INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Data Modeling for Sequence Quality Control and Assembly of a cDNA library

Yan Meng

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal. Quebec, Canada

April 2003

© Yan Meng, 2003



i~

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
Otawa ON KIA ONG Otiwa ON' K14 ON4
Canada Canada
Your fle Votre rédérence
Our fis Notre réédrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77717-0



Data Modeling for Sequence Quality Control and Assembiy of a cDNA library

Yan Meng

Much scientific data can be characterized by properties like complexity, large
volume, low update frequency, and indefinite retention, which brings up some different
issues than those found in conventional business environments. There are a number of
influences that should guide the development of data models in bioinformatics. These
range from experience of the scientific database community across a range of disciplines,
the current best practice in bioinformatics system, available data models and schemas, the
impact of emerging standards. and the trend towards ontologies. Influenced by them, I
have developed a conceptual object data model for the sequencing quality control and
assembly pipeline for the genomics project creating a cDNA library for Aspergillus niger
and implemented it using the relational database MySQL. This experience is summarized

in a set of guidelines for data modeling in bioinformatics.
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CHAPTER 1 INTRODUCTION

Chapter 1

Introduction

In recent years, the development of the technology for efficient, automated DNA
sequencing has ied to the accumulation of large databases of DNA and protein sequences,
and growth of a new field of study known as *“Bioinformatics”. Bioinformatics is the use
of mathematical, statistical and computing methods to solve biological problems using
large amounts of DNA and amino acid sequences and related information, which includes
the fields of sequence analysis, comparative genomics, functional genomics, proteomics,

structural genomics, medical informatics, computational biology etc.

This thesis addresses an open problem in this field, namely data modeling for
bioinformatics databases. The huge amount data generated from high throughput
experiments and the complexity of the data itself has made this a non-trivial job. It should
support large volume data storage, efficient retrieval and exchange, ease of evolution, and
other criteria. The approach taken here is to develop an object-oriented conceptual data
model for the sequence quality control and assembly pipeline for the genomics project

with Aspergillus niger and implement it in the relational database MySQL. The work
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described is essentially interdisciplinary in nature in that, database techniques are used

for data modeling and implementation, while the basic subject matter is biological.

1.1 Background of Data Modeling

What is Data Modeling?

The most important task in developing new or enhanced applications for institutional
data and processes is the initial analysis of client requirements (Tim McLellan, 1995).
Before purchasing any software and hardware, and before storing data in a database, it is
vital to analyze the client's requirements to develop the appropriate solution. Time spent
in analysis is proportional to the effectiveness of the resulting application. Since the early
1960s, and despite the rapid evolution since then, the initial analysis is still the principal

activity that an application developer undertakes.

One technique commonly used in analyzing the client's requirements is data
modeling. The purpose of data modeling is to develop a complete and accurate model, or
graphical representation, of the client's information needs and work processes. The data

model acts as a framework for the development of the new or enhanced application.

There are two major methodologies used to create a data model: the relational data
model and the object data model. This thesis compares these two approaches, and

addresses their strength and weakness in the context of bioinformatics databases.

Data modeling in the context of database design
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The database design process roughly follows five steps: 1) planning and analysis; 2)
conceptual design; 3) logical design; 4) physical design; and 5) implementation (Simsion,

Graeme, 1994, Teory, Toby J, 1999).

In the context of database design, the conceptual data model is one part of the
conceptual design process. It is a conceptual representation of the data structures that are
required by a database. The data structures include the data objects, the associations
between data objects, and the rules, which govern operations on the objects. To put this in
the context of the relational database, the data model is used to design the relational
tables; in the context of the object-oriented database, the data model is used to design

object classes.

A data model is independent of hardware or software constraints. Rather than try to
represent the data, as machine would see it, the data model focuses on representing the
data as the user sees it in the "real world". It uses easily understood notations and natural
language, so that it can be reviewed and verified by the end-users. The data model is also
detailed enough to be used by the database developers to use as a "blueprint" for building
the physical database. So, it serves as a link between the concepts that make up real-
world events and processes and the physical representation of those concepts in a

database.
Data Modeling in Bioinformatics

A bioinformatics database is a scientific database, which shares some features with
conventional business database since they are both databases, but also differs from it
because of the nature of data. Much scientific data can be characterized as complex, large

volume, low update frequency, and indefinite retention. This brings up some different
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issues than those found in conventional business environments. There are a number of
influences that should guide the development of data models for databases in
bioinformatics. These range from experience of the scientific database community across
a range of disciplines, the current best practice in bioinformatics systems, available data

models and schemas, the impact of emerging standards, and the trend towards ontologies.
1.2 Goals

The aim 1s to develop a data model for the sequence quality control and assembly
pipeline for the genomics project to create a cDNA library for Aspergillus niger and to

implement it using the relational database MySQL.

The general structure of the project is to grow the fungi under a range of conditions
of interest, and sample the mRNA present in the organisms under these conditions. We
sample about 18,000 cDNA clones of Aspergillus niger, which should provide
representatives of approximately 5,000 genes, of which at least 30% will be new genes.
We expect to identify about 130 target genes of interest. Those targets identified by
similarity will be the “easy” ones with known relatives amongst the enzyme families of
interest. They should be easier to characterize, but have less novelty. They will form
about 80% of all targets. Those targets identified from the gene expression studies will be
more difficult to characterize, but are guaranteed to be novel in some sense. They will
form about 20% of all targets. This 8020 split is chosen because of risk management

and overall budget constraints.

In many ways, this is a typical genomics project, covering sequencing, sequence

analysis, gene expression analysis using cDNA microarrays, and follow-up work in the
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wet lab to verify hypothesis’s generated in silico. To support this project, others in
bioinformatics group at Concordia have developed three pipelines for cDNA sequencing
and gene expression studies using microarrays. Pipeline 1 is responsible for quality
control of the raw cDNA sequences, their assembly, and their normalization to remove
redundancy. Pipeline 2 is responsible for collecting information about the sequences
similar to each gene, and classifies the function of the gene into the appropriate Gene
Ontology category. Pipeline 3 is responsible for quality control of the data from
microarrays and the determination of those genes that are highly expressed under each

condition. My goal is to develop a data model for the database in support of pipelne 1.

Wet Lab
grow sample sample cDNA . -
fungi mRNA clone sequencing
gene expression sequence -« sequence
analysis analysis assembly
Bioinformatics

Figure 1.1 Schematic Diagram of Genomic Project
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1.2.1 Introduction of Pipeline 1

The goal of pipeline 1 is to perform quality control of the raw cDNA sequences,
assemble the sequences, and remove redundancy. The inputs to the pipeline are the
chromatograms from the sequencers, and the final output is a list of trimmed, full-length,

normalized cDNA clones representing the “genes” of the organism.

The best practice tools for basic sequence quality and assembly-- phred, lucy, phrap
are adopted. For the purpose of data modeling, I need to know the input and output of
cach intermediate step, and analyze what is required to be kept in database. The following

is a brief description of each step in the pipeline.

vector

chromatogram —& read;b trimmed read —» contig —

1 2 3 4

phred

Lucy

phrap and cross_match
consed

PN

Figure 1.2 Schematic Diagram of Sequence Quality Control and Assembly Pipeline
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The first step is base calling of raw sequence data — chromatogram data with phred.
Phred reads the sequencing machine chromatograph outputs and generates sequence base
calls in a sequence file together with a quality assessment file for each base call made.
The input data are sequencer trace data (binary) and dye primer data. Sequencer trace
data can come from SCF, ABI model 373 and 377 DNA sequencer chromatogram, and
MegaBACE ESD chromatograms files (primer ID) and dye primer data. Dye primer data
include Primer ID, chemistry, length, sequencing vector, priming and cloning site, dye,
sequencing machine type, LI-COR gel created SCF files. Phred needs environment
variable in this file for its process. For the level of interpretation perspective, the input
data is raw/sensor data. The output data are base calls (validated data); quality values of

sequence (interpreted data) in FASTA format.

In the second step, the sequence fragments (reads) are processed to generate trimmed

sequences for assembly using lucy.

Lucy is a utility that prepares raw DNA sequence fragments for sequence assembly.
It reads the quality information for sequences, computes good quality regions, chops off
splice sites from the sequences, and then remove vector insert sequences. Lucy accepts
output files from phred as input data files: the sequence file, the quality file, and
(optionally) a second sequence file for comparison purposes. All three files should be in
the plain FASTA format. The first sequence file and its accompanying quality file are
obtained from phred, the optional second sequence file usually comes directly from the
sequencing machine itself and is used to reassure/enhance the quality of the sequences.

The output data of Lucy are the cleaned sequence file (validated data) with markers for
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good quality regions, and a companion quality file (interpreted) data. They are ready for

third step—fragment assembly.

The third step is assembly of trimmed sequence fragments using phrap. phrap is a
program for assembling DNA sequence data. It uses cross_match for sequence alignment.
cross_match is a general-purpose utility (based on a “banded” version of SWAT, an
efficient implementation of the Smith-Waterman algorithm) for comparing any two sets
of (long or short) DNA sequences. It can be used to compare a set of reads to a set of
vector sequences and produce vector-masked versions of the reads; a set of cDNA
sequences to a set of cosmids; contig sequences found by two alternative assembly
procedures (e.g. phrap and xbap) to each other; or phrap contigs to the final edited
cosmid sequence. Here it is used to compare a set of reads for assembling. phrap takes
output from Lucy as input, allows use of entire read (not just trimmed high quality part);
uses a combination of user-supplied and internally computed data quality information to
improve accuracy of assembly in the presence of repeats; constructs contig sequence as a
mosaic of the highest quality parts of reads (rather than a consensus); provides extensive
information about assembly (including quality values for contig sequence) to assist
trouble-shooting. These output data are derived data from validated data in the second
step (Lucy). phrap is usually used in conjunction with phred; and with the sequence

editor/assembly viewer, consed.

The last step 1s to edit the assembly using consed. consed is a program for viewing
and editing assemblies assembled with the phrap assembly program. Output data can

come from several assemblies from phrap, so the relationship between input data
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(assemblies from phrap) and output data can be considered as a “many to many”

relationship.
1.2.2 Requirements of Data to be Modeled

The ultimate goal of a data model is to completely and accurately represent the data
requirements of the end users. Since the end users are scientists, I communicated with

them and summarized their requirements below:
Requirement 1: The database should store chromatogram file —the raw data.

This is the original data generated from web lab, in a binary format. It is not used
often in later analysis, but sometimes, scientists need to trace back to the original data
when new analysis tool emerges. For example, new software tools for sequence quality

control, vector screening etc.
Requirement 2: The database should store sequence data ——the validated data.

In this pipeline, validated data refers to the output from phred. All data derived from
raw data are referring to this validated data, including the trimmed sequence data from
lucy, the contig sequence data from phrap, the final edited assembled sequence from

consed.

Requirement 3: The database should store trimmed sequence data—the derived

data from validated sequence data.
The trimmed sequence data are used for sequence assembly.

Requirement 4: The database should store data related to automatic contig

assembly—the derived data from trimmed sequence data.
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Trimmed sequences are assembled to contig, which is also derived data. Which
trimmed sequences are used in assembly and how they are assembled should be recorded,
so that later on, when the sequence assemblies are required to be modified by humans,

the relevant information can be retrieved.

Requirement 5: The database should store final edited contig sequence data—the

derived data from trimmed sequence data.

The final edited contig sequence data are the final output from pipeline 1, which is
then used for sequence analysis. It should also include assembly information as is in
automatic assembly step; moreover, it should include the consensus sequences of contig

for future use of sequence analysis.

Requirement 6: The database should store quality data for all sequence data—the

metadata.

Quality data is essential for scientist to see the quality of the sequence data they are

using for sequence analysis, and especially when it is necessary to edit the assembly.

Requirement 7: The database should store information about software used in each

step of the pipeline—the metadata.

It is important to know how the data are processed in each step. There are many
software tools available, and each has its special feature, the software will evolve too.
This information is useful because, sometimes, scientists need to know how the raw data
is processed for diagnostic purpose, or when they want to update the tool, it is good to

know what they are using right now.

Requirement 8: The database should store features about sequence—metadata.

10



CHAPTER 1 INTRODUCTION

Information related to sequence, such as the creator of the sequence, the date it was
created, and the wet lab protocol for generating the raw data are metadata of the sequence
data, which should be stored as well in order to re-generate the whole process used for

producing the data.
1.3 Organization of the Thesis

This thesis develops a conceptual data model of sequence quality control, and
assembly pipeline for the genomics project to create a cDNA library for Aspergillus
niger: The chapters are organized so as to describe what guides the development of this
data model, and eventually how the model is generated. Thus, Chapter 2 covers the status
of data modeling in bioinformatics, comparing the scientific database versus conventional
database; relational data model versus object data model; summarizing the current
standards, and best practice, trends in bioinformatics. Chapter 3 discusses how the
conceptual model is developed, and the implementation of the conceptual model in
MySQL schema. In the end, Chapter 4 briefly reviews the goals of the project, the work
done to reach the goals, summarizes a set of guidelines of data modeling in
bioinformatics from this project, and outlines the potential future work extending from

this thesis.

