INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a compiete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

@

UMI

Electronic Distribution of Searchable
Technical Documentation Libraries

Elizabeth Martinez Aguilar

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

March 2003

© Elizabeth Martinez Aguilar, 2003

i~

Canadi

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fia Votre rélérence
Our e Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neitherthe droit d’auteur qui protége cette thése.
thesis nor substantial extracts fromit Ni Ia thése ni des extraits substantiels

may be printed or otherwise de celleci ne doivent étre imprimés
repro.duced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-77992-0

ABSTRACT
Electronic Distribution of Searchable Technical

Documentation Libraries

Elizabeth Martinez Aguilar

In this era of continuous evolution the publishing technology field has been
constantly changing. The digital revolution of ten years ago brought such modifications
that technological companies producing technical documentation had multiple difficulties
learning new processes and integrating them into their publishing workflows. All that
involved, and still involves today regular investments of time and money. Conversely, the
beginning of the twenty first century brought an economic crisis that is affecting most of
the telecommunications industry, forcing big reductions of expenses.

From the readers’ perspective, the size of the technical documentation libraries
keeps growing due to the increasing complexity of the subjects they discuss. While in the
past paper documentation was the most in demand, nowadays the electronic format is the
most popular since it can be manipulated in multiple ways. Readers need to locate and
electronically extract the specific pages, paragraphs, graphics, or terms they are looking for.
In addition, they need to navigate through thousands of pages without getting lost.

This thesis presents, through the use of the Unified Modeling Language (UML), the
object-oriented design of a system that fulfills the demands of both the publishing

companies and the users of their technical publications.

ACKNOWLEDGMENTS

I would like to thank my dear husband, Raymond, for his precious support through
the development of this project. Also my gratitude goes to my loved children Alexandre,
Guillaume, and Elizabeth whom represented a source of motivation towards the
accomplishment of this important mission.

Special thanks to my supervisor, Dr. Gregory Butler, who always provided me with

his invaluable guidance and support.

I\

TABLE OF CONTENTS

List of Figures.........cccceeveemence. viii
CHAPTER I INTRODUCTIONccomimiricrincnrncissinscsessnessscscscsssas l
L1 ThE PrOBIEML ...ttt s eeseesesese 1

1.2 Backgroundcciiniceniceecceeeneccsncesaeseaens 2

1.3 Thesis Statement............... ceenesteereeraeeanaens 5

1.4 My WOorKoooiieccirccnnninenananee . 6
141 RESEAICH ettt e scses st sie s eas s s ssnsasssssanas 7

1.4.2 Choice Of TEChNOIOZYoovvviirerirtremeieeeeirrereeeceeesessceaceaeeasassessssssnsnensssanns 8

1.4.2.1 The Visual Interfacecccvueurevirevrecneensercrennens 9

1.4.2.2 The Automation TOOLcouccioireiriiciitnicnesireeseesesenes 13

1.5 Contribution of the Thesisccovvuereunnes reereetare ettt st sasasaesans 14

1.6 Thesis OrganiZationomreminiscesietscsesasesecrsssesssassssassessscnesassasssssssssnenses 15
CHAPTER 2 USE CASE VIEW OF THE SYSTEM......ccciimiinniniencnerssnnnscncnsnens 16
2.1 Modeling the Static Use Case VieW.........coccevmerrereeeescrrrrcreecseenss 16
2.1.1 Scope and GOals.........cueemmicniiiitcrinisiieicsisn s ssaesesesssssessanes 16

2.1.2 The Context Of the SYSIEIMccoerierrenerrncnrcreeeereennesesesseeesassensasssssansases 17

2.1.3 Use Case DESCTIPHONSccuvceeeccnrntrcanemrrensesssssnsnaseassesscsasnsasassesssssssesasssssnses 20

2.2 Modeling the Structure: Class Diagramscccocceeeeeceecrnrenraccesenenens 25

2.3 Modeling the BEhaviorccivecrermccecricncneeseseeeecessssssecessasasasesensssansnnes 29
231 ACHVItY DIQQIAMS......cccieeririenrneeeeeeenssneesesassesesssassasssessessssssasssssssseressassenees 29

23.2 System Sequence DIaBIaISccccoeveereverrererresseeesessassessesseassssssssssssssesessses 32

24 Subsystems Interdependencies

2.5 Recapitulation

CHAPTER 3 CD-ROM GUI DESIGN

3.1 Design Rationale

3.2 Network Map Page Design

3.2.1 Behavioral Model: Sequence and Activity Diagrams .

3.2.3 Structural Model: Class Diagram....................

3.3 Roadmap Page Design..........c..cccccenveeuueu...

3.3.1 Structural Model: Class Diagrams .

3.3.2 Behavioral Model: State and Sequence Diagrams

3.3.3 Security Model............ccucuecnnen..

34 Architecture: Modeling the Executable Release..........

CHAPTER 4 CD-ROM PUBLISHING SYSTEM DESIGN. ..

4.1 Design Rationale...............c..ucuu......

42 Modeling the Structure of the System.

4.2.1 Presentation Layer Structure

422 Domain Layer Structure.......

43 Modeling the Behavior of the System.. creesesasensne

4.3.1 GUI Customization Publishing Option..............

4.3.2 GUI Generation Publishing Option.....................

4.3.3 CD-ROM Stage Area Creation Publishing Option

44 Architecture: Component Diagram

-~

CHAPTER 5 CONCLUSION.......ccceitinmnreicnissnesrensneansassnssnensanas

35

36

37

37

39

41

45

47

48

54

.59

59
63

63

65

71
71
75
79
81

83

BIBLIOGRAPHY

86

LIST OF FIGURES

Number

Figure 2.1 CD-ROM GUI Context Diagram.

Page

17

19

Figure 2.2 CD-ROM Publishing Context Diagram.

Figure 2.3 Domain Model for the CD-ROM GUI Subsystem.

26

28

Figure 2.4 Domain Model for the CD-ROM Publishing Subsystem.

Figure 2.5 Activity Diagram for Search Library Use Case.

30

Figure 2.6 Activity Diagram for Customize GUI Use Case.

3

33

Figure 2.7 Sequence Diagram for Generate GUI Use Case.

Figure 2.8 Sequence Diagram for View Library Index Use Case.

34

35

Figure 2.9 System Decomposition into Subsystems.

Figure 3.1 Network Map Page.

Figure 3.2 Sequence Diagram for Start CD-ROM GUI Use Case.

42

Figure 3.3 Activity Diagram for Network Map Page Loading Process.

Figure 3.4 Class Diagram for Network Map HTML Page.

&

Figure 3.5 Roadmap Page.

Figure 3.6 Roadmap Applet Structure........

49

Figure 3.7 Class Diagram for Roadmap Applet.

50

53

Figure 3.8 High Level Class Diagram for Roadmap Applet.

Figure 3.9 Applet Lifecycle.

54

Figure 3.10 Sequence Diagram for paint method of the Roadmap Applet Class

Figure 3.11 Sequence Diagram for init Method of the Roadmap Applet Class...................... 56

Figure 3.12 Sequence Diagram for mouseDown event on CD-ROM GUI Interface............. 57
Figure 3.13 Sequence Diagram for handleLink Method of LinkHandler Classs.................... 58
Figure 3.14 Component Diagram for CD-ROM GUL 60

Figure 4.1 Class Diagram for the Presentation Layer of the CD-ROM PUB System........... 65

Figure 4.2 CD-ROM PUB System Domain Layer Class Diagram. 67
Figure 4.3 Persistent Object Storage Class Diagram. 70
Figure 4.4 Sequence Diagram for GUI Customization Use Case, Part I. 72
Figure 4.5 Sequence Diagram for GUI Customization Use Case, Part II. 74
Figure 4.6 Sequence Diagram for the GUI Generation Use Case, Part . 76
Figure 4.7 Sequence Diagram for the GUI Generation Use Case, Part II. 78
Figure 4.8 Class Diagram for the CD-ROM Stage Area Creation Use Case.cccocoveeuunennee. 80

Figure 4.9 CD-ROM PUB System Component Diagram. 81

X

CHAPTER 1 INTRODUCTION

1.1 The Problem

Companies selling high technology to their customers need to offer complete
solutions in which technical documentation is an essential component. Because of the
complexity involved in the installation, configuration, and ongoing maintenance of these
high-tech products, the amount of the technical documentation can easily add up to the
range of several thousand pages. While the printed format of this documentation is
decreasing in demand, it is still a requirement that must be fulfilled; in contrast, the request
for electronic documentation grows every day, and the Web, the medium most frequently
used for its publication, does not always suit the customer’s needs. Technicians in the
field, who usually connect to the network through a telephone line, can not afford to wait
for long minutes while the files download. In these cases, off-line access to the information
is mandatory.

Customers want to receive the information in an easy to use, searchable format: in a
library of about eighty books that could contain up to two thousand pages, they need to find
quickly the book and specific page where the procedure covering a particular task is, for
example, Installation of a Shelf. While performing that particular task, the technician
might need to find an error message or an image explaining all the elements of the
hardware component he is installing, or even more specifically the explanation of a

1

technical term mentioned in that particular procedure. Moreover, if that procedure has a
reference to another one in another book, the technician needs to navigate there and come
back to the previous book afterwards. On other occasions, the users do not really know
what they are looking for; they have a vague idea and only have in mind some technical
terms; they would like to search for those terms in the whole library and see the book’s
titles and subjects where they appear.

To facilitate the learning process to their customers, high-tech companies are
looking to have their technical documentation published in a consistent way and with an
identical format regardless of the medium used: paper, CD-ROM, or the Web. They need
to achieve this without sacrificing profitability. In many cases, they have acquired over the
years a digital publishing apparatus focused on producing high quality printed documents,
and based on the Adobe’s Portable Document Format (PDF). Today, they must fulfill their
customers’ needs for on-line and off-line access to technical information, while facing

reduced budgets, constant cuts of personnel, and increasingly tight schedules.

1.2 Background

Before PDF existed, the electronic exchange of files between print providers and
their clients required all to have the same native applications and fonts that were used to
create those files. Additionally, a paper proof of what the document should look like
needed to be sent. Then around 1987, as Adobe’s copyright states, a new file format for
universal delivery, the Portable Document Format, was invented by Adobe. The
publishing industry quickly adopted this new format for digital file interchange, since it

offered the advantages of compact size and embedded fonts, images, and graphics that
2

allowed having the same display and printing no matter the OS, monitor, or printer device.
Their workflow greatly benefited from this new format and became more efficient, reliable,
consistent, and economic.

The Adobe solution helped to streamline the publishing workflow which at the
beginning was concentrated in the print version of the documents. PDF files offered three
key advantages: reliability, consistency, and flexibility [“Adobe PDF’]. Their reliability
ensured the document will have the same look on screen and on print, saving typical
problems of missing fonts or graphics incorrectly displayed. Their consistency ensured
they will look and behave the same way regardless of the OS platform or printing device
used. Their flexibility allowed users to do proofing on both screen and paper, to make
annotations and digital signatures, to extract pages, and to fully index and search, just to
mention some of their features.

With the advent of the Web and its dramatic boost in popularity, the publishing
industry was then confronted by the need for publishing on the Internet. HTML being the
default format for the Web, technology evolved fast to provide it with exceptional viewing
and search toois. At the present time the technology for searching PDF files is more
limited than the one for searching HTML files [“Searching™]; although this represents a
strong reason to change or adopt a new publishing format, it could be impossible to do
because of a variety of reasons like a restricted budget, limited resources, or short
deadlines.

From the manufacturing company perspective, a product complete solution must
include technical documentation, training, and support. Technical documentation is in

most cases written by technical writers, technical illustrators, and graphic designers and has

3

to be developed in conjunction with the engineering and design teams. Although the
documentation authoring activity is core to the company, security issues preventing its
outsourcing, the documentation printing and distribution job is often given to an outside
print specialist.

Technological products having a level of difficulty very high, their supporting
documentation needs to include visual aids like headings, images, graphics, screens, and
video in order to facilitate the customers’ learning process. With all these visual aids the
page counts of a book can increase very fast; at the same time, technology subjects are
often very expansive. Readers do not like spending time trying to understand how the
technical libraries are organized; the supporting documentation has to be very well planned
so that end users can easily find what they are looking for in order to perform their work.
Hence, technical writers need to show the book’s summary and contents in a visual way
easily assimilated. One way of achieving this is through the use of roadmaps that
practically take the users by the hand through the task they need to accomplish.

Accordingly with the present e-business times, another customers’ requirement is to
receive the technical documentation in electronic format. To fulfill this requirement, one of
the most common trends nowadays is to provide a Support Knowledge Web site where
customers can find and download the electronic version of the documentation they need.
However this option does not address all of the audience since a significant part are field
technicians and installers who most of the time work in scarce conditions with only a
laptop and a phone, without access to the Internet. In those cases, off-line access to the

information is the only viable solution. Thus, the companies are now faced to the need for

electronically publishing in different media, and want to provide an identical look and feel
to their documentation regardless of the medium used for its distribution.

Printed documentation has been the traditional way to publish documentation.
Over the years, technological companies equipped themselves to produce high quality
printed documentation which in most cases was printed by a print provider. Consequently,
they created publishing workflows to produce documents in a file format their print
providers could handle. Currently, some of these print providers offer cross-media
production services to deliver their customers’ content to both print and the Web. Most of
the time, they use third-party conversion software that can render documents created in a
page layout application into the HTML format. However, these transformations bring on
disadvantages, as Adobe maintains, “Unfortunately, such conversions often fail to render
the designer’s intentions on the Web. As with the workarounds in the print production
workflow, the added steps are time-consuming and costly.” [“Adobe PDF” 4].

The invention of the PDF format by Adobe provided a publishing solution that
proved to be very efficient. PDF files are easy to deliver over the Web, across a network,
or on removable media. They are compact and hold all the content unlike HTML files,

which require you to include any linked graphics and font files.

1.3 Thesis Statement

In this e-business era, technological companies must adapt their traditional
publishing system for the production and electronic delivery of technical documentation in
a universal format that responds to their customers’ demands for an easy to use, easy to

install visual user interface that allows them to navigate and search through the numerous
5

pages of the technical documentation libraries. Failure to do this would mean customers’
dissatisfaction and loss of sales. On the other hand, these corporations are going through a
prolonged economic crisis that forces them to keep their research and development budget
reduced to a minimum. Even in these economic conditions, their publishing systems can
still be modified to fulfill their customers’ needs within very short deadlines and without

sacrificing profitability.

1.4 My Work

I wanted to find a cost-effective, in-time deliverable solution for publishing
technical libraries in an electronic format that could be universal, searchable, navigational,
easy to learn, and easy to install. The research methodology I followed was interviews and
surveys, as well as field experimentation through small prototypes. Close contact with the
product engineers and designers, the technical writers, the technical illustrators, and the end
customers was an essential part of this process.

