INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

QUALITY ASSURANCE OF WEB APPLICATIONS:
A SURVEY

WENJUN XU

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

MARCH 2003

© WENJUN Xu, 2003

(L |

National Lib Bibli tional
of Canada el du me - ¢
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue W
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Vote réldrence
Our fig Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise - de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77998-X

Abstract

Quality Assurance of Web Applications:
A SURVEY

Wenjun Xu

This report presents a survey on quality assurance of Web applications. Starting from the
introduction of Web application architecture, it discusses the quality factors of Web
applications. First, the basic software measurement concepts are introduced. A quality
model specifies which properties are important to a Web application and how these
properties are to be determined. Based on the specification of the entity type, the attribute
definition, metric formula, and application procedures, a catalog of metrics can be used to
support different quality assurance processes. Quality control and assurance are widely
applied in today’s Web-based system development processes. User-centered quality
engineering is introduced in the context of Web application development processes,
which results in increasing of software quality and end-user satisfaction. Tools and
measurement methods are developed and applied in the Web applications quality
assessment procedures - SUMI is a method to evaluate the software system usability and
a Web-centered Function Points measure gives the estimation of the maintenance cost of

Web system.

i

Contents

1.

Introduction

1.1 The Quality Needs of Web Applications
1.2 Web Application and Software Quality.

N W = -

1.3 Overview of This Report

Classification of Web Applications
2.1 Evolution of Internet

o 3 2

2.2 Basic Definitions and Architecture
2.3 The Classification of Web Sites

2.4 Challenges for Web Application System................

Introduction to Software Measurement
3.1 Basic Concepts of Software Measurement

3.2 Software Metrics Classification
3.3 Software Metrics

3.3.1 Traditional Software Metrics

3.3.2 Object-Oriented Software Metrics

3.4 Summary

Quality Assurance in Web Application Project

4.1 Introduction

4.2 Web Application Development Processes....

4.3 User-Centered Quality Engineering in Processes [MI1C02]

4.3.1 Basic Concepts

4.3.2 Integration of User-Centered Quality Engineering and Quality Criteria for Processes
4.4 Establishing Quality Procedures in Software Development [AND02]

4.5 Web Project Risk Management [STE02]......

4.5.1 Risk and Management Overview

4.5.2 QA and Testing Technique in Risk Management

4.6 Summary

Quality Model of Web Applications

5.1 Introduction

70
70

5.2 A Framework of Quality

72

78

5.3 Quality Factors.....
5.4 Classification of Web Criteria (Characteristics) to Quality factors

83

85

5.5 Quality Metrics........ccceuremeeeeeeeemmrereeneereenenene
5.6 Summary ...

93

iv

6 Tools Support for Quality Assessment in Web Applications 94

6.1 Introduction 94
6.2 Software Quality Assessment in Software System 95
6.3 Software Usability Measurement Tool: SUMI 100
6.4 Measure Web Application Performance 102
6.5 Web Functional Size Measurement 106
6.6 Web Test Coverage Measurement 113
6.7 Automatic Testing Tools in Web Quality Model 117
6.8 Summary 119
7. Conclusions 120
7.1 Conclusion 120
Bibliography 123

List of Figures

Figure 2.1: Basic Web Application ArchiteCture............ccocooiieienircnenccciiiiceeecceenes 9
Figure 2.2: Model of a generalized Web application architecturecc.ccceocemvnnnnennee. 12
Figure 3.1: Cyclomatic complexity flowchart with edges and nodes......ccc.ccccnuinnne. 27
Figure 4.1: Web Developemnt Model. ... 46
Figure 4.2: Customer roles in a B2B SCENATIOcccooueeecreiiinceriereceeeecineccnceeerne s 47
Figure 4.3: Acceptance procedure in the process flowccoccoeieiiciiinciinnnnnnnene. 60
Figure 5.1: A quality framework by different entity type........ccoeveminminemmmneniirecee 75
Figure 5.2: Algorithm for automating the Broken Link Count metric for static pages 88
Figure 6.1: Quality AsseSSMENt PTOCESSorriiiericreeeectreeceere e stccssreesnessenee 98
Figure 6.2: A sample profile showing SUMI scalescoocoeeioincninicineniiiccecenee. 102
List of Tables
Table 3.1: Classification of SOftware Metrics.........cccveceerieerereccercneeeccreecerceeesreneaeenes 26
Table 3.2: Brian et al compling MErICScc.ceeeiiioiieeere e eee e ceseressenseseee s 32
Table 4.1: Acceptability of technical INNOVALIONS........c.cevueercieeorriiniecceeceeeeeeeeceecaeenenes 49
Table 4.2: Summary of risks and QA testing aCtiVitiescccceeeeeeercrcemeciricericnrinicenne 68
Table 5.1: Summary of attributes for different entity types using [ISO9124 quality model
.. 77
Table 5.2: An example of characteristics of Web applicationcccoccceeeiccerecnrnnnccnne. 84
Table 5.3: Metric CharacteriStiCScc.oiarurrrirerereineeeererecrneaeeeeeseesane s essessessesssessssnses 86
Table 6.1: Example of Tools used in the Software analysis workbench 99
Table 6.2: Static MOdEl........ oottt ettt ceese e eeseesmeesatssesaeaes 104
Table 6.3: Dynamic MOE]coeiiieeieieeeeteretteneeceeseseseseeoneeeesetssessreseans 104
Table 6.4: Secure Modelcccoovrenecnvcreicancnn. eertrseesate et te st aeree st aa e s a e e s eenaesueeaene 105
Table 6.5: Application tests for the business ProCessceeeeveucererrerereererercccreececrcereneas 116
Table 6.6: Acceptance tests for the Web-Servicecocecevinrncininvcisccecnecnncncienee 116

Chapter 1

Introduction

1.1 The Quality Needs of Web Applications

The Web is becoming an important channel for critical information and the fundamental
technology for information systems of the most companies and organizations. Nowadays
is widely accepted that a Web site is not merely a matter of contents and aesthetics:
demanding functionality is required, combining navigation with complex services and
transactions. Many users already rely on the Web for up-to-date personal, professional
and business information. The substantial changes transforming the World Wide Web
(WWW) from a communication and browsing infrastructure to a medium for conducting
personal businesses and e-commerce are making quality of Web applications and services
an increasingly critical issue. For example, users are not willing to tolerate latency times
greater than eight-ten seconds [VALO1]. Some recent work [NEL0OO] suggests that not
only must a Web site be available for customer access, page-to-page response time must
not exceed four seconds, or the customer will likely exit and seek alternative sites. Also if
response time becomes too high, there will be many periods of unavailability, and the
security is not fully guaranteed. Thus, the inability to provide service because of a system
failure is a question of reliability and robustness. This scenario motivates the need to
design and implement architectures being able to guarantee the service level agreement

(SLA) that will rule the relationship between users and Web applications.

Web applications in electronic commerce (e-commerce) involve sharing business
information, maintaining business relationships and conducting business transactions by
means of telecommunication networks [ZWA96]. The medium of Web applications is the
WWW, which growth has been unprecedented, with millions of users worldwide.
Consumers can use the Web to purchase all kinds of good and services, like books, cars,
flowers, food, banking, entertainment, etc. It is easy to understand that e-commerce has
brought a whole new range of services to all these users. For this reason, its growth has
been impressively rapid. By the year 2003, the number of people purchasing goods and
services online will have trebled, compared to nowadays, while it is expected that 80% of
companies will connect to the Web [GHO98], meaning that they will be enabled to

conduct electronic transactions.

Because of the complexity of Web infrastructure, many components could affect the
quality of Web applications, from network technology and protocols, to hardware and
software architectures of Web applications. Network carriers that have a full control on
their backbones can provide the network availability and guarantee network response
time. Well-designed application architecture can greatly benefit not only developers and
maintainers but also different final users. In fact, a healthy navigational structure, an
appropriate setting of services and contents, in addition to planned quality attributes are

key factors for the success of a Web Application.

1.2 Web Application and Software Quality
Software quality is a complex, highly context-dependent concept. Software quality is one
of the three most important software product characteristics, which are quality, cost, and
schedule [PRE97]. The purpose of software quality activity is to “identify, monitor, and
control all activities, technical and managerial, which are necessary to ensure that the
software achieves the specified SIL (Software Integrity Level)” and functional
performance, safety, reliability and security requirements [GIL92]. Different software
quality requirements have been modeled by decomposing them into various quality
factors, quality criteria and quality metrics in a hierarchical way. Examples of well-
known existing quality models are the McCall’s quality model [McCall 1977], Boehm’s
quality model [Boehm 1978], and the ISO 9126 Standard Quality Model [ISO 1991].
Fenton suggests monitoring the software quality in two different ways [FEN97}:
e The fixed model approach
It is assumed that the quality factors needed to monitor a project are a sub set of
those in an already published model.
e The “define your own quality model” approach

In Software Quality Factor-Criteria-Metrics Framework [IEEE Std 1993}, defined

the technique to build a quality model according to the organization goals and

management requirements. The model’s flexible hierarchical structure is obtained

by decomposition of every quality requirement in quality attributes (factors) from

the management and user-oriented views; decomposition of each factor in

software-oriented attributes (criteria) from the technical personnel views.

Quantitative representation (software metrics) of the characteristics of each

criteria are identified and associated to the established criteria and factors.

In this report, we choose the second approach to represent the quality of Web
applications. Because the final goal of the Web applications is the satisfaction of end
users, the quality of Web applications is decomposed focusing on user-oriented views in
quality attributes, etc. As the Web is playing a central role in diverse application domains
such as business, education, industry, and entertainment, etc., there are increasing
concerns about the ways in which Web applications are developed and the degree of
quality delivered. Thus, there are compelling reasons for a systematic and disciplined use
of engineering methods and tools for developing and evaluating Web sites and
applications [MUROI1]. To obtain reliable information about the product’s quality, these
methods should identify which attributes and characteristics should be used to assure

specific evaluation goals given a user viewpoint.

In terms of quality characteristics as defined in the ISO 9126, we can consider an
attribute as a direct or indirect measurable property of an entity (a Web application). Use
a quality model to specify such characteristics, sub-characteristics and attributes. These
quality, cost, or productivity requirements are often quoted as non-functional
requirements in the literature. In this context, stakeholders should consider which are the
characteristics and attributes that influence the product quality and quality in use.
Specifically, there are some characteristics that influence product quality described in the

ISO 9126 standard: usability, functionality, reliability, efficiency, portability, and

maintainability. Considering the importance of user factor in Web activities, the quality
assessment of Web sites and applications should focus on those attributes that are
perceived by the user. For instance, Broken links, Orphan pages, Quick Access Pages,
Table of Contents, just to quote a few of them. By controlling quality requirements in
new Web development projects and by evaluating requirements in developing phase- a
user-centered design, can improve the product quality by discovering the absent features,
poorly implemented requirements, design and implementation drawbacks, which related
to the interface, navigation, accessibility, search mechanisms, content, reliability and

performance, etc.

1.3 Overview of This Report

Web application system is client/server software that is connected by Internet
technologies, the collection of hardware and software that comprises the network
infrastructure between consumers and providers of information. Web application can be
accessible by specific client software or by one or more related Web pages that are
logically grouped for a specific productive purpose. The complex of network
infrastructure affects the quality of Web application and services. As the Web
applications are implemented on top of locally and geographically distributed network

systems, the Web application infrastructure affects the performance of the application.

In Chapter 2, we give an introduction of Web architecture and the classification of Web

applications.

[n Chapter 3, we introduce basic definitions of software metrics and software
measurement. Software metrics are being used by the Software Assurance Technology
Center (SATC) at NASA to help improve the quality by identifying areas of the software
requirements specification and code that can potentially cause errors. We address the
classifications of software metrics and how software metrics are related to software
engineering life cycle. Some widely used traditional and object-oriented metrics are
selected and addressed in detail. This chapter is rather independent than the rest chapters

in this survey.

Chapter 4 introduces the quality assurance in Web application development processes.

[n Chapter S, quality factors related to Web applications are discussed. Software metrics

for these quality factors are summarized.

Chapter 6 introduces measurement tools in quality evaluation and testing of Web

applications.

Chapter 8 includes the conclusion and research direction.

Chapter 2
Classification of Web Applications

The explosive growth of Intemet has motivated deployment of a great variety of
applications, ranging from simple text based application to multimedia, meta-computing
services, etc. Today, with the fast evolution of Internet based technologies, many
business mission critical applications have been also migrated towards the Web. The
Internet -specifically the World Wide Web - has been treated seriously as a platform not
only for information sharing among the mass public, but also to create useful Web
Applications that provide significant value to customers. However Internet is still
relatively new. We discuss certain issues before tackling the aim of Web application

quality factors.

2.1 Evolution of Internet

The Internet was originally designed in the research and development in scieniific and
military fields for allowing computers to share information in the early 1960s. While
computing developed and penetrated society in many ways over the succeeding decades,
the Internet grew more slowly until its commercialization in 1995, which led to an

explosion of growth that continues today.

Many people may think of World Wide Web as Internet, but WWW was not released
until 1991, which was originally used for information distribution based on hypertext - a

system of embedding links in text to link to other text, which now we call pages.

Commercial use was prohibited until the early 90s when independent commercial
networks began to grow. Between 1980 and 1994 the growth rate was close to one
hundred percent per year. Internet is still growing fast and today the growth rate is about

sixty percent per year. This growth is measured in number of hosts.

The following data shows the use of Internet in the day-to-day life:

e The number of people online worldwide as of August 2001 is 513.41 million.

e ..the active number of Internet users in the United States is only 37 million, well
below the widely reported range of 50 million to 70 million seen in most
published report. (Bits & Bytes, by Michael Bush, 1998)

e ...about 15 million of the total 23 million U.S. households on the Internet receive
their online services through AOL. (AOL Eyes Half Of All New Online Users,

1998)

Today, the Web reaches almost all possibly target groups [GREO02]. For example,
consumers can buy books and compact discs online, people use Web to find jobs, and
employers use Web to find employees; stocks are bought and sold using online
applications provided by brokerages; and travelers book flight and hotel reservations

through Web, to name a few. More and more new businesses merge into the Web. New

business requires new features. All this results in the growing complexity of the sites on
the Web. Another fact is the increasing number of personal computers in the world
meanings that Internet is now available to more or less every one. This makes the Internet
even more interesting to new companies, which in addition means that it will keep

growing.

2.2 Basic Definitions and Architecture

A Web Application is a client/server software system that is connected by Internet
technologies to route the data it processes [GRE02]. Internet technologies here mean a
collection of hardware and software that comprises the network infrastructure for the
Web. Web Applications can be made accessible by specific client software or by one or
more related Web pages that are logically grouped for a specific business purpose
[GREOQ2], such as to buy a book, to process stock orders, etc. Figure 2.1 shows the basic

architecture of Web applications [JIM].

Web Server hp Client Browser

distnibu renders

Web Page

Figure 2.1 Basic Web Application Architecture

Here, we discuss Web applications, not just “Web sites”. There is distinction between
Web sites and Web applications. By terms, a Web site is a cluster of Web pages, which is

composed of a unique node on the Web. Greg Barish [GREO02] pointed that engineers by

habit, tend to associate Web sites with the server side. A web application is more than
just server side; there is the network and the client. So, based on this, a Web site (server)
is not the same thing as a Web application (the client, network, and server). Jim Conallen
[JIM] pointed that if no business logic exists on a server, the system should not be termed
as a Web application. The business logic states are affected by user input. Some people
consider that a Web site may contain multiple Web applications. For example,
yahoo.com web site is composed of multiple applications such as an email application, a

calendar application, etc.

In this report, we will loosely define a Web application to be a Web system with Web
server, network, HTTP, and browser. We choose to define Web application as any Web-
based site or application available on an internet or on an intranet, whether it be a static

promotion site or a highly interactive site for banking services.

As showed in Figure 2.1, there are three basic components in the Web architecture: a
Web server, a network connection, and one or more client browsers. A Web browser is
used as the user interface to the application. It is an application that runs on a client
machine. Internet protocols such as HTTP are used for communication between the
interface and the application. We call the rest of the application objects. The objects
reside in the Web server, and user navigates links between Web pages to access these
objects. The client sends requests through network connection. Server distributes
formatted information to client. The formatted information is stored in files that are sent

back to client side. We call the above formatted information pages [JIM].

10

Page is the most fundamental component of a Web application. Web pages make up the
user interface for the application [GRE(2]. In Web development environment like
Microsoft’s Active Server Page or Allaire’s Cold Fusion, the pages can be a static HTML
formatted pages, or dynamic scripted pages, or combined two of them. The scripted pages
contain code that is executed by the Web server that accesses server resources to
ultimately build an HTML formatted page. The newly formatted page is sent back to the

browser that requested it.

Server Scripting

[t is important to note that the connection between the client and the server only exists
during a page request. Once the request is fulfilled the connection is broken. All activity
on the server occurs during the page request. Business logic on the server is only
activated by the execution of scripts inside the pages requested by the browser. The
server processing includes: update the business state of the server and prepare an HTML

formatted page for the requesting browser.

Client Scripting

The browser can execute scripted code in a page. It does not direct access server
resources. Typically scripts running on the client augment the user interface as opposed
to defining and implementing core business logic. With the acceptance of the new
Dynamic HTML specification, client scripts can access and control nearly every aspect of

the page’s content. When an HTML page is rendered in a browser it is first parsed and

11

divided into elements. When dynamic HTML is employed each of the elements can be

named or assigned an ID, which could be referenced by client side scripts.

Web applications use HTML form to collect the user input data. An HTML form is a
collection of input fields that are rendered in a Web page. The basic input elements are
textbox, text area, checkbox, radio button group, and selection list. Frames make it

possible to have multiple Web pages active and open at the same time.

Figure 2.2 shows a summary of the major architectural components discussed

above.

references

Figure 2.2 Model of a generalized Web application architecture

12

The difference between Web infrastructure and traditional client/server

architecture is that:

the processing of a page request in server may result in a process or two to get executed

in server, and remain executing long after the client browser shuts down.

The connection between the client and the server is closed once the requested page has

been received by the browser.

Understanding the architecture of Web applications is to help the performance evaluation
of a Web application. The Web application is not only for server-side solutions it is also
concerning with client-side and networking topics because they have a fundamental
impact on how end users perceive Web applications. After all, most people who use the
Web concern with its end-to-end behavior. For example, if it takes a while to buy a flight
tickets online, it maybe caused by a slow modem, an overtaxed server, or network
congestion. Measures are not only on that such application might be slow for one user,

but also that the system becomes slow as more users access it.

2.3 The Classification of Web Applications

When publishing a Web site, the design is based upon what we hope to achieve with the
site. Many researchers have advanced various views of the Internet, and have tried to
categorize Web sites from a variety of perspectives. Two major perspectives on Web

classification are based on technological view and marketing view.

13

Technological perspective

This classification is based on the degree of interactivity the Web sites offers. Thomas A.

Powell [POW97] classifies Web sites into five categories:

Static Web Sites - The most basic Web site. Presentation of HTML documents.
The only interactivity is to choose page by clicking links.

