INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, 2 note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
eonﬁmﬁngfromlefttorightinequalsecﬁonswithsmalloverlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA
313:761-4700 800.521-0600

CINDI: CONCORDIA INDEXING AND DISCOVERY
SYSTEM

NADER RAJABIEH SHAYAN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1997
(© NADER RAJABIEH SHAYAN, 1997

g |

National Library
of Canada

Acquisitions and
Bibliographic Services

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre rédférance
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-26019-4

Abstract

CINDI: Concordia Indexing and Discovery System

Nader Rajabieh Shayan

As the number of Internet users grows, the problem of indexing and retrieval of
electronic information resources becomes more critical. A number of search systems
are currently available for this purpose on the Internet; examples are Lycos, Yahoo,
Web Crawler, etc. However, they offer uneven search results, namely, many of them
produce mishits or miss existing resources. This is due to the fact that they attempt
to match the specified search terms without context as to where the words appear
in the target information resource. This calls for a proper cataloging to avoid such
uneven results.

This thesis is concerned with a metadata-based indexing system proposed to de-
scribe the semantic content of information resources. The metadata description is
called Semantic Header, and its main intent is to include those elements that are
most often used in the search for an information resource. A variety of fields have
been included in Semantic Header for the indexing and retrieval of resources. This
will considerably reduce the aforementioned unpredictable results. The system also
distributes the expertise of a librarian to help users choose appropriate subject terms,
during indexing and searching, from an associated thesaurus.

A prototype has been developed based on this proposal for indexing and discovery
of information resources on the Internet. The prototype is composed of two main
subsystems viz. Graphical User Interface (the client) and Database (the server). This
thesis presents the design and implementation of the Database subsystem. Object
Modelling Technique (OMT) has been employed for the analysis and design of this
subsystem. Object Database and Environment (ODE) is the database system used
for indexing and retrieval of Semantic Headers. Communication between the two

subsystems has also been implemented using the TCP/IP protocol.

iii

To the memory of my brother,
Khosrow.

iv

Acknowledgments

I would like to express my deepest gratitudes to my thesis supervisor Dr. Bipin C.
Desai for his thoughtful guidances and financial support throughout my study. This
thesis is the result of his patience, knowledge, and constructive critisisms which will
never be forgotten. X

I would also like to thank my friend Youquan Zhou for being a good companion
by developing the GUI of the system in the best way possible and his many helps in
integrating the GUI and the database subsystems.

The design of the expert system of the system has been based on the efforts of Dr.
R. Shinghal and Dr. P. G. Chander. Thank you Gokul for your help and availability.

The second chapter of this document has been derived from my friend Yves Sain-
tillant’s work, under Dr. Desai’s supervision, whose generosity is appreciated.

I am grateful to Stan Swiercz and Michael Assels, system administrators, who
have been helpful in all phases of the implementation of the prototype.

The ODE support group, at AT&T Bell Laboratories, have provided many helps
to eleminiate problems caused by systems incompatibiliy and minor bugs.

Many special thanks should go to my brother Dr. Yousef Shayan whose flawless
guidances and encouragements have set the cornerstones of my success.

Last, but not least at all, I would like to thank my parents and my brother Nasser
Shayan whose endless support and encouragements, far away from Canada, made this

course of study easy to travel.

Contents

List of Figures ix
List of Tables xi
1 Introduction 1
1.1 The Discovery Problem 1
1.2 Solution 3
1.2.1 Metadata for Indexing and Discovery 3
1.2.2 Automated Reference Librarian 3
1.3 Organization of the Thesis 6
2 Search Systems on the Internet 7
2.1 A concise description of Internet and World Wide Web 7
2.1.1 Imtermet 7
212 WorldWideWeb 7
2.2 Search Systems on the Internet 9
2.2.1 WAIS (Wide Area Information Servers) 9
22.2 Archie/XArchie 9

2.2.3 Veronica (Very Easy Rodent-Oriented Net-Wide Index to Com-
puterized Archives) L., 10
224 ElNet Galaxy i 10
225 Web Crawler 12
226 WWWW (World Wide WebWorm) 12
227 ALIWEB 14
228 RBSESpider 15
229 Harvest 15

2210 Lycos i i e e e
2.2.11 System for Navigational Search on the Internet
2212 Yahoo

CINDI, the Concordia INdexing and DIscovery System
3.1 Metadata Revisited

3.1.1 Dublin Metadata Core Elements.
3.1.2 SemanticHeader
3.2 Expert System
3.3 UserlInterface
3.3.1 Index Entry Graphical Interface
3.3.2 Search Graphical Interface
3.3.3 Annotation Graphical Interface
3.4 Database
3.5 Advantages of the CINDISystem

Analysis of the CINDI System

4.1 Choosing a Design Methodology
4.2 Object Model
4.2.1 Object Model of thesystem
43 DynamicModel
4.3.1 Scenarios and Event Traces
4.3.2 StateDiagrams
44 Functional Model
44.1 DataFlowDiagrams

System Architecture

5.1 Decomposition of the system into subsystems
8.2 Concurrency o vt e e e e e
5.3 Management of datastores
5.4 Allocation of subsystems to processors and tasks

vii

24
24
25
27
32
34
34
34
37
37
41

42
42
42
42
47
48
57
65
65

6 Implementation 75

6.1 Client/Server Communication 75
6.2 Parser 76
6.3 The ODE Database System 80
6.3.1 ODE: The Object Database and Environment 80

6.3.2 The EOS Storage Manager 81

6.3.3 The O++ Database Programming Language 81

6.4 Thesaurus Database 85
6.5 Semantic Header Database 88
6.51 UserID 88

6.5.2 SemanticHeader 89

6.53 Word 99

66 Results. 104

7 Conclusion and Future Work 115
7.1 Conclusion 115
7.2 Contribution of thisthesis 116
73 Future Work 117
References 119
A Example of a Semantic Header 125
B OMT Notations 128

viii

List of Figures

1 EINet Galaxy Search Interface 11
2 Web Crawler Search Interface 11
3 Results of Web Crawler Search System 12
4 WWWW Search Interface 13
5 Results of WWWW Search System 14
6 ALIWEB Search Interface 16
7 Result of ALIWEB Search System. 16
8 RBSE Spider Search Interface 17
9 RBSE Spider Search Results 18
10 Harvest Search Interface 20
11 Lycos Search Interface 21
12 Lycos Search Results 21
13 User Interfaceof InfoSeek 22
14 Results of the InfoSeek System 22
15 The Index Entry User Interface 35
16 The Search User Interface 36
17 The Annotation User Interface. 38
18 Overall Structure of the CINDI System 40
19 Object Model of the CINDI System 43
20 Object Model of SemanticHeader 44
21 Object Modelof Word 45
22 Event Trace for ‘Register Semantic Header’ 49
23 Event Trace for 'Delete Semantic Header’. 52
24 Event Trace for 'Update Semantic Header’ 53
25 Event Trace for ’Annotate Semantic Header’ 54
26 Event Trace for ‘Search for Semantic Headers’ 56

ix

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

State Chart for Parser o v o v i i 57

State Chart for Synonym 58
State Chart for SHDB (Register and Delete) 60
State Chart for SHDB (Search) 61
State Chart for SH 63
State Chart for Word 64
Data Flow Diagram for Parsing an input file 66
Data Flow Diagram for Registeringa SH 67
Data Flow Diagram for Deletinga SH. 68
Data Flow Diagram for Updatinga SH 68
Data Flow Diagram for Searchingfor SHs 69
Data Flow Diagram for Retrieving Subject Hierarchies by Synonym . 70
Architecture of the CINDI System 73
Block Diagram of the System 74
The client-server architectureof EOS 82
GUI: alevel 2 subject search 105
GUI: Result of a level 2 subject search 106
Object Model Notation 129
Dynamic Model Notation. 130
Functional Model Notation 131

List of Tables

1 Search statistics for using the search term Bipin (AND) Desai

2 WWWW Search Types

..........................

xi

Chapter 1

Introduction

1.1 The Discovery Problem

In recent years, the Internet has become well-publicized throughout the world. Com-
puters, along with network facilities, have found their way through all aspects of our

lives and the Internet is becoming a well-accepted repository of information.

As such, an increasing number of research institutes, universities and business
organizations are currently providing their reports, articles, catalogs and other infor-
mation resources on the Internet in general and the World Wide Web [BLT90, BLT93]
in particular. This is now becoming the accepted norm of disseminating and sharing

information resources in hypermedia.

At the same time, as the number of the Internet users, be they professionals or
the general public, grows, the discovery of information becomes more difficult since
the information is no longer centralized. The purpose of indices and bibliographies
(called secondary information) is to inventory the primary information and allow
later discovery and access. A number of index generation systems and related search
systems are currently available on the Internet[Kos, LYC, MBO, WebC, W3C, Arch,
KB91, MML95, Thau]. Some of these are manually generated indices while others are
generated by robots[Kos96]. Some of these robot-based systems also allow manual
index entry. The search interface provides users very little flexibility and the results
obtained are varied. This is illustrated in Table 1 (adapted from [BCDY5b)) for a

Search Number of | Number of | Number of | Number
System Hits Duplicates | Mis-hits | of Items
Missed
Aliwed none - - 25
DACLOD none - - 25
EINet 6 0 4 18
GNA Meta Lib. none - - 25
Harvest none - - 25
InfoSeek 7 0 0 17
Lycos 231 2 222 18
Nikos none - - 25
RBSE 8 - 8 25
W3 Catalog none - - 25
WebCrawler 7 3 0 21
WWWW 2 0 0 23
Yahoo none - - 25

Table 1: Search statistics for using the search term Bipin (AND) Desai

query using the first and last names of an author as the search term. Even systems,
such as Lycos, which claim to have indexed millions of documents have only partial
success in locating all relevant documents [BCD95b]!. The reason for the uneven
result is due to the fact that many of these search systems attempt to match the
specified search terms without context as to where the words appear in the target

information resource.

This unpredictable retrieval of appropriate information resources, documented in
Table 1, illustrates that there is a need for the development of a system which allows
better control in searching for and accessing resources available on the Internet. Hence

the need for proper cataloging.

't should be noted that some of these systems are no longer accessible and newer systems have
been introduced. If these tests, conducted in June 1995, were repeated today, the target items would
most likely have been found by systems using robots. However, they would be hard to locate among
the total number of entries found since the number of duplicates and the number of mishits would
be in the hundreds and even thousands [CPG].

1.2 Solution

The problem with current automatically generated index databases is their inadequate
semantic information. However, the ever-growing volume of information rules out any
possibility of professionally cataloging the information resources, simply, because it
would be extremely costly?. This precipitates a need for the design of metadata to
provide a template for describing infromation about a resource. This, along with a
registering system, which is the actual means of creating a metadata for a source
document by the provider of the document, would establish a basis for later discov-
ery. Also, an expert system should be provided to mimic the behavior of a reference
librarian for cataloging and searching. Furthermore, there must be a mechanism to
revise index information as the resource changes over time. Finally, annotation of a

resource by independent users should be allowed.

1.2.1 Metadata for Indexing and Discovery

Metadata has become an intensely debated issue in the Internet community and many
have come to the conclusion that the concept of catalog-based approach would be the
most appropriate paradigm. Creating indices based on search robots (also called

worms, spiders, or crawlers) have the following disadvantages:

e Repeated attempts by robots to find new resources will increase the traffic on the
network. The number of these robots is increasing and system administrators

will likely disallow visits by robots.

® A robot based approach will become difficult to justify if the network switches
to a fee-for-use mode of operation[BH95, BJN, Cr91, MMJ].

o Type of data gathered by robot is not useful because it is too simple to support
discovery. This is the case in spite of the fact that such indices, for the lack of

a better tool, have been useful to date.

e Natural language understanding systems are not advanced enough to extract

meaning from resource.

A number of systems have addressed the problem of cataloging among which CORE [CRW],
MARC system [BDJ, CrW, PTM90], MLC [HKL, Ross, Rhee], and TEI [Gyn, GIO] can be men-
tioned. However, these systems are mainly designed for professional catalogers.

3

e It is more difficult to generate automatic identification of features and concepts

from resources such as program code, digital images and complex systems.

¢ Automatic indexing tends towards the simplistic approach and supporting dis-
covery or even finding required information will become increasingly nonman-
ageable. This trend for existing systems to exhibit poor selectivity is illustrated

above.

Metadata should provide a means to describe the semantic content of a resource
in order to better support discovery than the resource itself. This is because, in
many cases, the resources themselves may not be able to provide the semantic depen-
dencies, and in any case it would likely be computationally too expensive to do so.
(For instance, how does one conclude that a given program code is used to provide
computation of consumer loan payments without analyzing the program.) Metadata
facilitates the cataloging of resources such as audio, computer programs, services,
images and videos. This becomes important when the resource itself is not as easily

accessible as the index.

Another reason for using metadata and extracting salient features of a resource is
to support retrieval by content. Automatic processing of the contents of a source by
extractors has been done on an ad-hoc basis but has been found to be unreliable. A
case in point is the promise of natural language processing(NLP) which has not been
quite realized. Approximations such as WAIS [KB91] have been useful but have also
shown that relevancy measures derived using frequencies, proximity, etc. may not

always be meaningful.

Metadata could also be used to express semantic dependencies which are inher-
ent in a collection of objects. This means that the structure of the objects could be
expressed using metadata as their surrogates and the actual sources could be sepa-
rated from their metadata. This simplifies the storage of the resources and allows for
the recognition of redundancies. Extracting such semantic dependencies in metadata
allows for search based on the contents of multimedia resources. Initial query pro-
cessing could be done on the metadata and thus avoid access to most of the resources

and the possibility of their computationally bound interpretation. This becomes more

advantageous when there are costs (time, money, network bandwidth and overload-
ing) involved in accessing resources. The cost of accessing metadata would be much
smaller than the cost of accessing the resource, because of small size of metadata
description compared to that of the resource. Query processing would be supported
by statistscs, as well as by an expert system to help formulate queries as is done by

a reference librarian.

Appropriately constructed metadata could support query based on contents as
well as traditional query based on items such as title, author, subject, etc. This
means that actual sources could be separated from their metadata. This simplifies
the storage of the resources. Professional catalogers have found the need for the above
elements in indexing applications. The dependence on titles as the most commonly
used search criterion suggests that they must indicate the contents of the document.
Furthermore, the author or the cataloger has to add annotations, keywords, or key
phrases to indicate its actual content. The accuracy or quality of a document can be
indicated by including reviewers’ opinions. However, such opinions are rarely acces-
sible to the traditional cataloger. Another feature of importance is the presence of
an accurate abstract. An abstract provides a summary of the material, and thus is
more indicative of the contents than the title and keywords supplied by the author,
or selected by scanning the text. Reference librarians and library users tend to use

annotated bibliographies to help choose among competing sources.

1.2.2 Automated Reference Librarian

Expert Systems have been used quite extensively whenever human intelligence is to be
modeled[Shin92, GJRG]. For example, a medical diagnosis system mimics doctors by
capturing their knowledge that enable them to diagnose diseases from a given set of
symptoms. Capturing the mental view of the domain expert, the acquired knowledge
is encoded as a set of if-then rules [Shin92]. Expert systems are also better suited as

support tools in an application [LHL].

A reference librarian can guide the user in searching; this is what the expert sys-
tem sets out to do. In general, the user input to the expert system can be at different

levels of detail, and depending upon the level of detail entered, one of the tasks of
the expert system is to provide the required amount of help to complete the input.
This supports the discovery of information in that the users will be guided to follow
a well-established standardized method of index searching.

Similarly, in cataloging a new resource, the reference librarians use the knowledge
of the accepted norms for classification. They are familiar with the classification
schemes, terms, index structures, and resources available in the domain of the user’s
need. From this knowledge, and their perception of the resource to be cataloged, they
choose terms to describe the document. Employing an expert system to replicate pro-
fessional catalogers’ knowledge and expertise will assist in providing standard index
structure and building a bibliographic system using standardized control definitions.
These definitions could be built into the knowledge base of the expert system-based
index entry and search interfaces. This will considerably reduce the inconsistency
of information resources which, in turn, avoids the problem of retrieving irrelevant

resources as well as not retrieving relevant ones.

1.3 Organization of the Thesis

This thesis is organized as follows. In chapter 2, we will introduce a number of
current search engines on the Internet. For each search system, we will show the
search results performed based on the name of an author. At the end, the draw-
backs of these systems will be presented. Inspired from the two previous chapters, we
will devote chapter 3 to the problem statement of our system. In this chapter we will

introduce major components of the system as well as an overview of their interactions.

We will end this chapter by describing the strengths of the proposed system. In
chapter 4, we will formally analyze the system by presenting the Object, Dynamic, and
Functional Models based on the Object Modelling Technique. In chapter 5 the system
architecture is presented. Chapter 6 extends the Object Model of the system and
describes the implementation of the system in detail. We also give results obtained
by actual verification of the application. F inally chapter 7 will mention extensions

and further functionalities to be added to the system.

Chapter 2

Search Systems on the Internet

2.1 A concise description of Internet and World
Wide Web

2.1.1 Internet

The Internet can be described as a federation of interconnected digital networks
(LANs and WANSs) that communicate with the TCP/IP protocol [Ste90]. A user
connected to these networks can access any information stored electronically on the
Internet. This information is either private or public. Private information is availabe
for authorized users, who have a particular status or have paid a fee. Public infor-

mation is available for any user of the Internet without any charge.

2.1.2 World Wide Web

The World Wide Web, whose development began at CERN (Geneva) in 1989, is
defined as an information service on the Internet that has the following properties
[BLT94]:

® It uses a common addressing syntax currently in the form of a Unique Resource
Locator (URL).

It uses Hypertext Markup Language (HTML), a document formatting language.
HTML is a language used to describe hypertext resources, in which links with
other resources can be defined. It can also describe hypermedia resources,
wherein the links are not associated to textual information, but to other re-

sources such as images or sounds.

It uses the HTTP protocol (HyperText Transfer Protocol) in order to transfer
information resources between two computers (a client and a server) of a net-

work. These resources could be texts, menus, hypertexts, images, etc.

A number of WWW browsers have been developed concurrently with the expan-

sion of powerful workstations:

Lynx, a general purpose text-based Web browser.

(NCSA) Mosaic

Developped by the NCSA (National Centor for Supercomputing Applications),
Mosaic is a freeware browser that retrieves hypertext documents, accessible on
the Internet with the HTTP protocol, or available in Gopher or WAIS databases.
The HTML language is used to write hypertext documents whose components
can be displayed directly in the window of Mosaic. Each document can have
multiple hypertext links to other documents. Mosaic was first developped for
UNIX, and it has been extended to Microsoft Windows and Macintosh. 10% of
the WWW users navigate with Mosaic (statistics in [Net]).

Spyglass Mosaic (also called ‘Enhanced NCSA Mosaic’).
1.7% of World Wide Web users navigate with this browser.

Netscape Navigator (for Windows, XWindow and Macintosh).

56% of the users navigate with Netscape, which is the most popular browser.
Netcom Netcruiser (1.6% of the users).

[.LB.M. WebExplorer (1.5% of the users).

Some other browsers exist, but they represent together only 1.4% of the users.

As the amount of the information available on the Internet grows, the search for

a particular resource becomes more difficult. Hence, there is a need for software that

helps the user locate and access rapidly information resources on the Internet. Such

8

systems already exist and some of them are very popular. Moreover, their searches
provide limited information and are not optimal. The following section will be devoted

to brief descriptions of some of these systems.

2.2 Search Systems on the Internet

2.2.1 WAIS (Wide Area Information Servers)

o WAIS [KJ93] is a retrieval tool accessing different kinds of databases (traditional

databases, ftp archives, library catalogs, usenet archives, etc...).

e WAIS provides a search based on the full content of the document (e.g., key-

words), and not only on the titles of objects.

e WAIS provides relevance feedback: a document which has been retrieved can

be considered as a source of keywords for a future search.

e WALIS supports only text objects, which is a limitation of the system.

2.2.2 Archie/XArchie

Archie is a service which helps users to locate files and directories on anonymous FTP

servers anywhere on the Internet.

Administrators all over the world register anonymous FTP servers with the archie
service; once a month the archie service runs a program which scans the directo-
ries and filenames contained in each of the registered FTP servers, and generates a
merged list of all the files and directories contained in these servers. More than 1000
anonymous FTP sites are now represented in this list, which is referred to as the
archie database. The archie database currently contains more than 2,100,000 file-

names [Arch].

