INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Interfacing Abstract State Machines with
Multiway Decision Graphs

Amjad Gawanmeh

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

April 2003

© Amjad Gawanmeh. 2003



i+l

jonal Lib Bibliothéque national
glfa Cngnnglda had du Canadel:e n ¢
isiti isitions et
‘B\gr;micaggwices Is?‘rv?es biblizgraphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON KK1A ON4
Canada Canada
Your Sle Votre rélivence
Cur Re Notre rélivence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77969-6



ABSTRACT

Interfacing Abstract State Machines with Multiway

Decision Graphs

Amjad Gawanmeh

Digital systems are becoming very large and complex making the process of finding
bugs and design validation in early stages of the design cycle a must. As a contribu-
tion towards catching this goal, we propose in this thesis an approach to interface
Abstract State Machines (ASM) with Multiway Decision Graphs (MDG) to enable
tool support for the formal verification of ASM descriptions. ASM is a specification
method for software and hardware providing a powerful means of modeling various
kinds of systems. MDGs are decision diagrams based on abstract representation of
data and are mainly used for modeling hardware systems. Both ASM and MDG are
based on a subset of many-sorted first order logic, making it appealing to link these
two concepts. The proposed interface uses two steps: first, the ASM model is trans-
formed into a flat, simple transition system as an intermediate model. Second, this
intermediate model is transformed into the syntax of the input language of the MDG
tool, MDG-HDL. We consider both structural and behavioral models of hardware.
We have applied this transformation schema on some examples and case studies

where our tool generates the corresponding MDG-HDL models automatically.
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Chapter 1

Introduction

1.1 Motivation

With the increasing reliance on digital systems. errors in their design can cause fail-
ures, resulting in the loss of time, money, and a long design cycle. Large amounts of
effort are required to correct an error. especially when the error is discovered late in
the design process. For these reasons, we need approaches that enable us to discover
errors and validate designs as early as possible. Conventionally, simulation has been
the main debugging technique. However, due to the increasing complexity of dig-
ital VLSI systems, it is becoming impossible to simulate large designs adequately.
Therefore, there has been a recent surge of interest in formal verification and tool
support for this task, such as theorem proving, combinational and sequential equiv-

alence checking, and in particular model checking (24, 26]. These approaches vary in



the degree of interaction that is required by the user. Of particular interest are those
tools that run automatically and do not require any special knowledge about the
formal techniques that are applied. Equivalence and model checkers belong to this
category. they have, however, the problem of state space explosion [24]. Theorem
proving, on the other hand, is not automatic approach, but it can be applied on
larger systems.

MDGs (Multiway Decision Graphs) [12] are decision diagrams based on ab-
stract representation of data and are used for modeling hardware systems in first
place. The MDG tool provides equivalence checking and model checking applications
based on MDG. The given modeling language is the hardware description language
MDG-HDL [41]. MDG tool can support verification of larger systems as different
case studies show [3, 11. 36, 43, 45]. However. the main problem of verification with
MDG tool. is that it does not support hardware description languages like VHDL
and Verilog, instead MDG-HDL, which contains no support for advanced modeling
features like modularity and hierarchy.

ASM (Abstract State Machines) [19] is a formal specification method for soft-
ware and hardware modeling and provides a powerful means of modeling various
kinds of systems. ASM has become a successful methodology for specifying and ver-
ifying complex systems [6]. An ASM model describes the state space of the system
by means of universes or functions, and the state transitions by means of transition

rules. ASM is used as a modeling language in a variety of domains, e.g., embedded



systems, protocols, hardware specifications. semantics of programming languages
(6, 22]. It has been used both in academic and industry contexts. The wide group
of users shows that there is interest in the language and. consequently, there is an
interest in tool support. ASM models transition systems in a simple and uniform
fashion and give these transition systems an operational semantics [37]. Many veri-
fication tools that are available are based on transition systems. A transformation
from ASM into these tools’ languages can be done without losing properties of the
original model.

We propose to build a tool to interface the ASM-WB (ASM Workbench) {13,
14] with the MDG applications in order to enable the formal verification of ASM
descriptions. We chose to interface ASM with the MDG tool for three reasons:
first, both notions. ASM and MDGs. are closely related to each other since they
are both based on a subset of many-sorted first order logic. enabling the abstract
representation of data. They both also support uninterpreted functions which is
not available in many hardware modeling languages. In fact the transformation is
easier and more concise than the treatment of the syntax of another input language
would be. Second, MDGs as data structure for representing transition systems
provide a powerful means for abstraction in order to fit large models into the model
checking process. Finally, the need to provide the MDG tool with a high-level
modeling language, namely ASM, would allow MDG users to model a wide range of

applications in a more elegant and succinct manner.



Due to the advanced facilities of MDGs, this interface supports an easy ab-
straction mechanism for ASM as introduced by the work of Winter [37, 38]. At the
same time. in contrast to the work in [38]. it enables us to make use of the existing
MDG tool that provides equivalence checking and model checking. This work has
been motivated by results obtained in [28] on the verification of hardware designs
based on ASM models.

For behavioral models, we intend to develop the ASM-MDG interface in two
steps: in the first step, the ASM model is transformed into a flat, simple transition
system, called the Intermediate Language (ASM-IL) [37]. The second step provides
a transformation from IL into the syntax of the input language of the MDG tool.
MDG-HDL. For structural models we implemented a syntax transformation interface
directly from ASM to MDG-HDL where the ASM model is restricted to the MDG-
HDL library components.

We have applied the ASM-MDG interface on an Island Tunnel Controller as a
case study, where we conducted MDG model checking and equivalence checking on
the generated MDG-HDL models. We succeeded in model checking several proper-
ties on the Mainland Tunnel Controller and Island Tunnel Controller, and we also

verified that the implementation of each block is equivalent to its specification.



1.2 Introduction to Formal Verification

Validation techniques include simulation. testing, prototyping and formal verifica-
tion. Traditionally. testing and simulaticn are used to check the designs correctness.
and because they are inadequate to certify that a system behaves correctly, the evo-
lution of alternative verification approaches has emerged, such as formal methods.
Formal methods have the potential for significantly reducing the number of design
faults in designs and at the same time reducing the cost of the design [24]. Formal
hardware verification uses mathematically-based methods to overcome the weakness
of non-exhaustive simulation by proving the correspondence between some abstract
specification and the design in hand. There are three different techniques of formal

hardware verification, namely:
e Theorem Proving
e Equivalence Checking

e Model Checking

Theorem Proving

One of the earliest approaches to formal hardware verification was to describe both
the implementation as well as the specification in a formal logic. The correctness
result was then obtained by proving in the logic, that the specification and im-

plementation were suitably related. Among the best known interactive theorem



provers are the Boyer-Moore Theorem Prover ‘Nqthm' {7], PVS [30] and the Cam-
bridge HOL System [18]. Unfortunately, theorem proving based verification requires
a large amount of effort on the part of the user in developing specifications of each
component and in guiding the theorem prover through a large number of lemmas.
Therefore, for designs that are not safety critical, theorem proving techniques are

too expensive.

Equivalence Checking

Equivalence checking is used to prove functional equivalence of two design represen-
tations modeled at different levels of abstraction. Equivalence checking can be di-
vided into two categories: combinational equivalence checking and sequential equiv-
alence checking. In combinational equivalence checking, the functions of the two
circuits to be compared are converted into canonical representations of Boolean func-
tions 8], typically Binary Decision Diagrams (BDDs) [8] or their derivatives. which
are then structurally compared. Examples of combinational equivalence checking
tools are Cadence Affirma and Synopsys Formality. The drawback of this type of
verification is that it cannot handle the equivalence checking between RTL (Reg-
ister Transfer Level) and behavioral models. In sequential equivalence checking,
given two sequential circuits using the same state encoding, their equivalence can
be established by building the product finite state machine and checking whether

the values of two corresponding outputs are the same for any initial states of the



product machine. Sequential equivalence checking only considers the behavior of
the two designs while ignoring their implementation details such as latch mapping.
Therefore. sequential equivalence checking is able to verify the equivalence between
RTL and behavioral model. The drawback of this technique is that it cannot han-
dle large designs due to state space explosion problem. MDG [12] and VIS [9] are

examples of sequential equivalence checking tools.

