. Another friendly feature of this family of intensities is that its integrated
intensity and its inverse it is given in terms of the cumulative function of a standard
normal distribution. This makes this family easier to implement.

The integrated intensity for an initial season s = 0 is given by

A(t):LtJA*+/\{<I> (t_”.l‘l—/z—>-q><—%>}, >0, (6.8)

g

where || is the maximum integer function and & is the cumulative function of a
standard normal distribution. For other initial season s the integrated intensity can
be written as

AO@t) =Alt+s)—As), t=0.

The inverse A~! is needed in simulations and its expression is also simple. For an

initial season of 0, it is given by
VRN L1 fa—Na/N] 1 1
AHa) = L)\*J +0® { 5 + @ ) (ts (6.9)

where ®~1 is the inverse function or quantile function of a standard normal distri-
bution and |-| the maximum integer function. For any initial season s > 0 we can

write

AOT = A (g + Als)) — s .

Another function related to the intensity family that is of interest to our study is

the function

A*t
) (f) = AL
n®(t) IOk t>0. (6.10)

The function (6.10) measures at every instant the difference between the periodic
integrated intensity A®) and a constant integrated intensity A\*t. We show in Figure
6.5 both functions so that we can observe how this difference varies. Different func-
tions A; values of o are plotted over the straight line with slope A*. Notice that the
function (6.10) is bounded for all ¢ > 0 by

T = max Xt
(== UNOION i
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Figure 6.5: Integrated Intensities
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Neither one of them depend on the initial season s because of the periodic nature of

A®). The following bounds for the integrated intensity are immediate:
AL < Xt < ptAB(2) |

We can compute the time points at which these maxima occur for the bell-shaped

— \/—202 In (%U@) ,

ty = ';- + \/—202 In (—i\—a\/ 27r> :

Estimators for the parameters for these intensities can be obtained from raw data

intensities. These are given by

[N RS

td =

and

using standard techniques for the normal distribution.

6.3 The Simulation Model

Consider the embedded discrete risk reserve model

UNT,) =u+oln—>» Y, n=012,..., (6.11)

=1
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where T), is the n'® arrival time of a NPP with intensity A(*), g = p)*(1 + 6) as de-
scribed in (6.4) and Y;’s are i.i.d. positive random variables with distribution function
Fy.

The aim is to simulate the stopping time adapted to this reserve process given by

T:min{nzl,Q,---:u+ng<ZY;}. (6.12)
i=1

Notice that 7 is a function of v and represents the number of claims observed before
ruin . The time to ruin 7)(u) is the 7™ arrival time, i.e. T®)(u) = T.

In order to simulate the arrivals T,, we use the fact that a NPP under the oper-
ational time scale is a Poisson process with rate one. This result is presented in the

following lemma.

Lemma 6.1 (Cinlar (1974)) {11, T3, ...} are the arrival times of a non-homogeneous
Poisson  process  with  integrated  intensity A if and  only  if
{A(T1), A(T3)...} are the arrival times in an homogeneous Poisson process with mean

one.

Lemma 6.1 implies that E; = A(T;) — A(T;-1) is exponentially distributed with

mean one, for all i =1,2,.... As a consequence
To=AYEi+ -+ Ep), (6.13)

where the E;’s are exponentially distributed with mean one.

In order to simulate the n® arrival T}, of a NPP with integrated intensity A,
we need to simulate n eprnential variates with mean one and then evaluate (6.13).
This poses no problem as long as the function A~} is invertible, as is the case for the
particular bell-shaped intensities chosen in this study.

Our main concern at this point is the fact that the time to ruin (6.12) is not
always finite and there will be paths for which the stopping rule will not exist. This
is an impediment to any straight-forward simulation analysis.

The way to go around this problem is to use importance sampling [Asmussen

(1985)]. The idea is to simulate (6.12) under a measure where ruin is certain (and
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therefore all the paths admit a stopping rule) and then to switch back to the original
measure to define an estimator of the ruin probability. This technique, commonly
used as a variance reduction technique in simulation applications [L’Ecuyer (1994)],

relies on the Radon-Nikodym theorem.

Theorem 6.1 Let P, Q be two probability measures in (2, F) and P is absolutely
continuous with respect to Q, then there exists a non-negative r.v. Z such that Ep[Z] =
1 and
P(4) = / Z(W)dQw), VAEF.
A
In particular

Ep{h(X)] = / B(X (@))dP(w) = / B(X (@) Z(@)dQ(w) = Eqlh(X)Z] .

Q Q

Z(w) = %@“ﬂ is the Radon-Nikodym derivative.

This allows us to write the expectation under one measure of a random variable
in terms of an expectation under a different measure.