The archie database is made available on several archie servers, all of which con-
tain the same information. The archie database contains both the directory path and

the file names.

To retrieve a file, the user can enter a Search Term, which is either the name of
the file or a sub-string of the name of the file. The system retrieves a list of ftp sites
and their directories which contains files whose names correspond to the search term.
The user can hence retrieve the files from one of the retrieved hosts indicated using

the access path.

Xarchie is an X11 browser interface to the Archie Internet Archives database using
the Prospero virtual filesystem protocol.

Drawbacks:

e The system is not easy to use for a non-initiated user. For instance, if the user

does not enter a judicious string, s/he will not find a file and hence the sites.

o The system does not give any information about the content of the file.
The user has to access the file from one of the hosts and open it to peruse it in

order to judge if it is interesting or not.

2.2.3 Veronica (Very Easy Rodent-Oriented Net-Wide In-

dex to Computerized Archives)

Veronica [VER] is an index and retrieval system which can locate items on most of
the gopher servers in the Internet. The veronica index contains about 10 million
items from approximately 5500 gopher servers (June 1994). Veronica finds resources
by searching for words in titles. It does not do a full-text search of the contents
of the resources; it finds resources whose titles contain the specified search word(s).
The title is the title of the resource as it appears on the menu of its home gopher
server. Veronica is used with a gopher client. One chooses veronica from the menu
of a gopher server, and enter a set of query words or special directives. When the
search is finished, the results will be presented as a normal gopher menu. The result

resources can be browsed in this menu, as any other gopher menu.

2.2.4 EINet Galaxy

EINet Galaxy is a tree organized by subjects, which are used by the search engine.
The User Interface of the search system along with the result of the search term ‘Bipin
Desai’ is shown in Figure 1 [EIN].

10

forid ¥Wide Web Docaments - for “Bipu Desa ™ 9 doomuents tonad ¢
= Jeover OO0 5qe 24517

P, RGP S (354
-~ Sore $24 5y 1590

- Sy, $53
DTl JRD e S

s QKT L9

S Scnve 8D Ste 4955

Searshfor, Fipin Disa -1 Search Shert surput
i
- Mlatching ~any Seerchtens, @ alf search texms,

earch the Web ~ for each document .

.

- Search qWrextwitm EveryTopic
Seardh tetetoxly. ot Bak texsnly.

opk;a«Tiﬂ,es ~ Telnet Pessnrces

Figure 1: EINet Galaxy Search Interface

Figure 2: Web Crawler Search Interface

11

WebCrawler Search Results
The query "Bipin Desai" found 7 documents and returned 7:

1000 WWW095 Indexing Workshop Details

0400 WWW Wg@og: Navigation Issues
0171 WWW09S Indexing Workshop Details
0163 WWWO9S5 Indexing Warkshop Details

S WMWY Indexing Workshop Details
0159 Graphical Development Environment for Postgres Object Qriented Database

0138 Dr.Bipin C. DESAI

0016 WWWEF94 Conference Participants (by organizatian)

info @webcrawler.com

Figure 3: Results of Web Crawler Search System

2.2.5 Web Crawler

In this search system, the documents are indexed by keywords in a single database
[WebC]. The system uses links referenced by a document to organize its search
(breadth-first search). The documents are retrieved by ‘agents’ using the CERN’s
WWW library. The user can add new references to documents into the database.
The indexing is updated about every week. The User Interface of this search engine
is shown in Figure 2. The results obtained with the terms ‘Bipin Desai’ is given in

Figure 3.

2.2.6 WWWW (World Wide Web Worm)

The search is done only in one database as well, by keywords, or by regular expres-
sions similar to those used with the UNIX ‘egrep’ command. The user can retrieve
documents based on one of the search types shown in Table 2 [MBO].

The database is built by a robot that locates WWW resources and constructs
corresponding indexes. Nevertheless, the user can directly submit a URL to the
robot, and can also associate keywords to this URL. Hence, indexes in the WWWW
database are created manually and automatically. Since the database is centralized
in only one server, the risk of overloading is high when multiple users make requests

to the search system.

12

[Search Type |
HTML Title Strings.

URL Hypertext References.

HTML Title string of HTML containing a2 URL.
Any component of the URL name of a URL.
Unions of components of the URL name.

Table 2: WWWW Search Types

e R S

- — atc.h alle v or 5

P rd

Figure 4 WWWW Search Interface

The User Interface of this search engine is shown in Figure 4. We tried to do a search
with the terms ‘Bipin Desai’. No result is obtained based on network or title names.
But the search in the hypertext citations gave one result, shown in Figure 5. The

comments about this result follow:

e The World Wide Web Worm indicates that the string ‘Bipin C. Desai’ is the
name of an anchor which belongs to the document located at the URL:
‘http://www.cs.concordia.ca/people/People.html’.

Moreover, WWWW allows the user to retrieve both the document referenced
by the anchor, and the document that contains the anchor.

* An important drawback of the given result is that WWWW does not mention
anything about the name of the document referenced by the anchor, or the
name of the document containing the anchor. Hence, the user has to retrieve

the document in order to access its title!

13

Al yoit

Figure 5: Results of WWWW Search System

2.2.7 ALIWEB

ALIWEB [Kos] is a search system that operates in a database containing about 7473
indexes. The system provides a way of duplicating entirely this database on other
sites, which is called ‘Mirroring the ALIWEB Data’. When an update occurs, all sites
containing a copy have to be updated. The indexes give information about different
types of objects: documents, services, organizations, and users. Each index has a
title, a type, a network address (URL), an informal description, and a set of key-
words. The index can contain more information depending on the value of the type.
For instance, the index relative to an organization contains a phone number, a fax
number, electronic and postal address, etc. To register in the database the reference
of a document or a service, the user has to write the fields of the index in a file with
the standard IAFA (Internet Anonymous FTP Archives) format. The details of this
format can be found at [DPE]. An example of a record is given below:
Template-Type: DOCUMENT

Title: Aviation Related Items
URI: /users/jpo/aviation.html
Description: Various Aviation related information, including

A summary of aviation teminology; information about

pilots and ratings; differences between US and UK flying;

a summary of the UK PPL Flight training and General Flight

test examinations. Some links to other WWW /gopher sites.
Keywords: aviation, flying, pilot, training, terminology

Author-Email: j.onions@nexor.co.uk
When users write their descriptions in a standard format into a file, they inform

14

ALIWERB of this file. Subsequently, ALIWEB retrieves all these files, and combines
them into a searchable database.

To do a search, the user has to specify first the database in which s/he wants to
do the search. Then s/he enters a search term, specifies a search type and the field(s)
s/he likes to retrieve in addition to the title (viz. Description, keywords, URL’s, we)-
The User Interface of this search engine is shown in Figure 6. The search result on

‘Bipin Desai’ is shown in Figure 7.

Advantages: The system provides an informal description of the content of each
document.

Drawbacks: The size of the ALIWEB database is still less that 1 megabytes. The in-
formation contained in this system is relatively small compared to the huge amount of
documents available on the Internet. Obviously, the larger the database becomes, the
. more difficult it will be to have enough disk space, in order to manage this centralized

database and the updating of multiple copies.

2.2.8 RBSE Spider

Available on Mosaic, the Repository Based Software Engineering (RBSE) Spider
[RBSE], given keywords, explores not only the title, but the full content of the doc-
uments, using the WAIS protocol. Currently the RBSE’s database contains 179116
indexed documents. All these documents are in the HTML format and accessible via
the http protocol. The User Interface of this search engine is shown in Figure 8. The

results obtained with the search terms ‘Bipin Desai’ is in Figure 9.

2.2.9 Harvest

The Harvest architecture consists of four parts: the Gatherer, the Broker, the Object
Cache and the Replication Manager [HarS]. The Gatherer summarizes information
at archive sites and creates object summaries called Summary Object Interchange
Format (SOIF) objects. The Broker provides a network-accessible object database,
formed by collecting SOIF objects from Gatherers and other Brokers. This maintains
a loose consistency between the Broker databases and the files found on gathered
archives. Harvest users search for archived objects through a query interface to the

Brokers database of object summaries. To decrease network and server load, the

15

Figure 6: ALIWEB Search Interface

[30] ‘ oI
Cheryl Mendenhall Design and lustration Drawing Portfolio with samples of her work in Jpeg format

Figure 7: Result of ALIWEB Search System

16

‘Wheredo you mttosmcatrvm'f

T oMeadsr T omacher

Whath the th&mahlp&e!ma ﬂiekcywudakdmrch wofif’

Bxastly matoh S

Figure 8: RBSE Spider Search Interface

17

o eoncordiaca sente; 117

Lgeore. 115
seore %7

Figure 9: RBSE Spider Search Results

18

Replication Manager maintains several identical copies of a Broker. The Object
cache maintains local copies of popular objects to improve access performance. The
search interface of Harvest is illustrated in Figure 10. No result was obtained with

the search term ‘Bipin Desai’ in this search system.

2.2.10 Lycos

Developed at Carnegie-Mellon University, the Lycos search system allows the user
to make search requests into a catalog containing over 66 million Web pages (Jan.
1997), with an elaborate search language. The database is updated once a week. The
user can do a search by object names, keywords and full content. The search gives
priority to the documents that have the maximum occurences of the keywords. The
User Interface of Lycos is shown in Figure 11. An example of the results obtained
with the search terms ‘Bipin Desai’ is shown in Figure 12 [LYC].

2.2.11 System for Navigational Search on the Internet

This system is currently in development. It will provide an addition to Mosaic for
finding a set of HT'TP nodes that match one or more keywords. This will be done by
adding a keyword search field at the bottom of the Mosaic User Interface [DBP].

2.2.12 Yahoo

Yahoo is a tree hierarchically organized by subjects, that is quite similar to EINet
Galaxy [Yah].

2.2.13 InfoSeek

InfoSeek is a search system on World Wide Web that has two versions: a commercial
one, and a free one. The free search facility is limited because the maximum number
of hits returned is equal to 10. InfoSeek claims to be ‘the most comprehensive and
accurate WWW search on the Internet’! Unfortunately, we couldn’t test the veracity
of this claim because the commercial InfoSeek was not available at Concordia univer-
sity. The User Interface of the system and the results obtained by the search terms
‘Bipin Desai’ are given in Figures 13 and 14, respectively [InS].

19

E;xtg:r,yavh_:.‘q'uez*f i the box Bdas? S

Press baron to sobirat your gaery of et the fogre -

we taisiirol\er,yoa nead a WWW)é:fowgr t':;gts‘up poces the

- Losemsensitve

1 Reywords match on word bonndardes

“Maaron b er of resalts (objeers+lines cambined) sewed - 100

Figure 10: Harvest Search Interface

20

Seateh: The Web

Sesacch Oprons: raatch say terra {OR)

lnase match
Display Opuons 10 resuls per page

srandard resvlts

B Go Get It

Figure 11: Lycos Search Interface

«Ietadat& \K’or} shop §%4 ulmg List Archive: Corranents on Dessi’s Pemarks Coruments
on Desal’s Rewarks weibeli@ode.org Tue, 7 Mar 1898 1242 10 -0500 Me:sag@~ surted by '
"[dare][thread][subject] [anthor] b Ie.ct
BI04, RS, B S G W 20 -:-'/m’.-.;-p-'.. SRS {8
[100‘.~> 2 of 2 rerms relevsnt]

Nawgaann‘hnzk"hop Dr Bipin C. DESAI This server is running HyperhMlews 19}35".
Please report boge. Navigation Iosues Workshep Moderator: szm C.DESAI Concordia
University Montreal, H4B 1R6 CANAD & , A
ANP LN RESE LC, 6A R TPy PRENS ;z*mpr}w.)a.wa ML (33
[99%. 2 of 2 texmus relcvmt]
3

Hornae Page: Dr. Bipin C. DESAI D, Bipin C. DEDAI Address: Depr of Coraputes
Secience Concordia Urnaversity, Monzeal, HAB 1RS Canada Tclcphum: (5145 S45- 3035
messages 15143 848~ 3000 Fax {514} 845-8652
MY W W.CS. cmwm».w/o_x BB dage
[993%, 2 of 2 tenns relevant]

D

Appendix B: Metadats Workishop Bipian & DESAT Appendix B Work Sub- geoup
tesules ~ Day 1 Compiled by, Bipla € DESAI RED Sub-Group SUMMAPRY Purpose
ching Kuawn item brows sing(fuczy) remieval displs
AU LS COMI T 2L LT FRCG B S N B R T A pen e B T (5}
8%, 2 of 2 terms rclcvmt}

Figure 12: Lycos Search Results

21

Type aspecitic question, "phrase In guotes™ of Capitalizad Name.

Figure 13: User Interface of InfoSeek

Stes1 - 130f13

L 60E {Size3 NI
L M (S elE:
{Size 138K}
VoL S0% iSize 9 3K)

Figure 14: Results of the InfoSeek System

22

2.3 Drawbacks of aforementioned systems

Searching in these systems can be very cumbersome, because of the following reasons:

e The data is not organized and different indexing systems can classify the same
document in two different manners. Hence the need for a standard indezx scheme

that ensures homogeneity of the terms and organizations.

e Non-initiated users can navigate a long time through menus if they do not
know how to express perfectly their query, and if they do not put the judicious
keyword. Hence the need for an expert system that guides the users and helps

them to specify standard keywords or subjects.

In the next chapter we will describe the requirements of the CINDI System and point

out the advantages of the system.

23

Chapter 3

CINDI, the Concordia INdexing

and DIscovery System

In chapter 1, we discussed the major concerns regarding the cataloging and discovery
of hypermedia information resources. This problem will be exacerbated due to the
exponential growth of the Internet. We also uncovered some of the shortcomings of
current search systems on the Internet and came to the conclusion that these systems
are not flexible enough to meet the expectations of ever-growing number of providers

and users of such resources.

In this project we will use the proposed solutions (outlined in section 1.2) to
design and implement a metadata based system, called the Concordia INdexing and
Discovery (CINDI) System, for indexing and searching hypermedia documents avail-
able on the Internet. To do so, we will start by introducing the concept of Semantic
Header (Section 3.1). Then we will describe its major components as well as their

interactions.

3.1 Metadata Revisited

In this section we present two recent initiatives for allowing suppliers of resources to

prepare well thought out catalog information for their resources.

24

3.1.1 Dublin Metadata Core Elements
The Metadata Invitational Workshop was held in March 1995 in Dublin, OH [BCD95a].

The main objective was to address the problem of cataloging network resources with
adoption, extension or modification of current standards and protocols to facilitate

their discovery and access.

The goals of the workshop were: to achieve a consensus on a set of core data
elements for Document-Like Objects (DLO); to map these and related elements
to accepted standards; and to devise an extension scheme for registering other types

of network objects.

The following assumptions were made to develop a consensus to arrive at a mini-

murm set of core data elements.

o The elements are intended to describe a Document-Like Object.

e Common (or core) element set: These are metadata elements that apply to

most/many DLOs.
o The elements of the core are chosen to support resource discovery.
o All elements of the metadata are repeatable.
o All elements are optional.

o Allelements describe the DLO itself with the exception of the SOURCE element,
which can be thought of as a recursive instance of the entire record, except that

it applies to an object from which the electronic record is derived.

e The core elements are intended to describe intrinsic characteristics of the DLO...thus,
transactional data, archival status, and copyright characteristics (as well as oth-

ers) are not included in this set.

e No assumption is made concerning whether the DLOs are network accessible or

specifically electronic.
o The core element set assumes an arbitrarily complex hierarchy.

o Elements not included in the core set are not specifically excluded.

The following elements emerged as the ones required in a minimum set. They were
dubbed the Dublin Metadata Element List (DMEL).

25

subject: words are phrases indicative of the information content.
title: the title, name or short description of the object.
author: the name of the creator of the content.

other-agent: the name of any other entity responsible for the content of the

object.
publisher: the name of the entity responsible for making the object available.
date: the date of publication.

identifier: a character string or a number used to distinguish this ob ject from

other objects.

object-type: conceptual description of object.

form: physical, logical, or encoding characteristics.

relation: important relationship to other objects.

language: natural language of the content of the object.

source: object from which derived; contains a nested object description.

coverage: characterizes parameters to specify the audience, or the time or

space.

The following are some of the concerns [BCD97]:

Designing all elements of the DMEL as optional may create a problem; a mini-
mum set should be required.

The user may need some extrinsic characteristics of the resource such as its
cost and hence should be included (though optional). All documents of any
permanence should be archived and accessible for an indefinite period of time.
Subject element should be made up of two sub-fields, a schema and a hierarchical
subject field which includes sub-subject and sub-sub-sub ject.

For non-titled objects, we need an algorithm to insert a title or an alternate
title.

Relation and source have similar semantic implications and could be described
using a relationship sub-field with the identifier of the object to which it is
related. An optional sub-field may be used to provide annotation or useful

information.

26

¢ In addition to the language of the DLO, the (natural) language used to specify
the elements of the metadata and its character set should be specified. Further-
more, elements such as an abstract and annotations are missing. The former,
generated by a human or other agent gives a capsule idea of the DLO. The
latter is a placeholder for additional details regarding the DLO by responsible

agents or other users.

In the next section, we propose a new set of metadata elements which is predated
by DMEL but was modified to include the concerns raised by it and hence is better

suited to the users’ needs.

3.1.2 Semantic Header

For cataloging and searching, we use a metadata description called a Semantic Header
to describe an information resource!. The intent of the Semantic Header is to include
those elements that are most often used in the search for an information resource.
Since the majority of searches begin with a title, name of the authors (70%), subject
and sub-subject (50%) [Katz], we have made the entry of these elements mandatory
in the Semantic Header. The abstract and annotations are, as well, relevant in decid-
ing whether or not the resource would be useful; these items are also included. The

elements of the Semantic Header are described briefly below:

Title, Alt-title:
The first field of the Semantic Header is the title? of the resource. It is a name
given to the resource by its creator(s) and is a required field. The alternate title field

is used to indicate an ‘official’ secondary title or an alternate title of the resource.

The alternate title is an optional element.
Subject:

The subject and sub-subjects of the resource are indicated in the next field which

1This section is from [BCD97].
2Title for non document like resources may require some creativity. For instance, the title of a
satellite image could be generated from the name of the satellite, its location, date, time, camers,

frequencies, filters, etc.

27

is a repeating group (a multi-part field with one or more occurrences of items in the

group). All resources must have at least one occurrence for this field.
Language, Character set:

The character set used and the language of the resource is given in the next two

optional fields.
Author and other responsible agents:

The details about the author(s) and/or other agent(s) responsible for the resource
is given in the next repeating group®. The sub-fields are: role* of the agent, name,
organization, address, phone and fax numbers, and e-mail address. All sub-fields save
the name are optional, except in the instances of corporate entities in which case the
organization must be given. By using the role sub-field and giving it appropriate

value, semantics for agents such as editor or publisher are incorporated in this re-

peating group.
Keyword:

The list of keywords is included in this field. It is required to include at least one

keyword.
Identifier:

The next element is repeating group for recording the identifiers of the resource.
Each occurrence of this group consists of two sub-fields: one for the domain and the
other for the corresponding value. Each resource should possess at least one identifier.
The domain could be an accepted or standardized coding scheme issued by an ap-
propriate authority such as ISBN, ISSN, URL(FTP, GOPHER, HTTP)® [BLTC], or

3For resources such as satellite image, the agent may be the agency controlling the satelite or the
satellite itself.

4Typical values for role of the agent could be author, co-author, designer, editor, programmer,
creator, artist, corporate entity, publisher, etc.

S$Universal Resource Locator, File Transfer Protocol, Hypertext Transfer Protocol.

28

URN® [Soll] etc., and the value contains the corresponding coded identifier. Since a
resource in electronic form may be accessible from one or more sites there could be
one or more entries for the same domain such as URL. The URN field gives the unique
name of the resource, if any. This name may be used instead of a location (URL) if
the item is likely to move or is accessible from multiple locations’. The identifier(s)

can be used to locate the resource.

In the absence of an accepted standard for URN, we use an alternate name, called
Semantic Header Name (SHN). The SHN is derived by concatenating the following
required elements in the Semantic Header: title, name of first author (or name of
organization, if the resource is attributable to a corporate or organizational entity),
first subject, creation date, and version. With this scheme, the user supplied elements
in the SHN, with a very small probability, may map to more than one resource. If
multiple hits are encountered during a search based on user supplied elements of the
SHN, the system would inform the user of the ‘collision’. The user could then select
the appropriate resource index entry by perusing the other elements recorded in the
Semantic Header. The SHN can be used in a basic index for simple default search

system.