In my thesis, I use some notational conventions to distinguish table name, table
column and text body. Table names appear in arial 12 for lower case, ARIAL 10 for upper
case, table columns appear in anial narrow italic 12 for lower case, ARIAL NARROW ITALIC 10 for

upper case.

I
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Chapter 2

The Status of Data Modeling in

Bioinformatics

There is a wealth of experience and material to draw upon to guide the development
of data models for databases in genomics and bioinformatics. (Frishman er al.
1998,Letovsky 1999). These range from surveys of bioinformatics databases (Frishman et
al. 1998, Letovsky 1999), the experience of the scientific database community across a
range of disciplines (French er al. 1990), basic data modeling principles (Simsion,
Graeme 1994, Teory, Toby J, 1999), the current best practice (Ensembl/Apollo/DAS,
phred/Lucy/phrap, MIAME etc), available data models and schemas (Ensembl,
Saccharomyces genome database etc), the impact of emerging standards, and the trend
towards XML (Achard er al. 2001), ontologies (The Gene Ontology Consortium},
Distributed Annotation System (DAS) which is being used for the annotation of the

human genome.

12
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2.1 Scientific Database versus Conventional Database

Scientific databases are often very large. But size alone does not necessarily
distinguish between scientific and commercial databases. Here [ compare the similarities
and differences between these two, and emphasize on characteristics of the scientific

data.
2.1.1 Similarities

Many issues regarding databases in a variety of scientific disciplines and those in
conventional business environments are similar. For example, in both data modeling, it is
important to know the applications and analysis in which the data will be used; to
communicate with database users about their needs, be clear on the project goals, to try to
plan for future trends in analysis and application of the data. This is a non-trivial task,
especially for scientists who, unlike business people with experience in assisting in data
modeling, have little or no experience. In addition, flexible, efficient query processing is

vital in each environment.
2.1.2 Differences

What make the scientific database different from business database are the three
fundamental characteristics of the data and the anticipated operational environment. First,
the scientific entities are usually more complex with significant interrelationships.
Consequently, object-oriented technology often seems more appropriate. Second,
scientific databases are rarely transaction oriented. Recorded data is to be preserved for
posterity; therefore often data has low update frequency. Retrieval of relevant data is far

more important. Third, retrieval of data is often “volumetric, > that is, based on two or

13
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more conjunctive range searches. Genome sequencing projects are producing complete
genome sequences of organisms. In the post-genomic era, high-throughput technology is
producing a huge amount of data on functional genomics, proteomics, transcriptomics
and metabolomics. Very often, scientists need to analyze data collected from multi-
sources. These characteristics of scientific data bring up some different issues than those

found in conventional business databases.

A major report (French er al. 1990) on scientific databases discusses both the user
perspective and the technology perspective. Much of what it said from the user
perspective is still valid today. A later report (Williams et a/. 1999) confirms the needs of
the user, and despite the availability of the web and XML still notes major technological

hurdles for scalability, data integration, presentation of information, and interoperability.

These issues are also relevant to bioinformatics (Frishman et al. 1998). From a point
of view of the user, the following basic questions need to be answered in order to

enhance the scientific research environment:
What data is available to me?
Where is the data located?
How can I get it?
What can I do with it?

2.1.3 Scientific Data in Three Dimensions

Since scientific data are so complex and large, it was suggested that the scientific

databases could be characterized in three dimensions: level of interpretation, intended

14
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scientific analysis, and data source. These dimensions may exist in commercial databases

environment, but the data are relatively simple in each dimension.

2.1.3.1 Level of Interpretation

Data undergoes many transformations from raw sensor data to fully interpreted

results that appear in the scientific literature. Some classifications of data include:

Raw/sensor data — raw values obtained directly from the measurement device, (rarely

saved);

Calibrated data -- raw physical values corrected with calibration operators (usually

saved);

Validated data -- calibrated data that has been filtered through quality assurance

procedures, (commonly used data for scientific purposes);
Derived data -- any data that is the result of transformation on other data;

Aggregated data — derived data that is the result of an aggregation transformation, such

as averages, standard deviations etc.

Interpreted data -- derived data that is related to other data sets, or to the literature of

the field.

This sequence of successively increasing levels of interpretation and information

about the processing is crucial to fully understanding and using a data set.
2.1.3.2 Intended Scientific Analysis

It is assumed that all scientific data are subject to further analysis, such as

computations, queries, and other applications made of the data. Since the nature of such

15
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subsequent analysis frequently determines the desirable representational format, it is

critical to answer some key questions:
e What operators will be applied to the data?
¢ Does the data representation support these operators efficiently?
e Are the operators intrinsic to the DBMS or not?

Earth science data is often viewed as time-sequences and multidimensional tables
because it is analyzed statistically..Space science data analysis may consist of multi-
spectral Fourier transformations of very large 2D and 3D arrays of numbers. Genome
data analysis may mean pattern matching over linear character sequence data, for
instance, BLAST (Basic Local Alignment Search Tool) is a set of similarity search
programs using heuristic algorithm to detect relationships among sequences of either
protein or DNA, which are presented as linear character sequence data, such as a, t, ¢, g

for nucleotide of DNA, K, S, V, E etc for amino acid of protein.
2.1.3.3 Data Source

This dimension is generally not mentioned in the database literature, particularly
commercial databases which are usually single-source database environments. For
scientific databases, it is common that all necessary data can either be obtained from a
single data repository, or may need to be collected and integrated from many data
sources. Genomics tends to have multiple data sources, with users sometimes referencing
single repositories for detailed work, but often requiring accessing multiple sources for
their work. In this they may use Entrez or SRS for ad hoc queries, or create an internal

data warehouse in the case that they plan extensive data analysis or data mining.

16
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Key to answering most of the above questions for a user is metadata, which consists
of information that characterizes data. Metadata are used to provide documentation for
data products. In essence, metadata answer who, what, when, where, why, and how
about every facet of the data that are being documented. Since the metadata is very
complex, standards of metadata become necessary to describe all possible data. For
example, The Federal Geographic Data Committee approved the Content Standard for
Digital Geospatial Metadata (FGDC-STD-001-1998) in June 1998. The Microarray Gene
Expression Data (MGED) society established MIAME - standard of the minimum

information about a microarray experiment required to interpret and verify the results.

Data, together with the metadata associated with it, provides self-descriptive data. It
should be sufficient information for a scientist, either now or in the future, to decide
whether the data is relevant to their investigations, whether an analysis technique may be
applied to the data or not, and how much confidence the scientist can have in the result of

the analysis.

2.2 Relational Data Model versus Object Data Model

Since the 1980s, the relational data model has been the dominant in DBMS. In the
beginning, relational database systems supported a small, fixed collection of data types
(e.g., integers, dates, strings), which has proven adequate for conventional domains,
including most commercial areas. Later on, market of microsoft SQL server and MySQL
started to grow, contributing to advanced developments in relational database

management system. In the late 1980s and the 1990s, advances have been made to store

17
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new data types such as image and text (IBM’s DB2, Oracle 8, Informix UDS). In many
application domains, however, much more complex kinds of data must be handled.
Typicaily this complex data has been stored in OS file systems or specialized data
structures, rather than in a DBMS (Raghu Ramakrishnan er a/, 2000). Examples of
domains with complex data include the Computer Aided Design (CAD), Computer Aided
Manufacturing (CAM) and Computer Aided Software Engineering (CASE) applications.

As the data volume increases, the advantages of the many features offered by a
DBMS, such as reduced application development time, concurrency control and
recovery, indexing support, and query capabilities, become more obvious. In order to
support such applications, a DBMS must support complex data types. That is how the
object-database system began to emerge.

Object-database systems have developed in two distinct paths: Object-oriented
database systems and Object-relational database systems, with the latter considered an
extension of relational database system. In this section, I focus on the object-oriented
database system, and compare its data models with relational data model.

There are concepts in the relational data model that are similar to those in the object
data model. A table in a relational data model can be considered to be analogous to a
class in an object data model. A tuple is similar to an instance of a class in that they are
both instance of a table or a class. A column in a tuple is similar to a class attribute in that
they both describe the attributes of the table or the class. However, these concepts have
other distinct features, which distinguish them despite their similarities. A tuple has no
behaviors, but an instance of class has. A column in a tuple can hold only primitive data

types while a class attribute can hold data of any type. Finally classes have methods that

18
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can be applied to objects of the class, but there is no analog to methods in relational
models (Raghu Ramakrishnan et al, 2000).

Below is a list of advantages and disadvantages of using an OODBMS over an
RDBMS with an object oriented programming language.

2.2.1 Advantages of Object-Oriented Database:

(1) More data types: Different from relational DBMS, Object-Oriented DBMS stores
objects rather than simple data types. When handling image, graphics, and audio/video
data, relational DBMS has to use BLOB (Binary large object), however, object-oriented
DBMS can handle it more elegantly by defining the specific data types (Raghu

Ramakrishnan er al, 2000).

(2) Composite Objects and Relationships: An object is a better model of the real world
entity than the relational tuples with regards to complex objects, and it usually has
hierarchical characteristics. Objects in an OODBMS can store an arbitrary number of
atomic types as well as other objects. It is thus possible to have a large class, which holds
many medium sized classes which themselves hold many smaller classes, ad infinitum. In
a relational database this has to be done either by having one huge table with lots of null
fields or via a number of smaller, normalized tables, which are linked via foreign keys. A
Join has to be performed when one wants to query data based on the “object”. The
analogy (attributed to Ester Dyson) would be the requirement of disassembling your car
before storing it in your garage each night and then reassembling it before using it each
morning. This has both development productivity and runtime performance issues.
Programmers spend more coding time mapping the program object to the database. At

runtime, similar performance penalties are paid moving data between the database and
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the running application. Depending on the complexity of the data being handled, an

OODBMS can outperform an RDBMS by ten to a thousand times.

(3) No querying language: A relational data model models the static parts of the system,
and uses query language to perform dynamic operations or rules that change the state of
the data in the system. An object data model models both static and dynamic parts of the
system. ODBMS provides transparent bindings to object-oriented languages such as C++,
Java and Smalltalk, rather than force a single query language (i.e. SQL) as its interface.
An entire application can thus be comprehensively modeled in one UML diagram

(McFarland, Gregory, 1999).

(4) No Impedance Mismatch: In a typical application that uses an object oriented
programming language and an RDBMS, a significant amount of time is usually spent
mapping tables to objects and back. When the models are changed, this mapping layer
gets more complex, more error prone, and very hard to maintain. There are also various
problems that can occur when the atomic types in the database do not map cleanly to the
atomic types in the programming language and vice versa. This "impedance mismatch” is
completely avoided when using an OODBMS, since whatever your application objects

are, they are taken as-is by the OODBMS.
2.2.2 Disadvantages of Object Database:

(1) In OODBMS. the objects may be extremely large, and may contain redundant data, so
they require more space than the tuples in RDBMS, in which the relations are normalized

to reduce redundancy.
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(2) The field of Object-oriented database is relatively new compared to that of relational
database, and the ODBMS is still under improvement, so it does not function as well as
most RDBMS (Oracle, MySQL etc.) although in many aspects they may outperform
RDBMS in certain circumstance. For example, OODBMSs excel at managing objects,
especially in environments where the operations to be performed on those objects are
reasonably well known when the database is designed. They rarely perform well when
called upon to deal with ad hoc query environments or applications requiring significant
use of traditional data such as numbers and character strings. SQL is well designed to
deal with that traditional data, and virtuaily all SQL products today are quite efficient
when dealing with unpredictable -- and unpredicted -- queries and combinations of data.
(3) Lack of Ad-Hoc Queries: In an RDBMS, the relational nature of the data allows one
to construct ad-hoc queries where new tables are created from joining existing tables then
querying them. Since it is currently not possible to duplicate the semantics of joining two
tables by "joining" two classes then there is a loss of flexibility with an OODBMS. Thus
the queries that can be performed on the data in an OODBMS are highly dependent on
the design of the system.

Taking both advantages and disadvantages into consideration and together with some
practical reasons, many available ODBMSs are hybrid systems, or object-relational

DBMSs. However, these systems are able to handle complex data types equally well.

For bioinformatics databases, since the data is complex, the object model is more
appropriate than the relational model, but by experience, object database technology is
not yet ready to support bioinformatics applications. Hence, most bioinformatics

databases use RDBMS, such as Ensembl, SGD etc. Nevertheless, ODBMS is also used in
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bioinformatics considering its many advantages; the most successful OODBMS is
AceDB. AceDB was onginally developed for the C. elegans genome project, from which
its name was derived (A C. elegans DataBase). However, the tools in it have been
generalized to be much more flexible and the same software is now used for many
different genomic databases from bacteria to fungi to plants to man. It is also increasingly

used for databases with non-biological content.

