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ABSTRACT

On the Embedding of Multiway Decision Graphs in HOL

Tarek Mhamdi

The increasing complexity of hardware systems requires more and more sophisticated
methods of verification. While model checking suffers from the state space explosion
problem, theorem proving is quite tedious and impractical for verifying complex de-
signs. In this thesis, we propose a verification framework in which we attempt to
strike the balance between the expressiveness of theorem proving and the efficiency
and automation of state exploration techniques. To this end, we propose to integrate
a layer of checking algorithms based on Multiway Decision Graphs (MDG) in the
HOL theorem prover. We embedded the MDG underlying logic in HOL and imple-
mented a platform that provides a set of algorithms allowing the user to develop
his/her own state-exploration based application inside HOL. While the verification
problem is specified in HOL, the proof is derived by tightly combining the MDG
based computations and the theorem prover facilities. We have been able to imple-
ment different state exploration techniques within HOL such as MDG reachgbility

analysis, equivalence and model checking.
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Chapter 1

Introduction

Whenever an error creeps into a design, time and money must be spent to locate
the problem and correct it, and the longer a bug evades a detection, the harder and
more expensive it is to fix. As design complexity increases, simulation times become
prohibitive and coverage becomes poor, allowing numerous bugs to slip through to
later stages of the design cycle. What is needed, therefore, is a complement to simu-
lation for determining the correctness of a design. For this reason, there has been a
surge of research interest in formal verification techniques [22]. In general, the formal
verification problem consists of mathematically establishing that an implementation
satisfies a specification. The implementation refers to the system design that is to
be verified and the specification refers to the property with respect to which the
correctness is to be determined.

Formal verification methods fall into two categories [20]: proof-based methods,



mainly theorem proving and state-exploration methods, mainly model checking and
equivalence checking. While theorem proving is a scalable technique that can handle
large designs, model checking suffers from the so called state-explosion problem which
prevents its application to industrial systems [23]. On the other hand, while model
checking is fully automatic, deriving proofs is a user guided technique that requires
a lot of expertise and hence can be tedious and difficult.

Ideally, one would like to combine the strengths of both techniques resulting
in a hopefully automatic theorem prover. This is not likely to be practical in the
foreseeable future, so various compromises are being explored. They can be summa-
rized in either adding a layer of theorem proving on top of existing model checkers,
to enable large problems to be deductively decomposed into smaller pieces that can
be checked automatically, or adding checking algorithms to theorem provers so that
subgoals can be verified automatically and counter-examples found.

Motivated by a desire to combine the expressiveness and scalability of theo-
rem proving and the automation and efficiency of state-exploration based techniques,
we developed a platform of state-exploration algorithms inside the HOL proof sys-
tem [16]. Our decision diagram data structure is the Multiway Decision Graphs

(MDGs) [9] which we integrate in HOL as a built-in datatype.



1.1 Formal Verification Techniques

Formal verification [20] consists of formally establishing that an implementation sat-
isfies a specification. To classify the various approaches, we first look at the three
main aspects of the problem [22]: the implementation, the specification and the
relationship between them.

An implementation is a description of the actual hardware design that is to be
verified. It usually can be described at different levels of abstraction: circuit level,
switch level, gate level or register-transfer level. Different abstraction levels often
result in different verification methods. A method that is good at one level may be-
come cumbersome at another one. Another important issue with the implementation
is the class of circuits we wish to verify, i.e., whether it is combinational/sequential,
synchronous/asynchronous, pipelined or parametrized hardware. These variations
may require different approaches (though not mutually exclusive).

There are two verification paradigms depending on the two different kinds of

specifications:

1. Verification of behavioral equivalence: It intends to prove that an implemen-
tation is behaviorally equivalent to the specification which is a description of
the intended/required behavior of a hardware design. This can be applied for

the proof of implication.

2. Property verification: It intends to prove that the implementation is a model



of the specification which consists of the set of properties to be satisfied.

The above two styles of verification are not mutually exclusive, in fact, they
are somehow complementary. It can be useful to verify important properties as well
as to verify the behavioral equivalence or logical implication of an implementation

against a specification.

1.1.1 Theorem Proving

Theorem proving is an approach where both the system and its desired properties are
expressed as formulae in some mathematical logic. This logic is defined by a formal
system, called proof system or calculus, which defines a set of arioms and a set of
inference rules. Theorem proving is the process of deriving a proof from the basic
axioms of the system. Steps in the proof appeal to the axioms and rules, and possibly
derived definitions and intermediate lemmas. The axioms are usually “elementary”
in the sense that they capture the basic properties of the logic’s operators.

Proof styles are often characterized as “forward” or “backward”. A forward
proof starts with the axioms and assumptions; inferences are then applied until the
desired theorem is proven. A backward proof starts with the theorem as a goal and
applies the inverses of inferences rules to reduce the theorem to simpler intermediate
goals. Sufficiently simple goals are discharged by matching axioms or assumptions
or by applying built-in decision procedures.

Many theorem-proving systems have been implemented, and many have been



used for hardware verification, including HOL [16], ISABELLE [27], and PVS [26].
These systems are distinguished by, among other aspects, the underlying mathemat-
ical logic, the way automatic decision procedures are integrated into the system and
the user interface. In the next chapter, we will overview the HOL theorem proving

system, which we intend to use in this thesis.

