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Abstract

Sound Transmission Through Panels Using Element Free Galerkin

Technique

Ying Yao

Sound transmission through flexible panels is investigated using Element Free
Galerkin (EFG) method. In contrast to Finite Element Method (FEM), EFG method uses
a set of nodes scattered within the problem domain and its boundaries to model the
structure. These sets of nodes do not form a mesh, and hence information on the
relationship between the nodes is not required for field variable interpolation.

Moving Least Square (MLS) approach is employed to generate the displacement
functions in EFG method for vibration analysis of elastic structures. Subdivisions similar
to finite elements are used to provide a background mesh for numerical integration. The
essential boundary conditions are enforced by Lagrange multipliers for static problems.
For analysis of free vibration and forced vibrations, the essential boundary conditions are
imposed using orthogonal transform techniques. To demonstrate the validity and
versatility of the method, modal analysis of beams and thin plates with different
boundaries have been carried out. In addition, the response of these structures under
dynamic excitation has been analyzed. The results obtained are in good agreement with
those obtained by other methods. Sound transmission loss through panels with all edges
clamped is investigated and the results are presented and discussed. Results are compared

with those obtained from simple application of mass law and the agreement is quite good.
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Chapter 1

Introduction

1.1 Sound Transmission Through the Panel

Sound of high intensity in workplace is harmful to human health. Continuous
exposure to high levels of sound may lead to hearing loss, headache and loss of
concentration. Noise also interferes with speech and may cause safety problems. Noise is
more and more perceived as an environmental pollutant, and hence the reduction of
sound is very important in industries.

Sound level may be reduced either (i) at the source, (ii) along the path, or (iii) at
the receiver. In order to reduce sound along the path, barriers such as panels can be
placed. The noise reduction in such panels can be found by studying their transmission
loss. Upon determination of sound transmission loss characteristics of a structure, noise
transmission loss can be improved through either passive or active means. Its evaluation
is very important in many noise control problems.

There are two ways to predict sound transmission loss: Experimental
measurements and analytical predictions. Traditionally the sound transmission loss of
panels has been measured experimentally {1] [2] [3] [4]. The results of experiments
depend on the laboratory conditions, not only room parameters, but also the measurement
techniques. In addition, special attention will have to be paid to the sound transmission

paths [5].



Transmitted sound is strongly related to the flexible panel response, which clearly
identifies the need to accurately analyze the plate response. Analytical methods for
determining modes with different plate boundary conditions including beam
characteristic functions in Rayleigh-Ritz method were used by McDonald et al.[6]. Since
the beam characteristic functions do not represent the plate modes exactly, a set of plate
characteristic functions were developed by R. B. Bhat et al [7] [8] [9] to accurately
determine the plate modes with different boundary conditions. The use of plate
characteristic functions to express plate modes will result in more accurate estimation of
the plate response. The plate characteristic functions were determined through the exact
solution of the reduced equation, using an iterative method. The plate partial differential
equation was reduced to an ordinary differential equation by substituting an assumed
approximate solution that satisfies the boundary conditions along one direction of the
panel. The method provides a more accurate estimation of natural frequencies and plate
response than those obtained by the beam characteristic functions in the Rayleigh-Ritz
method.

With the rapid development of computer technology, computational simulation
techniques are used to model and investigate acoustics problems. Many studies have been
carried out to solve sound transmission problems by using FEM [11]. Finite element
method and boundary element method have been used for modeling silencers, enclosures,
duct and piping networks as well as barrier walls.

The study in this thesis aims at developing a new method — using one kind of
meshfree method - to solve for sound transmission loss. The method is called Element

Free Galerkin (EFG) method. Meshfree methods were discovered 20 years ago by



Belytschko, T. [14], however, it is only recently that they have captured the interest of
researchers. The reason for developing meshfree method is that certain classes of
problems present difficultiecs when solved using conventional FEM, including
applications with large changes in geometry such as fracture mechanics [15] [16]. The
difficulties arise due to the ini"lerent structure of the finite element: the rigid connectivity
defined by elements. Although many meshfree methods have found applications in static
analyses including fracture problems, contact problems and large deformation [17], little
work has been done to solve sound transmission problem by using Element Free Galerkin

method (EFG)..
1.2 EFG-Element Free Galerkin Method

The Element Free Galerkin (EFG) method is a relatively recent approach, which
was proposed by T. Belytschko et al. [18]. It is in many respects strikingly similar to the
finite element method. The finite element method for the modeling of complex problems
in applied mechanics and related fields is well established. It is a robust and thoroughly
developed technique, but it has shortcomings. The reliance of the method on a mesh leads
to complications for certain classes of problems. In the modeling of large deformation
processes, considerable loss in accuracy arises when the elements in the mesh become
extremely skewed or compressed. The traditional technique for handling these
complications is to remesh the domain of the problem at every step during the evolution
of the simulation. This prevents the severe distortion of elements. To ameliorate these

difficulties, a new class of methods have recently been developed which do not require a



mesh to discretize the problem. One of this kind of methods is Element Free Galerkin
(EFG) method.

The principal attraction of meshfree methods is the possibility of simplifying
adaptively. In sound transmission problems, nodes can be added around area that has
high sound intensity with the desired accuracy. Adaptive meshing for a large variety of
problems, including linear and nonlinear stress analysis, can be effectively treated by
these methods in a simple mannér.

The EFG method is a really new modeling and simulation technique that can solve
many complex problems. However, in classical approaches, there are already some
meshfree ideas existing there. These methods include Rayleigh-Ritz [19] [20] method,
Galerkin method [21] and collocation method [22] [23]. Rayleigh-Ritz method is an
energy method; it requires the choice of suitable independent trial functions that satisfy
the geometrical boundary conditions. The solution is approximated by a sequence of trial
functions each attached with arbitrary coefficients. The unknown constants are
determined using a variational approach. Galerkin method and collocation method can be
classified as the weighted residuals method. In contrast with the Rayleigh-Ritz method,
the weighted residuals method work directly with the differential equation. The
difference between Galerkin method and collocation method is that different weighting
functions are chosen. In Galerkin method, the weighting functions coincide with the trial
functions while Dirac delta functions are weighting functions in collocation method. To
some extent, collocation method has some similarities with meshfree methods. It uses
nodes but no mesh to model structures. The detailed information related to Rayleigh-Ritz

method, Galerkin method and collocation method will be explained in detail in chapter 2.



The EFG method, first developed by T. Belytschko as an improved version of the
diffuse element method introduced by Nayroles et al. {24], only requires a set of nodes
scattered within the problem domain as well as sets of nodes scattered on the boundaries
of the domain. The connectivity is defined according to nodal weight function that
possess compact support, so that each node represents only the local region surrounding
it, called its domain of influence. The shape functions are constructed using moving least
square (MLS) approximation which have been developed for curve and surface fitting of
random data [25]. These MLS approximants replace the usual FE interpolants as the test
and trial functions in the Galerkin formulation.

From finite element background, one may understand easily the fact that the only
fundamental difference between the finite element method and the EFG method is
computation of the shape functions. The construction of the shape functions and their
spatial derivatives involves relatively much effort when compared to the finite element
method. Furthermore, the shape functions and their spatial derivatives have complicated
forms{18] (compared to the polynomials that appear in finite element procedures).
Therefore, it is necessary to use a relatively large number of integration points (T.
Belytschko et al [26]) in order to obtain accurate results. On the other hand, the shape
functions and their derivatives are continuous and shape function derivatives are
computed exactly. From the flowchart shown in Figure 1.1, one can have a better

understanding of EFG procedure.
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Figure 1.1 Flowchart for FEM and EFG method procedures

1.3 Thesis Organization

The description of this investigation starts with a literature survey on sound
transmission and Element Free Galerkin Method (chapter 1). Chapter 2 covers different
techniques to solve vibration problems. Chapter 3 deals with principles for Element Free
Galerkin method and shape function construction. Chapter 4 deduces discretized
equations of truss, beam, in-plane plate, and thin plate by Element Free Galerkin method

for natural frequencies and mode shapes. Numerical results are presented in chapter 5. In



chapter 6, Element Free Galerkin method and modal superposition method are employed
to calculate the sound transmission loss through the panel. Conclusions are made in

chapter 7 together with suggestions for future work.



Chapter 2
Different Numerical and Approximate Methods to Obtain

Vibration Response of Panels

2.1 Intreduction

This chapter covers different type of methods that can solve for the vibration
response of elastic panel structures. The discussion starts with the finite element method,
followed by the Rayleigh-Ritz and Galerkin method. Collocation method will be
discussed in detail in the end since it is one kind of simple meshfree methods. The natural

frequencies and systemn matrices by different techniques will be presented in chapter 5.

2.2 Finite Element Method

In general, modeling and simulation of engineering systems require solving the
complex differential or partial differential equations that govern the problem. The finite
element method is particularly useful for solving differential equations, together with
their boundary conditions, over a domain of complex shape. The process, therefore,
represents the problem domain by a large number of finite elements of simpler shapes
connected together at a set of points called the nodes. In each of these elements, the
structural behavior is considered individually, and then the over-all structural equilibrium

equations are assembled from the individual components. The analysis is based on the



principle of virtual displacements which is similar to the application of the principle of
minimum potential energy. The general finite element analysis process, however, should
be understood as a numerical procedure to obtain approximate solution to problems in
continuum mechanics. The approximation achieved depends on the characteristics and
the number of elements that are used to idealize the structure. The elements have to
satisfy convergence requirements, but to obtain accurate results a large number of finite
elements are also needed.

By using a properly predefined mesh and by applying a proper principle, complex
differential or partial differential governing equations can be approximated by a set of
algebraic equations for the mesh. The system of algebraic equations of the whole problem
domain can be formed by assembling sets of algebraic equations for all the mesh.

In FEM, the shape functions are constructed using elements and the shape
functions will be the same for all the elements of the same type. In fact, if the natural
coordinate systems are used, the form of shape functions in the natural coordinates are
identical for elements of the same type. These shape functions are usually predetermined
for different types of elements before the finite element analysis starts.

The finite element method defines elements between the nodes. It must be known
that each node is connected in order to compute the shape functions. As long as elements
are used, the problem mentioned in chapter 1, such as, large deformation, crack growth
and so on, will not be easy to solve. The concept of element free or mesh free methods
has been proposed, in which the domain of the problem is represented by a set of

arbitrarily distributed nodes.



There are a number of methods that can be regarded as simple meshfree methods,
such as the Rayleigh-Ritz method, Galerkin method, and collocation method. By
reviewing these methods, it is possible to comprehend easily the complex meshfree

method — Element Free Galerkin (EFG) Method that will be discussed in chapter 3.

2.3 The Rayleigh-Ritz Method

The Rayleigh-Ritz method involves determination of the maximum kinetic and
potential energies of the structural system and approximates the solution with a finite

expansion of the form

Wx)=2a,¢,(x)+a,¢,(x)+---+a,¢, (x) (2.1)
where ¢,(x),0,(x),---,¢,(x) are trial functions of x, which individually must satisfy the
geometrical boundary conditions. Satisfaction of the differential equation of motion is not

required. The unknown coefficients (a,,a,,---a_ ) in Equation (2.1) are obtained from the

condition
_8_[1 =0 i=123,--,n) 2.2)
da,
where
M=U-T 2.3)

In the above, U is maximum strain energy, and T is maximum kinetic energy.
This procedure yields a set of homogeneous linear equations in a,. In this way, the

problem is reduced to an eigenvalue problem.
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2.4 Weighted Residual Method

In contrast with the Rayleigh-Ritz method, the weighted residuals method works
directly with the differential equation [23]. The differential equation of elastic body free
vibration has the following form.

Lw(x) = Am(x)w(x) 24)
where L is differential operator of order 2p and m is the mass density. The solution w(x)
is subjected to given boundary conditions. The following assumption is not a closed-form
solution. w (x) is an approximation of deflection w(x), and w™ (x) can be written in

the form

il

wx) = w®(x) =) a,,(x) (2.5)

i1
in which¢,,9,,...,¢, are n independent trial functions or shape functions.
The error is referred to as a residual and denoted by
R(w®™ x)=Lw® x)-A"mw™ (x) (2.6)

At the same time, the n independent functions v, (x),¥,(x),...y,(x) are chosen as
weight functions and the weighted residual is defined as

R =y, (Lw™ - A" mw™) i=12,...,n Q2.7
The objective is to obtain the unknown parameters a,by reducing the error to the largest
extent possible. The coefficients a, in Equation (2.5) (i=1,2,..,n) be such that the

integral of the weight residual be zero for every i.

] i
j w.Rdx = L v, Lw® - A®mw ™ )dx =0 i=12,..n (2.8)
0

It



Inserting Equation (2.5) into Equation (2.8), we obtain the algebraic eigenvalue problem

(v;,R)= J.OLWi(iajL‘bj ——}\’(n)iajmq)j}x

j=1 =

=Yk, -A2"m,h, =0  i=12-n 2.9)
=1
where
L - -
k, = L ¥, Lo, dx L,j=12,n (2.10)
L .
m, =L\yim¢jdx i,j=12,-,n @.11)

Rewriting Equation (2.10) and (2.11) in matrix form

K = qu;qude (2.12)
0 .

L
M= J:) my@ ' dx (2.13)

Equation (2.8) states that the residual is orthogonal to every one of the weighting
functions. The trial functions or shape functions (usually polynomials) are chosen to

satisfy both the geometry boundary conditions and the natural boundary conditions.
2.4.1 Galerkin method
Galerkin method is the most widely used of the weighted residual methods. In

Galerkin method, the weighted functions are same as the trial functions. In vector form,

we have

12



Therefore, Equation (2.12) and (2.13) become
L
K = fo oLoTdx (2.14)

L
M = jo mee dx (2.15)

2.4.2 Collocation Method

The collocation method requires that the boundary-value problem be satisfied
exactly at n nodes in the problem domain. The parameters of polynomials are then found
by forcing the approximation to satisfy the differential equation at a given set of n points,
i.e. at these collocation points where the residual vanishes.

The collocation method requires that the strong form (the partial differential system
cquation) be satisfied exactly at n nodes in the problem domain; this is accomplished by
choosing Dirac delta functions located at various preselected nodes of the system as

weight functions.
w;(x) =8(x —x,), i=12,...,n (2.16)
1 i
J;WiRdx :JS(X =X LW (X)) - AYmw™ (x))dx =0
0
=Lw™ (x) - "m(x, )w®(x,) =0 i=12,...,n 2.17)
Introducing Equation (2.5) into Equation (2.17), yields the algebraic eigenvalue problem
is given by
K®™a = A"M™a (2.18)

in which the matrices K™ and M™ have the elements, respectively,
p Yy

K, = [8(x~x,)Lodx = Lo, (x,) i,j=12,...n 2.19)

13



my; = [ 80c— x;)modx = m(x;)0;(x;) i,j=12,...,n (2.20)
As an example, take five nodes in a cantilever beam. The deflection w(x) can be
approximated in terms of the following polynomial
w(x)=a, +a,x +a,x* +a,x’ +a x’ (22D
where w(x) must satisfy both the geometrical boundary and natural boundary conditions.
The geometrical boundary conditions are:
w(0) =0, w'(0)=0. (2.22)
and the natural boundary conditions are:
w'(L)=0,w"(L)=0. (2.23)
Substitution of Equation (2.21) into (2.22) and (2.23), and choosing three collocation
points from the five nodes (leaving out the two boundary nodes), results in three trial
functions, for j=4, 5 and 6, which satisfy both the geometrical and the natural boundary
conditions. The three trial functions are:
¢, =6x> —4x* +x*
¢, = 20x* —10x’ +x°

0, =45x> - 20x> +x°

4

For cantilever beam, the differential operator is L = and the fourth derivative of

4 ?

each trial function is given by:

4
_‘3%1 =24
dx

4
d (1)42 =120x
dx

14



d*¢,

4

=360x*

Using Equation (2.19), matrix K is obtained as

24 30 225
K={24 60 90
24 90 2025

Similarly, using Equation (2.20), matrix M is obtained as

0.3164 1.0947  2.5002
M=11.0625 3.7813 8.7656
2.0039 7.2686 17.053

The resulting eigenvalue problem in Equation (2.18) can be solved to give natural
frequencies and mode shapes. The disadvantage of collocation method is that it cannot be
applied to complex, practical problems since the strong form (differential equation) of the

problem must be known.

2.5 Element Free Galerkin (EFG) Method

From above discussions, each numerical approximate method has its advantages
and disadvantages. Finite element method is based on energy principle and strong form
equations are not needed in solving for engineering problems. The disadvantage of FEM
is the rigid connection of nodes between elements that results in some evident limitations
of FEM which are already mentioned in chapter 1. Classical methods such as the
Rayleigh-Ritz, Galerkin, and collocation methods have been used with success in many
areas of engineering. There are certain difficulties which prevent it from being more

widely used for the solution of practical problems. One obvious problem involves the

15



choice of trial functions. It is clear that for an irregular-shaped boundary, it would in
general be impossible to find one function, let alone a sequence of functions, which
satisfies any essential boundary conditions.

A new method, which is called meshfree method, has been proposed. It overcomes
disadvantages of both FEM and the classical methods (Rayleigh-Ritz, Galerkin, and
collocation methods). The problem domain (can be any shape) is represented by a set of
arbitrarily distributed nodes. Also, since EFG uses Galerkin weak form, one need not
know the strong form of the system equation (differential equations).

In the next chapter, one kind of mesh free method - EFG, is introduced in detail
and the basic equations of solid mechanics along with their discrete forms for numerical

implementation are discussed.

16



Chapter 3
Principles for Element Free Galerkin Method and Shape

Function Construction

3.1 Introduction

In this chapter, the principles of Element Free Galerkin method are described. The
static and dynamic equations in general form are obtained by using Element Free
Galerkin techniques. Finally, the most important and difficult part of EFG method-shape
function construction - is presented in detail. One can use the detailed information and

formula to build shape functions and complete the very crucial step in EFG.

3.2 Strong Form and Weak Form

The partial differential equations developed from the equilibrium of forces on the
block of elastic body are strong form system equations for the solids [27]. Obtaining the
exact solution for strong form system equations is ideal for simple problems, but for
complex problems, it is difficult and impractical to get answers. On the other hand, weak
form requires weaker consistency and formulation based on weak form can produce a set
of algebraic system equations and gives discretized system equations which can produce

much more accurate results. Therefore weak form is preferred to obtain an approximate

17



solution. This thesis uses weak form to get discretized system equations for Element Free

method.

3.3 Hamilton’s Principle

Hamilton’s principle is one of the variational principles based on the energy
principle. It states,” Of all possible time histories of consistent displacement states which
satisfy

(1) The compatibility conditions
(2) The essential displacement boundary conditions
(3) The conditions at initial time t, and final timet,
the history corresponding to the actual solution makes the Lagrangian functional a

minimum.” Mathematically, Hamilton's principle states
5[ Ldt=0 3.1)

where L is the Lagrangian functional. For a system of solids and structures it can be
defined as

L=T-II, +W, (3.2)
where T is the kinetic energy, I, is the strain energy, and W; is the work done by

external forces.

The kinetic energy is defined by
1 T
T= Lpu udQ (3.3)

where u is the displacement vector.

18



u=+v (3.4

u,v,w are the displacement components in x, y, and z direction respectively. Q stands for
the whole volume of the solid. For solids and structures of elastic materials, the strain

energy of the system can be expressed as
Lrx
I, == [276dQ (3.5)
2J0
where g,6 are the strain vector and stress vector, respectively.
T
£ = %xx Eyy 8zz Eyz 8xz exy } (36)

T
Y :{Gxx ny 0-zz 0yz ze ny} (37)

The work done by the external forces can be obtained by
W, = [u"bdQ + [u"tar (3.8)
Q I't

where b is the vector of external body forces in X, y, and z directions
b=1b, 3.9

and I", stands for the boundary of the solids on which the traction forces t are prescribed.

The advantage of using Hamilton’s principle is that it is not necessary to know the strong

form of the system equation.
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3.4 Constrained Hamilton’s Principle

There are cases when the approximate field function does not satisfy the
conditions (1), (2), (3) in page 18 on parts of the problem domain including the
boundaries. Hamilton’s principle has to be modified or constrained for such situations.
There are basically two methods often used to modify the functional: Lagrange
multipliers and the penalty method. In this study, Lagrange multipliers method is
employed to modify Equation (3.1). Consider the following k conditions that the

approximated field function cannot satisfy:

W)
C,(u)

Cu) = 4: L =0 (3.10)

C(w)
Our goal is to find the stationary point of the Lagrangian functional subjected to the

constraint of Equation (3.10). The modified Lagrangian is written as follows:

L=L+[ 2Cpan (3.11)
where A 1is a vector of the Lagrange multipliers

A=y A, A AL (3.12)

These Lagrange multipliers are unknown functions of independent coordinates in the

domain Q. The modified Hamilton’s principle is given by

§ :2 Tdt=0 (3.13)
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3.5 Galerkin Weak Form

The Galerkin weak form can be directly derived using Hamilton’s principle for
problems of solid mechanics. By using Equations (3.1) to (3.8), the Lagrangian L

becomes
— ___l T T TS l T
L= 2]98 edQ +Lu bdQ + .thl tdl" + szu udQ 3.14)

Substituting the above into Equation (3.1), we have

t Q

2 _Irox T T2l + 2 [ oata = |
5 [ zLa cdfz+ju bdQ+jr|t1 tar+— | pa udQ]dt—O (3.15)

Moving the variation operation into the integral operations, we obtain

. [— %L 8(z"0)dC2 + [ Su"bdQ + [SuTidr + %L S(pl'lTil)dQ}dt =0 (3.16)
In Equation (3.16), the first term can be rewritten as
S(aTc): de'o+£'06 3.17
The last term in Equation (3.17) can be changed as follows:
£ 06 = (STSG)T =%6's (3.18)
Using constitutive Equation and the symmetric property of the matrix of material
constant, we arrive
36 e =08(De) e =8e"D"e=06e"De =d¢"o (3.19)
Equations (3.17) becomes:
8(e70)= 25670 (3.20)
In order to investigate the last term in Equation (3.16), we move the time integration into

spatial integration:
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] sbumshai= L[ [surau o
J‘: S(P"‘T“)dt =p ft iz [SﬁTﬁ + ﬁTaﬁ}jt =2p J';Z [Sﬁrﬁh

[hoteh - yz(d&ﬂ ee

1 1 dt dt

‘2 ddu” du f “ou" S ¥ b+ su” 515]?
tl de de '
du" =0, Equation (3.24) becomes
tz ddu’ du J‘tz _ou” d2 .
t1 dt t]
Therefore, Equation (3.21) can be rewritten

7[5 3bumael- f{pj‘z sumuHﬂ

Now change the order of the integration
2l 1 T _ tZL) " 11
) [5 Lscouru)m]dt_-L [ butihol

Substituting Equation (3.27) into Equation (3.16), we have

f: [— L 5eT6dQ) + LSudeQ + frt Su"tdr — fﬂ pauTudQ}: -0

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

In order to satisfy the above equation for all possible choices of u, Equation (3.28) now

becomes

3¢ 6dQ— | Su'bdQ — | Su"tdl + | pdu’iidQ =0
) o e Q

(3.29)

This is Galerkin weak form for dynamic problems. For static problems, the equation

reduces to
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j 5eT6dQ — f Su'bdQ - [ suTtdr =0 (3.30)
o) 9 It

By using the strain-displacement relationship Equation [28]

e=Lu 3.31)
and the strain-stress relationship

6 =Ds (3.32)
Equations (3.29) and (3.30) can be expressed as follows in terms of displacement vector

u. For dynamic problem, the weak form equation is

J' S(Lu)" D(Lu)dQ - j Su"bdQ - f Su"tdr + f pouiidQ = 0 (3.33)
Q o I 0

For Static problem

j 8(Lu) " D(Lu)dQ - j Su"bdQ) - f SuTtdl =0 (3.34)
Q Q T

Equation (3.33) and (3.34) are the Galerkin weak form written in terms of displacement.
The discretized system equation can be obtained using approximated displacement in

FEM and meshfree method.
3.6 Constrained Galerkin Weak Form

In cases when the approximated field function does not satisfy the condition (1) or
(2) on parts of the problem domain including the boundaries, we should use the

constrained Hamilton’s principle to derive the constrained Galerkin weak form. The

procedure is the same as in section 3.4, except that the modified Lagrangian L is used for
formulation. The following are equations for dynamic and static problems using Galerkin

weak form with Lagrange multipliers.
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For dynamic problems,

LssTon - LaudeQ - frftsuf't‘dr - fﬂ 52" Cu)dQ - L ATSCW)dQ + J'Q pduTiEdQ =0

(3.35)

For Static problems,

j s5eTod0) — f suThdQ ~ j SuTtdl — j S3TC(u)dQ — f AT5C(u)dQ =0 (3.36)
Q Q T'¢ Q [o}

Since Galerkin weak form has been presented in this chapter and it can be used to derive
the discretized system equations in terms of displacement, the following sections will

focus on the shape function construction-Moving Least Square method.
3.7 Introduction to EFG shape function construction

The Element Free Galerkin (EFG) method is considered a meshfree method
because the method only requires a set of nodes and a description of the boundaries to
construct an approximate solution. The connectivity between the data points and the
shape functions are constructed by the method without recourse to elements. The EFG
method employs moving least-square (MLS) approximations which are composed of
three components: a weight function of compact support associated with each node, a
polynomial basis, and a set of coefficients that depend on position. The support of the
weight function defines a node's domain of influence, which is the subdomain over which
a particular node contributes to the approximation. The overlap of the nodal domains of
influence defines the nodal connectivity. One useful property of MLS approximations is
that their continuity is equal to the continuity of the weight function; highly continuous

approximations can be generated by an appropriate choice of the weight function.
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In the following sections, we will describe the construction of MLS approximation
and the resulting EFG shape functions. In the course of this description, the effect of

different weight functions is illustrated.

3.8 Least Square method

Least square method shares the same character with moving least square (MLS)
method. It can be regarded as a kind of moving least square method if weight function
related to each node is constant. Therefore, before discussing the moving least square
method, a review of the least square method will be done, in order to get a better
understanding of the moving least square method.

The method of least squares assumes that the best-fit curve of a given type is the
curve that has the minimal sum of the squared deviations (least square error) from a given

set of data (Figure 3.1).

Approximation

Function
d i
R e |
- U2 Un
Up Uy
b ¥
Xg Xn

Figure 3.1 Least square method

Suppose that the data points are (x,,y,),(X,,¥;).-...(X,,y,) where x is the independent

variable and y is the dependent variable. The fitting curve u”(x) has the deviation (error)
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d, from each data point, ie.,d, =y, ~f(x,),d, =y, —f(x,)...d, =y, —f(x,).

1

According to the method of least squares, the best fitting curve has the property

n n 2
M=d’+d,” +..+d,” =Y d> =) [y, ~f(x,)] =min. (3.37)
i=1 i=1

3.9 Least Square Polynomials Fit

Polynomials are one of the most commonly used types of curves for least square
curve fitting. The application of the method of least squares curve fitting using

polynomials is briefly discussed in the following.
3.9.1 The Least Square line

The least-squares line uses a straight line
y=a, +a,x (3.38)
to approximate the given set of data, (x,,y,).(X,,¥;)...,(X,,y,) where n=2. The best

fitting curve u" (x) has the least square error, i.e.,

Hzibi —u'x)f =2[yi ~(a, +2,x)F = min (3.39)

Here, a, and a, are unknown coefficients while all x; and y, are given. The least square
error, will be minimum if its variation with respect to the unknown coefficients a, and

a, is zero. Accordingly,

26



oIl N
Ev = 22[)’1 ~(a, + alxi)]=0
g i=1

o . (3.40)
a_al: ngibi —(a, +alxi)]:0

By solving these two equations, the unknown coefficients a, and a, can therefore be

obtained.