Having an object model prepares for future trends where object database technology
may become the technology of choice for implementing genomics databases. It also
recognizes the advantages of object modeling at the conceptual level. Of course, the
mapping between an object-oriented conceptual model and the relational logical model
must be documented. I document conceptual models using the Unified Modeling

Language (UML), the standard notation for object-oriented modeling.

2.3 Standards, Best Practice and Trends.

2.3.1 Standards

Some basic standards for databases are adopted in bioinformatics. Many of other
standards that arise in bioinformatics are based on best practice, which describes the
community consensus on how best to store, exchange, and analyze genomics data. In the
course of time, various international bodies have created official standards closely based

on these best practices in use.



CHAPTER 2 THE STATUS OF DATA MODELING IN BIOINFORMATICS

Standards for databases

SQL is the standard for relational databases, for example, SQL-92 was developed by
the INCITS Technical Committee H2 on Database. SQLJ was developed by The SQLJ
Group, a consortium comprised of database vendors and Sun Microsystems. ODMG is
the standard for object-oriented database, for example, ODMG 3.0 was developed by the

Object Data Management Group (ODMG) (Web service).
Standards for data interchange

As a result of high-throughput methodologies, huge amount of data have been
produced everyday, scientists need to work with large volumes of data in different
formats and coming from a variety of sources, so data exchange becomes key to
genomics. Standards for data interchange are critical because without which coordination
and viewing of the data has been difficult. At the BIO (Biotechnology Industry
Organization) 2001 Conference, the Interoperable Informatics Infrastructure Consortium
(I3C)'s model of a common open platform uses XML and Java™ technology as the basis

for exchanging and sharing life science data in an open consistent manner.

Based on the general standards for data exchange, there are various standards

developed for specific data.
Standard for functional annotation of genomes

The Gene Ontology has become a standard for functional annotation of genomes. It
can be applied to all organisms even as knowledge of gene and protein roles in cells is

accumulating and changing.

Standards for microarray data
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The Microarray Gene Expression Data (MGED) society, an international organization
for facilitating the sharing of microarray data from functional genomics and proteomics
experiments, is establishing standards for microarray data annotation and representation,
facilitating the creation of microarray databases and providing infrastructure for
dissemination of experimental and data transformation protocols. There are four major

standardization projects being established.

MIAME - standard of the minimum information about a microarray experiment

required to interpret and verify the results.

®* MAGE - standard of a data exchange format (MAGE-ML) and conceptual object

model (MAGE-OM) for microarray experiments.

® Ontologies - standard for microarray experiment description and biological

material (biomaterial) annotation in particular.

e Normalization - standard for experimental controls and data normalization

methods.
2.3.2 Best Practice

Best practice describes the community consensus on how best to store, exchange,
and analyze genomics data. Many of the standards arise in bioinformatics from best
practice because the community has found them to be workable, available, and useful.

Available schemas can be found in the literature for conceptual models, and at web
sites for XML schemas for data exchange, and for relational database schemas (usually
for MySQL. but also Oracle). A number of models, schemas, and ontologies have been

published recently including a broad conceptual model. For those like us who are
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studying fungi, the Saccharomyces Genome Database (SGD), with a well-documented
Oracle relational schema, is a valuable resource. Ensembl uses MySQL and documents
its schemas, and MAGE provides models and schemas for microarray data.

To date. the best practice of the large national and international sites, such as Sanger,
EBI, TIGR. NCBI, and DDBJ, generally lead the way in disseminating high quality
software and systems. One widely used platform for annotation and sequence analysis is
Ensembl/Apollo/DAS being developed at EBI, Sanger, Cold Springs Harbor, and
elsewhere. For basic sequence quality and assembly, the best practice tools (phred, lucy,
phrap) come from TIGR and University of Washington. There are competitors in the
MIAME-compatible database arena, including ArrayExpress from EBI, M-CHIPS from
DFKZ, and BASE from Lund, while the Institute for Systems Biology has a basic

microarray data analysis pipeline.

Controlled vocabularies aid communication with scientists, add precision to
terminology amongst modelers, provide precise scalar values for scalar data types, and

may be used for hierarchical classification schemes.

With these standards. and best practice available, we should avoid reinventing the
wheel, follow the standards and best practices. For example, use phred, lucy, phrap for
sequence assembly, use distributed annotation system (DAS) to facilitate annotation, use
gene ontology for function annotations and use MIAME guideline of MGED to model

microarray data.
2.3.3 Trends

The trends in bioinformatics projects are to provide XML schemas for data exchange

(Achard er al. 2001), use DAS for data integration, and use ontologies for annotation.
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XML stands for eXtensible Markup Language. It provides a framework for defining
markup languages, where each XML language is targeted at its own application domain

that defines its own tags, tailored to the kind of information used in that domain.

XML separates syntax from semantics and from presentation in that browser
rendering semantics is completely defined by stylesheets. XML is platform independent,
and self-descriptive. It has proven itself invaluable for data exchange and interoperability.
Based on the XML data standard Bioinformatics Sequence Markup Language (BSML) —
XML Data Standard for Genomics, many XML definitions for molecular biology have
been developed, such as, MSAML - an XML for Multiple Sequence Alignments; MAGE-
ML - an XML for microarray gene expression data; PROXIML - an extensible XML

Schema definition for automated exchange of protein data etc.

The Distributed Annotation System is being developed by Lincoln D. Stein, Sean
Eddy and Robin Dowell. The distributed annotation system (DAS) is a client-server
system in which a single client integrates information from multiple servers. It allows a
client to collect genome annotation information from multiple web sites, collate the
information, and display it to the user. DAS consists of a reference sequence server, and
one or more annotation servers. It relies on there being a common “reference sequence”
on which to base annotations. Each annotation is anchored to the genome map by way of
a start and stop position relative to one of the reference subsequences. In this way,
reference data and annotation data are decoupled, and it is easy to re-compute features, or
extend the types of features included in the annotation without impacting the underlying
reference data. Currently, DAS servers are running at WormBase, Flybase, Ensembl,

TIGR and UCSC.
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An Ontology is the working model of entities and interactions in some particular
domain of knowledge or practice, such as molecular biology or bioinformatics. One
definition (GO 2002) is “An ontology may take a variety of forms, but necessarily it will
include a vocabulary of terms, and some specification of their meaning. This includes
definitions and an indication of how concepts are inter-related which collectively impose
a structure on the domain and constrain the possible interpretations of terms.” An
ontology should be reusable, and it is this characteristic that distinguishes an ontology
from a database schema. A database schema is intended to satisfy only one application,
but ontology could be reused in many applications. Ontologies vary in their coverage and
level of detail. They range from controlled vocabularies such as glossaries and data
dictionaries, to terms organized into (generalization) hierarchies such as the Gene
Ontology, all the way to formal mathematical specifications using description logics such

as OWL (DAML+OIL).
Ontologies have a variety of roles in knowledge engineering (GO 1999):

1) A reference shared by a community. The knowledge is authored in a single language,
and converted into a different form for use in multiple target systems. Benefits include

knowledge re-use, improved maintainability and long term knowledge retention.

2) A conceptual database schema, or a definition of a common vocabulary for database
annotation. The ontology is a specification, ensuring that a common vocabulary is
available for description, sharing and posing questions. Benefits include documentation,

maintenance, reliability, sharing and knowledge re-use.

3) A common access point to information. The information to be shared may be

expressed using unfamiliar vocabulary. The ontology helps to render the information
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intelligible by providing a shared understanding of the terms or mapping between the
terms. Benefits include interoperability, and more effective use and re-use of knowledge

resources.

4) A query mechanism over databases. Ontology is used for searching an information
repository. Queries can be refined by following relationships within the ontology, by
moving up and down the generalization hierarchy within the ontology, or by narrowing
the value of an attribute. Benefits include more effective access and hence more effective

use and re-use of knowledge resources.

5) A *“world of discourse” model for database annotation and technical literature, that
allows sharing of information and supports natural language processing (NLP). These
ontologies are designed to link domain knowledge to linguistic structures such as

grammar and lexicons.

Ontologies clarify important abstractions and relationships, covering a range of
precision; we should choose the most appropriate level of precision and mathematical
sophistication for individual project. When formal ontologies are not used, controlled
vocabulary is necessary; it should cover concepts, entities, relationships, and

classification schemes.
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Chapter 3

Data Modeling of Sequence Quality Control

and Assembly Pipeline

Based on the requirement analysis in Chapter 1, I summarize the data and metadata
that need to be modeled for our project. The data include Chromatogram data, read,
trimmed read, contig, and consensus data. The metadata are the source of data,
transformation of data, lab equipment, experiment, protocol (reagents, dyes, vectors,
primers...), and personnel. Having these initial goals, I examined the current best practice
of sequence database, and analyzed the design principle used to see how they model data

and metadata, and adapted it into context of my project.

3.1 References of the Project to Best Practice

For the purpose of data modeling, it helps to refer to the current best practice of
bioinformatics databases and systems, such as Sanger, EBI (European Bioinformatics

Institute), TIGR (The Institute for Genomic Research), NCBI (The National Center for
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Biotechnology Information, and DDBJ (DNA database of Japan), which are the large
national and international sites. One widely used platform for annotation and sequence
analysis is Ensembl/Apolio/DAS being developed at EBI, Sanger, Cold Springs Harbor,
and elsewhere. Ensembl uses MySQL and documents its schemas. For those like us who
are studying fungi, the Saccharomyces Genome Database (SGD), with a well-
documented Oracle relational schema, is a valuable resource. A great advantage of these
systems is that access to all the data produced by the project, and to the software used to

analyze and present it, is provided free and without constraints.

The DAS (distributed annotation system) protocol, as mentioned before, is providing
distributed genome annotation in many databases, such as Ensembl, WormBase, FlyBase,
TIGR, and UCSC (University of California at Santa Cruz). The basic concept of

“reference server” can be used in modeling the sequence assembly.

Other than the databases and systems, a number of conceptual models have been
published recently. A conceptual modeling of genomic data by Paton er al. provides
conceptual models that describe eukaryotic genome sequence data and genome
organization, plus a number of important functional data sets, namely protein interaction
data, transcription data, and results from gene deletions. The information models
presented were developed in the context of a project that is focusing initially on the
management of Saccharomyces cerevisiae data. Since our project is also about Fungi, so
it can be easily adapted into our project. Note, however, that the emphasis in that paper is
on fully sequenced genomes, no models are provided for mapping data, and nevertheless,
the broad concept covered in this paper can serve as an important reference for sequence

analysis. There is a conceptual model for mapping data provided by Barrilot ez al. (1999).

30



CHAPTER 3 DATA MODELING OF SEQUENCING AND ASSEMBLY PIPELINE

It addresses the problem that there are many databases that store genome maps using
different schemas to describe their content, often, it is necessary to compare and integrate
the data from different databases, but transforming one representation into another is
difficult and requires detailed knowledge of every database. They proposed a standard
representation written in IDL (Interface Definition Language). The goal is that if each
database provides an interface based on this IDL, clients only need to know this interface
and can retrieve data from heterogeneous databases in a homogeneous fashion. This
interface has been defined as a consensus between laboratories involved in maintaining
databases for genome mapping (Infobiogen and EBI). Ensembl is one of the EBI
databases, so on one hand, this conceptual model can helps us to understand the Ensembl
schema, on the other hand, the Ensembl schema gives an example of the implementation
of the conceptual model, it will certainly help me both in data modeling and

implementation in MySQL.

In summary, considering the degree of relevance to our project, I decide to use
Ensembl, SGD, DAS and conceptual model of Barrilot ef al. as main references for data
modeling and implementation of pipeline 1. There are four advantages of using Ensembl
over SGD as a good reference and starting point of my project. First, Ensembl project
uses MySQL for database implementation, which I will use in our project too. Then, I can
be freed from worrying too much about the implementation detail, such as database
constraints, SQL syntax etc, and focus on the content of the schema. Second, the DAS
protocol is used for data distribution; it provides a good example of the protocol. Third, a
conceptual model about mapping (Barrilot et al. 1999) is partly (totally Infobiogen and

EBI) based on information of genome mapping at EBI, which is the home of Ensembl. It
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describes the genome maps in the conceptual level, so it provides the most direct
reference for data modeling of pipeline 1 of our project. Fourth, it adopts CVS to keep
track of version changes; it is useful for understanding the principle for those changes.
Therefore, it is worth the effort to deeply understand the design principle and schema of
Ensembl. The advantage of using Saccharomyces Genome Database (SGD) as a
reference is that the subject of the genome project is also fungus, therefore the context is
similar. Although it is implemented in Oracle, with a well-documented Oracle relational
schema, it still provides valuable information about fungi sequence assembly and

analysis. The comparison of Ensembl and SGD is shown in Table 3.3.1.

In this section, I briefly describe each of the references, in the perspectives of how
they model the data, and what part of the model is relevant to our project, and develop a

conceptual data model for our project.