1.1.2 Model Checking

Model checking is a technique that relies on building a model of a system and checking
that a desired property holds in that model by exploring a state space search in
that model. Model checking is mainly used in hardware and protocol verification.
Temporal model checking, is a technique developed in the 1980s by Clarke and
Emerson [8] and by Queille and Sifakis [30]. In this approach, specifications are
expressed in a temporal logic [29] and systems are modelled as finite state systems.
An efficient search procedure is used to check if a given finite state transition system
is a model for the specification.

The model checking technique described by Clarke [8] requires that the entire
state transition graph be constructed. Thus, the space requirements are at least
linear in the size of the model’s reachable state space. However, the latter is often
exponential in the number of state holding elements (e.g., latches) of a design. For
instance, a device with only two 32-bit registers would already have 10* states [6].

An alternative to explicit enumeration is to use a symbolic representation.



Binary Decision Diagrams

Binary decision diagrams (BDDs) are data structures for representing Boolean func-
tions. Bryant [5] introduced the BDD in its current popular representation, although
the general idea have been floating around for quite some time (e.g., as branching
programs in the theoretical computer science literature).

BDDs have several useful properties. First, many common functions have small
BDDs. In addition BDDs are easy to manipulate. We can evaluate a function in
linear time in the number of variables. We can existentially or universally quantify
(Boolean) variables of a function in time quadratic in the size of ’the BDD. Finally,
once we fix the order in which the variables appear, the BDD is a canonical represen-
tation for the Boolean function. Thus function comparison, including special cases
tautology and satisfiability, become trivially easy.

BDDs are a practically efficient representation of Boolean functions. Many
variations of BDDs were proposed to avoid the state-explosion problem. Multiway
Decision Graphs (MDG), [9] are a special kind of decision diagrams that subsumes
BDDs and extends them by canonically and compactly representing a subset of first-

order functions.

Symbolic Model Checking

Symbolic model checking was initially explored by Coudert, Madre and Berthet [10],

and independently by McMillan [24] and by Bose and Fisher [3]. The underlying idea



common to these approaches is the use of symbolic Boolean representations for the
sets of states and transition functions (or relations) of a sequential system, in order to
avoid building its global state-transition graph explicitly. Efficient symbolic Boolean
manipulation techniques are then used to evaluate the truth of temporal logic for-
mulae with respect to those models. Symbolic representations (like BDDs) allow the
regularity in state-space of some circuits (e.g., datapaths) to be captured succinctly,
thus facilitating verification of much larger circuits compared to the explicit state

enumeration techniques, as shown by Burch et al. [6].

1.2 Related Work

The quest for an efficient combination of theorem proving and model checking has
long been one of the major challenges in the field of formal verification. The work
described here has been strongly influenced by the HolBdd [13, 14] system developed
by Gordon. HolBdd consists of a platform allowing the programming of Binary
Decision Diagram (BDD) [5] based symbolic algorithms in the Hol98 proof assistant.
It provides intimate combinations of deduction and algorithmic verification. They use
a small kernel of ML [17] functions to convert between BDDs, terms and theorems.
Their work was applied to perform reachability programming in Hol98.

A similar work was the pioneering work of Joyce and Seger [19] combining
HOL and the symbolic trajectory evaluation (STE) tool VOSS. HOL-VOSS presents

a mathematical link between the specification language of the VOSS system and the



specification language of HOL. A tactic, VOSS_TAC, was implemented as a remote
function. It calls the VOSS system as a child process of the HOL system to check
whether an assertion, expressed as a term of higher-order logic, is true. If this is
the case, the assertion will be turned to a HOL theorem. The early experiment
with HOL-VOSS suggested that a lighter theorem prover component was sufficient,
since all that was needed was a way of combining results obtained from STE. A
system based on this idea, called VossProver was developed. As a continuation
of HOL-VOSS, Aagaard et al. [1] developed the Voss-ThmTac system combining
the ThmTac theorem prover with the VOSS system. Its power comes from the very
tight integration of the two provers, using a single language, FL, as both the theorem
prover’s meta-language and its object language.

Rajan et al. [31] described an approach where a BDD based model checker
for the propositional p-calculus has been used as a decision procedure within the
framework of the PVS [26] proof checker. They used p-calculus as a medium for
communicating between PVS and the model checker. It was formalized by using
the higher-order logic of PVS. The temporal operators are given the customary fix-
point definitions using the p-calculus. These expressions were translated to the form
required by the model checker. The latter was then used to verify the subgoals
generated within PVS.

Hurd [18] used PROSPER [11] to combine the Gandalf first-order theorem

prover with HOL. A HOL tactic, GANDALF_TAC, is used to enable first-order



HOL goals to be proven by Gandalf and mirror the resulting proofs in HOL. It takes
the original goal, converts it to the appropriate format, and sends it to Gandalf.
Gandalf then parses the proof, translates it to a HOL proof and proves the original
goal in HOL.

Schneider and Hoffmann [32] linked the SMV model checker [24] to HOL us-
ing PROSPER. They embedded the linear time temporal logic (LTL) in HOL and
translated LTL formulae into equivalent w-Automata, a form that can be reasoned
about within SMV. The translation is completely implemented by means of HOL
rules. On successful model checking, the results are returned to HOL and turned to
theorems. The deep embedding of the SMV specification language in HOL allows
LTL specifications to be manipulated in HOL.