Model Checking

Model checking is an algorithm that can be used to determine the validity of formulas
written in some temporal logic with respect to a behavioral model of a system. Model
checking is based on the state space exploration technique. and uses the reachability
state graph as a Kripke structure. which encodes the set of all possible sequences of
states for a system over computation trees. Examples of model checkers are SMV
[27], VIS [9], SPIN [21], and FormalCheck [10].

Model checking tools are effective as debugging aids for industrial designs.
and since they are fully automated, minimal user effort and knowledge about the
underlying technology is required to be able to use them. However, there are two
drawbacks with model checking. The first is the state space explosion and how to
avoid it, and the second is the difficulty of judging whether the verified properties

completely characterize the desired behavior of the system [4].
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1.3 Related Work

The ASM Workbench (ASM-WB) [14] was developed as a tool environment for
parsing. type-checking, simulating and debugging of ASM specifications. Applyving
model checking algorithms on ASM and a generic interface for the ASM Workbench
was introduced in [37]. Transformation algorithms are provided to transform ASM
models into an Intermediate Language (ASM-IL) [37] which provides a general in-
terface into different verification tools. Two approaches were suggested: the first is
based on the process of transforming an ASM model into the language of a symbolic
model checker, SMV. In the second approach, the model is represented as an MDG.
then model checking for a subset of first-order branching time temporal logic (£ vypg
[39]) can be adapted. As part of the work in [37], a fully automatic interface with
the SMV tool was implemented and supported with two case studies.

In contrast to the SMV model checker. the MDG tool provides a useful means
for representing abstract models containing uninterpreted functions. where SNV
supports neither abstract data types nor uninterpreted functions. This allows model
checking on an abstract level at which the state explosion problem can in some cases
be avoided. Although the latter approach in [38] already provides support for ab-
straction by exploiting the MDG data structure, it does not provide an interface
to the actual MDG tool. Our work provides a tool that transforms the specifica-
tion language ASM-SL [37] of the ASM Workbench, into the hardware description

language MDG-HDL [41] of the MDG tool.



There exists some other work on model checking ASM specifications. Spiel-
mann [35] investigated the problem of verifving a class of restricted abstract state
machine programs (called nullary programs) automatically. [n the work on real-time
systems by Beauquier and Slissenko [5], ASMs are represented by an extension of
the theory of real addition and then the verification problem is discussed. These
results are complemented by our work since the MDG tool facilitates the handling of
functions over abstract domains and ranges. From a more general perspective, the
work described by Shankar [34] and Katz and Grumberg [23] are also related in that
they provide a very general tool framework comprising a general intermediate lan-
guage which allows one to interface a high-level modeling language with a variety of
tools. In [25], Kort et al. describe a hybrid formal hardware verification tool linking
MDG and the HOL theorem prover obtaining the advantages of both verification
paradigms. this makes it possible to delegate the verification of HOL subgoals to
the MDG tool for automatic proof. The presented interactive proof system is used
to automatically manage the proof as well as complete any proof interactively that
is beyond the scope of the automated system. The verification of whole blocks in
the hierarchy can be done automatically.

Other work on linking verification tools includes combining Voss-ThmTac sys-
tem [20], in which Voss was interfaced with HOL as a tactic that could be called to
perform a symbolic trajectory analysis to verify assertions about sequence of states.

The power of this proof system comes from the very tight integration of the two



provers allowing the user to interact directly with them [20]. [n [33|, Schneider and
Hoffmann described linking the SMV model checker to the HOL theorem prover
by deeply embedding the SMV specification language in HOL. They described a
translation procedure for converting LTL (Linear Time Temporal Logic) formulas
to equivalent w-automata and its implementation in the HOL theorem prover. This
allows the usage of SMV as a decision procedure that can be conveniently called as
a HOL tactic proof script. The conversion in general enables HOL users to directly
verify temporal properties by means of HOL’s induction rules.

A work on specifications and modeling language based on finite state ma-
chines is found in [1] where a Timed-Reactive Object Model (TROM) was intro-
duced. TROM is an FSM augmented with ports. attributes. and timing constrains.
Features of this formal modeling language includes support of non-determinism. in-
formation hiding and controlled refinement, and it models multiple reactions which
maybe triggered by a single event. There exists a similar work in [29] on Real Time
Unified Modeling Language (RTUML) for modeling real-time reactive systems and
its mechanized verification within the PVS environment.

In summary, our work results in an ASM-specific solution which extends the

interface framework of [15, 38| as well as [25] with another tool interface.
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1.4 Scope of the Thesis

In this thesis we present an implementation of a proposed algorithm which interfaces
Abstract State Machines (ASMs) with the Multiway Decision Graphs (MDGs) in
order to use MDG tool to apply formal verification techniques on ASM models.
We support this interface with a case study and provide results of applying model
checking and equivalence checking.

The rest of the thesis is organized as follows: Chapter 2 is a brief introduction
to ASM in terms of concepts. language. modeling and supporting tool. Chapter 3 is
a brief introduction to MDG and its modeling language and verification procedures.
Chapter 4 presents the transformation schema from ASM into MDG and how MDG
components are generated from ASM-IL syntax, we show how to construct both
structural.and behavioral components from the ASM-IL model while preserving its
semantics. We also show a direct syntactic transformation interface to treat ASM
structural designs. In Chapter 5. we present the Island Tunnel Controller as a case
study using the tool interface. Conclusions and ideas on future work are presented

in Chapter 6.

11



Chapter 2

Abstract State Machines

Abstract State Machines (ASM) [19, 22| is a specification method for software and
hardware modeling. The system is modeled by a set of states and transition rules
which specifies the behavior of the system. Transition rules specify possible state
changes according to a certain condition. The notation of ASM is efficient for
modeling a wide range of systems and algorithms as the number of case studies

demonstrates [22].

2.1 ASM Language

The ASM notation includes static functions and dynamic functions. Static functions
have the same interpretation in every state, while dynamic functions may change
their interpretation during a run. There are also ecternal functions which cannot

be changed by the system itself, but by the outer environment.

12



2.1.1 States

An ASM model consists of states and transition rules. States are given as many
sorted first-order structures. and are usually described in terms of functions. A
structure is given with respect to a signature. A signature is a finite collection of
function names, each of a fixed arity. The given structure fixes the syntax by naming
sorts and functions, and provides carrier sets and a suitable symbol interpretation
on the carrier sets, which assigns a meaning to the signature. So a state can be
defined as an algebra for a given signature with universes (domains or carrier sets)
and an interpretation for each function symbol.

States are usually described in terms of functions. The notion of ASM includes

static functions, dynamic functions and erternal functions.

e Static functions have a fixed interpretation in each computation state: that
is. static functions never change during a run. They represent primitive op-
erations of the system, such as operations of abstract data types (in software

specifications) or combinational logic blocks (in hardware specifications).

¢ Dynamic functions whose interpretation can be changed by the transition
occurring in a given computation step, that is, dynamic functions change dur-
ing a run as a result of the specified system’s behavior. They represent the

internal state of the system.

e Ezxternal functions whose interpretation is determined in each state by the

13



environment. Changes in external functions which take place during a run are
not controlled by the system, rather they reflect environmental changes which

are considered uncontrollable for the system.

e Derived functions whose interpretation in each state is a function of the
interpretation of the dynamic and external function names in the same state.
Derived functions depend on the internal state and on the environmental sit-
uation (like the output of a Mealy Machine). They represent the view of the

system state as accessible to an external observer.