Static with Form-based Web sites - Forms are used to collect information from the
user including comments or requests for information. Main purpose is document
delivery, limited emphasis on data collection mechanisms

Web sites with Dynamic data access - Web sites are used as front-end for
accessing a database. Via the web page users can search a catalogue or perform
queries on the content of a database.

Dynamically Generated Sites - Providing customized pages for every user creates
a need to take a step away from the static Web site. The page may be static,
providing no interactivity, but the way it is created has similarities with the way
screens are created in software applications.

Web-based software applications - Web sites that are part of the business process.
This could be an inventory tracking system or a sales force automation tool. The
processing of a page request in server may result in a process or two to get

executed in server, and remain executing long after the client browser shuts down.

The above classification is derived from the need for methodology of developing a Web

site. It is also applicable to the classification of testing process, and performance

measurement.

14

Business prospective

Another classification is based on different business purposes of commercial Web sites. It
is focusing mainly on the functions the Web sites can provide for business and marketing.
James Ho [HO97] claimed that since technical issues regarding bandwidth and security
can be resolved eventually along with the technological development, the more important
issue is to ask what (perceived through the customer’s perspective) can be created on the

Web. Based on his evaluation of 1000 commercial Web sites, he classified commercial

Web sites into three categories:

e Promotion of products and services - Promotion is the information about products
and services that part of the company’s business.

e Provision of data and information - Provision is the information about, for
instance, the environmental care program that the company may sponsor.

e Processing of business transactions - Refers to regular business transactions.

Four types of value creation processes have been also identified: timely, custom, logistics,
and sensational. Ho [HO97] defined timely value as the value of time sensitive
information; custom value refers to the customization and personalization of Web sites
according to the preferences of the Web visitors; logistic value is defined as predicated on

preprogrammed propositions on the Web sites.

This classification is meant to show the purposes with one commercial Web site, it can

also be used to categorize the main purpose of a Web site. For example, a company’s on-

15

line catalogue would be a promotional site, a private person’s homepage may be a

provisional site, and banking services Web site may be considered as a site for

processing.

Technical classification tells us nothing about the content of the Web sites. Classifying
Web sites based on their economic activities together with the technical view provide
information about interactivity and purpose, which gives us an idea on the Web site’s

complexity.

2.4 Challenges for Web Application System

As we saw in above sections, Web application is a really new type of application, which
is based on Internet infrastructure. Internet technologies as a medium for application
system make challenges on the performance of the system [GREOQ2]. Firstly, the users for
Web applications are from all over the world wider than any other medium. The Web is
active: users not only receive information, they also submit it. Secondly, the Web is a
dynamic medium where a user request does not always get the same server-side response.
Although the Internet utility is named “always on”, but there are no guarantees about
when and how often user’s information can be accessed. Thirdly, there is no complete
control on the information delivered to end-users. The above characteristics of the
Internet make challenges in the Web application development under Internet

environment, especially with the introduction of electronic business. Here are some:

e Increasing importance

16

Internet infrastructure requests that Web application systems are not merely to
automnate the well-established tasks and processes but also to redesign business
processes, and even to create entirely new businesses and industries.

Growing complexity

The complexity of the Web application system has increased and is still increasing
[DIR02]. The tools and technologies for the development process are getting larger
and in many cases they are not compatible with each other. For example, the
traditional programming languages like COBOL, C and C++ are continued to be used
beside newer languages like Java, VB.NET and C#. The multitude of available
platforms gives more design choices in systems architecture. This increases the
importance of the integration of heterogeneous systems and the management of
interfaces associated with them. The complexity of Web systems is increasing due to
new and additional application areas where more complex problems are being
addressed.

Increasing quality requirements

With the complexity increasing, the quality requirements of Web application systems
have increased importantly. Because Web systems are applied in more important and
critical areas than before, the failure of such systems can result in serious economical
and material damages. Especially quality features like security (access control,
authentication, encryption) and reliability (availability, fail-safeness, correctness)

must be essential parts of a Web service environment today.

17

Chapter 3

Introduction to Software Measurement

Measurement in science has a long history. Today, computers play a primary role in
almost every area of our life. It increases the important requirements on software
measurement. All successful software organizations implement measurement as part of
their day-to-day management and technical activities. Measurement provides the
objective information they need to make informed decisions that positively impact their
business and engineering performance. Software measurement has evolved into a key
software engineering discipline. In the past, measurement was treated as an additional,
non-value-added task. Now measurement is considered to be a basic software engineering

practice.

3.1 Basic Concepts of Software Measurement

Fenton [FEN97] describes measurement as following:

“Measurement is a process by which numbers or symbols are assigned to attributes of
entities in the real world so as to describe the attributes according to clearly defined

rules.’

An entity is an object or event in the real world. For example: a person, a race. Attributes

are features or properties of entities. For example: height of a person, time taken to

18

complete a race. Measurement mapping M must map entities into numbers and empirical

relations and numerical relations in such a way that the empirical relations preserve and

are reserved by the numerical relations.

Software measurement is one of the areas in Software Engineering that is to apply an
engineering approach to the construction and support of software products so they can
safely fill the uses to which they may be subjected. Software measurement in software
engineering provides feedback and assists the software development and maintenance.
Software measurement is also known as software metrics or software measures. In

software engineering, the term software metric is often used.

A software metric is a simple quantitative measure derivable from any attribute of the
software life cycle. Yet, in the realm of software engineering and mathematics, not
everything is quantitative. Large part of mathematics, including most of logic is not

quantitative [BER98]. Thus, we would like to present software metrics as following:

Software metrics use mathematical presentation to quantify software development
process, product and resources. It offers an efficient way for software engineers to
control software development life cycle-—-to value the collections of software-related

activities; measure artifacts, deliverables or documents and distribute software entities.

Ordinarily and traditionally, the measurement of the software process and product are

studied and developed for use in predicting or evaluating the software development

19

process. Productivity, product quality and product costs are examples that the metrics
applied to. Information gained from these metrics and models can then be used in
management and control of the development process, leading one hope to attain overall
improvement. From another point of view, software design consumes resources and
produces a product. Thus, the measurements of resources are important. Metrics on
personnel, software and hardware including performance are used to help the

effectiveness of organization.

Good metrics should not just stay on the description level. Instead, the actual prediction
or estimation of process, product and resources should be presented. Hence, a good
software metrics should have the quality of simple, robust, easy of maintain, valid and
objective (to the greatest extent possible). Moreover, metrics should have data values that
belong to appropriate measurement scales for maximum utility in analytic studies and

statistical analysis [CONS86].

In the terminology of measurement theory often use the term measures. Software quality
should be linearly related to a software measure. Software measures are mappings from
objects in software entities to numbers or symbols to quantify a software attribute. A
software measure in general should be objective, reliable, valid, and robust. Objectivity
means that the measurement process should not depend on the subject (person, tool) that
performs the measurement, on system’s size, or on the programming language. The
reliability requires the metrics to characterize in a unique way every entity measured.

Equal entities should obtain equivalent measurement values. Repeated measurement in

20

equal conditions should give same values for the same entities. The robustness requires
the ability of a measure to tolerate incomplete information. The software measure

requirement validity means that the measurement data should reflect exactly the

characteristics of the entity under measurement.

Like any engineering activity, software measurement requires a definition of the
environment in which the measurement is expected to perform. To set the environment,
we need to know whom we measure for, why, what we measure, when we measure it,

and what measures to use within a context of an organization or specific project.

Why measure software

In the area of software engineering, measurement has been discussed for many years. The
magnitude of costs involved in software development and maintenance increases the need
for a scientific foundation to support programming standards and management decisions

by measurement.

What we can measure
The software measurement activities are based on the classification of software entities.
There are three classes of software entities whose attributes we may want to measure:
e Processes - the set of activities used by an organization to develop its products.
The attributes are, for example, cost-effectiveness and effort.
e Products - the deliverables created during the course of a project. They include

requirements, functional specifications, design documentation, source code, test

21

cases, test results, etc. Products are measured directly by examining their
intervals. Products are measured indirectly by examining their behavior in
specific situations.

e Resources - the input to the process used on a project (i.e., people, tools,
materials, methods, time, money, and products from other projects). Some of the
resources attributes are the productivity of the team and capability-maturity

assessment of the personnel and tools.

Software entities distinct between attributes are internal and external:
o Internal attributes are those attributes that can be measured purely in terms of the
process, product, or resource itself.
o External attributes are those attributes that can only be measured with respect to

how the process, product, or resource relates to its environment.

External product attributes include quality, reliability, testability, reusability, and
maintainability. Internal product attributes include size, complexity, reuse, defects,

coupling, cohesion and polymorphism.

How to measure

The essential goal of software measurement is to identify anomalies within the same
development phase in which it originated, as well as to measure progress. Thus, each
software development life-cycle phase should contain evaluative metrics to achieve high

project visibility and quality control. The prediction measurement should be applied from

22

within the early phases of sortware development to predict future characteristics of
software entities. A set of metrics has to be collected meaningful measurement data and

to analyze it according to clearly defined rules.

3.2 Software Metrics classification

Only a goal of measurement determines the appropriateness of software measures. There
are many ways to classify software metrics. With respecting to software design life cycle,
software metrics can be classified as product metrics, process metrics, and resources
metrics. Same to the definition, the general subdivision of software metrics varies. We
present one popular classification based on the work of Fenton [FEN97] and Meyer
[BER98] in Table 3.1. Product metrics is measures of the software products at any stage
of the life cycle, from requirements to system delivered. Process metrics are measures of
the process used to obtain these products, such as overall development time, type of
methodologies used and the customer satisfaction levels; resources metrics are measures

of the behavior and the development environment.

23

Process Maturity Metrics — organization ~, resource ~, tech-management ~, document
Metrics standards ~, data-management and analysis ~
Management Metrics
1. Project management (milestone ~, risk ~ workflow ~, controlling management
database ~)
2. Quality management (customer satisfaction ~, review ~, productivity ~,
efficiency ~, quality assurance ~)
3. Configuration Management (change control ~, version control ~)
Life Cycle Metrics — problem definition ~, requirement analysis and specification
~, design ~, implementation ~, maintenance ~
Product Internal | Size metrics Providing measures of how big a product is internally
Maetrics
Complexity Assessing how complex a product is
metrics
Style metrics Assessing adherence to writing guidelines for product
components
External | Product Assessing the number of remaining defects
reliability
metrics
Functionality Assessing how much useful functionality the product
metrics provides
Performance Assessing product’s use of available resources,
metrics computation speed
Usability Assessing a product’s ease of learning and ease of
meltrics use
Cost metrics Assessing the cost of purchasing and using a product
Resources Personnel Metrics — Programming experience ~, Communication level ~,
Metrics Productivity ~, Team Structure ~

Software Metrics — Performance ~, Paradigm ~, Replacement ~

Hardware Metrics — Performance ~, Reliability ~, Availability ~

Note: here, we use ~ to denote metrics

Table 3.1 Classification of Software Metrics

Another way to classify software metrics is by the computational methodologies used.

Grady [GRA87] pointed out this as primitive metrics and computed metrics. Primitive

metrics are those that can be directly observed, such as the program size (in LOC),

number of defects observed in unit testing, or total development time for the project.

Computed metrics are those that cannot be directly observed but are computed in some

manner from other metrics. Computed metrics is normally used for productivity. Such as

24

LOC produced per person-month (LOC/person-month). Grady indicated that computed
metrics is combinations of other metrics and thus are often more valuable in

understanding or evaluating the software process than that of primitive metrics.

3.3 Software Metrics

In this section, we introduce the common used software metrics today. Since object-
orient approach is becoming more and more popular in today’s software development,
there is a need to distinguish O-O design from traditional procedural programs. Object
oriented system requires not only a different approach to design and implementation, but
also a different approach to software metrics. Therefore, we classify software metrics as
Object-Oriented metrics and traditional metrics. Traditional metrics is applied in
procedure-oriented programs, which typically include Cyclomatic Complexity (CC),
Lines of Code (LOC), Comment percentage (CP), Halstead’s software metrics and etc.
Whereas, object-oriented metrics mainly apply to evaluate object-oriented design in the
following key features such as classes, objects, methods, coupling, cohesion, inheritance,
polymorphism, encapsulation, and etc. From the point of effectiveness, researches
([TEG92], [LIN98]) have shown that a combination of selected traditional and object-
oriented metrics provides the best results when we analyzing the overall quality of object-

oriented system.
Software Metrics techniques were introduced in software area 30 years ago to measure

the complexity of traditional program written by FORTURN, COBOL, C, etc. Traditional

software complexity metrics are measures of the ease or difficulty of a programmer

25

performing common programming tasks such as testing, understanding, or maintaining a
program. Complexity metrics do not measure the complexity itself, but instead measure
the degree to which those characteristics lead to complexity exist within the code and the
degree to which those code characteristics occur in the code impact the ease or difficulty
of a programmer working with the code. Some traditional complexity metrics still used
widely and can be applied to object-oriented programs, such as Line Of Code (LOC),

McCabe’s Cyclomatic Complexity.

3.3.1 Traditional Software Metrics
Lines of Code (LOC) [LIN9S]
LOC is a widely used metric for program size. Size of a program is used to evaluate the
ease of understanding by developers and maintainers. Size can be measured in a variety
of ways, which include counting all physical lines of code, the number of statements, the
number of blank lines, and the number of comment lines. Lines of Code (LOC) count all
lines. Non-comment Non-blank (NCNB) is sometimes referred to as Source Lines Of
Code and counts all lines that are not comments and not blanks. Executable Statements
(EXEC) is a count of executable statements regardless of number of physical lines of
code. For example, in C, IF statement may be written as:

if(i <20 &&i>0){

X =10;
/

Here, there are 3 LOC, 3 NCNB, and 1 EXEC.

26

Cyclomatic Complexity - v(G)|[LIN9S][ALE98]
McCabe Cyclomatic complexity is to compute a number v(G) where G stands for the
associated graph of the flowchart. v(G) refers to the number of edges minus the number
of the nodes in the flowchart. Here, in flowchart graph, nodes mean the statements and
decision boxes; edges mean the links between them. The cyclomatic complexity of such a
graph can be computed by a simple formula as following as:

v(G)=e-n+2,

e: the number of edges; n: the number of nodes in the graph;

Take, for example, the flowchart in figure 3.1. Here, e=8, n=7, then v(G)=e-n+2=8-

<>

7+2=3.

L]

Figure 3.1 Cyclomatic complexity flowchart with edges and nodes

Cyclomatic complexity can be used as a measure of program complexity and as a guide
to program development and testing [MCC94]. An algorithm with a low cyclomatic
complexity is generally better, but this may imply decreased testing and increased
understandability. Thus low cyclomatic complexity is not good for program

comprehension and maintenance.

27

Halstead’s software metric

Halstead’s software metric is used to estimate the number of errors in the program. It uses
the number of distinct operators and the number of distinct operands in a program to
develop expressions for the overall program length, volume and the number of remaining
defects in a program. The length of the program is estimated:
N=NI+N2
Where NI= total number of operators occurring in a program
N2= total number of operands occurring in a program
N= length of the program
And the Volume of the program is estimated:
V=Nlog2 (n1+n2)
Where V= volume of the program

nl=number of unique or distinct operators in a program
n2=number of unique or distinct operands in a program

Thus, we have:

Nl1=nllog2nl
N2=n2log2n2

There are tow empirical formulae proposed by Halstead to estimate the number of

remaining errors in a program, respectively, are:

Vv A
3,000 3.000
3
V
Ty
nN.
where 1772

E= number of errors in the program

28

Halstead’s theory of software metric is probably the most well known technique to
measure the complexity in a software program and the amount of difficulty involved in

testing a debugging the software.

3.3.2 Object-Oriented Software Metrics
To make use of the measurement during the OO design process, the components of the

design have to be measured directly in order to assess the course of the design.

Measurable Internal Attributes of OO System:
o Coupling in OO System
» Berween Classes
» Within a Class
e Cohesion in OO System
o Inheritance in OO System
e Polymorphism in OO System

o Size in OO System

Object Oriented good development style rules:
o To minimize the coupling between classes
e 7o increase cohesion

e To increase polymorphism

29

Coupling metrics
In the context of object-oriented paradigm, coupling describes the interdependency

between methods and between object classes, respectively [JOH92].

CBO (Coupling between object classes) [SHY94|[SHY91}

CBO for a class is a count of the number of other classes to which it is coupled. An object
is coupled to another object if one of them acts on the other, i.e., methods of one class use
methods or attributes of another, or vice versa. Excessive coupling between object classes
is detrimental to modular design and prevents reuse. The more independent a class is, the
easier it is to reuse it in another application. In order to improve modularity and promote
encapsulation, inter-object class couples should be kept to a minimum. The larger the
number of couples, the higher the sensitivity to changes in other parts of the design, and
therefore maintenance is more difficult. A measure of coupling is useful to determine
how complex the testing of various parts of a design is likely to be. The higher the inter-

object class coupling, the more rigorous the testing needs to be.

Coupling Factor (COF) [FER96][RHAY8][FBA96]

Coupling factor (COF) is defined as the ratio of the actual number of couplings to the
maximum possibly number of couplings in the system, excluding coupling due to
inheritance. COF checks whether two classes related either by message passing or by
semantic association links (reference by one class to an attribute or method of another

class).

COF= o[iciis_client (C;, C)]/(TC%-TC)

30

Where:
1 iff C.=>C,NC,. Cs
is_client (Cc, Cs) = <

0 otherwise

Cc => Cs represents the relationship between a client class Cc and a sever class Cs
TC is the number of classes

TC2-TC refers to the maximum number of couplings in a system

Coupling metrics from Briand et al [LIO97]

These measures focus on coupling as caused by interaction that occurs between classes
[LIO96]. The measures are built on three facets by relationship between classes
(friendship, inheritance, and other), different types of interactions (attribute-class, class-
method, and method-method), and the locus of impact of the interaction (import, export).
Therefore, based on the combination of the above three facets, there are 18 different
metrics such as [FCAIC, ACAIC, OCAIC, FCAEC, DCAEC, OCAEC, IFCMIC,
ACMIC, OCMIC, FCMEC, DCMEC, OCMEC, IFMMIC, AMMIC, OMMIC, FMMEC,

DMMEC, OMMEC. Definitions of this metrics are presented in the following table.

31

Briand et al coupling metrics {LI097]

Name

Definition

IFCAIC: Inverse friend CA import coupling

ACAIC: Ancestors CA import coupling

OCAIC: Others CA Import coupling

FCAEC: Friends CA export coupling

DCAEC: Descendant CA export coupling

OCAEC: Others CA export coupling

IFCMIC: Inverse friend CM import coupling

ACMIC: Ancestors CM import coupling

OCMIC: Others CM import coupling

FCMEC: Friends CM Export coupling

DCMEC: descendant CM export coupling

OCMEC: Others CM export coupling

OMMIC: Others MM import coupling

I[FMMIC: Inverse Friend MM Import coupling

AMMIC: Ancestors MM import coupling

OMMEC: Others MM import coupling

FMMEC: Friends MM export coupling

DMMEC: Descendant MM export coupling

OMMEC: Others MM export coupling

These metrics count for the interactions between classes.
The first or first two letters represent the type of
relationship considered (i.e., [F for Inverse Friend, F for
Friend, D for descendant, A for ancestor, O for others).
The 2 letters afterwards capture the type of interaction
(i.e., CA for class-attribute interaction, CM for class-
method interaction, MM for method-method interaction).
The last 2 letters say the locus of impact. IC counts for
import coupling, and EC counts for export coupling. (i.e.,
Import: class c is the client class in the interaction;
Export: class c is the server class in the interaction.)

