INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

TEST ADEQUACY MEASUREMENT FOR REAL-TIME
REACTIVE SYSTEM

REN WEI HE

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2003
© REN WEI HE, 2003

i+l

National Library Bibliothéque nationale
of Canada du Canada
uisitions and uisitions et
g%ﬁographic Services ggqrvlces bibliographiques
395 Wellingion Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your s Votre réldrence
Our s Notre réideance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77712-X

Abstract

Test Adequacy Measurement for Real-time Reactive System

Ren Wei He

Concordia University. 2003

In the context of safety-critical svstems. which are real-time reactive systems, testing
process process must be integrated with the software development process as a whole. not
Just with the end product. Consequently. measuring the efficiency of the testing process
emerges as an important issue. To be accurate and meaningful. both the measurement and
the components to be measured must be precisely described. The measurement should
conform to the axioms of measurement theory. and the software development process
should be grounded on rigorous formalism. In this paper we introduce test adequacy
measurement for measuring the efficiency of testing process integrated into a rigorous
environment for developing real-time reactive systems. The test data adequacy
measurement associates a degree of test set adequacy according to the test data adequacy
criterion to indicate how adequately the testing has been performed. There are two
important measures associated with every test data adequacy criterion and minimum
number of test cases. The measurement method is illustrated with Train-Gate-Controller

design. a bench-mark example in real-time system design.

11

To my family.

v

Acknowledgments

I would like to thank my supervisor Dr. Olga Ormandjieva. She guided me throughout
my study at Concordia University and played a significant role in shaping my major
report. Without her wisdom, her unfailing guidance, constant encouragement and
insightful comments, this work would not have been possible. I am really fortunate to
have had such a great supervisor to go through this work.

[thank the faculty, staff and students of the Computer Science Department at Concordia
University for providing me with a stimulating, and yet personal environment to work.
On a personal level, I thank my wife Xiao Yun Weng for her support and help, and my

son and my pretty baby for their patience, understanding and love.

Contents

List of Figures

1 INEroduction......ccieieierimeerieieiieiurerererinsaisescsessesrssssceternscssesssacacsssncasas 1
I.1 Real-time Reactive SYStem.......oovieriniiiiiii e l
1.2 Test Adequacy MEasUTEMENT.ueuuutineiinenit et et eneeanennens 2
1.3 Case Study DesCription.......c..oeiuiniiinii it 3

2 Test Adequacy Measurement for Real-time Reactive system............c.ccceev.....6

21 INtrOdUCHION. ..outi e et 6
2.2 Background....... ... 7
2.2.1 Test Case Adequacy Measurement............oceuvevniniiniininininenennn.. 7

2.2.2 Formal Foundation............ ... i, 9

2.3 Metric-Based Approach........c....ooiiiiiiiiiii i, 11
2.3.1 Formal Representation and Abstraction of the Test Cases Domain........ 12

2.4 Testing Distance MeasUreémMent.ocoueintiieininniiiean i 13
2.5 Metric-based Test Set Selection............ccooveviiiiiiiiiiiiiiiiiiie e, 16
3 System Design......ccciuvinieieieiiiiiiniiiiiiiiieiiieiiiietiiiiierreeectetttenseecenceenes 18
3.1 INtrOdUCHION. ..ot 18
3.2 Architure Diagram...... ..o e 18
3.3 Filter SubSySteM.....oomiit it 20
3.3.1 INtrodUCHiON.couitiiii it e e 17
3.3.2 Classes of the Testcases Filter..............ooooiiiiiiiiiiiiiii i, 21
3.3.3 Sample RUNNING........ccooiiiiiii i 27

vi

3.4 Selector SUDSYSIEM. .. .cutineniit i 28

3.4.1 Basic Classes of the Testcases Selector....................ooo. 30

3.4.2 Sample Running...........oooooiii e 35
4 ConCluSiONS....ceceiueiiiiiieieieiiniitiiiiaiertrierecetncncetesnretermnsoteceesacensnereses 41
L 42
Appendix A: Java Printing Selector........cceeeiinieininiiniiincrnieieinereiiiicincne 44
Appendix B: Java Printing Test.......cccceiereniinieiiiiiiineiiiiiiiaiiiiiiricciecinnens 46
Appendix C: Java Printing TestCase......cccceveienrenneieinieirrncnieciniicresennenns 51
Appendix D: Java Printing File......ccccoievveiniiiininniiineieteiiiitiinieiiiecececnnn 53

vii

List of Figures

Figure I:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
'Figure 7:
Figure 8:

Figure 9:

State Diagram of Class TrAIMN.......c..c...ceeiieniiiiiiiiiininiiieenaeeeieeeeeeeeee, 4
State Diagram of Class Controller................ccccooeeeiomiiniaeiieinieiieeaeeneennnn.. 5
State Diagram of ClassGate.cccceuueeeeneiireueeeeennaaaieaeaeieeeeeeenn, 5
Array Representation of Test CaASeS........couueueeueeeeneeeiaaeeeaeeeeneevrieeennnn. 15
System Architecture Diagram of Test Adequacy Measurement.................... 18
Original TESICASES.cccuvueeeeeneeeeeeeieee et e e 21
Classes of the Testcases Filler...............ccoouveveeiiiniiiiiieeiiaeeaeianannnn 22
Binary Testcases From the Filter.............ccoooeeeeeeeeniiiniiiiniiiiiiiiieennaaenn. 28
Selector Class DiG@ram..................cooeeeeeeieieiiieeeeeieee e eeeeee e 31

viii

1 Introduction

1.1 Real-Time Reactive System

The distinctive feature of a reactive system is the continuous interaction between the
system and its environment. The system receives and sends messages through a hardware
interface consisting of sensors and actuators, giving rise to stimulus-response behavior.
The sequence of intervations depends on several factors, the most influential being the
level of coupling between the entities in the environment. In the case of real-time reactive
systems, stimulus-response behavior is regulated by timeing constraints. Alarm systems,
air traffic control systems, nuclear reactor cotrol systems, railroad crossings and
telecommunication systems are typical examples of safety-critical systems involving
concurrency and synchronous communicaton between actuators, reactors and reactive
entities. Common to all these applications is the notion of reactive behavior, wherein the
relationshop between input and output over time, complex sequencing of events and the
way they constrain the computations are described. The term reactive was introduced by
Harel and Pnueli [HP85] to designate systems that continuously interact with their
environment and to distinguish them from the interactive and transformational systems.
Two important properties characterize real-time reactive systmes:
o stimulus synchronization: the process always reacts to a stimulus from its
environment;
® response synchronization: the time elapsed between a stimulus and its response is
acceptable to the relative dynamics of the environment, so that the environment is

still receptive to the response.

The main issue in the development of safety-critical systems is to produce a reliable
design. The real-time system design is a conceptual solution to the domain problem and is
the basis for an implementation of the solution. Its quality is essential for the economics
of the software development and the reliability of the final product. In order to achieve a
high level of reliability, the design must be supported by a rigorous formalism. The
formal object-oriented method TROM [Ach95] has been studied as a formal basis for
the development of real-time technologies, and provides a formal basis for specification,

analysis and refinements of the real-time reactive systems design.

1.2 Test Adequacy Measurement

In software industrial practice, the high cost of development process of large-scale
software has put emphasis on the need to prevent problem occurrence, rather than fix
errors during the later phases of a software life cycle. The goal of test adequacy
measurement is to quantitatively assess software-testing efficiency [AO2000]. We focus
on the measurement of the test adequacy. In order to achieve this, the measurement of the
test adequacy must be based on the theory of software measurement, and the components
and development processes to be measured must be precisely described on the basis of a
rigorous formalism. The formal foundation of test adequacy measurement is based on the
operational semantics in TROM theory. We illustrate our model and testing measurement
on a Train-Gate-Controller example, a bench-mark case study in real-time research
community. A tool for automatic gathering of testing measurement data and analyzing it
is being implemented as part of TROMLAB [AAM98], a real-time reactive systems

development environment.

[£%)

1.3 Case Study Description

In the train-controller-gate problem, several trains cross a gate independently and
simultaneously using non-overlapping tracks. A train chooses the gate it intends to cross;
there is a unique controller monitoring the operations of each gate. When a train
approaches a gate, it sends a message to the corresponding controller, which then
commands the gate to close. When the last train crossing a gate leaves the crossing, the
controller commands the gate to open. The safe operation of the controller depends on the
satisfaction of certain timing constraints. so that the gate is closed before a train enters the
crossing, and the gate is opened after the last train leaves the crossing.