My work targets companies that already have a print publishing solution based on
the Adobe technology. The solution needed to be immediately applied to produce
documentation on CD-ROM, and afterwards on the Web. Hence, I needed to design an
application whose code could be reused.

Other essential characteristics of the solution should be:

- Enable customization of the visual interface so that it can be applied to different

portfolios of products, while preserving a consistent look and feel.

- Automatically generated, so that production time is reduced to a minimum and
the technical illustrators are better focused in producing the books’ images instead
of manually producing the visual interface for each product release.

- The automation tool to produce the visual interface will be operated by people

with no programming background, most of the time the technical writers.

1.4.1 Research

While interviewing the technical writers, I found out they were concentrated in the
writing process. Their work objectives were to get to know all of the product technical
features and to acquire the necessary writing skills which included the use of Adobe Frame
Maker, the tool used to produce PDF files. They found it more and more difficult to
publish documentation on the World Wide Web, since their knowledge of JavaScript and
other scripting languages was minimal.

The interviews with the engineers produced interesting results that were very useful
for the design of the Graphical User Interface (GUI). These engineers are in close contact
with the customers and constitute a channel for the latest to communicate their needs to the
manufacturing company. Their work includes performing product validation tests, on-site
training, phone support, and technical documentation review and approval. Their
knowledge of programming languages is also very minimal.

The customer surveys showed the following:

- The technical documentation must be published in a consistent way, regardless

of the medium used: paper, CD-ROM, or the Web.

1.4.2

- Users need to be able to manipulate the electronic document files: add
comments, extract pages, make annotations, select text, select a graphic, etc.

- Users need to know what books they are entitled to receive when they buy a
product solution.

- Users need to fully search the electronic files: search for a word in a book, in a
subject, or in the whole library; search the text within a graphic or illustration; etc.

- The documentation must be navigable: books must be organized by product,
platforms, general subject, and specific subject; and books must include internal
links and cross-references to specific pages on other books.

- The documentation library must have a master index.

Choice of Technology

The choice of technology is limited by the following factors:

- The visual interface needs to support three major commercial platforms:
Windows and UNIX Solaris and HP.

- The visual interface will be deployed in a first phase on CD-ROM and in a
second phase on the World Wide Web.

- The technical documents need to be delivered in the PDF format.

- The automation tool that will generate the visual interface will be operated by
people with no programming background.

- Very limited budget and tight schedules.

1.4.2.1 The Visual Interface

The solution needed to serve the companies currently using the Adobe workflows.
This prerequisite reduced the spectrum of the available technology that I could use.
The Adobe technology

Adobe offers free software for viewing and printing PDF files, the Acrobat®
Reader™. The distribution of this software via an intranet, a local network, a CD-ROM, or
other physical media is authorized by Adobe upon an electronic license agreement.
Besides its typical version which comes with a ‘Find’ command that reads the entire
document when searching for a word or phrase, Acrobat Reader is also available as an
expanded version on most platforms. This expanded version includes the ‘Search’
command that allows the user to search a collection of previously full-text indexed PDF
books.
Acrobat Reader Search Tool

As explained on the Adobe Acrobat User Guide for Windows and Macintosh,
opening a PDF document associated with an index automatically makes the index
searchable. The user can search for a simple word or phrase, or he can expand his search
by using Boolean operators and wild-card characters. He can refine or confine his search to
documents listed in a prior search. For example, he can first search for all documents by a
subject, and then define a search query for that subset of documents. The result would be a
subset of documents belonging to that subject and that contain the search string.
Additionally, he can use the options Proximity, Match Case, Sounds Like, Word
Stemming, and Thesaurus on his search query. He can also select the documents to review

from those returned by the search. If the PDF documents include ‘Document Info’ and
9

‘Date Info’, this information can be used in the Search dialog box, to limit the search. The
Document Subject, Author, Title, Keywords, and Creation Date can be used in the search
query.

Also from Adobe, the Adobe® Acrobat® software permits the conversion of any
document to an Adobe Portable Document Format file. The PDF document can be open
across a broad range of hardware and software, and it will look exactly as its author
intended: with layout, fonts, links, and images intact. What is most interesting is the
Acrobat Catalog feature of this software that allows the creation of full-text indexes of a
single or of multiple Adobe PDF documents. Readers only need to search once to locate
words or phrases in each of the documents sequentially.

PDF Files Navigation Features

Adobe PDF files can contain an assortment of navigation elements that makes it
easier to locate specific information. Each Adobe PDF file automatically generates
miniature previews of its pages called thumbnails, which can be used to navigate to a
desired page instantly. In addition to thumbnails other navigational elements can be added
or generated, including bookmarks and links. Bookmarks can serve as an interactive table
of contents, which can be used to navigate to main topics instantly. Readers can use linked
text and images to navigate immediately to a related page in the same document, in another
Adobe PDF document, or in the World Wide Web.

Adobe Acrobat also allows the users to make annotations, add comments, extract or
insert pages and graphics, and digitally sign the PDF documents.

Adobe® FrameMaker® and Adobe® FrameMaker®+SGML are the toois used by

the authors to create the document source files. FrameMaker includes Acrobat®

10

Distiller™, for publishing to PDF format. The Distiller job settings permit the
customization of the file compression, font embedding, color profiles, etc. When a
FrameMaker document is saved as a PDF file, cross-references and hypertext commands
automatically become links, and bookmarks can be automatically created. Metadata such
as the author, title, subject, and keywords can be specified before it is exported to PDF.
This information appears when the PDF file is printed and it is accessible to the Acrobat
Catalog index and Acrobat Reader search command, and to some search engines for PDF
files posted on the Web.

Other publishing software from Adobe that integrates seamlessly with FrameMaker
are Adobe® Photoshop®, an image-editing application, and Adobe® INlustrator®, used to
create vector graphics.

The Java Technology

The Java™ platform from Sun is based “on the power of networks and the idea that
the same software should run on many different kinds of computers, consumer gadgets, and
other devices. Since its initial commercial release in 1995, Java technology has grown in
popularity and usage because of its true portability.” [Hardee para.l]. The Java platform
allows for the same Java application to run on multiple different kinds of computers. This
is possible thanks to a component of the platform called the Java virtual machine JVM™),
a kind of translator that turns general Java platform instructions into tailored commands
that make the devices do their work.

Sun has grouped its Java technologies into three editions: Standard Edition (J2SE™)
refers to the general purpose version of Java 2 technology, Enterprise Edition (J2EE™) for

large server based applications, and Micro Edition (J2ME™) for small devices such as cell

1

phones. For the particular problem this thesis addresses, the most appropriate edition to be
used was the Standard Edition which includes two principal components:

- The Java Runtime Environment (JRE) provides the libraries, Java virtual

machine, the Java Plug-in and other components necessary to run applets and

applications written in the Java programming language. It does not contain tools
and utlities such as compilers or debuggers for developing applets and
applications.

- The Java 2 Software Development Kit (J2SDK) is a superset of the JRE. It

contains everything that is in the JRE, plus additional tools such as compilers and

debuggers that are necessary for developing applets and applications.

Even when the Java virtual machine is incorporated into all major Web browsers,
the built-in support in most of them uses an older version of Java technology, which cannot
run applets using the most advanced features of the Java platform. Because of that it is
more advantageous to install and use Sun’s JVM that comes with the latest Java
technology.

The Java Plug-in software extends the functionality of a Web browser allowing
applets to be run under Sun’s JRE rather than the Java runtime environment that comes
with the Web browser. That means consistency and reliability when running applets. Java
Plug-in is part of Sun’s JRE and is installed with it. It works with both Netscape and
Microsoft Internet Explorer and supports all Windows and most Solaris platforms. Sun has
made Java Plug-in software available for porting to all operating system providers like Mac
OS, AIX, Linux, and HP-UX. Starting with version 1.3, the Java Plug-in supports applets

signed using Netscape signing tools. It can verify RSA signatures in a browser-

12

independent way, through RSA and the .jar file. The new features in version 1.4 include
support for multiple versions of the Java Runtime Environment installed on the same

machine.

1.4.2.2 The Automation Tool

The automation tool will be used to generate automatically the visual interface, so
that no special skills are required to produce it. In this way the use of time and resources is
kept to a minimum, thus reflecting in the final cost of each CD-ROM.

Microsoft Technology

Microsoft technology is so widely spread that it has become a standard in the
industry. Its visual tools allow for a very fast development of Windows based applications.
Its programming language, Visual Basic (VB), makes it very easy to develop applications
and to interact with other Microsoft products, like Excel or Word. The former comes with
numerous pre-built components and interfaces; its tenth anniversary coincided with the
release of Microsoft’s new .NET platform and with a totally revised version, which is now
fully object-oriented [Roman].

The automation tool will have a very simple visual interface, and will take its input
from several Excel spreadsheets with a predefined template. As explained above, the

choice of VB as a programming language will lead to a very fast development.

13

1.5 Contribution of the Thesis

This thesis presents the design of a cost-effective, fast-development automated
solution for electronically delivering searchable, navigational technical documentation
libraries on CD-ROM in a universal format that preserves an identical look of the
information regardless of the publishing medium: paper, CD-ROM, or the Web. This
solution fits into organizations having a pre-established publishing workflow based on the
Adobe PDF format. Furthermore, the object-oriented design of the GUI is done so that its
code can be reused afterwards for an implementation on the Web.

The complete solution includes the design of the graphical user interface as well as
the design of the tool that automates its production. The graphical user interface can be
customized for libraries of documents covering different products while preserving a
consistent look and feel. The tool that produces the GUI is addressed to the technical
writers who write the product technical documentatior; consequently the knowledge of a
programming or scripting language is not necessary.

The solution has the following valuable attributes:

- The GUI is robust and truly portable.

- The generation of the GUI is automated.

- The project’s development time is measured in weeks.

- As per current economical standards, the total budget of the project is less than

ten thousand dollars.

14

1.6 Thesis Organization

Chapter 2 presents the analysis of the problem via use cases and context diagrams.
Chapter 3 presents the object-oriented design of the graphical user interface. Chapter 4
presents the design of the automation tool. Finally, chapter 5 presents a conclusion

summarizing the results and possible improvements that could be made in the future.

15

CHAPTER 2 USE CASE VIEW OF THE SYSTEM

2.1 Modeling the Static Use Case View

This section presents the context of the system and its goals, from the end user’s
and analyst’s point of view. The static use case view, which organizes the behaviors of the
system, will be defined through the use of UML’s use case diagrams and use case

descriptions [Booch].

2.1.1 Scope and Goals

The Electronic Distribution of Searchable Technical Documentation Libraries
system (EDSTDL) has two goals: the first one is to provide a visual interface to navigate
easily through the books in a library and to search fully all the text and graphics in them;
the second one is to automate the generation of such an interface, so that the resources
dedicated to its production are kept to a minimum. Therefore, the system can be
decomposed in two main components: the CD-ROM Graphical User Interface subsystem
(CD-ROM GUI), and the CD-ROM Publishing subsystem (CD-ROM PUB).

The system’s requirements and constraints are as follows:

- The GUI must be consistent through all the products in a portfolio.

16

- The initial distribution medium of the GUI is the CD-ROM, and the subsequent
one is the Web.

- The GUI must run in Windows, Solaris-UX and HP-UX platforms.

- The format of the technical documents must be Adobe’s PDF.

- The automation tool must be intended for people with no programming

background.

2.1.2 The Context of the System

CD-ROM GUI Subsystem

CD-ROM GUI Subsystem
T ST
Customer GUI Content

View Library
Index

' Get Help Navigate Interface -
lew PDF Boo
Content

Product Manager Search Library

A

Product Engineer

Figure 2.1 CD-ROM GUI Context Diagram.

Figure 2.1 above illustrates the actors who will be interacting with the CD-ROM

GUI subsystem. The primary actors are the Customers who buy the company’s products

17

and technical documentation. As well, there are the Product Managers and Engineers who
provide support to those customers.

The story to be supported is that the CD-ROM GUI user will insert the CD into his
CD-ROM drive and the GUI will be launched automatically. The GUI should detect if all
the necessary software elements are installed in the user’s machine and prompt the user to
install them if necessary. Once the installation process has finished and the user is
interacting with the application, he must be able to see on a first screen the products,
platforms, and releases that are included on the CD. After selecting one of them, he must
be presented with a roadmap indicating the way to navigate through the books of that
particular library section. When the Customer places the mouse over a particular book, its
summary must be presented on a pop-up window. Once he clicks on a book, this one will
be opened up. Within a book, there should be hyperlinks to figures, tables, and procedures,
as well as a table of contents. If the book has references to an element in another book, a
cross-reference link must be provided so that the Customer can go directly to the other
book. As well, there should be a search tool within and outside the book that allows the
user to make search queries. A master index to the library must be provided via a visual

element like a button.

CD-ROM PUB Subsystem
As shown on Figure 2.2 on page 19, the primary actors of the CD-ROM PUB

subsystem are the Technical Hlustrator and the Technical Writer, who provide the input
needed to create the visual interface. Another primary actor is the CD-ROM Operator, who

bumns the master CD and performs the tests and the verification of the final product.

18

Secondary actors involved in the GUI customization process are the Publishing and

Product Managers.

i CD-ROM PUB Subsystem i
\
|
Customize GUI

Publishing Manager Technical lllustrator
Generate GUI
/ reate CD-RO!
Stage Area Technical Writer

Product Manager

CD-ROM Operator
Figure 2.2 CD-ROM Publishing Context Diagram.

The story of the CD-ROM PUB subsystem begins when the Publishing and Product
Managers have decided on the customization of the GUI for a particular portfolio: how
many products to include and where should each of the product nodes be placed on the
Network Map illustration. Once that decision has been taken, the Technical Ilustrator
creates the graphic for each product node included in the portfolio, and provides its exact
position. He will enter those parameters into the CD-ROM PUB’s Customization tool that
will generate the template for the animation scripts. Once the GUI has been customized,
the Technical Writer will be able to generate the GUIL. He will input in an Excel file all the
text needed: menu options which include products, platforms, and releases; roadmap
column titles; book titles; pop-up text for each book; and paths to each book. The CD-

ROM PUB’s Generation tool will format all the input text into predefined lengths and will

19

generate all the content pages. It will perform business rules validations and other
validations like maximum text lengths for each screen element, screen specification
missing, etc., and will generate a Log with processing errors and statistics. Finally, the CD-
ROM Operator will create and validate the CD stage area using the CD-ROM PUB’s Stage
Creation tool. It will validate that all the GUI hyperlinks work correctly. Once that
validation is correct and the stage area has been created, he will physically burn the master
CD and will test it in all the required platforms. Once the CD-ROM GUI has passed all
validation tests, he will create an ISO image of the master CD, scan it for virus and send it

for replication to the CD-ROM distribution group.

