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ABSTRACT

Application of Principal Component Analysis and Artificial Neural Networks in the
Determination of Filler Dispersion during Polymer Extrusion Processes

Jian Yan

Mineral filler-reinforced polymer is an important family of polymers designed to
achieve high mechanical impact strength. The state of mineral filler dispersion in a
polymer matrix strongly affects the mechanical properties of the product and is an
important information for the extrusion-based fabrication process. In this work, a
measurement system consists of two ultrasonic sensors, three pressure sensors, a
thermocouple, and an amperometer of the extruder motor drive were used to monitor the
extrusion of a calcium carbonate powder-filled polypropylene system. Three principal
components, most correlated to the state of filler dispersion, were extracted from the data
set collected by the multiple sensors and fed as inputs to an artificial neural network
model designed to determine the dispersion state of the filler. By using this approach, one
is able to achieve an accuracy of better than 0.05 on the dispersion index. This work has
demonstrated the feasibility of combining our multi-sensor monitoring system with
prinicipal component analysis and artificial neural networks for on-line determination of

mineral-filled dispersion in polymers.
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Chapter 1 Introduction

1.1 Background

Polymers are widely used in today’s industry due to wide range of properties exhibited
and ease of processing. A category of polymers that draws great interests is (mineral-)
reinforced polymer, including calcium carbonate (CaCOs) filled and fiber-filled polymers
and more recently, polymer nano-composite materials. Basically, these fillers or additives
are used to alter and tailor, at low cost, the properties of the matrix polymer, such as
impact strength, flexural modulus, modulus of elasticity, and foamability, or are used to
fulfill certain special functions, such as flammability resistance [4,13,47]. Generally,
properties of filled or reinforced polymers depend on the size, shape and surface
properties of the fillers [46]. For a mineral-filled polymer system, however, one of the
most important parameters affecting mechanical performance is the state of dispersion
that has been shown to correlate with the dynamic and mechanical properties of the
composites [8,38,39,67,75]. The state of dispersion generally refers to the amount of
particles in the composite in the form of primary particles (i.e. non-agglomerated
particles) or to the amount of agglomerates within a given upper size limit [67]. Since
material properties are often strongly affected by processes and also the improved
understanding of processes will produce enhanced quality and increase profitability [58],
one of the most challenging problems faced is how to obtain the timely information about

the process in terms of the state of dispersion of minerals or particles.

Dispersion of agglomerates or particles has been applied in the polymer

processing industry for over 50 years. Classical direct methods for obtaining and



evaluating dispersion are based on optical or scanning electron microscopy (SEM)
observations of extruded specimens. Reported techniques also include surface roughness
measurements [45], and electrical conductivity and dielectric measurements [3]. For
thermoplastic systems, SEM of microtomed surfaces and image analysis methods [17,55]
are commonly used to estimate surface based dispersion indices [22,67] and volume
mean diameter dispersion indices [19]. However, both methods are time consuming and
cannot be easily implemented on-line to meet the need of controlling quality of

manufactured products.

Polymer extrusion is one of the most used industrial mass production processes of
plastic products. In the process, polymer pellets are fed into the feed hopper, transported,
mixed and blended by screws in the heated barrel section under elevated temperatures
(about 150°C ~ 220°C), and then converted into melt at the extruder exit die that shapes
the product. During this process, the complex thermo-mechanical history of the materials

greatly affects the qualities of the final product.

Traditionally, the control of an extrusion process is achieved by measurements of
melt pressures and barrel temperatures at different locations along the extruder for
different screw rotation speeds and feed rates. However, these measurements cannot
provide timely information on the properties of the materials except the running state of
the machine. On most existing extruders, the extrusion process is controlled based on the
information gathered on the status of different parts of the machine, for example, the
barrel temperature, screw position and speed, etc. Conventional pressure and position
sensors, thermocouples and amperometer are used. It is a machine-control strategy by

which only the machine itself is directly controlled and the instantaneous knowledge of
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the state of the melt is not taken into account by the control system. The consequence is
that when some parts of the machine go wrong (e.g., screw misalignment or wear,
variation of feed speed), or when material composition changes accidentally (e.g.,
polymer degradation caused by humidity in air, or batch-to-batch variation of
composition), the machine will continue to operate in a programmed way without being
able to cope with those changes that are not sensed by the above mentioned conventional
sensors. This could result in a large number of defective products before the problem gets

noticed and corrected, causing significant production and material losses.

Furthermore, these measurements cannot be carried out entirely without any
problems. For example, the temperature of the channel wall gives no reliable indication
of the effective temperature of the flowing melt, as there is always a radial temperature
profile over the cross section of a flow channel. Since thermocouples can only be
mounted on the barrel wall, the collected melt temperatures actually reflect the surface
temperature of the material close to the barrel rather than the temperature profiles of the
polymer melt along its thickness direction. Also, pressure is no accurate indicator; since a
molten plastic zone at the heated wall may cause a significant reduction of melt pressure,
whereas more solid material is located in the core. Besides, quality of products is often
evaluated at laboratory off-line using samples collected from the extrusion lines. The
time lag between collecting the samples and obtaining the final result of quality
inspection may range from a few hours to several weeks, depending on the complex
extent of the blend and lab availability. In some cases, long delays are encountered before
the analysis results are obtained. In some cases, serious raw material waste may occur

due to the delay of laboratory analysis results.



Ultrasound is sensitive to both processing conditions and material mechanical
properties and can be used to pinpoint, in real-time, the defects occurred during either the
processing or material conditions. Combining ultrasonic sensing technology with existing
thermocouples, pressure sensors and amperometers will provide an extra edge in assuring
consistent good quality parts. It is expect that ultrasonic monitoring can provide useful

information for the design and optimization of polymer extrusion processes.

Ultrasonic techniques have a number of attractive features for measuring melt
properties. For example, they have fast response, are non-destructive, and can be
implemented in a non-invasive manner. Also, since ultrasound can penetrate through the
entire flow channel of polymer melt, it can measure the properties at a relative large
volume of polymer melt, in contrast to some existing optical (infrared, fluorescence,
visible light) methods which usually measure at a surface layer only. These advantages
were already recognized more than 30 years ago, when the first suggestions of using the
technique for monitoring polymer-processing operations were made [29]. After then,
attention turned to multiphase systems, more specifically, to attempts to relate ultrasonic
attenuation with degree of dispersion of fillers in polyethylene (PE) and polypropylene
(PP) melts [9,10,18]. Also, much work is specifically aimed at various industrial
applications and has demonstrated that on-line measurements of sound velocity and
attenuation are powerful tools for process monitoring [11,51,52,65,69,76]. Recently, a
number of papers have been published on ultrasonic monttoring of fundamental extrusion
performance, such as progress of melting and mixing [68], barrel and screw wear [34],
and single-screw compounding [71]. The latest development of high temperature

ultrasonic buffer rod probes [20,33,70] has been a key contribution to the recent advances



in ulfrasonic monitoring of polymer processing. As far as monitoring of dispersion is
concerned, ultrasonic techniques, developed recently, have demonstrated the capability of
monitoring in real time the dispersion state of calcium carbonate in polypropylene in an

industrial environment [72].

At the same time, ultrasonic techniques have found numerous applications in
characterization of polymers, both in solid and molten states [61,62,74]. Ultrasonic
velocity and attenuation were measured for various commercial polymers and it was
suggested that ultrasound measurements could be used for quality control or for purposes
of material characterization [28], in measurement of elastic properties of polymers
[49,50] or in study of the crystallization process [24,73]. All these applications indicate
that ultrasonic techniques open a way toward real time quality monitoring and possibly of

closed-loop control of compounding processes.

In this work, ultrasonic velocity and attenuation of polymer melt together with
traditional temperature and pressure measurements were collected and investigated at an
instrumented die during a twin-screw extrusion process as part of the data of the CaCOs-
filled polypropylene extrusion process. Ultrasound signals, more specifically ultrasonic
attenuation (o) and velocity (V,,), are affected by filler dispersion state (D,), filler
concentration (Cy), the type of filler (Fy,.), melt temperature (7,,,.1), pressure at ultrasonic
probe location (P,), and flow state. The melt temperature, pressure, and flow state at the
probe location are affected by the temperature profile (7,,1), the barrel temperature along
the extruder (i.e., temperatures at each barrel section of extruder, Tpumer), €xtruder screw
configuration, screw rotation speed (Vzpu), material feeding rate (Qpes), and the

properties of the matrix material polypropylene (PP) as well. Ored, Tprop SCrew rotation

-5



speed (Vrem), Fype and Cr can be controlled by practitioners (called controllable variables
here) and have strong influence on dispersion index. These studies revealed that some of
these measured and controlled parameters are correlated. Also, due to tedious and time-
consuming SEM sample analysis, a very limited number of analyzed samples were used.
The challenge one had to face was how to use the available information generated by this
complex multivariate system to effectively establish a relationship between the dispersion

index and the measured and controlled variables for the on-line monitoring purpose.

Due to the lack of understanding of the interaction between ultrasound and filled
polymers in flowing state, so far, there are no established theoretical relations available
between the measured variables and the state of filler dispersion. Artificial neural
network (ANN) approach provides a way for modeling this relationship without the need
of thorough understanding of the process itself and therefore was chosen in this study. On
the other hand, not all variables are necessarily equally important or relevant to the
determination of dispersion state. There was a demand of reducing the information
redundancy and extracting most informative variables. The application of principal
component analysis (PCA) allowed finding several uncorrelated feature parameters that
are most sensitive to the filler dispersion state. There has been work on the use of neural
networks and ultrasound for quantifying the dispersion of mineral filler in a polymer [7].
This thesis examines a way that combines PCA and ANN to identify the correct
correlation between the on-line multivariable measurement data and the dispersion index
and builds a model that can be applied on-line to predict the dispersion index in real time

from the known measurements.



1.2 Objectives

The purpose of this study is to adapt and combine PCA and ANNSs, to analyze and
interpret multivariable measurement data, to extract the most important or informative
factors relevant to the dispersion index measurement, and to build a model that predicts

the dispersion index of polymer process.

1.3 Qutline of the thesis

This thesis is organized as follows: Chapter 2 describes basic concepts of polymer
extrusion processes and filler dispersion. Chapter 3 briefly presents the theoretical basis
of ultrasonics and experimental setup of an ultrasonic data acquisition system. In Chapter
4, an overview of PCA is given and in Chapter 5 a principal knowledge of Neural
Network is outlined. Chapter 6 focuses on the application of PCA and ANNs for

estimation of filler dispersion. A conclusion of this work is presented in Chapter 7.



Chapter 2 Polymer Extrusion and Filler Dispersion

Extrusion is the most used, and perhaps the most important method of plastic fabrication
today. The commercial process of polymer extrusion is the conversion of a raw material,
usually in the form of pellets or powder, into a finished product or part by forcing melting
it and through an opening of a die. The process consists of feeding a molten state
polymer, under pressure, through a die, producing a continuous cross-section or profile.
Mineral filler-reinforced polymer is an important family of polymers designed to achieve
higher mechanical impact strength, superior to non-reinforced polymer. The state of
mineral filler dispersion in a polymer matrix is important information for the fabrication
process (i.e., polymer extrusion) because of its strong effect on the mechanical properties
of the product. This chapter will introduce polymer extrusion process and mineral filler
dispersion. Polymer extrusion processes have been extensively studied for decades and
described extensively in the literature. In order to provide the readers of this thesis with
some basic knowledge about the process, the following two sections outline some key
aspects of polymer extrusion and experiments mostly excerpted from literature. For more

detailed information, the reader is referred to [4,46,47,54].
2.1 Polymer extrusion equipment

The main sections of an extruder are shown in Fig. 2.1. The core turning screw can be
imagined as trying to unscrew itself backward out of the barrel full of material. Since it
cannot go back because a thrust bearing holds it in place, it pushes material and forces

material towards the exit end. The die (not shown in this figure) at the exit end acts as a



resistance. The longer and smaller it is, the more the screw must work to push the

material out (more horsepower required of the motor that turns the screw).

D D D A E

Fig. 2.1 Schematic diagram of polymer extrusion. A: Screws. B: Barrel. C: Heater
band. D: Sensors well. E: Exit die. F: Hopper. G: Main thrust bearing. H:
Gear box.