3.9.2 The Least Square Parabola

The least square parabola uses a second degree curve

y=a,+ax+a,x’ (3.41)

to approximate the given set of data, (x,,y,),(X,,¥,),.,(X,,¥,), where n 23. The best

fitting curve u®(x) has the least square error, i.e.,

=Yl vl = 3 - @ +arx, +:412x12)]2 = rmin. (3.42)
i=l i=l

Here, a,, a,, and a, are unknown coefficients while all x;and y;are given. Obtaining

the variation of the least square error with respect to the unknown coefficients ag, a,,

and a, and equating them to zero yields

—gg—: 22& —(a, ta,x; +a2xi2)]=0
-aa-?l—.—. 22&[}. “(a, +ax, +a,x,7)]=0 (3.43)

il—nzz 2§nlxi2{yi —(a, +ax, +a2x12)]:0

i=1
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The unknown coefficients a,, a,, and a, can therefore be obtained by solving the above

linear equations.

3.10 Moving Least Squares Approximations

Moving least square method (MLS), was first used by mathematicians for data
fitting and surface construction. An excellent description of MLS method can be found in
a paper by Lancaster and Salkamkas (1982) [25]. The MLS method is now a widely used
alternative for construction of meshfree method shape functions. The MLS has two major
features that make it popular: (1) the approximated field function is continuous and
smooth in the entire problem domain; and (2) it is capable of producing an approximation
with the desired order of consistency. Let u(x) be the function of the field variable

defined in the domain €. The approximation of u(x) at point x is denoted by u"(x)

(Figure 3.2).

Approx function u®(x)

Figure 3.2 Moving Least square method
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The MLS approximation u"(x) is given by

0" (1) = ¥'p, (002, (%) = pT (Wa(x) (3.44)

j=L

where p(x) is a complete polynomial basis of arbitrary order and a(x) are coefficients
which are functions of the space coordinates x. Further, m is the number of terms of
polynomial basis.

Examples of bases in one dimension are:

p'®)=p'®)={1,x,x%,..,x"} (3.45)
p'(x) ={1,x} (m=2, linear) (3.46)
p" (x) ={1,x,x?}(m=3, quadratic) (3.47)

Examples of bases in two dimensions are

P X =p &y ={Lxy,xy,x%y%,. . x",y"} (3.48)
p X)) ={l,x,y} (m=3, linear) (3.49)
pT(x) ={1,x,y,xy,x*,y*} (m =6, quadratic) (3.50)

The coefficients a(x) in Equation (3.44) are obtained at any point x by minimizing the

following weighted, discrete error norm:

a 2
7= wix—x)u®x,x,) —u(x;)]

5 (3.51)

= 2 w(x - x;)[p" (x;)ax) — u(x;)]

where u(x;) is the coefficient associated with node i at x =X, w(x —x,) is a weight
function of compact support associated with node i, and n is the number of nodes with

domains of influence containing the point x, i.e., w(x —x,) # 0; see Figure (3.3, 3.4).
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The weight function w(x—x,)provides the coefficients a(x) with their spatial
dependence, and since the support of w is compact, the MLS approximation has local

character.

. © . 2 L
1 2 X 3 4 5

Figure 3.3 Overlapping domains of influence and local node numbering at point X.

Nodal Domain of influence
Evaluation Point

Figure 3.4 Illustration of nodal domains of influence in two dimensions. Nodes 1, 2, and
4 since their domains of influence contain point x, and they will be used in the

approximation at x. Node 3 is excluded from the neighbor list for x.
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3.11 Weight Functions

Weight functions play an important role in Element Free Galerkin (EFG) method.
The weight function w(x —x,) # 0 affects the approximation u"(x). As an illustration,
consider the two cases shown in Figure 3.5 where a function u(x) in one dimension is
approximated by u"(x) using five data points at x = 0, 1, 2, 3, 4. The MLS
approximation u"(x) is constructed using a linear polynomial basis, p* =[1,x].

In the first example in Figure 3.5, the weight function associated with each node is
constant over the entire domain. The minimization process at each point x involves all
points in the domain (5 points) and J(x) in (3.51) reverts to the standard least squares
norm, resulting in a linear fit through the data. In this case, the coefficients a(x) are no
longer functions of the space variable x, but are constant everywhere in the domain; thus,
the coefficients a(x) have spatial dependence only through the choice of the weight
function. In fact, in this case, moving least square method is changed to least square
method.

In the second example, Figure 3.6, the weight functions possess compact support,
but now they are smooth functions that cover larger subdomains so that n >m, where
nis the number of points whose support domain includes x. The minimization of J(x) in
(3.51) results in the type of MLS approximations that will be used in the EFG method,;
the approximation is smooth since the approximation inherits the continuity of the weight
function. The approximation exhibits local character due to the limited support of the

weight function.
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Figure 3.5 Constant weight function over entire domain
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Figure 3.6 Smooth weight function with compact support.

For EFG, the weight function w(x—x;) is generally chosen as a monotonically

decreasing function as |[x —x,|| increases. Defining d; =[x —x,||, and r=d,/d ;, where

d, ; is the radius of the domain of influence of the i® node, the weight can be written

more compactly as a function of the normalized distance r. Some examples of weight

functions are shown by using circle support domain.
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—(@0.4)*
Gaussian: w(r) = © for r=1 (3.52)
for r>1
2 _ 4 445 for r<t
3 2
. . 4 » 4, 1
Cubic spline : w(r) =+ 3 —4r+4r° — -3—r for > <r<l (3.53)
0 for r>1
1-3¢% +2r° f <1
Cubic polynomial: w)=1{ = @ ot (3.54)
0 for r>1
1-6r*+8r’—3r* for r<l
Quartic polynomial: w(r) = r r f ort (3.55)
for r>1
The support radius or domain of influence at a node, d_; is computed by
d, =d_.c (3.56)

where d__, is a scaling factor, and c; is the maximum distance between node i and other
nodes in the cell. If the nodes are uniformly distributed, ¢, is simply the distance between
two neighboring nodes. The domain of influence multiplier d_,, is typically 2.0-- 4.0 for

dynamic problems. Typical one dimensional examples of the weight functions in

Equations (3.52-3.55) and their derivatives are shown in Figure 3.7.
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The support domain above is a circle, however, square domains have also been
used most frequently. In the present study, both kinds of support domains are investigated
by solving cantilever thin plate free vibration problem. Both results are correct by
comparing with exact solution. The results are given in chapter 5. Square support domain
can be achieved by tensor product weights.

In this research, tensor product weights will be used with quartic weight function at
any given point and is given by

WX -x)=w(r ) wr)=w, w, 3.57)

where w(r, ) and w(r,) are given by Equation (3.52) to (3.55) with r replaced by r, and

1, respectively; r, and r, are given by

[, = Tt 3.58
. dmx ( )
Iy -y
ry = Tmy— (359)
where
d,, =d_.C, (3.60)
dmy =d_,. Cy; (3.61)

and ¢, and c; are determined at a particular node by searching for enough neighbor

nodes to satisfy the basis in both directions. The requirement is that the A matrix
(weighted moment matrix will be discussed in section 3.12) be non-singular everywhere

in the domain, and thus invertible, which is necessary to compute the shape function. If
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the nodes are uniformly spaced, the values c_ and ¢, correspond to the distance

between the nodes in the x and y directions, respectively.

The derivative of the weight function in (3.57) is calculated by

dw

W= w,
’ dx
dwy

W, = W
dx
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Figure 3.7: Typical weight functions
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3.12 EFG Shape Functions

The EFG shape functions are constructed by minimizing J(x). Returning to the
weighted discrete error norm in Equation (3.51), the stationary value of J(x) with respect

to a(x) leads to

A _ g (3.64)
da(x)
which results in the following linear equation system:
Ax)a(x) = C(x)U, (3.65)
where A is called the weighted moment matrix given by
Ax) = ) w(X=X)p(x,)p" (x,) (3.66)
i=1
In the Equation (3.65), matrix C has the form of
C(x) =[w(x =X, )p(xX, ), W(X — X, )p(X; ),..., WX = X )p(X, )] 3.67)
C; = wlx—x;)p(x;) (3.68)

Noting that Uy is the vector that collects the nodal parameters of the field variable for all
nodes whose support domain includes x

U, =[u,,u,,....u,1" (3.69)
and solving the Equation (3.65) for a(x), results in

a(x) = A7 (x)C(x)U, (3.70)

By substituting (3.70) into (3.44), the MLS approximants are

u"(®) =Y, ) p; (AT ®CE); (3.71)

i=l j=1
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Equation (3.71) can be rewritten:
u" (%)= Y 9, (X, (3.72)
i=1

where the EFG shape functions ¢ are defined as

0,(x) = D' p,()A™ (CX); = p' (VAT (XC, (3.73)

i1

Note that m is the number of terms of polynomials basis p(x), which is usually much
smaller than n, which is the number of nodes in the neighborhood of point x used for
constructing the shape function. The requirement of n>>m prevents the singularity of the
matrix A, so that A™ exists.

Equation (3.72) can be rewritten as:

u® (x) = ®(x)U, 3.74)
where ®(x) is the matrix of MLS shape functions corresponding to nodes whose
influence of domain covers point x. It should be noted here that x is usually Gauss points
in spatial coordinates, which can be obtained by mapping Gauss points in natural

coordinates to Gauss points in physical coordinates. Further discussion can be found in

chapter 4.

O = [0,(0,0,(0)..0, ()] (3.75)
In order to determine the spatial derivatives of the function of the field variable, which
are required for deriving the discretized system equations, it is necessary to obtain the
derivatives of the MLS shape functions. To obtain the partial derivatives of shape

functions, Equation (3.75) is written as follows using Equations (3.73):

D(x) = 7" (X)C(%) (3.76)
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where y(x) is determined by
Ax) - y(x) = p(x) (3.77)
The partial derivatives of y(x) can be obtained as follows:
Ay, =P~ ALY (3.78)
Ay, = Py~ (A,iy,j + A,jy'i + A.in) (3.79)
where i, j denote coordinates x and y. A comma designates a partial derivative with

respect to the indicated spatial variable. The partial derivatives of shape function can be

given as
@, =7,C+7C, (3.80)
Q= Y,ijc+7,ic,j +7,;C; +7C (3.81)
From Figure 3.7, one can observe that EFG approximants do not satisfy the

Kronecker delta criterion, ie., ¢,(x j) ¢5ij. The feature of moving least square (MLS)

shape function results in
u"(x)= Y @, (X, #u (3.82)
i=1

which means that the displacement obtained by solving the EFG system of equations is
not the actual displacement at the nodes. Consequently, the imposition of essential
boundary conditions is more complicated than for the standard FEM. Several methods
have been developed, including Lagrange multipliers (Belytschko, Lu, and Gu,
1994)[18], penalty method [29], and coupling finite element [30]. In the following
chapters of the thesis, Lagrange multipliers method and orthogonal transform techniques

[31] will be introduced. For Static problems, Lagrange multipliers method is used to
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impose essential boundary conditions. For analysis of free vibration, the essential
boundary conditions are enforced by orthogonal transform techniques.

This chapter presented the theory of Element Free Galerkin method. Constrained
Galerkin weak form is used to form system equations. Very detailed information related
to uniqueness shape functions construction by using moving least square method is given.
Once the shape function is achieved, that will be more than half way toward Element
Free Galerkin (EFG) method. In the next chapter, the method is applied to different
kinds of weak forms to produce discretized system equations for the solution of free

vibration problems.
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Chapter 4
Discretized Equations by Element Free Galerkin Method for

Natural Frequency Analysis

4.1 Element Free Galerkin Method (EFG)

Based on the moving least squares (MLS) approach, Element Free Galerkin
Method (EFG) is employed to generate the displacement functions for vibration analysis
of elastic bodies. The major characteristics of the EFG are the following:

L. Galerkin weak form is employed to develop the discretized system equation, which
is described in chapter 3.

2. Moving least square (MLS) approximation is used for the construction of the shape
function, which is discussed in chapter 3.

3. Cells of the background mesh for integration are required to carry out the
integration to calculate system matrices, which will be explained in this chapter.

Although EFG can be considered meshfree with respect to shape function
construction or function approximation, a mesh will be required for system equations
calculation by the Galerkin approximation procedure. This is because evaluation of the
integrals in the weak form requires a subdivision of the domain.

This chapter provides a very detailed procedure that leads to the EFG method.

The equation of motion is established for both one-dimensional problems and two-
dimensional problems by following the standard procedure and boundary conditions are

imposed by orthogonal transform techniques.
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4.2 Flow Chart of Element Free Galerkin Method (EFG)

Geometry generation

l

Nodal and background mesh generation

l

For all the cells in the background mesh

l

For all the quadrature points in a cell

l

MLS shape function creation-based on selected
nodes

|

Calculate nodal matrices

Assemble the nodal matrix into the global matrix
(K, M)

Apply boundary conditions
(orthogonal transform techniques)

Solve the system equations
(Eigenvalues and Eigenvectors)

Figure 4.1 Flowchart of EFG
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4.3 Constrained Galerkin Weak Form for Free Vibration Analysis

Since there are no forces applied on the elastic body for free vibration analysis, the
second and third terms can be removed from Equation (3.33) in chapter 3. The next task
is to impose essential boundary conditions. G. R. Liu [32] gives very detailed information
on the imposition of boundary conditions. The enforcement of essential boundary
conditions by Lagrange multipliers increases the number of unknowns and leads to
awkward system equations. The use of Lagrange multipliers is extremely unwieldy for
dynamic problems. In order to obtain a set of well-behaved system equations, it is more
practical to formulate separately the system equations with the original Lagrangian and
the constraint equations using their own weak form to obtain two separate discretized sets
of equations. The discretized constrained equations are decomposed to obtain a set of
orthogonal vectors which are used to produce a condensed set of system equations using
orthogonal transformation techniques, which at the same time ensures the satisfaction of
the constraints. Therefore, for free vibration analysis, the Galerkin weak form of the
elastodynamic undamped equilibrium equations (3.33) can be rewritten by using two
separate equations. One is for free vibration equilibrium equation, and the other is for

essential boundary conditions.

4.4 Free Vibration Equilibrium Equation

f 8¢ 6dQ + j pduTidQ =0 4.1)
Q Q

The strain-displacement relationship is given by
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e=Lu 4.2)
Stress-strain relationship is given by
¢ =Dsg 4.3)

Substituting Equation (4.2), (4.3) into Equation (4.1), yields

jga(Lu)T (DLu)dQ + jQSquﬁdQ =0 (4.4)

The final dynamic equation for free vibration is obtained as follows:

Ku+Mii=0 4.5)
where K is the global stiffness matrix, M is the global mass matrix, and u is deflection
vector.

Consider that the elastic body is undergoing a harmonic vibration. The deflection u
can be expressed in the form

u = Uexp(iot) 4.6)
where i is the imaginary unit, @ is the angular frequency, and U is the amplitude of the
vibration. Substitution of Equation (4.6) into (4.5) leads to the following

EK-o*M)U=0 4.7)

where U is an eigenvector.
4.5 Equations for Essential Boundary Conditions

There are two kinds of boundary conditions: displacement boundary conditions
(essential) and force boundary conditions (natural). The essential boundary conditions are
the conditions that have to be satisfied by the trial functions before they are substituted

into the weak form. In the stage of constructing the trial function, one does not have to



consider any of the natural boundary conditions, because they will come out later
naturally.

Imposing essential boundary conditions is very important in Element Free Galerkin
(EFG) Method. The essential boundary conditions cannot be enforced as easily as in
finite element method because moving least square interpolants do not pass through the
data. This is a disadvantage in Element Free Galerkin (EFG) method for it complicates
the imposition of essential boundary conditions.

In this study, Lagrange multipliers will be used to enforce the essential boundary
conditions because it is the simplest technique which gives acceptably accurate results.

The weak form of the essential boundary conditions with Lagrange multipliers is

employed to produce the discretized essential boundary conditions as given below:

L &3 (u—Wdl =0 (4.8)

where u is the displacement vector,u is the prescribed displacement vector on the
essential boundaries (displacement), and A is a vector of Lagrange multipliers, which can

be interpolated as follows:

AMx) = i N, (5)A; xerl, 4.9)

i=1
where n, is the number of nodes used for this interpolation, s and N, (s) are arc-length
and Lagrange interpolant along the essential boundary, A,is the Lagrange multiplier at

node i on the essential boundary. The Lagrange interpolant of the order n can be given in

a general form

(s—85)s—58;) - (s—8,  N8—=8,,,)(s—5,)
(8, =SS =81) (S =8, )8y =8 py) (8¢ —8,)

NI(s) = (4.10)
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The variation of the Lagrange multiplier can be written as

u

1),
Shx) =Y, N,(5)ds, xel (4.11)
i=1

From chapter 3, the approximation u”(x) of the displacement function u(x) has the

following form:
u"(x) = Y ¢, (®)u, 4.12)
i=l

where n is the number of nodes x; whose support includes point x, and u; are nodal
displacement parameters. The method of construction of ¢,(x) is given in detail in

chapter 3. Substitution of Equation (4.12) into the boundary condition weak form
Equation (4.8) leads to a set of linear algebraic constraint equations [32]:

HU=gq (4.13)
For free-vibration analysis, if@ =0 on the essential boundary (clamped or simply
supported), and hence Equation (4.13) becomes

HU=0 (4.14)

where H is called the constraints matrix, and u is the displacement parameter vector.

H, = [ Nyl (4.15)

This is the discretized essential boundary condition for free vibration analysis. H,; are
the nonzero entries in the matrix H. N, is the Lagrange interpolation function for node k

on the essential boundary. vy, is matrix of MLS shape functions, which depend on the

type of boundary and the type of problem. This will be discussed in the following section.
It should be noted that the matrix H in Equation (4.14) is formed using the weak

form of the constraint equation, which requires integration on the boundary and ensures
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the satisfaction of the essential boundary conditions on the entire essential boundary. We
can obtain the discrete constraint equations directly using MLS approximation and obtain
the H matrix. After H matrix is formed, we use orthogonal transform techniques to
impose the constraints, as shown by Ouatouati and Johnson [31]. Such direct formulation
ensures the constraints at the nodes on the essential boundary. In the following sections,
the system equations of rod, beam, in-plane plate and thin plate vibration are described.
First, the nodal matrices are calculated and then the assembly of the discrete equations
are formed. These system equations include the global stiffness k, the global mass matrix

and the constraints matrix H.

4.6 Axial Vibration

To illustrate the complete procedure of the Element Free Galerkin (EFG) method
the simplest problem of one-dimensional axial vibration of a rod is investigated. Once the
basic concepts are understood, the method is easily extended to two-dimensional
problem. There are some subtle differences between the two-dimensional and one-
dimensional formulation, and these will be discussed. In order to get natural frequencies
of axial vibration, first, it is necessary to calculate the nodal stiffness matrix of the rod,
the nodal mass matrix of the rod, and the constraint matrix and then these matrices must

be assembled.
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4.6.1 Nodal Stiffness Matrix and Mass Matrix for Rod

For a rod, each node has one displacement parameter. Each term in Equation (4.4)

is calculated and Equation (4.12) is substituted into (4.4), for rod, differential operator is

L= —a— , therefore
ox

L“:iL‘Pi(")ua =§n:L<Piui =§n:%ui =§‘12Biui (4.16)
i=] i=l

= ox i-1
Here, B, stands for the first derivatives of shape function @,(x) and u is axial

displacement.

_99;

B, = Bx (4.17)
From Equation (3.73)
9,(x) = ilp,-(xxz\"‘ XCE), PTERA(C, (4.18)
=

For a rod, choose polynomial basis function as follows:
p'(x)={1,x} (4.19)
A(x) = E‘: w(x —x,)P(x,)P"(x,) (4.20)

=

C =wx—x)px;) 421

Derivatives of the MLS shape function ¢ can be obtained by Equation (3.80)

Substituting Equation (4.12), (4.16) into Equation (4.4), for truss member D = E,

fﬁ(iBiui) (EiBjU,-)dQJrfapS(i%ui) (Zn‘,cpjiij}d(z:O (4.22)

=
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Examining the first term in Equation (4.22)

fgﬁ[gBiuiJT[EgBjquﬂ :L{i“?BEJ (EiBjuj)dQ

i=1 j=1

= 2 ZSu (J, BTEB dQ)u, (4.23)
i=l =1
i}n:fm j B EB,dQ)u; —EZSuTK u, (4.24)
i=1 j=1 i=1 j=1
K, = [ BIEB,dQ = [ BTEB Adx = [ BIEAB dx 4.25)

whereK; is called nodal stiffness matrix and the dimension of K; is Ix1. The
dimension of stiffness matrix K for the problemis n, xn,.

Next, the second term in Equation (4.22) is computed

ol ot o)

=3 Sour ([ opo .4,

i=1 =1

- 226uTM i | (4.26)

i=l j=1
1 i
M, = [ 07p9,d2 = [¢]pp,Adx =[pAp],dx (4.27)
where M;; is called nodal mass matrix and the dimension of M;; is 1x1. The dimension

of mass matrix M for the problem is n, xn,.
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4.6.2 Constraint Matrix for Rod

From Equation (4.14), each term in the constraint matrix H should be calculated.
N, is only calculated for boundary node. Shape function ¢, can be calculated for each
node. The contribution of each node to the constraints matrix H is decided by nodal
weight function which means that each node whose support domain includes the
boundary node has influence on the constraints matrix H. The node whose support
domain includes boundary node contributes non-zero terms to the constraints matrix H.
Otherwise, the node whose support domain does not include boundary node contributes
Zero to the constraints matrix H.

A clamped free rod has only one node on the boundary. Therefore the dimension of

H matrix is 1Xn . Only one Lagrange interpolant is used to form constraint matrix. For

one dimensional problem, N; =1, constraint matrix in Equation (4.10) can be simplified

as
I—lent :[(pl’(PZ"H’(Pn!] (428)

Here, 1 is the node ID, which means node i is on the boundary.

4.7 Beam Bending Vibration

This study deals with thin beam or Euler-bernoulli beam. It assumes that plane
sections which are normal to the undeformed neutral axis remain plane after bending and
are normal to the deformed axis. With this assumption, the axial displacement, u(x,y), at

a distance y from the neutral axis is
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u(x,y) = ~yg—1— (4.29)

where v=v(x) is the displacement of the neutral axis in the y-direction at the position x.

The strain components €, and Y4y ate therefore

du d%v
g, =—— =~ 4.30
ok Y ax* (430)
du dv
Y dy dx | (.31)
aZ
L=-y—; (4.32)
dx
The normal stress is given by
o, =Eg, (4.33)

4.7.1 Nodal Stiffness Matrix and Mass Matrix for Beam

For a beam, polynomial basis functions are chosen as follows. Since the governing
weak form contains second-order derivatives, a quadratic polynomial must be employed
in Equation (3.44), for the purpose of consistency.

p'x)={1,x,x%} (4.34)

From the Equation (4.4)
fQ 5(Lu)" (DLu)dQ + jﬂ SuTpiidQ =0 (4.35)

For a beam, the nodal variable in the EFG method is also only one-deflection compared
to the two in the element based FEM formulation (one deflection and one rotation). The

deflection is denoted by v(x)
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vh x) = i{(pi(x)vi (4.36)
i=1

From the above equation,

Py

Lu~Lv—iL (X —i— 9°9,(x) =Y -yB,v @.37)
= _"~1 D, i"A‘] y Ox’ Vi'—‘_l Yo,V -

B, stands for the second derivative of the shape function

2
B =9 ®:X

i a2 (4.38)

For a beam D = E and hence

=1

B} L{Z-WZB;J (Eg——yBjVJ}n

- Z ifw? (L (-y)B{E(-y)B,dQ)v, (4.39)

i=l j=1

LS(Lu)T (DLu)dQ = L S(Lv)" (ELv) = LB(ZI- yBiVi) [E2~ yB,v, }m

=3 3 vi(| (y)BIECy)B dAdY,

i=l =1

=" > 6vi ([ BIELB dx)v, (4.40)
=1 jel
I,= fA y%dA (4.41)
LT
K; = [B/ELB dx (4.42)

The dimension of nodal stiffness matrix K is 1x1. The dimension of stiffness matrix K

for the problem is n, Xn,.
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Next, the second term in Equation (4.22) is computed

jﬂpé(gmiviﬂg@jvj}dg =J‘06(ivf(piTJp(§(Pﬁj]

i=1

= ii&'? (L(pr%dﬂ)%

i=l j=1

= iisvfmijv ; (4.43)

i=1 j=1

1 1
M, = | 0/p0,d2 = [o7po,Adx =[pAgTodx (4.44)
M;; is called nodal mass matrix, the dimension being 1x1. The dimension of mass matrix

M for the problem is n, Xn,.

4.7.2 Constraint Matrix for Beam

For cantilever beam, there is only one node on the essential boundary. The
deflection and slope at the boundary must be constrained. Therefore, only one Lagrange

interpolant is used to form the constraint matrix. For beam problem, N , =1, 11s the node

on the boundary, constraint matrix in Equation (4.10) can be simplified as

¢, 00,
Han‘ = 4.45)
(Pl,x (PZ,x '“(Pnt,x

As for the rod, the contribution of each node to the constraints matrix H is decided by
nodal weight function which means that each node whose support domain includes the

boundary node has influence on the constraints matrix H. The node whose support
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domain includes the boundary node contributes non-zero terms to constraints matrix H.
Otherwise, the node whose support domain does not include boundary node contribute

zero to constraints matrix H.

4.8 In-Plane Plate Vibration

For this kind of plate, vibration takes place in its plane [33]. Each node has two

degrees of freedom, displacements in x and y directions.

4.8.1 Nodal Stiffness Matrix

The polynomial base is chosen as follows:

p ) ={Lxy} (4.46)
Displacement u in x direction and displacement v in y direction can be approximated by

MLS method in the following forms:

u(x) = Z(pi (X)u, (4.47)
vi(x) = Zq)i(x)vi (4.43)
i=1

Here x is a coordinate vector given as

X
X = { } (4.49)
y

Combining Equation (4.47) and (4.48), we obtain
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{5l g

9
dax ) 0, 0
il n a q)i O n * i}
Lu=LY ®u, =Y10 — =10 @, p=YBuy @451
i=1 i=l dy ~0 ®; i=1 i1
ﬁ_ ——a_ Py  Pix
| dy  dx
—(Pi,x 0
B,=|0 o, (4.52)
m(Pi,y (Pi,x

For in-plane plate or 2 dimensional problems, the elastic matrix for the plane stress

problem is

1 Y 0

v 0 453)
0 0 (1-v)2

Substituting Equation (4.50) and (4.51) into (4.4) and following the same procedure as

for the rod and beam, the nodal stiffness matrix for 2 dimensional problem is given by
K, = | BIDBd0 = [ BIDB tdxdy (4.54)
The dimension of K; is 2x2. The dimension of stiffness matrix K for the problem is
2n,X2n,.
The nodal mass matrix is given by
M, = | 0[pe,dQ = [ o7 pp;tdxdy (4.55)
and the dimension of M; is 2X2. The dimension of mass matrix M for the problem is

2n,X2n,.