2.13 Use Case Descriptions

CD-ROM GUI Subsystem

For this particular CD-ROM GUI subsystem, the actors are always the same: a
Customer, a Product Engineer, a Product Manager, or any user using the CD-ROM.
1. Start CD-ROM GUIL
- Goal in context: Customer wants to see CD-ROM GUIL
- Main success scenario: Customer inserts CD into the CD-ROM drive of his computer.
The CD-ROM automatically opens up the GUT’s initial page containing the Network Map
home page.
- Extensions: if user’s computer is missing software required to run the GUI, an installation
wizard screen pops up. User gives permission for the software to be installed. Once the

installation finishes, the Network Map home page is displayed on the screen.

20

2. Navigate Interface.

- Goal in context: Customer wants to navigate through the GUI’s content pages.

- Main success scenario: Customer selects one of the product nodes from the Network Map
home page. Customer is presented with the Releases Menu and if available, with the
Platforms Menu. He selects one of the menu options and is presented with the Library
Roadmap page. From there, he can come back to the Network Map page by pressing the
Back button.

- Alternate scenario: from the Network Map page or the Library Roadmap page, Customer
can select the Help button that presents the corresponding Help screen. By pressing the
Back button he can go back to the previous Library Roadmap page or to the Network Map
page. By pressing the Back to Network Map page button he goes to the home page.

- Alternate scenario: from the Library Roadmap page, Customer selects the Search button;
the Acrobat Reader helper application opens up, showing a PDF document explaining the
use of the Acrobat Search tool. To go back to the previous screen, he simply puts the
mouse over the Roadmap page window to activate it.

3. View Library Roadmap Page Content.

- Goal in context: Customer wants to view the content of one of the Library Roadmap
pages.

- Main success scenario: includes Navigate Interface use case. Once Customer is
presented with the Library Roadmap page, he puts the mouse over one of the buttons on the
roadmap columns, and a pop-up box with the book summary is displayed. If a roadmap
column is too long, the user can scroll up and down the roadmap column, one book at a
time.

21

4. View PDF Book Content.

- Goal in context: Customer wants to see the contents of one of the books.

- Main success scenario: includes Navigate Interface use case. Once customer is presented
with the Library Roadmap page, he places the mouse over one of the roadmap’s book
buttons, and clicks on it. The Acrobat Reader application is launched and opens up the
corresponding PDF book.

S. View Library Index.

- Goal in context: Customer wants to see the index of the documentation library.

- Main success scenario: after selecting the desired product, release, and platform,
Customer is presented with the Library Roadmap page. He clicks on the Index button and
Acrobat Reader is launched and opens up the Index PDF book. If Customer clicks on the
Index’s cross-reference hyperlinks, he is taken to the corresponding book.

6. Search Library.

- Goal in context: Customer wants to search for something: a word, a term, a phrase, etc.

- Main success scenario: includes View PDF Book Content use case. Customer selects the
Search icon on the Acrobat Reader’s toolbar. Acrobat Reader displays the Search dialog
box. Customer types in the search criteria and clicks on the OK button. Acrobat Reader
presents a Search Results window with the list of hits. Customer double-clicks on one of
the books listed and its contents are displayed on the screen.

- Alternate scenario: customer selects the Search button from the Library Roadmap page.
Acrobat Reader is launched and opens up a PDF document showing instructions on how to
use the Search feature. Customer clicks on the Acrobat Reader’s Search icon and Acrobat

Reader displays the Search dialog box.

7. Get Help.

- Goal in context: Customer needs help on using one of the GUT’s features.

- Main success scenario: Customer clicks on the Help button on one of the GUI’s screens.
He is presented with a Help page explaining each of the GUT’s features. User clicks on one
of the feature hyperlinks and he is taken to the corresponding section.

8. Exit CD-ROM GUL

- Goal in context: Customer wants to close the CD-ROM GUI application.

- Main success scenario: Customer clicks on the Exit button on one of the GUIs screens.
An Exit confirmation window appears and user clicks on the OK button. CD-ROM GUI is
closed.

- Alternate scenario: Customer clicks on the Close icon at the right top comer of the
browser window. An Exit confirmation window appears and user clicks on the OK button.
CD-ROM GUI is closed.

CD-ROM PUB Subsystem

1. Customize GUL

- Goal in context: Technical lustrator wants to perform the customization of the GUI, so
that it reflects a new portfolio of products.

- Actors: Technical Illustrator.

- Main success scenario: Technical llustrator creates the portfolio artwork accordingly to
the Publishing Manager’s specifications. Once he finishes, he starts the Customization tool
from the CD-ROM PUB system. He is presented with the Customization screen where he
enters the required information: portfolio artwork location, base template location, and

output location. He clicks on the OK button. A status bar appears indicating the progress

23

of the GUI Customization process. When the process is finished, a message appears
indicating the status of the operation as well as the complete path where the output files
were saved.

2. Generate GUL

- Goal in context: Technical Writer wants to generate the GUI’s content pages.

- Actors: Technical Writer.

- Main success scenario: Technical Writer prepares an Excel file with the information
about the product, release and platform menu options, book summary pop-up boxes,
roadmap columns, book titles, and file names. After that, he starts the Generation tool from
the CD-ROM PUB system. He enters the input parameters such as specification file
location, Network Map template location, and the output location. He clicks on the OK
button. A status bar appears indicating the progress of the Generation process. When the
process is finished, a message appears indicating the status of the operation as well as the
complete path where the output files were saved.

3. Create CD-ROM Stage Area.

- Goal in context: CD-ROM Operator wants to validate and generate the CD-ROM stage
area.

- Actors: CD-ROM Operator.

- Main success scenario: CD-ROM Operator prepares the Acrobat index files needed for
each of the product options. He prepares as well other input files needed like the Release
Notes and the Search User Guide files. After that, he selects the Stage Creation tool from
the CD-ROM PUB system. He is presented with the Stage Creation screen where he types

in the required information: location of the directories where content pages, PDF files, and

24

other input files are located; and root directory where CD-ROM virtual partition is located.
Once he finishes entering the input parameters, he clicks on the OK button. A status bar
appears indicating the progress of the Stage Creation process. When the process is
finished, a message appears indicating the status of the operation as well as the complete

path where the output files were saved.

2.2 Modeling the Structure: Class Diagrams

After having defined the requirements of the system and its principal actors, we can
now start modeling the vocabulary of the system. This is done by deciding on which of the
previously defined abstractions fall into the system’s boundary. Similarly, we can model
the associations and collaborations between those abstractions via class relationships.
CD-ROM GUI Subsystem

Figure 2.3 on page 26 shows the domain model for the CD-ROM GUI subsystem.
This model presents the conceptual classes and associations most representative of the
problem. Since one of the system’s future requirements is its deployment on the World
Wide Web, the GUI is browser-based. The GUI's home page is represented by the
NetworkMapPage class that contains an introductory text and a picture showing a network
of product nodes represented by the ProductNode class. The nodes corresponding to the
products included in a particular CD-ROM appear animated. The NetworkMapPage class
also contains the ReleasesMenu and PlatformsMenu classes as well as a link to a Help page
which is represented by the HelpPage class. The subsequent pages correspond to each of

the Library Roadmaps and are illustrated by the RoadmapPage class. Each of these pages

25

1Uses

1

Customer | | stans [CD-ROMGUI | | «Ho , [Browser Softwareinstalier
1] Initiates 1
1
1 NetworkMapPage 1 UnksTo
Contains
1.0 1
ProductNode HelpPage | 1 LinksTo
1 LinksTo
1 1
Has 1
! ReadmeFile
ReleasesMenu
4 Includes 1
1
Rel Nof -
cleaseshates 1| Consistsot LinksTo
1.°
Release | 1 LinksTo
o]l |
RoadMapPage | 1 Contains
1] H
* 1_Contains
0..1
PlatformsMenu 1 1
Contains
1.0 1 1
! | Consistsot RoadmapColumn Search Index
1..°
Platform o~
1 LinksTo
1 1 | 1
Consists N
neistst 1.° LinksTo LinksTo
Book
1 1
PDFfile
1
7 LinksTo 1
a
Opens | 1
AcrobatReader

Figure 2.3 Domain Model for the CD-ROM GUI Subsystem.

26

contains links for the following: PDF technical documents, PDF Search User Guide, PDF
Library Master Index, and Help page.
CD-ROM PUB Subsystem

Figure 2.4 on next page illustrates the domain model for the CD-ROM PUB
subsystem. This model presents the conceptual classes and associations that help
understand the system’s functionalities needed by the different users. Some of these
classes, like the ProductManager and the PublishingManager, might end up not appearing
in the final object model however, they are presented here because they indirectly affect the
system. The CD-ROM PUB system offers its services through the classes:
GUICustomization, GUIGenerator, and StageCreator. Each of these services is initiated
by the corresponding primary actors represented by the classes: Technicallllustrator,
TechnicalWriter, or CD-ROMOperator. These actors produce before hand the input
needed by the publishing system: Portfolio Artwork, GUI Specification, Acrobat Index
files, Acrobat PDF files, etc. There is a class common to all of the services classes, the
Validator class that is in charge of performing the business rules validations and that
produces a log of events and errors represented by the Log class. Although the service
classes encapsulate most of the system functionalities there is one, the LinkChecker class,
which is specified separately since it is an essential feature the system provides. Similarly,
the classes Acrobatindex and PDFfile help identify one of the external systems our
subsystem interacts with. The final output of the CD-ROM PUB subsystem is represented
by the VirualCD-ROM class that contains the classes NetworkMapPage, RoadmapPage,
PDFfile, and Acrobatindex. An intermediary output would be the NetworkMapTemplate

class that is needed for the GUI Generation service.

27

PublishingManager | , 4 Providelnput 1. ProductManager
1
SpecifyPortfolio
1.°
PortfolioSpecification
CapturedOn PortfolioArtwork
1
- 1 1
Creates -
Process
K 1
Technicallllustrator | gntarsparametars GUICustomization
1 1
Generates 1 1 Uses
4 Generates
1 1 ! !
NetworkMapTemplate validator | Generates Log LinksChecker
1
1 I 1 1 !
¢ Uses -
PS a U
Uses| Uses
1 1 1 1
CD-ROMOperator
TechnicalWriter GUIGenerator | 1 StageCrestor 4 EntersParameters
EntersParameters 1 1
;] Generates
1 1 1| Creates
1 | Creates 1 1 NetworkMapP
aprage Generates
1 1.°
1) VirtuailCD-ROM ; 1o Acrobatindex
- Generates 1 =
GUISpecification .
pec 1 Pmessedsy Containedin 4 Containedin
1 RoadmapPage 1 1 7 1
.. _ : I - -
1. Containedin . IndexedBy
- PDFfile
1 4 Containedin

Links

1.0

Figure 2.4 Domain Model for the CD-ROM Publishing Subsystem.

28

23 Modeling the Behavior

The system behaviors were previously defined via the static use case definitions.
As well, in the previous section we defined the system domain classes and their
collaborations. We can now model the dynamic aspect of those collaborations by using
interactions. “An interaction is a behavior that comprises a set of messages exchanged
among a set of objects within a context to accomplish a purpose.” [Booch 205]. These
interactions can be modeled by emphasizing the time ordering of messages via Interaction
Diagrams, or by emphasizing the flow of control from activity to activity via Activity

Diagrams.

23.1 Activity Diagrams

Figure 2.5 on page 30 shows the Activity Diagram for the use case Search Library,
belonging to the CD-ROM GUI subsystem. To visualize better the whole operation of the
system, the diagram includes the tasks associated to the Start CD-ROM GUI and Navigate
Interface use cases. The application is intelligent enough to detect if software is missing
and practically takes the user by the hand through the installation steps. Once the customer
clicks on a roadmap button to open a book, the GUI application launches the Acrobat
Reader subsystem. Within Acrobat Reader, the customer invokes the Search tool and types

in his search criteria. The search results are displayed on the screen.

29

Customer

C introduce CD-ROM on CD-ROM drive)\

‘/

{ Select product node
S—

CD-ROM GU!

Open up introduction HTML page with default
browser
Check for software lnstalled)

[missing software]

Show Installation
Wizard
{software is already Install software
installed]

/(Display Network Map Page
? Display Releases Menu)

AN [platforms not availabie]

CSeled release menu opﬁon\K
/

C Select platform menu OWMK

(Mouse over a book button on the Roadmpk
CSeIec: book button on the Roadmapk

C Click on the Search icon on Acrobat Reader ;

v

Gype in a term or phrase to search for. Press OK button.

Click on one of the books listed on the Hits list window

{Search for more terms]

[platforms are available] Y/
Display Platforms
Menu

\(Display Roadmap page)
|

> Pop up box with summary of book)

\@m Acrobat Reader with the selected PDF
/\ book name as input parameter

> Open Search Dialog box)

Open up a new Window with the Hits list)

\Gcmbat Reader opens up PDF book)

[Finished Searching]

Press Exit button on Browser window or
on HTML page

N

> Start CO-ROM use case

> Navigate Interface use case

Figure 2.5 Activity Diagram for Search Library Use Case.

30

Technical lllustrator CD-ROM PUB Subsystem

Create/modify Portfolio
Artwork input file

y
(Select GUI Customization fe@\

>{Display GUI Customization lomD
C Enter Input Parameters T—’_‘

C Click on OK button)_\
%C validate input)

7 piPodiolio | errors
Antwork e (Update errors Log)
N [no errors] T
N v
h LLog
Generate Network Map N\
Template \
T \
" N
i | LNetwork Map
| TYemplate
|
)
Y
d: Network Map
Page
Update form with end of \
operation status messagej
(Analyse Errors Log
T llog These output objects are

repeated only to facilitate the
drawing of the diagram. Same
applies te the Portfolio Artwork
o Network Map | | object above.

Run Network Map Demo —=F
Page
C Verity Demo)

[Demo is not ok]

[no errors)

[Demo is ok]

@

Figure 2.6 Activity Diagram for Customize GUI Use Case.

Figure 2.6 on previous page, presents the activity diagram for the use case
Customize GUI performed by the Technical Ilustrator and belonging to the CD-ROM
Publishing subsystem. We can see the interactions between the Technical Nlustrator
human subsystem and the CD-ROM Publishing subsystem. While the Technical Illustrator
is the one who prepares the artwork, the GUI Customization module of the publishing
system takes care of processing it and generating the Network Map template. A demo that
consists of the Network Map page with all products nodes animated is also generated. This
helps the illustrator to perform his verifications. The Network Map template is an input

element for the GUI Generation use case.