1) Feed Hopper - The hopper contains a large amount of feed material in the
form of powder or pellets. This is gravity fed onto the upper surface of the exposed screw

that continuously pushes material into the barrel between the flights.

2) Barrel - The barrel is normally heated to melt the polymer or initiate
crosslinking. The barrel is of constant inner diameter and has heavy walls to withstand
high pressures. A heating element is usually wrapped around the outside diameter of the
barrel. The barrel runs the entire length of the screw from the hopper, where its upper
side is fitted to the hopper, and to the die where it narrows, with a shaped opening

through the die. The range of the inside diameter of the barrel is from 3/4 to 24 inches.

3) Extruder Screw - The screw is a helix that feeds polymer along the barrels.
The shape of the screw or right-hand helix on a rod that turns at certain number of

revolutions per minute (RPM) determines the speed at which the material feeds and the



pressure attained in the barrel. The screw is so named because its general shape is a helix
as in a fastener. The continuous central rod of the screw is called the core. The diameter
of the core is a major factor in determining the pressure in the barrel. The L/D ratio is the
characteristic used to describe the size of the screw, where L is the total length of the
screw and D is the inner diameter of the barrel. The shortest extruders have a ratio of 12,
the longest 42. The conventional plasticating or single stage screw has three basic
regions: the feed, transition and metering sections. The feed or solids conveying zone is
one that transports the feed away from the hopper into the enclosed barrel. The feed is
still in a solid powder or pelletized state and the screw has deep flights in this section.
The transition zone is where compression occurs as the core diameter increases and the
melting process takes place due to friction and heat from the barrel. The depth of the
flights decreases along this section because the root changes size. The metering zone is
the last section near the die so the polymer is molten and the depth of the flights are
shallow and rather constant. There are several types of twin-screw extruders, such as
intermeshing, or non-intermeshing, corotating, counterrotating or coaxial. They are
characterized by more design variables than the single screw, but some can be used in

very different applications. The details of different extruders are not discussed here.

4) The Extruder Die - The extruder die has an opening for the product to take
shape. The die must withstand the high temperatures and pressures exerted on it by the
polymer being forced through it. The polymer adopts the shape of the flow channel of the
die. The pressure built up, called die-head pressure, depends upon the properties of the

polymer, temperature of the polymer, the shape of the die and the flow rate through the
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die. Most polymers experience some form of swelling upon exiting the die. This will be

further discussed in section 2.2.

2.2 Polymer extrusion process

The largest volume of polymers is probably processed by means of extrusion. The
extruder is the main device used to melt and pump materials through the die for shaping
purposes. Basically, there are two types of extruders: single- and twin-screw. The single-
screw extruder basically consists of a screw that rotates within a metallic barrel. The
main function of the plasticating extruder is to melt solid polymer and to deliver a
homogeneous melt to the die at the end of the extruder. The extruder can also be used as
a mixing device, or a reactor. Also, there are as many twin-screw extruders as single-
screw extruders in use today. Many different configurations are available, including
corotating and counterrotating screws and intermeshing and nonintermeshing screws.
Theses extruders are primarily adapted to handling hard-to-process materials and are used
for compounding and mixing operations. The polymers used are typically thermoplastics.
The pellets are compressed in the channel of the screw and then dragged forward by
screw flights between the pellets and the barrel. Melt is caused by the heat generated by
sliding friction at the barrel surface and transferred from the heated barrel. The opening
in the die is the guide after which the extrudate takes its final form. There is a feed
hopper for materials inlet at beginning of the cylinder and a die at the end. One of the real

machines is shown a photo in Fig. 2.2.
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Fig. 2.2 Picture of a 34mm twin-screw extruder from Leistritz, Nurnberg, Germany

Most of the polymers used in extrusion are of high molecular weight and by
nature are highly viscous when in the molten state. In order to process such materials the
pump of the extruder must work under high pressures and temperatures. Thermoplastics
are the predominant feed for extrusion processes. Due to the shearing action inherent in
the screw feed mechanism, the process lends itself to dividing, heating up and melting
extrudate. This does not exclude thermosetting polymers. Thermosetting polymers and
elastomers can be fed, mixed with additives and crosslinking initiated by the heat in the
barrel, usually completing the crosslinking after passing through the die. Examples of this
are rubbers with vulcanizing agents and high-density polyethylene (HDPE) crosslinked

by radiation.

When such a material is fed to the hopper, it is caught by the screws (see Fig. 2.3)
and pushed through the barrel (see Fig. 2.4), where it gets hot and softens enough to

continue and exit at the die. The heat is generated by friction as the screw turns in the
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plastic mass. Thus, the main energy to melt comes from the motor as it turns the screw.

More heat is often provided by external barrel heaters and/or preheated feed.

Fig. 2.3 Picture of twin screws  Fig. 2.4 Picture of a twin screw barrel with outside
heating band

As the hot, soft plastic comes out of the die, it takes the shape of the hole it passes
through — a long slit makes a film or sheet, a circular opening makes a rod, many small
holes make filaments, etc. Once out of the die, the plastic must be cooled quickly (by air,
water or contact with metal) and pulled away, rolled or cut up to the desired dimensions.
For a continuous process of thin or very flexible material after cooling it is collected on
rolls. For rigid material it is normally cut to lengths of up to 20 meters depending upon

the transportation facilities available and collected in stacks.

Due to the combination of viscous and elastic nature of polymers there is some
recovery by the polymer after passing through the die. The elastic nature of the polymer
1s to remember its shape, resist change and recover the shape it had prior to the distortion
imposed by the die. The viscous nature of the polymer quickly accepts the shape forced
upon it by the die without memory. The combination, viscoelastic behavior results in a

swell after passing through the die. Since there is a considerable necking down from the
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barrel size to the passage in the die, the polymer swells to partially return to its former

shape. So the final product from the extrusion is not the size of the die passage but larger.

The final products of extrusion depend heavily upon the extrusion process.
Products may be formed with solid cross sections or hollow cross sections. Those of solid
cross sections such as angles, rods or strips are predominantly done in a uniformly
controlled process. The barrel is maintained at a constant temperature to provide a
constant melt. The screw speed is also constant so these result in a uniform flow rate.
With conditions well controlled the die-swell will also be constant so that a product with
consistent dimensions can be produced. For very exacting work or situations where

normal controls are not adequate, sizing after the die is sometimes used.

Products with hollow cross sections such as tubes, cylinders and channels are also
extruded. These require a die-core or mandrel that is the form around which the feed
forms its shape. These are supported near the rear end of the screw by a spider of arms or
by restricting the feed to enter a fraction of the circumference with the rest being filled by
the support. Sizing is frequently used for hollow sections to fix the internal or external
dimensions. The dimension that is not sized is determined by the polymer output rate, the

haul-off rate and the size of the forming die used.

Forming flat sheet brings up a special set of problems. A small deflection in the
die lips can cause large error in the thickness of the final sheet. Uniform heating of the
die is difficult. Extrusion of a film is very similar to a sheet but the thickness variation
due to deflection in the lips has even greater importance. Since the thinner films are more

flexible, the unsupported gap between the die lips and the cooling must be reduced. To
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form a tubular film by the blown method is different from the sheet method. The melted
polymer is forced around an annular or crosshead die to form the film. Through the die
air is pumped inflating the tube and providing some cooling as does an outer ring
pumping cooling air over the surface of the expanded tubular bubble. A set of boards then
guides the tube to a set of rollers (called nip rollers), the film is then wound flat. The tube

is usually blown vertically avoiding the sagging effects of gravity.

2.3 Filler dispersion

Fillers are widely used in today’s polymer industry because they can alter or enhance the
properties of polymer in a flexible and easy-processing way. Materials used as particular
fillers include wood flour (finely powdered sawdust), silica flour and sand, glass, clay,
talc, limestone, and even some synthetic polymers. Because these inexpensive materials
replace some volume of the more expensive polymer, the cost of the final product is also
reduced. Among them, mineral fillers are often used to increase the mechanical

properties.

Mechanical properties of small particle filled polymer composites are determined
by various factors. These include the size, shape and fraction of fillers, interfacial
properties and viscoelastic properties of the dispersed phase and the matrix phase, etc. In
addition of these, state of dispersion of filler is one of the important factors to the
mechanical properties, such as tensile and impact strengths. The impact strength
increases as particle size decreases as long as agglomeration does not occur [46]. In other
words, the mechanical properties are strongly related with the dispersion of mineral

fillers during fabrication process. In general, impact properties are maintained if particle
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with sizes in the micrometer or sub-micrometer range are used. The compounding step
must however ensure that the particles can be wetted and distributed before they can

agglomerate.

The state of dispersion usually refers to the amount of unagglomerated
particulates that are present in a compound. To determine the state of dispersion, size and
number of agglomerates are measured because these may act as defects in the composites
due to their large size comparing with unit particles and aggregates, and relatively weak
structure formed by particle-particle interaction forces. According to Suetsugu [67],

dispersion index was defined as a function of area fraction of agglomerates

Dispersion index: D, =1 - @, 2.1

where @, is the area fraction of agglomerates defined by

L 2
O = d’n, 2.2
“ 440D Z i T 2-2)

where A4 is the area of observation, @ is the volume fraction of filler, d; denotes diameter
of agglomerate greater than a threshold value and #; is the number of agglomerates with
diameter d;. @, is a function of both the size and the number of agglomerates. Dispersion
index varies between 0 and 1; O indicating worst dispersion where all filler particles

remain in the form of agglomerates and 1, best dispersion where no agglomerate exists.

During the compounding operation, the dispersion is generally achieved in four
steps: incorporation, wetting, agglomerate break-up and aggregates spatial distribution in

the polymer matrix. Initially, for those ground minerals such as natural calcium
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carbonate, talc and mica, there is no agglomerate structure as would be found in very fine
carbon black. During the process of compounding, the ground particles are expected to be
wetted and distributed into the polymer. At high concentration, compressive forces may
be applied on the particles before the wetting and distribution are completed. If cohesive
forces are sufficient, this can result in the formation of agglomerates. Compounding
polymers with additives is generally obtained in corotating twin screw extruders. Fig. 2.5
shows the pictures of good and bad dispersion state respectively from the system of
calcium carbonate filled into polypropylene matrix. These pictures were taken using

optical microscopy. The black dots are calcium carbonate agglomerates.

Fig. 2.5 CaCO:; filled into polypropylene (microscopy)
Left: Good dispersion, agglomerate size less than 12um
Right: Bad dispersion, agglomerate size around 150um

2.4 Summary

Extrusion is one of the widely used industrial mass production processes to manufacture
plastics products. It can be used at some stage in nearly all polymer processing
operations. Basically, extrusion process consists of an extruder (single- or twin-screw), a

die for shaping purposes and auxiliary equipment for cooling and profiling or pelletizing,
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In the process, the polymer pellets are fed into the hopper, transported, mixed, and
blended by the screws in a barrel. Heat generated by sliding friction at the barrel inner
surface and transferred from the heated barrel causes the pellets to melt before the exit
die where it takes the final shape. Depending on the extrusion process, the final products
of extrusion can be solid cross section, hollow section, flat sheet, and tubular film. Also,
the four key parts of an extruder, i.e. feeding hopper, barrel, screw and die are briefly

described.

The properties and quality of materials incorporating fillers in their manufacture
are affected by the state of dispersion of agglomerates and their mechanical properties,
such as tensile and impact strength. It is known that the mechanical properties are
affected by not only the size of agglomerates but also the number of agglomerates. The
dispersion state refers to the amount of particles in the matrix that are in the form of
agglomerates exceeding a given upper size limit. Here we use the relative area fraction,
which defined the dispersion index as the ratio of the area of agglomerates exceeding

certain size threshold over the detected surface area.