The identifier entry in the Semantic Header may also contain an entry for an
archive site. The domain value UAS (Universal Archive Site) is used to indicate the
archive site for the resource. It is expected that the resource will exist at this site
beyond its expiry date, if any. Of course, the site itself is guaranteed to exist beyond
the life of any resource. It is envisaged that the archive site could be an independent
resource provider. Examples of such traditional resource providers that would be
feasible archive sites for the resource are the national libraries such as the Library
of Congress in U.S., British Library, National Library and CISTI in Canada. How-
ever, private, for profit, corporations could be alternate sites for archiving resources.
Archiving would provide an anchor for the otherwise ephemeral nature of some re-

sources on the network. Since the archive site may not be known when the Semantic

SUniversal Resource Name.

"The idea of the Semantic Header is to provide bibliographic information about resources and by
including SHN and/or URN and a list of URLs it also provides a mapping from SHN and/or URN
to URLs.

29

Header is first registered, the system would support update operations in which ex-
isting entries could be modified. Other update operations such as modification of
addressed, URLs etc., would also be supported.

Date:

The dates of creation(required) and expiry, if any, are given next.

Version:

The version number, and the version number bieng superseded, if any, are given

in these optional elements.

Classification:

The intended classification is indicated in the next optional repeating group. It con-
sists of a domain (nature of resource, security or distribution restriction, copyright
status, etc.) and the corresponding value.

Coverage:

The coverage is indicated in the next optional repeating group. It consists of a
domain (target audience, coverage in a spatial and/or temporal term, etc.) and the
corresponding value.

System Requirements:

A list of system requirements such as hardware and software required to access, use,
display or operate the resource is included in the Semantic Header as an optional
repeating group. It consists of a domain of the system requirements (possible values

are: hardware, software, network) and the corresponding exigency.

Genre:

30

This optional element is used to describe the physical or electronic format of the
resource. It consists of a domain (type of representation or form which in the case of
a file could be its format such as ASCII, Postscript, TeX, GIF, etc.,) and the corre-

sponding value or size of the resource.
Source/Reference:

The relationship of the resource to other resources may be indicated by the optional
repeating group. It contains the relationships, domains and identifiers of related
resources. A related object may be used in deriving the resource being described,
or it may be its sub/super components. Such information, is usually found in the
body of a document-like resource. However, this optional group permits an option

for this type of resouce and an opportunity to registerit for resources of other formats.
Cost:

In the case of a resource accessible for a fee, the cost of accessing it8 is given next.

This element is optional.
Abstract and Annotations:

The abstract and annotations are two optional elements given in the next fields.
The abstract is provided by the author of the resource; the annotations are made
by the author and/or independent users of the resource and include their identities.

Once registered, the annotations cannot be modified.

User ID, Password:

The last two items in the Semantic Header are the user ID and the password. Any
change to the update-able part of the Semantic Header requires these fields to be

filled in. Each user ID is assigned one and only one password.

8Such cost could change over time and requires updating.

31

A sample of a Semantic Header is shown in Appendix A.

3.2 Expert System

In cataloging and searching digital libraries, it is essential to employ the knowledge
and expertise of reference librarians. However, employing professional librarians may
require a great deal of time and cost. Thus, an expert system is required to model
librarians expertise to guide users in cataloging and searching. The expert system
will help the users choose correct subject terms. It will also guide them to register,
update, delete, and annotate Semantic Headers. The expert system is designed so
that its query for resource search facilitates efficient database access, and reduces
the number of incorrect results generated. This requires the following aspects to be

considered as part of its function:

1. Choosing appropriate subject terms from the Thesaursus for cataloging and search-
ing. The expert system guides the user in selecting the most appropriate (three-level)
subject hierarchies from an on-line Thesaurus. In addition, the system guides the
user to convert terms entered by the controlled vocabulary drawn from the estab-
lished subject heading and descriptions. This is done by allowing the user to enter
synonyms or sub-strings of standard subjects. This facility is provided for both in-
dexing and searching a Semantic Header.

2. Providing context sensitive help for indezing, updating, and annotating a Semantic
Header. For example, the system aids the user in completing compulsory fields of a

Semantic Header to be indexed.

The expert system designed for CINDI is divided into two components®:

Indexing Component: A Semantic Header is to be completed by the author of
a resource. In addition to aiding the user to choose appropriate sub ject hierarchies
from the Thesaurus, the expert system will also help the user in entering those fields
required for indexing or updating a Semantic Header. As for adding annotation to an
existing Semantic Header, the user will also be guided for entering compulsory fields.

®An earlier version of such an expert system is described in [CPG]. The current system has
simplified the approach while reducing the number of rules

32

Retrieval Component: A graphical interface allows the user to enter search re-
quirements. In searching for a given set of resources, often the users enter vague,
partial, and incorrect information in identifying the terms of the index for the doc-
uments they are searching. In other words, the user search specification is often
‘ill-structured’ [SIM]; hence, expertise is needed to help users articulate their needs.
In addition, the total number of input field combinations for document search to be
handled is large. Only some of these input field combinations occur at any given time.
For example, in a given search, the user may be interested only in the documents of
a particular subject hierarchy (AL.ExpertSystems. Verification) without caring about
the title of the document. In this case, it is impractical to consider search situations
that also explicitly require the title of documents. Thus, by isolating and encoding
the input combinations and handling them in rules, only a subset of the rules need be
active to process the user input and provide appropriate help!®. This also improves
the system’s modularity and understandability [JRJK, AGW].

It should be pointed out that this prototype version of the CINDI system will deal
with indexing and searching resources related only with the Computer Science disci-
pline. Hence, the standard terms used for expressing subjects and sub-subjects will
be based on a standard classification of computer science areas. More precisely, the
terms will be taken from the classification system of the Computing Reviews [CR91].
This classification can be compared to a tree, where the root is the general area Com-
puter Science, the first level represents the sub ject, and the four lower levels represent
the hierarchy of subsubjects. In order to include all sub jects of the five levels of this
classification system in our three-level sub ject hierarchy, the lowest two levels of the
classification system have been merged with the third level of the hierarchy. For in-

stance, the five-level hierarchy

Computer Science
Software
Programming Techniques
Concurrent Programming

Distributed programming

104 direct encoding of knowledge to check for all input field combinations one after another had
been attempted earlier, but such a system was inefficient [CPG].

33

is divided into three three-level subject hierarchies such that each hierarchy is com-
posed of Computer Science and Software as the first two subjects and one of the

remaining three subjects (of the five-level hierarchy) as the third level subject.

3.3 User Interface

3.3.1 Index Entry Graphical Interface

The index entry and registering sub-system provides a graphical interface (Figure 15)
to facilitate the provider (author/creator) of a resource to register the bibliographic
information about the resource. The interface allows the provider to enter the infor-
mation and it offers help by means of pop-up selection windows and an expert engine
to suggest controlled terms. This expert engine is intended to bring some of the ex-
pertise of a catalog librarian to the ordinary user [CPG]. Many of the elements in the
Semantic Header can be extracted directly from the resource document, if they are
properly tagged!!. Once the information is correctly entered, the author can decide
to register the Semantic Header entry in the database. When the header informa-
tion is accepted by the database, the author/creator is notified. A user ID and the
associated password is to be provided when the Semantic Header is first registered
and for all changes made to it. Since the user ID and the password are not accessible
by anyone other than the original registrar of the index entry, the entry can only be
updated by person(s) who are cognizant of them. Changes that may be made could
be due to changes made in the resource or its migration from one system to another.
A copy of the Semantic Header is stored at the site of the resource for convenience in

later updates.

3.3.2 Search Graphical Interface

The search interface shown in Figure 16 allows a user to enter search requirements

consisting of sub-strings and synonyms. The user is not aware of the underlying expert

This work is underway in another project at Concordia.

34

Computer Ap,
Computer Sy

imfomuﬂon
Sofwre Engi

X Cindi: Semantic Header Entry
File Edit Help
Title []
Alt-title L }
[Sub-levell }{ . o
Subject L_Sub-level2 - Database Ma
Search - Information
String L = SubSata e] Information
L_Synonyms] L_SubSerings | " - | Online Info
== Nex] | Bysical Destt)
Language J{___ — 7] CharacterSet. [] .
L Rate]
Name
Organization 53;&,‘{. or
Address Artist
prone Soppme =
E-Mail
Author/Other Agents CNex ity
S SRE S arnreaf] S%%%“
L dL]
[Domain J Value Legal
Identifier(s) Prev {__Next] Security Lev
Created/Post Date L'_—] Expiry Date T]
FYYY™MMDD) ARoSE
Version [T] Swmsls., [)
L J]
S Audience
[Domain] Value G:osraphxcal 1
Classification [Prev_] [Next_] _ip‘m"l:l"‘c’:e"
em o
Domain] Value(s)(comma separated)
Coverage [Prev_] [Next] Hardware F
[1] Network
,Eomponeﬂ Exigance(s) (comma separated) Software J
System Requiements [Prev] | _Next]
LI Form || _J Size | J Tcxt
Genre _Prev_ | [__Next |
L 1]
Relationship Domain:Identifier
Source/Reference | Prev | L__Next]
Coste]
Abstract
F
Annotation
@e’q LUPda’ej mlet‘j UmEDC] Password — |

Figure 15: The Index Entry User Interface

35

X Cindi: Semantic Header Entry

Title/Alt-title | 1] Sﬁ;;ﬁ‘;;y
< Exact <o Substr/nW gommerce
ommunicati
[GenermE‘ — _ | Computer Sci
Sub-levell =kl } — | [Cosmology |
Total Entry[_]‘%@m\r_] I(_SIorixiputer Sy
ardware
O And O or m\! “ Imformation
Author/ Sofwre Eng1
Other Agents Name g
< Exact Orgamzauonl \ l ~{Database Ma
< Substr/noncase| Total Enu'y[:] Current Entry‘:] Relation %ormatjon
q ormation
< Like OandCor [Prev] [Next] [C] O][O] | Online Info
Identifier T l | Physical Desi—|
© Exact Domain= Value =
O Subsuinoncas Total Entry[| Curren Relation[] %gg
OadOor [Fev] [Fex] [(TH3H@] | [Gopher
. [| SHN
Keywords Total Entry|:] Current Entry(:] Relation E
CandOor [Pev] [Next] [(C] [D][]
Created/Post Date | After l:]
(D) Before Arh?rll)ic
- - Chinese
[Languagel=———""1Version | | [MaxHits | | | English
Words in Abstrac \ Farsi
(comma separated| ——| French
[Search] [Clear | [Help | [Exit |

Figure 16: The Search User Interface

36

system that provides the help as outlined earlier. The search interface provides for
the precise statement of a user query by allowing complex predicates based on search

items such as author, subject, keywords, dates, and words appearing in the abstract.

3.3.3 Annotation Graphical Interface

The annotation subsystem is similar to the indexing subsystem. However, only a few
of the indexing entries, to uniquely identify the resource in question, are required
(Figure 17). An annotation made by any user can be entered, by means of the
annotation interface, and would be registered with the identity of the user. Each
annotation could then be incorporated in the index entry and could be retrieved with
the index. Such annotations, by recognized persons would be a valuable guide for

future users.

3.4 Database

The index entries registered by a provider of a resource is stored in a Semantic Header
Distributed Database system (SHDDB). From the point of view of the users of the
system, the underlying Semantic Header Database (SHDB) may be considered to be
a monolithic system. In reality, it could be distributed and replicated allowing for
reliable and failure-tolerant operations. The interface hides the distributed and repli-
cated nature of the database. The distribution is based on subject areas and as such
the database is considered to be horizontally partitioned [BCD90].

It is envisaged that the database on different subjects will be maintained at dif-
ferent nodes of the Internet. The locations of such nodes need only be known by the
intrinsic interface. A database Catalog would be used to distribute this information.
However, this Catalog itself could be distributed and replicated as is done for dis-
tributed database systems.

Database Catalogs will also be used to store information about subject areas
maintained in the SHDBs so that the users can select subject items for indexing and
retrieving Semantic Headers. Thus, each node will contain a Catalog consisting of

the thesaurus for all subjects as well as the information concerning the locations of

37

& Cindi: Annotation

Entry

Semantic Header Name:

Title

Role

Author

Organization

Subject

Created Date

Version

Current Annotations:

Annotator’s Information:

Name

Organization

Address

Phone No.

Fax No.

E-Mail

Annotations to be Added:

[Exit |

| Load SH | | Register |

Figure 17

: The Annotation User Interface

38

Semantic Headers, pertaining to a subject, in the distributed system.

The overall structure of the CINDI System is illustrated in Figure 18. The Se-
mantic Header information entered by the provider of the resource using a graphical
interface is relayed from the user’s workstation by a client process to the database
server process at one of the nodes of the SHDDB. The node is chosen based on its
proximity to the workstation or on the subject of the index record. On receipt of the
information, the server verifies the correctness and authenticity of the information

and on finding everything in order, sends an acknowledgement to the client.

The server node is responsible for locating the partitions of the SHDDB where the
entry should be stored and forwards the replicated information to appropriate nodes.
For example, the Semantic Header entry shown in Appendix A would be part of the

SHDDB for subjects Computer Science and Library Studies.

Similarly the database server process is responsible for providing the catalog in-
formation for the search system. In this way the various sites of the database work in
a cooperating mode to maintain consistency of the replicated portion. The replicated
nature of the database also ensures distribution of load and ensures continued access

to the bibliography when one or more sites are temporarily nonfunctional.

On making a search request, the client process communicates with the nearest
Catalog to determine the appropriate site of the SHDB. Subsequently, the client pro-
cess communicates with this database and retrieves one or more Semantic Headers.
The results of the query could then be collected and sent to the user’s workstation.
The contents of these headers are displayed, on demand, to the user who may decide
to access one or more of the actual resources. It may happen that the item in question
may be available from a number of sources. In such a case the best source is cho-
sen based on optimum costs. The client process would attempt to user appropriate

hardware/software to retrieve the selected resources.

39

BCD

N
g m | Basic
A Knowledgebase
g m Basic
% | Knowledgebase
Vi
—~ <@l
Database Catalog
O
O <Ll
Catalog
>
8 = | Basic C H ﬁ N tWi k g A Basic
=% | Knowledgebase ommunication Networ ; Kaovledgebase
3
o) |
O
) N\
7 AY
(9] 7] .
€ | = | Basic = = Basic
~|* | Knowledgebase Knowledgebase
<@l <4Vl
5 D

Figure 18: Overall Structure of the CINDI System

40

3.5 Advantages of the CINDI System

Comparing the proposed system with existing search systems, the following advan-

tages are easily recognizable:

The Semantic Header allows the indexation of resources accessible on-line or

not on-line.

A majority of the existing search systems do not provide the possibility for the
user to make comments about the resource and to read annotations of other
people.

The Semantic Header will contain annotations of reviewers.

The existing search systems often employ imprecise indices (title only, full con-
tent, non standardized keywords, etc.).
The Semantic Header syntax provides a way to register standardized keywords,

and these are chosen by the provider of the resource.

Many search engines do not give, in their search results, an informal description
of the resource; the additional information provided by them is an extraction
from the first part of a resource.

The Semantic Header has an ‘abstract’ field.

The size of the index database is not limited since the database is distributed

amongst different sites.

The Semantic Header may become a part of each document. The format used

to write the content of the header allows its display by the Internet browsers.

In existing self indexing systems, one of the limitations is the low number of
indexed resources. The problem is to convince people to submit to the system
the resources they put on the Web. This problem is solved in the CINDI System
by means of an enforcement procedure which forbids one author to submit

his/her resource to the Web if the Semantic Header has not been created!?.

The registration of the Semantic Header in the database is performed by the

provider of the resource, which improves cost, accuracy and efficiency.

12Purthermore, automatic generation of Semantic Headers from resources is one of the works in
progress.

41

Chapter 4

Analysis of the CINDI System

4.1 Choosing a Design Methodology

There are three important aspects in modeling a system: static, dynamic, and func-
tional. These related aspects can be well described and differentiated by the Ob-
ject Modeling Technique (OMT). In OMT, the object model represents the static,
structural, ‘data’ aspects of a system. The dynamic model represents the temporal,
behavioral, ‘control’ aspects of a system. The functional model represents the trans-
formational, ‘function’ aspects of a system [Rum91]. In this chapter, we will model
the CINDI System using OMT by elaborating on these three models.

4.2 Object Model

The object model describes the structure of ob jects in a system, namely, their identity,
their relationships to other objects, their attributes and their operations. The object
model provides the essential framework into which the dynamic and functional models

can be placed.

4.2.1 Object Model of the system

The system is divided into five subsystems: User Interface, Semantic Header, The-
saurus, DB Server Interface, and finally File System. The Thesaurus subsystem itself,
contains a subsystem called Subject Hierarchy. The User Interface subsystem resides

in the user site (client site). Other subsystems reside in the database site (server

42

/

User Interface

]]
]]
mm , Aq pajjonuoa
A v N
.m b | .. ' “
(B~ ' ' ' ' o »
“W m | accesses ' ' ! a m. m
] []])
'S ! X g | owisaum ! m 2 3
2 T BE | O $
1) . " 0 ! ' .W QV». &
e I R -
g 3 I8 bolg
]
2 3 ;m, - m" ! ﬂ
: B s TR ‘
8 8l IR R - AR
R R R R Sl
m m O BRANET i ' SUCEP I LEEEES SO e "
I R e Rt }
A I g LS = ™ m"
R — — - [}
I O R g N U RG-S GE-T §
I g BHEC 3 4 1§
| o - I =¥
! ! E @
. P b LLIIIIIIIIIIIIIIIIIII I e o
" " ' [
_ S Em 5 SRR ETTTERES .
] -]
" m “ n MMT correspond to m
1 g) " 7] 9)
" m P @ corresponds to '
) @ X |
" R L T _
' o !
§ i : m
" L !
" D "
]

T
i
5
1
t
1
]
1
t
.

Figure 19: Object Model of the CINDI System
43

Semantic
Header

.

.

_a

Genre Source/ Classification Annotaion
Reference
i+ | {ordered 14| (ordered} E Mmd)
Author Subject Keyword Identifier
System
C
overnges Requirements
I+ I+
Coverage SysReq

below.

Figure 20: Object Model of Semantic Header

site)!. The object model of the system is depicted in Figure 192. The object models
of the Semantic Header object class and the Word ob ject class (explained at the end
of this section) are given in Figures 20 and 21, respectively. In this schema, the
problem is viewed as if all data is centralized in a single database. The description of

the object model, the subsystems, the object classes and their associations, is given

The DB Server Interface subsystem contains the ob ject class Parser and has two

main responsibilities.

'The User Interface subsystem can be divided into other subsystems as well. However, since this

44

document concerns with the server site only, we will not consider issues related to the client site.
2The object model notation is shown in Appendix B.

Word

Context

=

OidArrl

A (0 1n13)

1. It responds to the data transmitted via network. Namely, it receives the user
request in a file, and returns the result of the request to the client site, again in
a file. It should be noted that this part of the subsystem is not included in the
analysis of the system. This is because it has no effect on issues concerning the

design of the system.

o

storing data items, and finally specifying the flow of control through other

subsystems, in order to process the request.

The Thesaurus subsystem is responsible for transactions related to indexing and
searching standard subject hierarchies. This subsystem contains a database area,
called ThesaurusDB, which stores the standard subjects and their synonyms. The-
saurusDB contains a three-level subject hierarchy and the Synonym object. The
subject hierarchy is composed of three classes Level 0, Level 1, and Level.2. The
hierarchy is refined from top to bottom using the inheritance relationship. There is

an aggregation relationship between ThesaurusDB and each one of hierarchy objects.

OidArr2

1<

Figure 21: Object Model of Word

45

OidArr3

It analyzes the user request by scanning through the input file, extracting and

Each synonym consists of its contolled sub ject terms. Thus, a Synonym object could
contain either of the objects of a hierarchy.