23.2 System Sequence Diagrams

In the following diagrams, the subsystems we are modeling appear as a whole and
are represented by a system class. The details inside each of these subsystems will be
explained in the next two chapters. Notice that user’s input is also represented as separate

classes since it fits into the present use case view context.

32

1. Technical Writer has
previously prepared the xis
file, GUI Specification, with
input text.

2. He starts the CD-ROM
Publishing system and
selects the GUI Generation
tool.

3. Atthe GUIGeneration
form, he enters the required
input.

4. He signals the end of the
input to the system. The
system starts processing the
input.

5. System reads the Network
Map Template file that
contains the x.y pasition for
each node and other
instructions.

6. System reads the s file,
GUI Specification, until end
of cells.

7. System generates the
HTML page contents.

8. System notifies user the
process is finished, and
returns path of output files.

9. User closes the
application.

«create»

generateGUI()

GUIGeneratorForm

GUISpecName, TemplateName,

OutputPath

endinput()

v

CD-ROM content pages path, Log path

-

] i . User input files l
‘
[}
] .
1 n: NetworkMapTemplate
)
: L}
]
open(TemplateName) | L
1
read() !
|
nodes’ position |
——————— |— - ==-
L
open(GUISpecName)
readCell() !
[}
cellContents
____________ readCell is e
-more cells] until end of cells
generate a e
Content() '

-

Figure 2.7 Sequence Diagram for Generate GUI Use Case.

The Sequence Diagram on Figure 2.7 above, illustrates the use case Generate GUI.

We can identify some of the operations the Publishing System, as a black box, offers in its

public interface to handle incoming system events. The system event generateGUI invokes

a system operation generateGUI and the system event endInput invokes a system operation

endInput. As stated by Craig Larman, “The entire set of system operations, across all use

cases, defines the public system interface.” [Larman 178].

33

1 «create»
1. Customer starts CD- i g.CD-ROMGUISystem
ROM GUI system.

}_____

2. He is presented with network age
the initial page Network e__________-_g_ln_agg_g _____________
Map page.

3. He selects one of the selectProduct(Node)
active product nodes.

4. The system shows
the corresponding

releases menu
releases menu. -

5. Customer selects
one of the releases selectRelease(rel)
listed. »

6. Another menu pops
up with the available
platforms. SRl

7. Customer selects
one of the platforms selectPlatform(platform)
listed. "

8. System shows the roadmap page
Library Roadmap page. S

9. Customer selects the selectindexOption
Index option. »

10. System launches «create»

Acrobat Reader

v

application. It sends as !
input parameter the openFile(index)
name of the PDF index
file.

Library Index -
11. Acrobat Reader e ittt et
opens up the Library

Index book to the user.

Figure 2.8 Sequence Diagram for View Library Index Use Case.

Figure 2.8 above shows the Sequence Diagram for the View Library Index use
case. An interesting thing to note is the interaction of the CD-ROM GUI subsystem with
an external system, the Acrobat Reader application. We will see in Chapter 3 exactly how

Acrobat Reader is being invoked.
34

24 Subsystems Interdependencies

The two components that make up the EDSTDL system are closely related.

«system»

Electronic Distribution of
Searchable Technical
Documentation Libraries

* t

I 1]

is affected by
«subsystem» | _ _ _ _ _ _ _ ___) «subsystem»
CD-ROM PUB CD-ROM GUI

Figure 2.9 System Decomposition into Subsystems.

We can see on Figure 2.9 above that there is a using relationship from the CD-
ROM GUI subsystem to the CD-ROM PUB subsystem; this is due to the fact that the
publishing subsystem produces the variable elements that make up the GUIL. There is also a
dependency relationship from the CD-ROM Publishing subsystem to the CD-ROM GUI
subsystem because modifications to the business rules might cause the CD-ROM GUI
implementation to be changed, and consequently the CD-ROM PUB subsystem would

need to be adapted to reflect those changes.

35

2.5 Recapitulation

The requirements, concepts, and operations related to the two subsystems CD-
ROM Graphical User Interface and CD-ROM Publishing have been presented in this
chapter. The domain vocabulary has been defined as well as the principal system goals,
related rules and constraints, and interdependencies. We have leamed what needs to be
done in order to satisfy the end users’ needs. We are now ready to move from the

requirements phase to the design and implementation phases.

36

CHAPTER 3 CD-ROM GUI DESIGN

3.1 Design Rationale

The CD-ROM GUI system is a browser-based, interactive application used to view
and search technical documentation. Its aim is to provide the user with exceptional
navigational tools and search features so that he makes the most of his learning experience.
The user interacts with the system via a graphical user interface which has to be highly
usable. User interaction with the system is done via mouse clicks and only when using the
Adobe search feature, via the keyboard; validation of user input is thus practically
nonexistent in this system. Moreover, the information contained in the visual interface has
already been validated and tested; unless there are unexpected changes to the software
layers and other subsystems our application interacts with--OS, browser, Java virtual
machine, or Adobe Acrobat Reader--application’s logic errors should not happen, only
hardware failure kind of errors can occur.

Design Patterns

Frank Buschmann states when talking about interactive systems: “When specifying
the architecture of such systems, the challenge is to keep the functional core independent of
the user interface.” [Buschmann 123]. In the case of the CD-ROM GUI, the functional
core is represented by the business rules dictating the standards for writing the technical
documentation and by the data model underlying the application; these functional

37

requirements are not likely to change very often. On the other hand, although the
presentation of the visual user interface has been carefully analyzed and its conception is
the result of extensive studies and tests with the end users, it is possible that it will need to
be changed due to customer’s needs arising and evolving quite often. Consequently, in
order to provide the system with the highest flexibility for future extensions and
maintenance, the application’s functionality needs to be separated from its graphical user
interface. This can be achieved by applying the Model-View-Controller pattern (MVC), a
classic design pattern for interactive applications that divides them into three areas:
processing, output, and input. The design of the CD-ROM GUI was inspired by the MVC,
although this pattern was not applied in a strict manner.

As explained in the previous chapter, there is a dependency relationship between
this CD-ROM GUI subsystem and its counterpart, the CD-ROM PUB. The separation of
the Model and the View components will help to the better control of this dependency
relationship: changes to the presentation layer of the CD-ROM GUI will not affect the
model, therefore the CD-ROM PUR, the one that generates the model, will not be affected.
Technology

The technology for enabling browser-based client applications relies on the
Document Object Model (DOM), a platform-neutral interface to the browser and the
documents it renders. DOM specification has been defined by the World Wide Web
Consortium (W3C) and most browser manufacturers have implemented it. With the DOM,
programs and scripts can dynamically access and update the content, structure and style of

documents [Conallen].

38

JavaScript, which is the most common scripting technology in browsers today, is an
easy yet powerful mechanism to use. Since it is built into the browser, it is fast to load.
JavaScript is object based, not object-oriented; it uses the objects provided by the DOM,
but it also allows the creation of custom objects by the user. Finally, Dynamic HTML
(DHTML) is a term used to describe the combination of HTML, style sheets, and scripts
that allow page authors far more control over the display and interactive behavior of Web
page content.

The Sun’s Java technology previously described in the second chapter is also being
used, specifically in the Roadmap page implementation.

Design Organization

The CD-ROM GUI application has two kinds of static, animated pages: the
Network Map home page and the Roadmap pages. This chapter will present the design of
each of these pages. The decisions taken on which domain classes to keep, which classes
to make up, the corresponding assignment of responsibilities, and the design patterns to

apply, are all illustrated via UML’s class and interaction diagrams.

3.2 Network Map Page Design

The Network Map page is responsible for displaying the network of product nodes,
differentiating via some kind of animation the nodes that are active in a particular CD-
ROM. When selected, each active node must display the corresponding releases and
platforms menus. When one of the menu options is clicked, it should link to the
corresponding Roadmap page. Figures 3.1 on next page shows a snapshot of the Network

Map page.
39

Welicome 10 the XX XXX . '

Lihr dry. Please starthy : y iy
selecting the product ‘
node ... y LA

Network of Products

Product2 Product 3

Product 1 Product4

HELP EXIT

el

DHTML is being used to build the Network Map page. Some DOM objects being

Figure 3.1 Network Map Page.

employed are: document, image, anchor, link, and layer. As well, some custom objects are
created: Menu, Menultem, ActiveNode, WelcomeText, and Button. JavaScript is being used
to handle the clicks and other mouse events. Even when these functions are not
architecturally important, they are shown here since they are essential to the user interface

model.

3.2.1 Behavioral Model: Sequence and Activity Diagrams

Figure 3.2 on page 42 shows the sequence diagram for the use case Start CD-ROM
GUI, which basically consists on the browser presenting the Network Map page to the user.
The browser is responsible for rendering the HTML document, and its built-in JavaScript
interpreter executes the scripts. The JavaScript functions are organized into a utility
library, the Layers.js file, represented in the diagram by the Layers object. This object
contains the function definitions that encapsulate the behaviors needed to handle the system
events that occur when the user interacts with the application. Therefore, all the functions
and custom object definitions included in the Layers.js utility library represent a Controller
component. The Model is partially represented by the nodes’ constant positions defined in
the Layers.js file, as well as by the Loader.js file, shown in the diagram as the Loader
object, which contains calls--with constant values as parameters—-to the functions
previously defined in the Layers.js file. These calls execute only the code needed when the
document is first loaded. Afterwards, when the user interacts with the browser and an
event is fired via a DOM object, it will be handled by the JavaScript function whose name
is indicated on the eventhandler parameter of the DOM object. The browser, which
implements the DOM interface, delegates the event handling to the JavaScript functions
defined in the Layers.js file. Hence, the browser is basically acting as a View component;
it is not handling the events.

On Figure 3.2, we can see that after the user starts the CD-ROM GUI application,
the browser is either launched automatically in the case of a Windows platform, or

manually in the case of UNIX. The browser retrieves the Network Map HTML page from

41

cCustomer I The Browser interprets the h

loadGif(nwkmap.gif)
& NetworkMapPage D

i HTML tags and has a built-in |

~create=| -cn.ROM i JavaScriptinterpreter that |
GuUl | parses everything between .

i the <script> tags. |

-

[Unix} !
open(nwkmap.html) .
3 «load» The Loader.js JAN
> | .NetworkMap contains calls to the i
¥ custom objects contained | These client script objects,
' in the Layers s javascript | whose definitions are contained
«imports wutilityw library file. i in the Layers.js file (Controlier),
Layers control the behavior of the Network
. Map HTML page.
«import» ! «utility»)
g > Loader Pad | N\
! Y b eee \
! *newMenu(menu .
~ ame,nodeld)
:
«create» s Menu l
] -
: [menuType=root]
: activateN ode(nodeld)
[}
H :ActiveNode
T ! : .
| ' H)
I ! !
| *newMenuitem :
| (itemTextlinkN !
: s ==
| «create» .
i i S—
: “[end of newMenuRem calls] I
: | | | Tendot newMenu cals]
i newText(weicome !
] Text)
|
! =create» 1 WeicomeText
| ! .
l i
(‘newButton(b | [j
[uttonName) H
" ..___—_D
! L »| Bution l

Figure 3.2 Sequence Diagram for Start CD-ROM GUI Use Case.

42

the CD-ROM drive location and starts loading it. While parsing the HTML tags, it detects
the Script tags and imports the JavaScript utility library represented by the Layers object.
The style sheet definitions, variables and constants declarations, utility functions, and
custom object’s prototypes--constructors--are all loaded. After that, the Loader.js file
represented by the Loader object is imported as well; it contains calls to the Layer’s
functions previously loaded. The function calls newMenu instantiate one Menu custom
object for each Releases and Platforms menu needed. After that, the function calls
newMenultem instantiate the collection of MenuOption objects that are contained in each of
the Menu objects. The call to the newTexr function instantiates the WelcomeText object,
which basically is a layer showing some welcome text. The calls to the newButton
functions, instantiate the different Burron objects. Finally, after the Loader’s JavaScript
interpretation finishes, the HTML body tags of the document are interpreted by the
browser. It loads the background image and renders the document to the user.

Figure 3.3 on page 44 illustrates the flow of activities performed when the Network
Map HTML page is being loaded by the browser, which is a task performed within the
Start CD-ROM GUI use case. The browser’s built in JavaScript engine interprets the
instructions enclosed in the imported JavaScript libraries Layers.js and Loader.js. These
two physical components appear here as kind of subsystems. Once all the JavaScript
custom objects are created, the control comes back to the browser who then finishes
interpreting all the HTML tags in the document. In our case, the background element of
the TD tag indicates to the browser that a gif must be loaded. The end of the HTML

document is detected and the browser renders the page into the screen.

43

Browser

{oad Javascript fibrary SRC=)
Layers

/k Load Javascript library SRC= Loader

H\{md Style Sheet definition)

Layers

var definitions: array of p
positions, array of animation gifs, and array of

@ad function constructors for Menu, Menuitem,
K ActiveNode, WelcomeText, and Button

Load functions definitions NewMenu, \
NewMenuitem, ActivateNode, NewButton,
NewTenxt, etc.

Loader

(Load Network Map page background J

isplay Network Map
HTML page

CreateActiveNode

object [nodeld isnull]

j Call newMenu(name, nodeld))

j Call newMenuitem(text, link))

oMenultem

P

(Create WeicomeText obgectj

Sy T~
& WelcomeText

{ Create HelpButton object
>\

alButton

/C Create ExitButton obiectf
RS
a2:Button

Create Menultem object xﬁ—_’
< e

/
&

>, [more input calls]

[end of input calls [more input calls]

[end of input calls]

-/(Call newTex(welcomeText))

X Call newButton{Help))
} Call newButton(Exit))

Figure 3.3 Activity Diagram for Network Map Page Loading Process.

3.2.3 Structural Model: Class Diagram

Figure 3.4 on page 46 shows the class diagram for the Network Map HTML page.
Its focus is in presenting the JavaScript custom objects that get created during the Start CD-
ROM GUI use case. We are showing only the variables that are global and therefore
visible to the Network Map page itself. The SCRIPT elements in the HTML page have a
SRC attribute with the values Layers and Loader. This is represented in the class diagram
via the stereotyped «script library» classes. A «script» stereotyped association between the
«client HTML page» NerworkMap class and the «script library» Loader and Layers classes
is shown. All JavaScript var and function definitions are forward engineered into the
«script library» classes, not the client page [Conallen].

The Layer object provided by the DOM is being used by most of the custom script
objects that provide animation. A layer is a container that is capable of holding a HTML
document and exists in a plane in front of the main document. We are moving, sizing, and
hiding the layer by the means of JavaScript methods provided by the custom objects. The
Link and Image DOM objects are also used by the custom objects even though they are not

shown in the diagram.