-18-



Chapter 3 Experiment Setup and Equipment

Several techniques, such as scanning electron microscope (SEM), optical microscopy,
electrical conductivity and dielectric measurement, have been reported as used for the
measurement of the dispersion state of certain filled polymer systems. Among them,
SEM and optical microscopy are most commonly used in polymer industry. Both of them
require tedious work in samples preparation and laboratory analysis, and are not suitable
for in-line monitoring of extrusion process. In order to achieve timely control of product
quality, a technique capable of providing real-time information on filler dispersion is
highly desirable. Ultrasound has a long history of successes in industrial process
monitoring and material characterization, owing to its robustness, fast response, non-
destructiveness, non-invasiveness, and cost-effectiveness. Hence, ultrasonic technique
was chosen in this study and it constitutes a part of an advanced multi-sensor monitoring

system, in conjunction with other routine measurement instruments.
3.1 Setup of ultrasonic probes and measurement principle

Ultrasonics is a versatile technique that can be applied to a wide variety of material and
process analysis applications. While ultrasonics is perhaps better known in its more
common applications for thickness gauging, flaw detection, and acoustic imaging, high
frequency sound waves can also be used to discriminate and quantify some basic

mechanical, structural, or compositional properties of solids and liquids.
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Ultrasonic technique is based on a simple principle of physics: the motion of any
wave will be affected by the medium through which it travels. Thus, changes in one or
more of four easily measurable parameters associated with the passage of a high
frequency sound wave through a material - transit time, attenuation, scattering, and
frequency content - can often be correlated with changes in physical properties such as
hardness, modulus of elasticity, density, homogeneity, or grain structure. A significant
advantage of ultrasonic measurement over other methods is that it can often be performed
in process or on-line. Because sound waves penetrate through the test specimen, material
properties are measured in bulk rather than just on the surface. In other words, ultrasonic

technique can look inside of the material.

Ultrasonic measurements can be operated in reflection and transmission mode. In
the reflection mode, the signal is transmitted and received by the same ultrasonic
transducer (UT), while in the transmission mode, the signal is transmitted by one UT and
received by another (see Fig. 3.1). The transmission mode has stronger signal and larger
signal to noise ratio than reflection mode and was chosen in this application. When
ultrasonic waves hit the boundary between two different media, some of the energy is
transmitted though the boundary and the rest is reflected back. The received signal is then
amplified and analyzed. A variety of commercial instrumentation is available for this
purpose, utilizing both analog and digital signal processing. The setup of our multi-sensor
monitoring system is presented in the next section. The ultrasonic velocity and
attenuation coefficient can be calculated using the following equations.

Velocity : v =2d / At (3.1)
Attenuation :a. = (10/d)log(4,/ 4,) (3.2)
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where d is the thickness of melt flow; Ar denotes the time period between two

consecutive echoes; 4> and 4; represent the amplitude of two consecutive echoes (Figs.

3.1and 3.2).
_Ultrasonic
Probe 1
Melt flow ¢am {en
Die
Ultrasonic
Probe2 -~

Fig. 3.1 Schematic diagram of ultrasonic measurement. Right is the picture of
installation of two ultrasonic transducers at dic when in measurement.
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Fig.3.2 Schematic diagram of ultrasonic signals sent and received by UTs.
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3.2 Equipment

In this work, ultrasound, temperature, and pressure sensors as well as an amperometer of
the extruder motor drive were used to monitor the extrusion of mineral-filled polymers
under various experimental conditions in terms of filler type, filler concentration, feeding

rate, screw rotation speed, and barrel temperature.

A Polypropylene (PP) 6631 from Himont Canada, with density p = 8§90 kg/rn3 and
melt flow rate MFR = 2.0 dg/min, was used in this study. Two grades of calcium
carbonate powders, Camel-Cal and Camel-Cal-ST, supplied by Genstar, with specific
gravity of 2.71 were used as fillers. Both grades had a mean particle size of 0.7 um, with
90% of the particles finer than 2 pm, and 100% finer than 7 pm. The grade with suffix

ST was stearate-coated to allow for better particle dispersion than the non-coated one.

Fig. 3.3 Schematic layout of the extruder and instrumented die used in the experiments
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A Leistritz 34-mm co-rotating intermeshing twin-screw extruder composed of 12
barrel sections with an L/D ratio of 42 was used. Polypropylene pellets and calcium
carbonate powder were fed separately by two high precision gravimetric feeders at the
same feed throat location (Fig. 3.3). A slit die instrumented with two 5-MHz ultrasonic
sensors, a melt thermocouple, and three pressure transducers, all flush-mounted in the die
slot, was used (Figs. 3.1 and 3.3). The die slot had a 3.0 mm high by 40.0 mm wide
rectangular cross-section. The ultrasonic and pressure sensors were installed
perpendicular to the wider surface of the slot. Two ultrasonic sensors were axially aligned
on the opposite sides of the slot. During measurements, one of the ultrasonic sensors was
used as a transmitter to send ultrasonic waves to the molten polymer. The other ultrasonic
sensor was used as a receiver. The ultrasonic waves were reflected back and forth several
times between the two ultrasonic sensors before completely dying out. As mentioned
earlier, by measuring the time delay and amplitude difference between consecutive
echoes, the ultrasound speed and attenuation coefficient in the molten polymer were

calculated.
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Chapter 4 Principal Components Analysis

One of the most important problems in data or signal processing is that a large amount of
data is to be manipulated for information transmission, storage or processing. Among the
information, not all are necessarily equally important or relevant to our research target.
Also, redundant information exists in the measurement data due to some heavily
correlated measurements. For instance, our study showed that the pressures P; and P,
were highly correlated with a correlation coefficient of 0.98. For several decades, many
statistical and mathematical methods have been developed in this field to efficiently
extract useful information and established the discipline of chemometrics. Among them,
principal components analysis (PCA) is a technique that specializes in reducing data size
while maintaining as much information as possible. Basically it produces a set expression
patterns known as principal components. Linear combination of these patterns can be
assembled to represent the behavior of all samples in a given data set. It should be noted
that PCA is not a widely used clustering technique. Rather, it is a fundamental tool of
chemometrics to characterize the most abundant themes or building blocks that reoccur in
many samples in the experiment. As a result, by using an algorithm that can identify the
so-called principal components, one can leave out the rest of the data without
significantly distorting the information born from the original data set. Beginning with
the brief introduction of chemometrics, the following sections excerpted from related
literatures focus on mathematical and application aspects of PCA. For more detailed

information of PCA, the reader is referred to [31,36]

In this chapter, the following conventions will be used:
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e Scalars will be represented in lower case, e.g. a, b, x,

e Vectors will be in bold lower case, e.g. x, ¢,

e Matrices will be bold upper case, e.g. X, S,

o The transpose of matrix X will be denoted by X,

e In 2-way data matrices, it is assumed that the rows of the matrix represent
samples or observations and the columns represent variables, and

e A vector x is assumed to be a column vector; row vectors are represented by

transposes, x'.
4.1 Chemometrics

A general trend in analytical chemistry is to produce more and more data per sample.
This is due to increasing analytical demands for improved specificity and sensitivity. It
has been facilitated by developments in instrumentation and computer systems, making
large amounts of data possible to produce and store with good economy. In order to make
efficient use of the sophisticated analysis, it requires methods that can help analytical
chemists to perform good experiments and to extract relevant information from the

acquired data.

We first briefly introduce chemometrics. According to Wise et al. [78],
chemometrics is the science of relating measurements made on a chemical system to the
state of the system via applications of mathematical or statistical methods and the science

of designing optimal experiments for investigating chemical systems.
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Originally developed in analytical chemistry, many chemometric methods have
been used in a wide range of chemical applications today. Some of them have been
applied to problems in chemical engineering and chemical processes. The Chemometrics
is data-based. The goal of many chemometric techniques is to estimate one or more
properties of a system based on the production of a mode derived from the measurement

data.

Data

Information

i

Knowledge

{

Understanding

Fig. 4.1 The information hierarchy

Beyond simply obtaining a model that provides useful predictions, chemometric
techniques can also be used to obtain insight about a chemical process. This is illustrated
in Fig. 4.1. One typically starts with some data taken from a system in a tabular form
consisting of measured variables on a number of samples or process measurements as a
function of time. Without further processing, such a data set would be of little use. It is
simply a record of measurements. If some calculations on the means and variances of the
data are performed, and perhaps some trends or correlations between the variables can be

obtained, then at this point some information on the system has been extracted. By
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acquiring and studying additional data from the same system, one may obtain some
knowledge on the system functions with fundamental principles from chemistry and
physics to develop an understanding of the system. This understanding may lead to

improvement in the system and in controlling the processes.
4.2 Background of PCA

Due to advanced instrumentation and frequent data recording, it is common for a process
to have hundreds or even thousands of measured variable values. For instance, in a
typical Fourier transform infrared spectroscopy (FTIR) spectrometer, the absorbance is
measured at over 10,000 frequencies. Without adequate tools, it is impossible to interpret
the data. In general, there are many correlated or redundant data in process
measurements. They must be compressed in a manner to retain the essential information
and are easy to display. Also, essential information does not come from an individual
process variable but often derives from how the variables change with each other, i.e.
how they co-vary. In this case the information must be extracted from the data.
Furthermore, in the presence of significant noises, it is desirable to take signal averaging.
Among the widely used multivariate statistical methods [2], principal component analysis
(PCA) is an ideal tool for analyzing such data because of its ability to handle large

numbers of highly correlated, noisy and redundant variables.

PCA is a tool in chemometrics for data compression and information extraction.
Using this technique, a number of related variables are transformed to a set of
uncorrelated variables [31]. PCA was originally developed in statistics by Pearson [48].

In geometry, PCA can be understood as the projection of a point swarm in an M-space to
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a lower-dimensional subspace with P dimensions. PCA was further advanced by
Hotelling [27] in the 1930s. Since then, applications of PCA have been found in many

scientific fields, such as chemistry [56] and geology [16].

With the application of eigenvector decomposition to the covariance of the
process variables, PCA finds combinations of variables or factors to describe major
trends in a data set. They are useful in describing or predicting certain events or
phenomena. And these combinations of variables are often more robust indicators due to
the signal averaging aspects of PCA. Similar to other main multivariate techniques, PCA

can be used to:

(1) provide insight into the process operation through preliminary analysis of

the data;

(2) monitor process-operating performance through multivariate statistical

process control methods;
(3) build predictive models for inferential control;
(4) identify dynamic models for large multivariable processes.

In this research, only the first function was applied to analyze the extrusion process data.

4.3 Some preliminaries

For an m x n data matrix X, the covariance between the data in the ith and jth column of

X is calculated by:

o 2T DX D (4.1)

Y m(m —1)
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where the summation is taken for £ from 1 to m. Eq. (4.1) includes the mean-centered
operation to the columns of X, i.e., each column is adjusted to have a zero mean by
subtracting from every element the mean of the column. Hence, the covariance matrix S

is given by

St S Stn
2
S S oo S
S=|""? 7 2 (4.2)
2
Sln S2n Sn

where s/ is the variance of the ith variable, x; , and s; is the covariance between the ith

and jth variables. In matrix format, S can be given by:

S=§§_ (4.3)
m—1

Note that the columns of X should have been mean-centered. Matrix S is symmetric and
nonsingular. If a covariance is not zero, a correlation exists between the two

corresponding variables. The strength of the correlation is represented by the correlation

coefficient is: vy, = s, /(5,5,).

In addition to the covariance matrix, correlation matrix is often utilized in PCA
applications. In the correlation matrix, the column of the original data is “autoscaled”.
They are adjusted to zero mean and unit variance by dividing each column by its standard
deviation. Eq. (4.3) can represent either a covariance matrix or a correlation matrix.
Unless otherwise noted, it is assumed that the data is autoscaled prior to principal

components analysis.
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PCA uses some results from matrix algebra. A p x p symmetric, nonsingular
matrix, such as the covariance matrix S, can be reduced to a diagonal matrix L by pre-

multiplying and post-multiplying by an orthonormal matrix U such that:
U'SU=L 4.4)

The diagonal elements of L, 1, I, -+, [, are eigenvalues of S. The columns of U,
uy, Wy, -, U, are eigenvectors of S, corresponding to the eigenvalues. [y, &, -, [, can be

obtained from the solution of the following equation:
S-a|=0 (4.5)

where I is the identity matrix. This equation produces a pth-order polynomial of / from
which the values /i, b, -, I, are obtained. The eigenvectors may then be obtained by

solving the following system of homogeneous linear equations
[S-mJu, =0 (4.6)
Note that vector w; should be normalized to length of 1. Therefore matrix U can be

formed and is orthonormal, which means

uu, =1

{, fori,j=1,2,-,p. 4.7)
e 0

Although the above mentioned direct solution of the characteristic equation is

simple, it is difficult to solve directly for more than three variables due to the increasing

difficulty of solving the equation (4.5). In this research, the Power method to find the
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eigenvalues and eigenvectors was used. Detailed steps of the Power method can be found

in any engineering numerical method textbooks such as [31].