2.1.2 Terms

Variables and terms are used over the signature as objects of the structure. The

svntax of terms is defined recursively, as in first-order logic:
e A variable is a term. If a variable is Boolean. the term is also Boolean.

e If f is an r— ary function name in a given vocabulary and ¢,,...¢ are terms.

then f(¢;,...¢) is a term. The composed term is Boolean if f is relational.

2.1.3 Locations and Updates

States are described using functions and their current interpretations. The state
transition into the next state occurs when its function values change. Locations and

updates are used to capture this notion.

14



A location of a state is a pair of a dynamic function symbol and a tuple of
elements in the domain of the function. For changing values of locations the notion
of an update is used. An update of state is a pair of a location and a value. To fire an
update at the state, the update value is set to the new value of the location and the
dynamic function is redefined to map the location into the value. This redefinition
causes the state transition. The resulting state is a successor state of the current
state with respect to the update. All other locations in the next state are unaffected

and keep their value as in the current state.

2.1.4 Transition Rules

Transition rules define the changes over time of the states of ASMs. While terms
denote values, transition rules denote update sets, and are used to define the dvnamic
behavior of an ASM. ASM runs starting in a given initial state are determined by
a closed transition rule declared to be the program. Each next state is obtained by
firing the update sets at the current state. Basic transition rules are skip, update.

block, and conditional rules.

The skip rule is the simplest transition rule. This rule specifies an “empty

step”. No function value is changed. It is denoted as
skip
The update rule is an atomic rule denoted as

f(tl,tz,...,tn) =t

15



[t describes the change of interpretation of function f at the place given by (¢;. ¢, ...,
to the current state value of ¢.

A block rule is a group of sequence of transition rules. The execution of a block rule
is the simultaneous execution of the sequence of the transition rules. All transition
rules that specify the behavior of the ASM are grouped into a block indicating that

all of them are fired simultaneously.

block
R,
R,

endblock

In conditional rules a precondition for updating is specified.

if g
then R, else R»

endif

where g is a first order Boolean term. R; and R, denote arbitrary transition rules.
The condition rule is executed in state S by evaluating the guard g, if true R, fires,

otherwise R, fires.

16



2.2 Modeling with ASM-SL

The ASM Specification Language (ASM-SL) {14] is the language used to describe
svstems in ASM. Dynamic as well as static components of the system can be de-
scribed within the same ASM model. We can also have behavioral (specification) as
well as a structural description (implementation) for the same system. This is the
typical way for modeling hardware designs. A behavioral description is a higher level
model of the system, we use if-then-else rules and dynamic functions to describe the
system behavior. On the other hand, a structural description is a lower-level model
in which we use static functions to define our primitives. From these primitives we

build a hierarchical or modular structure of the system.

if(t<max)

then incr(t)
if (t=max)

reset (t)

reset (t)

Figure 2.1: Generic counter state machine

We show the example of a generic counter [38] to illustrate the use of ASM
in systems modeling. Figure 2.1 shows the state machine and Figure 2.2 shows the
ASM model of the counter. The example shows clearly the usage of abstract and
concrete sorts to model the internal state machine of the system, and it also shows

how uninterpreted functions are declared using the “AfAP_TO_FUN” operator.

17



freetype DATA == { abstract }
freetype MODE == { count, ring }

static function Bool == { true, false }
static function Data == { abstract }
static function Mode == { count, ring }
static function max_time == abstract
static function zero == abstract

dynamic function mode : MODE with mode in Mode initially count
dynamic function t : DATA with t in Data initially max_time

static function incr == MAP_TO_FUN {abstract -> abstract}

transition R1 ==

if ((mode = count) and (t <= max_time)) then
t := incr(t)

endif

transition R2 ==
if (mode = count) and (t = max_time) then
mode := ring
endif

transition R3 ==
if (mode = ring) then

t = zero
mode := count
endif

Figure 2.2: ASM modeling of the generic counter example

18




2.3 The ASM Workbench

The ASM Workbench (ASM-WB) (14| provides a number of basic functions includ-
ing: parsing, tvpe checking, pretty printing and evaluation of terms and rules. [t
supports computer aided specification, modeling, analysis and validation based on
the method of ASM. The ASM-WB supports the ASM specification language (ASM-
SL). The main characteristics of ASM-WB is its kernel which is a set of program
modules implemented in the functional programming language Standard ML [31].
each module corresponding to a relevant data structure (e.g, abstract syntax trees,
signatures) or functionality (e.g, type checker, evaluator). The nature of SML allows
exporting an executable image of the ML compiler itself containing the precompiled
and preloaded ASM modules called sm1-asm. This provides a first - not very friendly
- user interface for the ASM Workbench, but it also provides immediate access to
the data structures and functions of the ASM-WB. (Figure 2.3 shows an example
session with sml-asm.)

The ASM-WB is designed as an extensible tool, where transformation algo-
rithms might be added that serve as interfaces. One interface with the SMV model
checker called “ASMSMYV Translator” was suggested and implemented in {15]. Since
our work is built on preliminary work [37, 38], we can furthermore exploit the notion
of abstract types. This feature can be essential when applying automated verification

techniques like model checking. Figure 2.4 shows the ASM-WB interface [37].
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- [flash] [/project/hvg/tools/trafo/ASM2MDG]> ../bin/sml-asm
val it = true : bool

- ASM.reset();

val it = () : unit

- ASM.load_file’ "./ASM/timer.asm";

val it =
{"DATA","MODE","Bool","Data", "Mode","max_time","zero","mode",
"t","incr","R1","R2",...]: string list

- ASM.eval_term’ "max_time";
val it = CELL ("abstract",[])
: (ASM_Domains.FINITE_SET,ASM_Domains.FINITE_MAP)ASM_Domains.VALUE’
- ASM.show_value(it);
val it = "abstract" : string
- ASM.eval_term’ "mode";
val it = CELL ("count",[])
: (ASM_Domains .FINITE_SET,ASM_Domains.FINITE_MAP)ASM_Domains.VALUE’
- ASM.show_value(it);
val it = "count" : string
- ASM.eval_term’ "t";
val it = CELL ("abstract",[])
: (ASM_Domains.FINITE_SET,ASM_Domains.FINITE_MAP)ASM_Domains.VALUE’
- ASM.show_value(it);
val it = "abstract" : string

Figure 2.3: Example session with sml-asm.
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/

SMY tool

MDG tool

Figure 2.4: The ASM-WB interface
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Chapter 3

Multiway Decision Graphs

Multiway Decision Graphs (MDGs) [12] have been proposed as a solution to the state
space explosion problem of ROBDD (Reduced Order Binary Decision Diagrams) [8]
based verification tools. MDGs subsume ROBDDs, while accommodating abstract
sorts and uninterpreted function symbols. This significantly enhances the capability

to verify a broader range of systems as classical ROBDD based tools.

3.1 Multiway Decision Graphs (MDGs)

MDG [12] is a relatively new class of decision diagrams which subsumes the tra-
ditional ROBDDs while allowing abstract data sorts and uninterpreted function
symbols. MDGs are based on a subset of many-sorted first order logic, with a dis-

tinction between abstract and concrete sorts (including the Boolean sort). Concrete

8]
(8]



sorts have enumeration while abstract sorts do not. The enumeration of a con-
crete sort « is a set of distinct constants of sort a. The constants occurring in the
enumeration are referred to as individual constants, and other constants as generic
constants and could be viewed as 0-ary function symbols. The distinction between
abstract and concrete sorts leads to a distinction between three kinds of function
svmbols. Let f be a function symbol of type a; x ag x --- x @, = a 1. If anyy
is an abstract sort, then f is an abstract function symbol. If all the a,...qa, are
concrete, then f is a concrete function symbol. If a,,, is concrete while at least
one of the o, ..., is abstract, then f is referred to as a cross-operator. Concrete
function symbols must have explicit definition: they can be eliminated and do not
appear in MDG. Abstract function symbols and cross-operators are uninterpreted.