A train enters the crossing within an interval of 2 to 4 time units after having
indicated its presence to the controller. The train informs the controller that it is leaving
the crossing within 6 time units after sending the approaching message. The controller
instructs the gate to close within 1 time unit after receiving an approaching message from
the first train entering the crossing, and starts monitoring the gate. The controller
continues to monitor the closed gate if it receives an approaching message from another
train. The controller instructs the gate to open within 1 time unit of receiving a message
from the last train to leave the crossing. The gate must close within | time unit after
receiving instructions from the controller. The gate must open within an interval of [to 2
time units after receiving instructions from the controller.

Figures 1, 2, 3 show the state chart diagrams for the controller, train and gate.
Together, they specify the behavior of a Train-Gate-Controller system. When there is no
train in the system, the train is in the state “idle”, the controller is also in the state “idle”.

and the gate is in the state “opened”. When a train wants to pass through a crossing, it

sends the message to the controller; the train and controller change their states
simultaneously. In the state “activate”, the controller may receive “Near” messages from
other trains or it sends the message “lower” to the gate. In the latter case, the controller
and gate change their states simultaneously.

In the state “monitor™, the controller continues to receive “Near” messages from other
trains or monitor the gate. The train that is in the crossing state may send an “Exit"
message to the controller before exiting the gate. Both the controller and the train
synchronize on the event “Exit". The train leaves the gate within 6 unit of time from the
moment it sends the message “Near” to the controller. The controller changes from state
“monitor” only when all the trains have exited from the gate. At that instant, it sends the
message to the gate and returns to the state “idle”.

The events “Down" and “Up" are time constrained internal events for the gate. The
evaluation for the local clocks for the controller is the variables “TCvarl" and “TCvar2".
Similarly, their local clocks shown in the extended state chart diagrams govern the time-

constrained events for the controller and train.

\\ Near/er’=pid && TCvari=0

. && TCvar2=0
idle toCrass

Exit[pid=cr&& true In[true && true
&& TCvar2<=6 && TCvarl>=2
&& TCvarl<=4]

i

ouat
leave <« cross

i}

Figure 1: State Diagram of Class Train

Near(!(member(pid.inSet))& &
une]/inSel':insen(pid,i’lSet)

®
[

A\ Near/inSet’=insert(pid,
inSet) && TCvarl=0 [: : '-" :]
idle activate

Raise[true && true & & u"l ". I}'E:al&lf:;‘!
TCvar2>=0 &£& TCvar2<=1 & & TCvarl<=1

Near[!(member(pid.inSet))&& l
true]/inSet’=insert(pid,inSet)

deactivate monitor

Exit[member(pid, inSet)

&& size(inSet)>1 =>

inSet’=delete(pid,inSet) Exit[member(pid. inSet)
&& size(inSet)>1 =>
inSet'=delete(pid,inSet)

Figure 2: State Diagram of Class Controller

.\

opened

Lower / true && TCvarl=0
toClose

Up[true & & true &&
TevarZel k& Down [true && TCvarl>=0
B && TCvarl<=1]

Raise/ true && TCvar2=0
| toOpen I-'< closed

Figure 3: State Diagram of Class Gate

2 Test Adequacy Measurement for Real-Time

Reactive System

2.1 Introduction

In the context of safety-critical systems, which are real-time reactive systems, testing
process must be integrated with the software development process as a whole, not just
with the end product. Consequently. measuring the efficiency of the testing process
emerges as an important issue. To be accurate and meaningful, both the measurement and
the components to be measured must be precisely described. In this paper we introduce
test adequacy measurement for measuring the efficiency of testing process integrated into
a rigorous environment for developing real-time reactive systems.

In order to ensure the correctness of the implementation with respect to design, the
implementation of the system has to be tested. Testing efficiency can be increased by
defining an adequate minimal standards for testing, represented by test adequacy criterion
that defines what constitutes an adequate test. Informally, the test adequacy criterion is
defined as “a predicate that defines software testing objectives in terms that can be
measured to guarantee the correctness of a tested program”. The degree of adequacy of
testing related to the test adequacy criterion is estimated by adequacy measurement
[W86] . Test adequacy criterion plays two essential roles in any testing method: to
specify testing requirements, and to determine the observations that should be done
during the testing process. The testing requirements specification has two forms. The first
form is called test case selection criterion and is an explicit specification for test case

selection. The second form is an explicit specification for test set adequacy measurement

when a degree of adequacy in terms of test coverage is associated with each test suite,
namely test data adequacy criterion.

To generate a set of test cases from the software product and its own specification, a
testing method should be defined using a test case selection criterion. The level of test
case adequacy, which is the degree to which the software is tested, is to be evaluated as
well. The degree of adequacy of testing related to the test adequacy criterion is estimated
by the test adequacy measurement. The measurement of the quality of coverage of the
test suite would increase (or decrease) the confidence in tested components. A
representational theory of test adequacy measurement and an axiom system to study the
properties of test adequacy measures have been proposed and proved to be consistent for
test adequacy measurement [W86]. There are two central points when developing a
solution for test adequacy measurement: the choice of a formal representation of the test
cases domain, and a model of its abstraction. We have chosen to represent formally the
test cases domain as a metric space. This approach would allow the use of metric-based
test case selection algorithm to select the optimal set of test cases (from the test selection
domain), and metric-based coverage evaluation measurement, based on testing distance
measure. The formal representation of the test cases domain, a model of its abstraction

and the definition of a testing distance are presented.

2.2 Background

2.2.1 Test Case Adequacy Measurement

The test data adequacy measurement associates a degree of test set adequacy according

to the test data adequacy criterion to indicate how adequately the testing has been

performed. The test data adequacy measurement is related only to the test data adequacy

criterion and in particular, to the stopping rule.

There are two important measures associated with every test data adequacy criterion
[FP97] : test effectiveness ratio (degree of adequacy of testing) and minimum number of
test cases. The testing effectiveness is defined as TE = F/E, where F is the number of
faults discovered and E is the effort measured as “person month”. To be able to predict
the testing time and resources, the testers would need to know the minimum number of
test cases needed to satisfy the test data adequacy criterion for the given software. The
definition of a measurement formula of calculating the minimum number of test cases
depends on each testing approach. A method based on Prime Decomposition Theorem is
given by Fenton [FP97] to calculate a minimum number of test cases measurements for
the structural testing approach. The problem of determining minimum number of test

cases measurement for error-based and fault-based testing approaches still remains an

open problem.

The test effectiveness ratio measure or equivalently, a degree of adequacy of testing
of a program p by a test set ¢ with respect to the specification s, according to the test
adequacy criterion C, is a function Mc(p,s.t) with value in the interval. To determine
whether or not sufficient testing has been done, the test data adequacy criterion as

stopping rule (or predicate rule) should be considered:

Given a degree R of adequacy corresponding to the minimum number
of test cases r, the stopping rule MR is True if and only if the adequacy

degree is greater than or equal to r, or false otherwise:

True, [ffM(p,s,t) 2r

Mr(p, s, 1) =
False, otherwise.

The measurement formula of the test effectiveness ratio measure M depends on the
specific testing approach and the corresponding test data adequacy criterion. The higher
degree of adequacy M indicates more adequacy testing of p with respect to s, according
to C. Zhu et all [ZHM97] point out that M depends on the specific testing approach and
the corresponding test data adequacy criterion and discusses three approaches to software

testing in this context.

2.2.2 Formal Foundation

In this section we discuss a representational theory of test adequacy measurement and an
axiom system to study the properties of test adequacy measures. From Theory of
Weyuker’'s Axioms [W86], has proved the consistency of these axioms. Analytical
evaluation of testing techniques considers whether the testing criteria meet adequacy

axioms.