Table 3.1.1 Comparison of Ensembl Database and SGD Database.

Ensembl SGD
Implementation MySQL Oracle
DAS Yes No
CORBA interface Yes No
Organism Human, mouse (non-fungus) Yeast (fungus)
cDNA No, genomic DNA No, genomic DNA
Updates Use CVS No.
Conceptual model No. No.
Schema Yes Yes
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3.1.1 Conceptual Model about Mapping

The conceptual model about mapping developed by Barrilot er al. concentrates on
the mapping aspect of genomic data (see Figure 3.1). They use separation of location and
objects. The types of the mappable objects are for markers: STS (sequence and tagged
site, see glossary), EST (expressed sequence tag), etc.; for clones:YAC(Yeast Artificial
Chromosome, BAC (Bacteria Artificial Chromosome), Pl (P1 phage), etc.; for maps:
genetic, physical, radiation hybrid, sequence, etc. A Mappable object can be a point or a
segment. Points have a point location, for example marker. Segments have some extent,
defined for instance by flanking markers or left and right positions. Examples are clones
or chromosome bands. A Segment can be Map and Clone. Genome maps are simply
segments; other segments and points are objects on this map. All these objects are
Mappable objects. The location of all Mappable objects is defined in a separate data
structure—MapElement. Maps can span entire chromosome or only certain regions.
Maps can contain other maps. This is useful if one wants to dynamically assemble a
chromosome-wide map from a number of regional maps. A MapElement defines
location information of mappable objects; they are classified in five categories. (1) point
position, which is a single coordinate (for instance for exactly positioned markers); (2)
ordered position, which is an order information (a rank, for maps where objects have only
an order, but no absolute position), for instance, in Ensembl there is sticky_rank for exon
when one exon expands two contigs; (3) range position, which is a left and a right
flanking Mappable object. (4) vague position, which has no location information. (5)
interval position, which is a left and a right position (for instance for clones, which have a

left and a right end coordinates).
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Using this model, a physical map is represented as a linear map. Clones (Mappable
objects) are connected to it through an interval position (MapElement), while markers
(Mappable objects) are connected through a point position (MapElement). A genetic

map can be treated like a physical map of markers, but with a different unit (centiMorgan

instead of base pair).

The separation of object and location can be seen in Ensembl schema, which is

I
database - ____._]
g 1.1
| _Mappable |
species
|chromosome
meppedOd] IR oad
QetMaps()
A
|
]
|_Segment |
Poimt f ' o
unit
:"‘ A
= Q
| pa
(srkar | [ |
1.1 Map Clone
[ mspEiement govOIBemerts)
positionPrecision . Qnts(
\_-LF_ 1. onktee 1-1| getRangeBetweenObiects()
getElementsinSegment()
IntervaiPosition ' i___PointPosltion . RangsPosition | __LinssrMap | Bin
lefEnd : Iﬁmwmsumm leNRankingOYy maxCoorfinate
X getScalarRange() rank
. OrderedPosition | Veguesssion getAroundl) uSuperEloment)
jrak | e getSudsiomonts()
oNSBIiings(

Figure 3.1 Graphical representation of the genome map in UML notation
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3.1.2 Ensembl

Ensembl is a joint project between EMBL - EBI (European Molecular Biology
Laboratory) and the Sanger Institute to develop a software system which automatically
tracks all the sequenced pieces of the human genome, attempts to assemble them into
large single stretches and then analyze the assembled DNA to find genes and other
features of interest to biologists and medical researchers. Ensembl is primarily funded by

the Wellcome Trust.

The Ensembl project aims to provide a curated, distributed, non redundant view of
the genomes of model organisms. The first release of Ensembl concentrated on human
genomic data, both finished and unfinished. Subsequent releases have presented mouse,
Fugu, zebrafish and mosquito data. Ensembl will concentrate on metazoan genomes, but

the system is being adapted by other groups for use with plant and fungal genomes.

As a software/database system Ensembl can be best described as a hybrid of a
scripting programming language (Perl) and a relational database (MySQL). Ensembl Perl
software inherits from a tradition of biological object-design developed through BioPerl
(www .bioperl.org), so that developers can create reusable pieces of software that would
faithfully describe biological entities such as gene, transcript, protein, genomic clone, or
chromosome. The Ensembl database is based on a relational database called MySQL,
which is available free of charge for noncommercial developers. Simple queries of the
database can be handled using the SQL language, but for complex queries demanded by
most biological analyses the Ensembl MySQL server is best accessed using Ensembl Perl

objects.
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It would be ideal if Ensembl as well as other databases had published both their
conceptual model, and schema, then we would have adapted the conceptual model to our
project with less effort, and get implementation example from the schema. For some
reasons, none of them has documented it, or don’t want to make them accessible to
public. But fortunately, they do provide MySQL schema, and a graphic schema diagram
for the latest release (version 9.30.1), which does help understanding the design concepts.
So what we need to do in the design phase is, in a sense, to reverse the design concepts
from the implementation (schema), and generate our object conceptual model. The

implementation in MySQL is straightforward following the schema in Ensembl.

The Ensembl schema in MySQL is made publicly available on the internet. While
developers gained more experience, they frequently made improvements to the schema.
The schema has changed a lot since the version 1, it was version 8 when I started my
project in May 2002, schema was updated on September. 3rd, 2002, and updated again in
November, generating the current version 9.30.1, however, the basic concepts are not

changed much.

In the core database, the tables can be classified in four categories based on their
contents: assembly, gene, feature, map and reference objects. Raw data in Ensembl is
contig represented by contig table. Ensembl stores all coordinates relative to contigs. For
assembly coordinates you always need to join to the assembly table. All the positions
with xxx_start and xxx_end correspond to interval position of MapElement defined in

Barillot’s mapping model. (For schema diagram, see the appendix.)

3.1.2.1 Tables in Ensembl Core Database
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Assembly Tables

Clone table represents one accession number in EMBL/GenBank (accession number

is the embl_acc). The clone_id will link out to other tables.

contig table represents each continuous piece of sequence inside an EMBL/GenBank
accession. For finished clones there is just one contig per clone. For unfinished (draft)
there 1s more than one. The offset of the contig in EMBL/GenBank coordinates is in the

offset column.

The DNA table holds the sequence of the contigs from the contig table, and has a one

to one mapping with it.

chromosome table represents individual chromosome in the human genome.
known_genes, unknown_genes and snps represent the number of each category on this

chromosome.

The assembily table represents the assembly. For each chromosome there is a list of
contigs. The chr_start and chr_end columns indicate where on the chromosome this raw
contig is placed. The contig_start and contig_end columns indicate which part of the contig
is used. The contig_or indicates the orientation of the raw contigs. Each contig is in some
"fingerprint clone contig” and the fingerprint clone contig is identified by field
superctg_name and the position of the specified bit of the contig within its FPC contig is

given by fields superctg_start and superctg_end.

Nearly everything that does something with an assembly (e.g., number of genes on a
chromosome) has to join to the assembly table via the contig_id column from a contig

column.
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Feature tables

Feature tables have undergone major changes between version 8 and 9. There were
four feature tables in version 8, feature, repeat_feature, protein_ feature, and
supporting_feature. In the course of time, the feature table was becoming large and
unwieldy. Some columns in the feature table were becoming redundant for some
analyses. Therefore, in the latest version (version 9), the feature table has been

distributed into the following tables:

Table 3.1.2 Feature Tables of Ensembl Database.

Feature Table Name Content (Stored Analyses)

dna_align_feature Blastn & BlastGenscanDNA

prediction_transcript Genscan, Genefinder & FGenesh

protein_align_feature Blastx & BlastGenscanPep

repeat_consensus TRF & RepeatMasker (via a standalone script)

simple_feature markers (EPCRY), Eponine, tRNAs, CPG islands & GC
content

repeat_feature RepeatMasker & TRF (Tandem Repeat Finder)

protein_feature relevant for BLAST results alignment feature of
transiation.

supporting_feature a linkage table which links a record to its alignment
information stored in one of the *_align_feature tables.

In the new feature tables, contig_id is the contig id this feature is on. contig_start,
contig_end,  contig_strand are self evident. In dna_align_feature and
protein_align_feature tables, hit_start, hit_end are the "hit" coordinates (relevant for
BLAST resuits). In repeat_feature table, repeat_start and repeat_end are for repeats for
the repeat consensus positions. The analysis_id column links to the analysis table that

tells you what program and database wrote in these features. Some tables have unique
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column for derived data calculated from analysis, such as score, p_value (in
prediction_transcript table), perc_ident (percent of sequence that is identical), evalue (in

dna_align_feature and protein_align_feature tables) etc.

The storing of supporting features has been modified to complement the new feature
tables in version 9. In previous releases complete alignment information was stored in the
supporting_feature table. This has been refactored such that alignment information is
now stored in the relevant dna_align_feature and protein_align_feature tables. The
supporting feature has now simply become a linkage table which links a record to its

alignment information stored in one of the xxx_align_feature tables.

gene_description stores feature of gene, mapdensity and karyotype table record

feature of chromosome.
Gene tables

Genes are a set of transcripts, with one-to-many relationships between gene and
transcript. Transcripts have an ordered set of exons. One exon can be in more than one
transcript. Only the exons have positions on the DNA. So exons and transcripts have a

many-to-many relationship, which are mapped by exon_transcript table.

Some exons cross two contigs, (everything is stored relative to contig coordinates);
these exons are called "sticky" exons and then are built up of a series of components
(contig) with the same id but different sticky_ranks. The exon is assembled by
concatenating the exon components in the sticky_rank order. The position here

corresponds to ordered position of MapElement defined in Barillot’s mapping model.
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Each transcript has one translation. In theory two transcripts could have the same
translation, but they do not currently have that. A translation indicates the start
(exon_start_id) and end (exon_end_id) exon of the coding sequence and the relative offset
to the exon of the start codon (seq_starf) and stop codon (seq_end). (The relative offset is
necessary to handle start/stops on sticky exons). genes, transcripts, translations and
exons all have a stable_id which Ensembl attempts to keep stable over assemblies as

separate tables.
Map tables

The FPC Map delivers some information about the current existing clones from

human BAC libraries.

mapfrag table represents a fragment of the regional or genome map. It can be clone,
supercontig, assembly, band and chromosome. One mapfrag can have many DNA

fragments (dnafrag table), for example, assembly contains many raw contigs.

Map sets are sets of related maps. A mapset have many map fragments, with one-

to-many relationship.

mapannotation table and mapannotationtype table store features of map

fragment.
External Link

The xref set of tables provides external links for genes (e.g., HUGO names,
Swissprot ids). There is a many-to-many relationship between external items and
Ensembl items and in each link optionally we have the "strength" of the link. Knowing

this the tables fall out quite normally — object_xref links an Ensembl object to an xref
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object. An xref object has a name and description and comes from an external_db.
There is a synonym table for xrefs. The strength of the link is given by the identity xref
table which links to the auto-generated id in object_xref, which represents each unique

link between an Ensembl object and an xref object.
3.1.2.2 Data modeled in Ensembl

Having understood the schema of Ensembl core database, it is obvious to see that the
most relevant tables to our project are assembly tables. However, understanding the
whole structure is important to grasp the key of the design principle, and to prepare for
further development of data models. Therefore, I summarize, based on core database,

what data are modeled, and what metadata are recorded in the core database on the

conceptual level.
Here, I describe the data from the perspective of different interpretation levels.
The data modeled in Ensembl are:

Contig — It is validated data from DNA sequencing process. It can be considered as the

*“raw data” of Ensembl.

Chromosome — It is also derived data from contig.
Exon — It is derived data from contig.

Transcript — It is derived data from exon.

Gene — It is derived data from transcript.
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3.1.2.3 Metadata modeled in Ensembl

Feature — Ensembl records information about the sequence (contig) as features, which

are stored in a set of feature tables.

Data transformation — Information about transformations of data are stored in analysis

table. Derived data such as evalue, score, p_value are generated from analysis.

Interpretated data — Derived data such as evalue, score, p_value are generated from
analysis.

Data change — Ensembl keeps track of the data changes, without actually changing the
data by version in a set of tables of stable_id (gene_stable_id, transcript_stable id,

translation_stable_id, and exon_stable_id).

Data exchange — Information of external links for genes is stored in a set of xref tables.

3.1.3 SGD:

The SGD is funded by the National Human Genome Research Institute at the US
National Institutes of Health. The SGD is in the Department of Genetics at the School of
Medicine, Stanford University. The Saccharomyces Genome Database (SGD) project
collects information and maintains a database of the molecular biology of the yeast
Saccharomyces cerevisiae. This database includes a variety of genomic and biological
information and is maintained and updated by SGD curators. The software package used
to store the data is Oracle. The table specifications, schema diagrams, and business rules

for the SGD database are provided.