45

ript
«client HTML page=» Layers is tha JavaScript
o NetworkM utility Library that contains all the
ooM otworkMap functions definitions, global variables,
and custom objects constructors that
~script» 1 | backgroundsre: Image are needed to provide animation.
As wall, it contains the Style Sheet
definition that controis the
f the objects.
1 onResize() af:pearanoe of the obj
«script library= /
Loader 1 wscripte «custom script object»
P / WelcomeText
1
textRegion : String / _layerid
«script library» / Ish:faated xCoord Uses
Uses Layers when yCoord
F——— — — =) / Layers Height
appType newText is | width
Loader is a JavaScript xlocArray: Amray / _executed | message: String
utility file that contains the V'ﬁ;:y‘e‘_“ il 1
calls to each of the functions an Ustg A'rm Y
that create the javascript :';:r;u - Y addText(text)
custom objects. It does not R
provide any methods. style: StyleSheet S
newMenu()
newMenultem() «custom script object»
P newButton() is created Button
Is created when Layers newText() when
1. | newMenu is executed Layers _layerid
«custom script object» ;ewau.mon yCooz
Menu
axecuted | link
menuName exitUp: Image
_layerid 1. exitDown: Image
menu_id exitOver: image
xCoord helpUp: Image
yCoord ~custom script object» h:l:[)gwn: Ir?\age
itemsList: Array Menultem helpOver: Image
left =0
1 Contains 1. |[top=0
height = iHeight
showMenu(menuName)
hideMenu(menuName) w'ghf “iv:‘am'c " addButton(type)
clearMenusonMouseQOut() ?9 ‘17;‘ t gColor
addMenultem(itemText linkName tont T on |
addMenu(menuiName nodeld) :slnbaity = *hide" Uses
hiLiteMenu(menuName) 1oChild o f I
3 _lstayerLink = true I
tink = **
Instantiates created = faise |
qd=-1
menuld = -1
0.1 menu =*° I
parentMenu = **
=custom script object= I
ActiveNode I
_layerid writeToTable() I
xCoord writeToLayer() |
yCoord clearMenusonMouseOut() IV
animationSrc: img menuisChild() DOM
linkType(link) - *
hiLiteltem(menuObj) Layer
activateNode(nodeld) name
l teft
| Uses o
Uses l— — — — 3
| sibility
background
l bgcolor
-_——— - — — — — — — — — — - — —X handieEvent()
releaseEvents()
captureEvents()

Figure 3.4 Class Diagram for Network Map HTML Page.

33 Roadmap Page Design

The Roadmap HTML page is a static, animated page that displays the content of the
specific section of the documentation library corresponding to the product node, release,
and platform the user selected in the previous Network Map page menus. The page
essentially consists of different visual elements: a background image; Search, Index, Help,
and Exit animated buttons; roadmap background image; roadmap columns; animated
roadmap column books; book pop-up animated text boxes; etc. Figure 3.5 on page 48
shows a snapshot of this Roadmap page. Each of the visual elements have predefined
locations on the screen, and in the case of the roadmap columns and books, they include
text titles that vary for each of them. Hence, all of the different Roadmap pages have a
standard look and behavior; what makes them different from each other is the text content
they display on top of the roadmap images and of the book pop-up boxes, and the PDF
document links implemented for each of the Books and Index buttons.

The generation of the Roadmap image is a complex process that depends on a lot of
variables; a large amount of input information needs to be processed in order to render the
final image as well as to provide the required animation. I decided to implement the
drawing of the Roadmap animated image via a Java applet; Java offers much more object-
oriented features to handle better that process than JavaScript. Because of backward
compatibility issues, the Java Abstract Window Toolkit library (AWT) was used instead of
the Java Foundation Classes (JFC) Swing. The GUI buttons as well as the rest of the GUI
components were implemented from scratch, using the drawing capabilities of the AWT
Graphics class. Although this is longer to develop, we get the greatest amount of flexibility

and get to control every single aspect of the components’ appearance and behavior.
47

Product 1
Release x Platform y

L ONOY | ¥

.
z‘ﬁ

. aath e e 2ER

PSRN VL

(Book 13)

SUCTF USRNSSR
.

Figure 3.5 Roadmap Page.

3.3.1 Structural Model: Class Diagrams

The applet is composed of several classes that share different responsibilities.
There is a main class, RoadmapManager, which controls the rendering of the Roadmap
image into the screen and is also in charge of getting all the information from the Model,
which is specified via parameters tags in the HTML page. All the events fired while the
user interacts with the GUI, mostly mouse clicks and mouse movements, are controlled by

the class EventHandler. RoadmapManager communicates the events coming from the

48

system to the EventHandler, which handles all events and delegates work to the other

classes.
The classes that make up the applet can be organized in three different groups,
represented by the layers Presentation, Application, and Foundation. We can see how the

different classes are classified into these groups in Figure 3.6 below.

[1
RoadmapManager, Column, Book,
and Button classes perform Presentation
presentation activities.
EventHandler controls that services _1
are provided for all system requests
coming from the system Presentation Application
layer. LinkHandler specializes in the
navigational services.
Low-level technical services, such as _—I
running an external application and
getting the applet context, are provided Foundation
by the Java packages.

Figure 3.6 Roadmap Applet Structure.

Figure 3.7 on next page shows the class diagram for the Roadmap page applet. The
RoadmapManager class extends the native Java Applet class and is responsible for
controlling the rendering of the Roadmap image; it controls the creation of the other objects
and communicates the input information needed to create and display all the visual
elements that make up the final Roadmap image. This class has a creator and uses

relationship with the EventHandler class, which is responsible for handling the system

49

«interface»
GuiControl

colX[]:int
—————— _D colY [) int

bookShape = Rectangle

bookWidth = 80
[t | e
£ Column colShape = RoundRect
colWidth = 100
RoadmapManager colName: String ﬁelpShape = Circle
cofTitle{ |: Sting Helpimg = heip.git
ommage.: Image . :;T.agoeg??ge ExitShape = Circle
offGraphics: Graphics initPosition [][]: integer = 1, 1
parameters: + draw(g: Graphics)
coiName (][]: String + mouseDown(g: Graphics)
g
totalBooks{ J: Int +new(colName, colNo) + mouseUp(g: Graphics)
bookName [][][]: String +setinfo(totalBooks, colTitle{ l.bookl‘_lame[+ mouseOut(g: Graphics)
bookTitle [] {] [}: String Creat). bookTitte(] [],.bookText{] [],.bookLink{ })
bookText [] [][]: String reates +draw(g) 45 4
bookLink [|: String 1 . .n | +mouseDown(g) -—
+mouseUp(g) | |
+mouseQut(g) [
- +scrolidown() I
init() +scrollupy() 1 1 |
start() Creates ! !
stop() ! |
getParameters() 1.n
+mouseDown(x.y) ! 1..n |
+mouseOver(x.y) |
+mousaUp(x.y) | Book
;’::;';‘tg(: r;‘:;,);c) Button | bookName: String
repaint() ottonName: String | bookTte] |: String
drawBackground(i: image) link: String I boobwk'dz:x:((]1_- :;}:9
drawRoadmapimage(image,x area: Circle ———— - ‘ - 9
y.2) Creates area: Rectangle
createCffscreenimage()
! -+ | +new(buttonName) +new(bookName, colNo bookiNo)
1o +setinfo(link) +setinfo(bookTitlef], bookText{],
ses +draw(g) 1.n +bookLink{]}
+mouseDown(g) +draw(g)
+mouseUp(g) +mouseDawn(g)
1 +mouseOut(g) +mouseUp(g)
+mouseOut(g)
EventHandler a
b: Button []
c: Column []
d: Book []
uriLink: URL LinkHandler
acroCmd: String fink: String
p: Process uriLink: URL
acroCmd: String
p: Process
fha;\dleMouseDown(x.y. Contains ;ﬂ:’m:&:g::;k)
img .
+handleMouseOver(x.y,img)) :“"ZF'L“(’:“;'I:L
+handleMouseOut(x,y,img) Contains andleLink(link)
mapAreaToObject(x.y)
+registerArea(object) 1
+newEventHandler(} Contains
Uses

Figure 3.7 Class Diagram for Roadmap Applet.

50

events, as well as with the key presentation classes, Column and Burton. Since the Column
object contains the Book objects, a creator relationship is established between them. The
creator relationship—although not shown on the diagram--is also established from the
EventHandler towards the LinkHandler, since the latest helps to the handling of certain
system events.

The classes that represent a visual element of the GUI, like the Column and Button
classes, do not talk between themselves; they communicate only with the controller or
event handler. The Book object talks to the Column object since it is contained by this one.
All these classes offer services specialized on the drawing of each different visual
component and on handling its animation.

EventHandler keeps a reference to each visual component created and also stores
their sensitive area coordinates which are needed in order to delegate a given system event.
Since EventHandler is playing the role of Information Expert--shown on the class diagram
as a contains relationship--it is assigned with the task of handling all events. To prevent
having a bloated controller, this class delegates the presentation tasks to the visual
component classes and the navigational tasks to the LinkHandler class. A uses relationship
between the EventHandler and the LinkHandler is therefore established.

A very important structural component is the GUIControl interface that outlines the
common behavior, draw and animation methods shared by all of the visual components.
Each method’s signature is the same for all the classes however the implementation details
are left to them to handle. Consequently, a realization relationship from the Book, Column,
and Button objects, to the GUIControl interface is illustrated on the class diagram. As well,

a dependency relationship is shown from the EventHandler to the GUIControl interface,

51

since the EventHandler expects all of the presentation classes to implement the methods
specified by that interface. Finally, the GUIControl interface holds constant values for the
rendering of the roadmap image, and makes them globally available to the classes that
implement it. It constitutes a partial business model for this subsystem.

The distribution of responsibilities for each of the classes was inspired again by the
MVC design pattern; however, it was not strictly applied. The RoadmapManager, which
represents the applet class itself, is handling View related requests as well as executing
some Controller tasks. It receives the system events and communicates them to the
EventHandler--the other controller-- which handles them. The View is also constituted by
all the GUI visual components Book, Button, and Column. The Model, which “is
responsible for knowing and maintaining the state of the component” [Weber 500}, is
represented in part by the param tags in the HTML file that acts as a batch file containing
the runtime initialization parameters; the other part of the Model is represented by the
RoadmapManager which knows which system event has been fired. Moreover, the Model
also has constant values that are stored in the GUIControl interface and are available to all
the classes that implement it.
High Level Class Diagram

Figure 3.8 on next page shows a high level class diagram for the Roadmap applet.
The classes expressly designed for this Roadmap applet application, are shown in its
expanded form, though the attributes and operations are omitted; the classes provided by
the Java packages are shown as rectangular icons. The dependency relationships between

the Roadmap applet’s specialized classes and the classes provided by the different Java

52

packages are shown here to emphasize the effects a change to the Java utilities can have on

— — — — ——

the system.
[Java::lang::Process
Fava:zapplet:Aple AppletContext 7
7 :
[Roadmapwlanagot !— LinkHandler

.I_ —_—

I I «interface»

l I GuiControl

I A

I ~~
I — -~
l - - | ~
I I o | ™~ -
e Button Book Column
I Java::awt::image J | —
) I I
T | P

I | I <

I I | Java::awt::Circle I | I . —_——— _: _)l:\m::lwt::ﬂocungloj
| | T o L A
| L — _I— - —# Java::awt::Graphics k—‘ |
I I I
I EventHandler |

I

e — — . — — — — — — —

Figure 3.8 High Level Class Diagram for Roadmap Applet.

The Graphics and Image classes provided by the Java Abstract Window Toolkit
package (AWT) are extensively used by most of the classes. The abstract class Graphics
provides the graphic context that allows the applet to draw onto off-screen images. The
abstract class /mage is the superclass of all classes that represent graphical images; it is
being used to build the final image of the Roadmap and to import gif files. Other two key
AWT utility classes used are Rectangle and Circle, which represent an area in a coordinate

space. The AppletContext interface provided by the Applet class is being implemented here
53

to link to other HTML pages. Since the applet is being housed by a browser, it is detected
as being the applet context and receives the instruction to load a URL. The Process class
provided by the Java lang package provides the mechanism to run the external Acrobat
Reader application. The exec method returns an instance of a subclass of Process; it is
used to obtain further information about the new process, e.g., whether the call succeeded

or an error was returned by the Acrobat Reader application after it was open, etc.

3.3.2 Behavioral Model: State and Sequence Diagrams

Reload or resize browser,
or retum to Web Page

Leave Web
page

Exit browser

Figure 3.9 Applet Lifecycle.

Figure 3.9 above represents the states--or methods--an applet goes through during
its existence [Weber 240]. Besides these basic methods, there are other two important
methods: paint and update. Paint is called when the contents of the component should be
painted in response to the component first being shown or damage needing repair. The
AWT calls the update method in response to a call to repaint or paint. By default, it clears
the panel and then calls paint which causes a flickering. That is why this update method is

overridden to simply call paint.

54

Figure 3.11 on page 56 illustrates the inir method; the registerArea message is used
by each view object to register its existence with the EventHandler class, so that when a
mouse event is triggered by the user, the EventHandler knows who to notify for an update
of the screen. Similarly, Figure 3.10 below shows how each view object is handling the

work involved in the drawing of itself and of its attached components.

GuiControl T GuiControl T GuiControl

|

1. The applet RoadmapManager
object requests the drawing of the
background image from the

offscren Graphic object. drawBckground
(maplmage)

2. The manager then calls the
method draw() from the Column draw(g)
object, which will update the i
offscreen Graphic object being (i<=totalCols]
passed as a parameter.

draw(g)

3. Each column calis the draw() *{i<=totalBooks]
method for each book in its !

collection. The drawing of each H
book completes the drawing of the H
column itself. I

4. Once control comebacks to the draw(g)
manager, it calls the draw() *[i<=totalButtons]
method for each Button on the
collection.

S. The manager renders the

applet's image. It internally calis :‘ drawRoadmaplmage(g.x.y.2)

the drawimage() method of the

corresponding offscreen Image |

object. '
1

Figure 3.10 Sequence Diagram for paint method of the Roadmap Applet Class.

55

Browser

1. While loading the Roadmap
HTML page, browser encounters
the APPLET tag, it then loads the
RoadmapManager jar file.

2. The init() method of the
RoadmapManager class is
executed.

3. The controller class gets all
parameters specified as PARAM
tags in the HTML page. Data
members are initialised and
EventHandler is instantiated.

4. A collection of Column
objects is instantiated with size
= totalCols.

5. The setinfo() method is
called for each column in the
collection

6. Each column registers itself
with the EventHandler.

7. A collection of Books objects
is instantiated.

8. The setinfo() method is called
for each book.

9. Each book registars itself
with the EventHandler.

10. A collection of Buttons is
instantiated with size as
totalButtons parameter. The
setinfo() method is called for
each button in the collection.