An MDG is a finite. directed acyclic graph (DAG). An internal node of an
MDG can be a variable of concrete sort with its edge labels being the individual
constants in the enumeration of the sort: or it can be a variable of abstract sort and
its edges are labeled by abstract terms of the same sort; or it can be a cross-term
(whose function symbol is a cross-operator). An MDG may only have one leaf node
denoted as T, which means all paths in an MDG are true formulae. Thus. MDGs
essentially represent relations rather than functions. MDGs can also represent sets
of states. In MDG, a data value can be represented by a single variable of abstract
type rather than by concrete (e.g., 32 bits) boolean variables. Variables of concrete

sorts are used for representing control signals. Using MDGs. a data operation is



represented by an uninterpreted function symbol. As a special case of uninterpreted
functions, cross-operators are useful for modeling feedback from the datapath to the
control circuitry.

Using abstract sorts and uninterpreted functions reduces the size of the model
represented by the MDG, and thus makes reachability analysis and equivalence
checking feasible for lager systems. It allows the user to model on a higher level
of abstraction and to hide design details of the lower level. [n terms of hardware
systems, for instance, the user can model at the register transfer level (RTL) rather
than the logic gate level. MDGs hence allow a direct representation of the high level
descriptions without additional encoding into Booleans (which is necessary when

using ROBDDs).

3.2 Modeling with MDG

Logic gates can be represented by MDGs similarly to ROBDDs. because all inputs
and outputs are of Boolean type. Figure 3.1 shows the MDG for an AND gate for
a given variable order. A design description on RTL, however. involves the use of
more complex functions and data inputs that go beyond the capacity of ROBDDs
[42]. For example, Figure 3.2 shows the MDG of an arithmetic logic unit (ALU),
where op is a concrete variable with enumeration sort {0.1,3,4}, z/, r2 and y are
abstract variables, zero is a generic (abstract) constant of the same sort, and sub.

add and inc are uninterpreted functions.
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Figure 3.2: MDG for an ALU

For system descriptions the MDG tool comes with a Prolog-style hardware
description language called MDG-HDL [41]. It allows the use of abstract as well as
concrete variables for representing data operations. A circuit can be described on the
structural level, as an implementation, or on the behavioral level, as a specification.
Often models on both levels of abstraction are given and shown to have equivalent
behavior (e.g., by means of sequential equivalence checking).

A structural description is a collection of components connected by signals

[ V]
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that can be of abstract or concrete type. MDG-HDL includes a library of prede-
fined components that represent logic gates such as AND, OR, multiplexers. regis-
ters. drivers. etc. There is also a component that represents functions as a black box
called transform. It is used for uninterpreted functions, or cross-terms. The behav-
ioral description is represented by abstract descriptions of state machines ! defined
in MDG-HDL in terms of tables. An MDG table is similar to a truth table, but it
allows first order terms as entries in addition to concrete variables. Tables usually
describe the transition, the output relation. or the combinational functionality of
the system. They contain a list of rows where the first row contains variables and
cross-terms. Variables must be concrete except for the last element which can be
abstract. This last element provides the resulting value of the function or transition.
All other rows except the last one must contain individual constants in the enumer-
ation of their corresponding variable sort. or the “*” which symbolizes a “don’t care
value™. The last element can be a constant value or a first-order term. Figure 3.3
shows a tabular description of a simple state machine, with its MDG representation
for a 4 x 1 multiplexer, where z and y are Boolean inputs, a is an abstract state
variable and a’ is its next state variable. It performs inc operation when r = 1. and
dec operation when £ = 0 and y = 1, where inc and dec are uninterpreted function

symbols.

'In the MDG literature [12] such a finite state machine (FSM) is called abstract state machine
(ASM) which is obtained by letting some data input, state or output variables of an FSM be of
abstract sort, and the data operations be uninterpreted function symbols.
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0 1 dec (a )

1| * | inc(a) inc (a)

Figure 3.3: Table and MDG for a simple behavioral state machine

3.3 Verification using the MDG Tool

The MDG tool is a tool set for the formal verification of finite state systems (ma-
chines) that is based on MDG. It includes application procedures for combinational
and sequential equivalence checking [12], invariant checking {12] and model checking
[39]. The MDG tool has been used to verify a number of non-trivial systems such
as communication switches and protocols [3. 11, 36, 43. 15].

For combinational verification, corresponding algorithms based on ROBBDs
can be used in the MDG tool because MDGs as well as ROBDDs have canonical
forms. Reachability analysis is used in the MDG tool to perform property checking

and sequential equivalence checking on designs. Sequential equivalence checking of

[SV]
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two state machines (sequential circuits) is performed by checking whether the two
machines produce the same sequence of outputs for every sequence of inputs. This
is achieved by forming the product machine of both while feeding them with the
same inputs and verifying an invariant asserting the equality of the corresponding
outputs in all reachable states [12]. A Model checking facility has also been re-
cently developed [39] and incorporated into the existing MDG tool. This provides
both safety and liveness property checking using implicit abstract enumeration [12].
The properties are represented in a universally quantified first-order branching time
temporal logic. called £ypg [12]. When any of the verification procedures fails, a
counter-example is generated. This includes assumptions, inputs, and a sequence of
states. which provides a trace leading from the initial state to the state where the
two designs are not equivalent.

Figure 3.4 summarizes the MDG tool applications. [n order to verify designs
with this tool. we first need to specify the design in MDG-HDL in terms of a behav-
ioral and/or structural description (design specification and design implementation
in Figure 3.4). Moreover, an algebraic specification is to be given to declare sorts.
function types, and generic constants that are used in the MDG-HDL description.
Rewrite rules that are needed to interpret function symbols should be provided here
as well. Like for ROBDDs, a symbol order according to which the MDG is built
should be provided by the user. However, there are some requirements on the node

ordering of abstract variables and cross-operators (but not for concrete variables).



This symbol order can affect critically the size of the generated MDG. While the
current version of MDG uses manual static ordering, a newer version will be released

soon including automatic dynamic ordering [16}.

Property Algebraic Variable
Specification Specification Order

Y i Y
MDG Tool

Design Model Checking - Design
Specification Equivalence Checking [mplementation

[nvariant Checking

YES/NO (Counter-example)

Figure 3.4: MDG verification tool

The MDG tool has some significant practical limitations: For instance, due to
the non-interpretation of data operators. the reachability analysis of abstract states
may not terminate [2]. Another practical drawback of the MDG tool with respect
to an industrial setting is that they do not accept VHDL or Verilog HDL as input

language [44].
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Chapter 4

Interfacing ASM with the MDG

Tool

Our main objective of this work is to provide the MDG tool with a high-level model-
ing language. namely ASM. because this notion is becoming widely used to describe
different types of systems. We choose to interface ASM with the MDG tool because
it contains different automatic verification techniques and both notions are very
close to each others as both are based on first-order logic to support abstract data
types and uninterpreted functions. This interface will ultimately allow the formal
verification of ASM models using the MDG tool. Figure 4.1 shows an overview of
the expected ASM-MDG verification procedure.

In this chapter, we describe in details the proposed “ASM-MDG” interface. We

will show how different behavioral and structural MDG-HDL models are generated
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MDG Verification Tool

YES/NO(Counter-example)

Figure 4.1: ASM-MDG verification procedure

from ASM-IL via the ASM-IL as well as in a syvntactic direct fashion.