SGD website maintains complete latest schema specification, including the table

specifications, schema diagrams, and business rules for the SGD database. It provides
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more information than Ensembl does, and the well-documented implementation makes it
easier for developer to understand the design concept behind the implementation. What is
even better is that there is a specific set of schema used for storing other fungal

sequences. Since our project is a fungal project, it serves as a closest example.

In the core database, in order to compare SGD and Ensembl, I classify the tables in
the same five categories as in Ensembl, based on their contents: assembly, gene, feature,

map and reference objects.
3.1.3.1 Tables in SGD Fungi Specification

SGD schema contains similar information to those of Ensembl, but they model the
information in different ways, and classify the tables into different categories than that of
Ensembl. To compare these two sets of schema, I classify them into the same categories
as in core database of Ensembl, i.e. the assembly tables and feature tables, gene tables,
map tables and external link tables. (See table 3.1.3), and there are two relevant schema
diagrams in the appendix (B, C), appendix B is the fungi table specification. Schema in
appendix C is obtained from extracting relevant tables from other diagrams, without
indicating the all relationships among the tables, which is however described in the text.
For complete schema, see SGD schema specification at SGD website: http:/genome-

www4 stanford.edu/Saccharomyces/SGD/doc/db_specifications.html.

The mostly relevant category is assemble tables, of which I will demonstrate the

design principle by comparing the schema of Ensembl and SGD (see Figure 3.2).

Assembly Tables
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CONTIG table represents contigs used for sequence assembly. It includes assembly
information represented by PRE_GAP, POST_GAP, CONTIG_ORDER, and SCAFFOLD_NO; it
corresponds to contig table and assembly table in Ensembl. It uses contig order instead
of coordinates (as in Ensembl) to indicate the position of contig in the assembly

(scaffold). It is similar to the way Ensembl handle sticky exons.

The RAW_SEQUENCE table holds the real sequence data of a sequence (e.g. contig,

scaffold), identified by sequence name (7TAB_NAME) and id (PRIMARY_KEY).
The SCAFFOLD (or super-contig) table assembles the contigs in order.

Note that, the contig orientation is not recorded explicitly. As explained by Dr. Kara
Dolinski (personal communication), who is Database Curator at SGD, this is due to the
first set of data that they loaded into the schema. The way that they received the data and
the subsequent display of it required them to do an on-the-fly determination of contig
orientation in their display. In the future, they will likely add a column in the contig table
that indicates its orientation explicitly.

It can be seen from Figure 3.2 that the separation of object and position is observed
in Ensembl schema, representing object with tables, contig, chromosome, and position
with table assembly. However, in SGD, object and position are not always separated,
object and position is represented with one schema CONTIG (both object and position),

which corresponds to contig (object) and assembly (position) in Ensembl.

Feature tables

ALIGNMENT table stores information about an alignment between two features, more

precisely two subsequences of chromosome where the feature belongs. This table
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includes a great amount of information about alignment, e.g. the coordinates of features
(sequences) being aligned, the method that was used to align the sequences (e.g. WU-
BLAST), the matrix used in the analysis. It also stores derived data from the alignment,
e.g. the percent of the sequence that is similar (PCT_SIMILAR). The percent of the sequence
aligned (PCT_ALIGNED) and the percent of the sequence that is identical (PCT_IDENTICAL).
This table together with FEATURE_TYPE corresponds to three tables in Ensembl, i.e.

dna_alignment_feature, protein_align_feature and analysis.
Gene tables

CHROMOSOME stores genetic and physical map information. It is used as

coordinates of features.

FEATURE stores genomic features (e.g. ORF, tRNA etc) in the coordinates relative to

chromosome. It corresponds to the gene table and transcript table in Ensembl.
FEATURE_TYPE stores the type of the feature (e.g. ORF, tRNA, DNA, protein).

SUBFEATURE stores subfeatures associated with features (e.g. introns, exons, etc) in

the coordinates relative to feature. It corresponds to the exon table in Ensembl.
FEATURE_CONTIG links features to contigs in the coordinates of contigs.

Gene is also indicated by genetic locus represented by LOCUS table, which is a genetic

location on chromosome.

GENE_PRODUCT contains gene product information for a locus. It is analogous to

translation table in a sense that translation is a kind of gene product.

Note that, although the names of the tables are all features, they represent the

information of genes, transcripts, exons in Ensembl, and more than that, they also store
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information of intron. protein, tRNA that are modeled in different tables in Ensembl (not

specified here).

I would like to draw attention on that chromosome is not directly involved in
assembly process, but the feature tables. To get any chromosome information related to

scaffold or contig, the FEATURE table, FEATURE_CONTIG table have to be joined.
Map tables

SGD now offers a Combined Physical and Genetic Map for each chromosome that is

generated from the most current genetic and physical map data in SGD.

Genetic map of genome is built up from genetic two-point mapping. CHROMOSOME
serves as a coordinate system for locus represented by LOCUS table. There are many loci

on one chromosome.

TWO_POINT table contains two point mapping data between the locus and a marker
on the same chromosome. A mapset may have many map fragments, with one-to-many

relationship.

SGD provides an on-the-fly generated physical map that includes the locations of
ATCC clones, ORFs and other sequence features. Again, CHROMOSOME serves as a

coordinate system for clones represented by the CLONE table.

The reason both genetic map and physical map can be built for Saccharomyces
cerevisiae, and only physical map (FPC Map) is built for human in Ensembl is that cross
between different strains can be easily done in yeast, as well as other low level
organisms. However, it is impractical (impossible) in human, so different methodologies

are adopted to obtain the map.
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External link
Two tables provide external links in other databases.

EXTERNAL_ID contains all external IDs (e.g., PIR, Swiss-Prot) for various

components in the database.

Table 3.1.3 Comparison of Ensembl schema and SGD schema.

For schema detail, see the schema diagram in appendix.

Table Ensembi SGD
Category

Assembly | clone, contig, dna, chromosome, assembly =~ CONTIG, SCAFFOLD, RAW_SEQUENCE

Feature dna_align_feature, protein_align_feature, ALIGNMENT, FEATURE_TYPE
prediction_transcript, repeat_consensus,

simple_feature, repeat_feature,

protein_feature, supporting_feature, analysis

mapdensity, karyotype.

Gene gene, transcript, exon, translations, CHROMOSOME, FEATURE,
gene_descrion, gene._stable_i, e BT r

transcript_stable_id, exon_stable_id,

transiation_stable_id,

Map mapfrag, dnafrag, mapfrag_mapset, mapset, CHROMOSOME, TWO_POINT, CLONE

mapannotation, mapannotationtype

External xref, identity_xref, object_xref, external_db, =~ EXTERNAL_ID, TEMPLATE_URL, EI_TU,
Link external_synonym EXPRESSION_CONNECTION

TEMPLATE_URL contains template URLs used to link to specific entries in other

databases.
EI_TU table links table between EXTERNAL_ID and TEMPLATE_URL tables

There is no counterpart of object_xref which links Ensembl items to external items,
and each link is used directly by the SGD component, for example,
EXPRESSION_CONNECTION table has a column WEBSITE_URL linking to external URL for

the expression dataset through tables TEMPLATE_URL, EI_TU, and EXTERNAL_ID.
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3.1.3.2 Data modeled in SGD

Once again, the most relevant tables to our project are assembly tables. From the
comparison between schema of Ensembl and SGD, I have shown that SGD modeled

almost the same data (in conceptual level) as that in Ensembl.
The data modeled in Ensembl are:

Contig — It is validated data from DNA sequencing process. It can be considered as the

“raw data” of SGD.
Scaffold — It is also derived data from contig.
Chromosome — It stores current information about chromosome.

Feature — It is mixture of derived data (subregion on chromosome) and metadata of the

data (features).

Subfeature — It is derived data from feature, and also mixed with metadata of the data

(features of the subsequence).
3.1.3.3 Metadata Modeled in SGD

Feature — SGD records information about the sequence (contig, chromosome) as

features, which are stored in a set of feature tables.

Data transformation — Some information about transformations of data such as data
related to alignment are stored in the ALIGNMENT table. However, they are not as

complete as what is modeled in the analysis table in Ensembl.

Interpretated data — Derived data such as evalue, score, pvalue are generated from

analysis, such as score in SCORE table, some data (e.g. PCT_SIMILAR) in table ALIGNMENT.
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Data change — SGD keeps track of the data changes, without actually changing the data
by version in FEATURE table, CHROMOSOME table, but no tables are dedicated to this

purpose like in Ensembl (stable_id tables)

Data exchange — Information of external links for genes is modeled in EXTERNAL_ID

and TEMPLATE_URL tables, and referred by tables in SGD.
3.1.4 DAS

DAS (Distributed Annotation System) decentralizes sequence annotation among
multiple third-party annotators and allows client-side software to integrate annotation on
an as-needed basis. A single server is designated the "reference server." It serves essential
structural information about the genome, for example, the physical map, which relates
one entry to another (where an "entry” is an arbitrary segment of the sequence, such as a
sequenced BAC or a contig), the DNA sequence for each entry, and the standard

authorship information. Multiple sites then act as third-party "annotation servers".

The distinction should be emphasized between annotation and curation. Annotation
is extraction, definition, and interpretation of features on the genome sequence derived by
integrating computational tools and biological knowledge. Curation is exploration of
genomic annotations at many levels of detail, validation of annotations; expert curation is
usually performed by researchers. DAS is making an internet wide distributed annotation
framework to facilitate comparison among different centers' annotations, no attempt is
made to automatically resolve contradictions between different third-party annotations
which is the task of curation. At Ensembl, DAS servers are currently running for
annotation. The on-going Apollo Project is aiming to solve the "genomic curation editor"”

problem. This is not the same in any way as the DAS project.
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Inspired by the design of the reference server, I adopted the DAS style for data
modeling of our project, where the assembly sequence can be designated as a
“reference”, corresponding to “reference server”, and multiple sequences (reads) are
stored in coordinates of the reference, which are analogy to third-party "annotation

servers."

3.2 Conceptual Models

The conceptual model is modeled in UML (Figure. 3.3). In UML class diagrams,
classes are drawn in rectangles, with the name of the class at the top, and optionally with
the attributes and operations of the class shown below. Relationships between objects are

represented by lines connecting the objects.

chromatogram: It is an object category, which satisfies Requirement 1. The attributes

are described below:
id -- identity of chromatogram data.
name -- the name of the chromatogram (sometimes it is given nick name).

organism -- the organism it belongs, it is kept for the purpose of future sequence analysis,

such as comparison of sequences among different species.

chromatogram_seq — the binary chromatogram data of the sequence, this is the raw data
that was often thrown away before, it was realized vital later on when raw data are

required to trace the transformation of data.

primer_id -- the primer used for sequencing experiment, it, as well as dye, chemistry and

machine are necessary for subsequent steps of sequence quality control and assembly.
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dye — the dye used dye -- the dye used for sequencing experiment, see primer_id.
chemistry - the chemistry used for sequencing experiment, see primer_id.
machine -- the sequencing machine used for sequencing experiment, see primer_id.

read: It is an object category, which satisfies Requirement 2, 6. The attributes are

described below:
id -- identity of read sequence.
name -- the name of the read (sometimes it is given nick name).

organism -- the organism it belongs, it is kept for the purpose of future sequence analysis,

such as comparison of sequences among different species.
length -- the length of the sequence.

analysis_id — analysis performed to get this read, for example, in our pipeline, base calling

is performed by a software program phred.
experiment_id — the wet lab experiment performed to obtain the data.
chromatogram_id — the chromatogram data corresponding to the read.

dna_seq — the ASCII sequence data generated by base calling. The possible values are A,
T, C, G, X, and N. This is the most original human readable sequence data, which is used

most often by scientists.

dna_quality_seq - the quantitative quality of each base call. It is important for the

following steps of sequence assembly.

analysis: It is an object category, which satisfies Requirement 7. The attributes are

described below:
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id — identity of the analysis.
name -- the name of the analysis (sometimes it is given nick name).
program — the software program which performs the analysis.

program_version — the version of the software program. The software program usually
evolves with time, the functionalities and feature usually are not the same between

different version, so keep this information will assure the proper use of the program.
program_file — the program as well as the user manual of the program.

parameters — usually program allows user to set up parameter values according to special

situation. The values of those parameters are important for explaining the result.

description — general information of the analysis, which are not included in other

attributes.

experiment: It is an object category, which is used to fulfill Requirement 8. The

attributes are described below:
id - identity of the experiment.

date_created — the date the experiment is performed, web lab scientists usually keep lab
notebooks daily. Therefore it is important information when it is necessary to trace back

to wet lab experiment performed to generate the sequence data.
place — the place where the experiment is performed.
creator — the person who performed the experiment.

trimmed_read: It is an object category, which satisfies Requirement 3, 6. The attributes

are described below:
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id -- identity of trimmed_read sequence.
name -- the name of the trimmed_read (sometimes it is given nick name).

organism -- the organism it belongs, it is kept for the purpose of future sequence analysis,

such as comparison of sequences among different species.
length -- the length of the sequence.
seq_vector_id — the vector that should be trimmed from read to get trimmed _read.