55



4.8.2 Constraint Matrix for In-plane Plate

In this case, first-order Lagrange interpolant is chosen for the 2D problem. The
Lagrange multiplier at s is interpolated by using two nodes that are located before and
after s.

s—s, s—5,

N, (s)=

- N, (s) = (4.56)

8178, 5,78
Equation (4.9) is used for in-plane problem. Since there are two degrees of freedom at
each node, there are two Lagrange multipliers A, for each node along the boundary.

@ | N 01| <&
L:E[O N Hl }—ZNili (4.57)

i vi i=1

N—Nk 0 4.58
““lo N, (4.58)

where n, is the number of nodes in each boundary cell used for interpolation. In 2D

problem, cells for integration stiffness matrix and mass matrix are always square or
rectangle. Comparing these cells with those for integration constraint matrix, the
boundary cells are one-dimensional. Two nodes in each boundary cell are taken for

Lagrange interpolation, and hence n, = 2 in this study.

For clamped boundary, the displacements of X,y direction must be imposed.

@, 0
v, =0, = (4.59)
0 o,
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By using Equation (4.15) and Gauss points for integration, we can calculate H, and
obtain constraint matrix H. The dimension of H is 2n,x2n,. n, is the total number of

nodes of the problem.

4.9 Bending Vibration of Thin Plate

This section presents an EFG method for the free-vibration analysis of thin plates.
Formulations of discretized system equations are based on Kirchhoff’s thin plate theory

[34].

4.9.1 Nodal Stiffness Matrix

Based on Kirchhoff’s thin plate assumption, the deflection w(x) of its neutral plane
at x = [x, y]r can be taken as an independent variable, and the other two displacement

components u(x) and v(x) can be expressed in terms of w(x). Moving least square (MLS)
approximation is employed to approximate w(x) using nodes whose support domain
includes x, and hence the two rotations are also approximated in relation to the deflection
[35]. For thin plate, we should use more terms of polynomial basis functions. This is
because the rotation that relates to the derivative of deflection are also field variables, and
they depend on the deflection. Therefore, a higher order of consistency is required. In this

work, complete second order (m=6) of polynomial basis functions are used.

p'®) ={Lx,y,x’xy,y*} (4.60)
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Using MLS approximation, the deflection of the plates can be approximated using

parameters of nodal deflection, w,, in the following form:
w(x) = Y ¢, (X)W, (4.61)
i=1

where n is the number of nodes whose support domain includes x. @, (x) is the MLS

shape function obtained in the same way as described in chapter 3.

The relationship between strain and deflection is given by

v *w
Ef = =— 4.62
ok ox? (1.62)
e = _ 0w (4.63)
Yy ay ayz )
du oy d°w
g, =—+—=-2z 4.64
Y ody ox dxdy (+64)
or in matrix form
e=Lw
where L is the following differential operator.
al
-— Z—_—.—
ox?
62
L=1- Zé“}']‘{ ( (465)
2
-2z dJ
dxdy

Substituting Equation (4.61) and (4.65) in (4.4)
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Lw ZLED:(Pi(X)Wi = ihpi(x)wi = i -z il 0, (W, = i"ZBiWi (4.66)

i=]

where, B. . ={~z

(4.67)

az(Pi

~2z——
0xdy |

Substitution of Equation (4.65) in Equation (4.4) results in

L §(Lu)" (DLu)dQ = L S(Lw)T (DLw)dQ = L 5(2-— ZB.w. ] (Dg— ZB.w, JdQ

i=l
=[3 (iﬂwf}af} (Di~ szwJ}dQ
i=1 i=1

n n

= >\ > éw,([ 2’BIDBdQw, (4.68)

i=l  j=1
Nodal stiffness matrix is given by
—_— 2T _ 2 T
K, = [ 2’B/DB,dQ = [ 2’BIDB dAdz (4.69)
Integrating with respect to z gives the nodal stiffness matrix as

t’ t’
= [ 2T = Lgr - Ls™DB.
K, = | 2’B/DB,dAdz = IAuBi DB dA -[A12B‘ DB, dxdy (4.70)

where D is defined by Equation (4.53). The dimension of K; is 1x1. The dimension of

stiffness matrix K for the problem is n, xn,.
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The nodal mass matrix is given by
M; :J-Q(pfp(pjdﬂ = J.AcpiTp(pjtdxdy 4.71)
The dimension of M is 1x1. The dimension of mass matrix M for the problem is

X1

t t*

4.9.2 Constraint Matrix for Thin Plate

As in in-plane or 2D problem, first-order Lagrange interpolant is chosen for thin
plate vibration. The Lagrange multiplier at s is interpolated by using two nodes that are
located before and after s.

s—s, s—8,

N,(s) = N,(3) =

$; =S, S, =8,

4.72)

Applying Equation (4.9) for thin plate problem, there are two Lagrange multipliers A, for

each node along the boundary since there are two degree of freedom at each node ( the

deflection and the rotation on the boundary about the boundary line).

| N 01hii| _ A

i i=1

N, =N ° 4.74
o N, 79

where n, is the number of nodes in each boundary cell used for interpolation. In thin

plate problem, as in 2D problem, cells for integration stiffness matrix and mass matrix are

always square or rectangle. Comparing these cells with the cells for integration constraint
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matrix, the boundary cells are one-dimensional. Two nodes are taken in each boundary
cell for Lagrange interpolation, choosing n, = 2 in this study.

For clamped boundary, the displacements of the deflection and the rotation about

boundary line must be imposed.
Y =0, = [(pi ] @4.75)

For simply supported boundary

®;
v =@, =| 9, (4.76)
on’

where n denotes the normal of the boundary of the problem domain.

By using Equation (4.15) and Gauss points for integration, H, can be calculated to

obtain constraint matrix H. The dimension of H is 2n, xn,, n, is the total number of

t

nodes of the problem.
4.10 Numerical Integration

In a Galerkin formulation, numerical integration is used to evaluate the integrals in
the weak form. The reason is the integrals cannot be evaluated analytically. Several

different techniques have been proposed to numerically integrate the Galerkin weak form

in meshfree method. In the present study Gaussian quadrature is employed.
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4.10.1 Gauss Points and Weight Coefficients for Each Cell

In order to evaluate the integrals in Equation (4.25), (4.27), (4.42), (4.44), (4.54),
(4.55), (4.70), and (4.71), it is necessary to define integration cells over the domain of
problem. Background cells are needed in order to find quadrature points in each cell for
integration. Cells are similar to the mesh of elements in FEM and no overlap or gap is
permitted. In contrast to the mesh in FEM, the background cell in EFG is used only for
the integration of the system matrices, and not for shape function construction. In
principle, the background cells can be totally independent of the arrangement of nodes.
The only consideration in design cells of the background mesh is to ensure the accuracy
of integration for the system matrices.

The nodal stiffness matrix and mass matrix for different type elastic bodies are
deduced in different sections 4.6, 4.7, 4.8, 4.9. The shape functions of EFG method
constructed by MLS method are rational functions of the spatial coordinates and hence
the intervals of physical coordinates should be changed to natural coordinates [-1,+1] if
Gaussian quadrature method is employed for integration.

Transformation of integrals

One-dimensional integration:
[ = flf(x(&))fd& = f EEpdg =2 W, (g, det[1] 4.77)

where W, is weight coefficients, &, is Gauss points, J is Jacobian matrix.

Two-dimensional integration:

[ foxypaxdy = [ [ sexCem, yEmndeds = Y 3 W w6, detlr] @478)

i=t =1
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where W, , W, are weight coefficients, (§;,n,) are Gauss points

Table 4.1

Integration points and weight coefficients for the Gauss integration formula

Number of Gauss Points in tE, W,

the interval [-1,1]

1 0 2

2 0.57735026918963 1

3 0.77459666924148 5/9
0 8/9

4 0.86113631159405 0.34785484513745
0.33998104358486 0.65214515486255

6 0.93246951420315 0.17132449237917
0.66120938646626 0.36076157304814
0.23861918608319 0.46791393457269

9 0.96816023950763 0.08127438836157
0.83603110732664 0.18064816069486
0.61337143270059 0.26061069640294
0.32425342340381 0.31234707704001
0 0.33023935500126
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4.10.2 Jacobian Matrix for Each Cell

Gaussian quadrature method is used to calculate integrals, and hence it is necessary
to transform the coordinates from physical coordinates into natural coordinates, because
Gauss points can be found only in the natural coordinates. For one-dimensional problem,

the relationships of physical coordinates and natural coordinates are given as follows

[36]:
x(&) = ZN (©)x, (4.79)

where x, are the physical coordinates of vertices of cell i. Note that the field nodes and

the integration cell vertices need not coincide. For the sake of simplicity, sometimes the
integration cells are chosen to coincide with the intervals between the field nodes. For
one-dimensional problem, cells are shown in the following graph, where each has two

vertices.

Cell

- o — 6 66— & — -0 — @ @ — & —@

Node

Figure 4.2 One-dimensional nodes and cells

Function N, (&) are defined

N, =%(1—§) (4.80)
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N, =%(1+§) (4.81)

and the Jacobian matrix is given by

J=&,-x))2 (4.82)

For two-dimensional problem, the relationships of physical coordinates and natural

coordinates are given as follows:

Figure 4.3
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Figure 4.4 Cells do not coincide with the intervals between the field nodes
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From Figure 4.3 and Figure 4.4, each cell has four vertices, and the relationships of

physical coordinates and natural coordinates are given as follows [36]:

x(&:m) = ) N, (E,n)x, (4.83)

i=1

yEm) =Y N, &)y, (4.84)

i=1
where (xi ,Y; ) are the physical coordinates of vertices of cell i. In each cell, mapping

functions N, (§,m) are defined as

N, =%(1—§X1—n) (4.85)
N, = —41-(1+§)(1—n) (4.86)
N, = i(1+§)(1+n) (4.87)
N, = %(1—§X1+n) (4.88)

and the Jacobian matrix is given by

9K 9y
9 o
= .8
] n oy (4.89)
on on

Substituting Equation (4.83), (4.84) into (4.89) gives

ON, N, aN, oN,Tx. v

~ 0 dE dE  dE |x, ¥a
b=

dON, JN, ON, OoN, |x, Vs

dn dn dn  dn | x, Vi

(4.90)
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Note, that unlike FEM, the same functions have been used to define both the integration
and shape function. In EFG method, N, are used only for mapping cell from physical
coordinates to natural coordinates in order to get Gauss points for integration, and MLS
method is used for shape function construction. The shape functions built by MLS are the
function of spatial coordinates (Equation (4.91), (4.92)). When Gauss points are obtained,
transformation or mapping must be made by changing the Gauss points (in natural
coordinates) to spatial coordinates (physical coordinates) using mapping function
(Equation (4.79) for one-dimensional, Equation (4.83), ‘(4.84) for two-dimensional), and
then shape function can be built based on the nodes whose influence domain includes the

gauss point (physical coordinate).
K, = J.IBTDde = fl B(x)" DB(x)dx = J'_IIB(x(g))TDB(x(g))det JdE 4.91)

K, = j B'DBAA = f B(x)" DB(x)dxdy
A A

=[ [ Bex(&, )" DB(x(E ) det Jedn 492)

4.11 Assembly

In the assembly of the nodal stiffness matrices equation for rod, beam, in plane
plate, and thin plate, the procedure are almost the same.
Rewriting the Equation (4.24), because the integration is over the entire problem domain,
and all the nodes can be involved. Therefore, the summation limits n has to be changed to

n,, which is the total number of nodes in the entire problem domain. The contribution of
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each node to the system matrices is determined by weight function that controls the size

of support domain at node.

o n n, B,
T — T - T T T

i=l j=1 i=1 j=1

+ E')u'er“u1 + Sureruu2 +eeet éiugKmtuﬂt

=38U'KU (4.93)

where K is the global stiffness matrix assembled using the nodal stiffness matrix in the

form
—Kn K, '”Km, 7
Rl B2 R (4.94)

The dimension of K matrix for rod, beam, and thin plate should be n, Xn,, for in plane

plate the dimension of K matrix is 2n, X2n,. and n, is the total number of nodes in the
problem domain.

M is the global stiffness matrix assembled using the nodal stiffness matrix in the form

_Mu M12 "‘Mmt
M; My M

2n,

(4.95)

_Mntl MnKZ ‘"Mntnt

68



The dimension of M matrix for rod, beam, and thin plate should be n,xn,, for in plane

plate the dimension of M matrix is 2n, X2n,andn, is the total number of nodes in the

problem domain.

4.12 Flowchart of 1D EFG Program and 2D EFG Program

Table 4.2 Flowchart of 1D EFG Program

1 Set up nodal coordinates and integration cells.
2 Set parameters for weight function (support domain), material properties.
3 Set up integration points, weights, and Jacobian for each cell.

4 Loop over integration points.

4.2 Calculate weight at each node for given integration point x, .
4.b  Calculate shape functions and derivatives at point X, .

4.c  Assemble contributions to K matrix and M matrix.
4.d Form constraints matrix H at first integration point.
5. Orthogonal transformation techniques (Singular Value Decomposition H).

6. Solve for natural frequencies and mode shapes.
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Table 4.3 Flowchart of 2D EFG Program

1.

2.

10.

11.

12.

Define the physical dimensions and material properties.
Define the plane stress D matrix
Set up the nodal coordinates
Determine the domain of influence for each node
Set up quadrature cells in the domain.
Set up Gauss points, weight, and Jacobian for each cell.
Loop over Gauss points.
7.a  Determine nodes in the neighborhood of the Gauss point.
7.b  Determine weights (support domain), shape functions and shape function
derivatives for nodes 1 to n.
7.c Add contributions to K and M matrices.
Determine nodes on essential boundary.
Set up Gauss points along the essential boundary.
Integrate Lagrange multipliers along essential boundary to form H matrix.
Enforce essential boundary conditions using orthpgonal techniques.

Solve for natural frequencies and mode shapes.
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Chapter 5

Numerical Results

In this chapter, the natural frequencies of rod, beam, in-plane plate, and thin plate
vibrations by EFG method are presented. The results show good agreements with
analytical or FEM results. The natural frequencies of cantilever beam and fully clamped
thin plate by different techniques are also given. The techniques include Rayleigh-Ritz
method, Collocation method, Galerkin method (only for cantilever beam), Element Free
Galerkin method (EFG), and Finite Element Method (FEM). The comparisons of global
stiffness matrix and global mass matrix are made between Element Free Galerkin (EFG)
and Finite Element Method (FEM). Five nodes clamped-free rod and cantilever beam

model are used to illustrate the system matrices.

5.1 Axial Vibration

The natural frequencies of the clamped-free rod are calculated using Element Free

Galerkin (EFG) method. The parameters of the rod used are shown in Table 5.1.

Table 5.1 The parameters of the rod

Young’s modulus E=2.1e+11N/m?
Cross-section area A =0.001 m?
Mass density p = 7800kg/ m’
Length L=1Im
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1
The non-dimensional (1)(0L2 / E)E natural frequencies are shown in the Table 5.2.

The results are presented in Table 5.2 and compared with the exact solutions [36]. It is
seen that the EFG solution is very close to the exact solution. As the number of nodes are
increased, the first mode natural frequency deteriorates slightly, however, second natural
frequency improves.

Table 5.2 Comparison of approximate frequencies with exact solution for a rod

EFG Solution Exact
Mode 11nodes 2Inodes 101nodes Solution
i 1.570944884085 | 1.570812509147 | 1.5707959211 | 1.571
2 4717615059605 | 4.712956817113 | 4.7123914588 | 4.712
Clamped-free rod (The First Mode Shape)
0.35 T T ¥ 14 L T L] T
q
03+ g g 9 9 9 =
@ R
025+ Q A
1%
@
g2t @ -
@
i ® i
0.156 @
@
o1t P .
@
0.05} @ .
e
0% " : ' . . : ! : .
g 0.1 02 03 04 05 0B 07 08 09 1

Figure 5.1 The first mode shape of clamped-free rod

(© - EFG (21 nodes), % - Analytical )
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Clamped-free rod (The Second Mode Shape)
0.4 ¥ T 1 T T T T LI L

o2t & ® -

01 B & o}

0.1 0.2 03 04 05 08 67 08 08 1

Figure 5.2 The second mode shape of clamped-free rod

(© - EFG (21 nodes), * - Analytical )

The first and second mode shapes obtained by the EFG method and analytical
method are respectively shown in Figure 5.1 and Figure 5.2. In the above figures, the
small circles denote the solution by EFG method and the small stars denote the solution

by analytical method. Both methods agree well with the exact solutions.

5.2 Bending Vibration

The natural frequencies of the cantilever beam are calculated using Element Free

Galerkin (EFG) method. The results are compared with the exact solution [29].
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Comparing mode shapes with those obtained by other methods [37], good agreements

have been noted. The parameters of the beam are shown in Table 5.3. The non-

1
dimensional (1)(0AL4 / EI)5 natural frequencies are shown in the Table 5.4.

Table 5.3 The parameters of the beam

Young’s modulus E=2.1e+11 N/m’®
Mass Density p = 7800 kg/ m*
Thickness b=0.01 m
Height h=0.1m
Length L=1m
Table 5.4

Comparison of approximate frequencies with exact solution for a cantilever beam

EFG Solution (one Gauss point in each cell) Exact
Mode 11nodes 21nodes 101nodes Solution
1 3.36082381988 3.4761724364 3.517057712 3.516

2 20.70925433576 | 21.5734902809 | 22.029824631 22.035

3 55.71067926664 | 59.3750974434 | 61.631311291 61.695

4 102.63237012362 | 113.4030732297 | 120.616844033 | 120.903

5 157.80732854596 | 181.3289603744 | 199.052089196 | 199.859

6 221.73440699330 | 260.1449748330 | 296.730459349 | 298.556
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Table 5.5

Comparison of approximate frequencies with exact solution for a cantilever beam

EFG Solution (four Gauss points in each cell) Exact
Mode | 11nodes 21nodes 101nodes Solution
1 3.426542879540 3.49223557515 3.5163347157 3.516

2 21.673001236786 | 21.85105627288 | 22.1250283237 | 22.035
3 61.093533982430 | 60.98062148087 | 61.7235271928 | 61.695
4 120.369177663624 | 118.88675681855 | 120.8555720551 | 120.903
5 199.423537674733 | 195.22004936751 | 199.6505463814 | 199.859
6 296.386780227024 | 289.27306272927 | 298.0227146553 | 298.556
Table 5.6

Comparison of approximate frequencies with exact solution for a cantilever beam

(one, two, and four Gauss points in each cell)

EFG Solution (change the number Gauss points in each cell) Exact
Mode | 11nodes(1GP) 11nodes(2GP) 11nodes(4GP) Solution
1 3.36082381988 3.422311359625 3.426542879540 3.516

2 20.70925433576 | 21.622209848823 | 21.673001236786 | 22.035

3 55.71067926664 | 60.771146115879 | 61.093533982430 | 61.695
4 102.63237012362 | 118.979696150096 | 120.369177663624 | 120.903
5 157.80732854596 | 194.791798611303 | 199.423537674733 | 199.859
6 221.73440699330 | 2.83755585408958 | 296.386780227024 | 298.556
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From Table 5.4, it is shown that with one Gauss point in each background cell, the
results improve with the number of nodes. From Table 5.6, with 11 nodes in a cantilever
beam, the results improve considerably when the Gauss points in each cell are increased
from 1, 2 to 4. From Table 5.5, the results also improve considerably when the Gauss
points in each cell are increased from 1 to 4. The reason is that the background cells are
not the best local domains for the spatial integration. The accuracy does not always
improve with increasing the number of Gauss points.

The mode shapes by EFG for the first, second, third, fourth and fifth modes are
shown respectively in Figure 5.3, 5.4, 5.5, 5.6 and 5.7. They agree well with the exact
results plotted alongside (characteristic functions representing normal modes of vibration

of a beam). Small circles represent EFG and small stars denote exact solutions.

Cantilever Beam (The First Mode Shape)
042 L T L) T T T T T T

.1

0.08

0.06

0.04

0.62

Figure 5.3 The first mode shape of cantilever beam

(© - EFG (101 nodes), % - Analytical)
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0.15

Cantilever Beam (The Second Mode Shape)

0.1

0.05

Figure 5.4 The second mode shape cantilever beam

(© - EFG (101 nodes), % - Analytical)

Cantilever Beam (The Third Mode Shape)

0.1

0.05

Figure 5.5 The third mode shape of cantilever beam

(© - EFG (101 nodes), * - Analytical)
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Cantilever Beam (The Fourth Mode Shape)

Figure 5.6 The fourth mode shape of cantilever beam

(© - EFG (101 nodes), % - Analytical)

Cantilever Beam (The Fifth Mode Shape)

0.2

015

-0.15
0

Figure 5.7 The fifth mode shape of cantilever beam

(© - EFG (101 nodes), % - Analytical)
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5.3 In-plane vibration of plate

The first five natural frequencies for in-plane vibration of the plate are calculated

using EFG method. The results are compared with analytical solution obtained by

treating the plate as a deep beam. The results are obtained for E=2.1x10"'N/m?,

v =03, p =8000kg/m?, thickness of 0.001m, length of plate L=0.1m, and height of the

plate=0.01m. Natural frequency results obtained by EFG are listed in Table 5.5. The

results [32] [38] obtained by FEM software ABAQUS, the NBNM method, and MLPG

method are also listed in the table 5.7.

Table 5.7

Natural Frequencies (Hz) of cantilever plate (in plane) by using EFG

(18 nodes)

Mode EFG(18nodes) MLPG(63nodes) | FEM(ABAQUS) | NBNM(63nodes)
(63nodes)

1 829.582790048 919.47 870 926.10

2 5011.042989557 | 5732.42 5199 5484.11

3 12855.620073909 | 12983.25 12830 12831.88

4 13905.421595458 | 14808.64 13640 14201.32

5 37216.715201917 | 26681.81 24685 25290.04

6 38549.291809766 | 38961.74 37477 37350.18
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Table 5.8

Natural Frequencies (Hz) of cantilever plate (in plane) by using EFG (55 nodes)

Mode EFG(55n0des) MIPG(306nodes) | FEM(ABAQUS) | NBNM(306nodes)
(306nodes)

1 824.58645569 824.44 830 844.19

2 494771358351 | 5070.32 4979 5051.21

3 12833.96496038 | 12894.73 12826 12827.60

4 13034.93824201 | 13188.12 13111 13258.21

5 23693.43803877 | 24044.43 23818 23992.82

6 36230.55808267 | 36596.15 36308 36432.15

From Table 5.7 and Table 5.8, one can observe that the results by EFG method are

in good agreement with those obtained using FEM, MLPG and NBNM method. The

convergence of the EFG method is also demonstrated in these two tables. As the number

of nodes increases, the results obtained by EFG approach the FEM results. The lowest

five vibration modes by EFG are plotted in Figure 5.8 to Figure 5.12. Asterisk denotes

the deformed shape while small circle denotes the node original position.
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Figure 5.8 In-plane plate vibration mode shape 1 (O - Undeformed, #* - Deformed)
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Figure 5.9 In-plane plate vibration mode shape 2 (© - Undeformed, * - Deformed)
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Figure 5.10 In-plane plate vibration mode shape 3 (© - Undeformed, # - Deformed)
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Figure 5.11 In-plane plate vibration mode shape 4 (O - Undeformed, * - Deformed)
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Figure 5.12 In-plane plate vibration mode shape 5 (© - Undeformed, # - Deformed)

Comparison of the EFG results with G. R. Liu (2001) results by MLPG (Meshless
Local Petrov Galerkin Method) [32] reveals that they are almost identical. The correct
results confirm that EFG method is effective not only for one-dimensional but also for
two-dimensional problems. Based on the research on 2D problems by EFG, some
modifications are made and the thin plate vibration problems by EFG are obtained

successfully. The following section presents the natural frequencies of thin plate by EFG.

5.4 Natural Frequency Analysis of Thin Square Plates

Table 5.9 Parameters of a square plate

Young’s modulus E= 20x10°N/m?
Mass density p =3000kg/m’
Length a=b=4m
Thickness t=0.2m
Poisson’s ratio v=03
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The first six natural frequencies (non-dimensional values (n(pa“h/Do)E of thin

plate with different boundary conditions are shown in Table 5.10, 5.11, 5.12, and 5.13.

Analytical solution can be found in paper [29].

Table 5.10 The natural frequencies for thin plate (CFFF)

EFG(Different Nodes) Analytical
Mode | 7x7 9x9 12x12 13x13 Solution
1 3.482522761601 | 3.47929020449 | 3.47755348208 | 3.47609613970 | 3.474
2 8.527519654411 | 8.52117372675 | 8.51732996433 | 8.51501859204 | 8.591
3 21.415469873286 | 21.42294277873 | 21.40480355088 | 21.38587809326 | 21.298
4 27.290139042041 | 27.29607289008 | 27.27478680332 | 27.26142830142 | 27.154
5 31.113034432349 | 31.08944571774 | 31.06457781301 | 31.04610463331 | 31.036
6 54.490230339288 | 54.35599358785 | 54.31266528282 | 54.29580122770 | 54.178
Table 5.11 The natural frequencies for thin plate (CCCC)

EFG(Different Nodes) Analytical
Mode | 7x7 9x9 12x12 13x13 Solution
i 36.140038214255 | 36.159494482140 | 36.16784727556 | 36.15197952872 | 35.988
2 74.618450698129 | 73.986092976231 | 73.94734673677 | 73.90841692780 | 73.393
3 109.336707286560 | 108.781842711669 | 108.78648203872 | 108.75271815669 | 108.521
4 150.571009515510 | 133.480991100657 | 133.24820332677 | 132.81037266975 | 132.25
5 166.266996688369 | 165.74083636327 | 165.90843144610 | 165.569
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Table 5.12 The natural frequencies for thin plate (SSSS)

EFG(Different Nodes) Analytical
Mode | 7x7 9x9 12x12 13x13 Solution
I 19.750569360225 | 19.750138130429 | 19.75096736009 | 19.75012407532 | 19.739
2 107.203364750700 | 51.042495557439 | 49.56182804727 | 49.51949587999 | 49.348
3 80.179908944879 | 79.18396061848 | 79.14410658730 | 78.957
4 100.117005755493 | 99.48956217831 | 99.44426288847 | 98.696
5 131.716574038813 | 128.94057591875 | 128.86604240841 | 128.369
Table 5.13 The natural frequencies for (CSCS) plate

EFG(Different Nodes) Analytical
Mode | 7x7 9x9 12x12 13x13 Solution
1 31.22615209646727 | 29.081168211969 | 29.07164910821 | 29.06036180980 | 28.944
2 72.60530909152656 | 56.375939575699 | 54.98930236680 | 54.94032042084 | 54.745
3 69.932062125918 | 69.88817520132 | 69.84408610680 | 69.322
4 98.076323726579 | 95.06189181168 | 94.97926516530 | 94.576
5 103.844935402379 | 103.00000486831 | 102.94801976047 | 102.212

From Table 5.10 to Table 5.13, conclusion can be drawn (i) the natural frequencies

by EFG are reasonably good by comparing with analytical solutions, and (ii) the accuracy

improves with the number of nodes.