4.1 ASM-MDG Interface via ASM-IL

In order to provide a generic interface for the ASM-WB with different tools, ASM
models are automatically translated into the ASM-IL as proposed in [38]. This
interface allows various tools to be applied to the same language, which is ASM-SL.
An ASM-IL representation is a flat, simple transition system, which means that all
nested rules in the ASM model are flattened and all complex data structures are
unfolded. Based on this ASM-IL, we build an interface to the MDG tool. The
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disadvantage of a flattened representation in ASM-IL, however, is the fact that it
does not preserve the structure of the original ASM model because it provides no
modular or hierarchical descriptions.

In this section we describe how ASM-IL is coded in MDG-HDL. First, we show
how to generate the MDG-HDL structural netlist of components that represents
MDG-HDL implementation model, and then we show how to generate the MDG-
HDL tables that represent MDG-HDL specification model.

In ASM-IL, locations are identified with state variables by mapping each lo-
cation to a unique variable name. Guards are mapped into simple Boolean terms.
Thus, an ASM model is represented by a set of guarded updates in a triplet form
(loc, guard, val). All nested rules are flattened then mapped into simple guarded
updates using a simplification function. Each term that occurs in an ASM rule is
simplified until the result contains only constants. locations and variables. Abstract
functions and cross-operators are left uninterpreted in ASM-IL. Only cross-operators
that match one of the standard relational operators are mapped into a cross term.

Starting from the ASM-IL language, we built our interface to the MDG tool as
shown in Figure 4.2. The interface automatically generates the required tool inputs:
MDG-HDL design models (structure and/or behavior), MDG algebraic specification,

and MDG symbol order. In the next subsections, we describe the details for each.



Design Str. ASM-SL to Design Beh.
(ASM-SL) ASM-IL | (ASM-SL)
Y
ASM-IL
Model
IL to MDG-HDL
ASM-IL to Generate Generate ASM-IL to

MDG-HDL Str. | | Algeb. Spec. || Var. Order MDG-HDL Beh.

/ Y
Design Str. Algebraic Variable Design Beh.
(MDG-HDL) Spec. Order (MDG-HDL)

Y i , Y
MDG Tool

Property
( Lspg)

Figure 4.2: ASM-MDG interface via ASM-IL
4.1.1 MDG Structural Description

To build an MDG-HDL structural description from an ASM-IL model. we map loca-
tions, guards, and values into MDG-HDL components preserving the functionality
of the model. Uninterpreted functions and abstract sorts in the original model are

left unchanged.

Location

In an ASM-IL representation each location is associated with a set of guarded up-

dates, each consisting of a Boolean guard and an update value. The whole expression
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evaluates into one value, value;, which is the next state value of the dyvnamic loca-
tion. if there is at least one guard satisfied. Otherwise. the value of the location

will be the same in the next state. Figure 4.3 shows the interpretation of guarded

updates.
( loc,
( guard, , valug,) if guard, then loc= value,
( guard, , value ) if guard, then loc = value,
( guard, , value, )) if guard, then loc = value,

Figure 4.3: ASM-IL guarded updates

First, each location is mapped into a state component in MDG-HDL. Since
locations are considered as state variables, we represent locations as registers. A reg-
ister has two signals. an input and an output signal. Each location name is mapped
into a signal that is connected to the register’s output. The resultant value of the
location is mapped to a signal that is connected to the register’s input. This will
generate a state machine (sequential circuit) in which the number of state variables

is equal to the number of updated locations in the model.

For guards and values, we build a set of MDG-HDL components that are
interconnected with signals that evaluate to the next state value of the location:
Each pair (guard, value) is mapped into a multiplexer where the guard is the control

and the value is one input (see Figure 4.4). We connect these multiplexers together
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d, . value. )| ------- >
( guard; . value; ) Mux

Figure 4.4: Mapping a guarded update into MDG-HDL

in a hierarchical way as shown in Figure 4.5. This output is connected into the input
of the state element representing the location. The location is fed back into the last

multiplexer in the hierarchy to represent the case in which no guard is satisfied.

]

Mux 0

guard

Reg

guard | value Loc

value 1 Mux 1

guard |

]
o, | —

value n

Figure 4.5: Mapping ASM-IL expression for one location into MDG-HDL

Values

Values can be locations, constants, or any variable. If a value is a location or a
variable, we map it directly into a signal with the same type. Constants are mapped

into an MDG-HDL component called constant _signal, that is a component with an
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individual value from the enumeration of the concrete data sort or a generic constant
in case of an abstract type. For Boolean types we use two default components that

have always the values of 0 and 1.

—— location @ ----- 4 signal
value variable ~  ----- > signal
constant  _____ » -
constant signal

Figure 4.6: Mapping values into MDG-HDL

Guards

A guard is a Boolean ASM-IL expression. It might contain concrete functions. un-
interpreted functions, or cross terms. Concrete functions can be default Boolean
operators or any other function. We map these operators into MDG-HDL compo-
nents that perform the same functionality. We apply the mapping function on each
rule by creating an MDG-HDL component, then mapping the same function again
on its parameters until we get a constant value, or a variable.

All default binary operators are mapped into MDG-HDL logic gates. An
equality expression for a variable and the value true is simply mapped into a signal
with the variable name. Equality expressions for a variable and the value false is
mapped into the corresponding negation MDG-HDL component, not. Relational

operators, as >, >=, <, <=, etc., are mapped into a transform component that
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can be viewed as a black box. All other cross terms, abstract functions, and unin-

terpreted functions are also mapped into transform.

("= var .true) | ... signal ( var)

("= var .false) | oo.... component ( not ( var ))

("and” . var, . var,) | ... component ( and ( var, . var, ))

("or". wvar, . var,) | -._._. component ( or ( var, . var, ))

(oper. var, . var,) | ... component ( transform ( var, . var, . oper ))
(fun. var, . var, . ... ) I p» | component( transform ( var, . var, . fun ))

Figure 4.7: Mapping guards into MDG-HDL

Relational operators can be used with different data sorts in ASM models.
when they are used with abstract data sorts. they are mapped iInto a cross-operator
according to Figure 4.8. Operators which can be used with concrete data types
other than Boolean, equal(=) and not equal(! =), are mapped into tables according
to Figure 4.9. The first table clearly indicates that the output signal of the table

equals to true (1) when var equals to val and false (0) otherwise.



("=".var,. vary )| ....__. p | transform( iseq (var,. var, ))
("=" .var,. var, ) [ transform( neq (varl. var, ))
("<". var,. var, )3 p | transform( It ( var,. var, )
(">". var,, var, ) N p | transform( gt( var,. var, M
("<=" var,. var, ) N S > transform( Ite ( var,. var, ))

(">=" var,, var, Y| eeoeoC p | transform( gte( var,. var, ))
Figure 4.8: Mapping relational operators into MDG-HDL functions
=", var. val )| ... > table([{[:z;: Sll]glng;;

C'=".var. val )| ... > table([[var . signal].
[val . O]| L))

Figure 4.9: Mapping relational operators into MDG-HDL tables
4.1.2 MDG Behavioral Description

MDG specifications are represented by tables similar to truth tables. We cre-
ate these tables by mapping ASM models through the intermediate language into
MDG-HDL tables along with variable order and algebraic specifications as shown
in Figure 4.10. To treat behavioral ASM-SL specifications, ASM models are first
translated into the ASM-IL as shown in Figure 4.10. The model is first parsed for
syntax check, ASM universes, functions, and transition rules are collected. Then

an analyzer generates the ASM Intermediate Language, ASM-IL representation is a

flat, simple transition system, which means that all nested rules in the ASM model
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are flattened and all complex data structures are unfolded [37]. The behavior of the
model is described as a set of guards and updates for each state variable (update
location, the value of the state variable in the next state is the corresponding value
to the satisfied guard in the list. otherwise it keeps the same value as in previous
state. Based on this ASM-IL, MDG-HDL behavioral descriptions are generated in
terms of tabular representation similar to truth tables. In addition, variable order

and algebraic specifications are produced [17].