Table 3.2 Briand et al coupling metrics

e The higher the export coupling of a class, the greater the impact of a change to the

class on other classes.

other classes on C itself.

32

The higher the import coupling of a class C, the greater the impact of a change in

e Coupling based on friendship between classes is in general likely to increase the
likelihood of a fault even more than other types of coupling, since friendship violates

modularity in OO design.

Cohesion metrics

Cohesion describes the binding of the elements within one method and within one object
class, respectively [JOH92]. Classes with strong cohesion are easier to maintain, and

furthermore, they greatly improve the possibility for reuse.

LCOM (lack of cohesion in methods) [SHY94]
The LCOM is a count of the number of method pairs whose similarity is zero minus the
count of method pairs whose similarity is not zero. Here, the degree of similarity based
on the attributes in common by the methods. The larger the number of similar methods,
the more cohesive the class is.
e Cohesiveness of methods within a class is desirable, since it promotes
encapsulation.
e Lack of cohesion implies classes should probably be split into two or more sub-
classes.
e Any measure of disparateness of methods helps identify flaws in the design of
classes.
e Low cohesion increases complexity, thereby increasing the likelihood of errors

during the development process.

33

Bieman and Kang’s class cohesion measures [LIM98][FER96]

Bieman and Kang concern the cohesion among class components including attributes and
classes. Their class cohesion measures are based on the direct or indirect connectivity
between a pair of methods. Two methods are directly connected if they use one or more
common attributes. In contrast, two methods that are connected through other directly

connected methods are indirectly connected.

Here, NDC(C) is the number of directly connected methods in a class C. NIC(C) is the
number of indirectly connected methods in a class C. NP(C)=N* (N-1)/2 is the maximum

possible number of connections in a class.

Tight Class Cohesion (TCC) is defined to be a ratio of the number of directly connected
methods in a class, NDC(C), to the maximum possible number of connections in a class
NP(C).

TCC(C) = NDC(C)/NP(C)

Loose Class Cohesion (LCC) is defined to be a ratio of all directly connected methods,
NDC(C), and indirectly connected methods, NIC(C), in a class to the maximum possible
number of connections in a class, NP(C).

LCC(C)=(NDC(C)+NIC(C))/NP(C)
Inheritance metric
Inheritance is a reuse mechanism that allows programmers to define objects

incrementally by reusing previously defined objects as the basis for new objects {[VICO1].

34

Depth of inheritance tree (DIT) [SHY94|

The depth of a class within the inheritance hierarchy is the maximum number of steps

from the class node to the root of the tree and is measured by the number of ancestor

class [LIN9S].

The deeper a class is in the hierarchy, the greater the number of methods it is
likely to inherit, making it more complex to predict its behavior.

Deeper trees constitute greater design complexity, since more methods and
classes are involved.

The deeper a particular class is in the hierarchy, the greater the potential reuse of

inherited methods.

Number of children (NOC) [SHY94]

The number of children is the number of immediate subclasses subordinated to a class in

the class hierarchy. It is an indicator of the potential influence a class can have on the

design and system [LIN9S].

Greater the number of children, greater the reuse, since inheritance is a form of
reuse.

Greater the number of children, the greater the likelihood of improper abstraction
of the parent class is. If a class has a large number of children, it may be a case of
misuse of sub-classing.

The number of children gives an idea of the potential influence a class has on the
design. If a class has a large number of children, it may require more testing of the

methods in that class.

35

Method Inheritance Factor (MIF) [FER96][RHA98|{FBA96]

The Method Inheritance Factor is defined as the ratio of the number of inherited methods
to the total number of the methods that can be invoked in association with the classes in a
system. Here, for each class C1, C2...Cn, a method counts as 0 if it has not been

inherited and 1 if it has been inherited.
MIF= OM(C)/ [iM(C)

Where
Mi(Ci) is the number of methods inherited(and not overridden) in Ci
Ma(Ci) is the number of methods that can be invoked in association with Ci

TC is the total number of classes

Attribute Inheritance Factor (AIF) [FER96][RHA98|[FBA96]
AJF is defined as the ratio of the number of inherited attributes to the total number of

available attributes (locally defined plus inherited) for all classes in a system.
AIF= [SA(C)/ 121A«C)

Where
Ai(Ci) is the number of inherited attributes in Ci
Aa(Ci) is the number of attributes that can be invoked associated with Ci

TC is the number of classes

The larger of the metrics values, the greater the number of methods or attributes it is

likely to inherit, making it more complex to predict its behavior.

36

Polymorphism metrics

Polymorphism means having the ability to take several forms. For object-oriented
systems, polymorphism allows the implementation of a given operation to be dependent

on the object that contains the operation [VICO1].

Polymorphism Factor (POF) [FER96][RHA9S8][FBA96]

POF is the number of methods that redefine inherited methods, divided by the maximum
number of possible distinct polymorphic situations (the latter represents the case in which
all new methods in a class are overridden in all its derived classes). Thus, POF is an

indirect measure of the relative amount of dynamic binding in a system.
POF= oMu(C)/ (ci[Ma(C) x DC (C)]

Where
Mn(Ci) is the number of new methods
Mo(Ci) is the number of overriding methods
DC(Ci) is the descendants count(the number of classes descending from Ci)

TC is the number of classes

Polymorphism metrics by Benlarbi and Melo [SDI99]

Overloading

Overloading means methods have same names with different signatures within a class
scope. The OVO metrics is to gauge the degree of methods generality in a class by

counting the number of member functions that implemented the same operation such as

37

add “+ ”, minus “-” operation. Here, overl(fi, C) counts the number of items that the
function member fi is overloaded in the class C.

OVO= f;- coverl(f;, C)

Static polymorphism
Static polymorphism refers to method overriding. That is, methods have the same name
and different signatures among inheritance related classes, and the corresponding binding
occurs in compile-time. Spoly(Ci, C) counts the number of static polymorphism functions
that appear in Ci and C.
Static polymorphism in ancestors:

SPA(C) = Cirancestors<C) Spoly(C;, C)
Static polymorphism in descendents:

SPD(C) = Cie pescendents(€) Spoly(C;, C)

Dynamic polymorphism
Dynamic polymorphism occurs in the same name and same signature in an overridden
method, and the corresponding binding occurs in run-time. Dploy(Ci, C) counts the
number of dynamically polymorphic functions that appear in Ci and C.
Dynamic polymorphism in ancestors:

DPA(C) = Ci-ancesiors(€) Dpoly(C;, C)
Dynamaic polymorphism in descendents:

DPD(C) = Ci° Descendems(€) Dpoly(Ci, C)

38

Encapsulation metrics

Encapsulation means separating the external aspects of an object that are accessible to
other objects, from the internal implementation details of the object that are hidden for
other objects. Encapsulation prevents a program from becoming interdependent that a

small change has massive effects. [VICO01]

Method Hiding Factor (MHF) [RHA98|[FBA96]
MHF is defined as the ratio of the number of the invisibility of all methods to the total
number of methods declared in all classes. The invisibility of a method is the percentage
of the total classes from which this method is not visible.
TC ; TC
MHF = 0 o0V M)/ 2Ma(C)
Where:

V(M) = o1 is_visible(Mu, C;) / (TC-1)

1 iffj i ACjmay call Mp;
is_visible(Mmi, Cj) =

0 otherwise

Md (Ci) is the number of methods declared in a class (not inherited)

TC is the number of classes

39

Attribute Hiding Factor (AHF) [RHA9S8|[FBA96]
AHF is defined as the ratio of the number of the invisibility of all attributes to the total
number of attributes defined in all classes. AHF was defined in an analogous fashion, but

using attributes rather than methods.

AHF= 5 m MO0V (Am)/ 1o1ALC)

i<
Where:

V(Am)= o1 is_visible(Am;, Cj) / (TC-1)
iff j i ACjcanreference Ay
is_visible(Ami, Cj) =

0 otherwise

Ad (Ci) is the number of attributes declared in a class (not inherited)

TC is the number of methods declared in a class

Other Metrics

Weighted methods per class (WMC) [SHY94][SHY91]

WMC is a count of the complexities of the methods implemented within a class
(Complexities here refers to Cyclomatic Complexity). WMC belongs to the popular CK

metrics suite and reflect the complexity of classes.

WMC Considers a Class C1, with methods M1, ... Mn those are defined in the class. Let

n

cl, ..., cn be the Cyclomatic Complexity of the methods. Thus, WMC= ,C;

40

The number of methods and the complexity of methods involved is a predictor of how
much time and effort is required to develop and maintain the class.
e The larger the number of methods in a class the greater the potential impact on
children, since children will inherit all the methods defined in the class.
e Classes with large numbers of methods are likely to be more application specific,

limiting the possibility of reuse.

So far, the metrics developed by Chidamber and Kemerer [SHY94][SHY91] are the most
popular ones, because they are widely referenced, and most commercial metrics

collection tools available include the metrics.

Even though software metrics has been a subject area over 30 years, it has barely
penetrated into mainstream software engineering. Having exploring research of software
metrics, we observe two intuition reasons. One is that most of metrics has been defined
by an individual or a team and then tested and used only in a very limited environment,
thus it is hard to achieve the adoption in software industry. Another is that most of
software metrics has not addressed their most important requirement: to provide
information to support quantitative managerial decision-making during the software

lifecycle [NOEOQO].

4]

3.4 Summary
In this chapter, we survey software measurement by reviewing the key concepts in

software measurement, and introducing the selected popular traditional and object-

oriented metrics.

42

Chapter 4

Quality Assurance in Web Application Project

4.1 Introduction

As Web is playing a central role in diverse application domains, there are strong reasons
for a systematic and disciplined use of engineering methods and tools for developing and
evaluating Web sites and Web applications [MURO1]. Nowadays is widely accepted that
a Web site is not merely a matter of contents, it also requires demanding functionality,
combining navigation with complex services and transactions. Because of the increasing
size, complexity, quality needs and market needs for Web applications, several problems
have frequently been reported, such as: exceeding budgets, systems didn’t meet business
requirements, unknown or bad product quality, and lack of requirements and architectural
documentation [CUTO00]. Besides, the quality of Web applications has often been
assessed in an ad-hoc way, mainly based on the common sense and experience of
developers. Evaluation methods and techniques have been developed for different
assessment purposes [FLEOO][MENO1]J[POO02], such as Web Quality Evaluation
Method (QEM) [OLS00] and its supporting tool, Web QEM tool [OLS01]. They focus on
those aspects that are perceived by the user, like navigation, interface, reliability, etc.

instead of other product attributes, such as quality of code, design, etc.

However, developing products and services meeting the customers’ needs is always the

main target. Today, the end-client not only asks for a working product, but also for the

43

development of high quality products. The technology progress and the worldwide
competitor make the enormous increase of application complexity. It also leads to
develop an application in even shorter period of time to meet the market needs. In this
situation, to develop successful products means to be successful on the market. Quality is
one of the most important factors for the commercial success of a software system
(especially when looking at its whole life span, including maintenance activities).
Therefore, integrating the future customers of the application and quality control in very
early phase of development becomes a must. Based on the above, user-oriented design
and quality are introduced to the development processes, where end user plays an
important role. For example, at Berkom, the application-oriented innovation center of T-
Systems Nova in Germany, the approach of user-centered quality engineering has been
introduced in Web application development [MIC02]. In this approach the user and their
requirements are integrated in the development processes. By applying this approach
within development phases, it gained that efficiency is increased, costs reduced and the
end-user acceptance and satisfaction with the application increases. The reason is obvious

since the needs of the customer and the market are met.

Customers’ needs and satisfaction are always the most important factors in the quality of
today’s software application, especially in Web projects. Customers want what they want,
when and how they want it. If they don’t get instant satisfaction they may turn around to
other company to spend their money and time. Poor service and quality can be a kind of
risk in Web project since the effect is that we cannot keep the customer. Web

development in general has to identify and assess these risks. QA and testing can be used

to identify the risks and ensure to minimize the risks in a Web project. This should be

part of the Web application development throughout its life cycle.

In this chapter, we give an overview of QA in the Web project development processes.

Section 4.2 gives a brief overview of Web project development processes. Section 4.3
introduces an approach in applying user-centered quality engineering in Web application
design processes, which developed at Berkom. Section 4.4 introduces how to establish
quality procedures in software development based on an accounting project developed in
Dresdner Bank AG (Germany) which using the framework based on e-commerce
strategy. Section 4.5 describes how to use QA and testing to control risks in various

phases of Web development.

4.2 Web Application Development Processes

When we evaluate a Web application, the evaluation needs to locate various development
phases. Web Application system is different from the traditional system as we saw in
Chapter 2. In e-commerce, the system providing the Web-based service includes business
processes, network communications, various software components and database engines.
Thus we can address four topics for a Web-based system: Customer's Needs, Business
Processes, Web-based System Architecture, and Web Software Components. Thomas
Fehlmann [ANDO2] gives a Web development model based on the well-known software
development V-model. Figure 4.1 shows this model. The significant difference is in this
Web development model, testing is the first task on each of the development phases and

the last task as well. This model gives on various topic levels and can be extended to an

45

additional upper topic level that represents the needs of the Web users. Based on this
model, the development processes can split into different level, which corresponds to one

of the above four topics.

Requirement Specification

Cust * - - i
ustomer's Needs <Veriﬁcat o & Validation User-Centered Testing

Strategy & Realization

Specificaon p> | Business Process

Business Processes | < Testing
Verification

Business Process Specification & Implementation

' Specificaion o [\wep Integration
Web Pages design -— Testing

Verification
Web-based System Architecture

_____>
Components
<@—— |Functionality Testing

Web Component Design & Programming

AppletsServiets

Figure 4.1: Web Development Model

The top level is the first to start from the initial requirements for the Web systems. Web

design and integration define how the Web application system will offer its services.

Within the scope of the development process, there are different stakeholders of each
process whom have to be considered. The roles in one development phase maybe
customers, project manager, etc, but, on the other hand, in other process cycles, they
maybe developer, tester, and so on. In a user-centered development environment, the

user-related roles are distinguished. Following lists the customer-related roles, which are

46

described because they are especially important in the scope of user-centered quality
engineering [MIC02] that we will see in next section:

e Customer: this is for example the project manager who wants to create a new
application or a service.

e End-user: a member of the target group for which the application has been
developed and who wants the service as a buyer on the market. This role is very
important in a B2B (business-to-business) environment.

e User: the person who finally uses the application or service. This can be for
example the buyer’s child using learning software or the customer of the service
operator. In some cases, like a standard consumer business, the customer and the
user would be presented in one person.

Figure 4.2 shows an example of the relation of these roles in B2B environment.
order of product

% development < Web Application
| e——————

K development
custome i)

delivery of the

product
usage of the
product

user

project manager

Figure 4.2: Customer roles in a B2B scenario

4.3 User-Centered Quality Engineering in Processes [MIC02]
[n a fast-developing market, it is absolutely necessary that the software product fulfill the

requirements of users as well as good level of quality. The logical consequence is to

47

integrate the user requirements and also the potential users in the development processes.
In Berkom, engineers introduced user-centered quality engineering into their
development process structure. By applying this approach, it solved the quality questions
relating to acceptability, usability, and quality of service. As a result, the end-user

acceptance and satisfaction, and product efficiency have increased.

4.3.1 Basic Concepts [MIC02]
The goals of user-centered quality engineering are:
e To know what users want.
e To know what users need.
e To avoid expensive redesigns
In summary, the goal of user-centered quality engineering is to design user-friendly and

well-accepted applications and services.

Usability, acceptability and quality of service are the three quality factors considered in

user-centered quality engineering, which are user relevant factors.

Usability

Usability concentrates on the use of products and services in a user point of view.
Usability engineering allows optimize the design of applications and services. Style
guides and CI/CD regulations as well as usability guidelines (e.g. from ISO) for the

design of software and hardware provides the necessary guidelines.

48

Acceptance

Acceptability covers the users’ sense of the whole product and their willingness to use it.
A set of factors can influence the acceptance. In user-centered quality engineering, there
are classifies as product-specific, user-specific and environment-specific factors. In B2B

market, there is also enterprise-specific factor such as organization and qualification of

staff.

Product-specific factors are those which can be influenced before, during or after product
development. They include functions of the product, its usability, design and additional
features, the cost and the price. Product-specific factors are determined by user-specific
and environment-specific factors. User-specific factors are, for example, the user’s
readiness to take risks, the added value and the affinity for technology. The environment-
specific factors include innovation cycles and advertising. Table 4.1 gives the technical

innovations of acceptability.

Vi

Product-specific

Usability, technological complexity,
compatibility

Charges

User-specific Information standard, risk readiness,
_predilection to technology
Environment-specific | Accelerated cycles of innovations
Enterprise-specific Organization, manner of implementation,
qualification of staff, intensity of competition

Table 4.1: Acceptability of technical innovations

Quality-of-Service
Quality-of-Service (QoS) analysis is the evaluation of the user-perceived transmission

quality of speech, audio, video, and audio-visual through user tests of instrumental

49

methods. Here is as example the question of the end-to-end quality of an [P telephony

connection as perceived by the user. QoS parameters in the [P network can be an

indicator for the quality, but how much they leave open or in how far which influence on

quality have to be considered also.

Integrate User-centered Quality Engineering into development processes

To integrate the above three quality factors in the development process of an application,

from the idea to the finished product, is the core of user-centered quality engineering that

supports product and marketing management and development processes. The

development cycle here is divided into four stages:

Product Idea (Strategy & Realization)

In this stage, new application requirements are discussed with potential end-users
under different viewpoints. They include questions related to the acceptance and
further design of the product, possible functions and features, quality requirements
and user needs or possible target groups. Thus, important information regarding to
further specifications and possibly a first feeling for the market can be obtained.
Product development (Specification & Implementation)

The requirements of the future users or the market obtained from the first stage can be
included in the development process. Support can be given by means of usability
reviews, acceptance tests or quality of service examinations of partial

implementations, pre-products or prototypes.

50

¢ Product Initiation
Before the product is introduced on the market, it is necessary to test the product
regarding its suitability for the market. Apart from evaluating the product and its
features, the future potential improvement can be identified in this stage.
Examinations at this time can also be used to restrict the target group for the product
or the service.

e Product on Market
Once the product has been put on the market, the users’ feeling and satisfaction with
the product and the features are especially important. The main goal here is the

analysis of the product on the market and to find feedback for future improvement.

4.3.2 Integration of User-Centered Quality Engineering 2nd Quality Criteria for
Processes
In Berkom, the approach of user-centered quality engineering has been developed and
integrated in the development processes of several projects. This is a three-stage
approach:

1. Analysis

2. Integration

3. Review
Analysis

This first stage is to analysis the current process structures and their use. The goal is to

identify approaches for integrating the measures regarding user-centered quality

51

engineering. Then the elements of user-ceniered quality engineering can be integrated

into the development process with their description (roles, documents, etc.).