The Semantic Header subsystem is responsible for registering, deleting, updat-
ing, and annotating Semantic Headers. This subsystem contains a database area
(SHDB) which stores the Semantic Headers and other related objects (to be ex-
plained). The Semantic Header Database is an aggregation of three objects, Seman-
tic Header, UserID, and Word. Semantic Header contains all fields in a Semantic
Header document. Some of these fields are included in the Semantic Header object
as attributes (or data members); the others are objects which are components of the
Semantic Header object (Figure 20). In this figure, the notation {ordered} indicates
that the elements of the ‘many’ end of the aggregation have an explicit order that
must be preserved. As an example, the Author object is a part of the Semantic
Header object which should be (partially) ordered. This is because, in the GUI, the
first author field entered by the user will take part in the construction of the Semantic
Header Name. The order of other author entries is immaterial. The objects in this
figure correspond to the fields of the Semantic Header metadata described in previous
chapters; except for Coverage and SysReq objects, each of which is a part of Cover-
ages and System Requirements, respectively. This is due to the fact that, say, the
coverage field of the Semantic Header can be entered repeatedly and that the value
of coverage can have more than one value as well (please see section 6.5.2). Semantic
Header also includes information in the Identifier object to access an Information
Resource on-line. We have used dashed line to illustrate the Information Resource
object because it is outside the scope of this system. The UserID object contains a
pair of user ID and password entered by the user in the GUL Each Semantic Header
and user ID uniquely identifies a UserID ob ject.

The File System is part of the Operating System responsible for file management.
It is used for storing local copies of the files received from the client site as well as
those which contain the result of the user request to be sent to the client site.

The SHDB object also contains the Word object. It stores non-noise words3
appearing in those fields of a Semantic Header which may be used during the search

operation?. The Word object corresponds to the Semantic Header objects where the

3Noise words are common invariant words which usually occur repeatedly in a text and do not
relate to any specific topic or concept. Some examples of noise words are: am, all, also, about,
across, already, everyone, different, etc.

%It should be noted that some of the fields of Semantic Headers in register GUI have been

46

value of the Word object appears in the Semantic Headers. This object contains a
fixed number of Context objects equal to the number of search GUI fields. Each
Context object, at any given time, has either of the three ob jects OidArri, OidArr2,
or OidArr3. Context contains a fixed number of these objects (please see section
6.5.3). Each one of OidArr objects contains a fixed number of OIDs or Semantic
Header Names (SHN). The Semantic Headers, where the user-entered words in the

search GUI occur, are retrieved by means of these SHNs.

4.3 Dynamic Model

The dynamic model describes those aspects of a system concerned with the sequenc-
ing of operations over time. In other words, it describes events that mark changes,
sequences of events, states that define the context for events, and the organization
of events and states. The dynamic model captures control. Control is that aspect of
a system that describes the sequences of operations that occur, without regard for
what the operations do, what they operate on, or how they are implemented. We
separate our dynamic model into scenarios and event traces, and state charts given

in the following sections.

We will begin by presenting a typical scenario that gives a general overview of the
dynamic behavior of the whole system:
The user in the client (or user interface) site makes a request by filling in some of
the fields in a GUI. The user interface calls the client program. The client connects,
through the network, to the server and sends the user’s request in a file which has
a special format. At the server (or database) site, the server receives this file and
calls the parser to validate the special syntax of the file (the purpose of having a
special format is to identify the content of various fields of the client request, and
to transform user-defined queries to database queries). At this point, the parser,
based on the information observed in the file, calls appropriate database functions to
process the query. The result supplied by the database, is stored in a file (again, with
a special format). Finally, the server sends the file through the network to the client

eliminated from those of the search GUI. This is due to the fact that they do not manifest suitable
search criteria for effective information retrieval. Some examples are: system requirements, coverage,
character set, and address.

47

site. In the client site, the file is parsed and depending on the information stored in
the file, the user interface displays the result of the query or an error message which

may have occurred either in the database or in the network.

4.3.1 Scenarios and Event Traces

A scenario is a sequence of events that occurs during one particular execution of a
system. An event is something that happens at a point in time. Each event trans-
mits information from one object to another. The sequece of events and the objects
exchanging events can both be shown in a pictorial form called event trace diagram.
Herein, each object is shown as a vertical line and each event as a horizontal arrow

from the sender object to the receiver object. Time increases from top to bottom,

however the spacing is irrelevant.
In the following scenarios, the distributed and replicated nature of the Semantic

Header and Thesaurus DataBases are hidden.

1) Registering a new Semantic Header (Figure 22):

e The user enters a set of elements of the Semantic Header, such as title, author,
and subjects.

¢ The user interface asks the Expert System for standard terms to help the user
choose subject hierarchies. This can be done by pressing on subject hierarchy
buttons or by entering a synonym or a substring to search for the corresponding

subjects.

e The Parser receives the request from the User Interface.

o The Parser parses the file received from the User Interface (not shown in the
Figure).

e The Parser sends the request to ThesaurusDB.

¢ The ThesaurusDB searches for matching Thesaurus objects and sends the

result to the Parser (not included in the Figure).
e The Parser receives the result from the Thesaurus.

o The Parser returns the result to the User interface.

48

arssn

] ']]] [} [}] [}
1]) ' ¢ L t La —
" ' ' ' | pasidy ' ! paaisidas | (Ssw)keidsip !
" “ ") " ! ! “
! e —_ ! ! ! ! ¢ t
" 1 (NHS)spiogopur “ “ " “ " "
" " L | HSPEan " | “ |
] 1 i]] 1 [}] |
[' 1 ' K ' 1) '
| =) | T I . |]]]]
! ' Hnd ‘pin)ppepatews ! ACSEET ! ! !
L]] ' ' 1 |] t]
] ' [} |] ') 1
" “ " " \ Gupsed|) “ " "
t '] ' [} 1]] [}
| | 1 ' ! [n) '
1 ' 1 1 1 1 (dqyNisanboypuas ' 1
t]] ' [}]] | '
] '] 1]] !] [}
[t] [l]] ——)
" " " “ " " o HShoSt | JsiBarssad
] 1]] ' '] 1 ' [
' [} ' [}] U] ! t
1 ']) ' | 1 | '
']] ! ' (is1nalgns)pafgngpuos ') 1
] t]]]] 1]]
¢ [} I [}]]] ' [}
' " " 1 (a101590uyfqnswadfgngpury) “ " |
' t [} |] le——oo 1 J [}
! ! ! ! ! | G sorboypus ! !
¢ [} [} 1 ']]]]
' | ' |]] | e ——— P)
" " " | " " 1\ (Rpma)yost | sy fqns osooya |
]
| | | | i " | | |
] t) [} [}]]) '
]] L] ' ' [} ——
" " “ " " ! ! “ ‘souine ‘o 13149 "
' [} t 1] t t t [}
piopm RpBIY opuTuRg gasnunesay), a4aus Jos18g wajsdGraadxy EALTETTTRE a3s}

Figure 22: Event Trace for ‘Register Semantic Header’

49

The User Interface displays the standard items and asks the user to make
his/her choice.

The user presses the register button and the Expert System makes sure that

mandatory fields have been entered by the user.

The User Interface sends the register request to the Parser.

The Parser parses the file received from the User Interface.

The Parser sends the request to the Semantic Header Database.

The SHDB validates the user ID and the password. Namely, it will create a
new User_ID object if such user ID does not exist; if it does, it will make sure

the user ID and the password match.
The Semantic Header Database creates a new Semantic Header.

The Semantic Header adds the non-noise words of the Semantic Header to
Word so that each word points to the Semantic Header. If the word already
exists in the database, only a pointer to the Semantic Header will be added to
the Word object. Subsequently, it sends an acknowledgement to the SHDB.

The Parser sends an acknowledgement to the User Interface.

The User Interface displays appropriate message to the user.

2) Deleteing a Semantic Header (Figure 23):

The user opens a file containing a Semantic Header (not shown in the Figure).
The user enters the user ID and the password and presses the delete button.

The Expert System makes sure the annotation field is empty, otherwise the

Semantic Header cannot be deleted.
The User Interface sends the request to the Parser.
The Parser sends the delete request to the SHDB.

The SHDB validates the user ID and the password. Namely, it checks if such a
user ID exists. If it does, it requests the UserID object to verify that the user
ID and the password match. If the user ID does not exist, it terminates the
transaction and returns an error code to the Parser (this case is not considered

here).

50

¢ The SHDB makes sure that no annotation is added after the registration of

the Semantic Header.
o The SHDB makes a delete request from the Semantic Header.
e The SH deletes the Semantic Header.

e The SH deletes the Semantic Header Name index from all words in the Semantic
Header and sends an acknowldgement to the SHDB.

¢ The Parser sends an acknowledgement to User Interface.

¢ The User Interface displays appropriate message to the user.
3) Updating a Semantic Header (Figure 24):°

¢ The user opens the file containing a Semantic Header (not shown in the Figure).

o The user makes appropriate modifications with the help of the Expert System.
A number of items cannot be changed and the Expert System will verify this

and inform the user.
® The user presses the update button.
o The User Interface sends the request to the Parser.
e The Parser parses the file received from the User Interface.
o The Parser sends the update request to the Semantic Header Database.

e The SHDB validates the user ID and the password. Namely, it checks if such a
user ID exists. If it does, it requests the UserID object to verify that the user
ID and the password match. If the user ID does not exist, it terminates the
transaction and returns an error code to the Parser (this case is not considered
here).

o The SHDB makes sure that the user has not modified the annotation field.
e The SHDB makes an update request from the Semantic Header.

e The Semantic Header updates the modified fields of the Semantic Header.
¢ The Semantic Header updates the modified words.

e The modified fields are exhausted. The Semantic Header sends an acknowl-
edgement to the SHDB.

SFor brevity, we will not mention some steps repeated in the registration scenario.

51

aissne

oM

Japeaj] Hjueuage adHs

Jasueg

1 ' ' ' R] X X
“ " " Lo PR | L pREp) (Ssu)iydsp |
——————
" " _ awp | " " " "
) S——— 1 | | |)
1 (S TRIOM)NHSN9]9p 1 i I ! ! '
|] t [} [} [}] t
t) 1 [} '] |
" - o[" i " “ "
] I e ' I I 1
" " , (skrp " " " “
{ [}]]]]]]
! ! _IH_IV. ! ! ! !
" " v (HShouuyyoay | | " " .
]] t]] |]]
“ 4 | —l |]] [}
| \ (wd‘po)ynews | T " " "
[} t [} t } }]
] [} [} | J] |]
' | 1 | ?EVB._&_II,’” |) |
[} [} [} ¢ ' [}])
" " “ | ' (Gn)isanbaypuzs | " “
[} [} [}] 1 [}] [}
[} |] t [}]] [}
1 [} } | |]ﬂ J
" ! " ! ! {uonwiouwre)iduizsy ' appep ssaud !
[} [} | |] } i]
| [} 1]]] _AIIIL
" " “ " “ “ \pmssed ‘pussn 10
[}) [} 1 [} [} i !
t [} [} [} t] { [}

waskgpradxy 0813)uLI38)) 130

Figure 23: Event Trace for 'Delete Semantic Header’

52

] 1 1] L 1 1 (]]

“ “ ; : 2u0p o poiepdn ' ' paepdn ' (3sw)Aeydsip '

patsneyxo s - [— ! ! ' ' ' !

sy | | omen | | " " ! “ “

' [Se——————— 1 1 1 0 ' 1

P CPOMPONISSRL “ " " “ " “

Jo w__oﬁ"] |]] | ' ' ' 1
1

nswadas ! | ! Optougoapdn [} ! ! ! ! ! "

™ 1 [l | ()a1epdn ! ! ' t '

] 1 < t ~— 1 1]]

[] 1]] t]]]]

]] "] d 1]]]]

" | v (HShouuyyqa |) " " " “

] [] | [}] [] ' ' 1)

= + + —al 1 1 1 1

“ T (wdpmywn | T I (spwpdn | " " '

t [] 1] 1 [] t 1 t

]]] 1 1]]]

]]] []]]]]]

" i i | Vo Cwesmd|) " ")

]]] [] [}] (] [}

' ' ' ' ' ' ' ' '

i " i " " » (luhisonboypuas | ' i

[}]]] | 1]]]

|]) t | | — |

! : ' ! ' ! (pureusjy)yoawpdn | oepdnssad |

" “ | | " ! ! " '

' ') . . - . - .

!) ' ' 1 Qs1algns)nofgngpuss ' 1)

]] []] 1 t] [} t

" | " 3 _ 3 i _ "

1 1 ' ' (s101520uyqnsNaafgngpuy t (3jynsanboyial) '

" " | " " " | "

" " “ ; " ! 1 (Ryamap)yOst | 391y Tqns 350043 |

| | | " " “ " “ "

[]]] 1] [] | ————— !

' ' ' , ! ! ! Mouepdn ! swaig awpdn !

]]]] '] '] [}

anasne pogm PRI JpusagE gasnunesay, aans sasaeg waskguadxy 2dmsajupsn 380}

Figure 24: Event Trace for 'Update Semantic Header’

93

User UserInterface Parser SHDB aSemanticHeader

I
]
! enter name, address,...

4

! I

1 L}

4 !

Jd [}]

t 1 [} I
! ! t !
! i I !
' annotate i | ;
] =1 [} I
} I § |
1 ! L} !
]] 1
i pressannotate ; sendRequest(file) : '
f >T —> I !
! i § t
t J I] i
! 1 1 | parse(file) [1
4 i J 1 !
i !] I
I [}] 1 [
I {

: ' : annotate(SHN, text) : addAnnot(text)
]] f =]
1 ' I v t
I H ! | I
i] i i i
I H 1 ! | |
< display(msg) < annotated < annotated . .
t I 1 !

Figure 25: Event Trace for 'Annotate Semantic Header’

o The Parser sends an acknowledgement to the User Interface.

¢ The User Interface displays appropriate message to the user.
4) The user annotates a Semantic Header (Figure 25):

® The user opens the file containing a Semantic Header (not shown in the Figure).
e The user enters personal information such as name, address, and email.

e The user annotates the Semantic Header.

e The user presses the annotate button.

® The User Interface sends the request to the Parser.

e The Parser parses the file received from the User Interface.

o The Parser sends the request to the Semantic Header Database.

e The SHDB adds annotation to the list of annotations in the Semantic Header

object.
o The Parser sends an acknowledgement to the User Interface.

e The User Interface displays appropriate message to the user.

5) The user makes a search request (Figure 26):

54

The user enters a synonym to find corresponding subject hierarchies.
The user fills in other search items.

The user presses the search button.

The User Interface sends the request to the Parser.

The Parser parses the file received from the User Interface.

The Parser sends the request to the SHDB.

The SHDB repeats the following three steps untill the search fields are ex-
hausted.

‘The SHDB requests a search from the Word object.

The Word object finds appropriate indexes characterized by Semantic Header
Names and sends them to SHDB.

The SHDB performs and or or operation on two previously found results.
When the search fields are exhausted, the SHDB retrieves Semantic Headers
corresponding to SHNs.

The SHDB increments the number of hits of each Semantic Header retrieved.

The Parser sends the result received from SHDB to the User Interface.

The User Interface displays the result to the user.

55

porNRYLD
(wayg *ppayy)
oo
m si1vadas

" " i X i : o " ;

" ! (SNHS JO BHIMMODSSINLSPPS ! ! | (SHS Josiinsas”™ (sHS joisnsar | (ynsor)furdsip ¢

] ! 4- 4] t t

m 1 ! X : , " ' '

- ' SNHS Jo BIDHSIcS _ i i ")

' [] []]]

- " " \ (opueuuopad | | " " '

" ' ' ') ') I ' |

']] 1) 1) []]] []

, — 1 1 1 A » ' ' i

) " ! (Npisjorspuss ¥ " ! ' '

'y ' | ' \ ' ' ' '

- [i i i 1

) 4]]]
-l]]] W2 *pratjiyareas

H B R e S S

_-—

' " N “ " , Istisonbaypuos | " “

]])]]]]]]

] (])]]] |] [}

] [] [} 1 [} 1 3) t

" i ; " : o Guesnd| | |

" " 1] (] 1 []]]

" " m ' ' ' : : X

! " " m " ' X , '

1 ¢ 1) []

" " " “ " “ “ vt yaeasssud

[])]]]] [)]

]] [] 1] (]] 1 []

' i H ' X ' ' 1 SWIANE IO 13D |

m m ' " ' ' ' ' '

[]] r T - —Ty []

" " " " " ' (srmefqns)oafgngpuas ' “

[] []]]]]] 1]

' ' i T =1 L e | !

! ! " - Qiofansond s (wAuoukskaafqngpuyy 1 (Gl Ysonboypuss | '

' ' ' _ ' ' ' X '

[] [] t] 1 []] Py

m m " " " , " | Wuouss oo |

]]] 1]]]

paope DPBIY IPUNMIG sunwEsYy |, uwuouige gasnmesay g dams s8] 0B %0

Figure 26: Event Trace for ‘Search for Semantic Headers’

56

r N
done[end_of_file]
1
. | _identifir { StorinelD
m npufile | AnalyzingTags toringIDs
do: store IDs
do: verify tags done L in data structures
]
parsing error(error code)
— J

Figure 27: State Chart for Parser

4.3.2 State Diagrams

A state is an abstraction of the attribute values and links of an object. Sets of values
are grouped together into a state according to properties that affect the gross behavior
of the object. A state chart relates events and states. When an event is received,
the next state depends on the current state as well as the event. A state chart is
a graph whose nodes are states and whose directed arcs are transitions labeled by
event names. In this section we will describe the state diagrams of those ob jects that
exhibit interesting behavior. The dynamic model notation is shown in Appendix B.

The state chart of the Parser is shown in Figure 27. When the Parser receives
user request in a file, it analyzes the syntax of the tags in the file. The tags are used
to surround the data items (or identifiers) entered by the user as well as to specify
the flow of control to other subsystems. Subsequent to analyzing each pair of tags
and extracting identifiers they are stored in variables and data structures for later
use by the database related subsystems.

The state chart of Synonym is shown in Figure 28. We consider the case when
the user has entered a synonym to retrieve the subject hierarchies pertinent to the
synonym’s controlled terms. In the state of Synonym Matching, Synonym verifies
the existence of such Synonym object. If it exists, for each level of the hierarchy, it
retrieves the list of controlled terms. Subsequently, for each of these controlled terms,

it retrieves the subject sub-hierarchy of the controlled term®. If no such synonym

SWe define a sub-hierarchy of a subject term to be a subset of the hierarchy starting with its
parent general (or level 0) subject and ending with the subject term itself. Thus the sub-hierarchy
of a general subject would be (level 0); the sub-hierarchy of a level_1 subject would be (level0,
level_1); and the sub- hierarchy of level 2 would be the hierarchy (level 0, level_1, level_2).

57

Searching for Synonym Subjects

. result
CheckingR “‘mj : done(not a subject](empty-result)
do: empty result? e . -
VerifyingGeneral general Retrieving
do: check if synonym &om'General
result error is a general subject do: retrieve general
[no hierarchy]
done[not a subject](empty-result)
I
(Ty
iect search VerifyingSublevell Retrieving
Idle subject D sublevell from Sublevell
J do: ?h“k if synonym do: retrieve
____is asublevell subject J generLsublevell
done{not a subject](empty-result)
C
syronym [Verityingsublevel2) ... Retrieving
search do: check if synonym from Sublevel2
L isasublevel2 subjectj do: retrieve hierarchies
result{synonym doesn't exist}
Retrieving General synonym Retrieving] result
do: retrieve synonym’s (general lisy) _f ﬁ'om General J
list of general subjects _ do: retrieve general
—)
SynonymMatching! .. chy cearch (Retrieving Sublevell (&-?);t?:l:ll:gu
do: check if [synonym exists} do: fetrieve synonym'’s do: rewieve
list of sublevell subjects ___ genmerlsublevell |
Retrieving Sublevel2 synonym Retrieving
do: retrieve synonym’s (sublevel2 list) &om s“l_’l”dz.
list of sublevel2 subjects do: retrieve hicrarchies

Figure 28: State Chart for Synonym

58

exists in the database, an empty result will be returned. Besides retrieving a list of
controlled terms, Synonym, will also match the synonym Vvalue with subject terms
in all three levels. Subsequently, for each subject term found, the parent subject
term(s), if any, will be retrieved. In case there was no match whatsoever, an error
will be returned. It should be noted that the user can make a hierarchy search request
based on a substring (not shown). In this case, ThesaurusDB will look for all sub ject
terms in which the substring occurrs. Subsequently, it will retrieve all parent subject
term(s), if any, pertinent to those subject terms.