Design Beh.
(ASM-SL)

Analyser

}

ASM-IL

ioc, | (guard , . update ). (guard, .update ), ... (guard, .update ) ]

ioc, I:(guard , -update ), (guard, ,update ), ... (guard .update ) ]

ioc, [(guard o +update ), (guard, .update ). ... (guard . update ) ]

Algebraic Variable Design Beh.
Spec. Order (MDG-HDL)

Figure 4.10: ASM-MDG internal interface for behavioral designs
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For each location in the ASM model. we generate one table. The first row of
the table contains all variables in the model and anyv cross term or function that
occurs in the ASM-IL guarded update expression of that location. The last element
is the location itself, it represents the variable in the next state. Then we treat
the list of (guard, value) pairs one by one (see Figure 4.11). An expression with
one variable in the guard is mapped into one row with all other variables are set
to the “don’t care” (“*") svmbol. A conjunction is mapped into one row with each
variable or cross term assigned its value (val;), or “don't care” if it does not occur
in the expressions. The result value is assigned to the last element in the row, which
gives the valuation of the location. A disjunction is mapped into as many rows as
the number of variables and cross terms in the expression. In each row. a value
is assigned to the corresponding variable. all others are “don’t care™ values. The
last clement of each of these rows contains the value of the location as shown in

Figure {.11.

=", var‘.,vali).val ) N R » [*.*.vali,*.vall

"__w

conj (("=", var, ,val;).("=", vary .valy), w. val)| -=--- (val, ,val, ..., val |

(val, . *.*. .. val |,

disj( ("=". var; . vall ). .("=", var, . val2 Yo e wval) | ... >

(* val, . * ... val],

Figure 4.11: Creating MDG tables from guarded updates

10



In case we have nested operations in the ASM-IL model, we treat them re-

cursively until we find a term. a constant value or a cross-operator. (See Figure 4.12)

(conj( conj (( "=".var, .val,).("=" var, .val,)).
= R R p |[val, .val, valy val |
(=" var, .va13) ). val ) -

[vall CEOFval .
(disj( disj (("=". var; . val, y.("=" wvar, .val,}),
t R p |[*val, . *, val]
("=" var, .val}) ). val ) <

[*. * »'013 . val ]

(conj( disj (("=". var, .vall ). ("= var, . val2 ) ). [vall .*. va13 . val .

("="vary .valy) ). val) [ *. val, .val, . val ]

— A - (val, . val, . *. val].
(disj( conj (("=".var, .val;).("= vary (valy) ). -

("="wary \valy) ). valy | T > . valy . val|

Figure 4.12: Mapping nested guarded updates into MDG-HDL tables

4.1.3 Algebraic Specifications

We have to declare all data sorts and functions before we use them in our MDG-
HDL models. In the MDG tool, there is a default abstract sort wordn (for n-bit
words) and a default concrete sort bool with the enumeration of [0,1]. Any other
abstract or concrete sorts must be declared explicitly. An ASM-IL representation

preserves the enumeration for each variable. Based on this, we declare a concrete
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sort for each different enumeration. Abstract sorts are declared according to the
distinguished sorts used in the ASM-SL model.

All functions and cross terms are also declared in the algebraic specification
in the same way. This includes uninterpreted functions. cross terms and relational
operators. We declare any function that occurs in the ASM-IL expressions in the
algebraic specification according to its arguments and target sorts. We find its tar-
get sort from the domain of the expression where it occurs. Figure 4.13 illustrates

the mapping function that we use to generate the MDG algebraic specifications.

[var . enum (abstract (sort))] ----%| abs_sort(sort)
[var . enum (constant ( val, .val, . ... val ))] A

conc_sort ( var_sort [val | vary . varn])
[relational_oper ( var, . var, ) ----% | function([ sort | -Sort, ] . bool)
[fun ( var, .var, . ....var, ) ----P

function([sort[ JSorty ..., sartn] , bool)

Figure 4.13: Declarations of functions and sorts in the algebraic specifications
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4.1.4 Variable Order

MDGs have some restrictions on the order of abstract variables and cross-operators.
[n order to obey these restrictions, we explore all functions and cross-operators
in the ASM-IL expressions and order the variables according to the dependencies
between abstract variables themselves and also between abstract variables and cross
terms or functions. If a variable var! depends on another variable (or function)
var2. then varl! is sorted above var?2 in the order file. Also if a cross term fdepends
on a variable varl, then wvar! should appear above f. Figure 4.14 depicts these

dependencies.

var, = f (var2 ) I » |var, < var,

Sfun (var, R0 R R » |var, < fun

Figure 4.14: Variable order constraints

4.2 ASM-MDG Direct Interface

For structural designs, ASM-IL does not preserve the structure of the original ASM
model, because it does not provide means for modular or hierarchical descriptions.
When an ASM model is translated into the ASM-IL rules, all structured functions
are flattened into the primitive ones. These rules are used to build the MDG-HDL

structural model, which is a set of components interconnected by internal signals.
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Since MDG-HDL supports neither modularity nor hierarchy, the resulting MDG-
HDL structural model will be very large as only the predefined MDG-HDL compo-
nents are used. Moreover. large number of components results also in a large number
of variables which makes it very hard to generate a good variable order. To solve
this problem, we provide for structural designs a direct interface between ASM-SL
and MDG-HDL without going through the ASM-IL. In order to keep this interface
simple and feasible, we implement it for a set of predefined ASM functions without
going into the semantics of those functions. In other words, we define ASM static
functions that correspond to MDG-HDL primitive components, then we use them
to built our ASM structural model, which then can be translated into MDG-HDL

structural design easily. Figure 4.15 shows the proposed ASM-MDG direct interface.

Design-Str.
(ASM-SL)

ASM-SL to MDG-HDL

ASM-SL to Generate Generate
MDG-HDL Algeb. Spec. || Var. Order

1

Variable
Order
)
Property ’
MDG Tool

Figure 4.15: ASM-MDG direct interface for structural designs

Design-Str.
(MDG-HDL)

Algebraic
Spec.
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This direct interface is implemented in three steps: a pars, an analyzer and
a generator. Figure 4.16 details the above procedures. where the parser is used to
check the input model and validate its syntax, it collects ASM universes including all
sorts declarations, ASM functions including static, dvnamic and external functions,
and transition rules that describe the structure of the model. The analyzer is used
to treat the data structures produced by the parser in order to construct design
components, variables, functions and sorts that represent the design. In the last
step, the generator is used to produce MDG-HDL models based on the information
collected in the previous step.

Algebraic specifications are produced based on the generic constants, concrete
sorts. abstract sorts, and uninterpreted functions. Variable ordering in turn is gen-
erated according to the relationship between variables and functions in the design
such that the order obeyvs the restrictions imposed by the MDG tool. It includes all
variables and internal signals used in the model. The MDG-HDL is generated by a
one-to-one mapping from ASM structure of static functions to MDG-HDL library
of components. The current implementation supports only a set of ASM functions
that can be mapped directly to MDG-HDL, in addition to uninterpreted functions

and cross operators.
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4.3 Summary

The work that is introduced in this chapter provides an interface from the ASM
Workbench to the MDG tool. The implementation of the provided algorithm was
done in standard ML in order to ease the interface to the ASM Workbench which
is also implemented in ML. The program outputs a set of MDG-HDL files that
represent the ASM model. This includes MDG-HDL structural model, MDG-HDL
behavioral model, algebraic specifications, and variable order. These MDG-HDL
models can easily be used as input for MDG tool to verify designs. In the next
chapter, we will illustrate via a case study the application of the ASM-MDG inter-

face.
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Figure 4.16: ASM-MDG internal interface for structural designs
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Chapter 5