Figure 5.13 to Figure 5.18 are the mode shapes of cantilever plate and Figure 5.19

to Figure 5.24 are the mode shapes of fully clamped plate. Small circles denote the nodes

at the original place. These mode shapes are compared with nodal patterns of cantilever
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plate and fully clamped plate [19] and the agreement is quite good.
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Figure 5.13 The first mode shape for cantilever plate (O - Undeformed)
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Figure 5.14 The second mode shape for cantilever plate (O - Undeformed)
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Figure 5.15 The third mode shape for cantilever plate (© - Undeformed)
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Figure 5.16 The fourth mode shape for cantilever plate (© - Undeformed)
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Figure 5.17 The fifth mode shape for cantilever plate (© - Undeformed)

wi(x.y}

0.2 -

0.1 4

0 2

1 -
Length in meter () Width in meter (x)

Figure 5.18 The sixth mode shape for cantilever plate (C - Undeformed)
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Figure 5.19 The first mode shape for fully clamped plate (© - Undeformed)
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Figure 5.20 The second mode shape for fully clamped plate (© - Undeformed)
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Figure 5.21 The third mode shape for fully clamped plate (© - Undeformed)
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Figure 5.22 The fourth mode shape for fully clamped plate (© - Undeformed)
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Figure 5.23 The fifth mode shape for fully clamped plate (O - Undeformed)
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Figure 5.24 The sixth mode shape for fully clamped plate (¢ - Undeformed)
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5.5 Comparison of Natural Frequencies of the Thin Plate by Using Different Type of
Support Domains
The natural frequencies of free vibration of a free thin square plate are calculated
using different type of support domains. The parameters of a thin square plate are shown
in Table 5.14. The non-dimensional natural frequencies are presented in Table 5.15. The
first three frequenciés corresponding to the rigid displacement are zero [32], and
therefore are not listed in Table 5.15.

Table 5.14 The parameters of the panel

Young’s modulus E = 200x10° N/m?
Mass density p = 8000kg/ m’
Poisson’s ratio v=03
Length a=b=10m
Thickness t=0.05m

Table 5.15

Comparison of natural frequencies of thin plate without constraints with other solution

Mode | Present study ( EFG square domain ) EFG by G.R. Liu
5x5 9x9 13x13 | 17x17 5x5 9x9 13x13 | 17x17

4 3.7013 3.6706 |3.6704 |3.6703 |3.700 |3.670 |3.670 |3.567
5 4.4678 4.4327 144307 44296 | 4468 4434 |4430 |4429
6 4.9993 49372 | 49334 | 49316 |5.000 |4939 (4933 |4930
7 6.0129 5.9068 |5.9035 |5.9024 |6.010 5.907 5.903 5.901
8 6.0129 5.9068 |5.9035 |5.9024 |6.010 |5.907 5.903 5.901
9 8.1889 7.8646 | 7.8462 | 7.8375 |8.189 | 7.855 7.840 | 7.832
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Table 5.16

Comparison of natural frequencies of thin plate without constraints by using different

support domains — square and circle domains

Mode EFG (square domain ) EFG ( circle domain )

5x5 9x9 13x13 | 17x17 5x5 9x9 13x13 | 17x17
4 3.7013 3.6706 |3.6704 |3.6703 |3.7241 |3.7132 |3.7122 |3.7131
5 44678 | 44327 | 44307 | 44296 |4.5746 | 4.5584 |4.5535 |4.5493
6 4.9993 49372 {49334 | 49316 |5.1161 |5.0668 |5.0981 |5.1107
7 6.0129 5.9068 |5.9035 |5.9024 |6.2612 | 6.2098 | 6.2573 | 6.2981
8 6.0129 5.9068 | 59035 |59024 |6.2612 |6.2098 |6.2573 | 6.2981
9 8.1889 7.8646 | 7.8462 | 7.8375 |9.2957 | 8.5443 | 8.5750 | 8.6304

From Table 5.15, the results of the present study have a good agreement with those

by G. R. Liu [32]. From Table 5.16, it can be concluded that the square support domain

has better accuracy than that of circle domain for rectangle or square thin plate problems.

5.6 Comparison of Natural Frequencies of Cantilever Beam by Different Weight

Functions

The parameters of a cantilever beam are same as those in Table 5.3. The beam is

represented by 101 nodes. Each cell has one Gauss point and 100 cells are used for

integration. Shape functions are constructed by using four different types of weight

functions. The results are present in Table 5.17.
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Table 5.17

Comparison of natural frequencies of cantilever beam by using different weight functions

Gaussian Cubic Cubic Quartic Exact
Mode Spline Polynomial Polynomial Solution
1 3.5488758175 3.517057712 3.556126111 3.5297963387 | 3.516
2 1222333195156 |22.029824631 | 22365636314 | 22.1031918346 | 22.035
3 62.2190107092 | 61.631311291 | 62.957563849 | 61.8309048709 | 61.695
4 121.8215210823 | 120.616844033 | 124.290318633 | 1210012639959 | 120.903
5 201.1556484889 | 199.052089196 | 207.382865384 | 1996814405171 | 199.859
6 300.0765711862 | 296.730459349 | 313.251765934 | 2976689201932 | 298.556

From Table 5.17, one can observe that weight functions affect the accuracy of the

results. Among these weight functions, for this problem, the cubic spline weight function

gives the best results by comparing with the exact solutions.

5.7 Comparison of Natural Frequencies of Cantilever Beam by Different Techniques

Table 5.18 Natural Frequencies of Cantilever Beam by Different Techniques

Rayleigh- Galerkin Collocation EFG FEM Analytical

Ritz nterme=5 n=5 n=5 n=5

nterm=3
Model |3.5171 3.5160 3.48625954842374 | 2.926260 | 3.516130 | 3.516
Mode2 | 22.2334 220354 | 21.42462970395474 | 26.75467 | 22.06016 | 22.039
Mode3 | 118.1444 | 66.2562 | 66.98915445796999 | 190.9766 | 62.17489 | 61.695

nterm- the number of polynomial terms. n- the number of nodes.
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From Table 5.18, one can observe that the Rayleigh-Ritz method, Collocation

method, Galerkin method (only for cantilever beam), and Finite Element Method (FEM)

gives very good results while Element Free Galerkin method (EFG) gives poor results.

To overcome this disadvantage, more nodes are needed in EFG to increase the accuracy.

The improvement can be found in the Table 5.4 and Table 5.5. When the number of

nodes is increased from 11 to 101, the natural frequencies approach the exact solution.

5.8 Comparison of Natural Frequencies of Fully Clamped Plate by Different

Techniques

Table 5.19 Natural Frequencies of Fully Clamped Plate by Different Techniques

Rayleigh-Ritz Collocation EFG Analytical
Orthogonal polynomials | nx=ny=5 nx=ny=7 solution
mtern=ntern=>5 total nodes 49 total nodes 49

Mode 1 35.9855 36.0043 36.1400 35.988

Mode2 73.4121 74.3339 74.6185 73.393

Mode 3 73.4121 74.3339 74.6185 73.393

Mode 4 108.2574 109.8099 109.3367 108.521

Table 5.19 shows that each method gives very accurate results by comparing it with

analytical solutions.
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5.9 System Matrices by Collocation Method

The following matrices are obtained by collocation method. The advantage of

collocation method is that the evaluation of terms k;; and m; do not involve integration.

The method is simple, accurate, and uses less CPU time compared with other methods.

The shortcoming of collocation method is that K™ and M®are non-symmetric
matrices. The Matlab code by Collocation method for cantilever beam free vibration is
given in Appendix 7.

The stiffness and mass matrices are given below:

k(Collocation)=

1.0e+002 *

0.24000000000000 0.24000000000000 0.14400000000000 0.06720000000000
0.24000000000000 0.48000000000000 0.57600000000000 0.53760000000000
0.24000000000000 ©.72000000000000 1.29600000000000 1.81440000000000

0.24000000000000 0.96000000000000 2.30400000000000 4.30080000000000

m(Collocation) =
0.20960000000000 0.72032000000000 1.64006400000000 3.08001280000000
0.72960000000000 2.57024000000000 5.92409600000000 11.20163840000000
1.42560000000000 5.11776000000000 11.92665600000000 22.70799360000000

20 8.00768000000000 18.82214400000000 36.04971520000000

5.10 Comparison of System Matrices by EFG and FEM Method

In EFG, each node of the cantilever beam has one degree of freedom (deflection)

since slope can be expressed in terms of deflection. For the sake of this discussion, five
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nodes are considered on the beam, therefore, the dimension of the global stiffness matrix

and the global mass matrix is 5X5 before the constraints are taken into account. The

following printed matrices can be obtained by running Matlab code (Appendix 2).

k(EFG) =
1.0e+008 *

Columns 1 through 5

0.11201493826796 -0.22533829306479  0.11463177132570 -0.00130841652887 0
-0.225338293060479  0.56791025224505 -0.46111404182475 0.11985049917355 -0.00130841652904
0.11463177132570 -0.46111404182475 0.80755149752301 -0.69028795487413 0.22921872785075
-0.00130841652887 0.11985049917355 -0.69028795487413  1.02625807834223 -0.45451220611393
0 -0.00130841652904  0.22921872785075 -0.45451220611393 0.22660189479280
m(EFG) =
Columns 1 through 5
0.28183593750000 0.47988281250000 -0.15996093750001 0.00761718750000 0
0.47988281250000 1.72148437560000  0.36562500000002 -0.13710937499999  0.00761718750000
-0.15996093750001  0.36562500000002 - 1.29492187499991  0.36562500000065  -0.15996093749972
0.00761718750000 -0.13710937499999 0.36562500000065 1.72148437499722  0.47988281249889
0 0.00761718750000 -0.15996093749972 0.47988281249889  0.28183593749957

One can observe that the global stiffness matrix k(EFG) and the global mass matrix

m(EFG) are not banded but symmetric matrices. Nodal matrix k; contains the stiffness

coefficients between node i and node j evaluated at a point (usually quadrature point) in
the problem domain. It is a function of coordinates, and needs to be integrated over the
entire problem domain. It has to be assembled to the global matrix as long as the support

domains of nodes i and j include the quadrature point. If nodes 1 and j are far apart and if
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they do not share any quadrature point determined by weight function, k; vanishes.

Therefore, sometimes if the support domain is very compact and does not cover too wide

a problem domain, many k; terms will be zero, and the global system matrix will be

sparse and banded.

In FEM, the highest derivative appearing in the energy expressions for a beam is
the second derivative. Therefore, it requires the shape functions and their field derivative
to be continuous, hence it is necessary to take deflection v and slope dv/dx as degrees of
freedom at each node of beam element. Therefore, if five nodes are used to represent the
cantilever beam, the dimension of the global stiffness matrix and the mass matrix is
10x10 before the constraints are applied. The following printed matrix can be obtained

by running Matlab code (Appendix 10).

k(FEM) =
1.0e+008 *
Columns 1 through 4

1.34400000000000  0.16800000000000  -1.34400000000000  0.16800000000000

0.16800000000000  0.02800000000000  -0.16800000000000  0.01400000000000
-1.34400000000000 -0.16800000000000  2.68800000000000 0
0.16800000000000  0.01400000000000 0 0.05600000000000
0 0 -1.34400000000000  -0.16800000000000
0 0 0.16800000000000  0.01400000000000
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Columss 5 through 8

0 0 0 0

0 0 0 0
-1.34400000000000  0.16800000000000 O 0
-0.16800000000000  0.01400000000000 O 0
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2.68800000000000
o

-1.34400000000000

0

0.05600000000000

-0.16800000000000

0.16800000000000  0.01400000000000
0 0

0 0

Columas 9 through 10

0 0

0 0

0 0

0 0

0 0

0 0
-1.34400000000000  0.16800000000000

-0.16800000060000
1.34400000000000

-0.16800000000000

m(FEM) =

Columns 1 through 4
0.72428571428571
0.02553571428571
0.25071428571429
-0.01508928571429

0

0

0

Columns 5 through 8
0

0
0.25071428571429
0.01508928571429

1.44857142857143

0.01400000000000

-0.16800000600000

0.02800000000000

0.02553571428571

0.00116071428571

0.01508928571429

-0.00087053571429

0

0

0

-0.01508928571429

-0.00087053571429

0

-1.34400000000000

-0.16800000000000

2.68800000000000

0

-1.34400000000000

0.16800000000000

0.25071428571429

0.01508928571429

1.44857142857143

0

0.25071428571429

-0.01508928571429

0

0

0

0.25071428571429

0.16800000000000

0.01400000000000

0

0.05600000000000

-0.16800000000000

0.01400000000000

-0.01508928571429

-0.00087053571429

0

0.00232142857143

0.01508928571429

-0.00087053571429

0

0

0

-0.01508928571429
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0 0.00232142857143  0.01508928571429  -0.00087053571429

0.25071428571429 0.01508928571429  1.44857142857143 0

-0.01508928571429 -0.00087053571429 0O 0.00232142857143
0 0 0.25071428571429  0.01508928571429
0 0 -0.01508928571429  -0.00087053571429

Columns 9 through 10

0 0
0 0
0 0
0 0
0 0
0 6

0.25071428571429  -0.01508928571429
0.01508928571429  -0.00087053571429
0.72428571428571  -0.02553571428571

-0.02553571428571  0.00116071428571

From the printed result k(FEM) and m(FEM), it can be noted that they are banded,
sparse, and symmetric matrices. This is a character of FEM system matrix. Because the
dimension of the system matrices of FEM are larger than those obtained by EFG, terms
related to deflection are selected from k(FEM) and m(FEM), and then k(select) and
m(select) are compared with k(EFG) and m(EFG), respectively. One can find that the
terms in k(EFG) and the terms in k(select) are different, m(EFG) and m(select) are also
different. But both methods can achieve valid natural frequencies.

Select terms which are related to deflection from stiffness matrix k(FEM)

k(select)=
1.0e+008 *
Columns 1 through 5
1.34400000000000 -1.34400000000000 0 0 0

-1.34400600000000 2.68800000000000 -1.34400000000000 0 0
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0 -1.34400000000000 2.68800000000000 -1.34400000000000 0
0 0 -1.34400000000000 2.68800000000000 -1.34400000000000

0 0 0 -1.34400000000000 1.344006000000000

Select terms which related deflection from mass matrix m(FEM)

m(select) =
Columns 1 through 4
0.72428571428571  0.25071428571429 © 0
0.25071428571429  1.44857142857143  0.25071428571429 0
0 0.25071428571429  1.44857142857143 0.25071428571429
0 0 0.25071428571429 1.44857142857143

0 0 0 0.25071428571429

0
0.25071428571429

0.72428571428571

From above comparison, the dimension of system matrices of cantilever beam by
EFG and FEM methods are not same. It is better for us to compare system matrices with
same size. Clamped-free rod can meet our requirement. For both methods EFG and FEM,

the system matrices of five nodes clamped-free rod are all five by five matrices.

k (BFG) =
1.0e+008 *
Columns 1 through 4
6.52180371541001 -4.79814935628586 -1.59240435912415 -0.13125000000000
-4.79814935628586 8.06788256350339 -1.82598320721754 -1.31250000000000

-1.59240435912415 -1.82598320721754 6.83677513268333 -1.82598320721752
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-0.13125000000000 -1.31250000000000 -1.82598320721752 -8.06788256350356
0 -0.13125000000000 -1.59240435912414 -4.79814935628587
Column 5
0
-0.13125000000000
-1.59240435912414
-4.79814935628587

6.52180371540988

m (EFG) =
Columns 1 through 4
0.52378959396258 0.48831180909864 0.03749867134354 0.00084635416667
0.48831180909864 0.86891209608844 0.48335459183673 0.03893229166667
0.03749867134354 0.48335459183673 0.89668633078231 0.48335459183673
0.00084635416667 0.03893229166667 0.48335459183673 0.86891209608844
0 0.00084635416667 0.03749867134354 0.48831180909864
Column 5
0
0.00084635416667
0.03749867134354
0.48831180909864
0.52378959396259
k (FEM) =
1.0e+009 *
Columns 1 through 4
0.84000000000000 -0.84000000000000 0 0
-0.84000000000000 1.68000000000000  -0.84000000000000 ©
0 -0.84000000000000  1.68000000000000 -0.84000000000000
0 0 -0.84000000000000  1.68000000000000
0 0 0 -0.84000000000000
Column 5
0
0
0

-0.84000000000000
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0.84000000000000
m (FEM) =
Columns 1 through 4
0.65000000000000

0.32500000000000

0.32500000000000

0.65000000000000

0.32500000000000 ©

0

1.30000000000000  0.32500000000000 0

0.32500000000000 1.30000000000000 0.32500000000000

0 0.32500000000000 1.30000000000000

0 0

0.32500000000000

The elements in K(EFG) and k(FEM); m(EFG) and m(FEM) matrices of clamped-free

rod are not same but at the same figure level. Both methods approach correct natural

frequencies. Exact solutions can be found in Maurice Petyt [36].

Table 5.20 Natural Frequencies of Clamped-Free Rod by Different Techniques

EFG FEM Exact Solution
Mode 1 1.573308 1.580908 1.571
Mode 2 4.837105 4987196 4712

In this chapter, Element Free Galerkin technique is employed to calculate the

natural frequencies for truss, beam, in-plane plate, thin plate free vibration. Very good

results have been achieved comparing with those by analytical method and published

books and papers. Results from different techniques have been compared with each other.
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The disadvantage of the classical methods is that they work directly with strong form
equations. Hence, these methods are not practical for complex eﬁgineeﬂng problems. In
the following chapter, the Element free Galerkin method and modal superposition method

will be used to compute the sound transmission loss through panel.
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Chapter 6
Sound Transmission Through the Panel

by Element Free Galerkin (EFG) Techniques

6.1 Introduction

Previous chapters have described the detailed formulation and procedures of
Element Free Galerkin method. Natural frequencies of rod, beam, in-plane and thin plate
in bending have been presented in chapter 5. In this chapter, the natural frequencies and
mode shapes of thin plate which we obtained from chapter 5 will be used to calculate the
response and sound transmission loss when sound strikes a panel barrier.

In many practical situations, acoustic waves strike a structural panel and some of
the acoustic energy is transmitted through the panel to another acoustic domain. Sound
transmission loss can be found either by experiments or by analytical or finite element
techniques. In this chapter, the sound transmission loss of panels by element free
Galerkin technique are presented.. It is very challenging and interesting since little work
has been done related to acoustics by EFG. The results show that this new modeling and
simulation technique is very attractive.

When normal incidence sound hits a panel, the sound pressure waves cause the
panel to vibrate. Consider a panel that is acted upon by a harmonic pressure. The pressure
is uniformly distributed over one side of panel only. Therefore, sound transmission

through a panel can be considered as a thin plate forced vibration problem. Hence, the
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response of a plate to a forced harmonic vibration will yield information on the sound

transmission.

6.2 Modal Analysis —Eigenvalue Equation for Thin Plate

In chapter 5, natural frequencies and eigenvectors (mode shapes) have been
calculated for a thin plate by EFG method. The mode shapes and the natural frequencies
are required to solve more general dynamics problems such as transient response or
response to other forms of excitation. The governing equation [39] for forced vibration
analysis in its general form is

Yo} Ko+ [kKKu}= ) (6.1)
where [M] is the mass matrix of the structure.
[C] is the damping matrix of the structure.

[K] is the stiffness matrix of the structure

{U} is the vector of displacements (The first and second derivatives of U with
respect to time are the vectors of velocity and acceleration, respectively.)
{F} is the vector of applied forces.
The force vector in Equation (6.1) is a function of time in the present study, where
F(t) is applied as a harmonic wave at a specific frequency. The natural frequencies and

corresponding mode shapes of the structure are obtained by solving the undamped

homogeneous form of Equation (6.1)

MKO}+ KJU}=0 (6.2)
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Since the plate is undergoing a harmonic vibration, the deflection U can be expressed in
the form

U = Wexp(iot) (6.3)
where W is the amplitude of the vibration. Substitution of Equation (6.3) into (6.2) leads

to the following equation
K-o’M)W =0 (6.4)
For a thin plate with n, nodes, n, is the total number of nodes which represent the panel.

The size of matrices K and M should be n, Xn,.

6.3 The Boundary Constraints- Orthogonal Transform Techniques

Using Singular Value Decomposition [32], constraints matrix H for the thin plate

obtained in chapter 4 can be decomposed as follows:

D O T
I{Zntxnl = RZntXZnt 0 0 Vngmt (65)
2n,Xn,

where R and V are orthogonal matrices, 2 . Which is diagonal matrix, and r is the rank

of H, which is the same as the number of independent constraints.

The orthogonal matrix V can be partitioned as follows:
A VA A (6.6)
Post multiplying Equation (6.5) by V,, .,

HV =H[V v

nxr n.X(n,

—r)] = [HVntxr HVn[x(n,——r)]
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0
= RZn,xZn‘ {2 = j‘ V:;xntvn(xnt (67)
0 0 2n X0,

Since V is an orthogonal matrix,

vI v, .. =1 (6.8)

nXn, ¥ B Xn,
Equation (6.7) becomes

HV =H[V, V.

. Xr nX{(m, -1} ]

= [HVntxr I_I",n[x(nt -1) ]

Do O
=R 3 100, 0 o] (6.9)
This implies
HVn,x(nt—r) =0 (6.10)

Therefore, the following orthogonal matrix transformation satisfies Equation (4.14)
W=V, oW (6.11)

Substitution of Equation (6.11) into Equation (6.4) results in

(K ~ 0> M)V, a5 W =0 (6.12)
Ve, pm, K~ sz)VntX(nt_r)W =0 (6.13)
K - oM)W =0 (6.14)

Equation (6.14) is the condensed form of eigenvalue equations, where

f( = V(nrr)xntT K Vn‘x(nt—r) (6.15)
is the condensed stiffness matrix and
M = V(ﬂ(—f)xﬂlT M an(n—r) (616)
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is the condensed mass matrix. Solving the standard eigenvalue problem in Equation

(6.14) yields the natural frequencies and mode shapes of the free vibration of thin plate.
The dimensions of the two condensed matrices K, M is (n, —r)x (n, —r1), where r

is the number of constraints. Therefore the number of eigenvalues o, is (n, —r), which

o~

correspond to (n, —r) natural frequencies and (n, —r) corresponding eigenvectors W .

The size of W is (n, ~1)x (n, ~r). The actual eigenvectors W of Equation (6.4) are

obtained by the following transformation using Equation (6.11),
W= Vn[x(nrr)w(ngr)x(nt—r) (6 17)

where W is called modal matrix, the size of which is n, X(n, —1).

6.4 Modal Superposition Method

In general, there are two ways to solve forced vibration analysis: mode
superposition and direct integration. In the present study, the former approach is adopted
for calculation. In a forced harmonic response analysis using modal superposition [40],
the first step is to compute the natural frequencies and mode shapes with the structural
damping and forces set to zero. The response of each mode is then computed for each
time interval of the enforced time history, with the user-defined damping and forces
included. Modal superposition is then applied to compute the overall system response.

Each column of W represents a mode shape corresponding to a particular natural
frequency. The mode shapes represent relative amplitudes of vibration rather than

absolute displacements, and they are orthogonal to each other. Since each mode shape

108



represents an independent motion of the structure, superimposing the independent
motions of the individual modes gives the complete motion of the structure.

The eigenvector matrix W has the following form:

n.X(n,-r)
W:[Wl’W27“',W(n[_r)] (6.18)
where W,, W,, ..., W(n,«r) are column vectors which represent mode shapes for their

corresponding natural frequencies. The size of each column vector is n, X1.
Assume the solution of Equation (6.1) in the following form:
{u}=Iwla} (6.19)
where {q} is generalized displacement vector, and the dimension of {g}is (n, —1)x1
qi
fal={" (6.20)
Qa J (@,r)a

Further, {U} is displacement vector given by

U,
fui=1.? ©621)
B J
Substituting Equation (6.19) into Equation (6.1) results in
MWqG+CWq+KWqg=F (6.22)
Premultiplying Equation (6.22) by W7

WTMW{ + WICWq+ W 'KWq=W'F (6.23)
q q
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The damping matrix C is taken to be a linear combination of mass matrix M and stiffness
matrix K, as Rayleigh damping, in the form
C=oM+BK (6.24)

where o and 3 are scalar variables.

The products WTMW , W'CW, and W KW, will become diagonal matrices because
of the orthogonality relations among the eigenvectors. Equation (6.12) can be written as
foliows:

Mdiagq + Cdiagq + Kdiagq =P (6'25)

where M C K., are diagonal matrices for mass, damping, and stiffness matrix

diag diag diag
respectively, the dimension being (n, —r)x(n, ~r). Equations (6.25) are written in the
form

m,q, +¢,4, +kiq; = p,

.mziiz'i'%qz +K,q, =D, (6.26)
M 0 me-n + Cae-ndaen T Kap-ndae-n = Parn

The above equations are a system of decoupled equations. The solution of each of these

simple ordinary differential equations can be found easily and the solution to the original

problem can be recovered by Equation (6.8).
6.5 Solution for Forced Vibration Response of Single ~-DOF System

In the above section, Equation (6.1) has been decoupled to form a system of single

degree of freedom equation (Equation (6.26)). The next step is to solve these single-DOF
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equations one by one. Each single degree of freedom system motion equation in Equation

(6.26) has the following form
mX +cX + kx = Fycosor (6.27)

The solution of this equation has two parts. For F(t) = 0, the homogeneous differential
equation whose solution corresponds physically to that of free-damped vibration is
obtained. With F(t)# 0, the particular solution that is due to the excitation in addition to
the homogeneous solution can be determined [41] .

Any damping can be expressed in terms of the critical damping by a non-

dimensional number {, called damping ratio.
{=— (6.28)
where ¢, is the critical damping given by
c, = 2m\/§ =2mo, = 2Jkm (6.29)

If <1 (underdamped case), the homogeneous solution is:

X, =€ ¥ (c, sinw,t+c,cosm,t)

(6.30)
0, =m,/1-§*
The constants ¢,, ¢, are determined from initial conditions x(0) and x(0) as
X, = g St (X(O) + 80, x(0) sinw,t+x(0)cosw,t)
W, (6.31)

The particular solution to the preceding equation is a steady-state oscillation of the

same frequency @ as that of the excitation and has the form
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X, = Xcos(wt —¢)

(6.32)

where X is the amplitude of oscillation and ¢ is the phase of the displacement with

respect to the exciting force.

X = )
V& -m?)? + (co)®
¢=tan”’ o .
- mom
X can be rewritten:
X = E, 7k

\/{1—(6‘“—#] +{2C(wﬂ>}

(6.33)

(6.34)

(6.35)

The solution of Equation (6.26) is the combination of the homogeneous solution and

particular solution given by.

X=X, +X,
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6.6 The Flowchart of Modal Superposition Method

EFG calculate the panel natural frequencies and
mode shapes

l

Use modal matrix W to decouple the forced
vibration equation

l

Solve each single degree of freedom equation
q; (i=1,..., (n, —r)) at different time steps

l

Put the solution into a matrix. The dimension of the
matrix is (n, —r) X the number of time step (NT)

l

Recover untransformed eigenvectors
{U}nthT = Wn(x(nt—r) {q (n,—1 XNT

l

Each node response at different time

Figure 6.1 The Flow of Modal Superposition Method
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6.7 The calculation of Sound Transmission Loss Through Panel

Sound Transmission Loss is a measure of the ability of a material to block sound
from passing through it. Mathematically it is defined as the ratio of the sound energy

incident on the panel to the sound energy transmitted through a panel [42] [43].