analysis_id — analysis performed to get this trimmed_read, for example, in our pipeline,

trimming is performed by a software program Lucy.
read_id — the read data corresponding to the trimmed_read.

dna_seq — the ASCII sequence data generated by base calling. The possible values are A,
T, C, G, X, and N. This is the most original human readable sequence data, which is used

most often by scientists.
dna_quality_seq — the quantitative quality of each base after trimming.

precontig: This object category describes the contig sequence assembled from trimmed

sequence data, which satisfies Requirement 4, 6. The attributes are described below:
id -- identity of precontig sequence.

name -- the name of the precontig (sometimes it is given nick name).

organism -- the organism it belongs.

length -- the length of the sequence.

version -- the version of the precontig. Assembly sometimes are performed many times, it

is important to keep all the data.
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analysis_id — analysis performed to get this precontig, for example, in our pipeline,
assembly is performed by a software program phrap and crossmatch.

read_id — the read data corresponding to the trimmed _read.

list_of_trimmed_reads — the list of trimmed_reads assembled in the precontig, and

information about how they are assembled.

contig: This object category describes the final edited contig sequence, which satisfies

Requirement 5. 6. The attributes are described below:

id -- identity of contig sequence.

name -- the name of the contig (sometimes it is given nick name).
organism -- the organism it belongs.

length -- the length of the sequence.

version - the version of the contig. Assembly sometimes are performed many times, it is

important to keep all the data.

analysis_id — analysis performed to get this contig, for example, in our pipeline, assembly

is performed by a software program consed.
editor -- the person who edited the assembly manually.

concensus_seq -- the assembled sequence data in ASCII text. It is the sequence for further

analysis.

concensus__quality_seq — the quality of assembled sequence data. It is necessary when

scientists interpret data analysis results.
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list_of_trimmed_reads — the list of trimmed_reads assembled in the contig, and information

about how they are assembled.

seq_vector: This object category describes sequence vector used for removing vector in
raw sequence to get trimmed sequence, which satisfies Requirement 8. Vectors are used
during sequencing, and the vector may contaminate the reads, and it should be trimmed
out of the read. Since as a sequence itself, it has its own properties, and it is not the
sequence data that eventually we need, it is better to define an object category separately

from trimmed sequence data as defined next. The attributes are described below:
id -- identity of sequence vector.
name -- the name of the contig (sometimes it is given nick name).

version - the version of the vector. Sometimes, scientists use the same kind of vectors,
but may not be exactly the same vector, so information about producing the vector should

be recorded.

vector_seq - the sequence of the vector in ASCII text.
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Figure 3.3 Conccptual model of Pipeline 1.
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3.3 MySQL Schemas

I implemented the conceptual model using the relational database MySQL. Each
conceptual object in conceptual model is represented by one or more entities in the
relational schema (see table 3.3.1). The arrow in the diagram connecting entities
describes the foreign key, with the head of the arrow pointing to the entity being
referenced. I adopted the naming convention similar to that of Ensembl, which ncarly
always has an integer primary key (often auto-generated) named as table_name_id.
Wherever there is a column in another table referring to this table it gets the same column
name (e.g., read_id in timmed_read points to the read table). The schematic overview of
the schema is shown in Figure. 3.4. The Schema Diagram for relational data model is
modeled using Rational Rose. Only one-to-many relationships are represented, others are
all one-to-one relationships. Each schema is explained in detail, and the tables are in

Appendix C.

Table 3.3.1: object of conceptual model versus relational schema

Object of Conceptual model Relational schema
chromatogram chromatogram
read read, dna, dna_gquality
analysis analysis
experiment experiment
trimmed_read trimmed_read, dna, dna_quality
seq_vector seq_vector
precontig precontig, autoassembly
contig contig, assembly, dna, dna_quality,
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The object category chromatogram in conceptual model maps to the data in
chromatogram table. The type used is mediumblob, one of the blob types. A BLOB is a
binary large object that can hold a variable amount of data. The only difference between
BLOB and TEXT types is that sorting and comparison is performed in case-sensitive
fashion for BLOB values and case-insensitive fashion for TEXT values. In other words, a
TEXT is a case-insensitive BLOB. In Ensembl, the type of sequence data is mediumtext,
so here I assume mediumblob is big enough to accommodate the binary data of
chromatogram.

The object category read in conceptual model maps to tables read, dna,
dna_quality in relational schema. DNA data is usually stored separately in database, so
should DNA quality data. The dna_guality_id in table read can also be obtained by joining
tables dna and dna_quality. However, assuming that dna_quality will be selected

frequently. it is put here to reduce cost of joining.

The object category trimmed_read in conceptual model maps to tables
trimmed_read, dna, dna_quality in reiational schema. The dna_quality_id in table
trimmed_read is put here for the same reason as in table read.

The object category precontig in conceptual model maps to tables precontig,
autoassembly in relational schema. The data in precontig table defines first attempt of
assembling trimmed reads to contigs. Table autoassembly stored information of
assembly, corresponding to the attribute list_of_timmed_reads of object precontig in
conceptual model. Each row represents a trimmed read (fimmed_read_id, foreign key
from trimmed_read table) at least part of which is present in the preassembly. The part

of the trimmed_read that is in the path is delimited by columns trimmed_start and
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timmed_read_end (start < end), and the absolute position within the autoassembly
(precontig_id) is given by precontig_start and precontig_end. The purpose of it is to store
intermediate assembly information generated by automated software, since the DNA
sequence of the final contig will be stored in the database explicitly, storing one-to-one
corresponding DNA sequence for precontig will be redundant, the DNA sequence of
precontig can be obtained by joining tables precontig, autoassembly, trimmed_read
and dna.

The object category contig in conceptual model maps to tables contig, assembly,
dna and dna_quality in relational schema. The data in contig table defines assembly
edited by people. It is ready for sequence analysis. Consensus sequence is the sequence of
the final assembled contig. The data in assembly table defines the final assembly
sequence either automatically assembled by software or manually edited by human.
Similarly, each row represents a trimmed read (fimmed_read_id, foreign key from
trimmed_read table) at least part of which is present in assembly. The part of the
timmed_read that is in the path is delimited by columns trimmed_start and
timmed_read_end (start < end), and the absolute position within the assembly (contig_id) is

given by contig_start and contig_end.

No matter whether the contig was edited by people, it is convenient to store the
sequence instead of getting the sequence data on-the-fly by joining tables contig,
autoassembly, trimmed_read, and dna, since it is the starting point for sequence
analysis. The dna_quality_id is put here for the same reason as in Table read.

The dna table holds the sequence of the reads, trimmed reads, contig, super_contig

from corresponding table. The type used for sequence is mediumtext, one of the TEXT
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types. In Ensembl, the type of sequence data is mediumtext, so I adopt the same type
here. dna_quality_id is put here for easy tracking of dna_quality. The dna_quality id can
also be obtained by joining table dna, and corresponding tables (e.g. trimmed read,

contig).

The dna_quality table holds the sequence quality of the reads, trimmed reads,
contig, super contig from corresponding tables. The type used for sequence is
mediumtext, same as the type for sequence, and the length of the data should be the same

as the length of corresponding dna data.

The object category experiment in conceptual model maps to table experiment in

relational schema.

The object category analysis in conceptual model maps to table analysis in

relational schema.

The object category seq_vector in conceptual model maps to table seq_vector in
relational schema. It holds the vector sequence that is used in the sequencing process,

which is used in the trimming procedure.

For all tables, attributes dafe_created and creator are either added (such as
chromatogram) or can be obtained by joining tables (such as joining read and dna),

which records the date the data is entered into database.
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Chapter 4

Conclusion

[ reviewed the standards, best practices and trends in Bioinformatics. Considering the
degree of relevance to our project, I decided to use the conceptual model of mapping
(Barrilot er al.), Ensembl, SGD, DAS and as main references for data modeling and
implementation for the sequencing quality control and assembly pipeline for the
genomics project with Aspergillus niger at Concordia University. From the conceptual
model of mapping, I adopted the idea of separation of object and location in sequence
assembly processes. Ensembl uses MySQL for implementation, hence I implemented the
data model in MySQL, I adopted its data type, naming convention. Ensembl also has
advantages of using DAS for data distribution, complying with conceptual modeling of
mapping, and using CVS to keep track of schema update. SGD is database of yeast, i.e.
fungus, therefore, provides an example for data modeling in the context of fungus. DAS
decentralizes sequence annotation among multiple third-party annotators and allows
client-side software to integrate annotation on an as-needed basis. I adopted the idea for
implementation of data modeling; designate assembly sequence as reference sequence,

and reads as “annotation sequence”.
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Data modeling is the design process, which needs testing and refining in later stage.
The future work generated from this work is to test the databases built using this data
model and refine the model. At the implementation level, Ensembl is again a good
reference to look at. Ensembl effectively passes all the low-level bioinformatics stuff,
essentially sequences, translations and flat file writing, to Bioperl. One of the most useful
things which the Bioperl layer provides is the ability to write sequence objects to flat

files, such as fasta format flat file, EMBL and GenBank flat files.

Our future work should include writing perl script using bioperl to automatically
exchange data between flat file and database, develop XML schema for future data
exchange, develop an object data model in ODL and a complete glossary, implement

DAS system for future data integration.

Based on the influence of others and my own experience, I have summarized a set of

guidelines of data modeling in Bioinformatics.

1. Set up clearly short-term and long-term goals and analyze current scientific

requirements, and potential requirements in the future.

2. Develop object-oriented conceptual models, but implement using relational

database technology.
3. Use versioning of data, do not modify data.

4. Record metadata, including quality data, confidence of the data, metadata on
transformations used to manipulate, analyze and interpret data, all the
information necessary so that the process of interpretation of data can be re-

generated.
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5. Follow the available standards, and refer to best practices.

6. Plan for data integration and interchange; adopt distribution annotation system

(DAS), XML and Ontology.

7. Use controlled vocabulary when no ontology is available, and prepare for the

semantic web.

The guidelines serves as a review for the current status of data modeling in
bioinformatics, it should evolve as new technology emerges and new standards form. I
hope these guidelines will help others grasp what is going on in this field, and be able to
focus on the design of data model for bioinformatics project. It certainly can be applied in

data modeling of pipeline 2 and 3 or the genomic project at Concordia University.
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APPENDIX

Appendix A1l Schema Diagram 1 of Ensembl (9.30.1)
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APPENDIX

Appendix A2 Schema Diagram 2 of Ensembl (9.30.1)
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APPENDIX

Appendix B1 Schema Diagram 1 of SGD (Dec.2002)
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APPENDIX

Appendix B2 Schema Diagram 2 of SGD (Dec.2002)
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APPENDIX

Appendix C Schema Diagram of Pipeline 1

By
i

name varchar(40) not null
organism varchar(40) not null
primer_id varchar(40)
dye varchar(40)
chemistry varchar(40)
sequencing_machine varchar(40)

chromatogram_seq mediumblob not nuil
creator varchar(40) not null

date_created datetime not null

t( ) unsigned not null

PRIMARY chromatogram_id ;
file_name name ;
read read_id ;

Assigned unique identifier for
chromatogram; auto increment

file name of the chromatogram

The organism belonging to the
chromatogram.

primer used for sequencing
dye used for sequencing
chemistry used for sequencing

sequencing machine used for
sequencing

Person who entered the record into
the database.

Date the record was entered into
database
s DOk

UNIQUE

YDOIEND,

read_id o

name varchar(40) not nulil
organism varchar(40) not nuil
length int(10) not null
analysis_id int(10) unsigned not null

experiment_id int(10) unsigned not nuli

chromatogram_id int(10) unsigned not nuli

dna_id int(10) unsigned not nuill
dna_quality_id int(10) unsigned not null
e DA O e
PRIMARY read_id ;

file_name name ;

chromatogram chromatogram_id;

dna dna_id;

77

nt(1) unsigned not nuil

increment

file name of the read

The organism belonging to the read.
The length of the read in nucleotides.