To start the assessment, it needs to set the topics. This is based on different projects. For
instance, the Berkom projects focussed on following topics:
e Web-based projects.
e The support of customer, end-customer and user, e.g. user surveys dealing with
usability, acceptability and quality-of-service surveys.
o Different sizes and duration

e [nitiated by the main customers

It may need to choice an assessment tool to obtain the representative results. According
to above focuses, the following processes can be chosen from the Process Structure:
o Project management (a general topic to understand the project and to find out
how the project is managed).
e Quality management (to learn how the quality of the products and project
processes is managed).
e Quality assurance (to discover how the project assures the quality of their
products and the QA methods used).
e Customer Need Management (to learmn how the customer and user demands and
expectations are understood and managed with special focus on integration of the
customer/user into the lifecycle).

e Process design (to find out how projects deal with their processes)

52

Analysis of the assessment reports, designers in Berkom could derived the relevant
quality criteria for the introduction of user-centered quality engineering into their project
process structure:

e Flexibility and customizability: Since the process had to fit various projects of
very different sizes, the additional features had to be introduced in a way that the
processes are easy to use, easy to customize and therefore applicable to all
relevant project types and sizes.

e Supporting project managers and development teams.

o Completeness with respect to different QA techniques and internal services.

e Open design and good supportability.
e Reduction of development costs and shorten the development time.
e [Increase of the product complexity and quality of products and services.

e [ncrease of the customer satisfaction.

Integration

The integration means to integrate user-centered quality engineering into the
development model the project uses, like the Web development model in section 4.2. The
example here is from Berkom project, which had the development model according to
DIN EN ISO 9001. In the following, the integration in current processes is described with
respect to the quality criteria mentioned above. Here, the flexibility and customizability

of the processes are especially important. As an accompanying process, user-centered

53

quality engineering spans over the entire development process steps, starting from the

conception phase via specification to operational support.

Preparation of Order

While preparing the order, the project manager worked out the basic features as well
as the QA measures derived with the customer. This also includes the measures of
user-centered quality engineering. Thus possibly integrate the end-user in the project
development.

Meetings with the customer, the advantages of user-centered quality management
were introduced and discussed. This was to help the customer over the new method
and integrate the requirement analysis for measures with user-centered quality
management.

Conception

In this phase, project planning and all further planning documents have to be created.
It is necessary to detail the technical requirements of the customer, work out the
technical solutions and put in specification document. The requirements from the
user’s point of view concerning usability, acceptance and quality-of-service analysis
aspects have to be described at this point.

Specification

Regarding the measures within the scope of a user-centered quality engineering, the
individually examinations of usability, acceptance and quality-of-service analysis are
described here. It is possible to include user within the scope of the specification and

to carry out examinations within the scope of user-centered quality engineering.

54

Realization & Test

In this phase, measures for user-centered quality engineering can help for selection of
product components and solutions, and can contribute to an early product
optimization from the customer’s point of view. Here prototypes are evaluated or
components are compared to make use of the best. Measures are taken from
independently of testing activities such as functional tests, system integration tests,
load tests, etc.

Acceptance

Measures for user-centered quality engineering are not important.

Support for Market Introduction

In this phase, measures of user-centered quality engineering are to test the product’s
suitability for the market. Here, usability, acceptance and quality-of-service analysis
provide indicators for potential improvements. If errors are found, they should be
further examine in additional usability tests. Moreover the important information
about support of marketing and distribution is collected in this phase.

Operational Support

During operation, it is interested in the questions about frequency of use and user
satisfaction. This information is the basis for decisions on how to improve further.
Conclusion and Archiving

In this phase, the experiences gained in the process of project from the user-centered
quality engineering have to be evaluated, and relevant results, data and so on have to

be archived according to data protection regulations.

55

4.4 Establishing Quality Procedures in Software Development [AND02]

Given the fact that Web projects are always short of time, it is essential to introduce a
project-integrated quality management from the outset of the project. The quality
objectives and criteria must be defined at the outset of the process, in co-operation with
project management, since it can be broken down to the lowest production level of a
software development. This intrcduction is based on the project developed in Dresdner
Bank AG, which is an e-commerce based real-time accounting system. Dresdner Bank
integrated quality management into the process flow for the realization of this major
project. By defining quality objectives, establishing quality assurance measures and
supporting the individual sub-projects, the quality targets have been achieved. One of
quality management’s targets within the scope of the overall project is to establish an
acceptance procedure which ensures that quality is “built” into the process flow already

during the development process.

Establishing a QM Procedure
In order to set up QM procedures in a major project, suitable approaches and methods
have to been chosen from a selection of model approaches and software architectural
models. These were then integrated in the project in the form of guidelines. The
following are the procedures:
e Defining the phases of the development procedure
- Analytical and design phase
The analytical and design was performed on a UML (unified modelling

language). A procedural guideline planning analysis was set up for this phase.

56

Examples and templates were used to indicate ways of achieving individual
project results.

- Implementation Phase

In this phase, programming took place in Java, using the “Visual Age for Java”
(VAJ) development environment. Development testing was carried out using the
“JUnit” tool. An implementation guideline describing the general approach for the
development test was established for this phase. These guidelines include Java
programming conventions, guidelines for program documentation and guidelines
for the repository incorporated in VAJ.

- Test Phase

Due to the testing approach adopted by the bank, the test phase was split into
three stages: functional testing, application testing and connectivity/integration
testing.

Definition of Quality Management Integrated in the Process Flow

To establish a project-integrated QM process, the role of quality management
within the project has to be defined from the outset.In the Bank project. The QM
was to establish quality assurance measures and to provide the necessary support
for these measures. It is important to note that quality management does not
assume the role of policeman, but rather of an authority on quality planning,
quality control and quality checking. The role of quality management in the
individual project stages comprises the selection and determination of result
types. The first results from each stage were used by the QM to evaluate whether

the result types were useful or not. QM incorporates future review as early as in

57

the definition of the analytical and design phase to ensure that gaps in the resuit
types are recognized and improved.

Co-operation with other Project tasks

QM in this procedure is to co-operate with those responsible and with project
controlling on the definition of individual projects. This is facilitated by
separating the responsibilities: Project controlling is responsible for monitoring
and management of project planning and the production process in terms of
deadlines, expenditures, budget and resources. QM is responsible for the
functional acceptance of production installments, sub-projects and releases in
terms of content and for planning and monitoring the quality assurance measures

which need to be implemented.

Integration Quality Management in Software development processes

From a QA perspective, it should be possible to review technical feasibility and cost-

benefit aspects during initial project phases. Performance, security and feasibility in

terms of maintenance are important quality features in this context. In the software

development process, acceptance of result types by QA must be transparent to everyone

involved and responsible. Sets of requirements that apply throughout the production

process need to be defined. In the Bank project, QA chose the following results as test

Analytical model: Business entity model
Application documentation: Complete description of functional features is

required to achieve the milestones.

58

e Development model: Describes the lower level of classes, methods and attributes

that must be implemented.

e Development documentation: Describes the design and aspects relevant to

implementation.

e Java code: Java code and procedures; software documentation extracted using

Javadoc.

e Development test: Documentation (generated with Javadoc) of test cases and
testing using Junit.

e Description of test cases that are relevant for the functional features.

Based on the above references, acceptance protocols for chosen groups of result types are

drawn up to represent result types from this acceptance process.

Figure 4.3 shows the process flow on how the QA integrated in the software development

phases in Dredner Bank’s project.

59

Result type Quality Manager Insection Criteria Guidelines
Requirements R
Requirement ‘
Specification }
Analysis] Compliance with the
Analytical Check <@ guidelines & standards, | g! Analysis
Model Analytical Model absence of contradiction Guideline
g within the result type,
: consistency to
* the requirements
Design Application | ™ Check Compliance with the Template for
pp - (e <€ Appli
Documentation Application guidelines & standards, pplication
Documentation absence of contradiction Documentation
‘ within the result type,
consistency to the
requirements,
usefulness fortest cases
Description of .
Test Cases > Review
5 Compliance with the .
L Analysis
Development \/ gmdglmes &standards, [Guide line
Modeland — Check consistency of C?Ch
Documentation Development |“@— result type, consistency Template for
Model to the analyticalmodel, lqg- Development
: expressive and Documentation
: meaningful language
Implementation I]) Implementation
Software T Check Compliance with the Guideline
guidelines and standards, 7
Software . -+ ava
Description of consistency of each Guide line
SCJl;Ilp tionot | -9 1 result type, consistency
nit : to the development <- Refactoring
test cases \J model Guideline
Physical > .
Database Model

Test

Documentation

Check
Test Cases

v

Acceptance

Figure 4.3 Acceptance procedure in the process flow

60

4.5 Web Project Risk Management [STE02]

With the rapid growth of Internet, many companies expect to merge their services to the
Web to increase the speed to the market. This rush to the Web has created huge pressures
in the Web development and e-business. Since the customers’ needs are always in the
first place. The advent of e-commerce has increased the direct visibility of application
functionality to the customers no matter where they are. Customers can be other
businesses, internal users or individual end-customers. Any mistakes can no longer be
easily hidden or glossed over with excuses and the adverse impact materializes in terms
of time, cost and damage to the business. Poor service of a Web product will make the
customer run away and turn to another company (maybe the competitors). How can we
develop a product in a short time limits also have a good quality product? This rises the
risk control issue in the Web development. Web development and e-business in general
have to identify and assess these risks. This assessment and management must be
performed during development because any inadequacies are published worldwide, and

to be found in the Internet will damage any business.

QA and testing can be used as a risk management technique during Web e-commerce
development. QA and testing can be defined during the identification and assessment of
risks. The definition and assessment of risks must be an integral part of the projects

throughout the development life cycle.

61

4.5.1 Risk and Management Overview

We can define the risk in a general way:

Risks are things that may happen. Risk management is a technique to stop something
getting worse and to help to stabilize the incident in readiness for recovery. Finally, it

seeks to stop the incident from happening again.

Testing is a viable risk management technique. It is applied to minimizing the business
and delivery risks in e-commerce projects. Like the testing in business process, if testing
is to be used, it needs to design the testing cases to identify the potential risks.
Consequently, first, we need to know what the risk is, the cause of the risk, where it is
most likely to be found and the symptoms. In a word, to identify the risks. Let us see an
example list of risks gained from e-commerce project development, which may be a start
point to use risk management technique:
® Poor communication: Unavailability of appropriate resource and environment
crisis management. Loss of confidence in the project and its delivered outcomes.
e [nadequate server capacity: Symptom poor performance/response. Transactions
abandoned or time-out. Loss of existing customer base.
e Over-complex site design: Difficult to navigate across the site. Transactions
abandoned. Few repeat user hits. Loss of existing customer base.
e Site content breaches regulations/statutes: Complaints by regulator, customers,

and competitors. Fines or rework costs incurred.

62

o Inadequate security: Loss or malicious amendment of data. Unauthorized
publication of personal data. Loss of market reputation and consumer confidence.

o Inadequate audit trail: Fraud. Attract unfavorable regulatory interest. Loss of
reputation and consumer confidence.

e Inefficient code: Poor performance. Higher transaction costs.

e Unreliable data: Data mismatches preventing customer transaction e.g.
registration, purchase, information requests. Multiple or nil information being
dispatched to the customer e.g. multiple investment statements to the same
address, information sent to the wrong address or recipient.

e No business recovery process/facility: The company is unable to transact during a
major systems failure or cannot recover quickly from it. Lost customer
transactions. Regulatory/statutory penalties incurred. Loss of reputation and

consumer confidence.

Here, we don’t discuss how to identify the risks in detail. Just mention that there are
many methods for identifying risks. For example, metrics from similar projects, current
project data such as the rate and completeness of planned testing, or the tools like

Problem Perfect, etc.

4.5.2 QA and Testing Technique in Risk Management
QA and testing can be used to manage the risks in a Web project. By the planned tests, it
can be against the risks and risk management identified. It treats the risks and risk

management functions identified during the risk assessment process as subsets of the

63

business and functional requirements for the project. The impact of each risk must be

factored into the planned tests by the prioritization and dependency.

Prioritization of the Risks

Test priorities can be used for the testers to design the test plans and strategies.
Prioritization provides the focus for the application of QA and testing to ensure that
appropriate test coverage is achieved. Test prioritization is not standalone. It should be
considered with risk assessment a requirement of the project to prepare the test strategy
and supporting plan. Following is an example of test prioritization from a Web financial

application. We can see how it links with the risks identified in last section:

Priority 1: Screen navigation
e All screens are navigable from end to end, forward and back
o All field tabbing works as intended.
o Intended levels of access security proven.

Priority 2: Accuracy of displays.
e All calculations are correct
o All fields offer full display without truncation of results.
e All date processing is accurate.
e Numeric, alphabetic and alphanumeric fields have full validation including checks for
special characters and appropriate error handling.
Protected fields demonstrate protection/security/confidentiality.
Zero spelling errors.

Priority 3: Performance
e Scroll speed meets requirements
Table look-up speed meets requirements
Screen navigation speed meets requirements
Links and data transfer meet volume and speed requirements

Priority 4: Support process
o All help screens fulfil requirements
e Call center processes and service levels in place and proven
s Problem and audit support procedures in place and proven
¢ Business/disaster recovery in place and tested

64

The priorities used in this example follow a simple logic: Risks with screen navigation set

at priority 1 on the basis that if the web site cannot be navigated customers are unable to
use the site. Risks of accuracy of display set to priority 2 because if the customer
provided incorrect information that means customers will make decision on wrPng data,
damage of reputation. Performance is in the third priority. If poor performance proved to
be the main cause of brief visit, it may result to loss the business opportunity- Finally,
¢Esses are

priority 4 is located to line with the risks of support processes. Poor support pro

likely to result in a loss of customer retention.

Since the QA and testing is not possible to eliminate all risks, the QA and testing Strategy
should include the information like test objectives, test environment, approaCheS’ a
bibliograph of related project documents. This information is essential to successfully
testing for any project. It ensures that detailed test planning is designed to addr€ss clear
objectives and that responsibilities, timing and dependencies are clearly understood by
the whole project team. Due to project time or resource constraints, it may not be possible
to produce a comprehensive test plan. But prioritizing testing against the known fisks will
improve the project’s chances of delivering an application with acceptable test €OVerage
and clearly be understood, proven levels of functionality and performance. The risks
identified in last section could generally be applied to most client-server projects,

including the Web projects. Following table summarized the testing that could b applied

to minimize the risks identified.

65

Poor Communication

V olve al e l s y etends '

beyond the recognized project team).

Test accuracy and clarity of displays. Record defects
on project test log.

Walkthrough (role play if appropriate)support
processes including manual workarounds and other
contingencies. Record defects on project test log.
Record and publish risk assessment, test strategy, test
plans & other appropriate project documentation.
Record and publish test results including: tests
planned vs. tests successfully completed, defects
reported, defects fixed and defects outstanding.
Record and publish issues, risks and management
thereof.

Share learning from failure across projects.

Inadequate Server Capacity

-1

Involve all relevant personnetl.

Check the impact of other planned developments that
may be hosted from the same server.

Check capacity forecasts (or perform for the first
time). Plan against best post-implementation
projections.

Confirm capacity availability and time-scales.

Test or simulate capacity scenarios using appropriate
automated test tools. This simulation must include
transaction loading as well as typical number of
concurrent users. Record all defects on project test
log.

Test, data transfer, reporting and backup and restore
scenarios. Record all defects to test log.

Test speed of online navigation with a range of users
and transactions. Perform at different times of
day/week. Simulate navigation at peak periods of
day or system cycle.

Ensure that third-party contracts are reviewed and
amended to ensure that any new requirements
identified are incorporated.

Over-complex Design

This should include real users representing a range of
skill levels from novice through to expert to exercise
end-to-end systemn navigation (include manual
process walkthrough where necessary).

Employ critical-design reviews if time constraints
permit. Focus upon areas of key process and
transactional complexity.

Utilize code reviews especially for complex or high-
value/volume transactional code.

All proposed changes to be managed via the project
change management process.

66

" Content Bachs o
Regulations

Legal and regulatory expertise needs to be factored
into the project and testing from the first day.
Ensure that legal and regulatory expertise is applied
to a screen-by-screen walkthrough of all content.
This includes help text, guidance notes or
illustration.

Legal and regulatory expertise must also apply
diligent scrutiny to any supporting literature
processes and audit trails.

All defects to be recorded on the project test log.

Inadequate Security

N

Ensure appropriate security expertise is available to
the project.

Examine known security risks that have been
experienced in other projects and factor these into
testing.

Test access-level entry, end-to-end navigation,
encryption, invalid inputs, destructive testing, error
handling, malicious penetration e.g. virus protection,
external and internal access, backup/restore,
processes (including reporting alerts and access
denial), documentation/administration/input/output
controls and business recovery.

Inadequate Audit Trail

N =

Ensure appropriate audit expertise is available.
Ensure that the input, validation, processing and
output of information can be tracked (including at
archive and business recovery.)

Ensure that audit information cannot be changed or
deleted by unauthorized or untracked transaction.
Test that any regulatory audit requirements are
fulfilled.

Ensure that all appropriate audit processes are in
place and work.

Inefficient Code

Apply code reviews. Focus upon the most-used code
paths.

Utilize code-automated analysis tools if these are
available.

Record all defects on the project test log.

Unreliable

Build Test data to match the business and transaction
scenarios set out in the requirements and risk
assessment documents.

Any manual input during testing should be a mix of
valid and invalid data to test validation and error
handling.

Consider the need for any data cleanup prior to
implementation and ensure that process and plans are
in place to achieve this.

67

No Business Recovery 1. Ensure that the scope of recovery and support
processes is clearly defined and documented.

2. General support processes including day-to-day call
center and IT activities are walked through as part of
any testing.

3. Check that incident management and escalation
procedures work.

4. Ensure that an up to date business recovery plan is in
place and test it. (Check that key business recovery
test triggers e.g. major organizational change, major
system change, elapsed time period or key personnel
changes, are clearly understood and in place.)

Table 4.2: Summary of risks and QA testing activities.

4.6 Summary

[n traditional software development processes, end-user is the last one who sees the
project. It leaves questions relating to acceptability, usability, and quality Jf service
unanswered. Since these quality factors are towards perspective of customers. By
applying user-centered quality engineering, the end-users’ view integrates into each
development phase. Thus obviously, it increases efficiency and end-user satisfaction. The
projects that done in Berkom which integrated the user-centered quality engineering into
the development processes proved that the succeeded in designing a manageable process
and fulfilling the quality requirement. The experience gained tells that the productivity
and efficiency of the projects were increased and the required time reduced. Also very

important is user’s satisfaction increased.

In this chapter, we introduced the quality assurance in Web application project
development processes. The use of user-centered quality engineering in Web project led
to a higher customer satisfaction. By integrating the quality management in the
development processes, the quality objectives and criteria which defined at the outset of

the process, in co-operation with project management, can be broken down to the lowest

68

production level of a software development project. Moreover, the QA and testing
knowledge or techniques employed to test client-server technology can be used to

manage risk on a Web application system.