Let

P = program under test

S = specification of P

D =input domain of § and P

T =subset of D, used as test set for P
C =1est adequacy criterion

e Pis incorrect if it is inconsistent with S on some element of D

e T is unsuccessful if there exists an element of T on which P is incorrect
e A test adequacy criterion C is subdomain-based if it induces one or more subsets,
or subdomains, of the input domain D
¢ A subdomain-based criterion C typically does not partition D (into a set of non-
overlapping subdomains whose union is D)
Theory: Weyuker’s Axioms (1986)
Axiom 1. Applicability
For every P, there is a finite adequate T
Axiom 2. Nonexhaustive applicability
For at least one P, there is a non-exhaustive adequate T
Axiom 3. Monotonicity
If T is adequate for P and T < T’, then T’ is adequate for P
Axiom 4. Inadequate Empty Set
The empty set is not adequate for any P
Axiom 5. Antiextensionality
There are programs PI and P2 such that PI = P2 and T is adequate for PI but not P2

Axiom 6. General Multiple Change

There are programs PI and P2 such that P2 can be transformed into PI and T is
adequate for P1I but not P2

Axiom 7. Antidecomposition

There is a program P with component @ such that T is adequate for P, but the subset of T
that tests @ is not adequate for Q

Axiom 8. Anticomposition

10

There are programs PI and P2 such that T isadeuqate for PI and P2 (T) is a adequate

for P2 but T is not adequate for PI ;P2

2.3 Metric-Based Approach

There are two central points when developing a solution for test adequacy measurement:
the choice of a formal representation of the domain of the test cases, and a model of its
abstraction. We have chosen to represent formally the test cases domain as a metric
space. A metric space is a pair (V, td), where V is a non-empty set and td is a distance, or
metric, such that td: VXV —R* and the set of distance axioms are satisfied. This
approach allows the use of metric-based test case selection algorithm to select the
minimal set of test cases (from the set of automatically generated test cases), and metric-
based coverage evaluation measurement, both based on the notion of distance between
test cases.

V X, v € Vthe following axioms are satisfied:
Axiom 1. td(x; v) 20;

Axiom 2. wd(x;v) =0 © x=y;

Axiom 3. rd(x; y) = td(y; x);
Axiom 4. rd(x; z) < td(x; v) + td(v; 2).

The metric is unique in the sense that there is an order-preserving transformation

between two metrics.

11

2.3.1 Formal Representation and Abstraction of the Test Cases
Domain

The test case domain is the set of symbols and terms in the formal specification used to
specify the system. The algorithms discussed by Zheng [Zhe02] compute the test cases as
follows:

For a reactive unit A, the set Ta(A) of test cases is computed as

Xu(A) U Ya(A),

Where X4(A), and Ya(A) are respectively the state and transition covers of the

grid automata Ga4(A) with grid size d = 1/k, k being the number of clocks in

A, a state cover for a state #in the grid automation is a labeled path from the

initial state of Gu(A)to 8. The sequence of labels in a path is the events that

take the grid automation from its initial state to the state 8. An event in the

grid automation Gu4(A) is either an event of A or d. The label d for a

transition from the state fto a state ' in G4(A) indicates the passage of time

at the state s of A, where both 8 &’ are mapped to s by the construction of
the grid automation. As an example, the sequence
Near?, 172, 172, In
may denote a state cover for the grid automation of the Train class.
The formal representation that we discuss for developing metrics for test cases
is independent of such concrete representations.
In general, let STC denote any test set with any arbitrary representation of test cases

in it. Our approach consists in abstracting the elements of STC as binary strings. This

would allow the introduction of testing distance as information distance in the space of
binary strings. Our choice of information distance is justified by the fact that it is an
absolute and objective quantification of a distance between individual objects [Be98].
A two-dimensional array TCA represents the mapping of a test case into a binary string.
The definition of the array TCA is as follows:

I, if test case a contains event j

TCA(a, j) =
0, otherwise.

Each row of TCA is a mapping of a test case into a binary string. The creation of the

array TCA reflects the order of appearance of the events in the test case.

2.4 Testing Distance Measurement

Any distance measurement should satisfy the symmetric and triangle properties for a
distance. Intuitively, we expect more similarity between test cases when the distance
between the two test cases is small. We want to select test cases for test execution from a
test set so that the distance between the selected test case and the set of already exercised
test cases is not small.

The distance between two test cases A, B € STC is abstracted as a distance between
their binary string representations a, b € V. The distance between a¢, b € STC would
depend on two factors, namely, the similarity and the dissimilarity between the test cases.
Thus we define the testing distance as:

Td (a, b)= similaritv (a, b) * dissimilaritv (a, b)

13

Where similarity (a, b) is defined in terms of the longest common prefix of a and b,
and dissimilarity (a, b) is expressed in terms of the minimum amount of change necessary

to convert the binary string a into b. The formal quantification models are given below.

Similarity Quantification

Let LCP(a, b) be the longest common prefix of the binary string representations a. b € V

of A. B € STC . We define similarity factor between strings as

L. N ~lengtht LCP(a, b))
similaritv (a, b) = 2

Note that LCP (a, b) is 0 when there is no common prefix, and

min (length (a);length (b))
When the longest common prefix coincides with one of the strings. The range of the
similarity is between O and 1. Higher values indicate lower level of similarity between
two test cases and diminish the value of a testing distance. The information distance
between tow binary strings (elements of a metric space) is computed as the length of the

shortest program that translates one string into another.

Dissimilarity Quantification

The dissimilarity measure between two binary strings a and b are calculated as the
number of elementary transformations that are minimally needed to transform the string
(a\LCP(a, b)) into the string ((\LCP(a, b)). Let us suppose that the abstraction a € T of
some test case A € STC is the row a of the aray TCA. The set of elementary
transformations are (1) adding an event j (i.e., setting the value of TCA(a;j) to 1). and

(2) removing an event j (i.e., setting the value of TCA(a; j) to 0). The dissimilarity is a

14

unidimensional spatial proximity measure, defined on the ordinal scale. It satisfies the
representation and uniqueness conditions for the unidimensional ordinal scale measures

and thus is theoretically valid.

[llustration of Testing Distance Measurement

We illustrate the quantification of the distance between two test cases generated [Zhe02]
for the Controller-Gate Subsystem. Consider the two test cases A,B & STC,
A = [Near? Lower.Down.Exit?.Raise.1/4.1/4.1/4.1/4.Up}, and

B = {Near? Lower.1/4.1/4.1/4.1/4.Exit}. The array representation of the test cases is

shown in Figure 4. In this case the values of the model variables are as follows:

LCP(a,b) =2: similarity(a,b) = 2'2: dissimilarity(a,b) =5: td(a,b) = 5/4.

Event
Near? | Lower | Down | Exit? | Raise | I/4 | 144 | 1/4 | 1/4 | Up | Exit

Testcases

a I l 1 1 1 1 1 1 I I 0

b 1 I 0 0 0 1 ! 1 1 0 l

Figure 4: Array Representation of Test Cases
From td (a, b), we know that if test cases @, b have more similarly, the distance between
them is closer, that mean td (a, b) is small. Otherwise, if test cases a, ¥ have more
dissimilarly, the distance should be larger. In a word, td (a, b) is less, and then test case

a, b have more similarly. Otherwise, a, b have more dissimilarly.

15

2.5 Metric-Based Test Set Selection

Let V denote the set of binary strings representing the original set of test cases STC. £
denote the initial target distance, and &€ min denote some comprehensive minimum value
of distance such that any approximation on distance smaller than &£ mn would not give
more meaningful approximations. Let C denote some given threshold cost, and Cost
denote the function representing the resources required to execute the (set of) test case(s).
The Test Selection Algorithm selects the minimal set of test cases A from the set V. The
algorithm stops when the cost limit is reached, the £ less than £ min (the distance & min is

reached the £), or there are no more test cases left. We define the distance of a point ¢
€ Vfromthe set A, A c V by the formula td (1, A) = inf {1d(1, _v)| veAl
Test Selection Algorithm
Precondition: {V=V # @ A emin>0AC=CAA=9)
Step 1. Initialization (A.V, €)
Step 2. Create - Test — Set(A, V, €)

Postcondition: {A # ¢ A (CosttA) 2 CVv € < Emin v V= o)}

Algorithm for Initialization (A, V, €)
Precondition: {V=V A A= ¢}
Step 1. t = Longest — test — Case(V);
Step 2. Add(A,1);
Step 3. Remove(V, t);

Step 4. € = Length(t) - I;

16

Step 5. IF € <=0 THEN
E=Emin;

ENDIF;

A=0;
Postcondition: {V# ¢ AA=0nA £€>0)
Algorithm for Create — Test — Set (A, V, €, € min)
Precondition: {V# ¢ A A=0A £>Emin/
While
~(Cost(A) 2CV € < Emn v V=9)
IF (3 testcaset:td (1, V) >= €)
Then Add (A, t); Remove (V, t);
ENDIF;
E=€-1;
ENDWHILE;
Postcondition: {A # ¢ A (Cost(A) 2CV €< Emn vV= o)}

The test selection algorithm has to be applied in order to select a minimal set of test
cases. This minimization would reduce the cost of the testing process while maintaining

the same level of efficiency.