TL = 10log{%—) (6.37)

where TL represents sound transmission loss. The unit of TL is dB. I; is the incident
intensity and I, is the transmitted intensity. Since intensity and sound pressure are related

by equation
-2 (6.38)

where p is the density of medium, and c is the velocity of sound in the medium. The
product pc is termed the characteristic acoustic impedance of the medium. p is the root-

mean-square pressure. Substitution of Equation (6.38) into Equation (6.37) gives

TL = ZOlog(PlJ (6.39)
P,

where p, is the incident pressure and p, is the transmitted pressure.

When sound wave acts on the panel, the incident pressure p; is known. The panel

sets the air on the other side into oscillations. The velocity of air particles on the other
side of the panel will be equal to the panel velocity. The particle velocity and pressure are

related as

u=-" (6.40)
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Hence the pressure is given by
P =pCU (6.41)

where pis air density 1.21 kg/m’, ¢ is sound velocity 343 m/s. The displacement and

velocity of the panel will be the same as molecular velocity of the air, and hence u

mole

can be calculated by the first derivatives displacement respect to time. The displacement

has been found in previous section by EFG and modal superposition techniques.

6.8 Example — Sound Transmission Through the Clamped Panel

A fully clamped panel is excited by normal incidence sound pressure. Consider the
panel which is acted upon by the harmonic pressure, p = p,,, coswt, where p .. is the
amplitude of the pressure. The parameters of the panel are shown in Table 6.1. 7x7
nodes are used to model the fully clamped panel.

Table 6.1 The parameters of the panel

Young’s modulus E = 200x10° N/m?
Mass density p = 8000kg /m’
Poisson’s ratio v=0.3
Length a=b=10m
Thickness t=0.05m

The natural frequencies (rad/s) for fully clamped panel are shown in Table 6.2. The
responses of the panel under different kinds of conditions are presented from Figure 6.2

to Figure 6.7
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Table 6.2 Natural frequency of fully clamped plate in rad/s.

Mode Natural Frequency (rad/s)
27.325654757253
55.701036181278
56.065452937563
82.542105264401
109.80258324775
114.75830429609
127.07135635406
146.43920911744
188.82813885533

O o0 3 OV W B W NI e

Position disp {m)
Q

2

3 L i i
a 50 100 150
Time (sec)

Figure 6.2 The response of node at the centre of the panel under normal incidence cosine
sound pressure, no damping, the frequency of excitation is equal to the first natural

frequency.
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1.5

A

Position disp {m)
Q
—__
—

-1.5 L . ,
=} 50 100 150
Time (sec)

Figure 6.3 The response of node at the centre of the panel under normal incidence cosine
sound pressure, no damping, the frequency of excitation is close to the first natural

frequency.

Position disp {m)
W

)

Time (sec)

Figure 6.4 The response of node at the centre of the panel under normal incidence cosine
sound pressure, damping exists, Rayleigh damping’ coefficients a=0.001, f=0.001. The

frequency of excitation equals zero.
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-6
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Figure 6.5 The response of node at the centre of the panel under normal incidence cosine

sound pressure, damping exists, Rayleigh damping’ coefficients a=0.001. The frequency

of excitation equals to the first natural frequency.

x 107°
160

0.5

Position disp {m)
Q

-1.5

Time (sec)

Figure 6.6 The response of node at the centre of the panel under normal incidence cosine

sound pressure, no damping, the frequency of excitation is equal to the second natural

frequency.
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-2.5
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Figure 6.7 The response of node at the centre of the panel under normal incidence cosine
sound pressure, no damping, the frequency of excitation is close to the eighth natural
frequency.

Figure 6.2 to Figure 6.7 are the responses of node at the centre of the panel under
different conditions. In Figure 6.2, the response will increase without bounds when the
frequency of excitation equals to the first natural frequency. The vibration approaches the
resonance condition. The phenomenon of Figure 6.3 and Figure 6.8 is called "beat",
which occurs whenever the frequency of the excitation is close to the natural frequency of
the panel. Figure 6.4 states that once the motion is initiated, because the sign of the
damping force is always opposite to that of the velocity, the motion will cease.
Amplitudes decay with time. In Figure 6.5, although the frequency of excitation equals to
the first natural frequency, the response cannot reach to infinity because of damping.
Since the second mode does not receive any contribution from the uniform excitation on

the panel, the response in Figure 6.6 does not grow with time.
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Figure 6.8 Sound transmission loss through clamped panel

From the plot in Fig.6.8, one can observe that sound transmission loss varies with
the frequency of excitation. The maximum sound transmission through the panel takes
place at the resonance frequencies. The sound reduction between two spaces is dependant
on all of the elements of the structure separating them. The sound reduction of a panel is
frequency-selective which can be seen from the diagram above. At low frequencies the
stiffness of the material is the main controlling factor. At the resonances frequencies
major variation in sound transmission occur. At about an octave above the lowest
resonance, the mass of the wall takes over and dominates the sound reduction
performance. Here the sound transmission loss depends on the surface density of the
panel. Above the first natural frequency and except at the higher resonant frequencies, the

sound transmission loss is similar to the mass law shown in Figure 6.9.
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Figure 6.9 General Behaviour of a Panel [44]

6.9 Mass Law

Bascially, a panel attenuates the transmission of sound by the inertia of its mass. If
the wall is massive, the transmitted wave will be of the same frequency as the incident
wave, but the amplitude of the transmitted wave will be severely "damped." An
approximate relation for the transmission loss through a panel as a function of its mass
can be obtained by equating inertial forces per unit area of the wall to the difference of

the sound pressures on its two sides. Let p,,p, and p, be the acoustic pressure of the

incident, transmitted, and reflected waves, respectively. m is the mass of the panel per
unit area, v is the velocity amplitude of the vibrating wall,@ is the radian frequency of
vibration. A balance of inertial forces gives:

p; +p, —p, = mov (6.42)

However, the transmitted energy will always be small, so that
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_ immv
P; 2

(6.43)

On the side of the transmitted sound wave, the velocity of the panel will be the same as

molecules of the air, and the pressure of the transmitted wave will be

p, =pcv (6.44)
where p and c represent the mass density and speed of sound for air, respectively. The
sound reduction or transmission loss, in dB is given by Equation (6.39). Substitution
Equation (6.43) and (6.44), we have the equation:

TL = 20log,, =2 (6.45)
2pc

This is the so-called mass law. It states that sound transmission loss increases
logarithmically with (1) the mass of the wall per unit area and (2) the frequency of the
sound wave. The mass law (Figure 6.10) predicts that the transmission loss will increase

by approximately 6 dB by doubling of the surface mass or doubling of the frequency .

R N S S S S D A S R S B
Surface Mass-kyim
1000
560 ™

2

TRANSIISSION LOSS dB

P Y TN BN BT BT A 1
435 58 S8 % 2 &
FREQUENCY- Hz

Figure 6.10 Mass Law [44]
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6.10 Comparison with Mass Law

In figure 6.11, mass density is 8000kg/m’, thickness of the thinner panel is 0.05m,

thickness of the thicker panel is 0.1m. As would be expected, the greater mass of the

panel exhibits much higher transmission loss than a lighter panel. The present results are

good agreement with mass law.

Transmission Loss (dB)

CCCC Plate
150
Thisner
Plate
100
= D
0
_5[] s
_1 DU i I i 1 i i i i i i
0 20 40 &0 80 100 120 140 160 180 200

Frequency (rad/sec)

Figure 6.11 Transmission Loss for different thickness of panels
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Figure 6.12 Comparison Mass law with sound transmission loss through panel by EFG

In Figure 6.12, the mass law curve is plotted by using the formula (6.45). From this
plot, the calculated result differs from that determined theoretically from the Mass Law.
But above the fundamental frequency, in the mass controlled region, the calculated
results agree very well with mass law.

This chapter is devoted the calculation of response of panel and sound transmission
loss through panel by Element Free Galerkin (EFG) method. The results confirm that
EFG method provide a new way to sound transmission loss prediction. In the following
chapter, the results are discussed, conclusions are drawn and some improvements for

future work are suggested.
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Chapter 7
Conclusion and Recommendations

for Future Work

7.1 Conclusions

The study presents an application of the Element Free Galerkin Method in the
prediction sound transmission loss through panels.

In order to demonstrate the benefits of the EFG method, modal analysis and
harmonic forced vibration of one-dimensional and two-dimensional elastic bodies with
different boundaries have been carried out. Matlab programs are developed for rod,
beam, in-plane plate, thin plate free vibration. The results obtained are in good agreement
with closed-form solutions and FEM solution. Based on the mode shapes of thin plate by
Element Free Method (EFG) and Modal Superposition Method, Matlab program for
Sound transmission loss through panels with fully clamped boundary conditions are also
developed. The results also confirm that the computed frequencies agree well with the
Mass Law.

The clear advantages of mesh free EFG method over the FEM are: (i). no elements
are needed in shape function construction. In FEM, shape functions are created based on
elements, therefore, much work is involved in the formulation of all different types of
clements. As seen, in chapter 4, when problem is changed from rod to beam bending, we

just increase the order of polynomial base and compute the second derivatives of shape
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function to finish natural frequency and mode shape calculation. Each node only has one
variable for beam bending in EFG while in FEM each node has two variables (deflection
and slope).

(ii). Shape functions are constructed in terms of field nodes which represent the
real structure in EFG method. There is no need for node connection, and hence no non-
conforming issues in EFG, which exists on the interface between the finite elements, as
there is no element boundary in the meshfree method.

(iii). The discretized system equations by EFG are smaller than those generated by
FEM. For thin plate problem, the nodal variable in the EFG methods is only one
(deflection) compared to three in the element-based formulation (one deflection and two
rotations). The dimension of the system equations is therefore one third of that generated
using FEM.

Although the meshfree methods mentioned above offer considerable versatility,
they are inherently more computationally expensive than finite element methods because
shape function formulation by MLS is very complex and time consuming. Some
shortcomings are found in the procedure of the study of EFG method.

1. Background cells are required for the integration of system matrices. The method is not
truly mesh free.

2. Moving Least square methods interpolants do not pass through the data because the
interpolation functions are not equal to unity at the nodes. It complicates the imposition
of essential boundary conditions.

3. In the Element Free Galerkin (EFG) method, the shape functions are non-polynomial,

they are rational functions of the spatial coordinates. More importantly, the shape
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functions in EFG method are integrated without consideration of their support
boundaries, as shown in Figure 7.1. The background cells are not the best local domains
for the spatial integration [45] [46] [47] [48]. The accuracy does not always improve with
increasing Gauss order.

wy 0. 2 T m—————= Integration cell

Shape function

® Node

Figure 7.1 Spatial relationship between integration cell and support boundaries using

radial weights. Supports are shown for nodes I and J only

However, these disadvantages are so heavily outweighed by the potential savings

which are brought about by the absence of elements and the consequent avoidance of

element meshing and hence the method looks very promising indeed. Some of the
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advantages of the Element Free Galerkin (EFG) technique are compared to the finite
element method and have been brought forward.

Specific conclusions based on the present study are:

(1) The panel natural frequencies and mode shapes agree quite closely with the
closed-form analytical solution. Sometimes, the accuracy is even higher than that by
FEM. Modal analysis can be done by EFG. It is a very important first step because the
results will be used later by modal superposition method to calculate the response of the
panel.

(2) The responses of the panel under sound pressure excitation are conveniently
computed by EFG and modal superposition method.

(3) Sound Transmission Loss through panel by EFG has a good agreement with
mass law. Maximum sound transmission through the panel takes place at the resonance.
An increase in transmission loss is expected with increasing mass because the heavier the
panel the less it vibrates in response to the sound waves and hence the less sound energy
it radiates on the other side. These conclusions agree very well with mass law, and hence
the validation of the calculation of sound transmission loss based on the Element Free
Galerkin method has been confirmed. It is a new, attractive modeling and simulation

method which can predict sound transmission loss through panel reasonably well.

7.2 Recommendations for Future Work

From the above summary, improvements and future work is intended in the

following directions:
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1) In the present study, only simple geometry elastic body is considered. In order to
realize the advantages of EFG method for real practical applications, it is necessary to
apply it to more complex geometries.

2) When sound transmission loss is calculated, it was assumed that the air and panel are
uncoupled. In the future work, the acoustics can be coupled with elastic panel by Element
Free Galerkin (EFG) method.

3) Coupling Element Free Galerkin (EFG) method and finite element method and taking

EFG
i(xj) ?

advantages of both method to apply boundaries conditions. EEG shape functions ¢
however, in general do not have this property. A result of the EFG shape function failing
the selective property is that essential boundary conditions cannot be imposed directly. In
the present study, Lagrange Multipliers technique has been proposed to overcome this
inconvenience [49]. This method will enlarge the dimension of system equations for
static problem and therefore it will cost more computer time. For dynamic problems,
another way to apply boundary conditions may be explored
4) Other possible work involves the study of sound transmission through more than one
flexible panel, and also sound transmission into enclosures.

The Meshfree method is a very new exciting area of research. There exist many
problems, that offer ample opportunities for research to develop the next generation of

numerical method. Meshfree methods still require considerable improvement before they

are equal in prominence to finite element method to solve practical engineering problem.
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Appendix

A. Matlab code for rod axial vibration

% ONE DIMENSIONAL EFG PROGRAM FOR SOLVING NATRUAL FREQUENCY OF AXIAL
¥VIBRATION OF ROD

$AXTAL VIBRATION

%

% SET UP NODAL COORDINATES ALONG BAR, DETERMINE NUMBER OF CELLS

%

%$x = [0.0:.5:1.0] %THREE NODES

%$x = [0.0:.25:1.0]; %FIVE NODES

$x = (0.0:.1:1.0] % 11 NODES

x = [0.0:0.05:1.0]; % 21 NODES
%x = [0.0:0.01:1.01; % 101 NODES

nnodes = length (x)

%print (‘nnodes’) ;

ncells = nnodes-1;

%

% SET PARAMETERS FOR WEIGHT FUNCTION, MATERIAIL, PROPERITES
%

dmax = 2.0; % RATIO OF DMI TO CI
E=2.le+ll;area=0.001;rho=7800;

L=1;

noncons=sqrt {rho* (L"2) / (E));

%

% DETERMINE DMI FOR EACH NODE

%

dm = dmax* (x(2)-x(1))*ones (1, nnodes) ;

%

$SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH CELL
%

gg = zeros(l,ncells);

jac = (x(2)-x(1))/2;

weight = 2;

gg = -.2%:0.5:0.75 ; S$THREE NODES

%gg = -.125:0.25:0.875; S$FIVE NODES
%$gg = -.05:.1:0.95 ; % 11 NODES
gg = -.025:.05:0.975; $ 21 NODES
$gg = -.005:.01:0.995 ; % 101 NODES
gg(l) = 0.0;

%

% INITIALIZE MATRICES

%

k = zeros{(nnodes);

m = zeros (nnodes);

f = zeros{nnodes,l);

GG = zeros(nnodes,1l);
H=zeros (nnodes, 2) ;

%
% LOOP OVER GAUSS POINTS
%
for j = 1l:length{gg)
xg = gg(j);
%
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% DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT

%

dif = xg*ones(1l,nnodes)-x;

%

% SET UP WEIGHTS W AND DW FOR EACH NODE
%

clear w dw
for i=l:nnodes
drdx = sign(dif(i))/dm(i);
r = abs(dif(i))/dm(i);
if r<=0.5
w(i) = (2/3) - 4*r*r + 4*r~3;
dw(i) = (-8*r + 12*r"2) *drdx;
elseif r<=1.0 & r>0.5
w(i) = (4/3)-4*r+4*r*r ~(4/3)*r"3;
dw(i) = (-4 + 8*r-4*r"2)*drdx;
$elseif r>1.0
else r>1.0;
w(i) = 0.0;
dw(i) = 0.0;
end
end
%
$SET UP SHAPE FUNCTIONS AND DERIVATIVES
%
won = ones(1l,nnodes);
nul=zeros(1,nnodes-1) ;
p = [won;xl;
B = p.*{w;w];
pPp = zeros{2);
A = zeros(2);
dA = zeros(2);
for i=1:nnodes
pp = p(1l:2,i)*p(1:2,1)"; %p(1:2,1i) 2x1 loop 11 times;p(l:2,i)" 1ix2 11
loop 11 times;pp 2x2

A = A+w(l,1i) *pp ; A 2x2
da = da+dw(l, i) *pp; gw(l,i) 1xi
end

Ainv = inv(A):
pg = [1 xgl;

phi = pg*Ainv*B;

db = p.*{dw;dw];

da = -Ainv* (dA*Ainv);

dphi = [0 1]1*Ainv*B+pg* (da*B+Ainv*db);

%

% ASSEMBLE DISCRETE EQUATIONS

%

if § == 1

GG = -phi’;

H=phi;

elseif j>1

k = k+{(weight*E*area*jac) * (dphi’ *dphi);
m = m+{weight*rho*area*jac)* (phi’*phi);
end

end

k:

m;
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ENFORCE BOUNDARY CONDITION USING ORTHOGONAL TRANSFORM TECHNIQUES
SINGULAR VALUE DECOMPOSITION

H{nbxnt) =R (nbxnb) *D (nbxnt) *V(ntxnt)
PARTITION V

CONDENSE k m

kmat=V’ ((nt-r)*nt) *k*V(nt* (nt-r)) ,mmat=vV' ( (nt-r) *nt) *m*v(nt* (nt-r) )
[R,D;V] = svd(H);

$R, D, V

SR*D*V’ % show that decomposition works
Vpart=V{(:, (2+0) :nnodes) ;

kmat=Vpart *k*Vpart;
mmat=Vpart '’ *m*Vpart;

%

$SOLVE FOR EIGENVALUE

%

[v,d] = eig(kmat,mmat) ;

omiga=(sqgrt(d));

diag(omiga) ;

sort(diag(omiga)};

$NON DIMENSIONAL FREQUENCY

$sort (diag(omiga) ) *noncons
{(diag(omiga) ) *noncons

%

$PLOT MODE SHAPE

%

W=Vpart*v;

Edef=W(:,20) ;%1lmode 21node

gdef=W(:,19) ;%2mode 21lnode

def=W(:,18) ;%3mode 21node
plot(x,def,’0o’, color’,[0,0,01)

hold on

%plot(x,def, ‘color’,{0,0,0])
ycor=zeros (1, nnodes) ;

hold on

%plot (x,ycor,o’, ‘color’,[0,0,0});

hold on

$plot(x,ycor);

title(’Clamped-free rod (The First Mode Shape)’)

o0 0 00 90 o

o
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B. Matlab code for beam bending vibration

% ONE DIMENSIONAL EFG PROGRAM FOR SOLVING NATRUAL FREQUENCY OF
CANTILEVER BEAM

FBENDING VIBRATION

function main()

% SET UP NODAL COORDINATES ALONG BAR, DETERMINE NUMBER OF CELLS

$x = [0.0:.5:1.0] $THREE NODES

$x = [0.0:.25:1.0]; %FIVE NODES

$x = [0.0:.1:1.07; % 11 NODES

%x = [0.0:0.05:1.0); % 21 NODES
%x = [0.0:0.025:1.01; % 41 NODES
x = [0.0:0.01:1.01; % 101 NODES
%x = [0.0:(1/120):1.07; % 121 NODES
%x = [0.0:(1/21):1.0%; % 22 NODES
gx = [0.0:(1/11):1.0} % 12 NODES
$x = [0.0:(1/5):1.0]; $ 6 NODES
L=1;

E=2.le+l1l;

b=0.01; % thickness

h=0.1; % height

AREA=b*h; % cross sectional area in [m"2]
jp=h*h*h*b/12; % planar mom. of inertia in [m"4]
ro=7800; % density in [kg/m"3]}
noncons=sqrt (ro*AREA* (L"4) / (E*ip) ) ;

xXsquare=x.*x;

Xpower3d=x. *xsquare;

nnodes = length(x);

ncells = nnodes-1;

%

% SET PARAMETERS FOR WEIGHT FUNCTION (SUPPORT DOMAIN)
%

dmax = 2; % RATIO OF DMI TO CI{(max distance between two nodes in one
$support domain)

jac = (x(2)-x{(1)}/2;

weight = 2;

%

% DETERMINE DMI FOR EACH NODE

%

dm = dmax* (x{(2)-x(1)) *ones(1,nnodes) ;
$SET UP INTEGRATION POINTS, WEIGHTS, AND JACOBIAN FOR EACH CELL
%gg = zeros(l,ncells);

$gg = -.25:0.5:0.75  ¥THREE NODES

$gg = -.125:0.25:0.875 %FIVE NODES

$gg = —-.05:.1:0.95; % 11 NODES

%$gg = -.025:.05:0.975; % 21 NODES

%gg = -.0125:.025:0.9875; % 41 NODES

gg = -.005:.01:0.995 ; % 101 NODES

%$gg = -(1/240):(1/120):(1-1/240); % 121 NODES
%gg = -(1/42):(1/21):(1-1/42); % 22 NODES

$gg = -(1/22):(1/11):(1-1/22); % 12 NODES

%gg = -(1/10):(1/5):(1-1/10) ; % 6 NODES

% INITIALIZE MATRICES
k = zeros(nnodes) ;
m = zeros{(nnodes);
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= zeros (nnodes, 1) ;
zeros (nnodes, 2) ;

b

H=

%

% LOOP OVER INTEGRATION POINTS
%

fo

r j = l:ncells
[xqg, jacobi] =mapgauss (x,]) ;
for jg=1:2
xg = xq(3g);
Xgsquare=xg”™2;
xgpower3=xg”"3;
%
% DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT
%
dif = xg*ones(l,nnodes)-x;
%
% SET UP WEIGHTS W AND DW FOR EACH NODE
%
clear w
clear dw
clear d2w
for i=1l:nnodes
drdx = sign(dif{i))/dm(i);
$drdx = 1

r = abs(dif(i))/dm(i);

if r<=0.5

w(i) = (2/3) - 4*r*r + 4*r"3;

dw({i) = (-8*r + 12*r~2)*drdx;

d2w (i) =(-8+24*r) *drdx;

gw(i) = 1- 6*r*r + 8*r"3-3*r"4;

gdw({i) = (-12*r + 24*r~2-12*r~3)*drdx;

$d2w (i) =(-12+48*r-36*r"2) *drdx;

elseif r<=1.0 & r>0.5
w(il) = (4/3)-4*r+d*r*r -(4/3)*r"3;

dw(i) = (-4 + 8*r-4+*r~2)*drdx;
d2w (i) =(8-8*r) *drdx;
w(l) = 1- 6*r*r + 8*r"3-3*r"4;

$dw (i) = (-12*r + 24*r"2-12*r~3)*drdx;
32w (i) =(-12+48*r-36*r"2) *drdx;

$elseif r>1.0
else r>1.0;

w(i) = 0.0;
dw(i) = 0.0;
dzw{i) = 0.0;

end

end

%

$SET UP SHAPE FUNCTIONS AND DERIVATIVES
%

won = ones(l,nnodes);
nul=zeros(1l,nnodes-1);

$p = [won;xl;
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p = [won;X;xsquare];
$p [won; x;xsquare;xpower3];
3B p.*[w;w];
B = p.*[w;w;wl;
%B = p.*[w;w;w;w];
gpp = zeros{2);
$A = zeros(2):
$dA = zeros(2);
d2A = zeros(2);
pp = zeros(3);
A = zeros(3):
dA = zeros{(3);
d2Aa = zeros(3);
$pp = zeros(4);
%A = zeros(4);
$dA = zeros(4);
$d2A = zeros(4);
for i=l:nnodes
$pp = p(1:2,1)*p(l:2,1) ";
pp = p{(1:3,1i)*p(1:3,1)";
gpp = p(l:4,i)*p(l:4,1i)"; %
A = A+w(l,i)*pp ; %A 2x2
dA = da+dw(l,i) *pp; $dw(l,1) 1x1
d2A = d2A+d2w(l,1i) *pp; $A2w(l,i) 1x1
end
Ainv = inv(A);
3pg = [1 xgl;
%pg = [l xg xgsquare]l;
pg = [1 xg xgsquare ];
3pg [1 xg xgsquare xgpowerl];
phi Pg*Ainv*B;
%db = p.*[dw;dw]; %B’
db = p.*[dw;dw;dw]; %B”
$db = p.*[dw;dw;dw;dw]; %B’
$d2b= p.*[{d2w;d2w]l; %B’' "
d2b= p.*[d2w;d2w;d2w]; %$B"’
%$d2b= p.*[{d2w;d2w;d2w;d2w]; %B' "’
da = -Ainv* (dA*Ainv) ;
$dphi = [0 11*Ainv*B+pg* (da*B+Ainv*db)
dphi = [0 1 2*xg]*Ainv*B+pg* (da*B+Ainv*db) ;
%$dphi = [0 1 2*xg 3*xg"2]*Ainv*B+pg* (da*B+Ainv*db)
$SECOND DERIVATIVE OF PHI
gamal=Ainv*pg’ ;
$gamal=Ainv* ([0 1] '-da*Ainv*pg’);
gamal=Ainv* ([0 1 2*xg]‘'-dA*Ainv*pg’);
ggamal=Ainv* ([0 1 2*xg 3*xg"2]’'-dA*Ainv*pg’);
gama2=Ainv* ({0 0 2 ]‘'-2*dA*gamal-d2A*gamal) ;
$gama2=Ainv* ([0 0 2 6*xgl]’-2*dA*gamal-d2A*gamal) ;
$gamal2=Ainv* ([0 0]'-2*dA*gamal-d2A*gamal) ;
d2phi=(gama2’) *B+2* (gamal’) *db+ (gamal ‘) *d2b;
%
$ ASSEMBLE DISCRETE EQUATIONS
%
if j == 1

]

t

It

1

H=[phi;dphi];
elseif j>1
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k
m

il

k+E*jp*weight*jac* (d2phi’ *d2phi) ; $bending
m+ro*AREA*weight*jac* (phi’ *phi) ;

1t

end % if elseif
end %jg
end %3
ENFORCE BOUNDARY CONDITION USING ORTHOGONAL TRANSFORM TECHNIQUES
SINGULAR VALUE DECOMPOSITION
H(Z2nbxnt) =R (2nbx2nb) *D(2nbxnt) *V{ntxnt)
PARTITION V
CONDENSE k m
kmat=V’ ( (nt-r) *nt) *k*V(nt* (nt-xr) ) ,mmat=V’' ( (nt-r) *nt) *m*vV(nt* (nt-xr) )
[R,D,V] = svd(H);
%R, D, V
R*D*V’ ; % show that decomposition works
Vpart=V{:, 3:nnodes) ;
kmat=Vpart’ *k*Vpart;
mmat=Vpart ' *m*Vpart;

o @ oP 9P o of

%

$SOLVE FOR EIGENVALUE
%

[v,d] = eig(kmat,mmat) ;
v

omiga=(sqrt(d));
sort{(diag(omiga)) ;
sort{(diag(omiga) ) *noncons

%

$PLOT MODE SHAPE

%

W=Vpart*v;
$def=W(:,9)%1lmode llnode
$def=W(:,8)%2mode llinode
$def=W(:,7)%3mode llnode
$def=W(:, 6)%4mode 1llnode
$def=W{:,5)%5mode llnode