4.4 Method of PCA

As mentioned in previous chapter, PCA is a tool for data compression and information
extraction, which is especially useful for ill-conditioned data that has redundant
information. In general, PCA includes the following steps [32]:

(1) Choice of the variables to be calculated in the analysis;

(2) Construction of the basic data matrix;

(3) Transformation of the basic data, mean-centering or autoscaling;

(4) Calculation of the covariance or correlation matrix;

(5) Calculation of eigenvalues and eigenvectors of the covariance or correlation

matrix;

(6) Plotting or further analysis of principal components.

In this study, there were four pressure-related variables obtained from the
monitoring system. Information redundancy exists in the data and one of the four
pressure-related variables may be dominant. PCA is to find combinations of variables to

describe major trends in the data.

From statistics point of view, the information of a process is carried by these
major trends. For a given data matrix X with m rows and » columns, there are two ways

to measure the overall variability of the data. They are:
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1. The determinant of the covariance matrix, [S' This is called the generalized

variance. The square root of this quantity is proportional to the area or the

volume generated by the data.

2. The sum of the variances:
st +52 +++-+52 = Tr(S)(The trace of S) 4.9)

Either of them can be used in PCA. We utilized the second method in this
research. PCA calculate the vectors that are a linear combination of the columns of X to
describe the level of variability in the data. These vectors are the eigenvectors of the
covariance matrix of X. From singular decomposition method, X can be written by a

linear combination as:
X=tp; +t,p, +--+t,p; +E. (4.10)

where k is less than or equal to the smaller dimension of X, i.e. £ < min{m, n}. E is the
residual matrix. t; are scores and p; are eigenvectors of the covariance matrix S, which is

called loadings and can be obtained from the previously mentioned Power method.

The t; vectors form an orthogonal set (tit, =0 for i # j), while the p; are

orthonormal (pip, =0 fori=#j, pp, =1 fori=j). Eq. (4.10) can be rewritten as
pzp_] 2 9]
X=TP'+E 4.11)

Note that for X and any t;-p;, the folléwing equation holds:
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t, = Xp, (4.12)

This means that the score vector t; is the linear combination of the original X data defined
by p:. t; can also be viewed as the projection of X onto p;. Here p; represents the new
coordinate axis (or direction) for the space spanned by X. Since ¢; is orthogonal to each
other, they are new uncorrelated variables of the original data in X. Therefore, PCA
transforms » correlated variables into £ uncorrelated variables. Because the original data
is mean-centered and standard deviation scaled, the elements of the loadings p; will range
from —1 to 1 with high absolute values corresponding to high correlations. The first
eigenvector describes the direction of the greatest variation in X; the second describes the

next dominant direction of variation and so on. From Eq. (4.4), there exits a useful

property:

Tr(S)=Tr(L) (4.13)

that is, the sum of the original variances is equal to the sum of the characteristic roots.
From this, it can be concluded that the characteristic roots, or the variance of the principal
components, can be treated as variance components. The ratio of each characteristic root
to the total indicates the proportion of the total variability accounted for by each principal
component (PC). Since the characteristic roots are sample estimates, these proportions

are also sample estimates.

Consequently, the PCs are arranged in a descending order according to the
corresponding /;. /; can be viewed as a measure of the amount of variance described by
the principal components. Because PCs are in the descending order of /;, the first

principal component, PC1, captures the greatest amount of variation in the data. Each
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subsequent PC captures the greatest possible amount of variance remaining after

subtracting t,p; from X.

Autoscaling is needed where the variables have different units or in different
scales, e.g. temperature, pressure and concentration. A variation in temperature between
1000 and 1100 °C is much greater than a variation in concentration between 0.01 and 0.1.
However, the effect of each of these variables on the system may be very similar and the
information content of the temperature data is not inherently greater. For this reason,
autoscaling the data is required. This will put all variables on an equal bases in the

analysis.

Using PCA, one can represent an n-variable data set in k < n dimensions. This is
its data compression capability. For a larger £, a better fit PCA model can be built but
calculation may be difficult. If £ = n, then all information will be preserved in the model
while the analysis becomes very complicated. There is an optimal value of k for a given
data. In this research, the purpose of PCA performance is not to build a PCA model but to
obtain informative variables. Based on the correlation coefficients between PCs and the
target property, the value of k& corresponding to the most informative variables can be

chosen. This will be discussed in detail later.
4.5 Geometric interpretation of PCA

Consider a covariance matrix computed from a bivariate data set, x; and x, as below:

(4.14)

20.28 15.58
15.58 24.06
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PCl1

Fig. 4.2 The covariance plotted as vectors 1 and 2. The ellipse major axis is the first eigenvector
(of unit length) multiplied by the corresponding eigenvalue. The minor axis represents
the second eigenvector/value.

We see that the covariance is symmetric about the diagonal, x; and x,. If we
extract the eigenvectors and eigenvalues from this covariance mairix, we have a new set
of basic functions to represent the data where the covariance matrix was derived. We can
consider the columns of the covariance matrix S in Eq. (4.14) as vectors and plot them
with an ellipse representing the orientation of the eigenvectors and the magnitudes of the
eigenvalues (See Fig. 4.2). Vectors 1 and 2 represent a basis for this data set, but they are

not independent. Because the eigenvectors are always orthonormal they are always
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independent and more efficient to represent the original data. If, in Fig. 4.2 we project
vector 1 (the first vector formed from the covariance matrix) back onto the major and
minor axes of the ellipse (the first and second eigenvectors), we get the more efficient
representation. Most of the information is loaded onto the first principal component and
this is true for each individual sample as well. We call these more efficient coordinates

the principal component axis.
4.6 Summary

Principal component analysis (PCA) applied in this research is to meet the challenge of
reducing the system information redundancy and extracting information most relevant to
the parameter to be determined. PCA is a multivariate technique of chemometrics by
which a number of related variables are transformed to a set of uncorrelated variables
called principal components (PC). Each component is a linear combination of several
original variables. Since a PC combines the contributions of several original variables, it
may be more sensitive to a particular event than an individual variable. The PC that
captures the largest amount of variation in the data is called the 1% component, and the
PC that captures the 2nd largest amount of data variation is called the ond component, etc.
By studying the correlation between each PC and the parameter to be determined, one
can choose to use only those PCs most related to the parameter of interest. Through this
technique, the information redundancy can be reduced and useful information can be

extracted efficiently.
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Chapter 5 Artificial Neural Networks

5.1 Background

Artificial neural network (ANN) is a network that consists of a large amount of small
elements (“neurons’) to local process input data and to convey data between the neurons
[2]. Using learning algorithms, the connection weights can be adjusted according to the
input data set during the training period, and hence, the neural network has the capability
of “learning”. More specifically, training is effected by presenting the network with the
known inputs and outputs and modifying the connection weights between individual
neurons, following certain back- propagation algorithm [60]. The training process
continues until the output of the network matches the desired outputs to a stated degree of
accuracy. The trained ANNs may then be exposed to unknown inputs (i.e. spectra) to

provide best fit to the outputs.

According to Sarle [63], “Neural networks (NNs) are especially useful for
classification and function approximation/mapping problems which are tolerant of some
imprecision, which have lots of training data available, but to which hard and fast rules
(such as those that might be used in an expert system) cannot easily be applied.”
Therefore, neural networks can be applied to process large amount of data and
characterize complex systems difficult to model by standard procedures. For this reason,

we use ANN to process the collected data set of polymer extrusion process.

The concept of ANN was first introduced by McCulloch and Pitts [43].

Considerable interest in this field has been renewed since early 1980s due to the
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introduction of Hopfield’s energy approach [26] and the backpropagation learning
algorithm proposed by Werbs [77]. From its historical account of developments [1], the
field of artificial neural networks is typically an interdisciplinary area of research. A
thorough study of ANNs requires some basic knowledge from neurophysiology, control
theory, mathematics, statistics, decision making, and distributed computing. In this
research, only needed background is reviewed. For more detailed information or features

of ANN:Ss, the reader is referred to [5,30,40,44,57].

nodes or
fHenrons
~ connections

Of SYDEpses

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Fig. 5.1 Basic scheme of artificial neural network

In its most general form, an artificial neural network is a machine that is designed
to model the way in which the brain performs a particular task. The network is usually
implemented using electronic components or is simulated in software on a digital

computer. To achieve good performance, ANN employ a massive interconnection of
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simple computing cells referred to as “neurons” or “processing units.” Then, the

definition of an artificial neural network is as follows [44]:

A neural networks is a massively parallel distributed processor made up of simple
processing units, which has a natural propensity for storing experiential knowledge and

making it available for use. It resembles the human brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

ANNs employ a large set of processing nodes and the data are acted upon in
parallel. As shown in Fig. 5.1, almost all ANNs employ input nodes for data entry, output
nodes for network classification, and intermediate nodes in hidden layers for data
analysis. Based on the node arrangement, the interconnections and the training algorithm
applied, there are many differing types of ANNSs. In general, ANNs are trained using
either supervised or unsupervised learmning algorithms. In the supervised case, the
network is presented with pre-selected signals representing various classes and is trained
to recognize them. The main difference between supervised and unsupervised learning
lies in that the latter can select its own training set. Although there are many theoretical
studies on both types of ANNs, a layered-node arrangement of supervised category
known as back-propagation (BP) net is most popular [44]. It utilizes the network output
for the training based on certain criterion. Each processing node or neuron in a given

layer except the input layer makes a decision on the basis of the decision boundary it is
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trained to recognize when presented with a set of data. Its decision is then used by the
succeeding layer until the final output neuron layer is reached. Hence, the output node

layer classifies the unknown signal into one of the predefined classes.

Classification of signals into distinct categories is made on the basis of a pre-
selected signal set defining each class. This pre-selected signal set, known as the training

set, contains the data related to each separate class and is used to train the ANNs.

For supervised learning networks, the selection of training signal is very
important. Actually, the accuracy of the obtained classification using back-propagation
depends heavily on the choice of signals applied as the training data set. If the training
signals are not truly representative, the classification will not be accurate. For example, a
network trained by large flaw size signals may incorrectly classify signals with small
flaws as signals with no defects. For our research, more serious problem is the heavy data
correlation making data processing very difficult. Moreover, large mount of original data
input to the network increases the calculation time and the complexity of the network.
Since PCA is able to reduce the dimensionality of the original data while preserves most
of the relevant information in the new low-dimension space, it was used to pre-process
the data to improve the network. To determinate the index of dispersion, there are two
major steps in this research. First step is to use PCA to select the most informative
variables to construct the feature data sets. Secondly, feed these feature data into a neural

network to determine the dispersion index.

There are many publications on applications of ANNs in chemistry [21,53,79],

pharmaceutics [80], chemical engineering [12,81], and face recognition [37]. The
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combination of ANNs and other techniques, such as pyrolysis mass spectrometry [23],
ultrasonics [7,14,15,25] were reported. Methods combining PCA and ANNs have been

developed for pattern recognition [35,41,42], stellar spectrum analysis [64,66].

5.2 Notations

The procedure used to perform the learning process is called a learning algorithm. It is to
modify the synaptic weights of the network in an orderly fashion to attain a desired

design objective.

We present notations to be used in the rest of this chapter:

e Indices i, j, and & - refer to different neurons in the network.

e [teration (time step) » - the nth training pattern (example) presented to the
network.

e FE(n) - instantaneous sum of error squares or error energy at iteration 7.

e ¢{n) - error signal at the output of neuron j at iteration #.

e d{(n) - desired response for neuron j and is used to compute e;(n).

e y(n)— output, function signal of neuron j at iteration n.

e wj;{n)—the synaptic weight connecting the output of neuron i to the input of
neuron j at iteration #.

e  Aw;(n)— The correction applied to the weight w;{(n) at iteration 7.

e v(n)—induced local field (i.e., weighted sum of all synaptic inputs plus bias) of
neuron j at iteration .

e (-)—activation function describing the input-output functional relationship of the

nonlinearity associated with neuron j.
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8i(n) — local gradient for neuron j.

b;— bias of neuron;.

x/(n) — ith element of the overall input vector.

o(n) — kth element of the overall output vector.