69

Chapter 5

Quality Model of Web Applications

5.1 Introduction

There are many books and other published material that present a lot of information on
what to do and what to avoid, when designing, developing or maintaining a Web
application. Lynch and Horton [LYN99] discuss typography on the Web, dealing with
issues like alignment, capitalization, typefaces, etc. Although very educational and
useful, this knowledge is not sufficient. In order to improve the quality of a Web site, we
have to decide which quality assessment principles to apply, how to apply them, and

when to apply.

This is a crucial decision in a Web application activity.

Due to the increasing growth of Web sites and Web Applications, developers and
evaluators have interesting challenges not only from the development but also from the
quality assurance point of view. As we know, the quality assurance was and is one of the
challenging processes in Software Engineering as well as for the Web engineering, as a
new discipline [MUROI1]. Particularly, regarding the quality perspective, a clear
definition and management of functional and non-functional requirements in order to
specify, measure, control, and improve the produced Web sites and Web applications are

largely needed. As Web sites have grown both in interaction and functionality, they

70

changed from just being static, document-oriented pages to dynamic application-oriented
pages with at least the complexity of traditional software applications. This makes the
evaluation and ultimately the quality assurance more challenging. There exist many
design guidelines, heuristics, and metrics for the evaluation of Web sites and Web
Applications. It makes more sense user-centered quality assurance in Web application

design and evaluation. After all, most people who use the Web are more concerned with

its end-to-end behavior.

As we see in Chapter 2, the principle technologies, which are enabling Web applications,
are computer networking and telecommunications, client-server computing, multimedia
. and hypermedia. It can be said that Web application is a system which final scope is the
satisfaction of the end user. The latter communicates with the virtual seller of the e-
commerce shop, using a human-computer interface (HCI). Such interface is user-centered
and should be effective for the user [AVOQ00]. Since the end user interacts with a
computer, the quality of the interface should follow the same principles as software
quality. In brief, the quality of Web application systems is related to system quality,
quality of the HCI and quality of the services offered. Given the fact that all interactions
with the end user are accomplished through the human-computer interface, the quality of

Web application systems can be addressed in similar terms as software quality.
In Web infrastructure, there are many components working together to provide Web

services. Object-oriented technology is widely used in developing Web applications. To

measure the quality of Web applications, the OO measurement approach should be taken

71

into consideration. Some OO metrics has been introduced in Chapter 3. In this chapter,

we discuss some metrics from the characteristics of Web Applications point of view.

In Section 5.2, we propose a quality framework for entity types grounded in the ISO
9126 quality model. Before specifying and defining a measure, it is necessary to know
what attribute of what entity type it will measure. In Section 5.3, we discuss the quality
factors of Web applications from a user-centered view. Given the relation of the
aforementioned quality factors (functionality, reliability, usability, and efficiency) to the
characteristics of the Web application systems, emphasis is on the effort to provide a
good justification why the specific quality factors play such an important role in user
satisfaction. Moreover, the correlation among each of the four quality factors and the
Web application system characteristics is discussed in Section 5.4. In Section 5.5, we
gives a catalogue of Web metrics, which used to support different quality assurance
processes such as non-function requirement specification, quality testing definition, etc.,
both in the development and maintenance phases. It supports the quality model that

discusses in this chapter. Section 5.6 presents a summary of this chapter.

5.2 A Quality Framework

Quality is a property of a Web site defined in terms of a system of attributes, like
consistency of background colors or average download time. When performing quality
assessments, the term quality must be well understood and precisely defined. ISO 8402

gives the following definition:

72

“The totality of features and characteristics of a product or service that bear on its ability

to satisfy stated or implied needs.”

According to the ISO 9126 standard [ISO91], software quality consists of six quality
factors, which are functionality, reliability, usability, efficiency, maintainability and
portability. These factors can be further analyzed in specific characteristics. Concerning
Web application systems, quite often, consider the quality factor of usability as the most
significant factor of software quality [SHN]. Usability issues on Web are the subjects of
Paolini’s research [PAO98][GAR98], according to which, usability for Web applications
should focus on structure and navigation, and inspection appears to be the most suitable
method. However, usability is not the only factor involved in Web application quality.
The quality factors of functionality, reliability and efficiency also contribute to the user

satisfaction.

Software quality is a complex, highly context-dependent concept. The goal of software
quality measurement is to predict the level of quality of the software entity, and/or to
monitor the improvement of the quality during the software development process.
Different software quality requirements have been modeled by decomposing it into
various quality factors, quality criteria and quality metrics in a hierarchical way. In
Software Quality Factor-Criteria-Metrics Framework ([IEEE Std 1061-1992, 1993]) the
technique is defined to build a quality model according to the organization goals and
management requirements. The model’s hierarchical structure is built by decomposing of

every quality requirement in quality attributes (factors) from the management and user-

73

oriented views, by decomposition of each factor into software-oriented attributes from the
technical personnel views. Software metrics of the characteristics of each criteria is

identified and associated to the established criteria and factors.

A quality model may involve a lot of interdependent attributes and has to take into
account the particular purpose of analysis for which quality is being modeled. Attributes
of a Web site may include a very large list of properties, possibly at different levels of

detail, including usability, efficiency, reliability, maintainability, and complexity.

Like any modeling activity, to define a quality model is a creative task for which it is not
possible, in general, to give a precise list of steps to be followed. However a general
method can tackle the problem based on the Goal, Question, Metrics (GQM) approach
outlined first by Basili and Weiss [BAS94] and then often adopted in Software
Engineering. The GQM approach can be followed on any analysis that requires data
collection. Quality assessment is such an activity since the developers need to acquire

data about the site to determine its quality level.

In the Web Engineering as in the Software Engineering field, the integral evaluation of
attributes of different entities is not easy. It is difficult to consider all the characteristics
and desirable attributes cf a process, resource, product (like a Web site or a Web
application), or product in use. Quality framework, models and methods allow the
evaluators to specify systematically those characteristics and attributes. So as a first step,

it is important to define a quality framework that serves as a guide in the classification

74

process of entities, models and associated metrics. Figure 5.1 shows a relationship among

the quality factors in consideration of entities that can be in the quality assurance process

adapted from ISO/IEC 9126-1. From these quality factors, the attributes and metrics can

be derived.
Entity Qualit FactorM odely Metrics
Resource N_g ..
Resource Quality Resource
¢ A : Metrics
Process Process
Maetrics
Internal and External
Product Product Metrics
Product/System . Quality in Use
——pp inlUse | N ijpuse A T Metrics or Instruments
Depends on
lnf:luenc&s to

Figure 5.1: Quality framework by different entity type and potential quality models
toward Web Engineering fields (from ISO/IEC 9126-1).

We implicitly observe, from the ISO/IEC 9126-1 quality model framework [ISO01], that

each quality factor (e.g., product quality) belongs to an entity of the empirical domain.

Because an entity can only be measured through its attributes, it is necessary to define

measures of entity’s attributes in order to be able to analyze the measurement data.

75

From this framework, we have following factors: Quality of Resource, Quality of
Process, Quality of Product, and Quality in Use. In Figure 5.1, we can see that resource
quality potentially contributes to improve process quality, and process quality influences
the product quality, and this in turn, influences the quality in use. The evaluation of the
quality in use can provide feedback for improving a product, and the evaluation of a

product can give feedback for improving the process quality.

By means of Quality of Resource factor, a quality model to measure human or technology
resources can be specified, which can influence the quality of processes. By means of the
Quality of Process factor, we can specify a quality model to measure different aspects of
a process. Using a model for the Quality of Product, we can model the product quality in
consideration of the internal and external quality of the product. Last, by means of the
Quality in Use, the users’ perceptions and reaction interacting with the real product in

specific scenarios of use is measured, considering the specific user profiles.

For instance, for the Quality of Product factor, the ISO 9126-1 quality model standard
prescribes six well-known characteristics as well as a set of sub-characteristics for each
one, which we will see in section 5.3. The hierarchical model can be specified as a tree
compounded of characteristics, sub-characteristics and attributes. Let us consider the
attribute Orphan Page Count, which measures having no return link to the site where are
included in. Orphan Page Count attribute can be measured as a direct metric on the

absolute scale. A possible indirect metric is: X = OrphanPageCount / PageCount. Does

76

this metric relate to a characteristic or a sub-characteristic? By ultimately empirical

studies, we can draw this attribute as being associated to the Reliability factor.

Table 5.1 gives the summary of the attributes of different entity types in quality of Web

applications using ISO 9126 quality model.

Entity Sub-entity Attribute Definition

Resource Personnel Productivity Definied as the quotient between the size of the
produced oupput and the required input as
effect[1]. For mstance, the LOC produced per
person days.

Method/Tool = Method/Tool Defined as the level of use of a given method (or

Usage Level tool) in a Web or software project.

Process Authoring Interlinking Effort Defined as the estimated elapsed time taken to
interlink Web site pages.

Testing Link-testing Effort Defined as the estimated elapsed time taken to
test all links in a Web site or Web applications.

Coding Faults Count Defined as the number of fanits found in code
testing.

Product Program Code Length Defned as the number of lines of code in a
program (here, a distinction whether commented
lines of code or not can be made).

WebApp Program Types count Defined as the number of different programming
technobgis used to build programs in a Web
application. For instance, JavaScript, C{d scripts,
Java applets, ActiveX, etc.

Page Page Media Count Defined as the number of different types of media
used in a page.

Product/System WebAppsin TaskCompletion Time Defined as the clapsed time a user takes in

m Use Use completing a previously established task We can

obtain the average elased time for a user's type
and compare it with the one an expert user had
taken.

User Success Rate (or
Task Completeness

Level)

Defmning this rate as the percentage of tasks that
users complete correctly. It measures users'
ability to complete tasks.

Task Completeness

Efficiency

Defined as the quotient between the
completeness level and the average completion
time.

“Table 5.1 :Summary of attributes for different entity types using 1S09126 quality model

77

5.3 Quality Factors

Since the user interacts through a Web interface, it is obvious that Web application
quality is related to the quality of the Web pages and the services that are provided to the
end user. It is argued that the quality of Web application systems is related to four quality
factors, which are functionality, reliability, usability, and efficiency. It is worth to
mention that some of the characteristics of Web application systems are related to more

than one of the above quality factors.

Functionality [KIT96]

Functionality refers to a set of functions and specified properties that satisfy stated or
implied needs. Its sub-characteristics are suitability, accuracy, inter-operability, and
security. Based on the definition, it is obvious that the quality of functionality can be
related to the basic characteristics of Web application systems. The name of the Web site
and the time needed to interact with the site’s Web pages create the first impression to the
user, given the fact that the user expects direct access to the Web site and navigability
through the Web pages. Navigability, pleasant interface, compatibility with all kinds of
browsers, multilinguality and provision of accurate information also play an important

role.

For instance, in an e-commerce application, the provision of electronic shopping cart,
where the user can drop and store the merchandise while he continues to navigate, is also
a functional mechanism. Additionally, electronic shopping lists enable the user to create a

list for future shopping, thus saving time and effort. Another important facility for the

78

user is the ability to find the right information at the right time. The availability of a
search engine service and the creation of shopping categories can aid in reducing search
time, but in order to search with efficiency, one needs an operable search engine and a

functional site map.

Another basic functional characteristic example of Web applications is the procedure of
payment. There are various methods of payment, such as digital currency, electronic
credit card and electronic check payment. In all the above methods of payment, a very
important parameter is security. The reversibility of user’s actions, the existence in every
stage of the transaction - of a clear exit and the confirmation, by e-mail, that the

transaction has been completed are important e-commerce characteristics related to

functionality.

Navigation in Web application as an e-commerce shop is similar to a walk in a real shop,
where the user interacts with the seller (e-commerce system interface) and requires
answers to questions. The provision of frequently asked questions (FAQs), or means of
direct access to the e-commerce shop (telephone number, fax, email) should be included
in a functional e-commerce system. A functional help service provides all kinds of
information and instructions for a helpful navigation. Moreover, the identification of the
user every time he/she visits the Web site, as well as the provision of a district server for

frequent users are functions that ensure user satisfaction.

79

Reliability

The quality factor of reliability [FEN97] refers to a set of attributes that bear on the
capability of software to maintain its performance level, under stated conditions, for a
stated period of time. Sub-characteristics of reliability are maturity, fault tolerance and
recoverability. The reliability, as far as Web application systems are concerned, is related
to the accuracy of the information (text, images, multimedia) provided about products
and services, as well as the consistency of the services (shopping list, shopping cart,
searching). A Web application system is reliable when it restores user transactions, even

in the case of a system failure.

The basic characteristic of Web application systems related to reliability is security of
electronic transactions. Five blocks of security have been identified [FEN97], as far as
Internet transactions are concerned. They are confidentiality, authentication, access
control, data integrity and user’s accountability. For this purpose, means like digital
certificates and the Secure Socket Layer (SSL) have been created and their role is to
guarantee the security of transactions. For example, using cryptographic method ensures
the reliability of Web application systems and meant to guarantee security of
transactions, even in the case of system failure. Another important characteristic of Web
application, which should be provided to the user, is privacy of personal information.
Certain users may want to limit the number of detailed personal information (such as
buying habits or financial resources) that they are required to provide to a Web system in
order to complete a transaction. Others may allow the disclosure of personal information,

only if they have access to the collected information, or may want to maintain a personal

80

record and analysis of what personal information has been collected. A reliable Web

application system should provide the possibility of such actions.

Usability

Usability is defined as a set of attributes that bear on the effort needed for the use and on
the individual assessment of such use by a stated or implied set of users. According to
ISO 9126, the sub-characteristics of usability are understandability, learn-ability and
operability. Based on the definition, it is obvious that the quality factor of usability is
related to characteristics of Web applications, such as provision of accurate informative
texts about products and services offered, as well as provision of thumbnails, photographs
and videos presenting the services and products available. Additionally, a well-designed
interface that attracts user’s attention and facilitates of navigation, contribute to the
usability of Web application systems. Another important characteristic related to usability
is easy and simple access to the Web site. A Web site can either be accessed directly (by
means of its name), or indirectly (through a Web search engine like Yahoo [Yahool,

Altavista [ALTA], Lycos [LYCO], etc.)

The effective provision of services like electronic shopping cart, electronic shopping list,
site map, search engine and payment methods is of great importance to an easy to use
issue of a Web application. Additionally, an inexperienced user should be able to access
and use the mentioned services easily, while experienced users demand fast and easy
access to the Web pages that interest them, through clear paths (e.g. not having to pass

through informative pages, such as the company’s history, or the company’s profile). A

81

usable Web application system should enable the end user to adapt the Web pages to his
own personal profile and needs, Consequently, applications that process user profile and
adjust the interaction based on one’s specific needs and preferences are desirable

characteristics of Web application in e-commerce.

Given an example in e-commerce, users of the e-commerce system, just as every buyer,
wishes to receive the best products and services possible, with all the advantages that a
simple shop provides, like offers and special prices. An e-commerce system should be
updated regularly and new products should be presented, while those that are not for sale
may more be removed from catalogues. It is important that an e-commerce system
provides the facility of cross selling complementary or similar products. Additionally,
special forms enabling the user to accurately describe the ideal product for him are very
usable for searching the appropriate product. The provision of a detailed help service
(avoiding, however, unnecessarily long texts) affects greatly the usability of the system.
The operability, attractiveness and understandability of all the mentioned characteristics

of e-commerce systems are important to the usability.

Efficiency

The quality factor of efficiency [KIT96] refers to a set of attributes that bear on the
relationship between the software’s performance and the amount of resources used under
stated conditions. Sub-characteristics of efficiency are time behavior and resource
behavior. Based on the definition above it is argued that efficiency is also important to

the quality of a Web application. A system is efficient if the user can access the relevant

82

Web pages promptly and easily. Navigation through the Web pages should be completed
at the minimum time possible, and access to the categories of products and relevant
descriptive information (text and thumbnails) should be easy. Therefore, an efficient Web
system should rely on user personal profile, user preferences and other user information

available.

5.4 Classification of Web Criteria (Characteristics) to Quality factors

The assessment of the quality of Web application systems is based on a set of
characteristics of Web applications. We can distinct characteristics of Web application
system by summarizing the different characteristics of Web application systems related to
the quality factors. This set of characteristics is perceived by the users of such systems
and follows the quality model. The proposed user-centered characteristics of Web
application systems do not just form a set of properties that a Web application system
may have or not. More than that, they form a set of hierarchical characteristics, which
constitute specific quality factors according to defined weights, and eventually contribute

to the overall quality of the Web application system that is under assessment.

Table 5.2 gives an example that summarize different characteristics of an e-commerce
Web application system related to the quality factors according to the ISO 9126 model. It
lists by how important the characteristics to the quality of such e-commerce system. The
first level comprises those characteristics that are most important for the quality of Web
application. The second level consists of the characteristics that are related to the services

provided. The third level includes the least important characteristics.

83

%"

Easy access to the Web pages Functionality, Usability, Efficiency
Easy navigation Functionality, Usability
Adaptation to user profile Functionality, Usability, Efficiency
Search engine service Functionality, Usability, Reliability
Easy exit — undo function Functionality

Useful help service Functionality, Usability, Efficiency
Secure and reliable transactions Functionality, Reliability

Security protocols SET, SSL. Reliability

Direct delivery of the products Usability, Efficiency
Recoverability of products and services Usability, Functionality

Legitimate Web site Reliabili

Multi-linguality Functionality, Usability, Reliability
Provision of company profile Functionality, Reliability

Better and direct service for the frequent user | Functionality, Usability
Alternative searching services Functionality, Usability

Site map service Usability

Alternative presentation of the products, Functionality, Usability

using images, multimedia, etc.

Attractive interface Usability

Categorization of products Usability, Efficiency

Smart agents — FA Functionali

Notification by email Functionality, Usability

Cross selling Functionality, Usability

Form for the description Functionality, Usability

Thanking message Usability

Variety of color and graphics Usability

Table 5.2. An example of characteristics of Web applications

Another type of list on the quality factors covering the important areas from a testing
view. Based on different authors opinions (Hung Q. Nguyen [NGUO1], Tim Van [TIM],
Thomas A.Powell [POW98], etc), six main areas are identified:

e Functionality: Links, Forms, Cookies, Web Indexing, Dynamic Interface

Components, Programming Language, Databases

e Usability: Navigation, Graphics, Content, General Appearance

o Server side Interface: Server Interface, External Interface

e Client side Compatibility: Platform, OS, Browsers, Settings, Preferences, Printers

® Performance: Connection speed, Load, Stress, Continues use

e Security: General Security

There are very few standards for how a Web site should be designed in order to make
users experience the site as user friendly and comprehensible. Web sites encountered
often show poor consideration for how users respond and act on the Web. Therefore the
usability issues should be addressed separately to ensure that both the functionality and

usability aspects are covered.