$def=W(:,99);%$1lmode 10lnode
%def=W(:,98)%2mode 10lnode
$def=W(:,97)%3mode 101lnode
$def=W(:,96)%4mode 10lnode
def=W(:,95)%5mode 10lnode

plot(x,def,o’, ‘color’,[0,0,0])

hold on

$plot(x,def, ‘color’,{0,0,0])
ycor=zeros (1, nnodes) ;

hold on

$plot (x,ycoxr, ‘0‘, "color’,[0,0,01);

hold on

$plot(x,ycor);

title(’'Cantilever Beam (The Fifth Mode Shape) )

function [xg,jacobil=mapgauss(x,]j)
index=0;

nceg(l)=-1/sqgrt(3) ;
ncg(2)=1/sqrt(3);

FSWEIGHTS
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ncw{l)=1;
ncew{2)=1;
one=ones(1l,2);
ksai=[-1,1};
xg = zeros(l,2);
for i=1:2
index=index+1;
ksaig=necg(i);
N=0.5* (one+ksaig*ksai);
jacobi={x(Jj+1)-x(3))/2;
xtwo={x(3),x{(3+1)1;
xq (i) =N*xtwo’;
end
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C. Matlab code for in-plane plate vibration

$FREE VIBRATION-DYNAMIC PROBLEM
$IN ~PLANE VIBRATIONOF PLATES

% 19/12/2002

$CANTILEVER PLATE

$SQUARE DOMAIN

function main()

clear;

%

% DEFINE BOUNDARIES/PARAMETERS
%

Lplate = 100;

Dplate= 10;

young =2.le4;

nu=0.3;

density=8e-10;

thickness=1;

glplate = 60.96;

$Dplate= 15.24;

gyoung =34.474e9;

%nu=0.11;

$density=568.2;

$thickness=0.2289;

%

% PLANE STRESS DMATRIX

%

Dmat = (young/{(l1-nu”2))*{1 nu O;nu 1 0;0 0 (l-nu)/2];
%

% SET UP NODAL COORDINATES

%

ndivl =50

ndivw = 5

[x,conn,numcell, numnod] = mesh(Lplate,Dplate,ndivl,ndivw)};
$x

numnod

%

% DETERMINE DOMAINS OF INFLUENCE - UNIFORM NODAL SPACING
%

dmax=3.5

xindiv = Lplate/ndivi;

vindiv = Dplate/ndivw;

dm{1, 1 :numnod)=dmax*xindiv*ones (1, numnod) ;

dm (2, 1l:numnod) =dmax*yindiv*ones (1, numnod) ;

%

% SET UP QUADRATURE CELLS

%

ndivlg =50;

ndivwg = 5;

[xc,conn,numcell,numg] = mesh(Lplate,Dplate,ndivlqg,ndivwq) ;
%xc

% SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH CELL

intpoint = 4
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$ intpoint= 2;
%intpoint = 1;
[gauss] = gauss2 (intpoint);
tnumint = numcell*intpoint”2
gs = zeros(4, tnumint) ;
[gs] = mapgauss(xc,conn,gauss,numcell) ;
yy=0;
k zeros (numnod*2) ;
m = zeros (numnod*2) ;
$ LOOP QVER GAUSS POINTS TO ASSEMBLE DISCRETE EQUATIONS
for gg=gs
yy=yy+l;
g9g:
gpos = gg(l:2);
weight = gg(3);
jac = gg(4);
index = zeros(l,2*numnod) ;
[phi,dphix,dphiy] = shape(gpos, dmax,x,numnod, dm) ;
Nmat=zeros (2, 2*numnod) ;
Bmat=zeros (3, 2*numnod) ;
for j=1:numnod
Nmat(1:2, (2*j-1):2*7)
Bmat (1:3, (2*3j-1):2*7)
end
for i=1:numnod
index(2*i-1) = 2*i-1;
index(2*i) = 2*i;
end
k(index, index) =
k(index, index) + (thickness* (weight*jac) *Bmat’' *Dmat*Bmat) ;
m(index, index) =
m(index, index) +{thickness*density* (weight*jac) *Nmat’' *Nmat) ;
end
%
$ DETERMINE NODES ON BOUNDARY
%
indl = 0;ind2 = 0;
for j=1:numnod
if(x(1,3)==0.0)
indl=indl+1;
nnu(l,indl) = x(1,73);
nnu(2,indl) = x{(2,3);
end
if(x(1,j)==Lplate)
ind2=ind2+1;

H

{phi(j) 0;0 phi(j)];
[dphix(3j) 0;0 dphiy(j);dphiy(j) dphix(j)]:

nt(1l,ind2) = x(1,3);
nt(2,ind2) = x{(2,3);
end
end

lthu = length(nnu);

ltht = length(nt);

f = zeros(numnod*2,1);

%

$SET UP GAUSS POINTS ALONG TRACTION BOUNDARY
%

ind=0;

gauss=gauss2 (intpoint) ;
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for i=1:(ltht-1)
jcob = abs ({nt(2,i+1)-nt(2,1i))/2);
$ygb Y DRIECTION QUADRATURE POINT ON BOUNDARY MAPPING FROM NATRUAL
COORDINATRES
$THE NUMBER OF POINTS IS guado
{ygbl=mapgptbdry(nt, i, intpoint) ;
for j=l:intpoint
ind = ind+1;

$X

gst(1,ind)=nt(1l,i);

%Y

gst (2,ind) =ygb(3j);
SWEIGHTS

gst (3,ind) =gauss(2,3);
$JACOBI
gst{4,ind)=jcob;

end

end

gst;

%

$SET UP GAUSS POINTS ALONG DISPLACEMENT BOUNDARY
%

gsu=gst;

gsu;

gsu(l,l:ind)=zeros(1,ind);

gk = zeros(1l,2*1thu);

%

% INTEGRATE G MATRIX DISPLACEMENT BOUNDARY
%

GG = zeros (numnod*2, lthu*2);

ind1l=0;ind2=0;

for i=1:(1lthu-1)

indl=indl+1;

ml = indl; m2 = mi+1;

vl = nnu(2,ml); v2 = nnu(2,m2);

len = yvl-v2;

for j=l:intpoint

ind2=ind2+1;

gpos = gsu(l:2,ind2);

weight = gsu(3,3);

jac = gsu{4.,i);

xpl gpos{1l,1);

ypl = gpos(2,1);

$LAGRANGE MULTIPLIERS INTERPOLATICN FUNCTION
N1l = (gpos(2,1)-y2)/len; N2 = 1-Ni;

$THE NUMBER OF NODES IN THE SUPPORT DOMAIN OF THE QUADRATURE ON THE
BOUNDARY

$v = domain (gpos,x,dm, numnod) ;

$NODE SHAPE FUNCTION IN ONE SUPPORT DOMAIN
[phi,dphix,dphiy] = shape(gpos, dmax,x,numnod, dm) ;
%L, = length(v);

for n=1:numnod

Gl -weight*jac*phi(n)*{N1 0;0 N1};

G2 = -weight*jac*phi(n)*[N2 0;0 N2J;
cl=2*n-1;c2=2*n;¢c3=2*ml-1;cd4=2*ml;
c5=2*m2~1;c6=2*m2;
GG(cl:c2,c3:cd)=GG(cl:c2,c3:cd)+ Gl;

1

i
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GG(cl:c2,ch:c6)=GG(cl:c2,c5:c6)+ G2;
end

H
%
% ENFORCE BOUNDARY CONDITION USING ORTHOGONAI: TRANSFORM TECHNIQUES
% SINGULAR VALUE DECOMPOSITION
% H{2nbx2nt)=R{(2nbx2nb) *D (2nbx2nt) *V{2ntx2nt)
% PARTITION V
% CONDENSE k m

% kmat=V’ ((2nt-r) *2nt) *k*V(2nt* (2nt-r)) ,mmat=v’ ( (2nt-~

r)*2nt) *m*V(2nt* (2nt-1))

%

[RR,Diag,VV] = svd(H);

%$RR, Diag, VV ;

$Diag;

$RR*Diag*VV’ ; % show that decomposition works
FVpart=Vvv(:,11l:numnod*2);

Vpart=vv(:, (2*1thu+l) :numnod*2} ;

kmat=Vpart’*k*Vpart;

mmat=Vpart '’ *m*Vpart;

%

$SOLVE FOR EIGENVALUE

%

$[evec,evall = eig(kmat,mmat, 'qgz’);
[evec,eval] = eig(kmat,mmat);

omiga=(sqgrt(eval));
selfre=sort(diag(omiga));
sort(diag{omiga) )/ (2*pi);
(diag(omiga) )/ (2*pi)

%

$MODE SHAPE POSSESS ORTHOGONALITY
%

W=Vpart*evec; FEIGENVECTOR

mdiag=W’ *m*W;
selmdiag=(diag(mdiag));
smdiag=sort {diag(mdiag));
kdiag=W’*k*W;
selkdiag=(diag{kdiag));
skdiag=sort(diag(kdiag)):
rankm=rank (mdiag}) ;
%
$VERIFY IF THE NATRUAL FREQUENCIES IS CORRECTLY COMPUTED
%
for i=l:rankm
omigayy (i) =sqrt (selkdiag(i)/selmdiag(i));
end
colomigayy=omigayy’;
%
$SORT NATRUAL FREQUENCIES AND REMEMBER THEIR ORIGINAL INDEX
%
ocolomigayy=colomigayy; %ocolomigayy store colomigayy since the member
of colomigayy will change seguence
for last=rankm:-1:1
[largest]=indexoflargest(colomigayy, last) ;
temp=colomigayy(largest);
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colomigayy(largest)=colomigayy (last);
colomigayy{last) =temp;
end

for i=l:rankm
for j=1:rankm

if (colomigayy (i) == ocolomigayy(3j))
oriindex(i)=3;
end
end

end
colomigayy;
oriindex;
%

$RE-ARRANGE W MATCH TO ASCENDING NATURAL FREQUENCIES

%

for i=1:rankm
sortW(:,i)=W(:,oriindex(i));

end

W;

sortW;

%

$POST-PROCESSING Cell 3x2

%

xpost=0:(100/3):100;

ypost=-5:(10/2):5;

index=ndivl+1;

z=sortW(:,1)’

%

¥select x displacement, y displacement

%

for i=1:((ndivli+1)* (ndivw+1l))
xdisp(i)=z(2*i-1};
ydisp(i)=z(2*i);

end

xdisp

ydisp

xcor=x(1, :)

ycor=x{2,:)

xplus=xdisp+xcor

yvplus=ydisp+ycor

zzzz=zeros (1, (ndivl+1l) * (ndivw+1}) ;

for i=1:(ndivli+1)* (ndivw+1)

plot3 (xplus(i),yplus(i),zzzz (i), ' *")

end

$view(45,45)

$view(-45,45)

$shading interp

$omiga=(sgrt(d));

%$sort (diag({omiga))

$NO CONSTRAINED ,FREE EDGES

$[{v,d] = eig(k,m);

gomiga=(sqgrt{d));

$sort(diag(omiga))

$ MESH GENERATION PROGRAM FOR 2D BEAM IN PLANE BENDING
functionix, conn,numcell,numg] = mesh(length,height,ndivl, ndivw)
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numcell= ndivw*ndivl;

numg = (ndivl+1) * (ndivw+1);
zzzz=zeros (1, (ndivl+l) * (ndivw+l) ) ;

% SET UP NODAL COORDINATES

for i = 1:(ndivli+1)

for j = 1l:(ndivw+l)

x(1, ((ndivw+1)*(i-1) +3j))= (length/ndivl)*(i-1);
x{(2, ((ndivw+l)*(i-1) +j))= ~(height/ndivw)*(j-1)+height/2;
plot(x (1, ((ndivw+1)*(i-1) +3)).,.x(2, ({(ndivw+1l)*(i-1)
+3j)), 0", ‘color, (0,0,01)

hold on

xs(J)=x(1, ((ndivw+1)*(i-1) +3));

ys (3)=x(2, ((ndivw+1)*(i-1) +3));

end

hold on

$plot(xs,ys, ‘coler’,{0,0,0})

end

for j = 1:(ndivw+l)

for i = 1:(ndivl+1)

xplot (1, ((ndivw+1)*(i-1) +3j))= (length/ndivl)*(i-1);
xplot (2, ( (ndivw+1l)*(i-1) +3))= -(height/ndivw)*(j-1)+height/2;
xplots(i)=x(1, ({ndivw+1)*(i-1) +3));

yplots (i) =x(2, ({ndivw+1) *(i-1) +3));

end

hold on

$plot (xplots,yplots, ‘color’,[0,0,0])

end

% SET UP CONNECTIVITY ARRAY

for j = l:ndivl

for 1 = l:ndivw

elemn = (j-1)*ndivw + 1i;

nodet (elemn,l) = elemn + (j-1);

nodet (elemn,2) = nodet(elemn,l) + 1;
nodet (elemn, 3) = nodet{(elemn, 2)+ndivw+1;
nodet (elemn,4) = nodet{elemn,3)-1;

end

end

conn = nodet’;

% This function returns a matrix with 4 gauss points and their weights
% in natural coordinates
function v = gauss2 (k)

if k==4

v(l,1l) =-.861136311594052575224;
v(l,2) =-.339981043584856264803;
v(1l,3) = -v(1,2);

v{l,4) = -v{(1,1);

v{2,1) =.347854845137453857373;
v{2,2) =.652145154862546142627;
v{2,3) = v(2,2);

v(2,4) = v(2,1);

elseif k==2

v(l,1) =-1/sqgrt{(3);

v(1l,2) =1/sqgrt(3);

v{2,1) =1;

v(2,2) =1;
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else

v(l,1) =0;
vi{2,1) =2;
end

$MAP GAUSS POINTS FROM NATURAL COORDINATES TO PHYSICAL COORDINATES

function {gs] = mapgauss (xc,conn,gauss,numncell)

index=0;

one = ones(1,4);

psid = [-1,+1,+1,-1]; etad = [-1,-1,+1,+1];

1 = size(gauss);

1 =1(2);

for e=1:numcell

% DETERMINE NODES IN EACH CELL

for j = 1:4
je=conn(j,e);xe(j)=xc(l,je):ve(j)=xc(2,je);
xe;
ve;

end

for i=1:1

for j=1:1

index = index+1;

eta=gauss(1l,i);psi=gauss(1,j);

%eta

$psi

N = .25* (one+psi*psid) . * (one+eta*etad);

NJpsi=.25*psid. * (one+eta*etad) ;

NJeta=.25*%etad. * {one+psi*psid) ;

xpsi=NJdpsi*xe’ ;vpsi=NIpsi*ye’;xeta=NJeta*xe’;yeta=NJeta*ye’;

jcob=xpsi*yeta-xeta*ypsi;

xq = N*xe’';yqg = N*ye’;

gs(l,index) = xq;

gs(2,index) = vg;

gs(3,index) = gauss(2,1)*gauss(2,3]);
gs(4,index) = jcob;
$plot(xg,vqg, *, 'coloxr’,[0,0,0])
hold on

end

end

gclear xe % vy
$clear ye % vy
end

$MOVING LEAST SQUARE METHOD TO CONSTRUCT SHAPE FUNCTION
function [phi,dphix,dphiy] = shape(gpos,dmax,x,numnod, dm)
won = ones(l,numnod) ;

p = [won;x];
dif = gpos*won-x;
t = dm/dmax;

[w, dwdx, dwdy]. = wgt (dif,t,x,dmax,dm) ;
B = p.*[w;w;wl;

pp = zeros(3);

A = zeros(3);

= zeros(3);

zeros (3):

g¥
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for i=1:numnod

pp = p(1:3,1)*p(1:3,1i)";

A = A+w(l,1)*pp;

dAx = dAx+dwdx (1l,1i) *pp;

dAy = dAy+dwdy(l,1i) *pp:

end

Ainv=inv(34);

pg=[1 gpos’'];

phi=pg*Ainv*B;

dBx=p. * [ dwdx; dwdx ; dwdx] ;

dBy=p. * [dwdy; dwdy; dwdy] ;

consx=-Ainv* (dAX*Ainv) ;

consy=-Ainv* (dAy*Ainv) ;

dphix = [0 1 0]*Ainv*B4pg* (consx*B+Ainv*dBx) ;
dphiy = [0 0 1]*Ainv*B+pg* (consy*B+Ainv*dBy) ;

i

FWEIGHT FUNCTION

function [w,dwdx,dwdy] = wgt(dif, t,v,dmax, dm)
1 = length(v);

for i=1:1

drdx sign(dif(1,i))/dm(1,1i);

drdy = sign(dif(2,i))/dm(2,1);

rx = abs(dif(l,i))/dm(l,1i);

ry = abs(dif(2,1i))/dm(2,1);

if 1>rx>0.5

$wx = {(4/3)~-4*rx+4*rx*rx -(4/3) *rx"3;
$dwx = (-4 + 8*rx-4*rx”2)*drdx;

1t

wx = 1- 6*rx"2 + 8*rx"3-3*rx"4;
dwx = (-12%rx + 24*rx"2-12*rx"3) *drdx;

elseif rx<=0.5
gwx = (2/3) - 4*rx*rx + 4*rx"3;
$dwx = (-8*rx + 12*rx"2)*drdx;

wx = 1- 6*rx™2 + 8*rx"3-3*rx"4;
dwx = (-12*rx + 24*rx"2-12*rx"~3) *drdx;

else

wx=0;

dwx=0;

end

if 1>ry>0.5

Swy = (4/3)-4d*ry+4*ry*ry -{(4/3)*xy"3;
$dwy = (-4 + 8*ry-4*ry"2) *drdy;

wy = 1- 6*ry”2 + 8*ry"3-3*ry"4;
dwy = (-12*ry + 24*ry*2-12*ry”3) *drdy;

elseif ry<=0.5
Swy = (2/3) - 4*ry*ry + 4*ry"3;
$dwy = (-8*ry + 12*ry~2)*drdy;

wy = 1l- 6*ry"2 + 8*ry"3-3*ry~4;
dwy = (-12*ry + 24*ry"2-12*ry~3)*drdy:
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else

wy=0;

dwy=0;

end

wi{i) = wx*wy;
dwdx (1) wy *dwx ;
dwdy (1) wx*dwy ;
end

H

$MAP GAUSS POINTS ON BOUNDARY FROM NATURAL

COORDINATES

function {ygbl=mapgptbdry(nt,j,quadpt)
ncg(l)=-0.861136311594052;
ncg(2)=-0.339981043584856;
ncg(3)=0.339981043584856;
ncg(4)=0.861136311594052;

nt;

index=0;

one=ones(1,2);

ksai=[-1,11;

yvab = zeros(l,quadpt);

for i=1l:quadpt

index=index+1;

ksaig=ncg{i);

N=0.5* (one+ksaig*ksai) ;
jacobi=(nt{2,3+1)-nt(2,3))/2;
xtwo=[{nt(2,7),nt(2,3+1)1;

ygb (i) =N*xtwo";

end

%SORT
function [index]=indexoflargest(a,size)
indexsofar=1;
for currentindex =2:size
if (a{currentindex)>a{indexsofar))
indexsofar=currentindex;
end
end
index=indexsofar;
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D. Matlab code for sound transmission loss through the panel

% 05/03/2003

%

$Forced vibration to Harmonic Excitation F(t)=Fo*cos(Omega*t)
zFULLY CLAMPED PLATE

:FLEXURAL VIBRATIONOF OF PLATES

:SQUARE DOMAIN

ZWEIGHT FUNCTION W=1-6xr"2+8r"3-3r*4 1>r>0;0 r>1

zGAUSS POINT 1, 2, 4, 6, 9 IN EACH CELL(2 DIMENSIONAL CELL)
ZBOUNDARY EACH CELL{l DIMENSIONAL CELL) 4 GAUSS POINTS

%

function main()
clear all;

%

$ DEFINE BOUNDARIES/PARAMETERS

%

$DATA FROM PAPER :JOURNAL OF 'SOUND AND VIBRATION (2002) 255(2),261-279
$Lplate =

4;
FWplate= 4;
$young =20.0e9;
%nu=0.3;
%density=3000;
%thickness=0.2;
$DATA FROM Dr.LIU BOOK MESHFREE METHOD
Lplate = 10;
Wplate= 10;
young =2.0ell;
nu=0.3;
density=8000;
thickness=0.05;
%
$LOAD
E
g=1;
%
$TIME STEP
%
steps=100;
dtime=0.5;
%
$RAYLEIGH DAMPING COEFFICIENTS
%
alfa=0.00;%k
beta=0;%m
%
$FREQUENCY OF FORCE
%
% Omega=1
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fprintf ('THE SHAPE OF SUPPORT IS SQUARE ‘)

: PLANE STRESS DMATRIX
§0=young*(thickness“3)/(l2*(1—nu“2));

Dmat = (young/(1l-nu~2)}*[{1 nu O;nu 1 0;0 0 (l-nu)/21;
: SET UP NODAL COORDINATES

%

ndivl =6;ndivw =6;

[x,conn, numcell, numnod] = mesh(Lplate,Wplate,ndivl,ndivw);
fprintf (' THE NUMBER OF TOTAL NODES’)
nunmnod

Xxsquare=x. *x;

xy=x(1,:).*x(2,:);

%

%6 POLYNOMIAL TERMS 1 X Y X*2 yv"2 XY
%

X;

nuranod ;

%

$ DETERMINE DOMAINS OF INFLUENCE - UNIFORM NODAL SPACING
%

fprintf { “dmax’)

dmax=4

xindiv = Lplate/ndivl;

vindiv = Wplate/ndivw;

dm (1, 1 :numnod)=dmax*xindiv*ones (1, numnod) ;

dm {2, 1:numnod) =dmax*yindiv*ones (1, numnod) ;

%

% SET UP QUADRATURE CELLS

%

ndivlg =6;ndivwg =6 ;

$fprintf (' THE NUMBER OF CELLS’)

gnumcell

[xc,conn,numcell, numg] = mesh{Lplate,Wplate,ndivlg,ndivwg) ;
%

% SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH CELL
%

$intpoint = 9;

%intpoint = 6;

intpoint = 4;

% intpoint= 2

%intpoint = 1;

[gauss] = gauss2{intpoint);

tnumint = numcell*intpoint”"2;

gs = zeros(4,tnumint) ;

[gs] = mapgauss (xc,conn,gauss,nuncell);

vy=0;

k = zeros{numnod);

m = zeros (numnod) ;

force=zeros (numnod, 1) ;

%

% LOOP OVER GAUSS POINTS TO ASSEMBLE DISCRETE EQUATIONS
%

for gg=gs

Yy=yy+1;
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gg;

gpos = gg{l:2);

gposquare=gg(1:2).*gg{1l:2);

gposxy=gg (1) *gg (2} ;

welght = gg(3)};

jac = gg(4);

index = zeros(l,2*numnod) ;
[phi,dphix,dphiy,d2phix,d2phiy,d2phixy] =

shape (gpos, gposquare, gposxy, dmax, X, Xsquare, Xy, numnod, dm) ;
Nmat=zeros (1, numnod) ;

Bmat=zeros (3, numnod) ;

for j=1:numnod

Nmat (1,3) = [phi(j)]:

Bmat (1:3,37) = [d2phix(j);d2phiy(j);2*d2phixy(j}]:
end

k=k+ ( {thickness~3/12) * (weight*jac) *Bmat’ *Dmat*Bmat) ;
m=m+ (thickness*density* (weight*jac) *Nmat ' *Nmat) ;
force=force+ (weight*jac) *Nmat’ *qg;

end

force;

%

% DETERMINE NODES ON BOUNDARY

%

$LEFT AND RIGHT

%

$LEFT EDGE

indl = 0;ind2 = 0;

for j=1:numnod

if(x{(1,3)==0.0)

indl=indl+1;

nleft(1l,indl) = x(1,3);
nleft(2,indl) = x(2,3);
end

$RIGHT EDGE
if(x(1,j)==Lplate)
ind2=ind2+1;

nright(1l,ind2) = x{(1,3):
nright(2,ind2) = x(2,3);
end

end

lieft = length{nleft);
lright = length(nright);
%

$TOP AND BOTTOM

%

%$TOP EDGE

ind3 = 0;ind4 = 0;
for j=1:numnod
1f(x(2,3)==Wplate/2)
ind3=ind3+1;
top(l,ind3) = x(1,3);
top(2,ind3) = x{(2,3);
end

$BOTTOM EDGE
1f(x(2,3j)==-VWplate/2)
ind4=ind4+1;
bottom(1l,ind4) = x(1,3):
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bottom(2, ind4) = x(2,3);
end
end
ntop=top(:,3: (ndivl-1));
nbottom=bottom(:,3: (ndivl-1));
$ntop=top;
$nbottom=bottom;
ltop = length{ntop);
1bottom = length{(nbottom) ;
%
$SET UP GAUSS POINTS ALONG RIGHT BOUNDARY
%
direction=2; %y
intpointb=4;
ind=0;
gauss=gauss? (intpointb) ;
for i=1:{(lright-1)
jcob = abs((nright(2,i+l) -nright(2,1i))/2);
$yqgb Y DRIECTION QUADRATURE POINT ON BOUNDARY MAPPING FROM NATRUAL
COORDINATRES
$THE NUMBER OF POINTS IS quado
[vab] =mapgptbdry (nright, i, intpointb,direction) ;
for j=l:intpointb
ind = ind+1;
%X
gsright (1, ind)=nright(1,1i);
%Y
gsright (2, ind)=ygb{(j);
SWEIGHTS
gsright (3, ind)=gauss(2,3);
$JACOBI
gsright (4, ind)=jcob;
end
end
gsright;
%
$SET UP GAUSS POINTS ALONG LEFT BOUNDARY
%
gsleft=gsright;
gsleft;
gsleft(l,l:ind)=zeros (1, ind)};
%
$SET UP GAUSS POINTS ALONG TOP BOUNDARY
%
direction=1;
intpointb=4;
ind=0;
gauss=gauss2 (intpointb)} ;
for i=1:(ltop-1)
jcob = abs((ntop(l,i+l)-ntop(1l,i))/2);
$yagb Y DRIECTION QUADRATURE POINT ON BOUNDARY MAPPING FROM NATRUAL
COORDINATRES
$THE NUMBER OF POINTS IS quado
[xgbl=mapgptbdry (ntop, i, intpointb,direction) ;
xgb;
for j=1:intpointb
ind = ind+1;
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X

gstop(1l,ind) =xgb(3j);

%Y

gstop(2,ind)=ntop(2,1);

$WEIGHTS

gstop(3,ind)=gauss(2,3);

$JACOBI

gstop(4,ind)=jcob;

end

end

gstop;

%

FSET UP GAUSS POINTS ALONG BOTTOM BOUNDARY
%

gsbottom=gstop;

gsbottom;

ind;
gsbottom(2,1:ind)=~gstop(2,1:ind) ;
%

% INTEGRATE G MATRIX DISPLACEMENT BOUNDARY
GG = zeros (numnod, 2*numnod) ;

GGL = zeros (numnod, 2*numnod) ;
GGR = zeros (numnod, 2*numnod) ;
GGT = zeros (numnod, 2*numnod) ;
GGB = zeros (numnod, 2*numnod) ;
%

$CONSTRAIN THE LEFT EDGE

%

indl=0;ind2=0;

for i=1:(1lleft-1)%LOOP FOR BOUNDARY CELL

indl=indl+1;

ml = indl; m2 = ml+1;

vl = nleft(2,ml); v2 = nleft(2,m2);

len = yl-v2;

for j=1l:intpointb $LOOP FOR GAUSS POINT IN EACH CELL
ind2=ind2+1;

gposb = gsleft(1:2,ind2);
gposbsquare=gsleft (1:2,ind2) .*gsleft(1:2,ind2);

gposbxy= gsleft(l,ind2)* gsleft(2, ind2);

weight = gsleft(3,7j):

jac = gsleft(4,j);