17

3 System Design
3.1 Introduction

The project for real-time reactive systems in TROMLAB environment (TROM), will be
developed in Java whose advantage of portability is taken into consideration. Therefore,
the java swing and JDK have to be used. The required minimum Java version is 1.2. The
following introduces the implementation of the system, which is implemented in Java

programming language.

3.2 Architecture Diagram

Input:
Test Suite

Selector

Output:
Selected Test Cases

Figure 5: System Architecture Diagram of Test Adequacv Measurement
Figure 5 shows the system architecture diagram and the subsystems of Test Adequacy
Measurement. The chosen architectural pattern is Pipe-and-Filter. The input to the system
is the test suite generated by the Automotive test cases generator module, part of the

TROMLAB environment. The test case generation algorithm produces a minimal set that

18

can exhaustively test the implementation for all specified interacting properties. Example
of input data is shown below:

<<T.toCross, G_C.<G.opened, C.activate>>+0/6> : T/G_C.Near

<<T.toCross, G_C.<G.opened, C.activate>>+2/6> : T/G_C.Near, 1/6, 1/6

<<T.toCross, G_C.<G.opened, C.activate>>+3/6> : T/G_C.Near, 1/6, 1/6, 1/6
<<T.toCross, G_C.<G.opened, C.activate>>+6/6> : T/G_C.Near, 1/6, 1/6, 1/6, 1/6, 1/6,
1/6

Filter: The input of the filter is the original test cases for class testing and system testing.
In order to get the reduced set of test cases we have to transform the original test cases to
binary strings representing the standard set of test cases. Filter is a subsystem that filters
that transforms the original test cases into binary test cases. The input of the filter is the
original test cases for class testing and system testing, for example:

<<G.opened, C.activate>+3/4> : C.Near, 1/4, 1/4, 1/4

<<G.toOpen, C.idle>+0/4> : C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise

The output of the filter is the set of binary test cases, each of them represent one case that
has many events, for example:

1000011100000000000000000
1111100000000000000000000

this is the set of binary representations of test cases that is passed as input to the selector
subsystem.

Selector: This subsystem is the major work of this project. In order to select a sufficient
number of tests from a given collection of test cases, the subsystem selector has to be

applied in order to select an optimal set of test cases. This optimization would reduce the

19

cost of the testing process while maintaining the same level of efficiency. The input of
the selector is the binary representation of a collection of test cases. The output of

selector is a representative subset of test cases.

3.3 Filter Subsystem

3.3.1 Introduction

In this section, we use the original test cases from the railroad-crossing problem. A
generalized version of this problem has been considered by Muthiayen and Alagar
[AAM98] to formally prove safety properties in their design. We take their verified
design and generate test cases as our original test cases and transform it to binary test
cases. Mr. Chen introduces some general algorithms and their implementation [Che03].
These algorithms are used in unit testing, pair testing and system testing. In unit testing,
after Spec_Parser generates an initial TROM object from class specification file, the
algorithm GA (Grid Automaton Generation) to generate a grid automaton from the
original TROM, in which its time constraints are decomposed, and then test case
generation algorithm to product minimal set that can exhaustively test the implementation
for all specified interacting properties. An example of the original testcases generated by

the above algorithms is shown below:

<<G.opened, C.activate>+0/4> : C.Near

<<G.toClose. C.momitor>+0/4> : C.Near. G/C.Lower

<<G.opened. C.activate>+1/4> : C.Near. /4

<<G.closed. C.monitor>> : C.Near. G/C.Lower, G.Down

<<G.toClose. C.monitor>+1/4> : C.Near. G/C.Lower. /4

<<G.opened. C.activate>+2/4> : C.Near. 1/4. 1/4

<<G.closed. C.deactivate>+0/4> : C.Near, G/C.Lower. G.Down, C.Exit

<<G.1oClose. C.monitor>+2/4> : C.Near. G/C.Lower. 1/4, /4

<<G.opened. C.activate>+3/4> : C.Near. /4, 1/4. 1/4

<<G.toOpen. C.idle>+0/4> : C.Near. G/C.Lower. G.Down. C.Exit. G/C.Raise

<<G.closed. C.deactivate>+1/4> : C.Near. G/C.Lower. G.Down. C.Exit. 1/4

<<G.toClose, C.monitor>+3/4> : C.Near. G/C.Lower. 1/4. 1/4. 1/4

<<G.opened. C.activate>+4/4> : C.Near. 1/4, 1/4. 1/4. 1/4

<<G.toOpen. C.idle>+1/4> : C.Near. G/C.Lower. G.Down. C.Exit. G/C.Raisc. 1/4

<<G.closed. C.deactivate>+2/4> : C.Near, G/C.Lower. G.Down. C.Exit, 1/4. 1/4

<<G.toClose. C.monitor>+44> : C.Near. G/C.Lower, 1/4. 1/4, 1/4. 1/4

<<G.toOpen. C.idle>+2/4> : C.Near, G/C.Lower. G.Down. C.Exit. G/C.Raise. 1/4. 1/4

<<G.closed, C.deactivate>+3/4> : C.Near. G/C.Lower. G.Down. C.Exit. 1/4. 1/4. 1/4

<<G.100pen. C.idle>+3/4> : C.Near. G/C.Lower. G.Down. C.Exit. G/C.Raise. 1/4. 1/4. 1/4

<<G.closed. C.deactivate>+4/4> : C.Near. G/C.Lower. G.Down. C.Exit. 1/4. /4, 1/4. 1/4

<<G.toOpen. C.idle>+4/4> : C.Near, G/C.Lower. G.Down. C.Exit. G/C.Raise. 1/4. 1/4. 1/4. 1/4
<<G.toOpen. C.idle>+5/4> : C.Near. G/C.Lower. G.Down. C.Exit. G/C.Raise. /4, [/4. 1/4, 1/4, 1/4
<<G.100pen, C.idle>+6/4> : C.Near. G/C.Lower. G.Down. C.Exit. G/C.Raise. /4. 1/4. I/4, 1/4, 1/4, /4
<<G.toOpen. C.idle>+7/4> : C.Near. G/C.Lower. G.Down. C.Exit. G/C.Raise. 1/4. /4, 1/4. 1/4. 1/4. 1/4. /4
<<G.toOpen. C.idle>+8/4> : C.Near. G/C.Lower. G.Down, C.Exit. G/C.Raise, [/4. I/4, /4. 1/4, /4. 1/4. 1/4. %4

Figure 6: the Original Testcases

3.3.2 Classes of the Testcases Filter

To filter the original test cases to binary test cases the main classes of the test cases filter
are designed: filter, caselistbuilder, testcasebuilder, binarycasebuilder and caslist. The
class diagram is shown in the following:

fiter

IdTestCasealist()
user - IdStandardTestCase() e user
1 idBinaryTestCase() 1
tBinaryTestCase()
1
1 S
- o user tinarycasebuilder o
nlder - e e
- R e b e~ ESNode casePir=c1.head()
1=str.indexof(} testcasebuilder nt length=e1t.length()
=str.indexof() estCaset1()
ring caseparts=str.substring() EScaselist c1t=new caselis() ESeventist es1=t1.gat_evemSquence()
estcase t1=new testcase() ode casePtr c1.head() £8es1.display()
ist ev10=buildEviist() iScasePir=c1thead() ESNode e1Pir=e1thead()
1.set_eventSquence() T T Ty T ode esPir=es1.head()
ST T e ey 1.set_binEventSquence()
AN user £QcasePir=casePtr.gatNptr()
create) . EQsystem.out.printin()
! . uder
1 . .
. -1 S [
caselist eventlist
;_%ﬁ':;" . " (Seventist() _
disolay() ESnventlist elt=new eventlist()
T 1
contains
fist t.e_slcalse . event o
iSNode head() FSstate_name() —@ -,mm> « en; 0
2ONode last() Seventsquence() EdevemSquence()
Yeinsen() ‘;anevequ()
:Seppena() iQindex()
o) S

Figure 7: Classes of the Testcases Filter

1. Class: filter --- This is main program that performs the filter's function. There are four

main function: buildTestCaseList(), buildStandardTestCase(), buildBinaryTestcase() and

output the binary test cases to “cases.txt”.