11. Each button registers itsetlf
with the EventHandler.

12. Finally, an off-screen
image and its graphics context
are instantiated.

—
!

«Create»
—

init()

-4

etParameters()

[* more parameters]

=create»

Figure 3.11 Sequence Diagram for init Method of the Roadmap Applet Class.

| .EventiHandler
]
«create» ml"mn :
:] L
] '
I 1
]
setinfo(totalBooks, :
colTitle{], bookName{], :
bookTitle[] [], bookText{ 1
It 1. bookLink{] R H
¢ :
]
registerArea({colObject) !
— (]
«create» m :
- |
¥
l :
setinfo(bookTitle{], 1 !
bookText{], = !
bookLink) | | registerArea
» (bookObiect)D
*{ je=totaiBooks) 7
" i<=totalCols] H - |
t |]
«Croate= E : :
' i ‘Bution ||
' ‘ ;
satinfo(link) ! i :
]
H EregisterArea
1 (buttonObject)
*[k<=totalButtons])
i :
createOffscreen
Image()
L

56

Figure 3.12 below, illustrates the sequence of events that get triggered when the

user clicks on a mouse button. It is clear that responsibility for handling the event resides

on the EventHandler object. EventHandler forwards the event to the corresponding view

object so that it updates by itself the roadmap image on the screen. Once that has been

done, and for this particular event of mouseDown, the handleLink method of the

LinkHandler object is called, with a Link parameter the EventHandler got from the

corresponding view object.

TGuiControl TGuiContml TGuIConlml

wiser

£RoadmapManager

h:EventHandler

Lolymn

Book

1
: mouseDown(x.y) !

1. User clicks on
mouse button.

2. Manager passes
the event information |
to the EventHandler.

3. EventHandler
checks for the cbject
whose active area was
clicked. itcalls the
draw() method on that
object.

4. The affected object
updates the screen
irmage.

5. Once updates are
finished, repaint() is
called.

6. EventHandler
creates instance of
LinkHandler so that
Link is handled.

~ handieMouseDown
(x.y. screenimage)

..-____....________{

. /

' /

mapAreaTo
Object(x.y)

mouseDown(screenimg)

—

mouseDown(screenimg)

h 4

dmw(scmenlmd
-

T
[}
[}
1
[}
[}
]
}
[}
]
]
[}
t
]
I
I

mouseDown(screenimg)

«creates=

LLinkHandler

1

Call to the mouseDown()

method is done only once. |

By referencing the object,

it gets to the place where it

should be handled.

1
handleLink(link) D

1
1

SN Rt

L 2

Figure 3.12 Sequence Diagram for mouseDown event on CD-ROM GUI Interface.

57

? AppletContext

LLinkHandler Java::applet::Applet £Roadmap

The two blocks of
instructions are mutually

parseLink(link) exclusive.

1. LinkHandler parses

link to detect type. [type=URL]

2. If link is a HTML page, the N .
showDocument() method of l lbusldUrl(lmk)
AppletContext interface
implemented by Applet, is showDocument(url) ﬂ
|
|

— — o— — o——

executed. In this case the
context of the applet is the
Browser. The applet is
automatically stopped.

=

(type=POF]
3. If link is a PDF file,]
LinkHaqlder builds the I buildCmd(link)
appropriate command
depending on the OS. Then, it
creates an instance of the __ ~create» iProcess
Process and calls its exec() -
method.

exec(acroCmd)

«Create» o prOCESS™
— — — 9| :AcrobatReader

4. If AcrobatReader process e
is not already running, it is

PDFIlink
created. AcrobatReader is open(PDRlink) »
asked to open the PDF file.

' |

-

Figure 3.13 Sequence Diagram for handleLink Method of LinkHandler Classs.

Figure 3.13 above, illustrates the handleLink method of the LinkHandler class.
LinkHandler first detects what kind of link the Book or Button object is linking to. It then
translates it into the proper type: a URL or an OS command to run Acrobat Reader. If the
link was a URL, it calls the method showDocument available from the appletContext
interface. Since the applet context is an HTML page in a browser, the browser shows the
new HTML document and the stop method of the RoadmapManager applet class is

automatically called. If link was to a PDF file, EventHandler creates an instance of the

58

Java Process class and executes its exec method with the OS command as a parameter.

The Java Process class creates a separate process to run the Acrobat Reader application.

33.3 Security Model

Although not shown on Figure 3.13 illustrating the handleLink method on previous
page, the Java Security Model will be used when the applet tries to launch the Acrobat
Reader application. This happens because applets, even when not loaded over the net, are
not allowed to access the local machine’s files and disks. Java-enabled browsers use the
applet class loader to load applets specified with file:URLs; so these applets are subject to
the restrictions and protections of the applet security manager. Therefore, the applet will
need to be signed with a signing tool, either from Netscape or from Sun; Microsoft IE
signing tools do not support the Java Security model.

Once the applet is signed, the first time the user runs the application and navigates
to the Roadmap page, he will be asked to grant the Security Certificate. The user must

select ‘Grant Always’ so that he will not be prompted anymore.

34 Architecture: Modeling the Executable Release

All the JavaScript functions that make up the animation of the Network Map home
page are being physically packaged in two files: the Layersjs and the Loader.js.
Concerning the Roadmap HTML pages, all of them need access to the Roadmap Applet
main and related classes. Because of the advantages of zipping files, all of the classes that
make up the applet will be packaged in a JAR file format. This will bring the advantage of

59

fast access, reduced size, security, and portability. Portability is a great advantage, since
the JAR file format is browser independent, as is Security, since JAR files allow the user to
verify the origin of the applet and mark it as trusted. Using the Java security model, this

verification is done in a single browser-independent way.

«library=
JVM.dit
browser.exe
.
<file= ' «file= %
nwkmap.gif autorun.ini ' applet.java st
1
=R =
p— ' «document» — A
AN — ReleaseNotes_1.txt — 4
) N | “OPENS® E «document» /usess
animated_ N ——— —— . / «opens»

node_1.gif animated_ ‘\‘ N ReleaseNotes_n.txt
N node_n.gif N N
=

I NN

\
-uses-‘\

\ «library»
\ Layers.js

/
‘ acroreader.exe
I

' «openss

- g javainstalier.exe

«hypertinkss ~~ N

Figure 3.14 Component Diagram for CD-ROM GUI.

60

Figure 3.14 on previous page shows the configuration of the CD-ROM GUI

system. There are three executable components:

- Browser.exe identifies the user’s default browser application used to render

HTML pages.

- Acroreader.exe represents the Acrobat Reader application used to open the PDF

files.

- Javainstaller.exe represents the Java Install Shield used to install the Java

virtual machine.

The autorun.ini file is an initialization file that on the Windows OS platform gets
automatically executed when the user inserts the CD-ROM into its corresponding drive. In
the CD-ROM GUI system, it will launch the browser to start the Network Map home page,
saved under the name nwkmap.html. This home page has a background gif showing the
network of interrelated product nodes; it loads two JavaScript libraries, Layers.js and
Loader.js. Loader.js calls the animation functions defined on Layers.js, with the
appropriate parameters; these functions create different layers like the welcome
introductory text region, the releases and platforms menus, and the Help and Exit buttons.
Another function, used to animate the active product nodes, is represented by the
dependency relationship between Layers.js and product nodes gifs. The Help button links
to the help.html file. The releases or platforms menu options link to its corresponding
roadmap.html file.

The roadmap.hmml page file contains a reference to the Roadmap applet that draws
and controls the content of the page. Using special Java plug-in tags, OBJECT and

EMBED, the browser is forced to launch the Sun’s Java virtual machine to run the applet; if

61

it is not installed in the user’s machine the user is directed to install it from a Web site—
Sun’s by default. The applet consists of a set of Java compiled classes, packaged into a
JAR format; the corresponding source code is represented by the applet.java file
component. A dependency relationship between the RoadmapManager.jar component and
the Acrobat Reader executable component represents the calls the applet makes to the
reader, launching it with a PDF file as parameter. This occurs whenever the user clicks on
one of the roadmap book buttons, on the Search, or on the Index buttons.

The help.html file hyperlinks to the Readme file that contains a User Guide to
install manually the software required: a Microsoft or Netscape browser, and the JRE. It

also provides a link to the Java installer included in the CD-ROM.

62

CHAPTER 4 CD-ROM PUBLISHING SYSTEM DESIGN

4.1 Design Rationale

The CD-ROM Publishing system (CD-ROM PUB) is the other component of the
EDSTDL system. It is essentially a subsystem that provides the services required to
automate the production of the CD-ROM GUI subsystem. The user’s interaction with the
system is limited to making menu selections, entering some input parameters, launching the
process, and waiting for the results. Following are the system’s principal constraints:

- The user expects to use the publishing system in a PC environment.

- The system needs to be developed quite quickly and with a minimum budget.

- The visual interface component of the CD-ROM GUI might need to be changed

in the future, as new customer’s needs appear.

I have developed an object-oriented design focused in creating objects that can be
easily changed and reused in other applications. To facilitate the future maintenance of the
system was one of the forces that strongly affected the distribution of responsibilities
among the classes. Even though the design was done having in mind a Visual Basic (VB)
implementation, it can still be implemented in other object-oriented languages, like C++ or
Java. It is important to mention that recently released Microsoft’'s VB.NET is now fully
object-oriented with the inclusion of class inheritance. Although with this new release the
Component Object Model (COM) technology created by Microsoft has been abandoned in

63

favor of the .NET platform, VB still fully supports the interaction with ActiveX
components like those included in the Microsoft Office applications. COM-based OLE
Automation enabled our application to control the OLE-enabled application Microsoft
Excel.

The design is centered in the Domain layer components which are presented at a
very low level of detail. The Presentation layer is briefly presented since it is practically
done by making use of the predefined classes that VB offers: forms, buttons, windows, and
other kind of widgets. Moreover, the Domain layer is where most of the operations are
happening; once the user selects the service he needs, all the processes to fulfill his request
are done behind the scenes, like in a batch system. He only receives a message back from

the application once everything finished and a log of events is generated.

4.2 Modeling the Structure of the System

The fundamental structure of the CD-ROM PUB interactive application is based on
the architectural pattern Model-View-Controller (MVC). This pattern divides an
interactive application into three components. “The model contains the core functionality
and data. Views display information to the user. Controllers handle user input. Views and

controllers together comprise the user interface.” [Buschmann 125].

64

4.2.1 Presentation Layer Structure

Figure 4.1 below presents a high level class diagram of the Presentation layer. It

illustrates how the GUI controls provided by Visual Basic are customized to create the

visual interface of the system. The Form, Menu, Button, and DirectoryList VB classes are

presented as parent classes of the actual classes used on the windowed interface of the CD-

Figure 4.1 Class Diagram for the Presentation Layer of the CD-ROM PUB System.

ROM PUB system.
Form
HelpMenu
FrmCDPUB Menu
1 q—
FileMenu
¢
1 [1 K
instantiates [[MGUICUStom] i tea| FIMGUIGEN | e Totage
r T C T 7]
I : | Browse P
I t 1 | 1 | 1
| - A
| | . : J.
: : DirectoryList | Button
| | !
| | |
| | ! Cancel
I | I
| | l
l A
— [| | 1 J
: PortfolioPath| | OutputPath | | [SpecificationPath| [TemplatePath | StageSpecPath| | CDRootPath SRCPath POFPath
[: !
| | I
i | :
N W
Ci C i GGController IsugeComrollor

65

The CD-ROM PUB system has a multi-document form (MDI) FrmCDPUB as
start-up object. The MDI form presents a menu choice to the user; depending on the menu
option that is selected—Customize GUI, Generate GUI, or Create Stage Area--the
corresponding child form will be loaded. These child forms consist of a window with
buttons to browse a folder, to launch the process, or to cancel it. As well, they present
different directory list controls that are used to indicate where the input files are placed and
where the output files should be stored.

During its initialization process, each of the child forms creates an instance of a

controller class: CustomController, GGController, or StageController.

4.2.2 Domain Layer Structure

Figure 4.2 on page 67 presents the class diagram for the Domain layer of the CD-
ROM PUB system. Some of the classes that appear in the Object Design Model are named
after their counterparts from the Domain Model. However, most of them were created
expressly to fulfill the needs of an object-oriented design, by applying the Pure Fabrication
design pattern. It is interesting to note that some of the decisions done during the
requirements-definition phase regarding class responsibilities did not longer apply within
the system design context. The final distribution of responsibilities among the different
classes was influenced by the following enabling techniques for software architecture
[Buschman]:

- Abstraction

- Encapsulation

- Information Hiding
66

T |IEventHandier

§___J

«interface»
Validator

+validate(in path : String) : Boolean)

[+validate(in path) : ool

+handieEvent() : bool}_

1 Uses

Gets actual file | 1
list from

Directory

+getFiles()

1 Gets StageSpec reference from

«interface»
[EventHandler

+handleEvenl(in event, in source) : bo

Figure 4.2 CD-ROM PUB System Domain Layer Class Diagram.

IValidator
T GGC ler 1 Gets Spec reference from
! ontroller | " T e -
Spec T _‘_ U_ses_1 !
¢ |s materialized by 1 -specStuct - +handleEvent() : bool TIEvem!-iander l
-valRelease() |
¢
Generates 1 +setinfo() 1 Generates Gets Portfolio I
+reformat() CustomControlier s reference from
+validate(in path) : bool 4 Uses - — — — ..I |
Updates | 1 \|/ 1 1 |[+handieEvent() : | :
NetworkMap Usesl 1 | |
-networkStruct] i
tinfoQ) 1 Generates ! |
IValidator +se | !
+genPage() | |
+genNetworkMapContent() F———— —— N — _l | [
+genLoIaderContent() I Validator l l
| 1 1 | T | [
Updates » | i 1 | |
1
. . 1 1 | R | Loader — A —
Generates| 1 L1 | |
Roadmap log 1 : Portiolio +validate(in path) : booq——' ‘ I |
proadmat -content 1 1 s dematerialized by | | |
Cinitialize() ropent) i A o
-setScreenTitle() close() Is updated | [+handieEvent() :boot | 1 | |
+setinfo() addMessage()| ®Y | [tvalidategin path) : bool] |
+genPage() | 1 | Is captured | |
+validate(in path) : bool 1 on |
7~ - | '
'I . isusedbyy, 1 | |
I uy.n’rgmpl.“ 1 IValidator | [
| | |
| rcustomizeTemplate() - - | I
[, setNodes() 1 Is materialized by 1 1 | Materializes \I/ |
| -gentayers() PersistenceFacade ! |
| Materializes 1 1]
Vo8 é. -
[1 [+get(in objlD, in classID) :
A A +put(in objID, in object)
| u 1 ™y
: Updates| 1 PersistenceFacade
1 Is materialized related classes’
| StageSpec by associations are detailed
in another diagram
: 1 Is used by
|
i
|

67

- Modularization

- Separation of Concerns

- Coupling and Cohesion

- Separation of Interface and Implementation

- Divide and Conquer

The design of the Domain Layer involved the use of several GRASP design
patterns. GRASP is an acronym that stands for General Responsibility Assignment
Software Patterns. “They describe fundamental principles of object design and
responsibility assignment, expressed as patterns.” [Larman 220].