1 — learning rate parameter.

my — size (i.e., number of nodes) in layer / of the multilayer perceptron, / =
0,1,...,L, where L is the “depth” of the network.

mg— size of the input layer, m; denotes the size of the first hidden layer.

my— size of the output layer. The notation m = M is also used.

In using the above notations, we make the following remarks:

Indices i, j, and k are arranged as: with signals propagating through the network
from left to right, neuron j lies in a layer to the right of neuron i, and neuron £ lies
in a layer to the right of neuron j when neuron j is a hidden unit.

The average of E(n) over all values of # (i.e., the entire training set) yields the
average error energy Eqy.

di(n) is used to compute e{(n).

vi(n) constitutes the signal applied to the activation function associated with
neuron j.

the effect of b, is represented by a synapse of weight wjo = b; connected to a fixed

input equal to +1.
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5.3 Learning Process

An ANN has a set of sensory units (source nodes) that constitute the input layer, one or
more hidden layers of computation nodes, and an output layer of computation nodes. The
input signal propagates through the network in a forward direction, on a layer-by-layer
basis. The most attractive property of an artificial neural network is the ability of the
network to learn from its environment, and to improve its performance through learning.
Through an interactive process of adjustments applied to its synaptic weights and bias
levels, an ANN tries to learn about its environment, and ideally, becomes more
knowledgeable about its environment after each iteration of the learning process.
Generally, these neural networks are referred to as multilayer perceptrons (MLPs).
Multilayer perceptrons have demonstrated their capabilities by successfully solving some
difficult and diverse problems through training them in a supervised manner with the
error back-propagation algorithm. This algorithm is based on an error-correction learning
rule. Error back-propagation learning consists of two phases through different layers of
the network: a forward phase and a backward phase. In the forward phase, an activity
pattern (input vector) is applied to the sensory nodes of the network, and its effect
propagates through the network layer by layer. Finally, a set of outputs is produced as the
actual response of the network. In the forward phase, the synaptic weights of the
networks are all fixed. In the backward phase, on the other hand, the synaptic weights are
all adjusted according to an error-correction rule. The actual response of the network is

subtracted from a desired response to produce an error signal.
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This error signal is then propagated backward through the network, against the
direction of synaptic connections — hence the name “error back-propagation.” The
synaptic weights are adjusted to make the actual response of the network move closer to
the desired response in a statistical sense. The error back-propagation algorithm is also
referred to in the literature as the back-propagation algorithm, or simply back-prop. The

learning process performed with the algorithm is called back-propagation learning.
5.4 Back-propagation algorithm

The back-propagation algorithm is used to adjust the synaptic weights during the learning

process. The error signal at the output of neuron j at iteration # is defined by:

e;(n)=d ;(n)~ y;(n), neuronj is an output node. (5.1)

We define the instantaneous value of the error energy for neuron j as %ef. (n).

Correspondingly, the instantaneous value E(n) of the total error energy is obtained by

summing %ejz. (n) over all neurons in the output layer. These are the only “visible”

neurons for which error signals can be directly calculated. E(n) can be written as:
1 & 2
En)=—2 ¢e;j(n) (5.2)
2 jeC

where the set C includes all the neurons in the output layer of the network. Let N denote
the total number of patterns (examples) contained in the training set. The average squared
error energy is obtained by summing E(n) over all » and then normalized with respect to

N, as shown by:
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E,=—3E 5.3
w = ZEM) (5.3)

The instantaneous error energy E(n), and therefore the average error energy E,,, is
a function of the free parameters (i.e., synaptic weights and bias levels) of the network.
For a given training set, E,, represents the cost function or performance index as a
measure of the learning performance. The objective of the learning process is to adjust
the free parameters of the network to minimize E,. To do this minimization, an
approximation approach can be utilized. A simple method of training is to update the
weights on a pattern-by-pattern basis until one complete presentation of the entire
training set is conducted. The adjustments to the weights are made in accordance with
respective errors computed for each pattern presented to the network. The arithmetic
average of these individual weight changes over the training set is therefore an estimate
of the true change that would result from modifying the weights based on minimizing the

cost function E,, over the entire training set.
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Fig. 5.2 Signal-flow graph highlighting the details of output neuron j

Consider the signal-flow of an output neuron (see Fig. 5.2), where neuron j is fed
by a set of function signals produced by a layer of neurons to its left. The induced local
field vi(n) produced at the input of the activation function associated with neuron j is

therefore:
v;(n)= f:o w;(n)y;(n) (5.4)
j:

where m is the total number of inputs, excluding the bias, applied to neuron j. The
synaptic weight wj corresponding to the fixed input yp = +1, equals to the bias b; applied

to neuron j. Hence the function signal y{(r) at the output of neuron j at iteration # is:
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yj(n)=(pj(vj(n)) (5.5)

Then the back-propagation algorithm applies a correction Aw;(n) to the synaptic weight

w;i(n), which is proportional to the partial derivative 0E(n) / Ow ;;(n) . It can be written as:

0E(n) _ OE(n) Oe;(n) dy;(n) ov;(n)

= (5.6)
Ow;;(n)  Oe;(n) Oy ;(n) Ov;(n) ow;(n)

The partial derivative 8E(n)/5‘w +(n) represents a sensitivity factor, determines the

direction of search in the weight space for the synaptic weight wj. Differentiating both

sides of Eq. (5.2) with respect to e[{n), we get

OE(n)
Oe; (n) -

e,(n) (5.7

Differentiating both sides of Eq. (5.1) with respect to v{(n), we get

e ; (n) _

-1 5.8

Differentiating Eq. (5.5) with respect to vi(n), we get

a.Vj(n) oy
W—‘P;(",—(")) (5.9)

where the prime of @,(-) denotes differentiation with respect to its argument. Finally,

differentiating Eq. (5.4) with respect to w;(n) yields
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an (n)

5‘wﬁ ) =y;(n) (5.10)
Put Egs.(5.7) to (5.10) in (5.6), we have:
SE(m) _ ,
ow (1) e;(np;(v;(n)y,(n) (5.11)

Ji
The correction Aw(n) applied to wy(n) is defined by the delta rule:

OE(n)

—_— 5.12
awji(n) ( )

Aw;(n) =
where 1 is the learning-rate parameter of the back-propagation algorithm. The use of the
minus sign in Eq.(5.12) accounts for gradient descent in seeking a direction for weight

change to reduce the value of E(n). Put Eq.(5.11) in (5.12), we have

Aw;(n) =md ;(n)y,;(n) (5.13)

where the local gradient &;(n) is defined by

_OE(n)
ov, ()
__OE(m) %e,(n) 0y, (m) (5.14)
e, Oy;(n) ov,(n)
=e;(me}(v;(n)

6 ,(n)=

The local gradient points to required changes in the synaptic weights. According
to Eq.(5.14), the local gradient 6,(n) for output neuron j is equal to the product of the

error signal e{n) and derivative ¢'{(v{(n)) of the activation function. From Eqs.(5.13) and
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(5.14) we note that a key factor involved in the calculation of the weight adjustment
Awj{n) is the error signal e(n) in the output of neuron . It is treated differently for neuron

Jj at different layers.
5.4.1 Output layer

When neuron j is located in the output layer of the network, it is supplied with a desired
response of its own. The error signal e;(n) associated with this neuron is computed using

Eq.(5.1). Having determined ej(n), it is straightforward to compute the local gradient

d4{(n) using Eq.(5.14).
5.4.2 Hidden layer

When neuron j is located in a hidden layer of the network, there is no specified desired
response for that neuron. Accordingly, the error signals for a hidden neuron will be
determined recursively in terms of the error signals of all the neurons to which that
hidden neuron is directly connected. This makes the development of the back-

propagation algorithm complicated. Based on Eqgs.(5.9) and (5.14), we may redefine the

local gradient &4r) for hidden neuron j as

_ GE(n) a.yj (n)

oy, (n) v, () 515
e )
o, *

5,(n) =

To calculate the partial derivative 8E(n)/8y ;(n), one proceeds as follows. From Fig.5.2

one has:
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E(n) = —;—Zef (n), neuron k is an output node (5.16)

keC

which is the same as Eq.(5.2) with index % in place of index j. Differentiating Eq.(5.16)

with respect to function signal y(n), we get

OE(n) _ Oe, (n) 517
o 2% G147

Next we use the chain rule for the partial derivative Oe, (n) / Oy ;(n), and rewrite Eq.(5.17)

to:

OE(n) Oe, (n) Ov, (n)
= — B 5.18
o, (n) 2 o, (n) ©.18)

From Fig.5.2, it follows

e,(n)=d,(n)-y,(n)

neuron £ is an output node (5.19
= d,(n)— 9, (v, (), ® ©-19)

Hence

aek (I’l) _ l
o (1) 0, (v, (7)) (5.20)
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Fig. 5.3 Signal-flow graph highlighting the details of output neuron %
connected to hidden neuronj

We also note from Fig.5.2 that, for neuron £, the induced local field is
v (n) = z Wy (n)yj (n) (5.21)
j=0

where m is the total number of inputs applied to neuron £. Here again, the synaptic weight
wio(n) 1s equal to the bias by(n) applied to neuron £, and the corresponding input is fixed

at the value +1. Differentiating Eq.(5.21) with respect to y(n) yields

ov, (n
———Z‘—(——z = w, (n) (5.22)
%, (n)

Using Egs.(5.20) and (5.22) in (5.18), one gets the desired partial derivative:

OE(n)
;(n)

= -‘Z e, (M, (v, (M)wy; (n)

(5.23)
==>"3, (m)wy(n)
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where in the second part of Eq.(5.23) we have used the definition of the local gradient

Ox(n) given in Eq.(5.14) with index £ replacing j.

Finally, using Eq.(5.23) in (5.15), we get the back-propagation formula for the

local gradient §4(r) as described:

8,(n) =) (v, (M) 2.8, (m)w, () (5.24)

where neuron j is in hidden layer. The factor ¢'(v{(n)) involved in the computation of the
local gradient §,(n) in Eq. (5.24) depends solely on the activation function of the hidden
neuron j. The remaining factor involved in this computation, namely the summation over
k, depends on 8x(n) and wy(n). To calculate 8(n) requires knowledge of the error signals
ex(n), for all neurons that lie in the layer to the immediate right of hidden neuron j and
directly connected to it (See Fig.5.2). wy(n) consists of the synaptic weights associated

with these connections,

In summary, the correlation A wy(n) is first applied to the synaptic weight

connecting neuron i to neuron j is defined by the delta rule:

Weight learning — local input signal
correction |=| rate parameter |-| gradient |-| of neuron j (5.25)
Aw;(n) n 5 ,(n) y:(n)

Then calculation of local gradient 8;(n) depends on whether neuron j is an output node or
a hidden node:
1. If neuron j is an output node, 6(n) equals the product of the derivative @’{(v/(n))

and the error signal e;(n), as shown in Eq.(5.14).
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2. If neuron j is a hidden node, 84(rn) equals the product of the associated derivative
(p}(tzj(n)) and the weighted sum of the 8s computed for the neurons in the next

hidden or output layer that are connected to neuron j as shown in Eq.(5.24).

5.5 Two computational phases

There are two distinct phases in the application of the back-propagation algorithm. The
first phase is the forward phase, and the second phase is the backward phase. In the
forward phase the synaptic weights remain unaltered throughout the network, and the
function signals of the network are computed on a neuron-by-neuron basis. The function

signal appearing at the output of neuron j is computed by
y;(n)=0v;(m) (5.26)

where v{(n) is the induced local field of neuron j, defined by
v, () =2 w,(n)y,(n) (5.27)
i=0

where m is the total number of inputs (excluding the bias) applied to neuron j, and wj(n)
is the synaptic weight connecting neuron i to neuron j. y{n) is the input signal of neuron j
or equivalently, the function signal of the output of neuron i. If neuron j is in the first
hidden layer of the network, then m = my. The index i refers to the ith input of the

network, and

y;(n) =x,(n) (5.28)
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where x(n) is the ith element of the input vector. If neuron j is in the output layer of the

network, then m = m;, and j refers to the jth output of the network, we then have:

y;(ny=o0,(n) (5.29)

where oj(n) is the jth element of the output. This output is compared with the desired
response dj(n), obtaining the error signal e{n) for the jth output neuron. Thus the forward
phase of computation begins at the first hidden layer and terminates at the output layer by

computing the error signal for each neuron of this layer.