The state chart of the SHDB object class for registering and deleting a Semantic
Header is illustrated in Figure 29. When the register event occurs, the SHDB object
verifies the existence of the Semantic Header to be registered. If the Semantic Header
exists it will terminate the registration by returning an error message. If it doesn’t,
it will verify the existence of the user ID. If the user ID doesn’t exist, it will be added
to the database. If it exists, the password for the user ID will be compared with the
password entered. If they match (assuming that the Semantic Header does not exist),
a transition will be made to the Registering state. The deletion of a Semantic Header
takes similar steps as that of registering one. However, prior to deletion, SHDB will
verify that no new annotation has been added to the Semantic Header in question
after it was registered. If new annotations are made the Semantic Header may not be
deleted. The state chart of SHDB for searching for Semantic Headers is illustrated
in Figure 30. The SHDB object receives the search criteria. For each criterion, it
finds corresponding Semantic Headers and merges the new result with the previous
(intermediate) result by means of performing logical and or or operations. At the
end, when the final result is found, the count of each Semantic Header in the result
will be incremented by one. This count indicates the number of times a Semantic
Header has been accessed. The update of a Semantic Header is analogous to that of
a delete operation; however, in the Verifying state, the SHDB will allow the update
operation only if the annotation field is not being modified by the user.

Figure 31 illustrates the state chart of the Semantic Header ob ject. In the state of
registering a Semantic Header, two main activities will be performed. One is adding
the Semantic Header to the database. This is done by creating objects which are
part of the Semantic Header (such as Author, Keyword, Identifier, ...). These objects

are illustrated in Figure 20. The other activity to be performed is adding non-noise

59

error{SH exists]

[Verifying |

[VerfyingSH
Idle register do: check if SH exis
_ e, verified Registering registered
dop :[“pw do: add SH to db
Pacch) VerityingUID
. J
) S
r ™
Flnd.ingUIDj match(uid.pw) (MatchingUID
do: UID exists? J [uid exists] do: compare uid
and passwd
add(uid.pw) d
{uid doesn’t exist] [m‘::;] error
[uid.pw don't match}
AddingUID j done
do: add uid,passwd [
to db J
expansion of "VerifyingUID" state (register)J

)

[annot added)

\do:annotation added?

=
(r .
Verifying
error [VerfyingSH)
to: check if SH exisﬁ
A
Idle __delete [VerifyingUID | verified r Deleting deleted
J error \é"‘ uid,pw match? do: delete SH from db
(v N
ot erifyingAnnot

Figure 29: State Chart for SHDB (Register and Delete)

60

Searching

result do: increment no.of

Incrementing
Idle accesses to each SH

SH search(list of fields result[list of
separated by and/or) fields exhausted]

Y

[Finding SHs)_result(intermediate result) ([Merging Results ,

do: ﬁnq do: and/or result
SHs using search criterion

intermediate result(field) ___With intermediate resul
(list of fields not exhausted]

Figure 30: State Chart for SHDB (Search)

words of the Semantic Header document to the database’. To add the non-noise
words, first the existence of the Word objects corresponding to the words values is
verified. The SHN will be added to the list of SHNs of those ob jects which exist in the
database. Those Word objects which do not exist in the database will be added to the
database prior to adding the SHN to their list of SHNs. A similar scenario holds for
deleting state. In the state of updating a Semantic Header (not shown), there will be
three states. The UpdatingSH state will update those fields of the Semantic Header
modified by the user. The other two states are DeletingWords and AddingWords as
discussed before (Figure 31). In these states the old words modified by the user will
be deleted from the database and the new words will be added to the database.

The state chart of the Word object is depicted in F igure 32. Two states have
been taken into consideration, AddingSHN and DeletingSHN. The Word object may
be in either of these states when a Semantic Header is being registered, deleted, or
updated. For the sake of understandibility®, suppose each Word object has a list of
SHNs through which Semantic Header retrieval becomes possible. Also assume that

we have three such lists with small, medium, and large capacities. Each Word ob ject,

"Note that these non-noise words belong to those fields of the Semantic Header which are included
in the search GUIL

8Since we are still in analysis stage, we will avoid elaborating on technical aspects of the Word
object while keeping its dynamic behavior intact. For technical details, see chapter 6.

61

at any given time, can contain only one of such lists. In the state of AddingSHN,
an SHN is added to the current list of the object’s SHN list. If the list reaches its
maximum capacity, its content will be copied to the next larger list. Subsequently,
the smaller list will be deleted from the object. In the state of DeletingSHN, an SHN
will be deleted from the current list of the object. If the capacity of the current list
becomes equal to the capacity of the list smaller than the current one, the content of
the current list will be copied to the smaller list and the larger list will be deleted.

62

N {
[Registering Deleting
RegisteringSH | DeletingSH |
____doraddtodb | resgister(SH) delete(SH) do: delete SH from db]
< Idle >
([AddingWords) DeletingWords |
do: add SH's do: delete SH's
_ wordstodb | words from db J
— J — J
registered deleted

word(word,SHN) do:ada AddingSHN)
(word cxists) SHN to word's SHN list

added
-®

e

Ldo:

from word’s SHN list

{22}
VerifyingWord E
do: word exists in db? §_
w
word(word SHN) Indexing Z
[word doesn't exist] do: index word
expansion of "AddingWords" state
J/
(N
DeletingSHN :
rd rd W deleted
P (word . SHN) (delete SHN] delete f DeletingWord c

[SHN list empty] l do: delete word from db

L

deleted[SHN list not empty)

expansion of "DeletingWords" state

Figure 31: State Chart for SH

63

Adding SHN

word(word, SHN)

™

E:lo: add Adding Idle

SHN to current SHN list |

added([condition is false] “~——
added
[condition is tue] added
_ Copying Deleting j
do:copy existing - N
list to next larger list copied do:delete smaller list

Condition: max. capacity of current list has been reached

Deleting SHN
Deleting). word(word.SHN)
do: delete Idie
SHN from current list J

deleted[condition is false] %
deleted]
[condition is true deleted
Copying Deleting
do:copy list to smaller list copied do: delete old list

Condition: capacity of current list equals max. capacity of smaller list

Figure 32: State Chart for Word

64

4.4 Functional Model

The functional model describes those aspects of a system concered with transforma-
tions of values; namely, functions, mappings, constraints, and functional dependen-
cies. The functional model captures what a system does, without regard to how or
when it is done. The funtional model is represented with data flow diagrams. The

functional model notation of OMT is shown in Appendix B.

4.4.1 Data Flow Diagrams

A data flow diagram (DFD) is a graph showing the flow of data values from their
sources in objects through processes that transform them to their destinations in
other objects. A DFD contains processes that transform data, data flows that moves
data, actor objects that produce and consume data, and data store objects that store
data passively.

The data flow diagram for parsing a file, received from the GUI, is shown in
Figure 33. The Scan process reads each token from the file and determines whether
the token is a reserved word or an identifier®. The Parse process receives tokens
from the scanner and sends identifiers to other processes for further refinements. As
illustrated in this figure, the Parse process sends identifiers to four different processes.
However, depending on the status, the Parse process will send identifiers to some of
these processes. In case of register or update, ‘Parse’ will send ‘id’ to ‘Extract words’.
The "Extract words’ process extracts words from the identifier and sends them to
‘Extract non-noise words’. This process, using the ‘Noise words’ data store, extracts
non-noise words and sends them to the ‘Store in data structures’ process to store them
in data structures. In case of annotate or delete, ‘Parse’ will send ‘id’ to ‘Store in data
structures’ process to store it in data structures. There is no need to extract words
from identifiers for annotation and deletion operations. Finally, in case of search,
‘Parse’ will send ‘id’ to either ‘Extract operations’ or ‘Extract search words’. The
‘Extract operations’ process extracts and or orlogical operations. The ‘Extract search
words’ process extracts the search words belonging to Semantic Header metadata
fields. In all cases identifiers will be sent to ‘Store in data structures’ process. This

process will store data items in appropriate data structures by means of predefined

SFor instance, the tag <EOF> is a reserved word which causes the parser to stop reading the
file. An identifier may be any word or phrase entered by the user in the GUI.

65

Noise words

21919p 1o AMouTE

variables and
data structures;
db function

Data types

Figure 33: Data Flow Diagram for Parsing an input file

66

Word UserID

SH Semantic

W Header
no SH;
no uid or
uid,pw match

SHN

UserD uid,pw w i

Figure 34: Data Flow Diagram for Registering a SH

data types. The result of parsing will be a collection of variables, data structures,
and database function to be called. It should be noted that the database function
is determined by the Parse process which is not shown in the diagram to improve
readability.

Figure 34, depicts data flow diagram of the register operation of a Semantic
Header. For registering a Semantic Header, the RegisterSH process receives the con-
tent of a Semantic Header from the Parser object. Subsequently, this process creates
a Semantic Header object, a Word object (if needed) and a UserID object (if needed).
It also adds the SHN to the Word object. This is performed assuming that the condi-
tions of registration are met. The verify process manages this by retrieving necessary
data items from UserID and SHDB data stores. The data flow diagram for deleting
a Semantic Header is illustrated in Figure 35 which is similar to that of registering
one.

Figure 36 illustrates the data flow diagram of the update operation of a Semantic
Header. The UpdateSH process receives the content of the modified Semantic Header
from the Parser object. This process lsends modified Semantic Header fields to ‘delete
SH fields’ and ‘add SH fields’ processes. The ‘delete SH fields’ process deletes old
fields from the Semantic Header. The SHN will also be deleted from the words which
make these fields. If the deleted SHN is the last SHN in a Word object, the Word

object will also be deleted. The ‘add SH fields’ process adds new fields to the Semantic
|

\

67

Word

words, SHN

SH m:l‘eu:
Parser

SH exists;
no new annot; SHDB
uid,pw match
uid,pw
UserID
Figure 35: Data Flow Diagram for Deleting a SH
UserID SHDB
SH exists
uid,pw match
delete
annot untouched Word
SH fields
Parser
words,SHN
Word

SH fields

Figure 36: Data Flow Diagram for Updating a SH

68

result previous
File and/or SHNs

search
for word

Parser

operations

word
Word

Figure 37: Data Flow Diagram for Searching for SHs

Header. It will also create new Word objects or add SHN to existing ones.

Figure 37 illustrates the data flow diagram of the search operation for Semantic
Headers. The process ‘search for word’ receives words and operations from Parser.
By referring to Word data store, it accesses the Semantic Header Names in each Word
object. This leads to the creation of SHN data store!®. These SHNs are anded or
ored with previous search result until the list of words and operations are exhausted
when the final result is produced in a file.

Data flow diagram for retrieving subject hierarchies using a synonym is shown
in Figure 38. The ‘find synonym’ process receives the synonym and looks for the
corresponding Synonym object using the Synonym data store and relays the controlled
terms to the ‘retrieve sub-hierarchies’ process. This process, retrieves the subject sub-
hierarchies pertinent to the controlled terms as well as those with one of whose levels

the synonym matches. The final result will be produced in a file.

104 data flow that generates an object used as the target of another operation is indicated by a
hollow triangle at the end of the data flow

69

synonym find
Parser synonym Synonym
controlled
terms
General
retrieve hierarchies
File correponding to Sublevell
result each subject level
Sublevel2

Figure 38: Data Flow Diagram for Retrieving Subject Hierarchies by Synonym

70

Chapter 5

System Architecture

5.1 Decomposition of the system into subsystems

The system architecture of CINDI is shown in Figure 39. Following the principle of
high cohesion and low coupling, the system has been decomposed into five subsystems
viz the User Interface Subsystem, the DB Server Interface subsystem, the Semantic
Header Subsystem, the Thesaurus Subsystem, and the File System. The architec-
ture is based on Client-Server relationship, namely, each subsystem knows about the
layers below it, but has no knowledge of the layers above it. F igure 40 illustrates
the block diagram of the system. In this diagram the decomposition of the system is
organized as a sequence of horizontal layers and vertical partitions. As depicted, the
third layer of the diagram is divided into three vertical partitions Semantic Header,
File System, and Thesaurus. This indicates that these partitions are weakly coupled
subsystems. The diagram also illustrates the client-server relationship between lower
layers (providers of services) and upper layers (users of services). All of the sub-
systems are event-driven systems. The responsibilities of each subsystem has been

described earlier in section 4.2.1.

The system is a hybrid of an interactive interface, a transaction management
system and a batch transformer. The User Interface subsystem is dominated by
interactions between users and the graphical user interfaces. The Semantic Header
and Thesaurus subsystems are a transaction management system whose main function

is to store and access information. The DB Server Interface sequentially transforms

71

input file to output file with no interaction with outside world.

5.2 Concurrency

Semantic Header and Thesaurus subsystems are inherently concurrent, because they

can receive events at the same time without interacting with one another.

5.3 Management of data stores

Data will be stored in homogeneous distributed databases. Each physical database
has to be managed by the same kind of DBMS, to satisfy the requirement of homo-
geneity.

The system uses the ODE Database Management System for database transactions.

General characteristics of ODE will be described in section 6.3.

There are two database objects in the system (implemented in ODE). One is
the Thesaurus Database which contains the three-level sub ject hierarchies and their
synonyms, if any; and the other is the Semantic Header Database which contains the
Semantic Headers and non-noise words of the Semantic Headers along with Semantic
Header Names (SHN). The words are indexed to be used for searching Semantic

Headers (please see chapter 6 for more detail).

5.4 Allocation of subsystems to processors and
tasks

The User Interface subsystem has client-server relationship with the Event Handler
subsystem. The client-server connection is made by means of the TCP/IP network

protocol.

72

WISAS A

L]
2 wfuoufg
3
B
m TRAYIqNS
¢ :
g o
J1PAYIqng
"
-]
[e33u29)
sfinesay j,

1990qns 108

uVPo
dAUmpel
1x3u0)
agred
pIop
15184 SHS 10§ yareas
3
E
£ |1
el > 19peay
HS 198 puass uewag
JARS 4d
passed 9 pin
ppefjnew
aul
uoledIuNLIL0D a5
CALI RO L |
Jas)

JIPEBIY MU

Figure 39: Architecture of the CINDI System

73

User Interface

DB Server Interface

Semantic)
Header File System Thesaurus

Operating System

Hardware

Figure 40: Block Diagram of the System

74

Chapter 6
Implementation

In this chapter, we will present the full definitions of the classes and associations used
in the implementation by combining three models mentioned in the analysis phase.
We will also describe the interfaces and algorithms of the methods used to implement
the operations. Finally, we will close this chapter by illustrating some results obtained

from dry-test and actual runs.

6.1 Client/Server Communication

The communication between the user interface and the database is made using the
TCP/IP protocol suite using Berkeley socket interface and it is written in the C
language. The server runs continuously at the server site, waiting for a client to
connect. When a client, at the user site, is called by the user interface, it connects to
the server and sends data in a file, containing the query request, to the server. The
server calls appropriate functions for parsing the file and transforming it to database
specific query (or queries). This query is sent to the database for processing. Finally,
the server receives the result of the query in a file created by the database module
and sends it back to the client using the TCP/IP protocol.

Since a server may provide services to more than one client at a time, the server
assigns a unique filename to each file received from the client site. Each filename is
a concatenation of three fields. The first field is a fixed string used in all files. The
second field is the value of time in seconds since 00:00:00 UTC, Jan. 1, 1970. The

third one is the process ID of the child process responsible to serve a specified client.

73

Thus possible filename collisions at the server site are avoided.

For the case where a network problem prevents data transmision, the server pro-
gram provides a timeout mechanism to avoid the GUI, at the user site, from waiting
for the server response indefinitely. Namely, if after a specified period of time the
server fails to complete the process of transmitting data from/to the client, the server
will send an appropriate message to the client process and disconnect from the client
process. Subsequently, the user interface will receive the error code from the client
process and display an error message to the user. This way, the GUI will not freeze,

and the user can carry on making other requests.

6.2 Parser

To process the data and queries received by the server (from the client), we have
provided a parser which follows a special grammar to extract the data items and
to call appropriate database functions to manipulate the data and make queries if
needed. The parser is written in C language. It uses the recursive descent parsing
technique to analyze the syntax of the input filefAho88]. Recursive descent parsing is
a top-down method of syntax analysis in which we execute a set of recursive functions
to process the input. A function is associated with each nonterminal of a grammar.
The grammar of Semantic Header registration written in BNF, is illustrated below.
In BNF, brackets ([]) indicate optional parts. An element followed by a '*’ may repeat
0 or more times. And an element followed by a ’+’ should occur at least once. Braces
({}) surround more than one element and they indicate that the elements inside can
repeat 0 or more times. We will use the word 'ID’ to represent the data entry located
between each pair of tags. It should be pointed out that if the field separated by
<arole> and </arole> is any string but ‘Corporate Entity’, then the field separated
by <aname> and </aname> is required but that separated by <aorg> and </aorg>
is optional. In case of ‘Corporate Entity’, however, the reverse of the above mentioned
rule holds.

sem_hdr 1= '<semhdrR>‘ content '</semhdr>* '<EOF>’

content = title alt_title list_subjects language character_set

76

title
alt_title
list_subjects
hierarchy
general

sublevell
sublevel2

language
character_set

list_resp_agents

resp_agent_item

role

name
organization
address
phone

fax

email

list keywords
list_ids
id_item
domainl
valuel

dates
created
expiry

version

supersede_version
list_classification

classification_item

list_resp_agents list_keywords list_ids dates version
supersede_version list_classification list_coverage list_sysreq
list_genre list_reference cost abstract annotation userid

password

n=f<title>’ ID ‘< /title>’

= ‘<alt_title>’ [ID] ‘</alt_title>’

1= ‘<subject>’ hierarchy* ‘</subject>’
::= general sublevell sublevel2

1= ‘<general>’ ID ‘</general>’

::= ‘<sublevell>’ [ID] ‘</sublevell>’
== ‘<sublevel2>’ [ID] ‘</sublevel2>’
= ‘<language>’ [ID] ‘</language>’

= ‘<char-set>’ [ID] ‘</char-set>’

= ‘<agent> resp_agent_item™® </ agent#

1= role name organization address phone fax email

‘<arole> ID ‘</arole>’

::= ‘<aname> ID ‘</aname>’

‘<aorg> ID ‘</aorg>’
‘<aaddress>’ [ID] ‘</aaddress>’

::= ‘<aphone>’ [ID] ‘</aphone>’

n= ‘<afax>’ [ID] ‘</afax>’

1= ‘<aemail>’ [ID] ‘</aemail>’

1= ‘<keyword>’ ID {,ID} ‘<keyword>’
2= ‘<identifier> id.item™ ‘< /identifier>’
::= domainl valuel

::= ‘<domainl>’ ID ‘</domainl>’

= ‘<valuel>’ ID ‘</valuel>’

1= ‘<dates>’ created expiry ‘</dates>’
::= ‘<created>’ ID ‘< /created>’

1= ‘<expiry>’ [ID] ‘< /expriy>’

2= ‘<version>’ [ID] ‘< /version>’

2= ‘<spversion>’ [ID] ‘< /spversion>’
u= ‘<classification>’ classification_item" ‘</classification>’

::= domain2 value?2

77

domain2 = ‘<domain2>’ ID ‘</domain2>’

value2 u= ‘<value2>’ ID ‘</value2>’

list_coverage ::= ‘<coverage>’ coverage_item" ‘</coverage>’

coverage.item := domain3 value3

domain3 := ‘<domain3>’ ID ‘</domain3>’

value3 = ‘<valued>’ ID {,ID} ‘</value3>’

list_sysreq = ‘<system-requirements>’ sysreq.item* ‘< /system-requirements>’
sysreq-item ::= component exigency

component 1= ‘<component>’ ID ‘<component>’

exigency := ‘<exigency>'ID {,ID} ‘</exigency>’

list_genre := ‘<genre>’ genre_item” ‘</genre>’

genre_item := form size

form = ‘<form>" ID ‘</form>’

size u= ‘<size>’ ID ‘< /size>’

list references = ‘<source-reference>’ references.item® ‘</source-refernece>’
references_item := relationship domain-identifier

relationship := ‘<relationship>’ ID ‘</relationship>’

domain-identifier ‘<domain-identifier>’ ID ‘<domain-identifer>’

.e

cost n= ‘<cost>’ [ID] ‘</cost>’

abstract = ‘<abstract>’ [ID] ‘</abstract>’
annotation = ‘<annotation>’ [ID] ‘</annotation>’
userid n= ‘<userid>’ ID ‘</userid>’

password = ‘<password>’ ID ‘</password>’

As the grammar shows, each data item of the input file is surrounded by a pair
of tags. A pair of tags is also provided in the input file that specifies the type of
action to be taken by the database (in this case <semhdrR> and </semhdr> which
indicates the operation of registering a SH). While extracting the data items from a
file, depending on the type of tags encountered, the parser will store them in variables
and data structures for later use by the database module!. For instance, the following

linked list stores the three subject terms of a subject hierarchy in a node.