%LAGRANGE MULTIPLIERS INTERPOLATION FUNCTION

N1l = (gposb(2,1)-vy2)/len; N2 = 1-N1;
{phi,dphix,dphiy,d2phix,d2phiy,d2phixy] =

shape (gposb, gposbsquare, gposbxy, dmax, x, xsquare, xy, numnod, dm) ;
for n=1:numnod

Gl = -weight*jac*N1*[phi(n),dphix(n)]‘;

G2 = -weight*jac*N2*[phi(n),dphix(n)]"’;

cl=n;
c3=2*ml-1;
cd=2*ml;
c5=2*m2-1;
c6=2*m2;
$GG(cl,c3:c4
$GG(cl,c5:c6
GGL{cl,c3:c4d
GGL{(cl,c5:c6

=GG(cl,c3:cd)+ Gl ;
=GG(cl,c5:cH)+ G2°;
GGL{(cl,c3:cd)+ G1*;
=GGL{cl,c5:c6)+ G2°;

— S
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end
end
end
GGL;
%
$CONSTRAIN THE RIGHT EDGE
%
indlr=0;ind2r=0;
for i=1:(lright-1)
indlr=indlr+1;
ml = indlr; m2 = ml+1;
nright;
nleft;
vl = nright(2,ml};
v2 = nright(2,m2);
len = yl-y2;
gsright;
for j=l:intpointb
ind2r=ind2r+1;
rgposb = gsright(1l:2,ind2r);
rgposbsquare=gsright (1:2,ind2r) . *gsright (1:2,ind2r) ;
rgposbxy= gsright(1l,ind2r)* gsright(2, ind2r);
rweight = gsright(3,3):
rjac = gsright(4,3):
$LAGRANGE MULTIPLIERS INTERPOLATION FUNCTION
Nlr = (rgposb(2,1)-y2)/len; N2r = 1-Nlr;
[phi,dphix,dphiy, d2phix, d2phiy,d2phixy] =
shape (rgposb, rgposbsquare, rgposbxy, dmax, x, xsquare, Xy, numnod, dm) ;
for n=1:numnod
Glr = -rweight*rjac*Nlr*[phi(n),dphix(n)]‘;
G2r = -rweight*rjac*N2r*[phi(n),dphix(n)]’;
clr=n;
c3r=2*(ml+ndivl* (ndivw+1))
cdr=2* (ml+ndivl* (ndivw+1})
cSr=2* (m2+ndivl* (ndivw+1))
cbr=2* (m2+ndivl* (ndivw+1l));
$GG(cl,c3:c4)=GG(cl,c3:cd)+ G1°;
%$GG(cl,c5:¢c6)=GG(cl,c5:c6)+ G27;
GGR(clr,c3r:cdr)=GGR{clr,c3r:cdr)+ Glr’;
GGR(clr,c5r:cbr)=GGR{clr,c5r:cbr)+ G2r';
end
end
end
GGR;
%
%CONSTRAIN THE TOP EDGE
%
indl=0;ind2=0;
mtl=2;
$mtl1=0;
for i=1:(ltop-1)
indl=indl+1;

-1;

[

1;

mtl=mtli+1;
mE2=mtl+1;
ml = indl; m2 = ml+l;
x1 = ntop(l,ml);
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x2 = ntop{(l,m2);

len = x1-x2;

ntop;

gstop;

for j=1l:intpointb

ind2=ind2+1;

gposb = gstop(l:2,ind2);
gposbsquare=gstop(1:2,ind2) .*gstop(l:2,ind2);
gposbxy= gstop(l,ind2)* gstop(2,ind2);
weight = gstop(3,3);

jac = gstop(4,3);

$LAGRANGE MULTIPLIERS INTERPOLATION FUNCTION
N1 = (gposb(l,1l)-x2)/len; N2 = 1-N1;
[phi,dphix, dphiy,d2phix,d2phiy,d2phixy] =
shape (gposb, gposbsquare, gposbxy, dmax, X, xsquare, xy, numnod, dm) ;
for n=1:numnod

Gl = -weight*jac*N1*{phi(n),dphiy{(n)l’;

G2 = -weight*jac*N2*[phi{n),dphiyv(n)]’;
cl=n;%ROW INDEX
c3=2*((ndivw+1)*mtl-ndivl)-1;%COLUMN INDEX
cd=2*((ndivw+1) *mtl-ndivl) ; $COLUMN INDEX
c5=2*((ndivw+1) *mt2-ndivl)-1; %$COLUMN INDEX
c6=2*{ (ndivw+1l) *mt2~-ndivl) ; $COLUMN INDEX
$GG(cl.c3:¢c4)=GG(cl,c3:cd)+ G1’;
$GG(cl,c5:¢c6)=GG(cl,ch:c6)+ G2”7;
GGT(cl,c3:¢c4)=GGT(cl,c3:cd)+ G1’;
GGT(cl,c5:¢c6)=GGT(cl,ch:c6)+ G2';

end

end

end

GGT;

%

$CONSTRAIN THE BOTTOM EDGE

%

indl=0;ind2=0;

mbl=2;

$mbl=0;

for i=1:(lbottom-1)
indl=indl+1;
mbl=mbl+1;
mb2=mbl+1;
ml = indl; m2 = ml+1;
x1 = nbottom(l,ml); x2 = nbottom(l,m2);
len = x1-%x2;
for j=l:intpointb
ind2=ind2+1;
gposb = gsbottom(1l:2,ind2);
gposbsquare=gsbottom(1:2,ind2) . *gsbottom(1:2,ind2) ;
gposbxy= gsbottom(1l,ind2)* gsbottom(2,ind2);
weight = gsbottom(3,3]):
jac = gsbottom(4,j);
$LAGRANGE MULTIPLIERS INTERPOLATION FUNCTION
N1 = (gposb(l,1)-x2)/len; N2 = 1-N1;
[phi,dphix,dphiy,d2phix,d2phiy,d2phixy] =
shape (gposb, gposbsquare, gposbxy, dmax, X, xsquare, Xy ,numnod, dm) ;
for n=1:numnod
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7

Gl = -weight*jac*N1*[phi (n),dphiy(n)
G2 = -weight*jac*N2*[phil (nn) ,dphivy(n)
cl=n;

c3=2*((ndivw+1) *mbl)-1;
cd=2*((ndivw+1) *mbl) ;

c5=2*( (ndivw+1) *mb2) -1;
c6=2*((ndivw+1l) *mb2) ;
$GG(cl,c3:c4)=GG(cl,c3:cd)+ G1-;
$GG(cl,ch:¢c6)=GG(cl,c5:¢c6)+ G2°;
GGB(cl,c3:c4)=GGB{cl,c3:c4)+ G1‘;
GGB(cl,c5:c6)=GGB(cl,c5:¢c6)+ G2';

[ray—"

’
r .
r

end

end

end

GGB;

GG=GGL+GGR+GGT+GGB;

FGG=GGL;

H=GG";

%

% ENFORCE BOUNDARY CONDITION USING ORTHOGONAL TRANSFORM TECHNIQUES
% SINGULAR VALUE DECOMPOSITION

$ H{2ntxnt)=R(2ntx2nt)*D{(2ntxnt) *V(ntxnt)

% PARTITION V

% CONDENSE k m

% kmat=V’' ({nt-r)*nt) *k*vV{nt*(nt-r)),mmat=vV’' ((nt-r) *nt) *m*vV(nt* (nt-r))
%

[RR,Diag,VV]l = svd(H);
$RR, Diag, VV ;
RR;
Diag;
rank (Diag)
$RR*Diag*VV‘’ ; % show that decomposition works
Vpart=vv{:, (rank(Diag) +1) :numnod) ; $L
kmat=Vpart’'*k*Vpart;
muat=Vpart’' *m*Vpart;
%
$SOLVE FOR EIGENVALUE
%
[evec,eval] = eig(kmat,mmat);%evec IS NOT EIGENVECTOR
deval=diag(eval) ;
omiga={sqgrt (eval));
{(diag(omiga)};
sort{diag(omiga))
dyml=diag(evec’*kmat*evec) ;
dym2=diag (evec’ *mmat*evec) ;
rankmbar=rank (evec’ *mmat*evec) ;
for i=1:rankmbar

dymomiga (i) =sgrt (dyml (i) /dym2 (1)) ;
end
dymomiga;

%

SNON DIMENSIONAL NATRUAL FREQUENCIES

%

selfreg=sort(diag(omiga))* ((density*thickness* (Lplate~4)/D0)"0.5)
selfreg=(diag{omiga)) *((density*thickness* (Lplate~4)/D0)"0.5);

%
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%NO CONSTRAINED ,FREE EDGES

%

$[v,d] = eig(k,m);

$omiga=(sqgrt(d));

$sort{diag({omiga));

%

%NON DIMENSIONAL NATRUAL FREQUENCIES

%

$coeff=(sort{diag(d)) *density*thickness* (Lplate”4) /D0)."0.25;

$coeff(4:9,:);

%

$MODE SHAPE POSSESS ORTHOGONALITY

%

W=Vpart*evec;

mdiag=W’' *m*W;

selmdiag=(diag(mdiag));

smdiag=sort (diag(mdiag)):

kdiag=W’*k*W;

selkdiag=(diag(kdiag));

skdiag=sort (diag(kdiag));

rankm=rank (mdiag) ;

%

SVERIFY IF THE NATRUAL FREQUENCIES IS CORRECTLY COMPUTED

%

for i=l:rankm
omigayy(i)=({sqrt(selkdiag(i)/selmdiag(i))));

end

omigayy:

colomigayy=omigayy’;

sortwn=sort {omigayy) ;

%

$SORT NATRUAIL FREQUENCIES AND REMEMBER THEIR ORIGINAL INDEX

%

ocolomigayy=colomigayy; %ocolomigayy store colomigayy since the member

of colomigayy will change sequence

for last=rankm:-1:1

[largest]=indexoflargest (colomigayy,last);
temp=colomigayy (largest) ;
colomigayy(largest)=colomigayy (last) ;
colomigayy (last)=temp;

end

for i=l:rankm
for j=l:rankm

if (colomigayv (i)} == ocolomigayy(j))}
oriindex(i)=3j;
end
end
end
colomigayy;
oriindex;

%
$RE-ARRANGE selmdiag and selkdiag IN ORDER TO COMPUTE CRITICAL DAMPING
%
for i=l:rankm
sortmdiag(i)=selmdiag(oriindex(i)):;
sortkdiag(i)=selkdiag(oriindex(i));
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end
sortmdiag;
sortkdiag;
yym=sortmdiag (1) ;
yvvk=sortkdiag(l);
%
$RESPONSE CHOOSE NATURAL FREQUENCY
%
$FREQUENCY OF FORCE
%
force;
p=W’*force;
1iyy=0;
for Omega=0:0.01:200
iiyy=iiyy+1;
%
$LOOP FOR EACH EQUATION

%

domiga=diag{omiga) ;
for choosefre=1:rankm
wn=domiga (choosefre) ;
%
$CRITICAL DAMPING
%
cer=2*sqgrt(selkdiag(choosefre) *selmdiag (choosefre) ) ;
%
$DAMPING C=ALFA*K+BETA*M
%
c=alfa*selkdiag(choosefre)+beta*selmdiag(choosefre) ;
zeta=c/ccr;
wd=sqgrt (l-zeta™2) *wn;
%
$FORCE IN EACH EQUATION
%
force;
p=W"*force;
x0normod {choosefre) =p(choosefre)/selkdiag(choosefre);
$x0orimod=W*x0normod’ ;
x0= x0Onormod (choosefre) ;
%
$TIME STEP
%
t=[{0:dtime:dtime*steps};
$ xp(t) Particular solution
r=0Omega/wn;
Xpo=x0/sqgrt ((1-r"2) "2+ (2*%zeta*r) "2} ;
alpha=atan2 (2*zeta*r, (1-r*2));
xp=Xpo*cos (Omega*t-alpha) ; $displacement
xpdot=-Omega*Xpo*sin(Omega*t-alpha) ; $velocity
$Homogenous solution xh(t)
xAB=inv({1,0;-zeta*wn,wd])*[0-Xpo*cos (-alpha) ; 0+Omega*Xpo*sin(-alpha)];
Ap=xAB(1);
Bp=xAB(2);
xh=exp (-zeta*wn*t) .* (Ap*cos{wd*t) +Bp*sin(wd*t) ) ;%¥displacement
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xhdot=exp (-zeta*wn*t) .* (Ap*cos (wd*t)+Bp*sin(wd*t) ) *{-zeta*wn) +exp (-
zeta*wn*t) . * (-Ap*wd*sin (wd*t) +Bp*wd*cos (wd*t)) ;%velocity
%disp=xp+xh; $response

gvel=xpdot+xhdot ; %$response

disp=xp+xh;%transmission loss calculation

vel=xpdot;$% transmission loss calculation

for i=l:steps+1
xxxxd (choosefre, i) =disp(i);
xxxxv (choosefre,i)=vel (1) ;

end
end
phydisp=W*xxxxd;
phyvel =W*xXxxxVv;
%
%$Choose point
%
nodeid=25;
phydisp;
nodedisp=phydisp {nodeid, :):
nodevel=phyvel (nodeid, :) ;
$subplot(2,1,1)
gplot({t,nodedisp, "coloxr’, [0,0,0]);
gtitle(” Forced Vibration of a Second-Order
System to Harmonic Excitation node 267);
$xlabel (‘Time (sec)’);
$vlabel (‘Position disp (m));
hold on
$subplot(2,1,2)
$plot(t,nodevel, ‘color’,[0,0,0]1);
$xlabel (‘Time (sec)’);
$ylabel (‘Velocity {(m/s) ")
%
%
%
sortdisp=sort (abs (nodedisp) ) ;
sortvel=sort (abs (nodevel));
maxdisp=sortdisp(:,steps+1l);
maxvel=gortvel (:,steps+1);
%
$dB OUT
%
pref=0.00002 ; %N/m"2
airdensity=1.21; %kg/m"3
souvel=343;%m/s
pin=force(nodeid, :};
pout=maxvel*airdensity*souvel;
$t1=20*1ogl0(pin/pout) ;
t1l=20*1logl0 (pout/pin);
collecttl(iiyy)=tl;
collectomega(iiyy)=Omega/ (2*pi) ;
collectomega(iiyy)=Omega;% rad/s

hold on

end

plot(collectomega,collecttl, ‘color’,{0,0,0])
title(’ CCCC Plate );:
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xlabel (' Frequency {(rad/sec)’);
vlabel (' Transmission Loss (dB)’);
hold on

$MASS LAW

density=8000;

thickness=0.05;
mass=density*thickness;
frequency=[0:0.01:200];
cong=2*343*1 .21,

t1=20*1ogl0 (mass*frequency/cons)
plot(frequency, tl, 'coloxr ,{0,0,01])

% MESH GENERATION PROGRAM FOR 2D BEAM IN PLANE BENDING
function|x, conn,numcell,numg] = mesh(length,height,ndivl,ndivw)
numcell= ndivw*ndivl;

numg = {(ndivl+1l)* (ndivw+l);

% SET UP NODAIL COORDINATES

for i = 1:(ndivi+1)

for j = 1:(ndivw+1l)

x(1, ((ndivw+1l)*(i-1) +3j))= (length/ndivl)*(i-1);

x(2, ({(ndivw+1) *{(i-1) +3j))= -(height/ndivw)*(j-1)+height/2;
$plot (x(1, ((ndivw+1)*{i-1) +3)).x(2, ((ndivw+1)*(i-1) +3j)),’'0")
hold on

xs(3)=x(1, ((ndivw+l)*(i-1) +3j)):

ys(3)=x(2, ({(ndivw+l)*(i-1) +3));

end

hold on

$plot (xs,vys)

end

for j = 1:(ndivw+1l)

for i = 1:(ndivl+l)

xplot (1, ((ndivw+1)*(i-1) +3j))= (length/ndivl)*(i-1);

xplot (2, ((ndivw+1) * (i-1) +3j))= -(height/ndivw)*(j-1)+height/2;
xplots (i) =x(1, ({(ndivw+1) *(i-1) +3j)):

yplots (i)=x(2, ((ndivw+1)*(i-1) +3));

end

hold on

$plot(xplots,yplots)

end

% SET UP CONNECTIVITY ARRAY

for 3 = 1l:ndivl

for 1 = l:ndivw
elemn = (j-1)*ndivw + 1i;
nodet {elemn,l) = elemn + (j-1);

i

nodet(elemn, 2)
nodet (elemn, 3)
nodet (elemn, 4)
end
end
conn = nodet’;

nodet (elemn, 1) + 1;
nodet (elemn, 2) +ndivw+l;
nodet {(elemn, 3) -1;

H

% This function returns a matrix with 4 gauss points and their weights
% in natural coordinates
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function v = gauss2 (k)
if k==4
fprintf (‘THE NUMBER OF GAUSS POINTS’)

k
v(l,1) =-.861136311594052575224;
v{l,2) =-.339981043584856264803;
v{l,3) = -v(1,2);
v{l,4) = -v(1,1);
v(2,1) =.347854845137453857373;
v(2,2) =.652145154862546142627;
v(2,3) = v(2,2);
vi{2,4) = v(2,1);
elseif k==2

fprintf (" THE NUMBER OF GAUSS POINTS‘)
k

v(l,1) =-1/sqgrt{(3);
v(l,2) =1/sqgrt(3);

v(2,1) =1;
v{2,2) =1;
elseif k==6

fprintf ('THE NUMBER OF GAUSS POINTS')
k
v(l,1) =-.932469514203152027812302;
v(l,2) =-.661209386466264513661400;
v{1,3) =-.238619186083196908630502;
v{l,4) = -v(1,3);
v(l,5) = ~-v{1,2);
v({l,6) = -v(1,1);

v(2,1) =.17132449237917034504030;
v(2,2) =.36076157304813860756983;
v(2,3) =.46791393457269104738987;
v(2,4) = v{(2,3);

vi{2,5) = v(2,2});

v(2,6) = v(2,1);

elseif k==9

fprintf (' THE NUMBER OF GAUSS POINTS')

k

v(l,1) =-.968160239507626089835576;
v({l,2) =-.836031107326635794299430;
v(l,3) =-.613371432700590397308702;
v(l,4) =-.324253423403808929038538;
v(l,5) =0;

v(l,6) = -v{1,4);

v{l,7) = -v(1,3);

v(l,8) = -v(1,2);

vi{l,9) = -v(1,1};

v{2,1) =.08127438836157441197189;
v(2,2) =.18064816069485740405847;
vi(2,3) =.26061069640293546231874;
v(2,4) =.31234707704000284006863;
v(2,5) =.33023935500125976316453;
v(2,6) = vi{2,4);

v(2,7) = v(2,3);

v{(2,8) = v(2,2);

v(2,9) = v(2,1);

else

fprintf (‘THE NUMBER OF GAUSS POINTS’)
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v(l,1) =0;
v(2,1) =2;
end

$MAP GAUSS POINTS FROM NATURAL COORDINATES TO PHYSICAL COORDINATES

function [gs] = mapgauss (xc,conn,gauss,numncell)

index=0;

one = ones(l,4);

psid = [-1,+1,+1,-1}; etad = [-1,-1,+1,+11;

1l = size(gauss);

1 = 1(2);

for e=1l:numcell

% DETERMINE NODES IN EACH CELL

for j = 1:4
je=conn(j,e);;xe(j)=xc(1l,je);yel(j)=xc(2,je);
xe;
ve;

end

for i=1:1

for j=1:1

index = index+1;

eta=gauss (1, 1i);psi=gauss(l,j);

$eta

$psi

N = .25* (one+psi*psid).* (onet+eta*etad);

NJpsi=.25*psiJd.* (one+eta*etald) ;

NJeta=.25*etad.* (one+psi*psid) ;

xpsi=NJpsi*xe’ ;ypsi=NJpsi*ye’;xeta=NJeta*xe’ ;yeta=NJeta*ye"’;

jcob=xpsi*yeta-xeta*ypsi;

xgq = N*xe’;yq = N*ye’;

gs({l,index) = xdq;

gs (2, index) = yqg:

gs(3,index) = gauss(2,i)*gauss(2,3):
gs(4,index) = jcob;

gplot{xqg,vg, *")

hold on

end

end

$clear xe % vy
$clear ye % vy
end

$MOVING LEAST SQUARE METHOD TO CONSTRUCT SHAPE FUNCTION
function {[phi,dphix,dphivy,d2phix,d2phiy,d2phixy] =
shape (gpos, gposquare, gposxy, dmax, X, Xxsquare, xy, numnod, dm)
won = ones{1l,numnod) ;

$p = [won;x;xsquare;xyl;
p = [won;x;xy;xsquare];
dif = gpos*won-x;

t = dm/dmax;

[w, dwx, dwy, dwdx, dwdy, d2wdx, d2wdy] = wgt(dif,t,x,dmax,dm) ;
B = p.*[w;w;w;w;w;w];

pp = zeros(6);

A = zeros(6);
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dax = zeros(6);

d2Ax = zeros(6);

day = zeros(6);

d2Ay = zeros(6);

d2Axy = zeros(6);

for i=1:numnod

pp = p(l:6,i)*p{l:6,1)";

A = A+w(l,1) *pp;

dax = dAx+dwdx(1,1i) *pp:

d2Ax = dA2Ax+d2wdx (1, 1) *pp;

dAy = dAy+dwdy(1,1i) *pp;

d2ay = dA2ay+d2wdy(1,1i) *pp;

d2Axy =A2Axy+dwx (1,1i)*dwy(1,1) *pp;

end

Ainv=inv(A) ;

$pg=[1 gpos’ gposquare’ gposxy’];

pg=[1 gpos’ gposxy’ gposquare’ ];
phi=pg*Ainv*RB;

dBx=p. * [dwdx; dwdx; dwdx; dwdx ; dwdx; dwdx] ;
d2Bx=p.* [d2wdx; d2wdx; d2wdx ; d2wdx; d2wdx; d2wdx] ;
dBy=p. * [dwdy; dwdy; dwdy; dwdy ; dwdy; dwdy] ;
d2By=p. * [d2wdy; d2wdy; d2wdy; d2wdy; d2wdy; d2wdy] ;
d2Bxy=p.* [dwx. *dwy; dwx . *dwy; dwx . *dwy ; dwx . *dwy ; dwx . *dwy ; dwx . *dwy] ;
consx=-Ainv* (dAx*Ainv) ;

consy=-Ainv* (day*Ainv) ;

%

$FIRST DERIVATIVE OF PHI

%

dphix = [0 1 0 gpos(2) 2*gpos(l) 0 ]1*Ainv*B+pg* (consx*B+Ainv*dBx) ;
dphiy = [0 0 1 gpos(l) 0 2*gpos(2) }1*Ainv*B+pg*(consy*B+Ainv*dBy) ;
%

$SECOND DERIVATIVE OF PHI

%

gamal=Ainv*pg”;

%$x second derivative

gamalx=Ainv* ([0,1,0,gpos(2),2*gpos(1l),0] -dAx*Ainv*pg’);
gama2x=Ainv*([0,0,0,0,2,0] ' -2*dAx*gamalx-d2Ax*gamal) ;
d2phix=(gamal2x’ ) *B+2* (gamalx’) *dBx+(gamal’) *d2Bx;

%

%y second derivative

%
gamaly=Ainv*{{0,0,1,gpos(1),0,2*gpos(2) ]’ -dAy*Ainv*pg’);
gamal2y=Ainv*([0,0,0,0,0,2] -2*dAy*gamaly-d2Ay*gamal) ;
d2phiy={(gama2y‘) *B+2* (gamaly ) *dBy+ (gamal’ ) *d2By;

%

$X.,.Y

% ;
gamaxy=Ainv* ([0 0 0 1 0 0]’'-dAx*gamaly-dAy*gamalx-d2Axy*gamal) ;
d2phixy=gamaxy’ *B+gamalx’ *dBy+gamaly’ *dBx+gamal’ *d2Bxy;

SWEIGHT FUNCTION

function [w,dwxt,dwyt,dwdx,dwdy,d2wdx,d2wdy] = wgt(dif, t,v,dmax, dm)
1 = length(v);

for i=1:1
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drdx = sign{(dif(1,1))/dm(1l,1);

drdy = sign(dif(2,1i))/dm(2,1i);

rx = abs(dif(1l,1i))/dm(1,1i);

ry = abs(dif(2,1i))/dm(2,1);

if 1>rx>0.5

$wx = (4/3)-4d*rx+d*rx*rx -(4/3)*rx"3;
$dwx = (~4 + B8*rx-4*rx~2) *drdx;
$d2wx={8-8*rx)} *drdx*drdx;

wx= 1- 6*rx"2 + 8*rx"3-3*rx™4;

dwx= (-12*rx + 24*rx*2-12*rx"3)*drdx;
A2wx=(~12+48*rx-36*rx"2) *drdx*drdx;
elseif rx<=0.5

Iwx = (2/3) - 4*rx*rx + 4*rx"3;

$dwx = (-8*rx + 12*rx~2)*drdx;
$d2wx=(-8+24*rx} *drdx*drdx;

wx = 1- 6*rx"2 + 8*rx"3-3*rx"4;

dwx = (-12*rx + 24*rx"2-12*rx"3) *drdx;
d2wx=(-12+48*rx~-36*rx"2) *drdx*drdx;
else

wx=0;

dwx=0;

d2wx=0;

end

if 1>ry>0.5

$wy = (4/3)-4*ry+4*ry*ry -(4/3)*ry"3;
$dwy = (-4 + 8*ry-4*ry~2) *drdy;
$d2wy=(8-8*ry) *drdy*drdy;

wy = 1- 6*ry"2 + 8*ry"3-3*ry"4;

dwy = (-12*ry + 24*yy"2-12*%ry”3) *drdy;
d2wy=(-12+48*ry-36*ry"2) *drdy*drdy;
elseif ry<=0.5

$wy = {(2/3) - 4d*ry*ry + 4*ry"3;

%dwy = (-8*ry + 12*ry~2) *drdy;
$d2wy=(-8+24*ry) *drdy*drdy;

wy = 1l- 6*ry"2 + 8*ry"3-3*ry"4;

dwy = (-12*ry + 24*ry"2-12*ry~3) *drdy;
dA2wy=(-12+48*ry-36*ry"2) *drdy*drdy;
else

wy=0;

dwy=0;

d2wy=0;

end

w({i) = wx*wy:;

dwxt (i) =dwx;

dwyt (i) =dwy;

dwdx (1) = wy*dwx;

dwdy (i) wx*dwy ;

d2wdx (i) = wy*d2wx;

d2wdy (1) = wx*d2wy;

end

1t

$MAP GAUSS POINTS ON BOUNDARY FROM NATURAL COORDINATES TO PHYSICAL
COORDINATES

function [ygbl=mapgptbdry(nt,j,quadpt,direction)
ncg(1)=-0.861136311594052;

ncg(2)=-0.339981043584856;
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ncg(3)=0.339981043584856;
ncg(4)=0.861136311594052;

nt;

index=0;

one=ones(1i,2):;

ksai=[-1,11:

yvab = zeros(1l,quadpt);

for i=1:quadpt

index=index+1;

ksaig=ncg(i);