In [28], and later [21] a hybrid tool and a methodology tailored to perform
hierarchical hardware verification have been developed by the Hardware Verification
Group of Concordia University. They integrate the HOL theorem prover to the
MDG equivalence checker. The work is done within the proof system but using
the specification style of the automated verification tool. The HOL-MDG tool is
used to verify that a structural specification of hardware implementation implies its
behavioral specification. They try to do the equivalence checking within the MDG
tool by applying a HOL tactic MDG_EQ_TAC. This latter mainly generates the
MDG required files and ensures the interaction with the MDG equivalence checker.

If the design is large enough to cause state explosion, and since the description model



is written in a hierarchical way, a tactic HIER_VERIF_TAC is called to break the
design into sub-blocks. The same procedure is recursively applied if necessary. At
any point, the goal proof can be done in HOL.

An extention of the work above was done within the same group to link HOL
and the MDG model checker [25]. The approach adopted is similar to [21], however,
instead of considering the full behavior of the system, only properties are checked,
hence reducing the verification complexity. To do so, they provide a way to express
temporal properties inside the theorem prover. Besides they support the full input
language of MDG by introducing abstract datatypes and uninterpreted functions.
The verification is done using a HOL tactic called MDG_MC_TAC and also supports
hierarchical verification and model reduction.

While [21, 25, 28] describe systems integrating two stand-alone tools, namely,
HOL and an external MDG tool, the work described here is not intended to use an
external tool to verify subgoals. Instead MDGs are a built-in datatype of HOL and
operators over MDGs are available in the proof system which allows us to tightly
combine HOL deduction and MDG computations. Besides, state-exploration algo-
rithms will be written inside HOL. Thereafter, the main difference between our ap-
proach and the HOL-MDG tool is that our embedding provides a secure and general
programming infrastructure to allow the users to implement their own MDG-based

verification algorithms inside the HOL system.

The work in [1, 18, 19, 32] use the same approach as the HOL-MDG hybrid tool
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in the way they integrate the model checker to the theorem prover. The work in {31]
uses the p-calculus as a medium for communicating between the theorem prover and
the model checker. It is a shallow embedding of stand-alone tools language while
ours is a deep embedding of the decision diagram data structure and its operators
are embedded inside the theorem prover.

Obviously, the most related work to ours is that of Gordon [13, 14]. Our
work, however, deals with embedding MDGs rather than BDDs. In fact, BDDs are
widely used in state-exploration methods. However they can only represent Boolean
formulae. On the other hand, MDGs represent a subset of first-order terms allowing

the abstract representation of data and hence raising the level of abstraction.

1.3 Scope of the Thesis

In this thesis, we propose a platform of state-exploration algorithms, based on the
multiway decision graphs, inside a proof assistant, namely HOL. We propose to
embed the logic underlying MDGs into HOL. The normal operations over HOL
terms are interpreted as MDG operations. Compared to related research [13, 14]
we raise the level of abstraction at which the problem is stated and explore state-
exploration techniques at a higher abstraction level. Our embedding is based on
abstract description of state machines (ASM) [9] where a data value is represented
by a single variable of abstract type, rather than by a vector of boolean variables and

a data operation is represented by an uninterpreted or partially interpreted function
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symbol. The state explosion problem caused by descriptions of large datapaths at
the Boolean logic level is then avoided.

To tightly integrate a platform of MDG based algorithms inside HOL we pro-
pose to embed the MDG data structure as a built-in datatype of HOL. The logic
underlying MDGs will be available in the HolMdgTheory. This theory provides the
tools to specify the verification problem in the logic supported by the MDGs. The
specification will consist of a set of HOL formulae that can be represented by their
correspondent MDGs. Operations over these formulae will be viewed as MDG oper-
ations over their respective graphs. Hence, the lifted MDG package will be used to
build the graph representation of a HOL formula and to allow the manipulation of
graphs rather than HOL terms.

The MDG data structure and operators, once available inside the theorem
prover, can be used to automate parts of the verification problem or even to write

state enumeration algorithms like reachability analysis or model checking.

1.4 Contributions of the Thesis

The purpose of our work is to intimately combine the HOL proof system and implicit

state explorations using MDGs. The main contributions we report in this thesis are:

1. The embedding of the formal logic underlying the abstract state machines
inside HOL. This will be used to specify the verification problem as first-order

formulae that can be represented by MDGs.

12



. The introduction of the notion of well formed terms in HOL. This is the subset

of the terms that can be represented canonically by MDGs.

. The development of a lifted version of the MDG package using an available

version allowing to communicate interactively with HOL.

. The development of an ML interface that is responsible of calling the lifted

MDG package functions corresponding to the operations over HOL terms.

. The implementation of some state-exploration applications inside HOL based
on MDGs. We implemented the reachability analysis and used it for model

checking and the invariant checking procedure.

13



1.5 Outline of the Thesis

The rest of this thesis is organized as follows:

In Chapter 2, we overview the basics of the HOL theorem prover. We also
describe in more details the class of Abstract State Machines (ASM) and decision
diagrams (MDGs) that we are using.

In Chapter 3, we present the formal logic underlying MDGs and its embedding
inside HOL. Well-formedness conditions will also be discussed.

In Chapter 4, the lifted version of the MDG package will be presented and
the linking between HOL and MDG discussed. We will discuss how the MDG data
structure and its basic operators are made available in HOL.

In Chapter 5, we show how our embedding can be used to implement state-
exploration algorithms inside HOL. We illustrate this by implementing the reach-
ability analysis inside HOL. This is then used for applications like model checking
and invariant checking.

In Chapter 6, we consider the Island Tunnel Controller example as a case study
for which we specified and verified a number of safety properties using the invariant
checking procedure.