5.5 Quality Metrics

Starting from a quality framework, a catalogue of metrics basically allows evaluators and
other stakeholders to have a consultation and reuse mechanism, which starts from a sound
specification of the entity type, the attribute definition and motivation, the metric
formula, criteria, and application procedures. When a metric is defined and specified, it is
necessary to previously know what attribute of what entity type it will measure. Here, we
introduce a repository of metrics based on the quality framework (see section 5.2) for
entity types grounded in the ISO 9126-1 quality model. Particularly, among the hundreds
of automated Web metrics catalogued up to now for pages and sizes, different categories
were identified as Link and Page Faults, Navigation, Information, Media, Size,
Performance, and Accessibility. The Web metrics listed here focus on the idea that the

given results can be extended to any other metric belonging to the product entity type.

Orphan Page Count Metric [NIEJ]
An orphan page is a page that has no internal link to the site where is included in (or it
has all internal links broken). Although it can have some external links, these links will

not allow navigate inside internal pages of the site. Orphan page count is the number of

85

pages that have no internal links to the Web site where they are included in. When a
visitor accesses an orphan page through an external URL, s/he is unable to navigate
inside the site. This kind of page has no internal navigational functionality and its utility
depends rather on its content exclusively. The Orphan Page Count attribute corresponds
to the Reliability characteristic for the ISO 9126-1 quality model. It can give stakeholders
useful information both in the development and maintenance phase indicating the

absence of page links that allow smooth site navigation.

External or internal, depending on the .
process lifecycle
Scale Type Absolute (it is a counting)

Table 5.3: Metric characteristics

Attribute Type

Formula:

X=#0OP (Number of Orphan Pages)

X >=0, the closer to zero the better.
Procedure:
From a starting URL (of a given site page), recursively analyze all the pages, considering
exclusively those that at least an internal and not broken link. Following is the generic
algorithm:

Preconditions
Starting from the initial URL of the Web site to analyze = URL],
Orphan_page = 0; j: 1..Page Count
Orphan_pages (URLj): #Orphan_pages
For each page (URLj) not previously analyzed
If —3 an internal (URLji) not broken then
#Orphan_pages = | + Orphan_pages (URLj+1)
else
#Orphan_pages = Orphan_pages (URLj+1)
end if
end for
end

86

Broken Link Count

Broken Link Count is an indirect attribute represents the total number of broken links
both internal and external to the site, not including dynamically generated pages and
links. It is important to know if a broken link is internal or external to the site because a
broken internal link is likely caused by carelessness or by an extreme complexity in the
structure, meanwhile the other, is caused by an external and uncontrollable environment.
On the other hand, this attribute does not take into account the distinction among broken

links to identical URLSs, so all broken links are counted.

Figure 5.2 shows the procedure that automates the Broken Link Count metric. The Web
site MA tool [OLLO1] implements this algorithm and stores the current and destination
URLSs that would lead either to the internal or external broken link. This allows analyses
and corrections. According to the returned HTTP state code, a broken link will be
detected by this code, likewise, depending on the returned state code other link failures
and metrics can be determined.

Preconditions
Starting at the initial URL of the Website to analyze URL= URLi
#Broken_links = 0;
#Internal_broken_links = 0;
#External_broken_links = 0;
j: 1..PageCount.
Broken_links (URLj) : #Broken_links
For each link (URLji) of page with URL= URLj not previously analyzed
If (URLji) is broken then
If (URLji) is internal then
#Internal_broken_links = #Internal_broken_links + 1
Else
#External_broken_links = #External _broken_links + 1
Endif
Else
If (URLji) is internal then

87

#Broken_links = #Internal_broken_links +

#External_broken_links
+ Broken_links()
End if
End for
Return (#Broken_links)
End

Figure 5.2: Algorithm for automating the Broken Link Count metric for static pages.

This attribute influences the quality of Web sites. From the visitor point of view, the
bigger the number of broken links is, the lesser the reliability on the site is. From the
developer point of view, the distinction between external and intemnal links (broken or

not) is relevant, as commented above.

Link Count [MENO1]

Link Count is the total number of links of static pages of a site. It can be collected
automatically. We can reuse the algorithm shown in Figure 5.2 to calculate the total
number of internal and external links. This can be enhanced to take into account both
textual and graphic links. When just internal links are considered, the metric is called

Connectivity.

Percentage of Broken Links

Using the above metrics - broken link count, and link count, the percentage is calculated
by the following formula:

#InternalBrokenLinks+#ExternalBrokenLinks
LinkCount

PercentageBrokenLinks=100*

88

This attribute may be considered domain independent. Besides, the metric of this attribute
shows to some extent how reliable a site is (the reader can also consider the quotient
between the number of external broken links and the total number of external links,
likewise can be done for internal links). Considering the quality impact of the metrics we
could see the importance of broken links relating to their location in the more relevant or
visited pages of a site. This gives place to the definition of the Frequency of Broken Links

per Hit Pages attribute.

Number of Different Broken Links

This metric is obtained by analyzing the distinct URLs used in the Broken Link Count
metric. Internal and external broken links to the same resource are just counted once. It
can show useful information for the maintenance phase helping in the analysis of the
impact on changes. In this case, the procedure to data collection and computation as
specified in Figure 5.2, has a slight change, i.e., just checking if the considered URL was

visited before or not.

Percentage of Different Broken Links
Instead of the Percentage of Brcken Links metric, the relation is established according to

the non-repeated links. The percentage is calculated as following:

. #DiffBrokenLinks

PercentageDiffBrokenLinks = 100 DiffLinkCount

89

By combing distinct metrics, useful information can be drawn. For instance, we can see
what is the level of link redundancy regarding the quotient between the Different Link

Count and the Link Count (either internal or external or both).

Number of Images with Alternative Text [WWWC]

Images give visual information that sometimes should be deactivated by the user for
accessibility or performance reasons. For example, by disabling the browser’s image
feature. A Web site should provide suitable mechanisms to visualize images optionally,

without loosing all transmit information.

The ALT property (in the HTML code) links an alternative text with an image (or other
objects in Web pages such as applets, sounds, etc.) This contributes to the readability of
the page (even more the text could be read before the image is unloaded). However, the
measure of this attribute does not guarantee the quality of the alternative text. Some text

can be generated automatically when editing with tools like FrontPage, among others.

Image count

This metric helps to measure the amount of provided visual information (in the same
way, we can alternatively measure the Media Count metric, where the number of media
files is considered). The existence of images in a page is checked through the IMG

property that is supported by the HTML code.

90

Percentage of Presence of Alternative Text

This is an indirect metric. It is calculated as following:

#lmageswithAlternativeText

PercentagePresenceAlternativeText = 100*
ImageCount

A more careful study on the impact of this metric it would be to observe the percentage

of presence of alternative text in the images posted in the firsts levels of the tree

(assuming a hierarchical structure), and/or the more visited pages of a site.

Different Image Count

This direct measure counts the non-repeated images in the site.

Percentage of Image Redundancy

The relation between the amount of different images and the image count in a site €2 be

posed as shown in the following formula. An image repetition may be interpreted 3s the

level of redundancy of visual information.

DifferentimageCount)

PercentagelmageRedundancy =100* (1-
ImageCount

Page Count

This metric can be obtained by counting the total number of static pages of a sit¢ both
HTML and SHTML. It shows the initial size of the site according to the number of
documents or pages, however, more elaborated metrics to measure size and length ¢an be

provided (e.g., considering the page size attribute as well).

91

Average Links per Page

Average Links per Page is calculated as the quotient between the Links Count and Page
Count. This metric gives information about the interconnection density. In other words, it

indicates how an average page is interconnected toward destination nodes.

Page Size
The size of a (static) page is measured considering all its images, sounds, videos and
textual components. For each page, the size in bytes can be obtained. The size of pages is

an important issue in order to appreciate the size efficiency as we posed in the following

metrics.

Quick Access Pages
The download time (7) is related with the size of a page (1) and the speed in the
established connection line(c).

TDownload = f(z, c)
This time is directly proportional to the page size and inversely proportional to the speed
of a given connection line. A function may be created in order to classify pages as quick
or slow access pages, according to 2 minimum threshold of time (e.g. 10 seconds) for a
given speed of a connection line. Nielsen [NIE0OO] gives an example of recommend page
sizes depending on the speed of communication lines.

QuickAccess Tpownioad < Tmax

g(TDownload) = {

SlowAccess Tpowntoad = Tmax

92

This is a simple way to measure the performance or predict it at design time, however, it

does not reflect the actual or perceived performance, as the reader might surmise.

5.6 Summary

In this chapter, we discussed quality model for assessing the quality of Web application
that based on the ISO 9126 quality model framework. It analysis the quality factors
emphasising on the user-centered factors of functionality, usability, reliability and

efficiency. A repository of metrics is presented.

93

Chapter 6

Tools Support for Quality Assessment in Web Applications

6.1 Introduction

Web technologies change at an extremely rapid speed, and Web sites and Web
application development follows the speed. Driven by market pressure Web sites contents
have to be updated very frequently, and redesigns of a Web site (its contents, information
architecture and look and feel) occur very often. Nevertheless a constant or an improved

quality level is required to generate and maintain user trust and motivation to use the site.

Using a methodology based on a quality model for the Web site can support this activity
of the Web applications. A quality model specifies which properties are important for a
Web site (e.g. its usability, its performance, and its visibility) and how these properties
are to be determined. A Quality assessment procedure can be used both to determine the
current state with respect to quality and to plan future actions. The assessment itself is
based on a system analysis integrating multiple interdependent views on a software
system into a coherent analysis environment. With the advent of Web applications,
especially e-business applications, through We testing has become much more than a

matter of customer satisfaction only. It is also a business need.

The measuring activity is likely to take much time and effort. In this case, the automatic

tools are used for analyzing Web sites. There are already many automatic tools for Web

94

metric collecting and analyzing in the market right now. The automatic tools for analysis,
being systematic and mostly automatic, are crucial parts in a methodology based on

quality models for assuring constant quality levels.

Usability is an important aspect of software products, especially in Web projects.
Usability of a product can be tested from two different perspectives: easy-of-use and
quality-in-use. Quite often the scope is limited to the first perspective. The ease or
comfort during usage is mainly determined by characteristics of the software product
itself, such as interface. SUMI does precisely that: it allows quantification of the end
users' experience with the software and it encourages the tester to focus on issues that the

end users have difficult with.

In this chapter, we introduce Web measurement tools for quality assessment.

Section 6.2 introduces quality assessments from software system view. Section 6.3
introduces SUMI method in usability measurement. In Section 6.4, we introduce a
concept to measure the performance of Web site. Section 6.5 describes how to use the
functional size to measure Web application maintenance and cost. In Section 6.6, we
discuss the test coverage of a Web application using Combinator Metrics Method.

Section 6.7 introduces the topic of using automate testing tools in Web quality model.
6.2 Software Quality Assessment in Software System [FRA02]

One of the major goals in today’s software development is to produce high quality

software. Quality is one of the most important factors for the commercial success of a

95

software system. The concept of quality can be different with respect to the view on the
system. The end user of the system is primarily interested in the usability and user-
friendliness of the system. On the other hand, the developer is interested in the typical
engineering goals such as maintainability, efficiency and portability. Thus quality can be
divided into external quality to cover the end users’ interests and internal quality to cover

the engineers’ interests.

To assessment a system with architecture and design is more focus on internal quality. A
system with low internal quality typically causes high maintenance risks, high
maintenance costs and high training effort. Consequently, to ensure the internal quality is
to concentrate on the quality aspects from the very first stage of the software

development process.

Following is the definition of quality assessment from ISO 9241:

“An action of applying specific documented assessment criteria to a specific softwaref...]

product for the purpose of determining acceptance or release of the software product.”

This gives two main requires before applying quality assessment:

e Quality requirements to be used for the quality assessment.

e Artefacts to be assessed.

96

Quality Requirements

Quality requirements define the criteria used for the quality assessment. Two major
criteria can be identified:

e Individual quality requirements (I-QR) describe subjective desires.

e State-of-the-art quality requirements (Sota-QR) describe needs for which

consensus is possible in the corresponding community.

A prerequisite for a quality assessment is the set of quality requirements to be checked in
the assessment. The quality requirements to be checked depend on the type of artefacts to
be assessed. For example, even if the CASE tool is used to support continues
development, in many cases the software engineers change the design while
implementing the program skeletons that were generated by the CASE tool according to
their initial design. One major goal of a quality assessment is the identification of

deviations between quality requirements and the examined source code.

A quality assessment is based on different views of the system. There can be four levels
that extracted from the system hierarchical structure: system, architecture, design, and
code.

e System is the overview of the whole system. Typical individual aspects for this
level might be described in development guidelines containing general
requirements.

e Architecture: The highest abstraction of the software system is assessed. In source

code this level usually is mapped onto a corresponding package structure. Typical

97

individual quality requirements for this level might be documented in technical
papers.

e Design: In this level, the designs of the components of the architecture are
assessed. Typical individual aspects for this level might be stored in technical

designs.

e Code: In this level, considers the single lines implementing of a special design.

This level is often explained in projects by programmer handbooks.

Quality Assessment Process
The following quality assessment process is an extension of the ISO 14598 in some

degree, which is concerned with he evaluation of software product quality.

I Feedback 1
Product __y, Assessment M msuremgt Assessment |\ assessment / Assessment
data preparation parameter execution reflection

oo /

Figure 6.1: Quality Assessment Process

e The assessment preparation corresponds to the three ISO-sub-processes analysis,
specification and design. The process output is called evaluation plan. The goal is

to set the goals of the assessment and to prepare the tool environment.

98

e In the assessment execution step, the assessment itself is performed and the report

to the project is prepared. This step is carried out with the help of the software

analysis workbench.

e In assessment reflection step, the results are presented to the project and further

actions are planned. The results of the quality assessment can be used as input for

further assessments.

Software Analysis Workbench

In the above quality assessment process, the software analysis workbench is used to help

the analysis. The core of this workbench consists of a relational database system, which

containing all relevant structural and measurement data of the software system being

assessed. The data in database is derived from parser interfaces, e.g. Wind River’s

SNiFF+ programming environment. On the top of the workbench, there are a number of

analysis tools that address specific software analysis issues. Table 6.1 shows the tools

used in this workbench and their description.

ArchitectureChecker

It provides a language for describing the architecture of a system in
terms of a set of layered architecture models. Based on the models
the ArchitectureChecker checks whether there are illegal
relationships in the source code.

QueryTool

It manages the definition and execution of powerful queries and their
representation according to the underlying data model. This allows
the definition of problem-specific sets of queries that describe the
generation of both basic as well as complex analysis views.

XrefBrowser

It provides high-level cross-referencing functionality between
flexible definable abstraction levels.

MetricsInspector

It is an enhanced software metrics tool. It overcomes the typical
weak points of most existing software metrics tools by providing a
user with comprehensive support for browsing and filtering metrics
values.

GraphVisualizer

It allows the creation of 2D and 3D graph representations of entity
sets as UML-like class diagrams or inheritance trees.

Table 6.1: Example of Tools used in the software analysis workbench

99

6.3 Software Usability Measurement Tool: SUMI [ERI02}[STD24]

Within the European ESPRIT project MUSIC, a method has been development that
serves to determine the quality of a software product from a user’s perspective. Software
Usability Measurement Inventory (SUMI) is a questionnaire-based method that has been
designed for cost-effective usage. SUMI is a solution to the recurring problem of
measuring the user’s perception of the usability of software. It provides a valid and
reliable method for the comparison of (competing) products and different versions of the
same product as well as diagnostic information for future development. SUMI is not a
substitution of a full usability test. In fact, SUMI “only” measures the user’s perception

of usability - one aspect of usability test.

SUMI consists of a 50-item questionnaire devised in accordance with psychometric
practice. Each of the statement is rated with “agree”, “undecided™ or “disagree”. The
following lists the sample of the kind of questions:

e This software responds too slowly to inputs.

e [would recommend this software to my colleagues.

e The instructions and prompts are helpful.

e [sometimes wonder if | am using the right command.

e The way that system information is presented is clear and understandable.

SUMLI is intended to be administered to a sample of users who have had some experience
in using the software to be evaluated. In order to use SUMI reliably, a minimum of ten

users is recommended based on statistical theory. Usability scores are calculated based on

100

the answers given and statistical concepts. Before SUMI can be performed, it needs a
working version of the software system exist. This working version can also be a

prototype or a test release.

One of the most important aspects of SUMI is the development of the standardization
database, which now consists of usability profiles of over 2000 different kinds of
applications. Basically any kind of application can be evaluated using SUMI as long as it
has user input through keyboard or pointing device, display on screen and evaluating a

product or series of products using SUML

SUMI gives a global usability figure and additional readings on following five sub-
scales:

o Efficiency: degree to which the user can achieve the goals of his interaction with

the product in a direct and timely manner.

o Affect: how much the product captures the user’s emotional responses.

o Helpfulness: extent to which the product seems to assist the user.

o Control: degree to which the user feels that s/he is setting the pace

o Learnability: ease with which a user can get started and learn new features of the

product.

Figure 6.2 shows an example of SUMI output. It shows the scores of a test and the

spreading of these scores against the average score of the reference database.

101

50

I ' i \ i T
Global Efficiency Affect Helpfulness Control Learnability

Figure 6.2: A sample profile showing SUMI scales
SUMI is the only available questionnaire for the assessment of software usability, which
has been developed, validated and standardizes on a European-wide basis. The SUMI
sub-scales are referenced in international ISO standards on usability and software product
quality. Product evaluation with SUMI provides a clear and objective measurement of the

user’s view of the suitability of software.

6.4 Measure Web Application Performance [VALO1]

Performance can be described simply as the raw speed of the applications in terms of a
single user. It’s fairly easy to measure performance. We can use the application being
tested or we can design an automatic benchmark and observe the original speed of the
application against it. Then we can changes to the software or hardware and determine if
the execution time has improved. This is a very simple approach, but on Web
environment, because of the complexity of Web infrastructure, many components could
affect the quality of Web applications. Valeria and Emiliano [VALO1] gives a

performance study for quality Web services on distributed architecture. They consider the

102

following three main classes of load in Web environment: a Web site may provide one or
a mix combination of the following models:

e Static Web Services Model. Requests for HTML pages with some embedded
objects. Typically, this model has a low impact on Web server components. Only
requests for very large files are disk and network bound.

e Dynamic Web Services Model. Requests for HTML pages, where objects are
dynamically generated through Web and back-end server interactions. Typically,
these requests are CPU and/or disk bound.

e Secure Web Services Model. Requests for a dynamic page over a secure
connection. Typically, these services are CPU bound because of overheads to

setup a secure connection and to execute cryptography algorithms.

A Web site may provide one or a mix combination of the above models. The number of
consecutive Web pages a user requests from the Web site (page requests per session)
follows the inverse Gaussian distribute [JEP99]. The user’s think time is modeled
through a Pareto distribution [JEP99][BAR99]. The number of embedded objects per
page request including the base HTML page is also obtained from a Pareto distribution
[JEP99]. Web files typically show extremely high variability in size. The function that
models the distribution of the object size requested to the Web site varies according to the
object type. For HTML objects, the size is obtained from a hybrid function where the
body follows a log normal distribution, while the tail is given by a heavy-tailed Pareto
distribution. The size of distribution of embedded objects is obtained from the log normal

distribution [BAR99].

103

=386, A=9.46

Table 6.2 summarizes the parameters’ value that used in the so- called static model.