The backward phase starts from the output layer through the network, layer by
layer, and recursively computes the local gradient &; for each neuron. This recursive
process permits the synaptic weights of the network to undergo changes in accordance
with the delta rule of Eq.(5.25). For a neuron located in the output layer, the §; equals to
the error signal of that neuron multiplied by the first derivative of its nonlinear function.
We use Eq.(5.25) to compute the changes of the weights of all the connections feeding
into the output layer. Given the §; for the neurons in the output layer, we use Eq.(5.24) to
compute the §; for all the neurons in the penultimate layer and the changes to the weights
of all the connections feeding into it. The recursive computation is continued, layer by

layer, by propagating the changes to all the synaptic weights in the network.
5.6 Activation function

The computation of J; for each neuron of the multilayer perceptron requires the derivative
of the activation function ¢(-) associated with that neuron. For this derivative to exist, the

function ¢(-) must be continuous and differentiable. A commonly used continuously
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differentiable nonlinear activation function in multilayer perceptrons is the sigmoidal

nonlinear function. It has two forms:

1. Logistic Function. This form of sigmoidal nonlinearity in its general form is

given by [40]

1
1+exp(—av,(n))

o,(v;(m)= ,a>0and—o<v (n)<w (5.30)

where v;(n) is the induced local field of neuron j. Using this function, the amplitude of the

output is in the range of 0< y(n)<1. Differentiating Eq.(5.30) with respect to v{(n), we get

aexp(—av,(n))
[1+exp(—av, D)k

@;(v;(n) = (.31

With y(n) = @i(v{n)), we can eliminate the exponential term exp(-a-v{n)) from Eq.(5.31)
and express ¢ (vi(n)) by
¢;(v,(m) =ay,(m[l-y,(n)] (5.32)

For a neuron j located in the output layer, y(n)= 0(n), we can express the local gradient

of neuron j by

3, (n)=¢e,;(np;(v,(n)

=a[d;(n)—o,;(m]o,;(m)[1-0,(n)] (5.33)

where ofn) is the function signal at the output of neuron j and di(n) is the desired

response. For an arbitrary hidden neuron j, we can express the local gradient by
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8,01 =0}, (M) X8, (myw,, ()

—ay, ()1 -y, (TS, (mw, (OO B RiAeR (53D

From Eq.(5.32), @/(v{(n)) attains its maximum value at y{(n) = 0.5, and its
minimum value at y(n) = 0, or y(n) = 1.0. Since the amount of change in a synaptic
weight of the network is proportional to @;'(v{n)). For a sigmoid activation function, the
synaptic weights change most rapidly when the function signals are in their midrange.

2. Hyperbolic tangent function. Another commonly used form of sigmoidal
nonlinear function is the hyperbolic tangent function. The general form of the function is

given by
¢, (v;(m) = atanh(bv,(n)), (a,b)>0 (5.35)

where a and b are constants. The hyperbolic tangent function is a rescaled and biased

logistic function. Its derivative with respect to v(n) is given by
@’ (v,(n)) = absec h? (bv;(n)

= ab(1-tanh* (bv; (n))) (5.36)

=§[a—y,- (1 +y, ()]

For a neuron j located in the output layer, the local gradient is

6;(”) =€ (n)(p;(vj (n))

5.37
= 21, () o, (mlla—o0, (Mia +0, ()] 37

For a neuron in a hidden layer, we have
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8, () =0} (v;(m) .8, (Mw,(n)
b ) (5.38)
==[a~y,Mlla+y,W]) 8, (Ww, ()

Ta
Using Egs.(5.33) and (5.34) for the logistic function and Egs.(5.37) and (5.38) for the

hyperbolic tangent function, we can calculate the local gradient &; without requiring

explicit knowledge of the activation function.
5.7 Sequential and batch modes of training

In practical applications of the back-propagation algorithm, learning results from a set of
training examples to the multilayer perceptron. One complete presentation of the entire
training set is an epoch. The learning process is maintained on an epoch-by-epoch basis
until the synaptic weights and bias levels of the network stabilize and the average squared
error over the entire training set converges to some minimum value. One needs to
randomize the order of presentation of training examples from one epoch to the next.
This randomization makes the search in weight space random over the learning cycles
and to avoid the possibility of cycles in the evolution of the synaptic weight vectors. For
a given training set, back-propagation learning may thus proceed in one of the following

two basic ways:

1. Sequential Mode. The sequential mode of back-propagation learning is also
referred to as on-line, pattern, or stochastic mode. In this mode of operation weight
updating is performed after the presentation of each training example. For an epoch
consisting of N training examples arranged in the order of (x(1), d(1)), ..., xX(N), d(N)).

The first example pair (x(1), d(1)) in the epoch is presented, and the sequence of forward

57 -



and backward computations described previously is performed, resulting in certain
adjustments to the synaptic weights and bias levels of the network. Then the second
example pare (x(2), d(2)) in the epoch is presented, and the sequence of forward and
backward computations is repeated, resulting in further adjustments to the synaptic
weights and bias levels. This process continues until the last example pair (x(), d()) in

the epoch is presented.

2. Batch Mode. In the batch mode of back-propagation learning, weight updating
is performed after presentation of all the training examples that constitute an epoch. For a
particular epoch, we define the cost function as the average squared error in Egs.(5.2) and

(5.3) in the form of:

E, = E%;iZef- (n) (5.39)

n=] jeC

where the error signal e(n) pertains to output neuron j for training example 7 defined in
Eq.(5.1). Error efn) is the difference between di(n) and y(n), the jth element of the
desired response vector d(#) and the corresponding value of the network output,
respectively. In Eq.(5.39) the inner summation with respect to j is performed over all the
neurons in the output layer of the network, and the outer summation with respect to » is
performed over the entire training in the epoch. For a learning-rate parameter 1, the
adjustment applied to synaptic weight wj;, connecting neuron i and neuron j, is defined by

the delta rule
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To calculate the partial derivative e, (n)/0w, we proceed in the same way as before.

Using Eq.(5.40), the weight adjustment Awj; is made after the entire training set has been

presented to the network.
5.8 Stopping criteria

The back-propagation algorithm in general may not to converge, and there are no widely
accepted criteria for stopping the iteration. Some reasonable criteria, each with its own
practical merit, may be used to terminate the weight adjustments. To formulate such a
criterion, it is logical to think in terms of the unique properties of a local or global
minimum of the error surface. Let the weight vector w* denote a minimum, be it local or

global. Here, a vector w* is said to be a local minimum of an input-output function F if it

is no worse than its neighbors, that is, if there exists an € such that [6]
F(w*) < F(w) for all w with ||[w—w*||<eg

The vector w* is said to be a global minimum of the function F if it is no worse than all

other vectors; that is,
F(w*) < F(w) for all w eR"

where 7 is the dimension of w.
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A necessary condition for w* to be a minimum is that the gradient vector g(w) of
the error surface with respect to the weight vector w be zero at w = w*. The back-
propagation algorithm is considered to have converged when the Euclidean norm of the
gradient vector reaches a sufficiently small threshold. The drawback of this convergence
criterion is that, for successful trials, learning times may be long. Also, it requires the

computation of the gradient vector g(w).

We can consider a different criterion of convergence. The back-propagation
algorithm is considered to have converged when the absolute rate of change in the
average squared error per epoch is sufficiently small. The rate of change in the average
squared error is typically considered to be small if it lies in the range of 0.1% to 1% per

epoch. Sometimes even 0.01% per epoch is used.
5.9 Rate of learning

The back-propagation algorithm finds the approximate trajectory in the weight space
using the steepest descent method. If the learning-rate parameter m is small, the process
will be smooth but the computation may be very slow. If we use a large learning-rate
parameter 1), it may result in large changes in the synaptic weights and the network may
become unstable. A simple method to increase the rate of learning and to avoid the
danger of instability is to modify the delta rule in Eq.(5.13) by including a momentum

term. The generalized delta rule can be used as discussed in [59]:

Aw(n)=aldw,(n-1)+nd ;(n)y,(n) (541
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where a, a positive number, is the momentum constant. It controls the feedback loop

acting around Aw;{(n). When a = 0, Eq.(5.41) becomes the delta rule of Eq.(5.13).
We rewrite Eq. (5.41) as a series:
Aw,; (m) =n[o""8 (D, () +a"78 ;(2)y,(2) +-+-+ad ,(n =Dy, (n=1) +8 ;(m)y; ()]
(541a)

Let an index ¢ go from the initial time 0 to the current iteration n. Then we can

further rewrite Eq. (5.41a) as:
Awy(m) =) a8, (1), (1) (542)
t=0

It represents a time series of length n+1. From Egs. (5.11) and (5.14) we note 6(n)y/{n) =

—~E(n)[ow,, (n) . We rewrite Eq.(5.42)

Aw;(n) = ia”ﬁ OEQ)

2 (5.43)

From Eq.(5.43), we can use an o with |a|<l so that weight adjustment process will

converge.
5.10 Summary

In this chapter, several important concepts were introduced in sequences, such as back-
propagation algorithm, forward/backward computation phases, activation function,

training modes, stopping criteria, and learning rates. Learning is the core of artificial
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neural networks to allow the network to learn from its environment and improve its
performance. During the process, the input signal flows through the network neurons
layer-by-layer and in a forward direction. The error signal is then propagated backward
through the network. The synaptic weights are adjusted to make the actual response of

the network move closer to the desired response.

The model of each neuron in the ANN includes a nonlinear activation function.
The presence of nonlinearities is important. Otherwise, the ANN will be reduced to a
single-layer perceptron without proper network functionality. The use of the logistic
function is biologically motivated. It attempts to account for the refractory phase of real
‘neurons. The artificial neural network contains one or more layers of hidden neurons that
are not part of the input or output of the network. These hidden neurons enable the
network to learn complex tasks by extracting progressively more meaningful features
from the input patterns. From the combination of those characteristics and the ability to
learn from experience through training, the multilayer perceptron derives it computing
power. These same characteristics, however, are also responsible for the deficiencies in
the behavior of the network. For instance, the presence of a distributed form of
nonlinearity and the high connectivity of the network make the theoretical analysis of a
multilayer perceptron difficult. The learning process must decide which features of the
input pattern should be represented by the hidden neurons. It also needs to compute large
number of functions, and a choice has to be made between alternative representations of

the input pattern.

-62-



Chapter 6 Application of PCA & ANNSs for Evaluation of

Filler Dispersion

6.1 Introduction

The objective of this research is to find a way to correlate the measured data with the
dispersion state of the filler to determine the state of the filler dispersion. A model
relating the measured variables and the filler dispersion is needed. However, at the
current state of the art, there is no established theoretical relation between the measured
variables used in the study and the state of filler dispersion, mainly due to the lack of
understanding of the complex interaction between ultrasound and filled polymers under
flowing condition. Artificial neural network approach provides a way of modeling the
relationship between the measured variables and the state of a complex process without
fully understanding the process. In order to build an efficient neural network model, the
principal component analysis (PCA) was first applied to the multivariate data set
collected by multiple sensors in the experiment. The application of PCA allows
determining several uncorrelated feature parameters most sensitive to the filler dispersion
state. Then a neural network model with these feature parameters as inputs was

established.
6.2 Experiment data and the application of PCA

The experiments were carried out using the equipment described in Chapter 3.
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6.2.1 Original data

A wide range of data was collected. The experiment data used for modeling and analysis

are presented in the appendix. A summary of the variables is given i Table 6.1.