In Chapter 7, we conclude the thesis and outline future research directions.

14



Chapter 2

Preliminaries

In this chapter we will overview the HOL theorem prover as well as the Abstract
State Machines (ASM) and the Multiway Decision Graphs (MDG). The description

of ASM and MDG are based on material in [9] and [35].

2.1 The HOL Theorem Prover

The HOL system [16] is a general purpose theorem prover based on high-order logic.
It supports both forward and goal-directed backward proofs in a natural-deduction-
style calculus. The user interacts with HOL through the functional metalanguage
ML. The system is guided by applying tactics to proof obligations. A tactic cor-
responds to a high-level proof step and automatically generates the sequence of
elementary inferences necessary to justify the step.

A notable aspect of the system is that user-defined tactics cannot compromise

15



the soundness of a proof because the basic inferences operate on proof states. The
results are safe and the user can have great confidence since the most primitive
rules are used to prove a theorem. HOL system also has automatic recursive type
definitions, structural induction tools and rewriting tools.

The set of types, type operators, constants, and axioms available in HOL are
organized in the form of theories. There are two built-in primitive theories, bool
and ind, for Booleans and individuals, respectively. Other important theories, which
are arranged in a hierarchy, have been added to axiomatize lists, products, sums,
numbers, primitive recursion, and arithmetic. On top of these, users are allowed
to introduce application-dependent theories by adding relevant types, constants, ax-
ioms, and definitions.

Verification tasks in the HOL system can be set in a number of different ways.
The most common one is to prove that an implementation, described structurally,
implies or is equivalent to, a behavioral specification. The application of the HOL
system can be found in hardware verification, reasoning about security, verification
of fault-tolerant systems, reasoning about real-time systems, etc. It is also used in
compiler verification, program refinement calculus, software verification, modelling
concurrency and automata theory. HOL allows the use of hierarchical verification
methodology wherein the modules are divided in sub-modules and even the sub-
modules are divided until the lowest implementation level is reached. Each sub-

module is verified, and its result is used to verify the other sub-modules as needed. To

16



complete a verification, however, a very deep understanding of the internal structure

of the design is required, as it is a white-box approach.

2.1.1 Types

A HOL type can be a variable, a constant, or a compound type, which is a constant

of arity n applied to a list of n types.

hol_type ::=  ‘ident (type variable)
| bool (type of truth values)
| ind (type of individuals)
|  hol_type -> hol_type (function arrow)
| ident (nullary type constant)
|  hol_type ident (unary compound type)
| (hol_type, ..., hol_type) ident (compound type)

Type constants are also known as type operators. They must be alphanumeric. Type
variables are alphanumerics written with a leading prime (*). bool is the two element
type of truth values. The binary operator fun is used to denote function types; it
can be written with an infix arrow. The nullary type constant ind denotes an infinite
set of individuals. Thus ’a -> ’b and (bool -> ’a) -> ind are both well-formed
types. The function arrow is right associative.

Many formalizations require the definition of new types. In HOL, such types

may be specified using the invocation:

Hol_datatype ‘<spec>‘

where <spec> should conform to the following grammar:

17



spec ::= [ <binding> ; ]* <binding>

binding ::= <ident> = [ <clause> | ]* <clause>
| <ident> = <| [ <ident> : <type> ; ]* <ident> : <type> |>
clause ::= <ident> | <ident> of [<type> => 1* <type>

For example, we can define a type of binary trees where the leaves are numbers as :

Hol_datatype ‘tree = Leaf of num | Node of tree => treef

2.1.2 Terms

Ultimately, a HOL term can only be a variable, a constant, an application, or a

lambda term (to denote a function).

term =  ident (variable or constant)
| term term (combination)
| \ident. term (lambda abstraction)

In the HOL system, the usual logical operators have already been defined, including
truth (T), falsity (F), negation (~), equality (=), conjunction (A), disjunction (V),
implication (==>), universal (!) and existential (?) quantification, and an indefinite
description (choice) operator (@). Besides, the basis includes conditional, lambda,
and “let” expressions. Thus the set of terms available is, in general, an extension of

the following grammar:

term =  term : hol_type (type constraint)
|  term term (application)
| “term (negation)
|  term = term (equality)
|  term ==> term (implication)
| term \/ term (disjunction)
|  term /\ term (conjunction)
|  term => term | term (conditional)
| \ident ... ident. term (lambda abstraction)
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| lident ... ident. term (forall)
| ?ident ... ident. term (exists)
| @ident ... ident. term (choose)
| ?!ident ... ident. term (exists-unique)
| let ident = term

[and ident=term]* in term (let expression)
| T (truth)
| F (falsity)
|  ident (constant or variable)
| (term) (parenthesized term)

Some HOL syntax examples may be found in Table 2.1. The lexical structure of term
identifiers is much like that for ML: identifiers can be alphanumeric or symbolic.

Variables must be alphanumeric. A symbolic identifier is any concatenation of the

characters in the following list: “#7+x/\\=<>&@!,:;_"-" with the exception of the

keywords “\\”, “;”, “=>” and “:”. Any alphanumeric can be a constant except the

keywords “let”, “in” and “of”.

x=T z is equal to true.

Ix. Person x ==> Mortal x All persons are mortal

Ix y z. (x==>y) /\ (y==>z) ==> x ==> z | implication is transitive.
Ix. Px ==>Qx P is a subset of Q).