We can write the ultimate ruin probability 1) as an expectation of a function of

(6.12) as follows
Y (u) = B [[ireoey)]

where I; 4} is the indicator function over the set A. In our simulation model, this last
expression is, in turn, a function of the independent random variables {(E;, Y;)|i =
1,2,...,7} where E; is exponentially distributed with mean one, and Y; is distributed
as Fy for alli=1,2,...,7. Recall that the random variables {E;};—1 2 . are not the
interarrival times but the independent random variables used to define the interar-
rivals. We would like to find a measure Q under which If;<; =1 a.s. and Q;%l <1
[see Vazquez-Abad (2000)].

Now, consider the process (6.11) simulated under a new measure, under which
the claims severity distribution is the R-Esscher transform of Y and the underlying

variates F;’s are exponentially distributed with parameter a = (6n~ + 1) where
- . At
= Orgtlgl {——A(s)(t)} , (6.14)
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and for some § > 0. Notice that the periodic nature of A®) assures the existence of
1~ > 0 which does not depend on the initial season s.

The transformed severity density function is

efty

ff’(y) = My(R)fY(y) )

where My is the moment generating function of the claim severity distribution and
the T,, are now the arrival times of NPP with integrated intensity A®)(¢) = (67~ +
1)A®)(t). This last fact comes from the form of our particular choice for the intensity.
If E;’s are exponential with parameter a we have that T}, = AYHE + -+ E})
where E;’s are exponential with parameter one. Using (6.9) for A~! we see that this
implies T, = aA~Y(E; +---+ E,) and hence the arrival times Tn are the arrival times
of a NPP with integrated intensity 7\(5), which is proportional to the original one. We
set R = ;T(%Zﬁ'

In a general semimartingale setting we know that ruin is certain if [see Sgrensen
(1995)]

o(t) < E[Z(t)], for allt >0,

where ¢ is the premium function, which in this case is the linear function ot, and
E[Z(t)] is the expectation of the aggregate claims process. Then for the periodic case

it reduces to [Asmussen and Rolski (1994)]
o< E[Z(1)]. (6.15)

Under the new measure the expected claim amount per unit time E[Z(1)] is

E[N)E[T] = (67~ + 1)A" [%’;Eg] .

Let us set R = R* where R* is the solution to
My(R)=6n"+1=Ru(l+0)n +1. (6.16)

Notice that this is analogous to the definition of the adjustment coefficient R and it
implies that R* < R.

Then the expected claim amount per unit time becomes

E[N(1)E[Y] = \*ML(R) .
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This implies that if we want ruin to be certain under the new measure [condition
(6.15)] we need to set AX*My (R*) > o = A*u(l +90).
Following Vazquez-Abad (2000), we have that under this new measure the ruin

probability can be expressed as

pOu) = > Pr=n)=> E[lHn]
n=0 n=0
— ifEf ﬁ e B fy (V) I
n=0 i=1 (6~ 4 1)e~Bn™+1)E: [—ueRMyy{I‘;;’ ] ~ ’

where the expectation E is taken under the new measure. The ratio in this formula is
the likelihood ratio between the two measures and it has this form since the {E;}i=1 2,
and the {Y;}i—12,.. are independent and, moreover, we know that they follow an
exponential and a R*-Esscher transformed distribution respectively. Notice that the
{E;}i=1p2,.. are not the interarrival times but the independent random variables in
Lemma 6.1.
Under this new measure we have that I{; .} =1 a.s. and we can simply write
$Ow) =& {<——f5\f]{(f*l)>Te{6n_ LBk Zm}] |

Since R* is such that My(R*) = dn~ + 1 and recalling that A®)(T},) = 37 | E; we

have
PO (u) =E [e“R*{ZLl%—u(1+e)n—A<s>(TT)}] . (6.17)

The expression inside the expectation is the Radon-Nikodym derivative of the original
measure, restricted to the set {7 < oo}, with respect to the original measure. If this
derivative is bounded by one then the variance of the simulation estimator for the
expectation is bounded [L’Ecuyer (1994)] and (6.17) can be used to obtain reliable
estimators via simulation. Our concern is the function in the exponent in (6.17).

Since R* is always positive, we need to verify that

> Yi—p(1+6)n ANT,) >0,

i=1
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so that the exponential part of the derivative is less than one.