Pseudo Code of filter:

public transform(String inStr)

{

index=1.//standardEventsequence=new String();

cl=new caselist();
buildTestCaseList(inStr);
elt=new eventlisi();
buildStandardTestCase(};
Svstem.out.printl(n);
buildBinarvTestCase():

88}
(18]

2. Class: caselistbuilder - This program reads the strings from the original text file and
separate them create the notes that express the each of test cases with index number. In
caselistbuilder, there are three subclasses: class list, testcase class and eventlist class. In
class list, there are some list operation inside such as insert(), append() and remove(). In
class testcase, we definite the format of testcase(node), for example, one test case is one
node that include state_name(), eventsequence(), index() and so on. In eventlist, we list
the events of test case for caselist. After caselist, we form a sequence of nodes that will be
used for testcasebuilder and binarycasebuilder.

Pseudo Code of caselistbuilder:

private void buildTestCaselList(String str)
{

int posi=str.indexOfi };

int pos2=str.indexOff);

String caseparts=str.substring();

while(caseparts.indexOff *:")!=(-1))

{
posl=caseparts.indexOff ":");

pos2=caseparts.indexOf{ };

String temp;
ifipos2!=(-1)temp=caseparts.substring();
else temp=caseparts;
testcase tl=new testcase();
tl.set_index(index++);
tl.set_state_name(temp.substring(0,temp.indexOfi ":")));
String evs=temp.substring(temp.indexOff ":")+1);
eventlist evlO=buildEvList();
HevlO.display();
tl.set_EventSquence();
t1.set_signal(false);
cl.append(tl);
ifipos2!=(-1})
{
caseparts=caseparts.substring(pos2+1);
/
else
{
caseparts="";

/

3. Class: testCasebuilder --- After caselistbuilder we use the caselist(nodes list), we use
these nodes to create one tree and at the same time we get the standard testcase from this
tree. First at all, we search the nodes that only have one event. If the nodes only have one
event and do not have children, we put the event of nodes to sequence of standard test
case. Secondary, If the nodes have one event and also have child or children, we search
the children as first step if they have only one event. After that, we already search the all
test cases that only have one event and put it as part of standard testcase. After that we
redo the first step and secondary step to search the nodes that only have two events and so
on. So, we search the whole testcaselist(nodes) and form the standard test case. For
example, if the test case list is in Figure 6:

we can get the below standard case that can be matched each of the test cases in test case
list.

Standard test case is below:

C.Near. G/C.Lower. G.Down. C.Exit, G/C.Raise, 1/4. 1/4, /4. 1/4, /4, 1/4. /4, U/4, 1/4, 1/4, 1/, 1/4, 1/4,

1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4

Pseudo Code of testCasebuilder:

private void buildStandardTestCase()
{
caselist clt=new caselist();
Node casePtr=cl.head();
while(casePtr!=null)
{
testcase t1=(restcase jcasePtr.getNodeVal();
ifit].get_EventSquence().length()==1)
{
testcase 12=new testcase();
2=tl;

clt.insert(t2);
tl.ser_signal(true);
/
casePtr=casePrr.getNptr();
/
casePtr=cit.head():
while(casePtr!=null)
{
testcase 1l =(testcase)casePtr.getNodeVal();
eventlist tlel=tl.ger_EventSquence();
Node nl=(Node)tlel.last();
String s1=(String)nl.getNodeVal();
sl=slrim();
elt.append(si);
Node cPtr=cl.head();
String evia:
while(cPtr!=null)
{
testcase 12=(testcase)cPtr.getNodeVal();
ifitl(r2.get_signal())& &(isNextNode(tlel t2)))
{
12.ser_signal(true);
Node n2=(Node)t2.ger_EventSquence().lasi();
evla=(String)n2.getNodeVal():
evia=evla.trimf();
elt.append(evia);
Node casePrtr2=cl.head():
while(casePtr2!=null}
{
testcase t3=(testcase)casePtr2.getNodeVal();
ifitl(e3.get_signal())) & &
(isNextNode(tlel,t3)))
{
Svstem.out.printin();
13.displav():
testcase t4=new testcase();
t4=t3:
clt.insert(t4);
t3.set_signal();
/
casePtr2=casePtr2.getNptr();
/
tlel=t2.ger_EventSquence();
/
cPtr=cPrr.getNptr();
/
clt.remove(tl);
casePrr=clt.head();

4. Class: binarycasebuilder --- After testcasebuilder, we get standard test case from

testcasebuilder and the whole test cases list from caselist, so in binarycasebuilder class,

25

we use the standard test to match each of test cases and form the binary test cases. For
example, we get the standard test case below:

Standard test case:

C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise. 1/4, 1/4, /4, 1/4, 1/4, 1/4, /4, 1/4, 1/4, /4, 1/4, 1/4, 1/4,
/4, 1/4, 1/4. 1/4. 1/4, 1/4. Y%

The two test cases from case list:

C.Near. G/C.Lower, %

C.Near. G/C.Lower, G.Down. C.Exit. G/C.Raise. /4. 1/4. 1/4. 1/4, 1/4. 1/4, 1/4
After binary casebuilder, we get binary test case below:

1100010000000000000000000

1111111111110000000000000

Pseudo Code of binarycasebuilder:

private void buildBinarvTestCase()
{
Node casePtr=cl.head();
int length=elt.length();
while(casePtr!=null)
{
testcase t1=(testcase)casePtr.getNodeVall);
eventlist esI=tl.get_EventSquence():
esl.display(Svstem.out);
Node elPtr=elt.head();
Node esPtr=esi.head();
String stemp="""
while(elPtr!=null)
{
String s1=(String JelPtr.getNodeVal();
sl=sl.arim();
String s2;
flesPir!=null)
[
s2=(String JesPir.getNodeVal();
s2=s2.trim();
ifisl.equals(s2))
{
stemp=stemp.concai("l ");
esPtr=esPtr.getNptr();

26

/

else stemp=stemp.concat("0 ");

/

else stemp=stemp.concat("0 ");
elPtr=elPtr.getNper():
/

tl.set_binEventSquence(stemp);

w__

Svstem.out.println("="+stemp);
casePtr=casePtr.getNptr();

3.3.3 Sample Running

3.3.3.1 Original Test Cases
The input to the system is the test suite generated by the automotive test cases generator
module. In the sample running the set of original test cases has 25 cases each of them has

25 events in Figure 6 as input of filter.

3.3.3.2 Binary Representations of Test Cases

The input of the filter is the original test cases for system testing. After filter subsystem,
the original test cases have been transformed to the binary strings representation of test
cases. For example, the above the set of original test cases is changed to binary

representation below:

1000000000000000000000000
1100000000000000000000000
1000010000000000000000000
1110000000000000000000000
1100010000000000000000000
1000011000000000000000000
1111000000000000000000000
1100011000000000000000000
1000011100000000000000000
1111100000000000000000000
1111010000000000000000000
1100011100000000000000000
1000011110000000000000000
111110000000000000000000
111011000000000000000000
100011110000000000000000
1000000000000000000
1100000000000000000
1100000000000000000
1110000000000000000
10000000000000000
11000000000000000
11100000000000000
111100000000060000
Il

1
1
I
1
1
l
1
1
1
1
1
1 111000000000000

P e et e et et poen et e
—— .
—— o —
—— e D — O —
——— e — e —

11
11
Il
11
11
Figure 8: Binary Testcases From the Filter

3.4 Selector Subsystem

In this section, we focus the selector subsystem that addresses the design issues of the
case selector algorithm. By definition, a case is a binary vector specifying the order of
sequence of tests to be performed.

The objective of the implementation is to use Java to develop a small software,
named, case selector. The principle of selector's functionality is as follows: select a
representative subset of test cases from a given collection of test cases under two given

testing cost constraints:

(1) testing cost constraint--- the total testing cost should be less than a given value,

denoted by C.

(ii) distance constraint--- the distances between any two selected cases should not be
less than a given constant value, denoted by €_min. So, for any two given test
cases casel and case2 we need define their distance, denoted by dist(casel,

case?), whose definition will given later.