Table 2.1: HOL Syntax Examples

2.2 Abstract State Machines

In this section, we present a theory of abstract description of state machines in

a. many-sorted first order logic with a distinction of abstract and concrete sorts.
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The theory provides a foundation for automated state enumeration methods, which

complexity is independent of the width of the datapath.

2.2.1 Formal Logic
Syntax

The formal logic that we use is many-sorted first-order logic, with a distinction
between abstract sorts and concrete sorts.

Concrete sorts have enumerations, while abstract sorts do not. An enumeration
is a finite set of constants. A constant that appears in the enumeration is called an
individual constant. Besides individual constants, the vocabulary consists of generic
constants, variables and function symbols (also called operators). Generic constants
and variables each have one sort. An individual constant, on the other hand, is
treated as having multiple sorts, one for each enumeration of which it is a member.
An n-ary function symbol (n > 0) has a type a1 X ... X @, = @ny1, where ag...c, g
are sorts. Generic constants can be viewed as 0-ary function symbols.

If X is aset (or “vector”) of variables, we write X o, and Xy, to denote the sets
of elements of X that are variables of concrete and abstract sort, respectively. The
distinction between abstract and concrete sorts leads to a distinction between three
kinds of function symbols. Let f be a function symbol of type a; X ... X @, — Q1.
If a4 is an abstract sort then f is an abstract function symbol. Abstract function

symbols are used to denote data operations and are uninterpreted. If all «;...a, 4 are
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concrete, f is a concrete function symbol. Concrete function symbols, and concrete
generic constants as a special case, can always be entirely interpreted and thus be
eliminated; for simplicity, we assume that they are not used. Finally, if a,4; is
concrete while at least one of a;...a, is abstract, then we refer to f as a cross-

operator.

Semantics

An interpretation is a mapping 1 that assigns a denotation to each sort, constant

and function symbol and satisfies the following conditions:
1. The denotation of 1(«) of an abstract sort « is a non-empty set.

2. If ais a concrete sort with enumeration {ay, ..., a, } then () = {¢(ay),..., ¥(an)}

and ¥(a;) # P(a;) for 1 <i<j < n.

3. If f is a function symbol of type a; X ... X @y — any1, then ¥(f) is a func-
tion from the Cartesian product ¥(ay) X ... X ¥(ay,) into the set ¥(ap41). In

particular, if n = 0 (i.e., f is a generic constant of sort a;), ¥(f) € Y(aq).

X being the set of variables, a variable assignment with domain X compatible
with an interpretation v is a function ¢ that maps every variable z € X of sort « to

an element ¢(x) of ¥(z). We write @’)”{ for the set of Y-compatible assignments to
the variables in X. The denotation of a term and the truth or falsity of a formula

under an interpretation and a compatible variable assignment are defined as usual.
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We write 9, ¢ = P if a formula P denotes truth under an interpretation ¢ and a
h-compatible variables assignment ¢ to the variables that occur free in P, and = P

for all such %, ¢. Two formulae P and Q are logically equivalent iff = P < Q.

2.2.2 Directed Formulae

Given two disjoint sets of variables U and V, a directed formula (DF) of type U — V

is a formula in disjunctive normal form (DNF) such that

1. Each disjunct is a conjunction of equations of the form:

- A = a, where A is a cross-term of concrete sort « containing no variables
other than elements of U, and a is an individual constant in the enumeration
of o, or

- u = a, where u € U is a variable of concrete sort o and a is an individual
constant in the enumeration of «, or

- v = a, where v € V is a variable of concrete sort a and « is an individual
constant in the enumeration of ¢, or

-v = A, where v € V is a variable of abstract sort « and A is a term of type

o containing no variables other than elements of U;

2. In each disjunct, the left hand sides of the equations are pairwise distinct; and

3. Every variable v € V appears as the left hand side of an equation v = A in

each of the disjuncts
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Intuitively, in a DF of type U — V, the U variables play the role of independent
variables, the V variables play the role of dependent variables, and the disjuncts
enumerate possible cases. In each disjunct, the equations of the form u = A and
A = a specify a case in terms of the U variables, while the other equations specify
the values of (some of the) V variables in that case. The cases need not be mutually
exclusive, nor exhaustive. The condition that every abstract variable v € V must
appear in every disjunct is less stringent than it seems. In practice, one can introduce
an additional dependent variable u and add an equation v = u to a disjunct where
v 1S missing.

A DF is said to be concretély reduced iff every A in an equation A = a is a cross-
term, and every A in an equation v = A is a concretely reduced term. It is easy to see
that every DF is logically equivalent to a concretely reduced DF, given complete or
partial specifications of the concrete function symbols and concrete generic constants;
the reduction can be accomplished by case splitting.

We use DFs for two distinct purposes: to represent relations (transition an
output relations) and to represent sets (sets of states as well as sets of input vectors

and output vectors).

2.2.3 Abstract Description of State Machines

A state machines is described using a finite set X of input variables, a finite set YV

of state variables, a finite set Y’ of next state variables, and a finite set Z of output
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variables, which are pairwise disjoint. An abstract description of the state machine,
or an abstract state machine (ASM), is obtained by letting some data input, state
or output variables be of an abstract sort.

The behavior of a state machine is defined by its transition and output relations,
together with its set of initial states. Thus an abstract description of a state machine

is a tuple D = (X,Y, Z,Y",n, F1, Fr, Fp) where:

1. X, Y, and Z are, pairwise disjoint vectors of input, state and output variables.
Note that Y and Z must be disjoint. To allow for observable state variables,
i.e., state variables that are also output variables, we let X and Y be the sets
of all input and state variables respectively, while Z comprises only the output

variables other than the observable state variables; Z can be empty.