Application: Island Tunnel

Controller

In this chapter, we provide a case study application of our ASM-MDG interface
based on the Island Tunnel Controller (ITC) example [45] in order to illustrate the
proposed ASM-MDG interface. The ITC is used to control two traffic lights for a
tunnel that connects an island to the mainland as shown in Figure 5.1. The island
allows cars to travel in one direction only. There can be a maximum number of cars
in the tunnel at one time, also the number of cars on the island cannot exceed a
specific maximum. There are four tunnel sensors to detect vehicles at both sides of
the tunnel: IE at the entrance of the island in ASM), IX at the exit of the island, ME
at the entrance of the mainland and MX at the exit of the mainland. There are four

output signals to control the traffic lights at both sides: IRL for island red light, I[GL
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for island green light, MRL for mainland red light and MGL for mainland green light.
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Figure 5.1: Island Tunnel Controller
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The ITC is specified using three communicating controllers - Island Light Con-
troller (ILC), Tunnel Controller (TC) and Main Land Controller (MLC) and two
counters - Tunnel Counter (TCR) and Island Counter (ICR) - as shown in Figure 5.2.
Following signals are used between the controllers: [U indicates that the island is
using the tunnel, IR indicates that the island is requesting the tunnel: [Y indicates
that the island is being instructed to release the tunnel for the mainland; and [G
indicates that the island has been granted control of the tunnel from the mainland.
A similar set of signals has been defined for the mainland. The Tunnel Counter
(TCR) counts the number of cars inside the tunnel, and the Island Counter (ICR)
counts the number of cars on the island. For TC, at each clock cycle, the count

TCR is either incremented depending on the signals itc+ and mtc+, decremented

49



depending on signals itc- and mtc- unless it is already zero. or keep its value oth-

erwise. The counter ICR is incremented and decremented the same way depending

on the signals ic+ and ic-. Initially, both lights are assumed to be red and both

counters are set to zero and no vehicles are in the tunnel or on the island.

IRL o

IGL-=

*MRL

*=MGL

U MU
Island IR N Tunnel MR Mainland
Light Controller Light
Controller Controller
IG MG
(ILC) (TO) (MLC)
IY MY
ic- Jic+ | mtc- |mtc+ |tc-  |tc+
IC i tc

i

Island Counter (ic)

Tunnel Counter (tc)

Figure 5.2: Three-Controllers design of the [TC

In the following sections, we will describe the ASM behavioral and structural

modeling of the ITC, the transformation of the ASM models into MDG-HDL and

finally their verification with the MDG tool 1.

'The full specification models in ASM as well as the generated MDG-HDL models can be

obtained from our web page http://hvg.ece.concordia.ca/Tools/ASMMDG/ITC/
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5.1 ASM Modeling

The maximum number of cars to be in the island at one time can be taken in ASM
as a parameter of an abstract type that represents any natural number. We can
then define a cross-operator for the operation “/CR < n”. This allows modeling the
controller for any number of cars. This example clearly illustrates the advantage of
using abstract types that are supported by our framework as we are able to verify
this system for any arbitrary counter size.

We developed two models for each of the Island Light Controller (ILC) and
the Mainland Light Controller (MLC): a behavioral model (specification) and a
structural model (implementation). MLC is described in details below. along with
its ASM models. Since the ILC is similar, we just show the behavioral and structural

models without much detailed description.

5.1.1 Behavioral Modeling in ASM

Figure 5.3 shows the state transition diagram for the MLC, where & means logical
AND,| means logical OR, and the bar above the variable means complement. The
state transition diagram is assumed to be initially in the red state, where IRL is
set to 1 while in this state. If a car is detected to be exiting the island through
the tunnel, the controller goes to the eziting state and stays there while there are
cars exiting from the tunnel, the tunnel counter (TCR) is decremented by activating

tc- for every car. The controller goes back to the red state when there are no cars
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exiting. While in the red state, if the mainland has been granted the control of the
tunnel and there are no cars detected to be exiting, then the controller goes to the

green state. [RL is reset to 0. and IGL is set to 1.

ICR <N & MY) [(ICR = / MR
( | o MU

(ICR <N &MY
& ME)/ MRL=F

Sea(TCR:
CCTH
MR = ME

((ICR<N)&MY
& ME) MRL—er

MU =
incr(TCR)

ME/ MRL =F MX/MRL =T
MU=T
Figure 5.3: ASM transition system for the MLC
While in the green state, if the mainland controller is being instructed to release

the tunnel for the island, the controller goes back to the red state and accordingly

sets [RL to 1 and resets IGL to 0. Otherwise, it stays in the green state unless there



are cars entering to the tunnel, it goes in this case to the entering state and stays
there while there are cars detected to be entering to the tunnel. as a result tc+ and
ic- are activated to update the count each time a car is detected. If there are no
cars entering, the controller goes back to the green state. Counters increment and
decrement signals are assumed to be reset to 0 where it is not mentioned that they

are set to 1. In the same way as MLC, the [LC behavior is described in Figure 5.4.

IY & [E/ X/
incr(ic) .
decr(tc) decr(ic). incr(tc)

[E / incr(ic). decr(tc)

Figure 5.4: State Transition for the [LC

We model this behavior in ASM by defining a free type that represents the

states of the MLC as follows:

freetype IS_SORT == {green, red, exiting, entering}

Increment and decrement operations on the counters are generally infinite
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mappings over integers. In our model, we specify those as abstract static func-
tions, which map an abstract value to an abstract value. These functions are left
uninterpreted in our transformation. Also comparison operation between tunnel
counter and maximum number of cars allowed to be in the tunnel is modeled with

a cross-term [t as follows:

static function incr == MAP_TO_FUN {abstract -> abstract}
static function decr == MAP_TO_FUN {abstract -> abstract}

static function 1t == MAP_TO_FUN {abstract#*abstract -> Bool}

Erternal functions are used to represent environment operations for detecting

vehicles at entrance or exit in addition to signals from the TC, e.g..

external function carentering: BOOL // ME

external function mainlandgranted: BOOL // MG

the value of carentering is indicated by the sensor ME. careziting by MX, mainland-
granted by MG, and mainlandrelease by MY as in Figure 5.2.

We describe the dynamic control of the controller states using the dynamic
function: mainlandstate which is of the type IS_SORT that has the enumeration of

{green, red, exiting, entering}

dynamic function mainlandstate: IS_SORT initially red

All Boolean outputs of this controller are also described by dynamic functions, e.g.
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dynamic function mainlandred: BOOL initially false // MRL

dynamic function mainlanduse: BOOL initially undef // MU

dynamic function tcr : DATA with tcr in Data initially zero // TCR

We then describe the behavior of the system using if-then-else rules. One example

is shown below for the entering state.

if (mainslandstate = entering ) then

mainlandgreen := true
mainlandred := false
mainlanduse := true

if (carentering) then mainlandstate
else mainlandstate := green
endif

endif

5.1.2 Structural Modeling in ASM

:= entering

We developed structural models (implementations) for both the MLC and ILC. The

implementation of the MLC and ILC are shown in Figures 5.5 and 5.6, respectively.

We use static functions to define primitive gates (AND, OR, NAND, etc.). An

example is shown below for an OR gate with two inputs.

static function or2 (in0O,inl) ==



if in0 = true or 1inl = true

then true

else false

endif

MX )
MG {>C
7 Reg
Y\ MRL
MY — ) [ MGL
LT bl MU
‘DOJD - .
ME
S1
I MR
St SO
|
L 4x1 TCR
| decr —_| MUX Reg TC <maxcar +— LT

incr

Figure 5.5: MLC implementation
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We describe the structure of output signals in addition to internal signals in

one transition as following example:

d2 := or2(and2(d2,or2(carexiting,inv(mainlandgranted))),
and2(d1,o0r3(d2,mainlandrelease,inv(1lt(tcr,maxcar)))))
mainlandred := d2

mainlandrequest := and3(d2,inv(dl),carentering)

These function were obtained from the specification given above in Figure 5.3,
where d1 and d2 represent the state variables of the system which consists of four
states. In addition, we use an abstract state variable to model the abstract counter
tcr. Black-box representation is used to model the incr and decr functions, while

the comparator “ter < mazcar” is modeled with a cross-term, It
p

5.2 MDG Verification

Using our ASM-MDG tool, we generated the corresponding MDG-HDL models for
both behavioral and structural models including: circuit description, algebraic spec-
ifications, and variable order. The abstract and concrete types, uninterpreted func-
tions, and cross-terms are all preserved in the generated models as follows, where

wordn is a default abstract sort in MDG to denote a word of n bits:

gen_const (abstract_,wordn) .

gen_const (maxcar_,wordn) .