Table 6.1 Summary of process variables

Variables Deseription

Oreed feeding rate of materials (kg/hr)

Vis ultrasound velocity (m/s)

Olys ultrasound attenuation coefficient (dB/cm)
Amps amperage of electric current to drive the screws of extruder (A)
T et melt temperature at the ultrasonic probes location (°C)

P;, P,, P; | pressures read at three pressure probe locations at the die (psi)

Py pressure at the ultrasonic probes location (psi)
Sitress shear stress (psi)
Fype surface condition of filled mineral particles

Vepu screw rotation speed (RPM)

Loy barrel temperature profile

Cr filler concentration (wt%)

The controlled parameters of the process were feeding rate Or.qs (2 levels: 3.5 and
7.5 kg/h), screw rotation speed Vepar (3 levels: 100, 175, and 300 rotations per minute),

barrel temperature profile T, (2 profiles: one starting at 185°C at feed throat, with a
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gradual increase of 5°C from barrel to barrel up to 225°C at the ninth, with that set-point
constant for the remaining barrels and the die; another one with a constant set-point of
200°C imposed for all sections), the type of filler fed into the extruder Fiy,. (2 types: one
with stearate coating, one without), and the filler concentration Cy (5 levels: 0, 5, 10, 15,

and 20 wt%).

The measured parameters were ultrasound speed ¥, and attenuation coefficient
0l in the extruded material, the melt temperature T, read from the melt thermocouple,
the amperage of electric current A, required to drive the screws of the extruder, the
pressures P;, P2, and P; at three pressure probe locations at the instrumented die, the
pressure at the ultrasonic probes location P, which was an extrapolated value of the
pressure readings P;, P>, and P;, and finally the shear stress Sgyess. The shear stress was

determined by:

H dP
S = — 6.1
stress 2(1 +H/W) dx ( )

where H is the height and W is width of the rectangular slot channel in the instrumented
die, and dP/dx is the pressure gradient in the slot along the melt flow direction. The value
of dP/dx was computed based on readings of P;, P, and P3and the distances between the

pressure probes. The parameter of interest to this study was filler dispersion index D.

The surface condition, Fjy,, i.c., with or without stearate coating of fillers, had
strong effects on the measurement data [22]. The state of dispersion was examined using
SEM. Dispersion index was defined by Egs. (2.1) and (2.2). The dispersion is best when

no agglomerate is detected (D, = 1). In the case of worst dispersion, all the particles
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remain in the form of agglomerates and D, take the value of 0. In the present study, the
critical diameter was set to 7 pum (resolution of the SEM photographs). The size of the
examined area by SEM was 1.125mm by 1.125mm. Details on laboratory measurements

of filler dispersion can be found in [22].

6.2.2 Application of PCA

In this work, eight directly measured variables, namely, O, Vis, Ofeds Tmetts Amps, P1, P2,
and P3, plus two derived variables, namely P,; and Sy,.;s Were used. Application of PCA
to these 10 variables resulted in 10 principal components (PCs). Table 6.2 presents the
correlation coefficient between each original variable and the measured D,. Table 6.3
shows the correlation coefficient, y, between each PC and the off-line measured

dispersion index D;.

Table 6.2 Correlation coefficient between original variables and D,

Variables | 0Ly, Vs P, Pus | Toen

Y -0.39 | 0.009 | -0.48 | -0.56 | -0.29

Variables Amps Sstress P P Qfeed

7 -0.65 | -0.55 | -0.54 | -0.51 | -0.57

Table 6.3 Correlation coefficient between PCs and D,

PCs 1 2 3 4 b}

Y 0.55 | -0.40 | 0.17 | -0.33 | 0.07

PCs 6 7 8 9 10

Y -0.06 | 020 | -0.11 | 0.01 | -0.07
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To better visualize the results in Table 6.2 and 6.3, the correlation coefficients are

plotted in Fig. 6.1 and 6.2.
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6.2.3 Analysis of PCA application

First we look at the correlation coefficients between the input original data and the
dispersion index shown in Fig. 6.1. The result indicates that 8 out of the10 variables were
correlated with D, with an absolute correlation coefficient larger than 0.3. Also from
Table 6.4, we know that there exist correlations among these variables. For example, all
variables except Vi, s, and T were significantly correlated with 4. If choosing all
these eight variables, it will increase the complexity of the analysis. Therefore in this

situation, it was difficult to decide how many variables should be retained as the input of

the system model.

Table 6.4 Correlation coefficients between original variables

Ored | Vis | Ous | Amps | Tmete | P1 P, Py | Py | Sstress
Ofeed 1 |-0.040| 0.326 | 0.870 | 0.063 | 0.774 | 0.800 | 0.829 | 0.752 | 0.732
Vius |-0.040F 1 |-0.541| 0.230 |-0.685| 0.424 | 0.446 | 0.430 | 0.408 | 0.413
o, | 0.326|-0541| 1 0.269 | 0.277 | 0.304 | 0.247 | 0.238 | 0.327 | 0.331
Apps 10870 1 0230 | 0.269 | 1 |-0.013] 0.863 | 0.877 | 0.892 | 0.843 | 0.830
Tmerr | 0.063 |-0.685| 0.277 {-0.013| t |-0.371-0.400]-0.357 |-0.352 | -0.371
P; | 0.774 | 0.424 | 0.304 | 0.863 |-0.371| 1 0.982 | 0.975 | 0.996 | 0.994
P, |]0.800 0446 ] 0.247 | 0.877 |-0.400| 0.982 | 1 0.996 | 0.961 | 0.957
P; |0.829| 043002380892 |-0.357|0.975| 0996 | 1 0.951 | 0.943
P, |0.752 | 0.408 | 0.327 | 0.843 |-0.352 | 0.996 | 0.961 | 0.951 1 0.999

Ssiress | 0.732 | 0.413 | 0.331 | 0.830 |{-0.371| 0.994 | 0.957 | 0.943 | 0.999 | 1

As can be seen in Table 6.2, among the

correlated to D,, and therefore they were chosen to determine D,. Also from Fig. 6.2, one
can find that only PC1, PC2 and PC4 (plotted with large dot in the figure), are correlated

with the dispersion state having absolute correlation coefficients larger than 0.3. This
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indicates that these three PCs are most sensitive to the dispersion state of the system. It
demonstrates that using PCA has reduced the number of D,-sensitive variables from 8 to
3 and improved the efficiency of the analysis. We also note that although PC3 has more
system information of the original data set than PC4, it is less sensitive to the filler

dispersion state than PC4.

6.3 Application of artificial neural network

Artificial neural network was constructed for further analysis based on results from PCA.

6.3.1 Network structure
Laver 2
Input Layer ! Y
Frype
PCI
PC2
PC4

(N0 = 3,4,..,10)  (0,,=3,4....,10)

Fig. 6.3 Four-layer feed-forward networks for the estimation of filler dispersion.

A feed-forward network model was constructed for estimating the dispersion
index as illustrated in Fig. 6.3. Previous study showed that the surface condition, i.e.,
with or without stearate coating of fillers, had strong effects on the measurement data.

Therefore, the filler type Fy,,. was used as an input to the network. The filler type was
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coded as 1 for the stearate-coated filler and 2 for the non-coated filler. The effects of the
two filler types on the process could not be represented with these two rather arbitrarily
chosen simple values. We used a two-neuron layer to represent the effect of the filler
type. With this layer, each filler type was characterized by two output numbers. Their
values are determined by the network training process. The 1%, 2", and 4™ PCs
determined in Section 6.2 were used as inputs to the second layer. The 2™ and 31 layers
composed of various numbers of neurons in the range from 3 to 10 were investigated.
Table 6.5 presents the structures of all neural network models tested in this research. The
output of the network was the dispersion index D,. This network used a hyperbolic
tangent sigmoid transfer function for the neurons at the hidden layers, and a linear

transfer function for the output layer. Only the first hidden layer had a bias connection.

The weight factors for the input and the connection between two neurons as well
as the biases of the first layer were adjusted according to back propagation optimization
with early stopping strategy. The minimum output error of the network was achieved. Of
the available 93 dispersion indices measurements, 47 were used to form a data set for
network training. The others were used to form a validation-testing data set. For each
training cycle, half of the data samples were chosen randomly from the validation-testing
data pool to form a validation data set, and the remaining data formed the testing data set.
A total of 15 pairs of the data sets were used in the training process, resulting in 15
trained networks, determined from trainings for 500 different initial weight and bias
conditions. The best result has the largest C,/Eq. ratio, where C,. is the correlation

coefficient between the measured and estimated D, given by
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Table 6.5 Summary of configurations of neural network models
(Two neurons at Layer 1 and one neuron at Layer 4 for all configurations)
Structure of NN models Structure of NN models
Configurations | Neurons of Neurons of | Configurations | Neurons of Neurons of
Layer2 (nyg) | Layer3 (nyq) Layer2 (nyng) | Layer3 (n3q)
1 3 3 33 7 3
2 3 4 34 7 4
3 3 5 35 7 5
4 3 6 36 7 6
5 3 7 37 7 7
6 3 8 38 7 8
7 3 9 39 7 9
8 3 10 40 7 10
9 4 3 41 8 3
10 4 4 42 8 4
11 4 5 43 8 5
12 4 6 44 8 6
13 4 7 45 8 7
14 4 8 46 8 8
15 4 9 47 8 9
16 4 10 48 8 10
17 5 3 49 9 3
18 5 4 50 9 4
19 5 5 51 9 5
20 5 6 52 9 6
21 5 7 53 9 7
22 5 8 54 9 8
23 5 9 55 9 9
24 5 10 56 9 10
25 6 3 57 10 3
26 6 4 58 10 4
27 6 5 59 10 5
28 6 6 60 10 6
29 6 7 61 10 7
30 6 8 62 10 8
31 6 9 63 10 9
32 6 10 64 10 10
N
Z XY
C, = ) (6.2)
N N
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and E,,. 1s the maximum of the errors between all the estimated D, and the measured

ones defined by
B = MAX{|x, -y, [} (6.3)

In Egs. (6.2) and (6.3), x; and y; respectively represent estimated D, and measured D, for
the ith sample, and N is the total number of samples. Among the 93 estimates of D,, 47
were from the training data set, 23 from the validation data set, and 23 from the testing

data set.
6.3.2 Results and analysis

In order to determine the best network structure to the estimation of D,, the second and
third hidden layers with 3 to 10 neurons were tested. In total, 64 network structures were
evaluated for different numbers of neurons at the second and third hidden layers. For
each network structure, 15 pairs of validation and testing data sets were used. For each
pair of these data sets, the network was trained for 500 different initial weight and bias
conditions. Overall, 7500 trained networks were obtained for each network structure. Let
Erax_aves Emax_stds Crrave, and Gy g4, to represent respectively the average and standard
deviation of E,,; and C,,. They were calculated by the 7500 trained networks for each
network structure tested. Figs 6.4 to 6.7 and Table 6.6 show the values of E,u ave
Ervax_sids Crr_aves and Cp g corresponding to the numbers of neurons at the 2% and 3
hidden layers. In the figures, the result obtained with a second layer of n,,4 neurons and a

third layer of n3,, neurons is indicated with notation (#2,4, #3n4).

The displayed results are arranged first in ascending order of n3,,; and then in

ascending order of n2,,. In the series of figures, repetitive patterns are seen clearly when
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nanq passing from one number to the next. From Fig. 6.4, one can see that for a given 7,4,
the best performance with least average error is achieved by the networks with an n3,, in
the range of 4 to 6. Also one can see that the performance improves when 7;,,, changes
from 3 to 5 and deteriorates gradually with the increase of n,; from 6 to 10. Among the
64 network structures, the (5,5) and (5,6) structures generate the smallest average errors.
In Fig. 6.5, one can see that for a given 7,4, the best performance with largest average
correlation coefficient is achieved by the networks with n3,, in the range of 5 to 8.
Similar to that shown in Fig. 6.4, the best performance improves when n;,; changes from
3 to 7 and deteriorates when 75,4 increases from 8 to 10. The ratio of Gy v/ Epax ave 18
displayed in Fig. 6.6. Again, the best performance is achieved with the (5,5) and (6,5)
structures. The results presented in Figs. 6.4 to 6.6 confirm that there are optimal sizes for
the hidden layers of the network. If the size is too small, the network cannot handle the
system complexity; if it is too large, the network may not be efficiently trained with

limited quantity of data samples to produce robust predication.