2. Y’ is the set of next-state variables, disjoint from X U Y U Z, and 7 is the
function that maps each state variable to the corresponding next-state variable.
We usually obtain each next-state variable by priming the corresponding state

variable.

3. F;is a DF of type Uy — Y, where U is a set of abstract variables disjoint

from X UY UY'UZ. F;is the abstract description of the set of initial states.

4. Fr is a DF of type (X UY) — Y'. Fr is the abstract description of the

transition relation.

5. Fp is a DF of (X UY) — Z. Fy is the abstract description of the output

24



relation.

2.2.4 Example

We use the traditional version of the Greatest Common Divisor (GCD) benchmark.
This version computes the greatest common divisor of two positives numbers p; and

po by repeated subtraction.

if (y2<yl) then
y <=y 1-y2,y’2<~—y2

if (x0=1) then y’ 1<—x1, y'2<——x2
y0=0) (yo=1
if (yl=y2) then y’1<——yl, y’2<——y2

if (y1<y2) then

if (x0=0) then y'2<—y2-yl,y 1<—y1

y l<—yl, y'2<—y2

Figure 2.1: The GCD State Machine

The state machine initializes two variables y; and y, with values p; and po,
then repeatedly assigns to the variable with the highest value the difference of the
two values, until the two values are the same. When done, the value stored in the
two variables is the greatest common divisor. Besides the two data state variables
y, and o, there is a control state variable yo which determines two control states
yo = 0 and yo = 1. When y = 0, the machine waits for the two values p, and p,
to be presented at two data inputs z; and z,, an event which is indicated by the
control input z, taking the value 1. Then p; and p, are loaded into y; and y,, and

the machine goes to the control state yo = 1 where it loops until the result has been
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computed. There is only one output: a data output 2 that takes the value O while
the result is not ready, and produces the greatest common divisor when it has been
computed. The graphical representation of the GCD state machine is depicted in
Figure 2.2, where the circles correspond to the values of the control state variable y,
and the arrows correspond to the control transitions of the machine. The transition
labels specify the conditions under which each transition is taken and an assignment
of values to the abstract next state variables y; and ;.

To obtain an abstract description of this state machine, we use a concrete sort
bool with enumeration {0,1} and an abstract sort num intended to denote the set
on n-bit numbers. The input variable x4 and the state variable yo, which are control
variables, are of sort bool. On the other hand, the input variables z; and z9, the
state variables y; and y,, and the output variable zy, which are data variables, are
of abstract sort num. We also use three next-state variables, y{ of sort bool, and y}
and 4 of sort num.

To denote the subtraction, a datapath operation, we define an abstract function
symbol sub of type num x num — num. The function symbol sub is uninterpreted,
which means that we do not have to describe the details of the subtraction operation.
However, two pieces of information are needed: whether y; = y,, to terminate the
loop, and whether y; < ¥, to decide which substraction to make and which value to
replace. This feedback from the datapath is modelled using two function symbols eq

and [t of type num X num — bool. Thus the transition relation of the state machine
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can be described by the following formula:

(o =0) A (2o = 0) A (5o = 0) A (31 = y1) A (o = 92))V

({yo = 0) A (o = 1) A (yg = 1) A (g1 = 21) A (y = 22))V

((yo = 1) A (eq(y1, y2) = 0) A (It(y1,32) = 0) A (o = 1)

Ayt = sub(yr, 1)) A (¥ = y2)V (2.1)
((yo = 1) A (eq(yr, y2) = 0) A (It(y1, 92) = 1) A (g = 1)

Ay = y1) A (Y = sub(y, 42)))V

(o =1) A (eq(yr, 42) = 1) Ayp = 0) A (y1 = y1) A (y5 = y2))

2.3 Multiway Decision Graphs

2.3.1 From BDDs to MDGs

Binary Decision Diagrams are used to represent, canonically, Boolean functions.
Consider a BDD G with a root node labelled z and subgraphs G’ and G". If G’ and
G" represent the formulae P’ and P”, respectively, then G is viewed as representing

the formula P:

(mz) APYV (z A P") (2.2)
However, it can also be viewed as representing the formula
((z=0)AP)V((x=1)AP") (2.3)

This suggests a generalization of the notion of decision graph: there is no need for

to only range over the set {0,1}. Furthermore, there is no need for the labels of the
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edges to exhaustively denote all the possible values of . For example, z could range
over {blue, green, yellow, red}, and there could be, say, only three edges issuing from

the root, as in the following graph:

blue/gréen \red

G G’ "

If G, G', and G" represent the formulae P, P', and P"| respectively, then this

graph could represent the formula
((z = blue) A P) V ((x = green) A P') V ((z = red) A P"). (2.4)

When z denotes yellow, this formula is simply a false sentence. Finally there is no
need for the edges to be mutually exclusive.

It is then possible to let nodes range over abstract sorts for which there is no
enumerable set of edges, and to use non-mutually-exclusive first-order terms as edge
labels. For example, if z, u, and v are variables of abstract sort «, f is a function
symbol of type o — «, and G, G', and G" represent P, P', and P”, respectively,

then the graph

represents the formula
((z=u)AP)V ((z=v)ANP)V ((z = f(u)) AP"). (2.5)

The above observations lead to the following preliminary definition:
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Deﬁnitién 1 A Multiway Decision Graph (MDG) is a finite directed acyclic
graph G where the leaf nodes are labelled by formulae, the internal nodes are labelled
by terms, and the edges issuing from an internal node NN are labelled by terms of the
same sort as the label of N. Such a graph represents a formula defined inductively as
follows: (i) if G consists of a single node labelled by a formula P, then G represents
P; (ii) if G has a root node labelled A with edges labelled By, ..., B, leading to
subgraphs G1, ..., G!, and if each G} represents a formula F; theﬁ G represents the
formula Vi<;<n((A = B;) A P).