In case of a parsing error, the parser returns an error code. This code is included in a file and
sent to the client site by the server process. At the client site, an error message will be displayed on
the GUI.

78

struct listptrl {
char valO[MAX1];
char vall[MAX1];
char val2[MAX1];
struct listptrl *next;

¢

typedef struct listptrl LISTI;

When the parser sees the tag <general> it extracts the string between this tag and
</general> and stores it in the val0 array of char type of a newly allocated node of
the list, for later use by the database. In the meantime, it will extract the non-noise
words of this string and store them in another data structure for later manipulation
by the database. In order to find the noise words fast, they have been inserted in a
binary search tree. The parser compares each word against the noise words and it
ignores it if a match occurs. Thus common invariant words can be kept out of the

index. Over two hundred noise words have been provided [Cans].

The parser also plays an important role when a search request is to be processed,
as the CINDI System offers a wide range of search criteria to allow effective resource
retrieval. Many search fields are included to better suit the users’ needs. In most of
these fields, the search can be specified to be performed on exact match or substrings
of the word entered by the user. Most of these fields allow the logical operations
and and or to refine the search result. Parantheses are also provided to allow nested
logical statements. To transform the user-defined queries, received from the client,
into database queries, we employ the reverse Polish (or postfix) notation. The parser
scans through the input file, checks for syntax errors, and converts it to an infix ex-
pression kept in a stack. Subsequently, prior to a database function call, the infix
expression is converted to postfix expression which is again kept in a stack. The main

data structures used during this process are mentioned below.

typedef struct element {
char status; //takes 'e’, or ’s’ (or ’e’, or 'b’) indicating

/ [exact/substr (or before/after in case of date)

79

char string]MAX1}; //word string
char oper; //takes either of '&’, ", '(’, or ')’
int field; //title==0, subject==1, ...

} ELEM;

The structure ELEM stores information about search field, logical operation, or paren-
theses. It contains four fields: status indicates whether the field will be searched for
exact matches or substrings; or in case of a search based on date’, it will indicate the
period before or after the specified date. string stores the content of a search field.
oper indicates the type of logical operation to be performed on search fields. This
field may also take opening or closing parentheses. field indicates a search field (such
as title, subject, abstract, ...). Note that, at any given time, ELEM either contains
a search field along with its field and status, or a logical operation, or a parenthesis.
In each case the other unnecessary fields are not used.

Infix and postfix expressions are of the type DLIST, mentioned below, which is a
doubly linked list each node of which contains an FLEM structure.

typedef struct dlist {
ELEM* elem;
struct dlist* left;
struct dlist™ right;
} DLIST;

6.3 The ODE Database System

6.3.1 ODE: The Object Database and Environment

Ode<EO0S>, also known as Ode, is a database system and environment based on the
object paradigm [AGG]. It is built on top of the EOS storage manager. The database
is defined, queried and manipulated using the database programming language O++,
an extension of C++. A few facilities have been added to C++ to make it suitable for
database applications. O++ provides facilities for creating persistent objects which
are stored in the database and for querying the database. It also has support for

both large objects and versioned objects. It also allows triggers to be associated with

80

objects.
The Ode database is based on a client-server architecture. Each application runs as
a client of the Ode database. Multiple Ode applications, running as clients of the

database server, can concurrently access the database.

6.3.2 The EOS Storage Manager

EOS is a generic object manager providing key kernel facilities for the fast develop-
ment of high-performance database management systems and persistent languages.
EOS is based on the client-server architecture with support for concurrency control
and recovery [BAP93].

The EOS server is a multi-threaded daemon process that mediates all the accesses
made to the database, i.e. the storage, update, and reading of database pages. Figure
41 sketches the architecture used (adapted from [BAP93]. When the server starts up
it launches the disk daemon eos_diskd which is responsible for all the existing storage
areas and for providing asynchronous I/O. In the current release the eos_diskd is
also responsible for the creation and deletion of storage areas (it plays the role of the
area manager process). In addition, the server spawns the checkpoint and the global
log processes, and allocates a number of UNIX system V shared memory segments
and semaphores[Ker84, Ste90].

The shared memory segments are used by the shared buffer pool and the concurrency
control module to allow all the processes spawned by the server, both during start up
and when a new client is connected, to access the same structures. Semaphores are
used to provide mutual exclusion among the spawned processes. The communication
among the server’s children is done by means of message queues.

When an area is attached for the first time by an application program, the disk dae-
mon creates a separate disk process to handle the I/O requests dealing with this area.
The communication between the EQS server and the disk processes is done through a
UNIX domain socket and a number of shared memory segments. The current release
can virtually support up to 6000 different areas [BAP93].

6.3.3 The O++ Database Programming Language

The O++ object model is based on the C++ object model as defined by the class
facility. Classes support data encapsulation and multiple inheritance. O++ extends

81

=

Private Checkpoint eqs_diskd
Logs

Lock
Tables

eosserver
Gilobal Log
r— = I 1Y) — ll-l: —
[[Iw] |
M T e l€ Ty
| e procemses | Application L Application
S J Glient 1 Client N

Figure 41: The client-server architecture of EOS

82

C++ classes by providing facilities for creating and manipulating persistent objects
and their versions, and associating constraints and triggers with objects [Agr89).

In this section, we will give a brief overview of the O++ programming language. The
O++ user manual provides a brief summary of O++ syntax [AGG].

Databases:
The built-in class database provides functions for manipulating (closing, opening, etc.)

the database and naming persistent objects.

Transactions:

All code interacting with the database (except database opening and closing) or ma-
nipulating persistent objects must be within a transaction block. In general, trans-
actions have the form trans { ... }. Transactions can be explicitly aborted by using
the tabort statement. In such a case, control simply flows to the statement following

the transaction block.

Persistent objects:
O++ visualizes memory as consisting of two parts: volatile and persistent. Volatile
objects are allocated in volatile memory and are the same as those created in ordinary
C++ programs. Persistent objects are allocated in persistent store and they continue
to exist after the program that created them has terminated [Agro3].
Objects of any class type and of the primitive types can be made persistent.
An example of a persistent class is shown below:
persistent class employee {

char name[40];

char address[40];

h

Object Clusters:
Objects within a database are stored within clusters. By default, all objects of a type
are stored in a default cluster associated with the type. Users with special perfor-

mance need can allocate objects in user-defined clusters.

83

Queries:
Objects of class types can be accessed using the associative for loop as illustrated
below:
persistent employee* pe;
for (pe in employee)

cout << "Name == " << pe->name << endl;
The suchthat clause can be used to restrict a search to those objects that satisfy a
Boolean expression. For instance, the following code accesses only employees older
than 25 years:
for (pe in employee) suchthat (pe->age > 25)

cout << "Name == " << pe->name << ”, Age == " pe->age << end];

Joins can be performed using nested for loops or a loop with multiple loop variables.

Indexes:

Indexes can be built on arithmetic type data members and statically allocated charac-
ter array data members (but not dynamically allocated arrays). These data members
must be declared as indezable in the class definition. Hash indexes are used to speed
up queries that retrieve all objects such that some field assumes a particular value.
B-tree indexes may also be used in the same way, as well as to retrieve all objects

whose member values fall within a specified range.

Named Persistent Objects:

Persistent objects can be named. The names enable fast access to these objects. For
such objects, it is not necessary to use the general for query statement to access them.
The relationship between names and objects is one-to-one, i.e., an object may have

at most one name, and a name may correspond to at most one object.

Persistent Arrays:

O++ allows the user to allocate and access persistent arrays, in a manner analogous
to C++. A persistent array is allocated (dynamically) by specifying its size. As in
C++, a default constructor must exist for the type, and it will be used to initialize

each object in the array. Multi-dimensional arrays are also supported.

Large Objects:

84

An object larger than a "page” is classified as large. The current page size is 4K bytes.
Large objects are, by default, handled transparently. However, applications may find
it more efficient to manipulate large objects by explicitly accessing portions of such

objects. Class large provides functions for efficiently manipulating large objects.

Versions:

Object versioning in O++ is orthogonal to type, that is, versioning is an object prop-
erty and not a type property. Version of an object can be created without requiring
any change in the corresponding object type definition, all ob jects can be versioned,

and different objects of the same type can have a different number of versions.

Triggers:
Triggers are event-action pairs. Events can be "basic” or "composite”, the latter
being composed from both basic and other composite events. Triggers are specified

in class specifications.

6.4 Thesaurus Database

The Thesaurus Database contains four object classes: Level_0 which represents the
general subject of the subject hierarchy, Level_I which represents the sub-subject of
and is derived from Level_0; Level_2 which represents the sub-sub ject of and is derived
from Level_1, and finally Synonym which contains those subject terms (at any level)
synonymous to the Synonym’s value. The classes of the subject hierarchy are defined

below.

persistent class Level 0 {
protected:
indexable char lev.O[MAX1];
public:
Level O(char * 1v.0);
virtual void print();
persistent Level 0* isLevel O(char *str);

85

void list_all level 0();
int list_substr_0(char* str, int count);
b
persistent class Level_1 : public Level 0 {
protected:
indexable char lev_1[MAX1];
public:
Level_l (char *lv_1, char *Iv_0);
virtual void print();
virtual void print_all();
persistent Level 1* isLevel _1(char *str);
void list_all_level 1(char* lev_0);
int list_substr_I(char* str, int count);
b
persistent class Level 2 : public Level 1 {
indexable char lev 2[MAX1];
public:
Level 2 (char *Iv.2, char *lv_1, char *Iv_0);
virtual void print();
virtual void print_all();
persistent Level 2* isLevel 2(char *str);
void list_all level 2(char* lev_0, char* lev_1)

int list_substr_2(char* str, int count);

5

Since the subject hierarchy classes have similar characteristics, we will describe only
the methods of, say, the Level_2 class. The constructor initializes the Level 2's and
its parents’ values. The method print() prints Level 2 object into the result file.
The method print_all() prints Level_2 object as well as its parent objects Level_0 and
Level_1. The method isLevel_2returns a Level_2 object whose va.'lue is 'str’. It returns
0 (NULL pointer) if no such object exists in the database. The method list_all_level 2
prints (into the result file) all Level 2 objects where their level 0 and level_l subject
values correspond to 'lev.0’ and ’lev_1’, respectively. The definition of this method

which contains a query follows:

86

persistent Level 2* Lev_2;
for (Lev2 in Level 2) suchthat (strcmp(Lev_2->lev_0, lev0) ==0
&& strcmp(Lev 2->lev_l, lev.1) == 0)
Lev_2->print();

The method list_substr_2 prints all objects each of whose value starts with the string
'str’; and it returns the number of such objects found. The definition of this method

which contains a query follows:

persistent Level 2* Lev_2;

for (Lev2 in Level 2) suchthat (starts.with(Lev_2->lev_2, str) == 1) {
Lev_2->print_all();
+-+count;

The class Synonym contains three linked lists, each of which contains pointers to
one of subject hierarchy classes?. This is because a phrase could be a synonym to a
number of subjects belonging to different levels of sub ject hierarchies. The following
illustrates the definition of this class:

persistent class Synonym {
indexable char syn[MAX1];
persistent Level 0_list *Lev_0_list;
persistent Level 1 list *Lev_1 list;
persistent Level 2 list *Lev_2_ list;

public:
Synonym (char *s);
persistent Synonym* isSynonym(char *str);
void find_ctrl(char* str);

¥

The constructor of Synonym initializes the Synonym value and the linked lists. The

%In general, sets are good candidates to implement aggregation relationship. However, since Ode
does not support sets we had to employ linked lists instead.

87

method find_ctrl retrieves all controlled terms of the synonym value ’str’. It also re-
trieves all subject terms which happen to be same as str’. Subsequently, it retrieves
all subject sub-hierarchies pertinent to these subject terms and prints them into the
result file. As an example the query for retrieving controlled terms of a synonym with

value ’str’ from level.l is illustrated below:

persistent Synonym* Syn;
if (Syn = Syn->isSynonym(str))
while (Syn->Lev_1_list->NonEmpty())
Lev_1 list->Top()->print_all();

In this query, the existence of such syonoym is verified. If the correponding object is
found, the while loop traverses through the level 1 list and prints all sub-hierarchies
of level 1 objects found in the the list.

To retrieve all level 1 subject terms which match the synonym string ’str’ the

following query is used:

persistent Level 1* Lev_1;
if (Lev.l = Lev_1->isLevel_1(str)) Lev_1->print_all();

The query checks if a level 1 object with value ’str’ exists. If it does, it is printed into

the result file.

It should be pointed out that the expert system rules, used to help users retrieve
subject terms, are implicitly included in the Thesaurus subsystem. In fact, the in-
heritance relationship used in the Thesaurus subsystem automatically applies these

rules in subject retrieval.

6.5 Semantic Header Database

6.5.1 User ID

To control unauthorized access to update an existing Semantic Header we define the

class UserID below:

88

persistent class UserID {
indexable char userid MAX3];
char passwd[MAX3];
public:
char* get_userid();
char* get_passwd();
UserID(char *uid, char *pw);
persistent UserID* isUserID(char* uid);
int uid_pw_match(char* pw);

virtual void print();

On registering a Semantic Header, the methods of this class will be called to check
if the user ID exists in the database. If so, the user ID and the password must match,
otherwise an error code will be relayed to the client. In case the user ID does not
exist, a new UserID object will be created in the database; the password will also
be allocated by the constructor of this object. On deleting and updating a Semantic
Header, two conditions must hold. The user ID should exist, and the user ID and the
password should match. Otherwise an error message will be forwarded to the client
site. The deletion of a Semantic Header will not affect its corresponding UserID

object.

6.5.2 Semantic Header

The class SemHdr contains persistent linked lists of classes Author, Subject, Keyword,
Ident, Clsf, Covrg, SysReq, Genre, and SrcRef. This is because Semantic Headers
allow more than one entry for the fields author, subject, keyword, identifier, classifi-
cation, coverage, system requirements, genre, and source/reference. For annotations,
we also need to include a persistent linked list of class Annot, since a Semantic Header

may be annotated by any reader of the corresponding information resource.

In some cases the object could be the node of a linked list and this node could

89

be the head of another linked list. For instance, the field System Requirements is
composed of two fields Component and Exigance. To each component more than
one Exigance can be assigned. As an example, the component 'Software’ may have
three (comma separated) exigencies as *Borland C++, Turbo C++, Standard C++"'.
Hence the need to include another linked list to manage this kind of situation. This is
done by i) introducing a new class PlistReq which contains the value of the Exigance
field and by ii) including a persistent linked list of PlistReq in the class SysReq.

The definition of these classes are given below:

persistent class Author {
unsigned long count;
indexable char role]MAX1];
indexable char name[MAX1];
indexable char org[MAX1];
indexable char addr[MAX1];
indexable char tel[MAX1];
indexable char fax[MAX1];
indexable char email[MAX1];

public:
void add_count();
void sub_count();
int count_is_zero();
Author(char* r, char* n, char™ o, char™ a, char* t, char™ f, char* e);
virtual void print();
persistent Author® isAuthor(char* r, char* n, char* o, char* a,
char* t, char* f, char* e);
b

persistent class Subject {
unsigned long count;
indexable char lev . 0[MAX1];
indexable char lev_1{MAX1];
indexable char lev 2[MAX1];

public:

90

void add_count();
void sub_count();
int count_s_zero();
Subject(char* 10, char* 11, char* 12);
virtual void print();
persistent Subject™ isSubject(char* 10, char* 11, char* 12);
b
persistent class Keyword {
unsigned long count;
indexable char kw[MAX1];
public:
void add_count();
void sub_count();
int count_is_zero();
Keyword(char* kw);
virtual void print();
persistent Keyword* isKeyword(char *str);
b
persistent class Ident { //short form of Identifier in Object Model
unsigned long count;
indexable char d3[MAX1];
indexable char v3[MAX]];
public:
void add_count();
void sub_count();
int count_is_zero();
Ident(char* dom3, char* val3);
virtual void print();
persistent Ident* isIdent(char* s0, char* s1);
J§
persistent class Clsf { //short form of Classification in Object Model
unsigned long count;
indexable char d4[MAX1];
indexable char v4[MAX1];

91

public:
void add_count();
void sub_count();
int count_is_zero();
Clsf(char* dom4, char* val4);
virtual void print();
persistent Clsf* isClsf(char* s0, char* s1);
b '
persistent class PlistCov { //correponds to Coverage in Object Model
unsigned long count;
indexable char val[MAX1];
public:
char* get_val();
void add_count();
void sub_count();
int count_s_zero();
PlistCov(char* value);
virtual void print();
persistent PlistCov* isPlistCov(char* s);
5
persistent class Covrg { //short form of Coverages in Object Model
unsigned long count;
indexable char d5[MAX1];
indexable char sh_oid[MAX1];
persistent PlistCov_list* Val list;
friend persistent class SemHdr;
public:
void add_count();
void sub_count();
int count_is_zero();
Covrg(char* domS5, char* oid, LIST* list);
virtual void print();
persistent Covrg* isCovrg(char* s, char* oid, LIST* list);

92

persistent class PlistReq { //corresponds to SysReq in Object Model
unsigned long count;
indexable char val{MAX1];
public:
char* get_val();
void add_count();
void sub_count();
int count_is_zero();
PlistReq(char* value);
virtual void print();
persistent PlistReq™ isPlistReq(char* s);
b
persistent class SysReq { //short form of SystemRequirements in Object Model
unsigned long count;
indexable char comp[MAX1];
indexable char sh_oid[MAX1];
persistent PlistReqlist* Exg_list;
friend persistent class SemHdr;
public:
void add_count();
void sub_count();
int counts_zero();
SysReq(char* cmp, char* oid, LIST* list);
virtual void print();
persistent SysReq™ isSysReq(char* s, char* oid, LIST* list);
b
persistent class Genre {
unsigned long count;
indexable char frm[MAX1];
indexable char sz[MAX1];
public:
void add_count();
void sub_count();

int count_is_zero();

93

b

Genre(char* form, char* size);
virtual void print();

persistent Genre* isGenre(char* s0, char* sl);

persistent class SrcRef { //short form of Source/Reference in Object Model

public:

h

unsigned long count;
indexable char rel MAX1];
indexable char dom_id[MAX1];

void add_count();

void sub_count();

int count_is_zero();

SrcRef(char* rl, char* d.id);

virtual void print();

persistent SrcRef* isSrcRef(char* s0, char* s1);

persistent class Annot { //short form of Annotation in Object Model

public:

b

char annt[ANNT MAX];

Annot(char* ant);

virtual void print();

persistent class SemHdr { //short form of SemanticHeader in Object Model

unsigned long sh_accesses;//no of accesses to semantic header by GUI

unsigned long res_accesses; //no of accesses to resource by GUI

indexable char titlef]MAX1], alt_titlef]MAX1], lang[MAX1], char_set{MAX1],
cr-date[]MAXI1], exp-datefMAX1], vers]MAX1];

char spvers[MAX1], costfMAX1], abs]ABS_.MAX];

short ant_status; //0 if no annt added after registration; 1 otherwise

persistent UserID* Uid;

persistent Subjectlist* Sub_list;

persistent Keyword list* Kw_list;

persistent Author list* Aut_ list;

persistent Ident list* Id list;

94

public:

h

As illustrated above, the attributes of the SemHdr class corresponds to those of a
Semantic Header document. Some of these attributes are simple strings such as title
and alt_title. These attributes take only a single value in a Semantic Header docu-

ment. Some are persistent linked lists pertinent to those Semantic Header fields that

persistent Clsf list* Cl list;
persistent Covrglist* Cov_list;
persistent SysReq.list* Req.list;
persistent Genre.list* Gnr_list;
persistent SrcRef list* Ref list;
persistent Annot.list* Antlist;

SemHdr(char* t, char* alt_t, char* lan, char* ch._set, char* c_date,
char* x_date, char* ver, char* sver, char* cst, char* abst,

persistent UserID* Userid,
LIST2* autist, LIST1* sublist, LIST* kw list, LIST3* id_list,
LIST3* cls list, LIST4* cov_list, LIST4* req.list,
LIST3* gnr list, LIST3* ref list, LIST5* ant_list);

void add.res_accesses();

short get_ant_stat();

unsigned long get_res_accesses();

void set_ant_stat();

int delete_sh();

int update_sh();

int add_annot();

virtual void print();

persistent SemHdr* isSemHdr(char* str);

accept more than one value such as author and keyword.