From (6.12) we know that
S Y- pQ+OXNT > u.
i=1

This justifies our initial choice of « as a function of n~. Since %~ is the minimum of

all the proportions between A*¢t and A (t) we have that
AP <N, >0,
This implies
iy,. — (1 + 0~ AC(T,) = ZY —u(1+ONT, > u,
i=1 i=1
and the exponent is always positive.
Notice that the final simulation estimator (6.17) has the same form as the estima-

tors found in Asmussen and Rolski (1994), specifically of the form defined in equation

(3.12) of their article. We can translate their equation into our notation as follows:

=~ h(s; —aS(T®
¢(S)(u) =E ;L—a”(-s()—;%a—)e SIL) , az Ry, (618)

where S(t) = Z(t) — »*u(1 + 0)t, Ble*] = %j__‘% and Ry is the solution to

0= K'(Ro) = A" My (Ro) — A"p(1 + 6)
i.e. Ry is the point at which x attains its minimum. Because of convexity we have

that By < R.
If we calculate RT%(_%:) for our model we have

Efe”5T) = exp {[My (o) = AT +5) = A(s)] = aXu(1 + OTE}

Because of periodicity we have that A®)(t) = A(t + s) — A(s) yielding

h(s; )

— 2 —exp {[My () — A (TS — aX*u(l + )T
h(Tés)—{—s;a) {[ Y( ) ] ( ) ) }
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Now, if we substitute this last equation into (6.18) we get
VO () = B [e—amﬁs))—[My(a)—uw(T»] . a>R,,
If we set @ = R* then My (R*) — 1 = p(1 + 8)n~ and we finally have

~ _R* (s} _ —Als
w(s)(u) - E l:e R {Z(Tu )—n(1+8)n~ Al )(T«r)}] , u=0. (619)

Now we can easily see this equivalence if we recall that the ruin time qus) and that
the aggregate claim process Z(s) are given in terms of 7 and Y; by T = T, and
Z(TE)) = Soi_, Yi. Substituiting these in (6.17) we get (6.19).

All we have to check is Ry < R*. If we look at the total claim amount per unit

time for the new measure E[Z(1)] we have
E[Z(1)] = X" My, (R") = &/ (R") + X" (1L + ) .

Recall that since ruin is certain under the new measure we have that E[Z(1)] >
N u(14 6). It follows that '(R*) > 0 and by convexity we have that R* > Rj.

In order to obtain estimates for the ruin probability in the periodic case we simu-
late E;’s (exponential mean 1/«) and claims Y;’s (having as distribution the Esscher
transform Fy of the original claims severity distribution). We simulate as many as
are needed to observe a negative reserve in (6.11), this always happens because un-
der this measure ruin is certain. Then we evaluate the term inside the expectation
in (6.19). We repeat this procedure N times and we average over all the obtained
values. This average is an estimator of the expectation in (6.17) and therefore of the

ruin probability.

6.4 A Simulation Study

Consider two risk reserves processes. One is the classical model

N(t)
Upp(t) =u+XNp(l+0t—> Y, t>0, (6.20)

i=1
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where the claims are assumed to occur following a homogeneous Poisson process N(t)
with mean per unit time A*. The second process is the periodic reserve process defined

in Section 2 and given by

NG ()
UNpp() =u+Np(l+0)t— > Y, t20, (6.21)
i=1

where the claims occur following a NPP with periodic intensity.
The ruin probabilities for both models with different values of » and s are presented

in Table 6.1.

Table 6.1: Ruin Probabilities for the Periodic and non-Periodic Case

The simulation study was carried out with 100000 paths for the periodic process
(6.21), the claims are assumed to be exponentially distributed with mean pu = 1, the
average number of claims over a year is estimated to be A* = 10 and the safety loading
factor is # = 0.9. The intensities are bell-shaped with moderate seasons given by a
value of ¢ = 0.25. The simulation estimators have a precision of (£0.001).

The values for the ruin probability of the homogeneous process (6.20) are com-

puted using the exact expression, which in the exponential case is known to be

136



Yup(u) = 1—_}_—06— @R . Notice that this ruin probability (shown in the first darker
column in Table 6.1) does not depend on the initial season s.
Figure 6.6 shows both surfaces (from different angles) from the simulated estima-

tions. We can observe a periodic fluctuation of the ruin probabilities in the periodic

Figure 6.6: Ruin Probabilities: the Homogeneous and the Periodic Case

process (6.21) depending on the initial season s. It fluctuates above and below the
surface of the homogeneous process (6.20) but as function of u it decreases expo-
nentially, just like the ruin function in the non-periodic case. This difference is the
error we can incur in when we use the homogeneous Poisson process to model perio-
dic claims. This error depends on the initials season s and sometimes can be quite
large depending on how extreme the seasons are during the year (parameter o). This
empirically verifies the approximation of Asmussen and Rolski (1994). His Lundberg-
type approximation is an exponential function of v and a periodic function of the

initial season s.
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Figure 6.7 presents plots of the ruin probability surfaces for two values of o. The
first graph is for a model with moderate seasons o0 = 0.5 and the second one is for
a model with more extreme seasons o = 0.1. We can see that the fluctuations are

larger when the underlying intensity experiences extreme seasons.