Therefore, the test cases selection problem can be represented as the following
constrained optimization problem.
maximize m(A)
subjectto: AV
dist(casel,case?) >=€_pmi,. for any casel, case2 in A
cost(A) <=C
To this end, we define a linear cost function, that is, we assume that the total resource
consumptions are directly proportional to the number of the selected test cases. More
precisely, if we use A to denote the set of the selected test cases, then there exists a
positive constant scalar C, such that
cost(A) = C x m(A)
where m(A) is the number of selected test cases. So, the cost constraint can be represented

as

cost(A) <=C

To formulate the distance constraint, the distance between test cases casel and case2
is defined as the product of their similarity and dissimilarity, which are defined as
follows:

The dissimilarity between casel and case2 is the number of indices at which the elements

of A and B are different, and their similarity is defined by

A —length(LCP(casel, case2})

where LCP(casel, case2) is the longest common prefix of the two cases.

In order to get the initialization test cases. we set an algorithm for initialization test
cases, at first, we find the longest test case in set V, and set € = length (¢), and move it to
set A. then, £= length —I; then we follow ¢ to find the second longest test case, so on.
Finial, the test cases in set A, they have different length each of them. This is the
initialization test case that we prepared for test case selector.

To test the test case selector, a case producer that generates a given number of test
cases is also developed. Therefore, the project implements two functions--

implementation of a case producer and a case producer.

3.4.1 Basic Classes of the Testcases Selector

To implement the main functions------ test case selection, four classes are designed:

testCase, test, selector, and fileReader. The class diagram is shown in the following:

30

selector_ B

ESpublic double getLongestCase()
E¥public wid setCostRateC()
ESpublic double getCostRateC()
B®public void setTotalCost()
ESpublic double getTotalCost()
ESpublic woid setVarepsilon_min()
E¥public double getVarepsilon_min()
B8oublic wid setVarepsilon()
Eoublic int getVarepsilon()
&8public double dissimilarity()
BSpublic doubie similarity()
E¥public double distance()
ESoublic double distance2SetA()
Epublic int selectCaselndex()
E®public double getCurrentCost()
ESpublic void optimizeCaseSet()
ESoublic void printSelectedCase()
1

user user

testCase : e e
L T file

ZSpublic wid setCaseD()
B®public wid setCaseValue() : ESpublic read()
£®public wid printCase() ‘

Figure 9: Selector Class Diagram

I. Class selector

--- the main program that performs the selector's function.

Antributes:

1) protected static LinkedList caseSetV
--- a linked list consisting of test cases, denoting the entire original test cases available for
choosing.

2) protected static LinkedList caseSetA

31

--- a linked list saving all the selected test cases.

Methods:

1) public double getLongestCase()
--- get the number of test cases in the caseSetV
2) public void getInitializationCase()
--- get the initialization test cases from the caseSetV
3) public void setCostRateC(double m)
--- set the cost rate of testing one case
4) public double getCostRateC()
--- get the cost rate of testing one case
5) public void setTotalCost(double m)
--- set up the total cost allowed.
6) public double getTotalCost()
--- return the bound of the allowed cost.
7) public void setVarepsilon_min(double m)
--- set up the minimal distance between the selected test cases.
8) public double getVarepsilon_min()
--- return the minimal distance between the selected test cases.
9) public void setVarespsilon(int m)
--- set parameter varepsilon
10) public int getVarepsilon()

--- return parameter varepsilon

11) public double dissimilarity(testCase casel, testCase case2)

-—- calculate the dissimilarity between two test cases. which is defined as the number
of indices at which the elements of A and B are different.
12) public double similarity(testCase casel, testCase case2)

--- calculate the similarity between two test cases A and B. which is defined as

~ — length(LCP(casel, case))

where LCP(casel, case2) is the longest common prefix of the two cases.
13) public double distance(testCase casel, testCase case2)
--- calulate the distance between two cases, which is defined as
dissimilarity(case 1, case 2)*similarity(case 1,case 2)
14) public double distance2SetA (testCase case0)
--- compute the distance between a case and the set A of test cases, which is
defined by distance of case O to caseSetA = min{distance(case0, casel): casel is in
caseSetA}
15) public int selectCaselndex()
--- return the indix of the selected case in the caseSetV
16) public double getCurrentCost()
--- return the cost to test all the selected test cases in caseSetA
17) public void optimizeCaseSet()
--- add a test case to caseSetA. If the following conditions
are satisfied
(a) the cost to test the currently selected test cases is less than the predefined

cost bound, that is, we still have some cost quota to use.

33

(b) there exist some test cases in initialization test cases in SetV with distance between
themselves greater than
the predefined varepsilon
then select one test case from caseSetV and add it to caseSetA.
18) public void printSelectedCase()

--- out put all the selected test cases.

2. Class: testCase --- define test case

Antributes:

1) private int caselD --- ID number of a test case

2) private int len --- the length of the test case

3) private int[] caseVector --- binary vector storing the test case
Methods:

public void setCaseID(int n) --- set an [D to a test case

public void setCaseValue(String s) --- set a string a test case

public void printCase() --- print out the test case

3. Class file

--- open a file, read the file line by line, organize each line as a test case,

34

and add it into the linked list caseSetV.
Antributes:
private String args --- specify the file name to be opened.
Methods:
public static void main()
--- open a file, read the file line by line, organize each line as a test case,

and add it into the linked list caseSetV.

3.4.2 Sample Running

3.4.2.1 Set of Original Test Cases

The input to the system is the test suite generated by the automotive test cases generator
module. In the sample running the set of original test cases has 25 cases each of them has
25 events in Figure 6.

3.4.2.2 Set of Binary Representations of Test Cases

The input of the filter is the original test cases for system testing. After filter subsystem,
the original test cases have been transformed to the binary strings representation of test
cases as the input of selector subsystem. The input of selector subsystem is show in
Figure 8.

In this sample running, we test parameters as follow
One: let us choose a set of parameters as follows:

C=l1, // cost rate

35

totalCost = 19;
varepsilon_min=0.2;
varepsilon = 30;
With this set of parameters, running selector produces the following results:
G:\projectl I\hrw>java SetParameter
Original case sets
set A has: 0 set V has:25
after Initialization
set A has: 0 set V has:13
after case selection

set A has: 3 setV has: 10
case24: 1 1 11111111 1110000000000G02Q0
case3:1110000000000000000000000
case0:1 0 000000000000600000000000
Original Case 0:<<G.opened, C.activate>+0/4> : C.Near
Original Case 3:<<G.closed, C.monitor>> : C.Near, G/C.Lower, G.Down
Original Case 24:<<G.toOpen, C.idle>+8/4> : C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise, 1/4, 1/
4. 14, 174, 1/4, 114, 1/4, 1/4
Two: let us choose a set of parameters as follows:
C=1, // cost rate
totalCost = 19;
varepsilon_min=0.02;
varepsilon = 30;
With this set of parameters, running selector produces the following results:

Original case sets

36

set A has: 0 set V has:25
after Initialization

set A has: 0 set V has:13
after case selection

set A has: 5 setV has:8

case24: 1 1 111 11111111000000000000

case9:1 11 1100000000000000000000

case3:1 1 10000000000000000000000

caseI: 1 100000000000000000000000

case0: 1 0 00000000000000000000000

Original Case 0: <<G.opened, C.activate>+0/4> : C.Near

Original Case |: <<G.toClose, C.monitor>+0/4> : C.Near, G/C.Lower

Original Case 3: <<G.closed, C.monitor>> : C.Near. G/C.Lower. G.Down

Original Case 9: <<G.toOpen, C.idle>+0/4> : C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise
Original Case 24: <<G.toOpen, C.idle>+8/4> : C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise, 1/4, I/

4,14, 14, 174, 14, 114, 1/4

Three: let us choose a set of parameters as follows:
C=1, // cost rate
totalCost = 19;
varepsilon_min=0.01;
varepsilon = 30;
With this set of parameters, running selector produces the following results:

Original case sets
set A has: 0 set V has:25

after Initialization

37

set A has: 0 set V has: 13

after case selection

set A has: 6 setV has:7

case24:1 11111 1111111000000000000

case 13:1 111 110000000000000000000

case6:1 1 1 1000000000000000000000

case3:1 1 10000000000000000000000

case [: 1 1 00000000000000000000000

case0: 1 000000000000000000000000

Original Case 0: <<G.opened, C.activate>+0/4> : C.Near

Original Case |: <<G.toClose, C.monitor>+0/4> : C.Near, G/C.Lower

Original Case 3: <<G.closed, C.monitor>> : C.Near, G/C.Lower, G.Down

Original Case 6: <<G.closed, C.deactivate>+0/4> : C.Near, G/C.Lower, G.Down, C.Exit