N=0.5* {(one+ksaig*ksai) ;

jacobi=(nt (direction, j+1)-nt(direction,j))/2;
two={nt(direction, j),nt{direction,j+1)}1;
ygb (i) =N*two’;

end

%$SORT

function [index]=indexoflargest(a,size)

indexsofar=1;

for currentindex =2:size
if{a{currentindex)>a(indexsofar))
indexsofar=currentindex;
end

end

index=indexsofar;
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E. Rayleigh-Ritz method for cantilever beam

$Rayleigh-Ritz method
Fw=al*x*2+a2*x"3+...... +al0*x~11+ an*x*n+1
$Cantilever beam one dimensional
clear all
fprintf (‘Rayleigh-Ritz method terms’)
n=3
for i=1l:n
for j=1:n
m(i,j)=1/(i+3+3}
k{(i,3)=(i+1)*i*(3+1)*3/(i+3-1)
end
end

[v,d] = eig(k,m);
omiga=sqgrt (d)
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F. Rayleigh-Ritz method (orthogonal polynomial) for fully clamped plate

%$Rayleigh-Ritz method 02/09/2002

$plate free vibration bending

clear all

fprintf('Rayleigh-Ritz method terms’)

fprintf(‘x direction’)

m=2

fprintf{’'y direction’)

n=2

$shape function

gw=(al*x"2+a2*x"™3+...... +al0*x"~11+
cLoram*x ™ n+l) *(bl*x " 2+b2*xM 3+, .. ... +b10*x™11+ .. .+bn*x"n+l)
a lengh of plate

b width of plate
1
1

nu=0.3

k1 k2 k3 k4 four part of k
klp 6x6 part of ki

k2p 6x%x6 part of k2

k3p 6x%6 part of k3

kdp 6x6 part of k4

Form k matrix
or ii=l:m*n

ji=1

th 0P 0P oP of o of

He
h
fun
i
il
d

il

PN

mod(ii-1,n)== 0

)]
Ft

=0 ﬁ‘h‘m e

s

R
N =t

+

-

els

I
i
+
=

end

for i=1:m
for j=l:n
Klp(i,d)=(l+1)*1*(i+1)*i/(1+i-1)/(k+j+3)*(a"(1+i~-
1)) * (b (k+3+3) )+ (1+1) *1* (G+1) *F/(1+i+1) / (k+F+1) * (@~ (1+1i+1) ) * (D" (k+j+1) ) +
(k+1) *k* (1+1) *1/ (1+i+1) / (k+j+1) *(a~(1+i+1) ) * (b (k+j+1) ) +(k+1) *k* (j+1)*j/
(L+i+3) /(k+j-1)*(a™(1+1+43)) * (b (k+j-1))

k2p(i,5)=(1+1)* (k+1)* (i+1)*(F+1)/ (L+i+1)/ (k+j+1)* (@~ (1+i+1)) * (b (k+j+1))
k3p(i,3)=(1+1) *1*(G+1) *F/ (L+1+1) / (k+3+1) * (@~ (1+i+1)) * (b" (k+j+1))
kdp (i,3) =(k+1) *k* {(1+1) *1/ (1+1i+1)/ (k+j+1)*{a~(1+i+1)) *{b"(k+j+1))
k1(ii,j3)=klp(i.]
k2 (ii,jj)=k2p(i,3

k3(ii,3i)=k3p(i.]
k4 (ii,3j)=kdp(i,]

— v —
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jj=3i+1

end
end

end
kmat=2*k1+4* (1-nu)*k2-2* (1-nu) *k3-2* (1-nu) *k4

% Form m matrix
for ii=l:m*n
ji=1;
%
if ii == 1
1=1;
k=1;
elseif mod{ii-1,n)== 0
i=1+1
k=1
else
1=1
k=k+1
end

for i=l:m
for j=1:n
mp{i, )=(1/(1L+i+3))*(1/ (k+3+3))*(a”(1+i43)) *(b" (k+j+3))
mmat (ii,33)=2*mp(i,J)
jj=jj+1
end
end

end

[v,d] = eig(kmat,mmat)
omiga=sqrt (d)
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G. Collocation method for cantilever beam

R R R R R R R R R R R R R R R L R R R R R R L R R R R R R R R R R AR AR R R R R R R R Ak

$collocation method

ERE R R XL LR L L LR LR LR R L R LR L L L LR L R R E R LR LR R R L L LR R L L A

%

% one dimensional cantilever beam

%

X R R R R R R E AR LR R R R R R R R L L R R R R L L R L R R LR L R LR R LR R R L

%

$satisfy:

%

%$(1) .The trial function is chosen to satisfy the boundary conditions.

%

%$(2) .The parameters are then found by forcing phi to satisfy the

differential

%

% equation at a given set of n points.

%

%$(3) .At these points the residual vanishes.

%

%06/10/2002

%

$Form K matrix

%

%phidx is four derivatives of deflection shape function

% n the number of nodes in cantilever beam not include boundary points.

clear all

n=20

for i=1l:n

for j=1:n
phidx(i,3) =(1i+2+1)*{1+2)* (1+1) *i*(j/ (n+1)) .~ (i-1);
k(j,i)=phidx(i,J);

end

end

%

$Form M matrix

%

%phi is deflection shape function

for i=1:n

for j=1:n
phi(i,3)=(({i+2+1)*(1+2)* (1i+1)-(i+2+1)*(i+2))/2) *(J/ (n+1l)) ."2~

((1+2+1)* {(i42)* (i+1) /6) *(J/ (n+1)) .~3+(J/(n+1}) .~ (1+2+1);
m{j,i)=phi(i,3);

end

end

%

% Solve natural Freguency

%

[v dl=eig(k,m};

omiga=sqgrt(d);

diag(omiga)
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H. Collocation method for fully clamped plate

EE LTSI E LTI LR LRI L LI LLLIIRLLLLILLILLIERLLTILLLLH%%
%

$collocation method

%

E R R R LR R R R L LR LR R R R LR L L R R R L LR LR R L L R LR L R R R R R LR R R R L L E R
%

% Two dimensional fixed-fixed-fixed-fixed plate

%

EE R R R R LR R R LR L R R R L LR R LR R R R R L R R L LR LR LR L LR R R R R LR EEE R R R LR TR
%

$satisfy:

%

%(1) .The trial function is chosen to satisfy the boundary conditions.

%

%(2) .The parameters are then found by forcing phi to satisfy the
differential

%
% equation at a given set of n points.
%
%(3) .At these points the residual vanishes.
%
%$06/10/2002-07/10/2002
%
$Form K and M matrix
%
clear all
nx=4;
ny=4;
Fyvk=0;
r=1;
c=1;
for 1=1:nx
for k=1l:ny

clear kil

clear k2

clear k3

clear ksum

for i=1l:nx

for j=l:ny

% vk=yk+1;
%

%kl 4th derivatives respect to x

K1(1,3)=((1+3) *(1+2} * (L+1) *1* (i/ (nx+1}) .~ (1-1) ) *(k*(J/ (ny+1)) ."2-
(k+1)* (j/ (ny+1)) . "3+ (3/ (ny+1)) .~ (k+3)};

%

%$k2 4th derivatives respect to y

k2(i,3)=({k+3) *(k+2) *(k+1) *k* (3/(ny+1}) . " (k-1) }*(L*(1/ (nx+1}) . "2~
(1+1) * (i/ (nx+1)) .73+ (1/ (nx+1) ) .~ {(1+3));

%

%$k3 4th derivatives respect to x and y
k3(1,3)=2%(2%1-6%(1+1)*{i/(nx+1) )+ (1+3)*(1+2) *(i/ (nx+1)) .~ (1+1) ) * (2*k-~
6% (k+1) *(J/ (ny+1) )+ (k+3) * (k+2) * (3/ (ny+1)) .~ (k+1) ) ;

%

ksum(i,3)=k1(i,j)+k2(i,3)+k3(1i,3);
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m{i,§)=(Ll*(i/ (nx+1)) ."2-
(L+1)*(i/(nx+1)) . "3+ (i/ (nx+1)) .~ (1+43)) *(k*(F/(ny+1))." 2~
{k+1)*(3/ (ny+1) ) ."3+(ji/ (ny+1)) .~ (k+3));

$put ksum into kmat. ksum(2x2) is one line of kmat (4x4).
kmat (r,c)=ksum(i, j);
%put m into mmat. m(2x2) is one line of mmat (4x4)
mmat (r,c)=m(i,j):
c=c+1l;
end $ jJ y coordinates
end % i x coordinates

c=1;
r=r+l;

end % k psai
end $ 1 phi
%
% Solve natural Frequency
%
[v d]l=eig(kmat, mmat) ;
omiga=sqrt (d)};
sort{(diag{omiga))
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I. Matlab code for cantilever beam free vibration by Galerkin method

$Galerkin method
Sw=al*x"2+a2*x"3+...... +al0*x™11+ an*x*n+1
fprintf (‘galerkin method terms’)
clear all
n=3
for i=3:n

for j=3:n

k(i-2,j-2)=(i+1)*(i-1)*(i-2) *(F+L)*3*(J-2)/2-1*(i-1)*(i-

2)*(J+LY*F*(F-1) 76+ (1+1) *i*x(i-1) *(i-2)/ (i+j~-1)

m{i-2,3-2)=((i+1) *i*(i-2)/2)*((F+1) *F*(3-2)/10-(F+1) *F*(F~
1) 73641/ (G44) )+ (= (1+1) *i*(i~-1) /6) * ((F+1) *F*(F-2) /12- (F+1) *F* (-
1) /42417 (G45) )+ (F+1)Y*3*(F-2) /(2% (1+4) )~ {(F+1) *F*(F-1) /(6% {i+5) ) +1/ (1i+3+3)

end
end

fv,d] = eig(k,m)

omiga=sqrt (d)

for i=3:n
alcoefficient(i-2)=(i+1)*i*(i-2)/2

end

for i=3:n
a2coefficient(i-2)=-(i+1)*i*(i-1)/6

end

al=(v) ' *(alcoefficient)’

a2=(v) ‘*(a2coefficient) ’

for 1i=0:0.1:1
x(1*10+1) =i
yv(1i*10+1) =6*x(1i*10+1)"2-4*x(1i*10+1)"3+x(i*10+1)"4
end
plot(x,y)
title(‘Galerkin Method 3 terms’)
xlabel (Point’)
vlabel {‘Deflection W')
text(0.1,2, ["6*x{(1i*10+1)"2-4*x(1i*10+1)"3+x(i*10+1)"4"])
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J. Matlab code for cantilever beam free vibration by FEM method

function main()

clear

% calculate eigenfreuencies of a thin cantilever beam
% composed of kmax beam elements

% input data

kmax=4; % number of elements

imax=2*kmax+2; % number of global dof’'s

L=1; % beam’'s length in [m]

1i=L/kmax; % element’s length

ey=2.1lell; % Young‘s modulus in [N/m"2]

% a rectangular cross section of a beam

b=0.01; % thickness

h=0.1; % height

A=b*h; % cross sectional area in [(m"2]

jp=h*h*h*b/12; % planar mom. of inertia in [m"4]
ro=7800; % density in [kg/m"3]
noncons=sqrt{ro*a* (L"4) / (ey*jp));

$ assemble local stiffness matrix
[xke]l=VBErigbeam{ey, 11, jp);

% assemble local mass matrix
[xme}=VBEmasbeam{(ro, 11,34} ;

% assemble global matrices

[xk, xm] =VBEglobeam (kmax, imax, xke, xme) ;

xk

xm

kkk=xk(1:2:9,1:2:9)

mom=xm({1:2:9,1:2:9)

% boundary conditions - the right hand side is clamped
% delete the last two rows and columns of global matrices
% pointer to deleted dof’'s

bound = [imax-1 imax];

xk (bound, :)={1; xk(:,bound)=[1};
xm(bound, :)=[1; xm(:,bound)=[1]:;
xk

Xm

%

% calculate eigenvalues by the finite element formulation
ei=eig(xk,xm); % eigenvalues

% sorted natural angular frequencies [rad/s]
ef=sort (real {(sqgrt(ei)));

ef*noncons

function [xme]=VBEmasbeam(ro,l1ll,3);

% assemble local mass matrix of a beam
element with 4 dof's

ro ... density

11 ... element’s lenght

A .... cross sectional area

xme=zeros (4) ;

112=11+*11;

konst=ro*11*A/420;

$konst=11/420;

o0 o o° o

xme(l,1)=156; xme(l,2)=22%11; xme(l,3)=54; xme(l,4)=-13*11;
xme{2,2)=4%112; xme(2,3)=13*11; xme(2,4)=-3*%112;
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xme(3,3)=156; xme(3,4)=-22*%11;
xme(4,4)= 4*112;

% symmetry

for i=1l:4,

for j=i:4,
xme(j,i)=xme(i,j);

end;

end;

% constant multiplication
xme=konst*xme;

% end of VBEmasbeam.m

function [xke]l=VBErigbeam(ey,1ll,jp);
% assemble a local stiffness matrix
% of a beam element with 4 dof’s

% ey ... Young’'s modulus
% 11 ... element‘s length
% jp ... planar moment of inertia of the cross section

xke=zeros (4} ;
112=11*11; 113=112*11;
konst=2*ey*jp/113;
$konst=2/113;

xke(l,1)=6; xke(l,2)=3*11; xke(l,3)=-6; xke(l,4)= 3*11;
xke(2,2)=2%112; xke(2,3)=-3*11; xke(2,4)= 112;
xke(3,3)= 6; xke(3,4)=-3*11;

xke(4,4)= 2*112;

% symmetry

for i=1:4,

for j=i:4,

xke(j,i)=xke(i,j):

end;

end;

% constant multiplication

xke=konst*xke;

function {xk,xm]=VBEglobeam(kmax, imax, xke,xme) ;
% assemble global stiffness and mass matrices
% for a thin cantilever beam assembled of kmax
% identical beam elements with 4 DOF

% clear arrays

xk=zeros (imax) ; xm=zeros (imax);

% loop over elements

for k=1:kmax

% code numbers of k-the element

k2=2*k;

ic=[k2-1 k2 k2+1 k2+2};

% assembling

xm{ic,ic)=xm(ic, ic) +xme;
xk(ic,ic)=xk({ic, ic) +xke;

end
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K. Matlab code for rod axial vibration by FEM inethod

$axial vibration of rod

function main{)

clear

% input data

kmax=20; % number of elements

imax=kmax+1l; % number of global dof’s

L=1; % rod‘s length in [m]

11=L/kmax; % element’s length

ey=2.1ell; % Young’s modulus in [N/m"2]

% a rectangular cross section of a rod
b=0.01; % thickness

h=0.1; % height

A=b*h; % cross sectional area in [m"2]
ro=7800; % density in [kg/m"3]
noncons=sqgrt (ro* (L"2)/(ey)):

%

% assemble local stiffness matrix
[xke]=VBErigrod{ey,11,n);

% assemble local mass matrix

[xme] =VBEmasrod(xo, 11,A);

% assemble global matrices

[xk,xm] =VBEglorod (kmax, imax, xke, xme) ;

xk;

xm;

%

% boundary conditions - the right hand side is clamped
%

% delete the last rows and columns of global matrices
% pointer to deleted dof’s

bound = [1];

xk{bound, :)={1; xk(:,bound)=[];

xm(bound, :)=[1; xm(:,bound)=[1];

xk;

xm;

%

$ calculate eigenvalues by the finite element formulation
[evector, evaluel=eig(xk,xm); % eigenvalues
% sorted natural angular frequencies [rad/s]
$ef=sort (real {sqrt{diag(evalue))));
ef=(real(sqgrt(diag({evalue))));

ef*noncons .

% plot mode shape

x=L/kmax:L/kmax:L;

def=-evector(:,19);
plot(x,def, 'P’, ‘color’,[0,0,01)

function [xmel=VBEmasrod(ro,1l1l,A);
% assemble local mass matrix of a rod

% ro ... density
% 11 ... element’s lenght
% A .... cross sectional area

xme=zeros (2) ;
konst=ro*11*A/6;
xme{l,1)=2;
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xme(l,2)=1;
xme(2,1)=1;
xme(2,2)=2;
xme=konst*xme;

% end of VBEmasbeam.m

function [xkel=VBErigrod(ey,1l1l,2);
% assemble a local stiffness matrix
% of a rod element with 2 dof’s

% ey ... Young’'s modulus

% 11 ... element’s length
xke=zeros (2) ;

konst=ey*A/11;

xke(l,1)=1;

xke(l,2)=-1;

xke(2,1)=-1;

xke(2,2)=1;

% constant multiplication
xke=konst*xke;

% end of VBErigbeam

function [xk,xm]=VBEglorod (kmax, imax,xke,xme) ;
% assemble global stiffness and mass matrices
% for a thin cantilever beam assembled of kmax
% clear arrays

xk=zeros (imax); xm=zeros(imax);

% loop over elements

for k=1:kmax

% code numbers of k-the element

k2=k;

ic=[k2 k2+11;

% assembling

xm{ic,ic)=xm(ic, ic)+xme;
xk(ic,ic)=xk(ic,ic)+xke;

end

% end of VBEglorod.m
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L. Matlab code for rod axial vibration mode shapes by analytical method

%$Analytical rod mode shape
$first mode shape

L=1;

x=0:0.05:1;
$y=0.3*sin((pi/2) *x/L});
$plot(x,y,P’', coloxr*,[0,0,0]);
$second mode shape
yv=0.3*sin((pi+pi/2) *x/L);
plot(x,v, ‘P’, ‘color’,[0,0,0]);
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M. Matlab code for cantilever beam vibration mode shapes by analytical method
x=0:0.02:1
$First mode shape

$phi=0.1*{0 0.00139 0.00552 0.01231 0.02168 0.03355 0.04784 0.06449
.08340 0.10452 0.12774 0.15301 0.18024 0.20936 0.24030 0.27297 0.30730

0

0.34322 0.38065 0.41952 0.45977 0.50131 0.54408 0.58800 0.63301 0.67905
0.72603 0.77392 0.82262 0.87209 0.92227 0.97309 1.02451 1.07646 1.12889
1.18175 1.23500 1.28859 1.34247 1.39660 1.45096 1.50549 1.56016 1.61496
1.66985 1.72480 1.77980 1.83483 1.88988 1.94494 2}
$plot(x,phi, 'P’, ‘color’, {0,0,0])

$Second mode shape

%phi=0.1*[0.00000 0.00853 0.03301 0.07174 0.12305 0.18526 0.25670

.33573 0.42070 0.51002 0.60211 0.69544 0.78852 0.87992 0.96827 1.05227
13068 1.20236 1.26626 1.32141 1.36694 1.40209 1.42619 1.43871 1.43920
.42733 1.40289 1.36578 1.31600 1.25365 1.17895 1.09222 0.99384 0.88431
.76419 0.63410 0.49475 0.34687 0.19123 0.02865 -0.14007 -0.31409 -
.49261 -0.67484 -0.86004 -1.04750 -1.23660 -1.42680 -1.61764 -1.80877 ~
.00000]

$plot(x,phi, ‘P, "color‘,[0,0,01)

NO OO

$Third mode shape

%phi=-0.1*[0.00000 0.02339 0.08839 0.18727 0.31238 0.45614 0.61120
0.77049 0.92728 1.07535 1.20901 1.32324 1.41376 1.47707 1.51056 1.51248
1.48203 1.41931 1.32534 1.20196 1.05185 0.87841 0.68568 0.47822 0.26103
0.03937 -0.18130 -0.39555 -0.59802 -0.78359 -0.94753 -1.08556 -1.19398 -
1.26974 -1.31055 -1.31485 -1.28189 -1.21172 -1.10515 -0.96375 -0.78975 -
0.58594 -0.35563 -0.10245 0.16974 0.45702 0.75558 1.06189 1.37287
1.68610 2.00000]

$plot(x,phi, P’,’color’,{0,0,01)

$Fourth mode shape

$phi=-0.1*[0.00000 0.04482 0.16510 0.33974 0.54801 0.77002 0.98714
1.18256 1.34177 1.45299 1.50758 1.50027 1.42928 1.29634 1.10648 0.86774
0.59073 0.28808 -0.02621 -0.33748 -0.63112 -0.89330 -1.11166 -1.27592 -
1.37836 ~1.41424 -1.38199 -1.28366 -1.12327 -0.90964 -0.65299 -0.36594 -
0.06264 0.24191 0.53258 0.79478 1.01518 1.18266 1.28688 1.32262 1.28608
1.17687 0.99762 0.75368 0.45270 0.10407 -0.28179 -0.69420 -1.12317 -
1.56035 -2.00000]

$plot(x,phi, ‘P’, ‘color’,[0,0,01)

$Fifth mode shape

phi=0.1*{0.00000 0.07241 0.25958 0.51697 0.80177 1.07449 1.30078 1.45309
1.51209 1.46767 1.31925 1.07553 0.75353 0.37706 -0.02529 -0.42257 -
0.78399 -1.08140 -1.29126 -1.39826 -1.39310 -1.27670 -1.05846 -0.75579 -
0.39278 0.00170 0.39632 0.75976 1.06317 1.28253 1.40051 1.40786 1.30418
1.09793 0.80582 0.45146 0.06355 ~0.32634 -0.68626 -0.98631 -1.20090 -
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1.31066 -1.30378 -1.17672 -0.93411 -0.58801 -0.15633 0.33937 0.67658
1.43502 2.00000]
plot (x,phi, 'P’, ‘coloxr’,[0,0,0])
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N. Matlab code for plotting Gaussian weight function

% Plot weight function (Gaussian Equation 3.52)
x = {0.0:0.05:1.01; % 21 NODES
nnodes = length(x):
ncells = nnodes-1;
dmax=10;
dm = dmax* {x(2)-x(1)) *ones (1, nnodes) ;
gg zeros (1,ncells);
gg = -.025:.05:0.975; $ 21 NODES
gg(l) = 0.0;
$ LOOP OVER GAUSS POINTS
for j = 1l:length(gg)

xg = gg(j);
dif = xg*ones(l,nnodes)-x;
% SET UP WEIGHTS W AND DW FOR EACH NODE
clear w dw r
for i=1l:nnodes

drdx = sign(dif(i))/dm(i);

r{(i) = abs{(dif(i))/dm(i);
if r<=1

i}

wi{i) = 2.71828"(-r(i)*r(i)/0.16);
plot(-r{i),w(i), ‘o’, ‘color’,[0,0,0])
hold on
plot(r{(i),w(i), ‘o', ‘color’,10,0,0])
hold on
elseif r>1.0
w(i) = 0.0;
plot(-r(i),w(i), 'o’, ‘color’,{0,0,01])
hold on
plot(r(i),w(i),o’, ‘color’, [0,0,01)
hold on
xlabel ('x")
yvlabel ('w’)
title(’Gaussian Equation (3.52)")
end
end
end
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0. Matlab code for plotting cubic spline weight function

% Plot weight function (Cubic spline 3.53)
x = [0.0:0.05:1.01; % 21 NODES
nnodes = length(x);
ncells = nnodes-1;
dmax=10;
dm = dmax* (x(2)-x(1))*ones (1, nnodes) ;
gg zeros (1,ncells);
gg = -.025:.05:0.975; $ 21 NODES
gg(l) = 0.0;
% LOOP OVER GAUSS POINTS
for j 1:length(gg)

xg = gg(j):

1t

% DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT
dif = xg*ones(l,nnodes)-x;

% SET UP WEIGHTS W AND DW FOR EACH NODE
clear w dw r
for i=l:nnodes

drdx = sign(dif(i))/dm(i);

r{i) = abs(dif(i))/dm(i);
if r<=0.5
w(i) = (2/3) - 4*r(i)*r(i) + 4*r(i)~"3;
dw(i) = (-8*r(i) + 12*r(i)~2)*drdx;
plot (-r(i),w(i),'o’, ‘coloxr’,[0,0,01])
hold on
plot{r(i),w(i), 'o’, ‘color’,[0,0,0])
hold on
elseif r<=1.0 & r>0.5
wii) = (4/3)-4*r(i)+4*r (i) *r(i) -(4/3)*r(i)"3;
dw{i) = (-4 + 8*r(i)-4*r(i)"2)*drdx;
plot(-r(i),w(i),'o’, ‘color’,[0,0,01)
hold on
plot{(r{i),w(i), o', color’,[0,0,0])
hold on
elseif r>1.0
w(i) = 0.0;
dw(i) = 0.0;
plot{-r(i),w(i), o’, color’,[0,0,0])
hold on
plot(r(i),w(i),’o’,'coloxr’,[0,0,01)
hold on
xlabel ('x’)
yviabel (‘w’)
title(’Cubic Polynomial Equation (3.53) )

end
end

end
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P. Matlab code for plotting cubic polynomial weight function

% Plot weight function (Cubic polynomial 3.54)
x = [0.0:0.05:1.01; % 21 NODES
nnodes = length(x);
ncells = nnodes-1;
dmax=10;
dm = dmax* (x(2)-x(1))*ones(1l,nnodes) ;
gg = zeros (l,ncells);
gg = -.025:.05:0.975; % 21 NODES
gg(l) = 0.0;
% LOOP OVER GAUSS POINTS
for § = 1l:length{gyg)
xg = gg(3j);
% DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT
dif = xg*ones(1l,nnodes)-x;
$ SET UP WEIGHTS W AND DW FOR EACH NODE
clear w dw T
for i=l:nnodes
drdx = sign{dif(i))/dm(i);
r{i) = abs{(dif(i))/dm(i);

if r<=1

w(i) = 1 - 3*r(i)*r{i) + 2*r(i)"3;
plot{(-r(i),w(i), "o, ‘color’,{0,0,01])
hold on
plot(r(i),w(i), ‘o, 'color’,[0,0,0])
hold on

elseif r>1.0

w(i) = 0.0;
plot{-r(i),w(i), 'o’, color’,[0,0,0])
hold on
plot{r(i),w(i),‘o’,color’,[0,0,01)
hold on

xlabel (‘x’)

viabel ('w’)

title{'Cubic Polynomial Equation (3.54)")
end

end

end
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Q. Matlab code for plotting quartic polynomial weight function

% Plot weight function (Quartic polynomial 3.55)

x = [0.0:0.05:1.07; % 21 NODES
nnodes = length(x);

ncells = nnodes-1;

dmax=10;

dm = dmax*(x{2)-x(1))*ones{l,nnodes) ;
gg = zeros(l,ncells);
gg = -.025:.05:0.975; % 21 NODES
gg{l) = 0.0;
% LOOP OVER GAUSS POINTS
for j 1:length{gg)

xg = gg(3j);

H

"

% DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT
dif = xg*ones(1l,nnodes)-x;

% SET UP WEIGHTS W AND DW FOR EACH NODE
clear w dw ¥
for i=1:nnodes

drdx = sign(dif(i))/dm(i);
r(i) = abs(dif(i))/dm(i);
if r<=1

w{i) = 1 - 6*r(i)*r(i) + 8*r(i)"3-3*r(i)"4;
plot{(-r(i),w(i),'o’, "coloxr’,[0,0,0])

hold on

plot(r(i),w({i),’o’, coloxr’,{0,0,0]}

hold on

elseif r>1.0

w(i) = 0.0;
plot(-r(i),w(i), 'o’, ‘color’,(0,0,01)

hold on

plot(r(i),w(i), 'o*, 'color’,[0,0,0])

hold on

xlabel ("x7)

viabel(‘'w”")

title(’Quartic Polynomial Equation (3.55)')

end
end

end
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