Figure 6.7: Ruin Probabilities: Periodic Case

0=0.5 o=0.1

6.5 Conclusions

There exist insurance portfolios which are subject to periodic random environments,
as it is the case of property and car insurance. The classical risk reserve process of risk
theory uses an homogeneous Poisson process to model the claims occurrences. This
process has a constant intensity over time, this is, its occurrences are homogeneously
distributed over time, which makes it a crude model for insurance portfolios under
periodic environments.

Modeling risk reserves under periodicity can be done using a periodic non-homogeneous

Poisson process for the claims occurrences. The resulting periodic risk reserve process
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is fundamentally different from the classical one and yields different ruin probabilities.
This is why the use of an homogeneous risk reserve process under a periodic setting
might lead to miscalculations, as shown in our simulation analysis.

The periodic intensities of the NPP can be fitted by bell-shaped intensities. This
family of intensities can model many types of periodic patterns in a smooth fashion.
This feature is important since most season changes in nature occur in a rather
continuous way. Hot seasons occur in between mild seasons that then turn into
cold seasons, winter never follows immediately after summer. Besides, since this
bell-shaped intensities are defined in terms of the standard normal distribution, it is
suitable for statistical estimation. In the same spirit we can use gamma or lognormal
versions of this family by simply changing the underlying distribution. This might
provide a better fit for different data sets.

In this chapter we use the fact that a non-homogeneous Poisson process is a
process with independent increments to implement a simualtion scheme that allows
us to evaluate ruin probabilities in this context. We approach the periodic model
of Asmussen and Rolski (1994) via simulation. Although they hint at a simulation
estimator implied by their analysis, they do not go as far as to implement it. Here, we
use the periodic properties of the intensities to derive a stopping rule for the simulated
paths which endows us with an estimator for the ruin probability of the periodic
risk reserve process. This estimator assumes the existence of the moment generating
function of the claims distribution which rules out heavy tailed distributions. Further
research should be done in this direction to implement aproximations for these cases.

Results of these simulations for the periodic case are presented and compared
to the non-periodic one. The difference between the two is then more obvious in
view of the empirical analysis. We also verify that the difference between the two
models depends on the measure of variability . The more extreme the seasons are
throughout the year, the larger the difference is.

A further general case of study would be a model where the distribution of the
claims is also time-dependent Asmussen and Rolski (1994). This is, the claims sizes
are distributed as Fl(/t ) where the superscript ¢ indicates this dependence over time.

This would be the case in settings where, in addition to the periodicity of the occur-
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rences, the severity distribution also changes over time. This allows for environments
where the size of the claims is higher or lower in some seasons. Our simulation esti-
mator might be flexible enough to include variations in the distributions of the risks,

this is a subject of future research.
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Conclusions

A generalized risk process in terms of Lévy processes is considered in this work. A
first goal is to unify different approaches used in risk theory to introduce a Lévy
process in the model. From this new perspective, we extend the theory to allow for
more general Lévy processes than those previously used.

Brownian and a-stable processes have been applied in risk theory to generalize the
classical model, our approach allows for more general Lévy processes, namely a normal
inverse Gaussian Lévy motion. This model has been successfully applied in finance
and we believe will perform just as well in the insurance context. This process is a
purely-discontinuous semimartingale and cannot be treated with the tools introduced
so far in risk theory. A topic of future research is to explore further the consequences
of introducing a normal inverse Gaussian risk reserve, for instance modeling reserves
in the presence of compound interest. It also remains yet to explore models bridging
financial and insurance mathematics under an NIG risk model, premium principles
and risk measures for instance.

We address several aspects of risk theory and present a contribution in the context
of Lévy modeling. Chapter 3 and 4 represent generalizations of Dufresne, Gerber
and Shiu (1991) where we show that purely discontinuous risk processes are still
mathematically tractable. In Chapter 5 we construct an approximation that uses
extreme value theory to adapt to the situation at hand and provide a better estimate
for ruin probabilities under different types of claim distributions.

In Chapter 6 we go beyond the scope of Lévy process to be able to include pe-
riodicity into our model. For processes with independent increments there still exist

results that allow us to evaluate ruin probabilities in this case. We implement a si-
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mulation scheme that allows us to compare the classical risk process and the periodic
risk process in terms of their associated ruin probabilities.

These four chapters can be viewed as individual contributions in their own. They
have been put together here to illustrate the potential of Lévy modeling as a tool yet
to be fully explored in risk theory. We hope to have established grounds for future
research in this direction that will lead to new insight in the bridging of finance and

insurance modeling.
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