Original Case 13: <<G.toOpen, C.idle>+1/4> : C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise, 1/4
Original Case 24: <<G.toOpen, C.idle>+8/4> : C.Near, G/C.Lower. G.Down, C.Exit, G/C.Raise, 1/4, 1/

4,174, 174, 1/4, 174, 14, 1/4

Four: let us choose a set of parameters as follows:
C=5, // cost rate
totalCost = 3;
varepsilon_min=0.01;
varepsilon = 30;
With this set of parameters, running selector produces the following results:
Original case sets
set A has: 0 set V has:25
after Initialization

set A has: 0 set V has:13

38

after case selection
set A has: 0 setV has: 13
No Test Case is Selected
Five: let us choose a set of parameters as follows:
=3, // cost rate

totalCost = 19;

varepsilon_min=0.01:

varepsilon = 4;
With this set of parameters, running selector produces the following results:

Original case sets

set A has: O set V has:25

after Initialization

set A has: O set V has:13

after case selection

ser A has: 4 setV has:9

case24:1 11 11111 111110060000000G6000

case13:1 111 110000000000000000000

case6:1 11 1000000000000000000000

case3:1 1 10000000000000000000000

Original Case 3: <<G.closed, C.monitor>> : C.Near, G/C.Lower, G.Down

Original Case 6: <<G.closed, C.deactivate>+0/M4> : C.Near, G/C.Lower, G.Down, C.Exit

Original Case 13: <<G.100pen, C.idle>+1/4> : C.Near, G/C.Lower, G.Down, C.Exit, G/C.Raise, 1/4
Original Case 24: <<G.t0Open, C.idle>+8/4> : C.Near. G/C.Lower, G.Down, C.Exit, G/C.Raise, 1/4, 1/
4,14, 174, 174, 14, 14, 1/4

Six: let us choose a set of parameters as follows:

C=l1, // cost rate

39

totalCost = 19:
varepsilon_min=2;
varepsilon = 30:
With this set of parameters. running selector produces the following results:

Original case sets

set A has: O ser V has:25
after Initializarion

set A has: O set V has: 13
after case selection

set A has: O setV has: 13

No Test Case is Selected

From the results. we can compare Two with One. We only change the value of &_min
from 0.2 to 0.02 that means case a and case b have more similarity should be selected. So
we have more selected test cases than case One; Compare Three with One and Two, we
also change the value of &€ _min from 0.02 to 0.01. that means case a and case b have
more similarity should be selected. So there are 6 testcases are selected: Compare Four
with One, Two, Three, we only change the value of Totalcost from 19 to 3, and Cost rate
is 3, that means Cost rate larger than Totalcost. When Cost rate is larger than Totalcost,
there is not testcase was selected. The result also display: No test case is selected:;
Compare Five with One, Two, Three and Four, we only change the value of ¢ from 20
to 4, that means we only want to select 4 testcases from the original test cases, from the
result of Five, only 4 testcases are selected: Compare Six with One, Two, Three, Four
and Five, we only change the value of £_min from 0.02 to 2, that means distance
between a and b should be larger than 2, but in our original test cases, we do not have

td(a, b) larger than 2. So no test case is selected. Therefore, if we want more testcases

40

were selected from original testcases, we only change &_min to small; if we want less
testcases were selected form original testcases, we only change &_min to large: if we
only want a fixed amount testcases were selected from the original testcases. we only set

£ equal one fixed value.

4 Conclusions

In this major report we introduce the test adequacy measurement for measuring the
efficiency of testing process integrated into a rigorous environment for developing real-
time reactive systems. We have chosen to represent formally the test cases domain as a
metric space. This approach allow the use of metric-based test case selection algorithm to
select the optimal set of test cases (from the test selection domain), and metric-based
coverage evaluation measurement, based on testing distance measure. The main objective
was to develop a tool that automatizes use of metric-based test coverage evaluation

measurement, and incorporate it into the TROMLAB environment.

41

References

[AAMI8]

[Ach95]

[A02000]

[Be98]

[Che03]

[FP97]

[HP85]

[W86]

V.S. Alagar, R. Achuthan, D. Muthiayen. Tromlab: A Software
Development Environment for Real-Time Reactive Systems. (First version
1996, revised 2001) submitted for publication.

R. Achuthan. A formal Model for Object-Oriented Development of Real-
Time Reactive Systems. Ph.D. thesis, Concordia University, Montreal,
Canada, October 1995.

V.S. Alagar and Olga Ormandjieva. Testing Measurement in Real-Time
Reactive Systems. Concordia University, Montreal, Canada, 2000.

C. Bennett, P. Gacs, M. Li, P. Vitanyi, W. Zurek. Information Distance
[EEE Transactions on Information Theory (44). $. Pp. 1407-1423. 1998.
Minghua Chen The Implementation of Specification-based Testing System
for Real-time Reactive System in TROMLAB Master major report,
Department of Cmputer Science, Concordia University, Montreal, Canada,
2003.

Fenton, N and Pleeger, S. Software Metrics: A Rigorous & Practical
Approach. Chapman & Hall, 1997.

Harel D., Pnueli A. On the development of reactive systems. In logic and
Models of Concurrent Systems, NATO, Advanced Study Institute on
Logics and Models for Verification and Specification of concurrent
Systems. Springer Verlag, 198S.

E.Weyuker, “Axiomatizing Software Test Data Adequacy”, Journal of

systems and Software (March 1991), pp.207-216.

[W86]

[Zhe02]

[ZHM97]

E. Weyuker, “ Axiomatizing Software Test Data Adequacy”, [EEE
Transactions on Software Engineering, SE-12, 12, pp.1128-1138, 1986
M. Zheng. Automated Generation of Test suits from Formal specifications
of Real-time Reactive Systems. Ph.D. thesis, Department of Computer
Science, Concordia University, Montreal, Canada, 2002.

H. Zhu, P. Hall, J. May. Software Unit Test Coverage and Adequacy.

ACM computing Surveys (29), 4, pp.366-427, 1997.

43

Appendix A: Java Printing SetParameter(Selector)

import javax.swing.*;
import java.awt.*;

public class SetParameter extends javax.swing.JFrame {

public SetParameter() (
initComponents() ;

}

public void initComponents() {//GEN-BEGIN:initComponents
SetEvent se = new SetEvent(this);
jLabell = new JLabel();
jTextFieldl = new JTextField(10);
jLabel2 = new javax.swing.JLabel();
jTextField2 = new JTextField(10);
jLabel3 = new JLabell();
jTextField3 = new JTextField(10);
jLabeld4 = new JLabel();
jTextField4 = new JTextField(10);
jButtonl = new JButton();

getContentPane () .setLayout (new FlowLayout());

addWindowListener (new java.awt.event.WindowAdapter() {
public void windowClosing(java.awt.event.WindowEvent evt)
exitForm(evt) ;
}
1

jLabell.setText ("cost rate"):;
getContentPane() .add (jLabell) ;

//jTextFieldl .setText("jTextFieldl");
getContentPane() .add(jTextFieldl);

jLabel2.setText ("total cost");
getContentPane() .add(jLabel2) ;

//jTextField2.setText (" jTextField2");
getContentPane () .add(jTextField2) ;

jLabel3.setText ("E_min") ;
getContentPane() .add(jLabel3) ;

//jTextField3.setText ("jTextField3");
getContentPane () .add(jTextField3) ;

jLabeld.setText ("E");
getContentPane () .add(jLabeld) ;

{

//jTextField4.setText("jTextField4") ;
getContentPane () .add(jTextField4) ;

jButtonl.setText ("SET") ;

getContentPane () .add(jButtonl);
jButtonl.addActionListener {se);
pack() ;
//setVisible(true);

}//GEN-END: initComponents
public String getPal()

{

return jTextFieldl.getText();

}

public String getPa2()

{

return jTextField2.getText();

}

public String getPa3()

{

return jTextField3.getText():;

}

public String getPa4d ()

{

return jTextField4.getText();

}

/** Exit the Application */

private void exitForm(java.awt.event.WindowEvent evt)

FIRST:event_exitForm
System.exit (0);
}//GEN-LAST:event_exitForm

/**
* @param args the command line arguments
*/

public static void main(String args(]) (

new SetParameter().show():;

}

{//GEN-

// Variables declaration - do not modify//GEN-BEGIN:variables

private
private
private
private
private
private
private
private
private

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

swing.
swing.
swing.
swing.
swing.
swing.
.JLabel jLabel3;

swing

swing.
swing.