Pages per session Inverse Gaussian

User think time Pareto a=14,x=1

Objects per page Pareto o= 1.245, k=2

HTML object size Lognormal Pareto p=7.630, o= 1.001
o= 1, x=10240

Embedded object size | Lognormal = 8.215, 0= 1.46

Table 6.2: Static Model

A dynamic request includes all overheads of a static request and overheads due to back-
end server computation to generate the dynamic objects. They consider three classes of
requests to the back-end nodes that have different service times and occurrence
probability. Light, middle-intensive and intensive requests are characterized by an
exponential service time on back-end nodes with mean equal to 16, 46 and 150 msec,
respectively. The three classes represent 10%, 85% and 5% of all dynamic requests,
respectively. These last parameters are extrapolated by the log file traces of two real e-

commerce sites. Table 6.3 summarizes the parameters of so called dynamic model.

| Light Intensive 16 mses 0.1
Medium Intensive 46 mses 0.85
Intensive 150 mses 0.05

Table 6.3. Dynamic Model.

Secure transactions between clients and Web services involve the SSL protocol. The
model includes main CPU and transmission overheads due to SSL interactions, such as
key material negotiation, server authentication, and encryption and decryption of key

material and Web information. The CPU service time consists of encryption of server

104

secret key with a public key encryption algorithm such as RSA, computation of Message
Authentication Code through a hash function such as MD5 or SHA, and data encryption
through a symmetric key algorithm, such as DES or Triple-DES. Most CPU overhead is
caused by data encryption (for large size files) and public key encryption algorithm (RSA
algorithm), that is required at least once for each client session, when the client has to
authenticate the server. The transmission overhead is due to the server certificate (2048
bytes) sent by the server to the client, the server hello and close message (73 bytes), and
the SSL record header (about 29 bytes per record). Table 6.4 summarizes the throughput

of the encryption algorithm used in the secure model.

RSA(256bit) | 385

Triple DES 46886
MD5 331034

Table 6.4. Secure Model

To evaluate a Web site, normally it needs to mix the three models together. In Web
Service Application level, the performance is typically measured as the K-percentile of
the page delay that must be less than Y seconds. Typical measures are 90- or 95-
percentile of the requests that must have a delay at the server less than 2-4 seconds, while
7-8 seconds of response time (including also the time for the address lookup phase and

network transmission delay) are considered acceptable at the client side.

In the design of a Web site it is necessary to know the maximum number of clients per
second that the system could serve with the requested services. The break point of the
Web site is recommended to this value. To analyze when the network connection of the

Web site to Internet starts to become a bottleneck, use the peak throughput that is, the

105

maximum Web system throughput measured in Mbytes per second (Mbps). Over certain

peaks, it is necessary to pass from a locally to a geographically distributed Web system.

6.5 Web Functional Size Measurement

As empirically demonstrated complex Web application structures can increase
maintenance costs considerably. Even worse, for continually changing Web applications
(considering their innate evolving nature), the cost can be even higher. In order to
diminish risks, the maintenance cost can be predicted through a Web-centered Functional

Points measure [ABRO1].

Function Point Analysis (FPA) [[FP99] has become one of the most popular software
functional sizing metrics. The functional point metric is an approach for the early
evaluation of software characteristics such as size, productivity and cost. In addition, it
provides a normalization factor that allows products to be compared independently of

implementation technologies.

Before functional size measure, it is necessary to determine the estimation model for the
Web application quality evaluation. The functional size measurement process of a Web
application is accomplished by mapping Function Point concepts to the quality model.
The mapping rules are based on the standard FPA defined in the IFPUG count Practice
Manual [IFP99]. This mapping is conducted in the following steps:

e Define the application boundary and the measuring scope

o [dentify the data and transactional function types

106

e Determine the complexity of each identified function. The logical functions are
mapped for low, average and high complexity levels in accordance with [FPUG
tables.

e Map the complexity levels into values. The total value results in unadjusted OO-
method Function Points for Web (OomFP-Web) [ABRO1].

o Adjust OomFP-Web value according to the general characteristics of the Web

application taking into account the nonfunctional requirement specification.

Defining the Application Boundary and the Measuring Scope

The application boundary indicates the border between the project being measured, and
the external applications or user domain. It defines what is external and what is internal to
the application according to the user’s point of view. The measuring scope limits which

functionality will be measured in a particular measure (the sub-set to be measured).

The scope of current Web applications varies widely: from small Web services to large
enterprise applications distributed across the Internet. For instance, in a large e-commerce
application can have many sub-stores that correspond to the different subsystems of a
Web application. Thus, a measuring scope can include one application and its
subsystems, all functions of a subsystem, some web services, or the functionality

provided to a specific user, etc.

107

Identifying Data and Transactional Function Types

In the OO paradigm, an object is a collection of data (attributes and properties) and

functional logic (methods). The data defines the state of the object and the functional

logic defines the behavior of the object. In accordance to the FPA concepts, data is a

logical group maintained or modified through an elementary process (method), and a

transaction must have processing logic that is unique and represents the smallest unit

meaningful to the user. Based on these considerations, the following functions can be

identified:

Navigational Classes: Select every navigational class of a navigation context as a
candidate for an Internal Logical File function (ILF). In Function Point terms the
parts of an object corresponds to the logical structure of the file concept. Optional
and mandatory subgroups of files are called Record Element types (RETs). An
object that is aggregated into another object constitutes a subgroup.

Method: It is a uxit of functional logic contained within an object. The select
every method of a navigational class as a candidate for an External Input function
(EI).

Context Relationship: The relationships between navigational classes express
inherits or aggregation relationships in the Object Model. This kind of
relationship provides the ability to access a unique navigational context as the set
of data, retrieved from the navigational classes (ILFs). A context relationship
expresses navigation to another context (the target context). In this kind of
relationship, two behaviors can occur: a) when the primary user input is

navigating without change the state of application, no information crosses the

108

boundary; b) when a hyperlink that sends a parameter that is used to search could
be an example of an EQ. The current applications require high user interaction
where the navigation may influence the content of a navigational context. That is,
the hyperlink follows the rules required for an EQ: there is an input side (the
parameter) and there is an output side the results of the search. In this case the
output side is dynamic and changes.

Navigational Context: Select each navigational context as a candidate for an
External Output (EO) or External Inquiry (EQ) function. An EO or EQ must
reference at least one internal logical file and / or one external interface file. Both
an internal logical file and an external interface file must be a logical group of
related information. Each navigational context has a main class (manager class)
from where navigation starts, and others classes (complementary classes) to

giving additional information to instances of the manager class.

Establishing the Complexity for Data and Transactional Function Types

As in FPA, key to developing repeatable predictor counts is a well-defined set of

counting rules. Thus, to each navigational class a functional complexity is assigned

according to the number of Data Elements Types (DETs) and the number of Record

Element Types (RETs). The proposed counting rules for DETs and RETs identification

of a navigational class are:

Count a DET for each attribute of class
If exists a filter associated to the class, count a DET by each attribute that appears

in the formula of the filter

109

e Count a RET for the navigational class

e Count a RET for each context or contextual dependence relationship that has the
source the class that is being considered. Each one of these relations is a group of
identifiable data by the user (target navigational class)

e If exists a filter associated to the class, count a RET by each navigational class
that is referenced in the formula of the filter. Whenever this supposes the

reference to a class that has still not been counted

The transaction functions (EOs and EQs) will be identified from each navigational
context (exploration or sequence). If in some of these contexts the attributes of the
participant navigation classes indicate some calculation (derived attributes, complex

filters, etc.), it will be considered an EO. In the opposite case it is considered an EQ.

To each navigational context a functional complexity is assigned based on the number of
Data Element Types (DETs) that processes the elementary process, and the number of
File Type Referenced (FTRs) to which such a process accedes. Each EO or EQ function
has two parts: the input side where the user provides the information and the output side
where the result is presented to the user. We are considering only the DETs unique that
cross both sides. Then, the proposed counting rules for DETs and FTRs identification of a
navigational context are the following:

e Count a DET for each attribute of all navigational classes that appears in the

context.

110

e Count a DET for each attribute (context, link, filter or role) of a context
relationship.

e Count a DET for each service that can be performed.

e Count a DET for the traversal order of the elements of the context.

e Count a FTR for each navigational class that appears in the context.

e Count a FTR for each navigational class referenced in the definition of a filter
attribute (in a context relationship).

e Count a FTR for each class referenced in the population filter formula.

Finally, each service of a navigational class will be considered an External Input (EI).
Nevertheless, if the same service can be executed from different contexts by the same
agent, it is counted only once. The arguments of a certain service will be those that are
defined for that service in the Object Model. As well as previously mentioned, to each
identified service a functional complexity based on the number of DETs and FTRs is
assigned. The dynamics for a service and the rules for determining the functional

complexity are described in [PASO1].

Using the counting rules above described, we have been able to predict the partial size of
a Web application, i.e., the size of each navigational map according to the functionality
offered to the agents of the system (functionality provided by the Navigation Model).
Integrating this partial result with the functional size obtained from applying the OOmFP
metric (functionality provided by the others OO-Method conceptual models) the

functional size of whole Web application is obtained.

111

The Cost Prediction

The definition of a metric for size measurement is a first step in developing a model that
accurately predicts Web development costs. Software size is a normalizing reference
measurement that can be successfully used as the base for a range of planning and control
indicators. Including studies for the software production (function points per person-
month), financial (cost analysis) [COST], software quality (defects per function points)

[COW99], and to measure the functionality and productivity of Web applications .

Most organizations use measures based on function points to assist in estimating project
costs, effort and duration. Now, we will see how the function points measure can be used
in conjunction with financial indicators. These indicators can include value of the
software, project costs, IT costs, and maintenance costs. The followings are examples of
financial indicators:

e Asset Value: (Cost /FP) x Portfolio Size

e Project Costs: Total Project Costs /FP

e Enterprise Costs: Total IT Costs /FP

e Maintenance Costs: Total Cost of Maintenance / FP (including overheads)

The asset value places a value on the installed Web application. The cost can be
replacement cost, total cost, etc. An organization has to establish which of these it will
use. The project cost is the unit cost per Function Point that includes all costs the

development project occurs, and the total project cost is derived from:

112

Total Project Cost = (work effort hours y_hourly cost) + other expenses

The enterprise cost is the cost equivalent to the enterprise productivity defined earlier. It
measures the total cost to the enterprise, including overhead cost, to deliver the new or
enhanced functionality to the user. Finally, the maintenance cost is the cost equivalent to
the Web Application support rate. It measures the cost of application maintenance and
support. The total cost of maintenance is obtained by:

Total Cost of Maintenance = (Hours of Work Effort x Hourly Costs) + other expenses

Thus, size-based measures have traditionally been the basis for estimation models to

predict costs of software activities.

6.6 Web Test Coverage Measurement [THO02]

Testing means comparing the observed behavior with the expected behavior of a system.
In web environment, because of the specific structure of Web system, Web testing
includes testing of business processes, system testing as well as testing of different client-
side and server-side software components. With the B2B (business-to-business), B2C
(business-to-customer) applications merged into Web, human factors have become more
and more affective on Web applications, thus Web testing has become much more than a
matter of customer satisfaction only. It is further necessary to integrate factors like
availability, accessibility, as well as user-centered quality factors into the Web testing

strategy, since it would be shortsighted to concentrate only on how the system presents

113

information needed to execute business processes. Rather it would test the true behavior

of the Web system from the customers’ point of view.

The preparation of tests for a Web-based system involves considerably more effort than
conventional testing. Spending significant investments for the Web testing is reasonable
only if we can reuse the test investments while the Web system evolves. Metric collection
in Web testing is an issue, since in different phase there are different measure focuses.
Some tools introduced to collect metrics. This is where Combinatory Metrics starts to

play a crucial role for the Web application.

Combinatory Metrics

Combinatory Metrics is an extension of comprehensive Quality Function Deployment
(QFD). It is used when we cannot measure directly. For example, we can provide cost &
revenue projections, but it is difficult to measure the goals and objectives that the Web-
based service must satisfy to reach the financial targets. This is because complete
specifications cannot exist. Infinite combinatory models are used to approximate such
system that we cannot specify completely. QFD constitutes such an infinite combinatory

model for quality that today is widely in use.

Elements of QFD
QFD allows two basic operations:
One describes how a solution approach contributes to solve a problem. The problem is

stated as how to satisfy customer’s needs, the solution to it is the optimum choice of

114

solution components that constitute the solution approach. The items such as solution
approaches and problems are called Deployment Topics. The target deployment topics are
called Goal Topics. The description of the solution approach is called Solution Topics.
Such correction matrices are called Cause-Effect Combinators. The cause-effect relation

itself is described by an approximated value that is suitable to the topics combined.

The other action describes how two Cause-Effect Combinators F * G may be applied to
each other. The Solution Topics are the cause for the Goal Topics. Then it is the cause-
effect combinator G, and the Goal Topics become F in turn. We thus can daisy chain our
cause-effect combinators and thus get profiles for the solution topics down the line. Such

combination chains are called Comprehensive QFD.

Test Coverage Combinators

For the Web development model we discussed in chapter 4, there are four topic levels:
customer’s needs, business processes, Web-based system architecture, and Web software
components. Since the topic item itself changes quite often, using combinator metrics is
not a significant investment compared with Web testing. Table 6.5, 6.6 show the test
coverage respective to the business processes and customers’ need, which use the

combinator metrics in an hotel Web-base application.

115

Test Case Identifier

Short Description

Forms functionality | Casel.Information completeness | Static review and dynamic semi-
automated test if everything is
visible.

Case2.Field validation Automated test for all fields.
Case3.Intemationalization Regression tests with change of
language

Acknowledgement Casel.Confirmation pages Correctness of confirmations,
Automated API test.

Case2.Workflow notification

Correctness of workflow. Automated
API test.

Business contacts

Casel.CRM tract and exception
Handling

Case2.E-mails received and
Answered

Case3.Phone numbers work
Internationally

Case4.Process owners in charge

Case5.Customer information
Correctness

Browser screen scripts with various
exceptions.

Business process test; no software
involved (except e-mail)
Conducted once with help of
international partners.

Repeated QMS audit; business test.
Focus group customer data is
checked with customer for
correctness.

Compliance Casel.Law compliance test Static review and dynamic semi-
automated test if everything is
visible.

Case2.Marketplace compliance Business inquiry rerun after each

Test new release.
Case3.Geographic compliance Test if locations are understandably
Test correct.
Table 6.5: Application tests for the business processes

Test Case Identifier Short Description

Navigation Casel. Ergonomic tests Lab tests that let users process their
requests and watches them

Case2. User associations What users associate with each of the
items shown

Case3. Process navigation Automated Test; Counts the number
of clicks needed for a process.

Cased. Usage statistics Automated data collection. Should
match the New Lanchester Theory
predictions.

Business Casel. Hit Counter Automated data collection. Should be
the target customers.

Case2. Order statistics Automated data collection. Should
match the New Lanchester Theory
predictions.

Satisfaction Casel. Expectation inquiry Short 1-page satisfaction inquiry

Case2. 4 hour memory

Case3. 36 hour memory

Group of testers been asked what
they remember after 4 hours.
Group of testers been asked what
they remember after 36 hours.

Table 6.6: Acceptance Tests for the Web-service

116

6.7 Automatic Testing Tools in Web Quality Model

Automatic Web testing tools can play an important role in the definition and usage of

quality models because they are necessarily adopt objective metrics only, systematic and

error-free, and much more cost-effective than any other manual method. From the quality

modeling view, there are several flavors of such tools:

Tools for accessibility testing and repair. e.g. bobby, a-prompt, 508accessibility
suite, site valet, accverify, lift, etc. the metrics implemented by these tools
corresponds (more or less accurately) to official accessibility criteria.

Tools for usability testing (e.g. lift) are based on usability guidelines, like the ones
that can be distilled from Nielsen [NIEOO][NIEJ]. Brajnik [BRAOO] gives an

analysis of which usability-related attributes can be dealt-with by automatic tools.
Tools for performance testing (e.g. Topaz)

Tools for security testing (e.g. Webcpo)

Tools for analyzing Web servers logs

Tools for classifying a Web site after learning the classification criteria from other

Web sites (e.g. Webtango).

Obviously, automatic tools cannot assess all types of quality properties. In particular,

anything that requires interpretation (e.g. usage of natural and concise language) or that

requires assessment of relevance (e.g. alt text of an image is equivalent to the image

itself) will be out of reach. Nevertheless these tools can highlight a number of issues that

have to be later inspected by humans and can avoid highlighting them when there is

117

reasonably certainty that the issue is not a problem. For example, a non-empty alt can
contain placeholder text (like the filename of the image); it is reasonably simple to write
heuristic programs that can detect such a pattern and flag such an issue only when

appropriate -- and be able not to flag it if the alt contains other text.

Therefore if the quality model includes attributes that are easy treatment by automatic
tools, the quality assessment problem can be solved by appropriately configuring the tool,
running it to acquire relevant data, and then weighing the data found by the tool
according to the importance criteria defined in the model. Such an activity, being based
on systematic and objective analysis of the web site, is at once both economically feasible

and relatively error-free.

As pointed out by Brajnik [BRGO1] the issue of validity of the metrics adopted in a
quality model arises when metrics are computed by automated tools and when metrics
start dealing with more interesting properties, like assessing accessibility or usability. In
these cases a tool may lead incorrect answers (i.€. incorrect values associated to attributes
included in the quality model). This may happen either because the tool found some false
positive (i.e. an issue has been reported where there is none) or because of false negatives
(i.e. the tool was unable to detect a problem). Methods like the ones proposed by Brajnik
can be applied, and they can limit the consequences of this problem. In general only
relatively simple quality models will be based entirely on automatic tools. In the vast
majority of the cases, quality assessment will be based also on human inspection and

human judgment. However, the contribution that automatic Web testing tools can bring to

118

quality assessment of web sites is significant: low cost and superficial analyses can be
performed automatically. Only thereafter, if needed, a more in-depth and accurate human

analysis can be performed. In this way, productivity of systems will be enhanced.

6.8 Summary

In this chapter, a quality assessment was described and quality measurement method that
used in Web application quality measurement was introduced. Although the quality
assessment itself is mainly based on a static analysis of the source code it is used for
checking the quality of a software system on four levels namely the system, the
architecture, the design and the source code. The software analysis workhench is applied
in the projects to allow the practical quality assessments of software systems. A
questionnaire such as SUMI represents the end results of a lot of research effort. SUMI 1s
testing techniques that can be applied to start usability testing or when limited resources
for usability testing are available. Web function points can be a useful approach for
analyzing, assessing and potentially restructuring a Web application in the operative
phase. An example on Web system performance assessment was given, which considered

Web sites with a mix of static, dynamic and secure requests.