Definition 1 is of course too general, a set of well-formedness conditions turns

MDGs into canonical representations that can be manipulated by efficient algorithms.

2.3.2 Well-formedness Conditions

We first define the class of concretely reduced terms inductively as comprising: the
individual constants, the abstract generic constants, the abstract variables and the
terms of the form “f(Aq, ..., A,)” where f is an abstract function symbol and A4,...4,
are concretely reduced terms. Thus the concretely reduced terms are those that
have no concrete sub-terms other than individual constants, and the only concrete
terms that are concretely reduced are the individual constants. A term of the
form “f((A, ..., An)” where f is a cross-operator and A;...A,, are concretely-reduced
terms, is a cross-term. Note that no concrete variables can occur in a concretely-

reduced term or in a cross-term.
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For BDDs to be canonical, certain conditions must hold. They have to be

reduced and ordered. Similarly, MDGs require certain well-formedness conditions.

Definition 2 An MDG G is said to be well-formed iff it satisties the following

six conditions.

1. Kinds of nodes. An internal node must be labelled by a variable of abstract
sort, with edges issuing from the node labelled by concretely-reduced terms
of that same sort; or by a variable of concrete sort, with edges labelled by
individual constants in the enumeration of that sort; or by a cross-term, with
edges labelled by individual constants in the enumeration of the sort of the
cross-term. A leaf node must be labelled by T (true), except in the case where

the graph has only one node labelled F' (false).

Note that the conditions about concretely reduced terms and cross-terms are only
syntactical restrictions, since it is possible to meet these restrictions using case split-
ting.

We refer to an occurrence of a variable in a term that labels an edge or in a
cross-term that labels a node as a secondary occurrence, while an occurrence of a
variable as the label of a node is a primary occurrence. Neither the edge labels, which
are concretely reduced-terms, nor the cross-terms, contain concrete variables. Hence
only abstract variables can have secondary occurrences. The primary variables (resp.
secondary variables) of a graph G are those that have primary (resp. secondary)
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occurrences in G.

2. Ordering. The labels of the edges issuing from a given node must appear in a
standard term order, without repetitions. Along each path, the variables and
the cross-operators of the cross-terms that label the nodes must appear in a
custom symbol order, and cross-terms with same cross-operator must appear

in the standard term order; there must be no repeated labels.

The custom symbol order is a generalization (to include cross-operators) of the
variable ordering used for BDDs, and plays the same role. It involves the cross-
operators and those variables that may appear as node labels. It is chosen carefully
for each particular application so as to keep the MDGs of manageable size if possi-
ble. The standard term ordering, on the other hand, is chosen arbitrarily once and
for all, it needs not to be compatible with the custom symbol order. From these
two orderings we define node-label ordering among the variables and cross-terms as
follows: A comes before B iff the the top symbol of A comes before the top symbol
of B, or A and B are cross-terms with the same cross-operator and A comes before
B in the standard term order. Condition 2 states that node labels must appear in

node-label order along each path.

3. Minimality. There must be no distinct isomorphic subgraphs, and no redundant

nodes.

In an MDG, a redundant node is a node labelled by a concrete variable or cross-

term of sort «, with edges labelled by all the individual constants in the enumeration
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of a, all leading to the same subgraph.

4. No variable should have both primary and secondary occurrences in the same

graph.

5. The set of abstract variables having primary occurrences along a path is the

same for all paths in a given graph.

6. If a node N is labelled by an abstract variable x, and an abstract variable y
participating in the custom symbol order occurs in a term A that labels one of
the edges that issue from N, then y must come before = in the custom symbol
order. Similarly, if N is labelled by a cross-term A with cross-operator f, and
y is an abstract variable that occurs in A, then y must come before f in the

custom symbol order.

Figure 2.2 shows the MDG representations for the DF's describing the transition
relations of the GCD state machine. From now on, unless otherwise stated, we shall

not make the distinction between an MDG and the DF that it represents.

2.3.3 MDG Basic Operators

BDD operations can be manipulated using a single generic algorithm Apply [4]. This
is because the two edges that issue from a BDD node span the range of values {0, 1}
and this makes it possible to reason by cases. For MDGs, a single algorithm must

be provided for each operation.
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Figure 2.2: Transition Relations (MDGs) of the GCD State Machine

Disjunction

R = Disj({Pi}1<i<n)

Argument: A set S = {P;}1<i<n of MDGs P;. Each P; other than T or F' is an
MDG of type U; — Y. (Note that all the P; have the same set of primary abstract
variables.)

Result: An MDG R that can be F', T, or an MDG of type V — Y, where V' is the

union of the sets of variables U; such that:

ER < (\/ P)

1<i<n

Relational Product

The relational product operation is used for image computation. It takes the con-
junction of a collection of MDGs P;, having pairwise disjoint sets of abstract primary
variables, and, existentially quantifies with respect to the variables in a set E, either

abstract or concrete, that have primary occurrences in at least one of the graphs.
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In addition, it can rename some of the remaining primary variables according to the
renaming substitution 7.