FK:analysis:analysis_id
FK:experiment:experiment_id
FK:chromatogram:chromatogram_id

FK:dna:dna_id
FK:dna_quality:dna_quality_id

UNIQUE



YOI

in unique identifier for

trimmed_read_id int(10) unsigned not null

trimmed_read; auto increment
Name varchar(40) not nuil file name of the trimmed_read
Organism varchar(40) not null The organism belonging to the
trimmed_read.
length int(10) unsigned not null The length of the read in nucleotides.
seq_vector_id int(10) unsigned not nuil FK:seq_vector:seq_vector_id
analysis_id int(10) unsigned not null FK:analysis:analysis_id
read_id int(10) unsigned not null FK:read:read_id
dna_id int(10) unsigned not null FK:dna:dna_id

FK:dna_quality:dna_quality_id

-
R T

dna_quality_id gned not null

PRIMARY UNIQUE
file_name name ; -
read read_id ; -
dna dna_id ; -

o>

eng_id

Asigd unique identifier for precontig;

3t .

int(1 ) unigned not nuit

auto increment

name varchar(40) not null file name of the precontig

length int(10) not null The length of the read in nucleotides.

version int(10) not null version of the precontig

analysis_id int(10) unsigned not nuil FK:analysis:analysis_id

creator varchar(40) not nult Person who entered the record into the
database.

date_created datetime not null Date the record was entered into
database

PRIMARY precontig_id ; UNIQUE

file_name name ; -
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preg_id mt(10) unsngned not null lgned unique ldentlﬁer for precontig;

auto increment
precontig_start int(10) not null start of timmed_read in the coordinates
relative to the precontig
precontig_end int(10) not null end of trimmed_read in the coordinates
relative to the precontig
trimmed_read_id int(10) unsigned not null  FK:trimmed_read:trimmed_read_id
timmed_read_start int(10) not nuil start of timmed_read in the preassembly
trimmed_read_end int(10) not null end of trimmed_read in the preassembly

read onentatnon lnt(10) not null the onentatuon of tnmmed read

PRIMARY  himmed. read id : UNIQUE

contigd | 1nt(10) unsugned not nuII Assngned umque |dent|ﬁer for contig;

auto increment
Name varchar(40) not null file name of the contig
Organism varchar(40) not null the organism the contig is used.
Length int(10) not nuli The length of the read in nucleotides.
Version int(10) not nuil version of the contig
analysis_id int(10) unsigned not null FK:analysis:analysis_id
dna_id mediumtxt not null FK:dna:dna_id, concensus dna
dna_quality_id mediumtxt not null FK:dna_quality:dna_quality_id;

concensus dna quallty

BEWNAMOGEETE

PRIMARY contig_id ; " UNIQUE

file_name name ; -
consensus consensus_id ; -
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ntigid |nt(1 0) unsugned not null Ass:ed unlque ldentlﬁer for contlg,

auto increment

contig_start int(10) not nul! start of trimmed_read in the coordinates
relative to the contig

contig_end int(10) not null end of trimmed_read in the coordinates
relative to the contig

trimmed_read_id int(10) unsigned not nuli FK:trimmed_read:trimmed_read_id

timmed_read_start int(10) not null start of trimmed_read in the preassembly

trimmed_read_end int(10) not nuil end of timmed_read in the preassembly

read_orientation int(10) not null the orientation of timmed read

creator varchar(40) not nuil Person who entered the record into the
database.

date_created datetime not null Date the record was entered into the
database.

L e T R

PRIMARY tnmmed read id ; UNIQUE

contig_id contig_id, contig_start ; -

dna_id lnt(1 0) unS|gned not null As&gned umque |dent|f ier for read;

auto increment

dna_type enum(“read”, “trimmed_read”, Type of dna

“contig_consensus”)

dna_quality_id int(10) unsigned not nuli FK:dna_quality:dna_quality_id

sequence mediumtext not nuil The actual sequence of data

creator varchar(40) not null Person who entered the record into
the database.

date_created datetime not null Date the record was entered into the

database

PRIMARY  dna_id: C UNIQUE
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na quallty id int(10) unsigned not nuil Asignd unique identifier for read;

auto increment
dna_type enum(“read”, “trimmed_read”, type of dna
“contig_consensus”)

sequence quallty medlumtext not null the actual quahty of sequence

PRIMARY dna_ld S UNIQUE

expenment ld mt(10) unsngned not null igned nique identifier fo

feature; auto increment
place varchar(40) not null place the experiment is performed.
experimenter varchar(40) not null people who did the experiment.
protocol mediumtext not nuil description of the experimental
protocol of producing the data.

date _performed datetime not null date the expenment was performed.

PRIMARY experiment_id : UNIQUE

analsis_id ' |nt(10) un5|gned not null As&gned umque ldentlﬁer for

analysis; auto increment
logic_name varchar(40) not null name of the analysis.
program varchar(80) not nul program for the analysis
program_version varchar(40) not null version of the program
program_file varchar(80) not null program file
parameters varchar(80) not null parameters of the program
description mediumtext not null description of the program, such as
source, feature etc.
date_created datetime not null date the record was entered into

database

PRIMARY T analysis id ; ~ UNIQUE
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seq_vector_id int(10) unsigned not null
seq_vector_id; auto increment

name varchar(40) not null name of the vector

version int(10) not null version of the vector

sequence mediumtext not null sequence of the vector

description mediumtext not null description of the vector, the use of
the vector in the sequencing process.

date_created datetime not nuil date the record was entered into

database

IR
Sally

Kewnamokn

PRIMARY "~ seq_vector id UNIQUE
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GLOSSARY

Glossary

2_point_data
This refers to data generated by tetrad analysis of a cross in which the segregation of
2 genetic markers is followed. This data yields the distance between the 2 markers

(usually mutant alleles of genes) on the genetic map.

AceDB

AceDB was the database software used by SGD. However, currently SGD has

moved over to ORACLE relational database and is not using AceDB any more.

Alignment

The process of lining up two or more sequences to achieve maximal levels of
identity (and conservation, in the case of amino acid sequences) for the purpose of
assessing the degree of similarity and the possibility of homology. For example,
SCD25 protein sequence can be aligned with Chain S, Complex Of Human H-Ras

With Human Sos-1.

Annotation

A combination of comments, notations, references, and citations, either in free
format or utilizing a controlled vocabulary, that together describes all the
experimental and inferred information about a gene or protein. Annotations can also
be applied to the description of other biological systems. Batch, automated

annotation of bulk biological sequence is one of the key uses of Bioinformatics tools.

Attribute
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GLOSSARY

An attribute is any detail that serves to identify, qualify, classify, quantify, or
otherwise express the state of an entity occurrence or a relationship. Attributes are

specific pieces of information which need to be known or held.

BAC clone

Bacterial artificial chromosome vector carrying a genomic DNA insert, typically
100-200 kb. Most of the large-insert clones sequenced in the project were BAC
clones.

BLAST

A set of programs, used to perform fast similarity searches. Nucleotide sequences
can be compared with nucleotide sequences in a database using BLASTN, for
example. Complex statistics are applied to judge the significance of each match.
Reported sequences may be homologous to, or related to the query sequence. The
BLASTP program is used to search a protein database for a match against a query

protein sequence. There are several other flavors of BLAST.

cDNA

Complementary DNA. It is a DNA molecule made by copying RNA with reverse

transcriptase; usually abbreviated cD NA.

Chromosome

A linear end-to-end arrangement of genes and other DNA, sometimes with

associated protein and RNA.

Conceptual Data Model (CDM)
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GLOSSARY

A CDM represents the overall logical structure of a database, which is independent
of any software or data storage structure. A conceptual model often contains data
objects not yet implemented in the physical databases. It gives a formal

representation of the data needed to run an enterprise or a business activity.

Consensus Sequence

A single sequence delineated from an alignment of multiple constituent sequences
that represents a "best fit" for all those sequences. A "voting" or other selection
procedure is used to determine which residue (nucleotide or amino acid) is placed at
a given position in the event that not all of the constituent sequences have the
identical residue at that position. For example, for one position, three methods
suggest it would be alpha helix, and one method suggests it would be coil, by

consensus, it should be alpha helix.

Contig

A length of contiguous sequence assembled from partial, overlapping sequences,
generated from a "shotgun" sequencing project. Contigs are typically created
computationally, by comparing the overlapping ends of several sequencing reads
generated by restriction enzyme digestion of a segment of genomic DNA. The
creation of contigs in the presence of sequencing errors, ambiguities and the presence
of repeats is one of the most computationally challenging aspects of the role of

Bioinformatics in genome analysis.
Curation

The process of collecting and compiling data about DNA sequences.
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DDBJ

DNA Bank of Japan. DDBJ has been functioning as one of the International DNA
Databases, including EBI (European Bioinformatics Institute; responsible for the
EMBL database) in Europe and NCBI (National Center for Biotechnology
Information; responsible for GenBank database) in the USA as the two other

members.
DNA (deoxyribonucleic acid)

The chemical that forms the basis of the genetic material in virtually all organisms.
DNA is composed of the four nitrogenous bases Adenine, Cytosine, Guanine, and
Thymine, which are covalently bonded to a backbone of deoxyribose-phosphate to
form a DNA strand. Two complementary strands (where all Gs pair with Cs and As
with Ts) form a double helical structure which is held together by hydrogen bonding

between the cognate bases.
DNA microarrays

The deposition of oligonucleotides or cDNAs onto an inert substrate such as glass or
silicon. Thousands of molecules may be organized spatially into a high-density
matrix. These DNA chips may be probed to allow expression monitoring of many
thousands of genes simultaneously. Uses include study of polymorphisms in genes,

de novo sequencing or molecular diagnosis of disease.
Domain (protein)

A region of special biological interest within a single protein sequence. However, a

domain may also be defined as a region within the three-dimensional structure of a
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protein that may encompass regions of several distinct protein sequences that
accomplishes a specific function. A domain class is a group of domains that share a
common set of well-defined properties or characteristics. For example, beta-Grasp

domain and an OB-fold domain.
Element dimensions

The physical dimensions of each features
EMBL

European Molecular Biology Labs. The EMBL Nucleotide Sequence database is a
comprehensive database of DNA and RNA sequences. The database is produced in

collaboration with GenBank and the DNA Database of Japan (DDBYJ).
Ensembl Genes/cDNAs/Peptides

The "Ensembl Genes/transcripts/peptides” have been predicted by the Ensembl gene
prediction pipeline. They are referred to as "Ensembl predicted
genes/cDNAs/peptides”  (sometimes  called also "Ensembl confirmed
genes/cDNAs/peptides”). The set consists of "kmown genes" and "novel genes".
"Known genes" are the ones for which there is near-full-length cDNA and/or protein
sequence already available in the public sequence databases, and Ensembl has been
able to assign an established gene symbol or other identifier. "Novel genes" are
predicted on the basis of identity to ESTs and/or similarity to protein sequences - all
Ensembl predicted genes are supported by evidence - but no established identifier

can reliably be assigned.

Entity
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An entity is a thing or object of significance to the business, whether real or
imagined, about which the business must collect and maintain data, or about which
information needs to be known or held. An entity may be a tangible or real object
like a person or a building; it may be an activity like an appointment or an operation;

it may be conceptual as in a cost center or an organizational unit.
Entity Relationship Diagrams

An ERD is a pictorial representation of the entities and the relationships between
them. It allows the participants in the meeting to easily see the information structure
of the application. Later, the project team uses the ERD to design the database and

tables.
Entrez

The Entrez Search System was developed by NCBI. Entrez allows you to retrieve
molecular biology data and bibliographic citations from integrated nucleotide
(GenBank, DDBJ, EMBL), protein (Swiss-Prot, PIR, PRF, PDB), and bioliographic
(PubMed) databases. Within SGD database pages, external links are provided to one

or more of these databases.
Enzyme

A class of proteins that are capable of catalyzing chemical reactions (the making or
breaking of chemical bonds). They do so by orienting their substrates into a suitable
geometry in a particular location (the active site) where electrophilic or nucleophilic
amino acid residues can participate in the reaction. Enzymes are protein catalyst that

speeds up chemical reactions that would otherwise be prohibitively slow under
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physiological conditions. For example, alcohol dehydrogenase, glucuronolactone
reductase.

EST (expressed sequence tag)
Brief pieces of unique sequences that are transcribed. These serve as markers along
the genome

FASTA

Program used to search simultaneously both protein and DNA sequence databases
(Pearson and Lipman, 1988). FASTA uses a fast search to initially identify
sequences with a high degree of similarity to the query sequence and then conducts a
second comparison on the selected sequences. FASTA is slower than BLAST, but is

more sensitive/sometimes yields different results.
Fingerprint clone contigs

Contigs produced by joining clones inferred to overlap on the basis of their

restriction digest fingerprints.
Foreign Key

Column or combination of columns whose values are required to match a primary

key in some other table.
FPC

Fingerprint clone. Every clone is digested and its fragment sizes are compared with
other clones. Clones with equally sized fragments are considered to cover

overlapping regions of the genome DNA. This neighbouring information is used to
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build contigs of clones. From these contigs, minimum tiling paths of clones are

selected for sequencing.
GenBank

GenBank is the DNA sequence database sponsored by the US National Institutes of
Health. GenBank is produced in collaboration with EMBL and DDBJ. There is also a
searchable DNA sequence database maintained by SGD (Yeast GenBank) that
contains the subset of DNA sequences submitted to GenBank that have been derived
from S. cerevisiae DNA. It includes results of the systematic sequencing as well as

results from individual laboratories
Gene expression

The conversion of information from gene to protein via transcription and translation.
Gene Expression Measurements

Distinguish among three sets of data processing: image (raw data), image analysis

and quantification, gene expression data matrix (normalized and summarized data).