Semantic Header Registration:

The system will perform a number of steps in order to register a Semantic Header.
At the beginning, the parser will verify the syntax of the input file and make sure
that the mandatory fields of the Semantic Header have been entered. These fields
include those needed to assign a Semantic Header Name which are: title, first general

95

subject, name of first author (or name of organization if the value of the field role is
"Corporate Entity’), date of creation, and finally version®; as well as first identifier
and one keyword. In the meantime, the non-noise words of the Semantic Header
will be stored in temporary variables and data structures for later use. The next
step would be for the database module to verify the status of the user ID and the
password, as explained in section 6.5.1. Subsequently, it will be assured that such
Semantic Header does not exist in the database. This is.managed by means of a
built-in database function get_obj()*. This function returns 0 if no Semantic Header
exists under this name. Finally, the words and the Semantic Header are indexed into
the database. Subsequently, the constructor of SemHdr will be called by Ode’s pnew
operator. In this method, the non-noise words will be added to the database and
all attributes of the SemHdr object will be initialized, be it single strings or linked
lists. Finally, using the database function set.-name() the SHN will be assigned to the
newly added Semantic Header object.

It should be pointed out that in each case where an error occurs, an error code will

be sent to the client site and the program will exit.

Semantic Header Deletetion:

A Semantic Header can be deleted by the user who registered the Semantic Header
only if no annotation after the SH was registered; the status of annotation is stored in
the data member ant_status. The procedure of deleting a Semantic Header is similar
to that of registering it. The Semantic Header and the SHN maintained in the word
object with the value corresponding to each non-noise word will be deleted from the
database. If a word object happens to contain no SHNS, it will be deleted from the
database as well. To access the SHN of a Semantic Header we use the database func-
tion get_name() which returns a pointer to the SHN character string. The deletion

procedure is managed by the method delete_sh in the SemHdr class.

Semantic Header Update:
A Semantic Header can be updated by the user who registered the Semantic Header
and requires the user ID and the password during the initial registration. However,

a number of the fields of a Semantic Header cannot be modified. These fields are

3The Semantic Header Name is the concatenation of these five fields.
Note: ODE allows fast access to objects by Object IDs.

96

those comprising the Semantic Header Name as well as the annotation field added
after the SH was registered. The method update_sh() is responsible for updating a
Semantic Header. It updates those fields which are modified by the user. For each
modified field, the deletion and addition of words are also managed by this method.
These operations on words have been explained in registering and deleting a Semantic
Header.

Semantic Header Annotation:

A Semantic Header can be annotated by a third party who wishes to make comments
about an indexed information resource. The annotation of a Semantic Header is a
straightforward procedure managed by the method add_annot(). A number of fields
are needed to be entered by the user. These fields include those required to build the
Semantic Header Name of the Semantic Header in question, the annotator’s personal
information such as name and email, and the annotation text. The annotation text
will be added to the Semantic Header object by accessing the SHN and including an-
other node to the list of annotations. This operation will also set the value of the data
member ant_status to 1, indicating that an annotation text has been added to the
Semantic Header after registration. In case the SHN does not exist in the database
or the user has not entered the required fields (name and address), an error code will

be sent to the user.

Semantic Header Retrieval:

In section 6.2, we described the role of the parser in transforming the user-defined
search queries into database queries. We mentioned that this transformation is per-
formed by converting infix to postfix notation. Using this postfix expression from the
parser, we will continue the search process in the database module.

In general, to evaluate the postfix expression it is required to pop two elements
of the stack, perform the required boolean operation and or or on them, and finally
push the result of the calculation back onto the stack. In this application, the cal-
culation will involve querying the database on these two elements and applying the
boolean operation on the results of these queries, and pushing the new result back
onto the stack. Handling large size of intermediate results requires care to avoid slug-
gish query processing. The result of each intermediate query is stored in a balanced
binary search tree (adapted from [TRE84]). More precisely, the intermediate and

97

final results should be stored in a linked list of balanced binary search trees. The

structures of the tree and the result stack are shown below:

typedef struct btree {
char bi; // balance indicator
char name[MAX2]; // oids are stored here
struct btree *left;
struct btree *right;
} BTREE;

typedef struct result_stack {
char status; //takes ‘e’ or ’s’ (or ’e’, ’b’, or ’a’) indicating
[[exact/substring (or exact/before/after in case of date)
char string{MAX1]; // the search word
int field; //title==0, subject==1, ..., abstract==12
int flag; //1 if content of bt is to be considered as operand,0 otherwise
BTREE* bt;
struct result_stack® next;

} STACK;

The search result of each word contains the Semantic Header Names of the Semantic
Headers in which the word (or a substring of it) occurs®. These SHNs are inserted
into a balanced tree. Subsequently, the result of a boolean operation will be achieved
by anding or oring two such trees. We will give an example to clarify this procedure.
Let us assume that the expression '(OOA or OOD) and OOP’ has been converted
to the postfix expression 'OOA OOD or OOP and’. This expression is stored in the
following list mentioned before in section 6.2.
typedef struct dlist {

ELEM* elem;

struct dlist™ left;

struct dlist* right;
} DLIST;

SFor more detail, see section 6.5.3

98

Therefore, DLIST (of type struct dlist) will contain five nodes (elements), three
operands and two operations. The system starts the search by popping ’OOA’ from
DLIST and retrieving its SHNs and pushing the resulting BTREE into STACK (of
type struct resultstack). Same action is taken for ’'OOD’. The next element is the
or operation. Thus, the last two nodes of STACK will be ored after having them
poped from STACK. The result of the operation will be pushed into STACK. Subse-
quently, OOP will be popped from DLIST and its SHN s, in a BTREE, will be pushed
into STACK. Finally, and will be popped from DLIST and the last two BTREEs of
STACK will be anded. The result is ready to be sent to the client site.

To perform an and operation on two trees, we start from the root of one of the
trees and check whether the node’s value occurs in the other tree. If it does occur,
the node is inserted in the result tree. If it doesn’t, it is ignored. Subsequently, the
function is called recursively to perform the operation on the left and the right branch
of the tree. Similar procedure holds for oring two trees. The result tree is initialized
to one of the trees (call it t1). The root node of the other tree (call it t2) is added to
the result tree if it doesn’t occur in t1. The addition of the nodes of t2 to the result
tree is carried on recursively on its left and right branches.

It should be noted that depending on the search status of each word, we may have
to perform the search based on exact match or substring of the word. In the case of
substring search, the matches found will be ored together. To find the substrings of a
string, we use two regular expression handlers. These library functions are re.comp()
and re_exec(). re_comp() compiles a string into an internal form for pattern matching.
re-exec() checks the argument string against the last string passed to re_comp(). In
our case, assuming that we need to find the substrings of the string "DBMS”, the
string passed to re_comp() should look like ”.*DBMS.*". Thus, re_exec("DBMS”)
will return 1 if the string "DBMS” matches the last compiled regular expression.

6.5.3 Word

The class word is needed to support the system’s search facility. Therefore, a word
object should mainly contain information about Semantic Headers in which the word
occurs. However, given that the number of resources is rapidly growing, a word object

may be part of millions of Semantic Headers. Thus, the use of efficient information

99

retrieval and disk space become critical. Having these concerns in mind (and know-
ing that ODE does not support set-valued attributes), we describe the design of the
structure for the class Word:

The class Word contains an array of type struct contezt. Each member of this ar-
ray corresponds to one of the fields in the search GUI (e.g., title, subject, abstract,
...). Each array member contains three persistent linked lists of class types OidArr1,
OidArr2, and OidArrS. Each one of these three classes has an array of Semantic
Header Object IDs, or in this context Semantic Header Names (SHN). The main dif-
ference among these classes lies in the size of OID arrays. OidArrl contains an OID
array of 1000. OidArr2 contains an OID array of 10000. OidArr$ contains an OID
array of 100000. The number of nodes in each of the three classes can grow up to 3.
Thus the capacity of each linked list is equal to the size of the OID array multiplied
by the constant 5. The definitions of these classes are illustrated below:

#define CMAX 13 // number of search contexts (fields)

#tdefine OID_MAXI1 1000 // maximum array size in OidArrl

#define OID_.MAX2 10000 // maximum array size in OidArr2

#define OID_MAX3 100000 // maximum array size in QidArr3

#define COEF 5 // indicates max. no. of nodes allowed in each list of OidArr’s
// NOTE: The formulas OID_MAX1 * COEF * 2 == OID_MAX?2

// and OID MAX2 * COEF * 2 == OID_MAX3 must hold

persistent class OidArr1 {
int id; //ranges from 0 to COEF-1, each corresponding to a list node
char value[MAX1}];
int c.nd;
int oid-ind; //keeps track of oid array’s index (defined below)
char 0id[OID MAX1][MAX2);
public:
OidArrl(char* str, int ident, int ind);
void add.oid(char* str);
void sub_ind();
char* get_oid(int i);
char* get_value();

100

b

int get_oid_ind();
virtual void print();
void print2();

persistent class OidArr2 {

public:

&

int id; //ranges from 0 to COEF-1, each corresponding to a list node
char value[MAX1];

int cind;

int oid_ind; //keeps track of oid array’s index (defined below)

char 0id[OID_MAX2|[MAX2];

OidArr2(char* str, int ident, int ind);
void add_oid(char* str);

void sub_ind();

char* get_oid(int i);

char* get_value();

int get_oid_ind();

virtual void print();

void print2();

persistent class OidArr3 {

public:

int id; //ranges from 0 to COEF-1, each corresponding to a list node
char value[MAX1];

int c.ind;

int oid-ind; //keeps track of oid array’s index (defined below)

char oid[OID MAX3|[MAX2];

OidArr3(char* str, int ident, int ind);
void add_oid(char* str);

void sub_ind();

char* get_oid(int i);

char* get_value();

int get_oid-ind();

virtual void print();

101

void print2();
b
struct context {
friend persistent class Word;
private:
persistent OidArrl list* Oid1 _list;
persistent OidArr2 list* Oid2_list;
persistent OidArr3.list* Oid3.list;
b
typedef struct context CTXT; persistent class Word {
int count[C_.MAX];
indexable char value[MAX1];
CTXT c[CMAX];
void pnew listl(int c_ind);
void pnewlist2(int cind);
void pnewlist3(int c_ind);
void movel 2(int c_ind);

bl

void move2_3(int c_ind);
void move2_1(int c_ind);
void move3_2(int c_ind);
public:
char* get_value();
Word(char* w);
int Wordl(char* oid, int c.ind);
virtual void print();
int remove_oid(int c_ind, char* oid);
BTREE* find_oids(BTREE* t, int c.ind);
int isContext(int c_ind);
persistent Word™ isWord(char* str);

At the beginning, when a Word object is being indexed, the list of QidArr! ob-
jects is created in the database. This is done by the method Word::pnew_list(). Once
the number of OIDs in this list reaches its capacity, the linked list is deleted from

102

the database after it is flushed out into the list of QidArr2. This is managed by
Word::movel_2(). The same scenario holds for the case when OidArr2 is filled up
when it has to be moved to the list of OidArr8 using the method Word::move2_5().
Reverse actions will be taken when the number of OIDs in a linked list becomes equal
to the maximum capacity of the next smaller linked list. These are managed by the
methods Word::move2_1() and Word::move3_2(). For example, if the number of OIDs
in OidArrd equals the capacity of OidArr2, the OIDs will be placed in a linked list of
OidArr2 with 5 nodes and finally the list of OidArrg will be deleted.

It can be observed that by restricting the number of nodes in each linked list to
a small constant, we are reducing the number of disk accesses; and by performing
the aforementioned actions to the linked lists as the number of OIDs decreases or

increases, we are allocating a reasonable amount of disk space.

There are three methods in the Word class which play important roles in register-
ing, deleting, and retrieving Semantic Headers. The method find_oids() in the Word
class is used in the search system. This method is called to retrieve SHNs of a Word
object and store them in a BTREE discussed earlier. The method remove_oid() in
this class is used for deleting a SHN from a Word object. After deleting the SHN, this
method will check the capacity of the current list of SHNs. Subsequently, it will call
either of move2_1 or move3_2 to make appropriate changes to satisfy the design re-
quirements mentioned above. On registering a Semantic Header, the method Word1 ()
is called to index a SHN into a Word object. This method uses the movel_2() and
move2_3() methods to make sure that the design requirements are met. Word! re-
turns an integer indicating whether an overflow has occurred; namely, if the maximum
capacity of OidArr3 has been reached. The method isWord() is used to retrieve a
Word object from the database. It returns a pointer to the object. If no object was
found, it would return 0. The definition of this method and including the retrieval

query follows:

persistent Word* Word::isWord(char* str) {
persistent Word* Wrd;
for (Wrd in Word) suchthat (strcmp(Wrd->value, str) == 0)

return Wrd;

103

return 0;

6.6 Results

We will close this chapter by illustrating some results produced by execution of the
system. It should be noted that, although the execution is in a client-server environ-
ment, we will only consider the input files and output files transmitted to/from the
database module, regardless of the Graphical User Interface module. To familiarize
the reader with the actual interaction between the database and the GUI modules,

however, we will include actual query and result in the first example.

Example 1:
The following example shows a level 2 subject search based on given level 0 and level 1

subjects. Figure 42 illustrates the pertinent part of the GUI for this subject search.

Query 1:
2

<level0> computer science </level0>
<levell> information systems </levell>
<EOF>

The number 2 indicates that the search should be done on level 2 and <EQF> indi-
cates the end of the file. In return, database will provide the following level 2 subjects.

Figure 43 illustrates the result of this search displayed in the GUL

Result 1:

02

<level2> abstracting methods </level>
<level2> animations </level>

<level2> artificial realities </level>
<level2> asynchronous interaction </level>
<level2> audio input/output </level>

104

Figure 42: GUI: a level 2 subject search

<level2> bulletin boards </level>
<level2> clustering </level>

<level2> selection process </level>
<level2> spreadsheets </level>

<level2> synchronous interaction </level>
<level2> theory and methods </level>
<level2> theory and models </level>
<level2> thesauruses </level>

<level2> transaction processing </level>
<level2> value of information </level>
<level2> videotex </level>

<level2> windowing systems </level>
<level2> word processing </level>
<EOF>

The first number in the result file indicates an error code. The number 0 states
that there has been no errors. The number 2 corresponds to the subject level, which

is level 2.

105

L S L R o e L a2 R A)

acagnid] il

4
B
i
i

|
|

Figure 43: GUI: Result of a level 2 subject search

106

Example 2:
The following input requests a subject search on the synonym string 'comu’; the num-

ber 3 indicates a search based on synonym.

Query 2:
3 <string> comu </string>
<EOF>

The following is the result of the synonym search. The last three numbers on the
first line indicate the number of subject terms found in each hierarchy level. Since no

subject terms are found, the numbers are all zeros.

Result 2:
03000
<Level0>
<EOL>
<Levell>
<EOL>
<Level2>
<EOL>
<EOF>

Example 3:
In the following example, a substring search on sub ject hierarchies is to be performed.

The number 4 indicates a search on substrings.

Query 3:
4 <string> ba </string>
<EOF>

As illustrated below, 1 general subject, 0 level.l subject, and, 4 level.2 subjects

are found for the above query.

107

Result 3:

03104

<Level0>

<level0> balkan peninsula </level>

<EOL>

<Levell>

<EOL>

<Level2>

<level0> computer science </level> <levell> computing methodologies </level>
<level2> backtracking </level>

<level0> computer science </level> <levell > data </level> <level2> backup/recovery
<[level>

<level0> computer science </level> <levell> software </level> <level2> backup
procedures </level>

<level0> computer science </level> <levell> software </level> <level2> batch
processing systems </level>

<EOL>

<EOF>

Example 4:
The following input requests a Semantic Header registration. The tag <semhdrR>

indicates that a Semantic Header is to be registered.

Query 4:

<semhdrR>

<userid> shayan </userid>

<password> passwd </password>

<tit]> The CINDI System </title>
<alttitl> </alttitle>

<subject>

<general> computer science </general>
<sublevell> information systems </sublevell>
<sublevel2> search process </sublevel2>
</subject>

108

<languag> English </language>
<char-set> </char-set>

<author>

<arole> Corporate Entity </arole>
<aname> Concordia University </aname>
<aorg> </aorg>

<aaddress> </aaddress>
<aphone> </aphone>

<afax> </afax>

<aemail> </aemail>

</author>

<keyword> metadata, Semantic Header </keyword>
<identifier>

<domain3> HTTP </domain3>
<value3> to be specified </value3>
< /identifier>

<dates>

<created> 1997/03/14 </created>
<expiry> < /expiry>

</dates>

<version> </version>

<spversion> < /spversion>
<classification> <domain4> </domain4>
<value4> </value4>

< /classification>

<coverage>

<domain5> </domain5>

<value5> </value5>

</coverage>
<system-requirements>
<component> </component>
<exigency> </exigency>

< /system-requirements>

<genre>

109

<form> </form>

<size> </size>

</genre>

<source-reference>

<relation> </relation>
<domain-identifier> </domain-identifier>
< [source-reference>

<cost> </cost>

<abstract>

The document discusses issues about
electronic information indexing and
retrieval.

</abstract>

<annotation>

</annotation>

</semhdr>

<EOF>

The result of the query sent to the client is a 0 code indicating that the registra-

tion has been done successfully.

Result 4:
0
<EOF>

Example 5:
When adding an annotation to an existing Semantic Header, those fields of a Seman-
tic Header which make up the SHN are sent to the server site, with the annotator’s

personal information and the text of the annotation.

Query 5:
<annotation>
<tit]> A System for Seamless Search of Distributed Information Sources < [title>

<arole> Author </arole>

110

<aname> Bipin C. Desai </aname>

<aorg> Department of Computer Science, Concordia University </aorg>
<general> computer science </general>

<created> 1994/06/15 </created>

<version> </version>

name: nader shayan
organization: concordia
address: montreal
phone:

fax:

email: shayan@cs

This section is used for annotation.
</annotation>
<EOF>

The result of the query sent to the client is a 0 code indicating that the annota-

tion has been done successfully.

Result 5:
0
<EOF>

Example 6:

Finally, the last example will illustrate Semantic Header search request. The infix
expression for this search request is:

(computer science or electrical engineering) and (desai and shing), where 'desai’ is
based on exact match (indicated with letter e between the tages <sts> and </sts>),
and ’shing’ is based on substring matches (indicated with letter s). The letters & and
|, surrounded by the tags <oper> and < /oper>, correspond to and and or operations,
respectively. The third line of the input, the number 10, indicates the number of Se-
mantic Headers to be retrieved per block. In fact, this number stands for the size of

each block of Semantic Headers to be sent to the client site. The second line contains

111

the block number. We will clarify this with an example. Suppose the user makes
a search request and asks for the retrieval of 10 Semantic Headers. Let us assume
that the corresponding search operation finds 16 Semantic Headers. However, only
10 Semantic Headers will be sent to the user. The user can ask for the remaining 6
Semantic Headers. In this case the block number will be 2, indicating the retrieval of

the second 10 (or less) Semantic Headers.

Query 6:

<search>

<blockno> 1 </blockno>
<nosh> 10 </nosh>
<titl> </title>

<sts> < [sts>

<subject>

<general> computer science </general>
<sublevell > </sublevell>
<sublevel2> < /sublevel2>
<oper> | </oper>
<brck> (</brck>
<brckN> 1 </brckN>
<general> electrical engineering </general>
<sublevell> </sublevell>
<sublevel2> </sublevel2>
<oper> </oper>

<brck>) </brck>
<brckN> 1 </brckN>
</subject>

<author>

<sts> e </sts>

<aname> desai </aname>
<aorg> </aorg>

<oper> & </oper>
<brck> (</brck>
<brckN> 1 </brckN>

112

<sts> s </[sts>
<aname> shing </aname>
<aorg> </aorg>

<oper> </oper>
<brck>) </brck>
<brckN> 1 </brckN>
</author>

<identifier>

<sts> </[sts>
<domain3> </domain3>
<valued3> </value3>
<oper> < /oper>
<brck> </brck>
<brckN> </brckN>

< [identifier>

<kw>

<keyword> </keyword>
<oper> < /oper>
<brck> </brck>
<brckN> </brckN>
</kw>

<dateAft> </dateAft>
<dateBef> </dateBef>
<languag> </language>
<version> </version>
<abstract> </abstract>
< /search>

<EOF>

The result of this search is the number of Semantic Hea.;iers found. This is sent

along with the Semantic Headers to the client site. Obviously, the number of Seman-

tic Headers sent will be less than or equal to that the user has asked for.