The GRASP Controller pattern was applied in the creation of the event handler
classes CustomController, GGController and StageController. These controllers represent
as well the event handler component of the MVC design pattern and help to separate the
presentation from the application layer. In order to promote High Cohesion--another
GRASP design pattern--as well as to avoid bloating, a controller was created for each of
the use case scenarios. All controllers implement the EventHandler interface that specifies
the handleEvent operation signature with the source form as an argument and returning a
general validation status. Although not specified in the signature, this operation must
generate a log file.

Another GRASP pattern, the Information Expert, was applied when assigning
responsibilities to the controller’s helper classes: Spec, Portfolio, Roadmap, Loader, and
StageSpec. In the class diagram on previous Figure 4.2, the using relationships between
each controller and its helper classes are presented as dependencies. Since these classes

have all the information required to validate the content of the different GUI specifications;

68

they were assigned with the responsibility of validating the information, from a business
rules perspective. All of the controller’s helper classes implement in their own way the
interface [Validator.

The CD-ROM PUB subsystem makes extensive use of I/O based operations. Most
of the objects representing the output CD-ROM GUI content like the Network Map and
Roadmap HTML pages, Layers and Loader JavaScript files, need to be stored in the user
PC’s hard disk. As well, the CD-ROM GUI input specification files need to be retrieved
from the hard disk and materialized into the different objects Spec, Portfolio,
LayersTemplate, or StageSpec. The tasks of materializing and de-materializing these
objects are fulfilled by several classes implementing the interface /Mapper. [Mapper
defines two operations, ger and put, that retrieve and store an object from and into the hard
disk. A different mapper class was needed for each persistent object and each of them
implements the ger and put methods in their own way. The Low Coupling GRASP pattern
and the Fagade pattern were applied by creating the PersistentFacade class. This class
provides a unified interface for the different mapper classes and the classes undemeath
them. All the objects refer only to one class instead of accessing directly each of the
different mapper classes, achieving with this low coupling. Although we are not presenting
the design of a highly sophisticated persistence system, the classes built here constitute the
base of a simple disk storage subsystem that could be easily reused and extended in other
applications. A dependency relationship between the controllers and the
PersistenceFacade class is emphasized on previous Figure 4.2.

Certain classes, like PersistenceFacade and Log, need to support global visibility as

well as a single access point to a single instance. Instead of passing around an instance as a

69

—— e e e ——— e —

parameter or initializing the objects that need visibility to it with a permanent reference, the

Singleton design pattern is applied. This is shown on the class diagram of previous Figure

4.2 on page 67, by specifying a multiplicity of one in the Log and PersistenceFacade class

icons.

The Persistent Object Storage Class Diagram on Figure 4.3 below, presents the

different classes that lie under the PersistenceFacade class. This fagade class was created

by applying the GRASP pattern of Pure Fabrication. It does not correspond to anything in

the Domain Model; it is there for the convenience of the software developer.

Figure 4.3 Persistent Object Storage Class Diagram.

PersistenceFacade 1
clasleJ
+get(in objID, in classiD) : Object]™,
+put(in objID., in object)
=interface»
IMapper 1
+get(in objlD) : Object
{+put(in objlD, in obj : Object)
|
|
|
gt et i) A S R
StageMapper| LdMapper TxtFileMapper] RoadMapper GUISpecMapper] LTMapper PortfotioMapper]
+get() +get() +get() +get() +get() +get() +get()
+put() +put() +put() -put() +put() -put() +put()
instantiates [linstantiates | insartatoe | instantiates] | instantates | | I | instantiates
| | IO B {
l | | ! b | | CT |
Sl N/ N/ AN N N
StageSpec | Loader ! Fosdmap | Spec | [LayersTampiste | Portfolio
| | [roadmapStruct -spacStruct l
+validate(in path) : bool| | [.validate(in path) : bool| | {-initialize() | valR +customize Templata() I +handieEvent() : bool
| } [-setscreentitieq | |+seuntoq) | [+setnocest) | lvalicatein path) : boo
l ' +satinfo() +reformat() -genLayaers()
+genPage() | |svalidate(in path : boai{ | l
| [idate(in path) : bool | | |
_______ _I_T_._.__l__._——-l |—-————-—1
-~ -~
J, 1s Useaby {/ 's Usedby
FlleManager There couid be many other classes WorkBaok
the different mappers use but we are
+write() only showing here the most representatives. i +getcell()
+read() +putcell()

70

43 Modeling the Behavior of the System

In the following pages we will see how all the classes previously presented interact
with each other in the realization of the major use cases. Sequence diagrams are used to
illustrate the passing of messages over time. The messages exchanged between the
Presentation layer classes are only detailed in the first sequence diagram, the GUI
Customization use case. The same kind of interaction applies for the rest of the publishing

options.

4.3.1 GUI Customization Publishing Option

Earlier in chapter 2, the GUI Customization use case was presented as an essential
service the CD-ROM PUB system must provide. Once the need for a new portfolio of
products arises, the technical illustrator creates the artwork required for the Network Map
HTML page of the CD-ROM GUI. He then uses the GUI Customization publishing option
to automatically customize the CD-ROM GUI.

The CD-ROM GUI subsystem design presented in chapter 3 specifies a JavaScript
Layers file containing the library of JavaScript functions that animate the Network Map
home page. The GUT Customization publishing option automatically makes the necessary
adjustments to the Layers file in order to reflect the new portfolio of products. The product
node’s position might change when introducing a new product in the Network Map. As
well, the background image might change in the case of a completely new portfolio.

Figure 4.4 on page 72 presents the interaction diagram for the GUI customization
option. The actor of this use case, the technical illustrator, selects the GUI Customization

!

Lillustrator

L
]

1. lllustrator selects
CustomizeGui menu
option.

2. After system shows
the GUI Customization
form, user browses to
locate portfolio artwork
xls file and output
folder. He then clicks
button to launch
customization process.

3. The event is sent to

- click() N

mnuCustom_}

>
4

load()

]
GUICustomScreen
4~
enterfields{baseTempiPath,
portfolioPath, outputPath)

processButton_click()

the contrailer. Controlter |

gets an instance of the
PersistenceFacade
object and calls its get()

method with the portfolio :

class as a parameter.

4. PortfolioMapper
creates an instance of
an Excel ActiveX object
and reads the contents
af the portfolio artwork
file. ft then instantiates
the Portfolio object.

5. Controiler calls the
validate() method of the
Portfolio object.

6. Portfolio retums a
validation status to
Controller. If no errors
found, Controller calls

the Portfolio’'s method to

generate the template.

7. Portfolio retums a
reference to the newly
created NetworkMap
object. Controller then
calls the NetworkMap's
method genPage() to
have the NetworkMap
HTML and JavaScript
files generated.

8. Log is closed and
saved.

9. The appropriate
message is sent to the
user once the process
is finished.

(

«create=

source)

genTemplate() B.
and genPage()
methods are
explained in i

another diagram.

status

generate
Mess()

handieEvent(event,

open{outputPath)

«singleton=

Log

=singleton»

get(portfoiio :
Path&Name |
, portfolio) ™

pm;PonfolioMapper

|
control the !
Excel application. |

get(portfolioPath
&Name)

I
1
—

2——-(|
validate(") *

=Create»

xWorkBook

setObject(port ¢

folioName)

getCell(cellrange!

cellsContent
— — —

setData

«create»

Members
. f

folioStruct)

[status=noerror]

[status=noerror]
genPage(tempiPath&Name, outputPath)

close()

Figure 4.4 Sequence Diagram for GUI Customization Use Case, Part I.

72

menu option found on the MDI start up form. Once the FrmGUICustom form object is
loaded, its corresponding event handler class, CustomController, is created. After the user
enters all the required input parameters and presses the process button, FrmGUICustom
object simply sends the handleEvent message to the controller.

CustomController object gets an instance of the PersistenceFacade singleton class
and calls its ger method with portfolio class as a parameter, to have the Portfolio object
materialized. The Portfolio object captures the artwork specification previously captured in
a spreadsheet by the illustrator. The PersistenceFacade class will in turn create an instance
of the appropriate mapper object, in this case the PortolioMapper, and calls its get method
indicating only the exact path and file name. The class argument is no longer needed, since
the type of object is already hardwired in the PortfolioMapper code.

After getting a reference to the newly created Portfolio object, the controller calls
its validate method so that node’s x and y coordinates as well as other business rules get
validated. If no major errors were found, controller calls the Portfolio’s method
genTemplate in order to customize and generate the new Layers template file.

The genTemplate method of the Portfolio object is presented in Figure 4.5 on page
74. This method consists of updating the Layers base template to reflect the new
Portfolio’s artwork specification. After the template has been customized, it is physically
saved on hard disk under a new name. To finalize, the genTemplate method creates an
instance of the NerworkMap object initializing it with a ‘demo’ parameter. The ‘demo’
parameter indicates that all nodes are to be activated so that the technical illustrator can
visualize the final result. The new template name and the NenworkMap object’s reference

are returned to the controller.

73

1. Portfolio object gets an
instance of the
PersistencefFacade object
and calls its get() method
to have the
LayersTemplate object
instantiated.

2. Portfolio sends the
appropriate information
about the new template
that needs to be created
to the customizeTempl()
method of the
LayersTemplate object.

3. The new template is
physically saved by the
LTMapper.

4. Portfolio instantiates
the NetworkMap object
and initializes it with a
‘demo’ parameter. This
means all nodes and
menu options need to be
activated

5. The controller then
calls the genPage()
method of the
NetworkMap.

6. NetworkMap calls the
get() method of the
PersistencefFacade object

to have the
LayersTemplate object
instantiated.

7. NetworkMap then calls
the genLayers() method to
have the Layers js file
generated and physically
saved. its content consists
of DHTML functions.

8. The NetworkMap object
then generates the content
of the Loader object. It
consists of JavaScript
function calls to create the
Welcome Text and the
release menus. it is saved
under the name Loader.js.

9. The NetworkMap HTML
page content is generated
as well. Content is
predefined and the only
variable parameter is the
background image to be
used, which is indicated in
the specification file.

p:Porfolio
«singleton»
PersistenceFacade
get(baseTemplPath, :
layersTemplate) - .
; «create» | tm:LTMapper
]
! get(baseTempl |
: Path
! «create~| |tLayersTemplate
t
: setNodes() !
1
! AL
1
! customizeTempl(nodesX,nodesY, : H
t nodesNames, templateName) ' 1
' T - >
1 1
{ ut(outputPath, it ' !
! putloutpu) :l' Iput(oumutPath.lt) Ej :
! T
l) ! i
: «create» | iNetworkMap '
i]
: setinfo('demo’, : :
1 activeNodesll, | '
A menuOptionsf], _L 1
]
templateName, n bgimage) !
— — — \
T [I Se
1 | See get method detaiis
genPage(templPath&Name, get(templPath& : | at the top of this diagram.
outputPath) Name, 1| Here the template that i
layersTemplate)! | has just been generated i
i is loaded. |
it2:LaversTemplate
L] |
' : |
: genLayers(outpytPath)
E genlLayers
1 Content()
I put(outputPath&Name,
bi
genLoadenl 1
Content() ;
]
~create» ! Id:Loader
1
setinfo(strconte! nt) R
" >
put(outputPath&ll D
Name,Id) 1
————b
I
genNetworkMap{ Content()
E
put({outputPath ;
&Name, txtobj) E:I
L,

Figure 4.5 Sequence Diagram for GUI Customization Use Case, Part II.

74

After that, Controller calls the NetworkMap object’s method genPage also
presented in Figure 4.5. The new instantiation of the LayersTemplate object might seem as
task duplication, since it has been previously instantiated on the genTemplate method.
However, separation of concerns as well as code reuse were behind this design decision
and we will see on the next use case the advantages of this implementation. The method
genLayers of the LayersTemplate object generates the content of the JavaScript Layers file
and physically saves it by using the services of the singleton PersistenceFacade. After this,
the NenworkMap creates the Loader object and sets its content, which consists of calls to
the JavaScript menu functions contained in the Layers JavaScript file. Loader is also
physically saved on hard disk. Finally, the NenworkMap object generates the content of the
Network Map HTML page, and physically saves it.

After control returns to the CustomController object, as shown on Figure 4.4 on
page 72, the latest calls the close method of the Log object to have it physically saved to
disk. The controller’s method handleEvent ends by returning the validation status to the

FrmGUICustom object which in turn presents an appropriate message to the user.

43.2 GUI Generation Publishing Option

Another essential service the CD-ROM PUB system provides is the GUI
Generation use case. On page 76, Figure 4.6 presents the sequence of messages that get
exchanged between the classes participating in the GUI Generation use case, Part I. Once
the actor of this use case, the technical writer, presses the process button the FrmGUIGen

object sends the message handleEvent to the GGController oject.

75

1. After Technical Writer
enterad all input data into
the GUI Generation screen,
he prassed the button to
process and event is sent to
the GUI Generation
controiler, GGcontroller.

2. GUI Generator Controller
gets an instance of the
PersistenceFacade object
and and calls its get()
method to have the Spec
object created.

3. The Specification is
formatted and then validated
by the Spec object.

4. If no major efrors are
found, the controller calls
the put() method of the
PersistencaeFacade object to
have the formatted
specification file physically
saved.

6. If no major errors were
found, controller calls the
makeDetailSpecs() method
of the Spec object to have
the NetworkMap and
Roadmap objects created.

7. Process continues in
another diagram.

8. Once the whole generation |

process is finished by the

controlier, the validation status;

is sent to the COPUBFomm
which will display the
appropriate message to the
user.