119

Chapter 7

Conclusions

7.1 Conclusion

Because of the increasing size, complexity, and quick time-to-market cycles for Web
applications, together with unsystematic use of Web engineering approaches, there are
increasing concerns about the ways in which the Web applications are developed,
maintained, and their quality delivered. As Baskerville said [BASO1], “/n the Internet
speed development developers often defer certain aspects of product quality such as
scalability and maintainability during the original development. If the software doesn't
catch the market, no time was lost adding quality.” There are compelling reasons for a
systematic and disciplined use of engineering methods and tools for developing,
assessing and maintaining Web sites and applications. Different types of methods and
techniques are developed for evaluating quality and functionality such as testing,
inspection, inquiry, simulation, etc., in the current practice. But many of them provide
only partial solutions for the actual state of Web applications, because they separately
focus either on nonfunctional requirements or on functional requirements. In fact, flexible

and integral solutions are needed.

Software development and the evolution of the Web are interdependent in many ways
[JENO2]. Even though in a Web environment, system development is often done “on the

fly” and without any formal methodology, larger and especially strategic applications

120

require a sound methodological base that supports processes and assures quality. New
requirements for Web applications generate a need for systems development research, for

example, in the areas of method application, time-to-market, quality aspects, etc.

The Internet itself can act to enable for new ways of system development. For example,
the open source software and free software development, like the development of free
operating system Linux and open Web server Apache. This is based on a model of

software development that can be generalized.

The Internet is a fast moving environment and new technologies are available almost
daily. This gives a need that any methodology supporting the processes must evolve with

the Web.

All of the above essentially is hoping to improve the quality of the Web application
systems as a whole. As time factor in Internet-oriented systems has top priority, within
the resulting frame there are different solution strategies that aim at reducing the

development time and at the same time not falling below a certain quality standard.

In this paper, we discuss the quality factors of Web applications, starting from specifying
a quality model based on a user-centered approach. In order to contribute to the
comprehension and selection process that metrics can be useful to support different
quality assurance processes such as non-functional requirement definition and

specification, metrics understanding and selection, quality testing definition, either in the

121

inspection, development or maintenance phases. We survey the current technologies of
integrating QA into Web application system development processes and the features they
have. We also describe techniques for measuring quality aspects of Web applications,

based on a user-centered approach.

It is worth to remark that effective and efficient quality assessment and restructuring
processes require both methodological and technological support. There are many issues
we need to address in the future. Such as a deeper research on how heuristics can be
mapped to metrics for quality models of Web applications, a more robust adjusted quality

model for the Web applications.

122

Bibliography

[NEL00]

[ZWA96]

[PRE97]

[GIL92]

[FEN97]

[MURO1]

[GHO98]

JM]

Nelson, M., “Fast Is No Longer Fast Enough”, Information Week, June
2000, http://www.informationweek.com/789/web.htm

Zwass, V., “Electronic commerce: Structures and issues”, International

Journal of Electronic Commerce, Vol. 1, No. 1, 1996.

PRESSMAN, R. S, “Software Engineering: A Practitioner's approach”,
4th edition, McGraw-Hill Book Company, 1997.

Gillies, A.C., “Software Quality, Theory and management”, Chapman Hall
Computing Series, London, UK, 1992.

Fenton, N. and Pleeger, S.L., “Software Metrics: A Rigorous and Practical
Approach”, 2nd Ed. PWS Publishing Company, 1997.

Murugesan S., Deshpande Y., Hansen S., Ginige A. “Web Engineering: A
New Discipline for Development of Web-based Systems”. LNCS 2016 of
Springer-Verlag. 2001

Ghosh S., “Making business sense of the Internet”, Harvard Business

Review, March-April, 1998.

Jim C., Conallen Inc. “Whit paper: Modeling Web Application Design
with UML " http://techweekly.com/essay546.htm

123

[GRE02]

[POWOS]

[HO97]

[DIR02]

[CONS6]

[BER9S]

[GRAS7]

[TEG92]

Greg Barish, “Building Scalable and High-Performance Java™ Web
Applications Using J2EE™ Technology ”. Addison Wesley Professional,
2002.ISBN:0-201-72956-3

Powell, Thomas A., “Web Site Development, Beyond Web Page Design”,
1998; Prentice Hall; ISBN 0136509207

Ho, J. “Evaluating the World Wide Web: A global study of commercial
sites”” Journal of Computer-Mediated Communication, 3(1). 1997 [Online]

http://www.ascusc.org/jcmc/vol3/issuel/ho.html

Dirk M., Begona L., Rob Van D.P.K., Andreas G.(Editors), “Software
Quality and Software Testing in Internet Times ", Springer Verlag, June
2002.

Conte, S. D., H. E. Dunsmore, and V. Y. Shen, “Software Engineering
Metrics and Models”, Menlo Park, Calif Benjamin/Cummings, 1986.

Bertrand Meyer, “The role of object-oriented metrics”, in Computer

(IEEE), vol. 31, no. 11, November 1998, pages 123-125.

Grady, R. B. and D. R. Caswell, “Software Metrics: Establishing a
Company-Wide Program”, Engle- wood Cliffs, N. J. Prentice-Hall, 1987

Tegarden, D., Sheetz, S., Monarchi, D, “Effectiveness of Traditional
Software Metrics for Object-Oriented Systems”, Proceedings: 25th Hawaii

International Confernce on System Sciences, January 1992, pp. 359-368.

124

[LIN9S]

[NOROO]

[ALE9S]

[NOEOO]

[MCC94]

[JOH92]

[LIO96]

Linda H. Rosenberg, “Applying and Interpreting Object Oriented
Metrics”, presented at the Software Technology Conference, Utah, April

1998.
http://satc.gsfc.nasa.gov/support/STC APR98/apply oo/apply oo.html

Norman Fenton, “Software Metrics For Control And Quality Assurance

CourseOverview”,2000
http://www.dcs.gmul.ac.uk/~norman/Courses/mod 903/slides/slides 2000

/all slides 2000 blue

Al Ehrbar , “Software measures”, John Wiley & Sons, 1998

Norman E Fenton and Martin Neil, ““Software Metrics: Roadmap ", 2000

http://www.agena.co.uk/postcript papers/metrics roadmap.pdf

McCabe, “Object Oriented Tool User's Instructions”, McCabe &
Associates, 1994

Johann Eder, Certi Kappel, and Michael Klagenfurt, “Coupling and

cohesion in object-oriented systems”, 1992

http://citeseer.nj.nec.com/cache/papers/cs/2479/ftp:zSzzSzftp.ifs.uni-
linz.ac.atzSzpubzSzpublicationszSz19932S20293.pdf/eder92coupling.pdf

Lionel C. Briand, John W. Daly, and Jurgen wust, “4 unified framework

for coupling measurement in object-oriented systems”, 1996

http://www.iese.fraunhofer.de/network/ISERN/pub/technical_reports/isern
-96-14.pdf

125

[LIO97]

[SHY94]

[SHY91]

[BIN97]

[LIM98]

[FER96]

Lionel Briand, Prem Devanbu, Walcelio Melo, “An investigation into
coupling measures for C++", 1997

http://citeseer.nj.nec.com/cache/papers/cs/1336/http:zSzzSzwww.research.

att.comzSz~premzSzicse97.pd{/briand97investigation.pdf

Shyam R. Chidamber and Chris F. Kemerer, “4 METRICS SUITE FOR
OBJECT ORIENTED DESIGN”, IEEE Transitions on Software
Engineering, 1994

http://www.pitt.edu/~ckemerer/clnieee.pdf

Shyam R. Chidamber and Chris F. Kemerer. Towards a Metrics Suite for
Object Oriented Design”, In Proc. of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'91), pages
197--211. ACM, 1991

Bindu S. Gupta, “A critique of cohesion measures in the object-oriented

paradigm”, 1997

http://citeseer.nj.nec.com/cache/papers/cs/2183/ftp:zSzzSzcs. mtu.eduzSzp
ubzSzottzSzreportszSzmehra-thesis.pdf/gupta97critique.pdf

Linda M.Ott and James M. Bieman, “Program slices as an abstraction for

cohesion measurement”, 1998

ftp://ftp.cs.colostate.edu/pub/bieman/istPreprint98.pdf

Fernando Brito e Abreu and Rita Esteves, Miguel Gouldo, “The Design of
Eiffel programs: Quantitative Evaluation Using the MOOD Metrics”,
Proceedings of TOOLS’96 USA, Santa Barbara, California, July 1996.

126

[IBR93]

[RHA9S8]

[FBA96]

[SDI]

[VICO1]

[KHA00]

.Brooks, “Object-oriented metrics collection and evaluation with a
software process”, Proc. OOPSLA 93 Workshop Processes and Metrics
for Object-Oriented Software Development, Washington, D.C., 1993

R.Harrison, S.J. Counsell, R.V. Nithi, “4n evaluation of the MOOD set of
object-oriented software metrics”, 1998

http://www.computer.org/tse/ts 1998/e0491abs.htm

Fernando Brito e Abreu and Walcélio Melo, “Evaluating the Impact of
Object-Oriented Design on Software Quality”, 1996
http://www2.umassd.edw/SWPI/ESEG/3IntSoftMetSymp.pdf

Sdida Benlarbi and Walcelio L. Melo, “Polymorphism Measures for Early
Risk Prediction”, 1999
http://delivery.acm.org/10.1145/310000/302652/p334-
benlarbi.pdf?key1=302652&key2=8583876101 &coll=portal&dI=ACM&
CFID=1931617&CFTOKEN=83627676

Victor Laing and Charles Coleman, “Principal Components of Orthogonal
Object-Oriented Metrics™, (323-08-14), 2001

http://satc.gsfc.nasa.gov/support/ OSMASAS_SEPO1/Principal_Componen
ts_of Orthogonal Object Oriented Metrics.pdf

Khaled EI Emam, Walcelio Melo, Javam C. Machado, “The prediction of
faulty classes using object-oriented design metrics”, The journal of

systems and software 56(2001) 63-75, 2000
http://www.mestradoinfo.ucb.br/Prof/wmelo/jss-oo.pdf

127

[EIKO1]

[LCBOO]

[VRL96]

[DANOO]

[CUTO0]

[FLEOO]

[MENO1]

[POO02]

El-Emam, K., “Object-Oriented Metrics: A Review of Theory and
Practice”, 2001 ftp://ai.iit.nrc.ca/pub/iit-papers/NRC-44190.pdf

Lionel C. Briand, Jiirgen Wiist, John W. Daly 1 , and D. Victor Porter,
“Exploring the Relationships between Design Measures and Software
Quality in Object-Oriented Systems ", 2000

http://www.sce.carleton.ca/faculty/briand/jss.pdf

Victor R.Basili, Lion C. Briand, and Walcelio L. Melo, “A validation of
object oriented metrics as quality indicators”, IEEE transactions on
software engineering, Vol 22,No. 10, 1996
http://www.mestradoinfo.ucb.br/Prof/wmelo/ieeetse1996.pdf

Daniela Glasberg, Khaled El Emam, Walcelio Melo, Nazim Madhaviji,
“Validating object-oriented design metrics on a commercial java

application”, 2000
http://www.mestradoinfo.ucb.br/Prof/wmelo/NCR. 1080.pdf

Cutter C. “Poor Project Management - Problem of E-Projects”, October
2000, http://www.cutter.com/consortium/press/001019.html

FLEMING, J. “Web Navigation: Developing the User Experience”,
O’Reilly & Associates. 2000.

Mendes, E., Mosley, N., Counsell S. “Web Metrics - Estimating Design
and Authoring Effort”. IEEE Multimedia, January-March 2001.

Pooley R., Senior, D., Christie, D. “Collecting and Analyzing Web-Based
Project Metrics”. IEEE Software 19(1), January/February 2002.

128

[OLS00]

[OLSO1]

[MIC02]

[ANDO2]

[STE02]

[JENO2]

Olsina, L., “Quantitative Methodology for Evaluation and Comparison of
Web Site Quality”, Doctoral Thesis, UNLP, La Plata, Argentina. 2000.

Olsina L., Papa, M.F., Souto, M.E., Rossi, G. “Providing Automated
Support for the Web Quality Evaluation Methodology”, Proceed of the
Fourth Workshop on Web Engineering, at the 10th International WWW
Conference, HONG Kong. 2001.

Dirk M., Begona L., Rob Van D.P.K., Andreas G.(Editors), “Software
Quality and Software Testing in Internet Times”™ — “Designing Processes
for User-oriented Quality Engineering (Michael M., Astrid D., Elmar
F.)", Springer-Verlag, ISBN 3-540-42632-9. 2002.

Dirk M., Begona L., Rob Van D.P.K., Andreas G.(Editors), “Software
Quality and Software Testing in Internet Times " — “Establishing Quality
Procedures for Incremental Software Development (Andreas K., Tessa D.,

Stephan F.)”, Springer-Verlag, ISBN 3-540-42632-9. 2002.

Dirk M., Begona L., Rob Van D.P.K., Andreas G.,(Editors), “Software
Quality and Software Testing in Internet Times™ — “Using QA for Risk
Management in Web Projects(Steve W.)”, Springer Verlag, June 2002.

Dirk M., Begona L., Rob Van D.P.K., Andreas G.,(Editors), “Software
Quality and Software Testing in Internet Times” — ‘‘Software
Development in Internet Times — Overview and Perspectives (Jens L. and

Ulrich H.) ", Springer Verlag, June 2002.

129

[ISO01]

[AVO00]

[1SO91]

ISO/IEC 9126-1, “International Standard, Software Engineering -
Product Quality - Part 1: Quality Model”. 2001

Avouris N. “Introduction to Human Computer Interaction”. Diavlos

Publications, 2000

ISO. Information Technology - Evaluation of software - “Quality

characteristics and guides for their use.” International Standard, ISO/IEC

9126: 1991

[SHN] http://www.hbuk.co.uk/ap/ijhcs/webusability/shneiderman/shneiderman.html

[PAO9S]

[GAR9S]

[BASS4]

[KIT96]

[Yahoo]

[ALTA]

Paolini P. “Hypermedia, the Web and Usability Issues”. Proc. of the IEEE
International Conference on Multimedia Computing and Systems, Vol.l,

1998

Garzotto F. et al. “4 Framework for Hypermedia Design and Usability
Evaluation™ Chapman &Hall, 1998.

Basili V.R. and Weiss D. “4 methodology for collecting valid software
engineering data”. IEEE Trans. on Software Engineering, SE-10(6), 1984.

Kitchenham B. and Pfleeger S. “Software Quality: The Elusive Target”.
International Journal: IEEE Software, January 1996.

Yahoo. http://www.yahog.com

Altavista. http://www.altavista.com

130

[LYCO]

[NGUOI]

[TIM]

[NIE9S]

[NIEJ]

[OLLO1]

[WWWC]

[NIE0O]

[LYN99]

[FRA02]

Lycos. http://www.lycos.com

Nguyen Hung Q., “Testing Applications on the Web, Test Planning for
Internet-Based Systems™. Wiley, New York, ISBN 0-471-39470-X, 2001.

Tim Van T., “Web Testing”,
http://www.csgp.com/its/articles/websitetesting.html

Nielsen, Jakob. “Web Usability: Why and How”. 1998.

http://www.zdnet.com/devhead/stories/articles/0,4413.2137433.00.html
Nielsen, J., 1996-2001, “The Alterbox”, http://www.useit.com/alterbox/

Olsina, L., Gonzalez Rodriguez,J., Lafuente,G.J.; Pastor, O.; “Towards
Automated Web Metrics”, VIII Quality Brazilian Workshop. 2001.

WWW Consortium, “WAI Accessibility Guidelines: Page Authoring’.
http://www.w3c.org/TR/WD-WAI-PAGEAUTH/

Nielsen, J., “Designing Web Usability: The Practice of Simplicity”. New
Riders Publishing. 2000

Lynch P. and Horton S. “Web Style Guide”, Yale University, 1999.

Dirk M., Begona L., Rob Van D.P.K., Andreas G.(Editors), “Software
Quality and Software Testing in Internet Times - Software Quality
Assessments for System, Architecture, Design and Code (Frank S., Clause
L., Walter B.)”, Springer-Verlag, ISBN 3-540-42632-9. 2002.

131

[ERI02]

Dirk M., Begona L., Rob Van D.PK, Andreas G.(Editors), “Software
Quality and Software Testing in Internet Times - Low-Cost Usability
Testing (Erik Van V)", Springer-Verlag, ISBN 3-540-42632-9. 2002.

[STD24] http://www-ist.massey.ac.nz/cphillips/ 159353/353Evaluationweb/std024.htm

[VALO1]

[JEP99]

[BAR99]

[ABRO1]

[IFP99]

[PASO1]

Valeria C., Emiliano C, Michele C. “4 Performance Study of Distributed
Architectures for the Quality of Web Services”. Proceedings of the 34th

Hawaii International Conference on System Sciences. 2001.

J.E. Pitkow. “Summary of WWW characterizations’. World Wide Web,
1999.

P. Barford and M.E. Crovella. “4 performance evaluation of Hyper Text
Transfer Protocols”. In Proc. ACM Sigmetrics 1999.

ABRAH?, S. M., AND PASTOR, O. “Estimating the Applications
Functional Size from Object-Oriented Conceptual Models”. In
Proceedings of I[FPUG Annual Conference,Las Vegas, USA, September
2001.

[FPUG. “Function Point Counting Practices Manual”, Release 4.1,
International Function Points Users Group, Mequon, Wisconsin, USA,

1999.

PASTOR, O., ABRAHAO, S. M,, “4 FPA-like Measure for Object-
Oriented Systems from Conceptual Models”. In Proceedings of 1l1th
International Workshop on Software Measurement, Canada, Shaker
Verlag, 2001.

132

[COST]

[COW99]

[MOR99]

[THOO02]

[BRAO0O]

[BRGOL]

[BASO1]

COST XPERT GROUP, Inc. “Estimating Internet Development”,
http://www.cutter.com/consortium/press/001019.html

COWDEROY, A. J. C. “Size and Quality Measures for Multimedia and
Web-site Production”. In Proceedings of 14th International
COCOMO/SCM Forum, Los Angeles, USA, 1999.

MORISIO, M., STAMELOS, 1., SPAHOS, V., “Measuring Functionality
and Productivity in Web-based Applications: A Case Study”. In
Proceedings of METRICS '99, Florida, USA, Nov. 1999.

Dirk M., Begona L., Rob Van D.P.K., Andreas G.(Editors), “Software
Quality and Software Testing in Internet Times - Business-Oriented
Testing in E-Commerce (Thomas F.)”, Springer-Verlag, [SBN 3-540-
42632-9. 2002.

Brajnik, G. “Automatic web usability evaluation: what needs to be
done?”, in Proc. Human Factors and the Web, 6th Conference, Austin,

June 2000, www.dimi.uniud.it/~giorgio/papers/hfweb00.html

Brajnik G. “Towards valid quality models for websites, in Proc. Human
Factors and the Web”,7th Conference, Madison, WI, June 2001.
www.dimi.uniud.it/~giorgio/papers/hfweb01.html

BASKERVILLE, R., LEVINE, L., PRIES-HEJE, J.,.BALAS., R., AND
SLAUGHTER, S. “How Internet Software Companies Negotiate Quality”,
[EEE Computer 34(5), 2001

133

Useful resources:
http://www.stic inds.com

http://www.i0.com/~wazmo

http://www.mtsu.edu/~storm

http://www.pcwebopaedia.com
http://www.informationweek.com

134