Fig 6.7 shows the changes of the standard deviation of the maximum error E,,
with the sizes of the 2™ and 3™ hidden layers. As can be seen in the figure, the structure
(5,5) generates the least standard deviation, suggesting that this structure can produce
most consistent predictions under different training conditions. Based on the above
discussion, the network with 5 neurons for the second hidden layer and 5 neurons for the

third hidden layer was retained to determine the filler dispersion index.

Figure 6.8 and Table 6.7 show the estimation of the dispersion index based on the
average of the estimates generated by 5 best-trained networks. The data are arranged in

ascending order of the measured dispersion index. The maximum error is 0.043.
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Deviations of the estimated dispersion indices from the measured data are due to
insufficient data in network training. In addition, the network cannot reproduce the exact
process. The instability of the process, the discrepancy between the readings and the real
values of the process and measured variables, and the limited accuracy on dispersion

index measurement can also result in deviations of the network estimates.
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Table 6.6 Simulation results

|Config| Ena e | Crme |CoareEr-an] Enox st | COGE.| Engeame | Come |Cor-ne -] Evasnd
1 0.08851710.76024 8.5886 0.014223 33 0.088082 [ 0.76634 8.7003 0.014684
2 0.08842210.76298 8.6289 0.013793 34 0.087270 | 0.77538 8.8849 0.014198
3 0.088750|0.76348 8.6026 0.013464 35 0.086951 | 0.78020 8.9728 0.013202
4 0.088560] 0.76455 8.6331 0.013078 36 0.087141 | 0.78142 8.9673 0.013428
5 0.088771] 0.76408 8.6074 0.013246 37 0.087558 | 0.78164 8.9271 0.013926
6 0.089157]0.76311 8.5592 0.013663 38 0.088206 1 0.78013 8.8444 0.013924
7 0.089386]0.76245 8.5299 0.013511 39 0.0885771 0.77855 8.7895 0.014883
8 0.089674( 0.7626 8.5042 0.013908 40 0.088933 | 0.77884 8.7576 0.014797
9 0.087159|0.76701 8.8001 0.013113 41 0.08897 | 0.7622 8.5669 |0.015311
10 (0.086897|0.77266 8.8917 0.013702 42 0.087667 | 0.7739 8.8277 0.014008
11 10.087039]0.77383 8.8905 0.012786 43 0.08765 | 0.77885 8.8859 0.013591
12 10.087112]0.77487 8.8952 0.013009 44 0.087407 | 0.78092 8.9343 0.013576
13 [0.08741310.77428 8.8578 0.013334 45 0.088195 | 0.78037 8.8482 0.014092
14 10.0880190.77385 8.7919 0.013331 46 0.088376 | 0.78032 8.8295 0.014109
15 10.08824610.77277 8.7570 0.013685 47 0.089197 | 0.77817 8.7242 0.014698
16 {0.08858610.77093 8.7026 0.013573 48 0.090291 ] 0.77442 8.5769 0.015207
17 - 10.08722710.76816 8.8064 0.013648 49 0.089196 | 0.75960 8.5160 10.015812
18 10.086781[0.77486 8.9289 0.013162 50 0.088217 | 0.77181 8.7489 0.014395
19 10.086519(0.77832 8.9959 0.012557 51 0.087972 | 0.77722 8.8349 0.013996
20 10.08726110.77702 8.9046 0.013205 52 0.087925 1 0.77927 8.8629 0.013947
21 10.086941]0.77983 8.9696 0.013261 53 0.088633 | 0.77894 8.7884 0.014261
22 10.08780610.77774 8.8575 0.01335 54 0.089006 | 0.77959 8.7589 0.014707
23 10.08790410.77755 8.8454 0.01420 55 0.089825 1 0.77726 8.6530 0.014943
24 10.088375]0.77666 8.7883 0.014355 56 0.090416} 0.77625 8.5853 0.015891
25 10.08735210.76898 8.8033 0.014508 57 >0.089982 0.75618 8.4037 0.016423
26 10.08692410.77722 8.9414 0.024182 58 0.088852 | 0.76999 8.6660 0.014706
27 10.086626(0.78124 9.0185 0.013368 59 0.088401 | 0.77631 8.7817 0.014201
28 [0.08728910.77944 8.9294 0.013199 60 0.088456 | 0.77875 8.8038 0.014015
29 10.087450}0.78004 8.9198 0.013305 61 0.088976 | 0.77889 8.7539 0.014514
30 10.08756210.77935 8.9005 0.013472 62 0.089575 1 0.77850 8.6911 0.014755
31 10.088185{0.77889 8.8325 0.014177 63 0.090165 | 0.77665 8.6137 0.015239
32 10.088721(0.77804 8.7695 0.014704 64 0.091343 | 0.77286 8.4612 0.015881
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Table 6.7 Estimated and measured dispersion indices

Runs | Estimated | Measured | Runs |Estimated | Measured | Runs | Estimated | Measured
1 0.72829 0.6906 32 0.82954 0.8119 63 0.81175 0.8549
2 0.73491 0.6999 33 0.82249 0.8119 64 0.85185 0.8552
3 0.74928 0.7085 34 | 0.84302 0.8176 65 0.83213 0.8554
4 0.75270 0.7096 35 0.79532 0.8183 66 0.86759 0.8574
5 0.75917 0.7223 36 0.82696 0.8189 67 0.84961 0.8599
6 0.77012 0.7499 37 0.84462 0.8196 68 0.85939 0.8602
7 0.74855 0.7543 38 0.84056 0.8254 69 0.86433 0.8628
8 0.78763 0.7605 39 0.80763 0.8254 70 0.84358 0.8630
9 0.78802 0.7623 40 0.82203 0.8255 71 0.85368 0.8632
10 0.75631 0.7624 41 0.82504 0.8267 72 0.84575 0.8634
11 0.75704 0.7635 42 0.82202 0.8268 73 0.86607 0.8640
12 0.80368 0.7760 43 0.80383 0.8270 74 0.86179 0.8645
13 0.80332 0.7763 | 44 0.82838 0.8274 75 0.85721 0.8671
14 0.77127 0.7772 45 0.80493 0.8283 76 0.86225 0.8676
15 0.77825 0.7802 46 0.83781 0.8309 77 0.85947 0.8678
16 0.79186 0.7809 47 0.83599 0.8331 78 0.86709 0.8683
17 0.80453 0.7809 48 0.83392 0.8340 79 0.84957 0.8689
18 0.78525 0.7818 49 0.81666 0.8368 80 0.85986 0.8704
19 0.75159 0.7829 50 0.82772 0.8370 81 0.85919 0.8708

20 0.75912 0.7836 51 0.80385 0.8371 82 0.85026 0.8715
21 0.80338 0.7864 52 0.85335 0.8372 83 0.85741 0.8720
22 0.80421 0.7901 53 0.81674 0.8445 84 0.86481 0.8725
23 0.75711 0.7909 54 0.82090 0.8450 85 0.86260 0.8735
24 0.78706 0.7938 55 0.84882 0.8482 86 0.84420 0.8743
25 0.81002 0.7976 56 0.86430 0.8484 87 0.84904 0.8754
26 0.76792 0.7989 57 0.85792 0.8498 88 | 0.87535 0.8777
27 0.79600 0.8000 58 0.84600 0.8513 89 0.84911 0.8812
28 0.82528 0.8036 59 0.85608 0.8517 90 0.86218 0.8820
29 0.84255 0.8093 60 0.83530 0.8523 91 0.86030 0.8830
30 0.79663 0.8110 61 0.84575 0.8531 92 0.86525 0.8906
31 0.79783 0.8115 62 0.85140 0.8532 93 | 0.87851 0.9030

(Note: the data has been sorted according to the ascending order of measured D;)
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6.4 Summary

In this chapter, we built a four-layer feed-forward network model to predict mineral filler
dispersion state. The data were collected by a multi-sensor system in the experiment. In
order to achieve a precise prediction, principal component analysis (PCA) was first
applied to the measured data. 10 measured variables were chosen as the inputs of PCA,
resulting in 10 principal components (PCs). It is to be noted that all these PCs are
uncorrelated. Through calculating the correlation coefficients between the resulted 10
PCs and the dispersion index, D,, three PCs most sensitive to the filler dispersion were
selected as inputs of neural network models. This allowed us to reduce the redundancy of

information and improve the efficiency of the analysis.

Sixty-four four-layer feed-forward network models with one input layer, one
output layer, and two hidden layers with number of neurons in each layer ranging from 3
to 10 were constructed and tested to decide the best network structure for estimating D;.
We used 15 pairs of validation-testing data sets for each network structure. For each pair
of these data sets, the network was trained for 500 different initial weight and bias
conditions. Consequently, 7500 trained networks were obtained for each network
structure. The results indicated that there existed repetitive patterns as the number of
neurons of the hidden layers changed. And there were optimal sizes for the hidden layers
of the network. According to the calculation, the network with 5 neurons for the 2™
hidden layer and 5 neurons for the 3™ hidden layer performed best and was retained for
the determination of filler dispersion index. The final simulation results showed that the

maximum error between the estimated and the measured filler dispersion index was only
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0.043. Considering the limited data size and measurement accuracy, the performance of
the network was encouraging. This demonstrated that artificial neural network is a good
alternative to physical modeling of the relationship between directly measurable variables

and physical properties of a material of interest for process-monitoring purposes.
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Chapter 7 Summary and Conclusion

7.1 Summary

Due to varying operational conditions, the polymer extrusion process must be monitored
continuously to ensure a reliable and efficient operation. In this work, a multi-sensor
system consisting of ultrasonic sensors, thermocouples, pressure semsors and an
amperometer was used to monitor the extrusion of a calcium carbonate-filled
polypropylene system. A method combining principal component analysis (PCA) and
artificial neural networks has been developed and applied to determine the dispersion
index of the filler based on the measured data. This hybrid method was developed and
applied to the polymer dispersion monitoring. The artificial neural network approach was
used since it can establish relationship between the measured data and the state of the
filler dispersion without completely understanding the process. In order to build an
efficient neural network model, PCA was first applied to the multivariate data set
collected by the multiple sensors. The application of PCA had allowed finding out several
uncorrelated feature parameters most sensitive to the filler dispersion state. A large
number of ANNs with different configurations were tested and the best one was chosen
for actual prediction. Taking into consideration the limited samples and data inaccuracy

in this research, the performance of the neural network model was very good.
7.2 Contributions

The results of this research suggest that the proposed PCA/ANNs approach, combined

with the use of the multi-sensor system, can be used to provide accurate on-line
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estimation of filler dispersion during polymer extrusion processes. The application of this
method will facilitate the control of polymer extrusion processes and lower production
cost. It should be pointed out that this study has been intended to be a part of the work for
establishing a hybrid PCA and ANNs approach for effectively extracting process
information generated by a multi-sensor system. It is our belief that this approach can be
applied to more complex sensing systems. This method provides a way to effectively
extract information from the measured data generated by ultrasound, Ramon, dielectric
and infrared measurements. Due to the trend of heavier instrumentation and larger data
quantity recorded in polymer industry, we anticipate the adoption of this approach by

practitioners in the near future.

7.3 Future research

This study was to predict the filler dispersion state from the measured variables and the

final result was excellent. In the future, the research in this area can be directed to:

1. Machine-dependent and machine-independent model. In this research, the
purpose of applying all the measured variables was to establish the feasibility of using
multi-sensor system for monitoring extrusion processes. Among the 10 measured
variables, some were machine-dependent, such as temperature profile, amperage of
driving motor, and others were machine-independent, such as ultrasonic velocity and
attenuation coefficient. The model established in this work is extruder-dependent one. In
other words, if the configuration of screws or extruder changes, the model will no longer
be valid. Given that it takes much effort to analyze the samples, a machine or extruder

independent model will be very much desirable for practical applications. The future
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work may aim at building a machine-independent model for polymer extrusion processes.
Also a model based only on controlled variables for optimal control can be the future

research target.

2. The accuracy of the ANN model developed in this work may be improved by
other process matrices as modeling inputs, or by other learning algorithms. The problems
associated with artificial neural networks, such as sensitivity to model initialization,
training strategy, and number of neurons for a given number of inputs, etc. need further

studied.

3. One may give a broad perspective on the value of the combined PCA and
ANNSs approach by comparing it with other chemometrics techniques, such as partial

least square (PLS).
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