I
'

! ~singleton»
A Log
open(outputPath) T

«singleton» TI
get(specPath, 1_
«create» | grm:GUiSpecMapper
get(specPath&Name :WarkBook
spec)
—
setObject(specName) !

getCell(cellRange)

| cefContont

'
[status=noMajorError] makeDetailSpecs()

v

i
Isetinfo(specStruct) H -
s >
5] :
[reformat:yesT raformat() Bl : addMessage
! 1 H (stats)
validate(") H !
+ T 1 valRelease |
= i =
: H 1 addMessage !
! H : (errorMess)
status | ‘ : - | l
------- 1 e it I S
[status=nomaiji : ! 1 !
orerorjput(out ! 1 H !
Path,s ! |]
put) reset() o ! !
» ' H
compute H H
Value 1 :
saCali{callRange) | i :
P]
*[end of struct : '
1
saveAs(outoputPath i :
1

nmNetworkMap

«Create»
I;tlnfo(weloome H
Text,activeNodes :
[.menuOptions{],.bg Image)

CBoadmap

)
*setifna(scraenTitl e,Columns(,]

! «creates
This section is continue:
in another diagram.
7/
ndl ") Index,Search)
b = oo m oo oo o oo mooossoo oo oo onmo oo T
close() !

D"stams

*fend of Release[_l;]
|

Books{],BookTexi[], Mnt?f]
]

\ [}
\

setinfo method is the constructor
of the Roadmap class. Each object
created is added to a list.

Figure 4.6 Sequence Diagram for the GUI Generation Use Case, Part I.

76

GGController object gets an instance of the PersistenceFacade singleton class and
calls its ger method with spec class as a parameter, to have the Spec object materialized.
The Spec object captures the GUI specification instructions previously captured in a
spreadsheet by the technical writer. The PersistenceFacade class will in turn create an
instance of the appropriate mapper object, in this case the GUISpecMapper, and calls its
get method indicating only the exact path and file name. After getting the reference to the
Spec object, the GGController calls its reformat method so that the specification text
content is reformatted accordingly to the business rules. Statistics about quantity of
Roadmap pages, quantity of book links per page, spreadsheets processed, and others are
generated and added to the log. After the reformatting is applied, the validate method of
the Spec object is called to have the specification validated. If no major errors were found,
GGController makes sure the reformatted Spec object gets physically saved. This is done
in order to offer the user the choice of manually changing the reformatted spreadsheet,
since the user might want to change the way the formatting was done in certain cases. The
user can indicate to the system that the spreadsheet is already reformatted, by setting the
appropriate parameter in the customization form, so that no formatting is automatically
done.

If no major errors were found, GGController then calls the makeDetailSpecs of the
Spec object. This method organizes the global specification into two separate objects, the
NetworkMap object and the Roadmap collection object. The genPage method calls are
illustrated on page 78, Figure 4.7. As the figure states, the genPage method of the
NetworkMap object has been previously explained in the GUI Customization use case

sequence diagram, Part I on Figure 4.5 on page 74. Code reuse is achieved. The genPage

71

1. The controller calls the
genPage() method of the
NetworkMap object in order
to have the NetworkMap
page HTML and JavaScript
related files generated.

2. The genPage() method of
the Roadmap object is called.
The Roadmap object
generates the content of the
Roadmap htm! page.

3. The Roadmap object is
physically saved.

4. Statistics about total pages
generated, columns, books,
etc., are added to the Log.

: n:NetworkMap

]
genPage(tempiPath :

* genPage(outputPath)

Please refer to

Figure 4.5 to see the
details of the genPage()
method.

D * [end of list r]

l initialize(pageName)
I setScreenTitle

(screenTitle)

setBooksLinks(

.__:l booksLinks{)

setColumnTitle
(columnTitle)

setBooksTitle(b
ooksTitle[)

* [i<=totalcolumns]

«singleton»

Persistencefacade

put(outputPath, r)

L)

>

addMessage(totalsProcess)

1 4

put{outputPath, r)

Figure 4.7 Sequence Diagram for the GUI Generation Use Case, Part II.

method of each of the members of the Roadmap collection is called. This method consists

of setting the values of the data structures that represent the content tags, like page name,

roadmap columns titles, book title, etc. These tags are later on used as input for the

Roadmap Applet previously designed in chapter 3. Once the data structures are set, the

78

Roadmap object calls the pur method of the PersistenceFacade object with roadmap class
as a parameter. The Roadmap HTML page gets physically saved into disk. As well, and
for each processed Roadmap object in the collection, statistics are generated and added to
the log.

Once control returns to the GGController object, as shown on previous Figure 4.6,

the controller closes the log and returns the status to the FrmGUIGen object.

433 CD-ROM Stage Area Creation Publishing Option

On page 80, Figure 4.8 presents the sequence diagram for the CD-ROM Stage Area
Creation use case. After the CD-ROM creator chooses this option from the CD-ROM PUB
system, the StageController object is created by the FrmStage object. After setting the Log
location, it performs its private method createStage that consists of copying all the files
from the src folders to the root folder of the CD-ROM virtual partition indicated by the
user. After that, the StageSpec object is materialized by the PersistenceFacade. It contains
the specification of the constant folders and files that must be included in the stage area of
the CD-ROM GUI application. After getting the reference to the SrageSpec object, the
controller calls its validate method with the cd root path as an argument. This method
compares the actual content of each of the src folders against the stage specification
information previously materialized into the StageSpec object. The Log object is updated
with any error messages that might apply.

After the validation of the stage constant file structure, the controller gets the list of the
Roadmap HTML files stored in the src folder. It then iterates through this list, to get the

instance of the corresponding Roadmap object and call its validate method to have all
79

FrmStage

s:StageController

1. After CO-ROM Creator |
entered all parameters :
needed, checkStage

event is passed to the
StageControiler.

2. The content of the input
folders is copied into the
cdRoot folder when the
createStage() method is
executed.

3. StageController gets an
instance of the
PersistenceFacade object
and calis its get() method
with stagespec as a
parameter. [t receives a
reference to the StageSpec
object that contains the
specification about the
folders and ‘constant’ files
that make up the CD stage
area.

4. StageController calls the
validateStage() method of
the StageSpec object.

S. StageController gets the
list of htm files names
containing the Roadmap

1
1
|
1
)
1
1
1
]
1
]
L]
]
1
]
L]
]
t
]
]
]
]
]
t
’
t
[}
i
]
]
]
t
]
]
I
I
)
[}
]
|
[}
]
[}
]
pages. H
[}
[}
3
]
]
]
[}
!
[}
[}
[}
1

get(hmiFile H
} Pathfi])
6. StageController gets the | ~createy LHoadmap
reference to the Roadmap : — — —— — !
object for each of the 1 |
HTML pages. It calls their ! | 0
validate() method to i validate{PDFPath) : , o
validate the POF links. H : inks()
: | [error=yes) addMessage(errMess)
H status ! —
| =1 — = — -
: || | end of list ntmiFilé Path) ! v
7. StageControlier gets an : get(srcPath, :
instance of the Loader | | loader) i
object and calls its [| -creates| idm:LdMapper |
v::zte(t)n method to H . ¢
v te the menu options ! et(srcP '
links. : get(srcPath) idiloader ;
| Id '
! ——— !
! validate(") l ' ;
8. Log is closed and H [error=yes| addMessage(errMess) \
physically saved. The Staws
validation status is sentto | 1
the COPUBForm which wifl (7] 0o |_close()
display the appropriate — — —
message to the user. nn

Figure 4.8 Class Diagram for the CD-ROM Stage Area Creation Use Case.

—_

handleEvent(:
avent, source) |

open(cdRootPath)

:] createStage()

«singleton»

roadmap)

[]
A pre-defined Stage Are H
get(path,stage [spacification is contained '
| spec) in a physical ini file, that is 4
. create~ | SMLStageMapger read by the StageSpec. !
T]
get(path) :
] «create~| ss:StageSpec !
]
setFolders : :
(folders(})] t
ss '
— — — - '
validats(cdRoot ! ' :
Path) 1 :
]
: :] chkFiles() '
]
' [error=yes] addh
status ,
— — — —— — — — — — — 4
' -
scroster 1| gDineciory '
getf htmiy
¥
humiFioPan] | _ﬂ
| | H
get(htmiFilePath(i], :

the book’s PDF links validated. The log is updated with the appropriate messages and a
validation status is returned with each list’s iteration. Finally, the last stage validation is
performed by getting an instance of the Loader object and calling its validate method.
Loader validates that all menu links references to pages exist. It updates the log with the
appropriate messages and returns a validation status. To finish the process,

StageController closes the log and returns a validation status to the FrmStage object.

44 Architecture: Component Diagram

Contains each

of the Form classes
«Visual Basic Exe» uisve andits corresponding

Controller.

Contains all of the
«ActiveX DLL.» brsvc Domain layer classes.

N\
AN

X

«ActiveX DLL» pssvc Contains the Persiste!
Storage classes.

Figure 4.9 CD-ROM PUB System Component Diagram.

Figure 4.9 above, shows the component diagram for the CD-ROM PUB system.
The component uisv, User Interface Services, maps to the logical Presentation layer;
uisvc.exe will be a standard Visual Basic EXE project and will contain all the forms and its

associated controllers. This component depends on the next component, brsvc, Business
81

Rules Services. Brsvc.dll will be an ActiveX DLL in process, which means that it will run
in the project space of the .exe. It will contain all the domain classes and depends on the
next Persistence Storage component, pssvc. Pssvc.dll will be made into an ActiveX DLL
in process component as well. It will contain the PersistenceFacade, all the mapper

classes, and their helper classes. [Reed].

82

CHAPTER S5 CONCLUSION

We have seen how the documentation needs of both technological companies and
their customers can be satisfied with the EDSTDL system solution. The qualities of this
solution satisfy both users’ requirements for a low budget and fast solution as well as for a
highly searchable and navigable uniform visual interface. The present economic conditions
played an important role in the conception of this solution. The solution needed to fit into
the companies’ legacy publishing systems; otherwise its cost would have been too elevated.

The complete solution, which consists of the two subsystems CD-ROM GUI and
CD-ROM PUB, had to be carefully designed in order to minimize the interdependency
between these two subsystems. The CD-ROM GUT's variable components were clearly
identified and separated from the static ones, in order to automate the generation of the
formers. Through the use of UML, object-oriented design techniques, and the application
of software design patterns, the conception of a software system that could be easily
extended and maintained was achieved. The classes presented here represent the base of a
class library that can be reused in the future in other applications.

From the documentation readers’ point of view the presence of searchable PDF
files and a browser in the final solution, means interacting with visual interfaces already
familiar and that have become of universal use. Hence, the users’ learning curve is reduced

to a minimum.

83

The decision of making the visual interface browser-based had the non-negligible
advantage of code reuse on the system’s future Web implementation. However, this
decision brought some constraints to the system. The use of Sun’s Java virtual machine
became mandatory since programming for so many different flavours of each existent
browser’s Java would be an almost impossible task to achieve. Similarly, the need for a
Security Certificate to sign the applet arose, and with this the present limitations of the
available code signing certificates, whose maximum period of validity is only a year. All
that having said, it could be useful in the future, to make a conversion of the CD-ROM GUI
Presentation layer from browser-based to stand alone Java application. This conversion
would be very straightforward; the applet already being a kind of mini-application and the
Network Map page having an object based design. Furthermore, the system would benefit
from moving the Network Map page from the rather unstable JavaScript environment to
the more stable Java programming language.

Future work can certainly be done in order to add Web and Server-based
functionalities to the application. As well, the automatic generation of the GUI
specifications files, in a XML format instead of Excel spread sheets inputted manually,
could be implemented by extracting the books’ title and summary directly from the Frame
Maker or PDF source files.

The use of the UML for the modeling of the system was an enriching experience.
The solution’s UML model can be directly connected to different programming languages.
In the future, any developer can interpret this model in a unique way, since each UML

symbol and notation has well-defined semantics behind it.

84

To conclude, the EDSTDL system solution contributes in an original and effective
way to the fulfillment of the industry’s need for publishing technical documentation in a

universal searchable electronic format within restricted economic and time deadlines.

85

BIBLIOGRAPHY

Adobe Systems Incorporated. “Adobe® PDF Workflows for Print Production”. BCXXXX
01/01. Retrieved February 8, 2003 from

<http://www.adobe.com/print/prodzone/pdfs/PDFW orkflow.pdf>.

-—. “Adobe® Acrobat® 5.0 User Guide for Windows® and Macintosh”. 2001. CD-ROM.
March 3, 2001.

---.Adobe Frame Maker Home Page. 2002. Retrieved September 01, 2002 from
<http://www.adobe.com/products/framemaker/keyfeature9.html>.

Barret, Dan. Essential JavaScript™ for Web Professionals. Ed. John Neidhart. 2nd. ed.
Upper Saddle River, NJ: Prentice Hall PTR, 2003.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Reading, Massachusetts: Addison-Wesley, 1999.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture: a System of Patterns. Chichester, New
York: John Wiley & Sons, 1996.

Conallen, Jim. Building Web Applications with UML Second Edition. 2nd. ed. Boston:
Addison-Wesley, 2003.

Constantine, Larry L. and Lucy A. D. Lockwood. Software for use: a practical guide to the

models and methods of usage-centered design. Reading, Massachusetts: Addison-
Wesley, 1999.

Eidahl, Loren D., et al. Using Visual Basic® 6. Ed. Sharon Cox. Platinum ed. Indianapolis:
Que Publishing, 1999.

86

Goodman, Danny. JavaScript® Bible. Ed. Nel Romanosky. Gold ed. Indianapolis: Hungry
Minds, Inc., 2001.

Hardee, Martin et al. “What is Java™ Technology”. 2002. Retrieved October 01, 2002
from <http://java.sun.com/java2/whatis/>.

Holzner, Steven. Java Black Book. Scottsdale, Arizona: Coriolis Technology Press, 2000.

Larman, Craig. Applying UML and Patterns: an Introduction to Object-Oriented Analysis

and Design and the Unified Process. Upper Saddle River, NJ: Prentice Hall PTR,
2002.

Microsoft Corporation. “MSDN Library Visual Studio 6.0”. 1995-2000. CD-ROM.
December 15, 2002.

Reed, Paul R. Jr. Developing Applications with Visual Basic and UML.. Reading,
Massachusetts: Addison-Wesley, 2000.

Roman, Steven, Ron Petrusha, and Paul Lomax. VB.NET Language in a Nutshell. Ed. Ron
Petrusha. 2nd. ed. Beijin: O’Reilly, 2002.

Search Tools Consulting. “Searching PDF files”. June 19, 2002. Retrieved September 09,
2002 from <http://www.searchtools.com/info/pdf.html>.

Sun Microsystems, Inc. “How RSA Signed Applet Verification Works in Java Plug-
in”.2002. Retrieved August 28, 2002 from
<http://java.sun.com/j2se/1.4.1/docs/guide/plugin/developer_guide/rsa_how.html>.

Sun Microsystems, Inc. “Frequently Asked Questions — Java Security”.2001. Retrieved
July 26, 2001 from <http://java.sun.com/sfag/>.

Weber, Joseph L. Using Java™ 2 Platform. Ed. Tim Ryan. Special ed. Que Publishing,
1998.

87