113

Result 6:

020
<semhdr>

content of an SH
< /semhdr>

<semhdr>
content of an SH
</semhdr>
<EOF>

114

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Current index systems are based on harvesting the network for new documents. Such
documents are retrieved and their contents used to provide terms for the index. The
big disadvantage with this scheme is the unreliability of the index entries produced
and the lack of an authentic abstract for the item. The current Dublin Metadata
Element list also suffers from the absence of the abstract. Furthermore, current
index schemes are relevant for resources of limited protocols and are not applicable
to other resources. Another problem with some of the robot-based approaches is
the unnecessary traffic on the network and lack of cooperation and sharing among
different systems. Finally, the infeasibility of the existing approaches becomes clear
as more and more providers of information would require payment.

In the system based on the Semantic Header, the provider of the resource is the
one who prepares the index information. Consequently, such an index entry would
be more reliable than one derived by a third party or by simply scanning a docu-
ment. The inclusion of an abstract in the index entry enables the provider of the
resource to highlight the nature of the subject. If asked to pay a fee, users would
not be inclined to retrieve resources with irrelevant titles. The Semantic Header pro-
vides additional details about the resource and allows users to make better informed
decisions regarding the relevance of the source resource.

The index database contains a number of control entries for resource. Control

entries are items such as the size of the resource, the password for authenticating

115

subsequent updates of the index entry, and a list of annotations made about the
resource by independent users. The Semantic Header based cataloging and discovery
system has two major components for indexing and searching.

The system supports an expert system-driven graphical interface for the provider
of the resource to produce an index entry, and have this entry entered in the index
database. The expert system provides help in choosing appropriate terms for index
entries such as subject, sub-subject, keywords etc. It is also responsible for verifying
the consistency of the index entry and the accessibiblity of the resource and then for
posting the index entry to the index database.

While searching, a user’s search requirement is often vague; hence, the system
guides the users in articulating their needs. The search component provides better
search syntax and offers help to the user in the terminology used. This supports
context sensitivity missing in many existing search systems which are evolving towards
our model. The selectivity of the resulting search is thus improved. SHN provides an
element for a basic index and simpler search mechanism for non-graphical use.

The Semantic Header based system proposed meets the challenge of the com-
ing information age by defining: a metadata structure which allows automatic and
semi-automatic (human assisted) extracting of metadata from resources; building
a distributed indexing system; providing an expert based resource registering and
searching systems with an intuitive graphical user interface to interact in the regis-
tering and discovery process. The distributed and replicated nature of the Semantic

Header database provides reliability and scalability.

7.2 Contribution of this thesis

The contributions made by this thesis to the CINDI project are listed below:

e Design and implementation of the Database subsystem for indexing and retrieval
of Semantic Headers. Furthermore, for the DBA of the system, automatic
indexing and deleting of subject terms as well as Semantic Headers have been

provided.

e Employment of the recursive descent parsing technique for the implementation
of the parser, mainly, to extract data items, received from the client site, and

send them to the database subsystem.

116

o Implementation of the Expert System of the Database subsystem to help users

in subject retrieval. This module is distributed in the database subsystem.

e Implementation of the client-server communication using TCP/IP.

7.3 Future Work

The current prototype of the CINDI System satisfies the needs of the Internet users
for effective retrieval of electronic information resources. However, in the near future,
other functionalities could be built upon the prototype to better serve the Internet
community. Furthermore, the performance and the tune-up of the database module
could be studied.

e A major extension to the system would be to build a distributed system based

on this prototype centralized system.

e The subject areas of the Thesaurus Database could be expanded using the

classification of the Library of Congress Subject Headings.

e To facilitate the Semantic Header entry, a new functionality will be added to au-
tomatically create a Semantic Header for an information resource. This project
is already in progress at Concordia as a part of the theses of other graduate

students.

e In the search subsystem the need for additional and/or operations for some of

the search fields should be taken into consideration.

¢ A new feature will be added to those search fields that can be searched based on
exact match and substrings. With this feature, the system will look for words

analogous to the search word entered by the user.

o The performance of the Word structure should be examined as to the use of
linked lists instead of sets. In case of the availability of sets in ODE, the Word

structure should be adapted to function based on sets.

o The query processing strategies should be studied to verify the amount of over-
head caused by large intermediate results, kept in balanced trees, in searching

for Semantic Headers.

117

e The current on-line help of the GUI could be extended to better help users
understand the system.

e The application could be internationalized to support various languages.

118

Bibliography

[AGG]

[AGW]

[Agr89]

[Agro3]

[Aho8S]

[Arch]

[BAP93)

[BCDY0

[BCD92]

Arlein, R., Gava J., Gehani, N., Lieuwen, D., Ode 4.1 (Ode<EQOS>) User
Manual, AT&T Bell Laboratories.

Antoniou, G. and Wachsmuth, I., Structuring and Modules for Knowledge
Bases: Motivation for a New Model. Knowledge-based Systems, Vol. 7-1,
pp- 49-51.

Agrawal, R., Gehani, H., Ode (object database and environment): the lan-
guage and the data model. Proc. ACM-SIGMOD 1989 Int’l Conf. Man-
agement of Data, pages 36-45, May 1989.

Agrawal, R., Dar, S., Gehani, N., The O++ Database Programming Lan-
guage: Implementation and Experience, Proc. IEEE 9th Int’l Conf. Data
Engineering, pp. 61-70, 1993.

Aho, V. A., Sethi, R., Ullman, J. D., Compilers: Principles, Techniques,
and Tools, Addison-Wesely, 1988.

Guide to Network Resource Tools - archie
http://kelim.jct.ac.il/science/online/archie.html

Biliris, A., Panagos, E., EOS User’s Guide (Release 2.0), AT&T Bell Labs,
1993.

Desai, B. C., Introduction to Database Systems, West, St. Paul, MN, 1990.

Desai, B. C., Pollock, R., MDAS: A Heterogeneous Distributed Database
Management System, Information and Software Technology, Jan. 1992,
Vol. 34-1, pp. 28-41.

119

[BCD94]

Desai, Bipin C., Shinghal, R. ‘A system for Seamless Search of Distributed
Information Sources’, May 1994. http:// www.cs.concordia.ca/old /w3-
paper.html

[BCD95a] Desai, Bipin C. ‘Report of the Metadata Workshop, Dublen, OH (March

1995)’, http://www.cs.concordia.ca/faculty/bcdesai/ metadata/metadata-
workshop-report.html

[BCD95b] Desai, B. C., Internet Indering Systems vs List of Known URLs,

[BCDY7]

[BDJ]

[BHO5]

[BIN]

[BLTC]

[BLT90]

[BLT93]

[BLT94]

June 1995. http://www.cs.concordia.cs/ faculty/ bcdesa/test-of index-
systems.html

Desai, Bipin C. ‘Supporting Discovery in Virtual Libraries, Jan. 1997°,
http://www.cs.concordia.ca/ faculty/bcdesai/

Byrne, D. J., MARC manual: understanding and using MARC record,

Libraries Unlimited, Englewood, Colo.

Brody, H., Internet@crossroad, Technology Review, May/June, also URL
http://web.mit.edu/afs/athena/org/t/techreview /www/articles /may95/
Brody.html

Brownlee, J. N., New Zealand Ezpreiences with Network Traffic Charging,
http://www.auckland.ac.nz/net/Accounting/nze.html

Berners-Lee, T., Connolly, D., UR* and The Names and Addresses of
WWW objects,
http://www.w3.ch/hypertext/ WWW/Addressing/ Addressing.html

Berners-Lee, T., Cailliau, R., WorldWide Web: Proposal for a HyperText
Project, 1990. http://www.w3.org/hypertext/WWW /Proposal.html

Berners-Lee, T., Wide Web Initiative: The Project, 1993.
http://info.cern.ch/hypertext/WWW /TheProject

Berners-Lee, T., Cailliau, R., Luotonen, A., Frystyk Nielsen, H., and Se-
cret, A., ‘The World Wide Web’. In Communications of the ACM, August
1994, vol.37-8, pp. 76-82.

120

[BPE]

[CPG]

[CPGY3]

[CRW]

[CR91]

[Cans]

[CrW]

[Cr91]

[DBP]

[DPE]

Deutsch, P., Emtage, A., Koster, M., ‘Publishing Information on the In-
ternet with Anonymous FTP’,
http://src.doc.ic.ac.uk/computing/internet /internet-drafts/draft-ietf-iiir-
publishing-03.txt.

Chander, P. G., Shinghal, R., Desai, B. C., Radhakrishnan T., An Expert
System to Aid Cataloging and Searching Electronic Documents on Digital
Libraries. Ezpert Systems with Applications. To appear in issue 12(4), June
1997.

Chander, P. G., Shinghal, R. and Radhakrishnan, T., Goal Supported
Knowledge Base Restructuring for Verification of Rule Bases. In Notes of
the IJCAI’95 Workshop on Verfication and Validation of Knowledge-Based
Systems, Montreal, pp. 15-21.

Cromwell, W. The Core Record: A New Bibliographic Standard. Library
Resources and Technical Services, 38(4), pp. 415-424.

‘The Full Computing Reviews Classification System (1991 version)’. In
Computing Reviews, January 1995, p.6.

Canonical stems and noise words for the Peregrinator,
http://www.maths.usyd.edu.au:8000/jimr/pe/Stems.html

Crawford, W., MARC for Library Use: Understanding USMARC, G. K.
Hall, Boston, MA, 1984.

Cocchi, R., Estrin, D., Shenker, S. and Zhang, L., A Study of Priority
Pricing in Multiple Service Class Networks, Proc of SIGCOMM, Sept. 1991

revised version at: ftp://parcftp.xerox.com/pub/net-reserch/pricingl.ps.Z

De Bra, P., Houben, G-J., and Kornatzki, U. ‘Navigational Search in the
World-Wide Web’, http://www.win.tue.nl/help/doc/demo.ps

Deutsch, P., Emtage, A., Koster, M. ‘Publishing Information on the Inter-
net with Anonymous FTP’,

http://src.doc.ic.ac.uk/computing/internet /internet-drafts/draft-ietf-iiir-
publi shing-03.txt

121

[EIN]

[GIO]

[GIRG]

[Gyn]

[HKL]

[HTML]

[HarI]

[HarS]

[InS]

[JRIK]

[KB91]

[KJ93]

EINet Galazy, http://www.einet.net/

Giordano, R., The Documentation of Electronic Texts Using Text Encod-
ing Initiative Headers: An Introduction, Library Resources and Technical
Services, Vol. 38-4, pp. 389-401.

Giarratano, J. and Riley, G., Ezpert Systems: Principles and Programming
(2nd edition), PWS Publishing Company, Boston, MA.

Gaynor, E., Cataloging Electronic Texts: The University of Virginia Li-
brary Experience, Library Resources and Technical Services, Vol. 38-4, pp.
403-413.

Horny, K. L., Minimal-level cataloging: A look at the issues
A symposium, Journal of Academic librarianship, Vol. 11, pp. 332-334.

HyperTezt Markup Language (HTML),
http://www.w3.org/pub/WWW /MarkUp/

Query Interface to the Derma Harvest Server Broker,
http://www.uni-erlangen.de/Harvest /brokers/DERMA /

The Harvest Broker Searching System,
http://www.okbmei.msk.su/FAQ/Harvest.html

InfoSeek, http://www.infoseek.com:80/

Jacob, R. J. K. and Froscher, J. N., A Software Engineering Methodol-
ogy for Rule-Based Systems. [EEE Transactions on Knowledge and Data
Engineering, Vol. 2-2, pp. 173-189.

Kahle, B., An Information System for Corporate Users: Wide Area In-
formation Servers, Thinking Machines Technical Report TMC-199, April
1991.

Kochmer, J., NorthWestNet. The Internet Passport: NorthWestNet’s
Guide to Our World Online, published by NorthWestNet, Bellevue, WE,
1993.

122

[Katz]

[Ker84]

[Kos]

[Kos96)

[LHL]

[LYC)

[MBO]

[MML95]

[MMJ]

[Net]

[PTM90]

[RBSE]

[Rhee]

[Ross]

Katz, W. A., Introduction to Reference Work, Vol. 1-2 McGraw-Hill, New
York, NY.

Kernighan, B., Pike, R., The UNIX Programming Environment. Prentice-
Hall Sofware Series, 1984.

Koster, M., ALIWEB http://www.nexor.co.uk/public/aliweb/aliweb.html

Koster, M., The Web Robots Pages, 1996.
http://info.webcrawler.com/mak/projects/robots/robots.html

Lieberman, H., Letizia: An Agent that Assists Web Browsing. In Proceed-
ings of the Fourteenth International Joint Conference in Artificial Intelli-
gence, Montreal, pp. 924-929.

Lycos-The Catalog of the Internet, http://lycos.cs.cmu.edu/

McBryan, Olever A., World Wide Web Worm,
http://www.cs.colorado.edu/home/mcbryan/ WWWW .html

Mauldin, M. L., Meassuring the Web with Lycos, Poster Proceeding of the
Third International WWW Conf., Darmstadt, April 1995, pp. 26-29.

MacKie-Mason, J., Varian, H.,
Usage-Based Pricing: Analyses of Various Pricing Mechanism,

http://gopher.econ.lsa.unich.edu/EconInternet /Pricing.html

‘Netscape Knows Fame and Aspires to Fortune'. In The New York Times,
March 1, 1995.

Petersen, T., Molholt, P. (ed), Beyound the book: ertending MARC for
subject acess, G. K. Hall, Boston, MA, 1990.

RBSE Spider, http://rbse.jsc.nasa.gov/Spider/

Rhee, S., Minimal-level cataloging: Is it the best local solution to a national
problem?, Journal of Academic librarianship, Vol. 11, pp. 336-337.

Ross, R. M., West, L., MLC: A contrary viewpoint, Journal of Academic
librarianship, Vol. 11, pp. 334-336.

123

[Rum91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W., Object-

[SIM]

[Shin92]

[Soll]

[Ste90]

[TE]]

[TRES4]

[Thau]

[VER]

[WSG)

[WebC]

[W3C)

[Yah]

Oriented Modeling and Design, Prentice Hall, 1991.

Simon, H. A., The Structure of Ill-Structured Problems. Artificial Intelli-
gence, 4, pp. 181-201.

Shinghal, R., Formal Concepts in Artificial Intelligence, Chapman & Hall,
London, U.K., co-published in the U.S. with Van Nostrand, New York,
1992.

Sollins, K. Masinter, L. Functional Regquirements for Uniform Resource
Name, RFC1737, ftp://ds.internic.net/rfc/rfc1737.txt

Stevens, R., UNIX Network Programming. Prentice-Hall Software Series,
1990.

TEI Guidelines for Electronic Tezt Encoding and Interchange,
http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG

Tremblay, J. P., Sorenson, P. G., ‘An Introduction to Data Structures with
Applications’, McGraw-Hill, 2nd edition, 1984.

Thau, R., °‘Sitelndex Transducer’. http://www.ai.mit.edu/tools/site-

index.html

How to compose veronica queries.

gopher://gopher.scs.unr.edu/hh/veronica/About/how-to-query-veronica

Weibel, S., Godby, J., Miller, E., Daniel, R., OCLC/NCSA Metadata
Workshop Report,
http://www.oclc.org:5046/conferences/metadata/ dublin_core_report.html

WebCrawler,
http://webcrawler.cs.washington.edu/WebCrawler/Home.html

W3 Catalog

Yahoo Search, http://www.yahoo.com/search.html

124

Appendix A

Example of a Semantic Header

<semhdrR>

<userid> bcdesai </userid>

<password> confidential </password>

<title> Semantic Header and Indexing and Searching on the Internet </title>
<alttitle> Sailing the Internet with a navigational System </alttitle>
<subject>

<general> computer science </general>

<sublevell> information storage and retrieval </sublevell>
<sublevel2> indexing </sublevel2>

<general> library studies </general>

<sublevell > cataloging </sublevell>

<sublevel2> semantic header </sublevel2>

<general> computer science </general>

<sublevell> database management </sublevell >
<sublevel2> distributed databases </sublevel2>
</[subject>

<language> English </language>

<char-set> ISO-8879 </char-set>

<author>

<arole> Author </arole>

<aname> Desai, Bipin C. </aname>

<aorg> Concordia University </aorg>

<aaddress> 7141 Sherbrooke Street West </aaddress>

125

<aphone> (514) 848-3025 </aphone>

<afax> (514) 848-8652 </afax>

<aemail> bcdesai@cs.concordia.ca </aemail>
<keyword> Bibliographic Record, Content Description </keyword>
<identifier>

<domain3> HTTP </domain3>

<value3> http://www.cs.concordia.ca/doc.html </value3>
< /identifier>

<dates>

<created> 1994/07/11 </created>

<expiry> 1996/01/11 </expiry>

</dates>

<version> 1.1 </version>

<spversion> 1.0 </spversion>

<classification>

<domain4> Legal </domain4>

<value4> Copyright for free </value4>
<domain4> Security Level </domain4>

<value4> Public </value4>

< /classification>

<coverage>

<domain5> Audience </domain5>

<value5> Computer Science, Library Science, Inter Types </value5>
< [coverage>

<system-requirements>

<component> Hardware </component>
<exigency> Workstation, Mainframe </exigency>
<component> Software </component>
<exigency> Browser </exigency>

<component> Network </component>
<exigency> Internet </exigency>

< /system-requirements>

<genre>

<form> Text </form>

126

<size> 45000 bytes </size>

</genre>

<source-reference>

<relation> Derived from tex file </relation>

<domain-identifier> cindi3.tex </domain-identifier>

< [source-reference>

<cost> 0.31% Cnd. </cost>

<abstract>

This paper describes an indexing system based on a data set called Semantic Header
for Internet resources...

</abstract>

<annotation>

The Semantic Header was first conceived as a cataloging Internet Resource...
</annotation>

</semhdr>

127

Appendix B

OMT Notations

The notations of the Object Modeling Technique for Object, Dynamic, and Functional
Models are illustrated in Figures 44, 45, and 46, respectively.

128

Class:

Class Name

Class Name

anribute
attribute: data_typew int_value

operation
operation(arg_list): return_type

Generalization (Ingeritance):

Superciass

] 1

Subclass-1 Subclass-2

Aggregation:

Assembly Class

Part-1-Class Part-2-Class

Object Instances:
(Class Name)

(Class Name) atribute_name= value

Association Ni
Class-1 = Cus2
role-1 role-2
Qualified Association:
AssocistionName
Class-1 quahﬁq———— Class-2
role-1 role-2
Muttiplicity of Associations:
Class Exactly one
—4 Class Many(zero or more)
—Q Class Optional(zero or one)
1+
— Class One or more
1-24 .
— Class Numerically specified

Ordering:

o]
{oredered }

Link Attribute:
Association Name
Class-1 u Class-2
link attribute
Temary Association:
role-1 role-2
Class-1 Class-2
role-3
Class-3

Instantiation Relationship:

(Class Name) Class Name

Figure 44: Object Model Notation

Event causes Transition between States:

Initial and Final States:

= 0

Guarded Transition:

Actions and Activity while in a State:

State Name
entry/entry-action
do: activity-A

event-1/action-1

exitexit-action

State Generalization(Nesting):

Superstate
eventl
._@_@

event3

Splitting of control:

event2

Event with Attribute:

event(auribute)

Action ou a Transition:

Concurrent Subdisgrams:

Superstate

—

(

event]

Syncgronization of costrol:

Figure 45: Dynamic Model Notation

130

Process:

(o
— name

. Data Store or File Object:

Name of
data store

Actor Objects (as Source or Sink of Data):

) dl a2
Actor-1 | | Actor-2

Access of Data Store Value:

Data store

dl
—

Access and Update of Data Store Value:

Data store

dl
—

Duplication of Data Value:

‘-

Data Flow between Processes:

data name

Data Flow that Results [n a Data Store:
Name of
D data store

Control Flow:

- boolunmuhC
process-1 : -3 process-2

Update of Data Store Value:

Data store

dl

Composition of Data Value:

dl
composite

d2

Decomposition of Data Value:

. d1
composite <
d2

Figure 46: Functional Model Notation

Wi LVALUAITIUIN
TEST TARGET (QA—3)

‘FEE

——

L EEE

w—m_m_w_um_:ug.m

2!

I
I
I

16

Il

14

I

125

150mm

4609 USA

er, NY 1

< Rochest
hone: 716/482-0300
ax:

653 East Main Street
: 716/288-5989

~ouw

Reserved

© 1993, Applied Image, Inc., All Rights