Gene families

Subsets of genes containing homologous sequences which usually correlate with a

common function. For example, alpha actinin family, cytokine family.

Genetic map

A genome map in which polymorphic loci are positioned relative to one another on
the basis of the frequency with which they recombine during meiosis. The unit of

distance is centimorgans (cM), denoting a 1% chance of recombination.
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Genome

The complete genetic content of an organism: For example, human genome, C.

elegans genome.
Genomic DNA (sequence)

DNA sequence typically obtained from mammalian or other higher-order species,
which includes both intron and exon sequence (coding sequence), as well as non-

coding regulatory sequences such as promoter, and enhancer sequences.
Genomics

The analysis of the entire genome of a chosen organism
Genscan Genes/cDNAs/Peptides

The "Genscan Genes/cDNAs/Peptides are solely based on predictions from the
Genscan gene prediction program.
Hybridization protocol

Documentation of the set of steps taken in the hybridization, including: solution (e.g.
concentration of solutes); blocking agent and concentration used; wash procedure;
quantity of labeled target used; time; concentration; volume, temperature, and

description of the hybridization instruments

Homology

Two or more biological species, systems or molecules that share a common
evolutionary ancestor. (general) Two or more gene or protein sequences that share a

significant degree of similarity, typically measured by the amount of identity (in the
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case of DNA), or conservative replacements (in the case of protein), that they
register along their lengths. Sequence "homology" searches are typically performed
with a query DNA or protein sequence to identify known genes or gene products that
share significant similarity and hence might inform on the ancestry, heritage and
possible function of the query gene. For example, the clk-1 of C. elegans and

Coq7/Cat5 has homology.

IDL:
Interface definition language.

Karyotype:
A karyotype shows the metaphase chromosomes of an individual cell, arranged in
pairs and sorted according to size. There are 22 pairs of autosomal (non-sex)
chromosomes and a pair of sex chromosomes (labeled "X" and "Y" in the picture).
Many human disorders and malformations are a direct result of missing, broken, or

extra chromosomes. In a karyotype, scientists called cytogeneticists can recognize

and identify many of these large chromosomal abnormalities.
Library

A large collection of cloning vectors containing a complete (or nearly complete) set

of fragments of the genome of an organism
Locus

A "locus" most often is a gene, characterized by a mutant phenotype or by a DNA

sequence, which has been either genetically mapped or otherwise localized (e.g. by
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DNA sequence comparison or hybridization) to a particular spot in the genome. A

locus may also be a DNA sequence feature such as a centromere.

Many-to-many relationship

In a many-to-many relationship, multiple occurrences of one entity are related to one
occurrence of another, and vice versa. Many-to-many relationships cannot be

directly converted into database tables and relationships.

Map

If a locus has been genetically mapped, the "ORF Map" and "Genetic position" under
the Sequence Coordinates section of the locus page will display details of the
locus/feature. The Roman numeral to the right of "Map" indicates the chromosome
to which the locus maps. The number to the right of "Genetic Position" indicates the
map position of the locus (in centimorgans) from the centromere, where negative
numbers indicate distances to the left of the centromere (the left arm) and positive

numbers correspond to right arm distances.

Mapping_data
This displays links to all of the 2-point cross tetrad data where the locus was used as
one of the markers.

Meta data:

Meta data in EBI is retrieval of valid controlled vocabulary values used in the EBI
databases. For IDL  http://corba.ebi.ac.uk/id/meta.txt, and doc, see

http://corba.ebi.ac.uk/idl/doc/meta.html

Metadata
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Metadata or "data about data" describe the content, quality, condition, and other
characteristics of data. For instance, a table in a database could have a lengthy

business description. The description is metadata about the data in the database.
Motif

A conserved element of a protein sequence alignment that usually correlates with a
particular function. Motifs are generated from a local multiple protein sequence
alignment corresponding to a region whose function or structure is known. It is
sufficient that it is conserved. and is hence likely to be predictive of any subsequent
occurrence of such a structural/functional region in any other novel protein sequence.
For example, calcium binding EF-hand in calmodulin, a ubiquitions molecule

undergoing Ca-dependent conformational changes.
Multiple (sequence) alignment

A Multiple Alignment of k sequences is a rectangular array, consisting of characters
taken from the alphabet A, that satisfies the following conditions: There are exactly &
rows; ignoring the gap character, row number i is exactly the sequence s;; and each
column contains at least one character different from "-". In practice multiple
sequence alignments include a cost/weight function, that defines the penalty for the
insertion of gaps (the "-" character) and weights identities and conservative
substitutions accordingly. Multiple alignment algorithms attempt to create the

optimal alignment defined as the one with the lowest cost/weight score.

NCBI
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The National Center for Biotechnology Information (NCBI) is part of the National
Library of Medicine (NLM) in the National Institutes of Health (NIH). Its mission is
to develop new information technologies to aid in the understanding of fundamental
molecular and genetic processes that control health and disease. NCBI developed

and maintains the Entrez Search System and PubMed database.
Normalized and summarized data

Several quantification tables are combined using data processing metrics to obtain
the ‘final” gene expression measurement table (genme expression data matrix)

associated with the experiment
Object-Relational Database

Object databases combine the elements of object orientation and object-oriented
programming languages with database capabilities. They provide more than
persistent storage of programming language objects. Object databases extend the
functionality of object programming languages (e.g., C++, Smalltalk, or Java) to
provide full-featured database programming capability. The result is a high level of
congruence between the data model for the application and the data model of the
database. Object-relational databases are used in Bioinformatics to map molecular
biological objects (such as sequences, structures, maps and pathways) to their
underlying representations (typically within the rows and columns of relational
database tables.) This enables the user to deal with the biological objects in a more
intuitive manner, as they would in the laboratory, without having to worry about the

underlying data model of their representation.
ODL
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The data definition language of ODMG

One-to-one relationship

One-to-one relationships are between two entities where both are related to each

other, once and only once for each instance of either.

OODBMS

Object-oriented database management system, sometimes shortened to ODBMS for
object database management system. It is a database management system that

supports the modeling and creation of data as objects.
OoQL
Object query language, which supports the ODMG data model. It is complete and

simple. It deals with complex objects without privileging the set construct and the

select-from-where clause.
ORF

An ORF (Open Reading Frame) corresponds to a stretch of DNA that could
potentially be translated into a polypeptide or RNA; i.e., it begins with an ATG
"start" codon and terminates with one of the 3 "stop” codons. For an ORF to be
considered as a good candidate for coding a bona fide cellular protein, a minimum
size requirement is often set, e.g., many of the systematic sequencing groups define
an ORF as a stretch of DNA that would code for a protein of 100 amino acids or
more. An ORF is not usually considered equivalent to a gene or locus until there has

been shown to be a phenotype associated with a mutation in the ORF, and/or an

96



GLOSSARY

mRNA transcript or a gene product generated from the ORF's DNA has been

detected.

Orthologue/Ortholog

P1

Orthologs are genes in different species that evolved from a common ancestral gene
by speciation. Normally, orthologs retain the same function in the course of
evolution. Identification of orthologs is critical for reliable prediction of gene
function in newly sequenced genomes. (See also Paralogs.) For example, BMP2
sequences from rat, mouse, man, chicken and xenopus are orthologous since they all

diverged after speciation events.

P1 phage. PAC (P1 artificial chromosome) is a vector based on the Pl phage

replication.

Pattern

Molecular biological patterns usually occur at the level of the characters making up
the gene or protein sequence. A pattern language must be defined in order to apply
different criteria to different positions of a sequence. In order to have position-
specific comparison done by a computer, a pattern-matching algorithm must allow
alternative residues at a given position, repetitions of a residue, exclusion of

alternative residues, weighting, and ideally, combinatorial representation.

Pathways

Bioinformatics strives to define representations of key biological datatypes,

algorithms and inference procedures, including sequences, structures, biological

97



GLOSSARY

pathways and reactions. Representing and computing with biological pathways
requires ontologies for representing pathway knowledge; User interfaces to these
databases; Physico-chemical properties of enzymes and their substrates in pathways;
And pathway analysis of whole genomes including identifying common patterns

across species and species differences. For example, metabolic pathway.

Paralog

Paralogs are genes related by duplication within a genome. Orthologs retain the same
function in the course of evolution, whereas paralogs evolve new functions, even if
these are related to the original one. For example, BMP2 and BMP4 genes are

paralogous since they result from a gene duplication.

Physical map

A diagram showing the relative positions of physical landmarks in a DNA molecule;
common landmarks include the positions of restriction sites and particular DNA

sequences.
Profile

Sequence profiles are usually derived from multiple alignments of sequences with a
known relationship, and consist of tables of position-specific scores and gap-
penalties. Each position in the profile contains scores for all of the possible amino
acids, as well as one penalty score for opening and one for continuing a gap at the
specified position. Attempts have been made to further improve the sensitivity of the
profile by refining the procedures to construct a profile starting from a given multiple

alignment. Other representations for sequence domains or motifs do not necessarily

98



GLOSSARY
require the presence of a correct and complete multiple alignment, such as hidden
Markov models.

Protein families

Sets of proteins that share a common evolutionary origin reflected by their
relatedness in function which is usually reflected by similarities in sequence, or in
primary, secondary or tertiary structure. Subsets of proteins with related structure

and function.
P-value

In a BLAST scarch, a P-value refers to the probability of obtaining, by chance, a
pairwise sequence comparison of the observed similarity given the length of the
query sequence and size of the database searched. Thus, low P-values indicate
sequence similarities of high significance.

Query (sequence)

A DNA, RNA of protein sequence used to search a sequence database in order to
identify close or remote family members (homologs) of known function, or
sequences with similar active sites or regions (analogs), from whom the function of

the query may be deduced.
Raw data

The data that comes directly from the measurement device;
RDBMS

Relational database management system.
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Relationship

A relationship is a named connection or association between entities. For example, in
a CDM that manages human resources, the relationship Member links the entities
Employee and Team, because employees can be members of teams. This relationship
expresses that each employee works in a team and that each team has employees. An
occurrence of a relationship corresponds to one instance of each of the two entities
involved in the relationship. For example, the employee Martin working in the

Marketing team is one occurrence of the relationship Member.
Secondary structure (protein)

The organization of the peptide backbone of a protein that occurs as a result of

hydrogen bonds e.g alpha helix, Beta pleated sheet.
SGD

Saccharomyces Genome Database. The SGD project collects information and
maintains a database of the molecular biology of the yeast Saccharomyces
cerevisige. This database includes a variety of genomic and biological information.
SGD is funded by the National Center for Human Genome Research (NCGHR) at
the U.S. National Institutes of Health. The SGD is in the Department of Genetics at
the School of Medicine, Stanford University. The SGD Homepage is located at

http://genome-www.stanford.edu/Saccharomyces/.
Similarity (homology) search

Given a newly sequenced gene, there are two main approaches to the prediction of

structure and function from the amino acid sequence. Homology methods are the
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most powerful and are based on the detection of significant extended sequence
similarity to a protein of known structure, or of a sequence pattern characteristic of a
protein family. Statistical methods are less successful but more general and are based
on the derivation of structural preference values for single residues, pairs of residues,
short oligopeptides or short sequence patterns. The transfer of structure/function
information to a potentially homologous protein is straightforward when the
sequence similarity is high and extended in length, but the assessment of the
structural significance of sequence similarity can be difficult when sequence

similarity is weak or restricted to a short region.
SNP

Single nucleotide polymorphism, or a single nucleotide position in the genome
sequence for which two or more alternative alleles are present at appreciable

frequency (traditionally, at least 1%) in the human population.
Structured Query Language (SQL)

SQL is a language used to communicate with a DBMS and provides a fairly common

syntax for applications to use.
STS

A DNA sequence, present once per haploid genome, that can be amplified by the use
of suitable oligonucleotide primers in the polymerase chain reaction in order to

identify clones that contain the sequence.

Tile Path
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The tile path track in human Ensembl shows the sequence entries (mostly BAC

clones) that were used in the current assembly, and where they map on the assembly.

Unified Modeling Language (UML)

This is a modeling language created by the Rational Software company to implement
the OOA&D methodology. The Unified Modeling Language (UML) is a language
for specifying, visualizing, constructing, and documenting the artifacts of software
systems, as well as for business modeling and other non-software systems. The UML
represents a collection of best engineering practices that have proven successful in

the modeling of large and complex systems.

Vector
A DNA molecule, capable of replication, into which a gene or DNA segment is
inserted by recombinant DNA techniques; a cloning vehicle.

Weight matrix

The density of binding sites in a gene or sequence can be used to derive a ratio of
density for each element in a pattern of interest. The combined individual density
ratios of all elements are then collectively used to build a scoring profile known as a
weight matrix. This profile can be used to test the prediction of the identification of
the selected pattern and the ability of the algorithm to discriminate them from non-

pattern sequences.

YAC
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In yeast, a cloning vector that can accept very large fragments of DNA; a
chromosome introduced into yeast derived from such a vector and containing DNA

from another organism.
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