(&3
-~



function(iseq, [wordn,wordn],bool).
conc_sort(mainlandstate_type, [entering_,exiting_,green_,red_]).
function(incr,wordn,wordn) .

function(decr,wordn,wordn) .

Reg IRL

Por g
. B t
-
b
o= -
}«:% i

>0
T
>o

itc+ itc-

decr 4x1
MUX Reg TC

incr

Figure 5.6: ILC implementation



Once the generated MDG-HDL structural and behavioral models were com-
piled successfully with the MDG tool, we applied both equivalence checking and

property checking to verify them.

5.2.1 Equivalence Checking

We succeeded to verify that MLC structural model is equivalent to its behavioral
model by applying MDG equivalence checking on the generated MDG-HDL models.
In the following, however. we verify, for illustration purposes, the MLC implemen-
tation including one error, which we injected into the model. The assertion of the
equivalence of two models, is done by the assertion that the corresponding observ-
able outputs of the two designs are equivalent. While verifving the faulty design.
the equivalence was violated and the tool generated a counter example. The error
injected was removing the inverter marked inside the box in Figure 5.5:
Assumption: [{(tcr. mazcar ) =0

Initial state: mainlandstate_d = red_,d1_.B =0,d2_.B =1

Clock cycle 1:

Symbolic inputs careziting = 0, mainlandgranted = 1

Symbolic state: mainlandstate_ = green_,d1_.B =1,d2.B =0

Clock cycle 2:

Symbolic inputs carentering = 0, mainlandrelease = 0

Symbolic state: mainlandstate.\ = red_,d1.B=0.d2 B =0



Clock cycle 3:

Symbolic inputs careriting = 0, carentering = 1

Symbolic Output: mainlandrequest_4 = 0. mainlandrequest_B = 0
mainlandgreen_4 = 0, mainlandgreen_B = 1
mainlanduse_4 = 0, mainlanduse B = 1

mainlandred_4 = 1, mainlandred_B =0

We can see that after the third clock cycle, the MRL output should be active
as indicated by the specification, however, the MGL was active after that cycle in
the implementation.

We also verified that the [LC implementation is equivalent to its specification,
by applying MDG equivalence checking on generated MDG-HDL models. The CPU
execution time and resource requirements, including memory usage and MDG nodes
generated for both blocks are given in Table 5.1. The experimental results shown

below were conducted on a Sundu machine with Solaris 5.7 OS and 1.0 GB memory.

Table 5.1: MDG equivalence checking results

Model Time (Sec) | Mem(MB) | #MDG Nodes
MLC Original Model 0.730 1.55 955
MLC Faulty Model 1.040 1.41 1180
ILC Original Model 0.580 0.92 668
ILC Faulty Model 0.580 1.00 763
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5.2.2 Model Checking

We have specified a number of properties in £ ypg. and then model checked them
on the generated MDG-HDL models. In the following, we describe three properties
on the MLC for illustration purposes. The first property states that:
Property 1: if the mainland is requising the controller, then then it
will be using it at the future.
This property is formally specified as following, where the symbols AG and F mean
“for all paths, for all states” and “there exists a state in the future’.
respectively:
Property 1: AG((mainlandrequest B = 1) => (F(mainlanduse B = 1))):

The second property states that:
Property 2: mainland green light and mainland red light should
never be active simultaneously
and it is formally specified as following, where & is the logical AND:
Property 2: AG(!((mainlandgreen_B = 1) & (mainlandred_B = 1)));

The last property states that:
Property 3: Mainland controller should never request the tunnel
while it 1is using it.
Property 3: AG(!((mainlandrequest B = 1) & (mainlanduse_B = 1)));

All above properties were verified successfully. Verification results for above

properties and a similar set on ILC are given in Table 5.2.
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Table 5.2: MDG model checking results

Property Time (Sec) | Mem(MB) | # of MDG Nodes
Property 1 (MLC) 0.690 1.29 888
Property 2 (MLC) 0.540 1.75 606
Property 3 (MLC) 0.560 0.83 608
Property 4 (ILC) 0.460 0.86 507
Property 5 (ILC) 0.390 1.60 407
Property 6 (ILC) 0.410 0.29 399

5.3 Summary

In this chapter we have shown via a case study an application of our ASM-MDG
tool. The verification results show that the verification time was very short, and only
around 0.1% of the available memory was used. The number of MDG nodes reflects
the complexity of the design, it directly affects the time and memory required to
complete the verification without state space explosion. This application illustrates

the ability of the MDG tool to find bugs in designs and provide counter examples

to locate them.
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Chapter 6

Conclusions and Future Work

In this thesis, we introduced an interface from the ASM (Abstract State Machines)
Workbench to the MDG (Multiway Decision Graphs) tool, called “ASNM-MDG".
This new interface enables ASM users to exploit the fully automated verification
techniques that are provided by the MDG tool. namely equivalence checking and
model checking. On the other hand, MDG users will be provided by a high-level
modeling language, namely ASM, which as MDG, supports abstract data sorts and
uninterpreted functions. The interface automatically transforms the ASM specifica-
tion language, ASM-SL, into the MDG hardware description language, MDG-HDL.
This transformation is done in two complementary approachs. In the first step, we
translate ASM-SL to an intermediate language, ASM-IL, then transform this later

to appropriate MDG-HDL code. This approachs works for behavioral or structural
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models. The second approach allows a direct mapping from ASM structural com-
ponents into MDG-HDL netlist of components without unfolding or simplifving the
original ASM model. Besides MDG-HDL code, the interface produces a static vari-
able ordering, that satisfies the restrictions given by MDGs, as well as algebraic
specification necessary for declaring constants, sorts, functions, etc.

We have applied the ASM-MDG interface on the Island Tunnel Controller as
a case study. We used the MDG model checking and equivalence checking on the
generated MDG-HDL models. We succeeded in model checking several properties
on the Island Tunnel Controller. Through our experiments, we noticed that the
direct translation approach is more effincient for structural models since the former
one via ASM-IL would generate a large number of components leading quickly to
state space explosion.

Although the case study, the Island Tunnel Controller, is a hardware example
and could have also been modeled in MDG-HDL, the benefits of extending the MDG
tool with a general high-level modeling language like ASM are easy to realize once
the user focuses on non-hardware problems. Furthermore, the case study nicely
demonstrates the benefits of the MDG tool over ordinary ROBDD-based tools: Pa-
rameterized models can be checked without concrete instances for the variables. In
the case of the Island Tunnel Controller, the model could be checked for an arbitrary

number of allowed cars in the tunnel.
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Our approach is built upon existing work that transforms ASM to an inter-
mediate language. While the ASM-IL is tailored to the ASM workbench. we believe
that any other ASM tool could reuse our mapping into MDG. As a future work. we
think that linking our work to the MDG-HOL hybrid tool developed at Concordia
University will further enable theorem proving for ASM models. Also, since both
the ASM-WB and MDG tool do not have a very user friendly interface. it is pro-
posed to build a graphical user interface (GUI) for the ASM-MDG tool. This GUI
can call the ASM-WB to validate ASM models. then call our ASM-MDG interface
to generate MDG-HDL models, and finally call the MDG verification tool to verify

the generated models.
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