// End of variables

JTextField jTextField4;
JTextField jTextField3;
JTextField jTextField2;
JTextField jTextFieldl;
JButton jButtonl;
JLabel jLabel4;

JLabel jLabel2;

JLabel jLabell;
declaration//GEN-END:variables

45

Appendix B: Java Printing Test

import java.util.=*;
import java.io.*;

public class test
{

//attributes

protected static LinkedList caseSetV;
protected static LinkedList caseSetA;

protected static int numberOfCases;
protected static int lengthOfCases=25;

1171777777 7177
//// methods
/1717777717177 7

//get the index of the longest test case

public int getLongestCaseIndex()

{
int tmplen = 0;
int ind = 0;

for (int i=0; i<caseSetV.size(); i++)

{

testCase tempCase = (testCase) caseSetV.get(i);
if (tempCase.caseLength()>tmplen)

{tmplen++; ind = i;}

}

return ind;
}
//// get a case with length n

public int getCaseOfLength(int n)
{

int ind=-1;
testCase tempCase;

for (int i=0; i<caseSetV.size(); i++)
{

tempCase = (testCase) caseSetV.get(i);
if (tempCase.caseLength(} == n)

{ind = i; return ind;}
}

return -1;

}

46

117117717077 7707777

protected void initialization()

{
int longestInd = getLongestCaseIndex():

// move the longest case to setA

testCase tempCase = (testCase) caseSetV.remove(longestInd);
caseSetA.add (tempCase) ;

// move case with length L-1 to set &
int longestL = tempCase.caseLength()-1;

while (longestL > 0)

{
int tmpInd = getCaseQOfLength(longestL);

if (tmpInd !'= -1)

{

tempCase = (testCase) caseSetV.remove (tmpInd);
caseSetA.add(cempCase) ;

}

longestL--;

}

// delete V and move A to V
caseSetV.clear();
int tmplenA = caseSetA.size();

for (int i=0; i< tmplenA; i++)

{

tempCase = (testCase) caseSetA.get(i);
caseSetV.add(tempCase) ;

}

caseSetA.clear();

}

/*

private void initialSetvVv{()

{
for (int i=0; i<numberOfCases; i++)
{
testCase tmp_Case = new testCase();
tmp_Case.setCaselD(1i);
tmp_Case.produceRandomCase () ;
caseSetV.add(tmp_Case) ;
}

}

*/

//constructor

public test ()

47

{

caseSetV = new LinkedList();
caseSetA = new LinkedList();

}

/*

// methods for attribute access

public void setCostRateC (double m)
{ C =m;}
public double getCostRateC () {return C:;}

public void setTotalCost(double m) {totalCost=m;}
public double getTotalCost () {return totalCost;}

public void setVarepsilon_min(double m){varepsilon_min = m;}
public double getVarepsilon_min() {return varepsilon_min;}

public void setVarespsilon(int m){varepsilon m;}

public int getVarepsilon() {return varepsilon;}
//methods used to calculate the distance between 2 cases*/

static private double dissimilarity(testCase casel, testCase case2)
{

int([] tempVectorl = casel.getCaseVector();

int{] tempVector2 = case2.getCaseVector();

int len = casel.getCaseLength();

int tem 0;

for (int i=0; i<len; i++)

{

if (tempVectorl([i] != tempVector2(i])
tem++;

}

return tem;

}

static private double similarity(testCase casel, testCase case2)
{

int (] tempVectorl = casel.getCaseVector();

int[] tempVector2 = case2.getCaseVector(}:

int len = casel.getCaseLength();

int i=0;

for (i=0; i<len && (tempVectorl([i]==tempVector2[i]); i++):;
return Math.exp(-i);

}

//calulate the distance between two cases

static public double distance(testCase casel, testCase case2)
{

return dissimilarity(casel, case2)*similarity(casel,case2);

}

// compute the distance between a case and the set A of test cases

48

public double distance2SetA(testCase casel)
{

int tempsize = caseSetA.size();
double tempDis = numberOfCases+l;

for (int i=0; i<tempsize; i++)
{
testCase tempCase = (testCase) caseSetA.get(i);
double tempVal = distance(case(, tempCase);
if (tempVal < tempDis)
tempDis = tempVal;
}
return tempDis;

}
public int selectCaseIndex(double x3)
{

int tempsize = caseSetV.sizel();

testCase tempCase;

for (int i=0; i<tempsize; i++)

{

tempCase = (testCase) caseSetV.get(i);
if (distance2SetA(tempCase) >= x3)
return i;

}

return -1;

}

/*public double getCurrentCost()
{

int temp = caseSetA.size();
return C*temp;

¥/

public void optimizeCaseSet (double x1, double x2, double x3,
{

int temp = caseSetA.size();

double templ = xl*temp;

System.out.println(caseSetV.size());
while(templ<x2 && x4>0 && caseSetV.size()>0)
{

//varepsilon=varepsilon-1;
x4 = x4 -1;
int tempIndex = selectCaseIndex(x3);

if (tempIndex != -1)
{

testCase tempCase = (testCase} caseSetV.remove (tempIndex);

caseSetA.add (tempCase) ;
System.out.println("A size:" + caseSetA.size()):

}

49

int x4)

public void printSelectedCase()throws java.io.IOException
{

int currSize = caseSetA.size();

if (currSize == 0)
{System.out.println("No Test Case is Selected");
return;}

testCase tempCase;
int[] caseID = new int[currSize];
for (int i=0; i<currSize; i++)

{

tempCase = (testCase) caseSetA.get(i);
caseID[i]=tempCase.printCase() ;

}

String fname = "firstcases.txt";

BufferedrReader reader = new BufferadReader(new FileReader(fname) };
String line = reader.readLine();
int row = 1;

while (line != null)

{
for(int i=0; i<currSize; i++)
{
if(row == (caseID[i]+1))

{
System.out.println("Original Case "+caseID{i]):;
System.out.println(line);
break;

}
row = row + 1;
line = reader.readLine();

50

Appendix C: Java Printing TestCase

import java.lang.Math;

public class testCase

{

//protected int caseID=-1;

//protected static int len=0;

//protected int caseVector[l]:

private int caseID=-1;

private static int len=test.lengthOfCases;
private int caseVector(];

//constructor
public int caselLength()
{
int tmplen=0;
for (int i=0; i< len;
{ if (caseVector[i] == 1)
tmplen=tmplen+1;

i++)

1
return tmplen;

public testCase()

{

caselID = -1; //empty case
len = test.lengthOfCases;
caseVector = new int([len];

}

public void setCaseID(int n)

{
caseID = n;

}

public void setCaseValue(String ss)
{

char cc;
int i=0; int j=0;

while (i < ss.length())

{
cc = ss.charAt(i);

if (cec=='0")
{caseVector[j] = 0; j++;}
if (cc=='1")
{caseVector([j] = 1; j++;}

l++,‘

} //end while

len = j;

51

public void produceRandomCase ()

{
String temps = null;
for (int i=0; i< len; i++)
{
double rnd = Math.random();
if (rnd<0.5)
caseVector{i]=0;
else caseVector[i] = 1;
//caseVector.charaAt (i) = '0';
// else temps = temps+"1l";
// caseVector = temps;
}
}

public int getCaseLength() {return len;}
public int[] getCaseVector () {return caseVector;}

public int printCase()
{
System.out.print("case " + caseID - ":"};
for (int i=0; i< test.lengthOfCases; i++)
System.out.print(" "+caseVector([i]+" ");
System.out.print("\n");
return caselD;
//System.out.print("case"+ caselID + ":" +caseVector + "\n");

Appendix D: Java Printing FileReader

import java.util.*;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

class fileReader(
// VARS

String args:
//static LinkedList caseSetV;

// CONSTRUCTOR
public fileReader(String args) {
this.args = args;
// caseSetV = new LinkedList();
i

// PUBLIC METHODS

public void run() throws java.io.IQOException

{
// This is your new main.
String fname = args;

//String fname = "cases.txt";

BufferedReader reader = new BufferedReader(new
FileReader(fname));

String line = reader.readLine();
int tempid = 0;

while(line != null)

{
//System.out.println(line);
testCase tempCase = new testCase();

tempCase.setCaselD(tempid) ;
tempCase.setCaseValue(line);
test.caseSetV.add(tempCase) ;
tempid++;

line = reader.readLine();

53