R = RelP({ Pi}1<i<n, Vi 1)

Arguments: A set S = {P;}1<i<n, n > 0, of MDGs P;, each being either T, or F', or
of type X; — Y;, a set of variables V' and a renaming substitution 7.

Result: An MDG R that can be F, T, or an MDG of type (X \Y) = (Y \V)-7n)

such that

LR = @V P

1<i<n

Prunihg By Subsumption

The pruning by subsumption operations is used to approximate the set difference

operation. Informally, it removes all the paths of a graph P from another graph Q.
P' = PbyS(P,Q)

Arguments: Two MDGs P and @ of type V — Y, where V' contains only abstract
variables that do not participate in the custom symbol ordering; P and () can both
be T or F.

Result: An MDG P, derivable from P by pruning, such that:
EPVEAVIQ < P'V(EV)Q

Since P’ is derivable from P by pruning, it is, like P, of type V' — Y. Moreover, if

Pisof type V — Y1, Y; C VY, then P’ is also of type V — Y when it is not F.
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2.3.4 MDG Reachability Analysis

We show here how the analysis of the reachable states of a state machine can be
performed using MDGs. The main application is the invariant checking, which con-
sists of verifying that the outputs of the machine satisfy a condition C' in all the
reachable states. Let D = (X,Y, Z,Y',n, F1, Fr, Fp) be an abstract description of a
state machine using MDGs. The following pseudo-code provides an overview of the
reachability analysis algorithm ReAn.

ReAn(D,C)

R = F; Q := Fj; K :=0;

loop
K = K +1;
I := Newlnputs(K);
O := Outputs(/,Q,Fo);
if not Subset(0,C) then return failure;
N := NextStates(I,Q,Fr);
@ := FrontierSet(N,R);
if Empty(Q) then return success;
R := Union(R,Q);

end loop;

end ReAn;

The procedure NewInputs produces an MDG representing the set of input
vectors which depends on the iteration number. The procedure Outputs computes

an MDG representing the set of output vectors that is used to check whether the
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outputs satisfy the invariant. If this is the case, the verification algorithm continues.
Otherwise it stops and reports failure. At the same time, a counterexample facility
is initiated. The procedure NextState computes an MDG representing the set of
states reachable in one transition of the state machine from the previously reached
states. The procedure FrontierSet computes the set of newly reached stated. If this
set is empty this means that all reachable states are already tested for the invariant

and then the verification succeeds. Otherwise, the algorithm continues.

2.4 The MDG Package

In this section, we briefly present the MDG package [34] providing functions to
assemble graphs and manipulate them. It was used for various MDG applications

like the MDG model checker [33].

2.4.1 Graph Structure

The nodes of a graph are either internal nodes or leaves.

o Leaves: for well-formed MDGs, leaves are represented by T' (True) or F' (False).
An MDG contains only one leaf labelled T' except when the MDG is equal to

the leaf node F'.

e Internal nodes: an internal node is represented by the following structure:

graph(TopSymbolOrder, NodeKind, NodeLabel, Id, Edges, SubGraphs, SecVars).
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N/

T

Figure 2.3: Example of the MDG Representation

where, TopSymbolOrder is the custom order number for the top symbol of the node
label. NodeKind specifies whether the node is a concrete variable, a cross-term or an
abstract variable, respectively. Sort being the sort of the node. NodeLabel is the term
which is the label of the node. Id is the unique identifier of the graph. Fdges and
SubGraphs are two lists, representing the root edges and the immediate sub-graphs,
respectively. Finally, SecVarsis a sorted list that contains all the secondary variables
in the graph. The internal representation of the example MDG given in Figure 2.3

is implemented as follows:

graph(1,concvar(bool),x,1,[0,1],
[ graph(2,concvar(bool),y,2,[0],[t],[ 1),
graph(2,concvar(bool),y,3,[1],[t],[ 1) 1,
[1).

2.4.2 Assembling Graphs

Given the root information, the root edges and immediate subgraphs, the function

assemble is used to build a graph R. It first checks if the result graph already exists
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by looking up the reduction table. If so, R points to that graph (thus achieving graph
sharing). Otherwise, a new graph structure is created and entered in the graph array.

The function assemble is invoked as follows:
assemble( RootInfo, Edges, SubGs, Method, R, G1, E1, G, E ).

where, RootInfo contains the order, kind and label of the root. Fdges are the root
edges that should be of the same sort as the root, and SubGs are the immediate
subgraphs. Method specifies the way secondary variables are computed and R is the
result graph. While G1 and E1 are the current graph and term arrays, G, F are the
updated arrays.

The secondary variables are computed, either by searchingbthe graph or simply
by giving the ordered union of the sets of secondary variables of the immediate
subgraphs. To construct the example graph in Figure 2.3, assuming that the orders

of x and y are 1 and 2, respectively, we use the function assemble as follows:

assemble(rootinfo(1,concvar(bool),x), [0,1],
[ graph(2,concvar(bool),y,4,[0]1,[t],[ 1),
graph(2,concvar(bool),y,5,[1],[t],[ 1) 1,
noop, G1, Ei, G, E).

2.4.3 Manipulating Graphs

In this section we will overview the basic MDG operators provided by the package to
manipulate the MDGs. In the following, G, and FE, are the graph and term arrays

before applying the operators, G and F are the graph and term arrays after.
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Disjunction

Mode : disj(P;,Q,G1,F1,G,FE).
Arguments : P; is a list of MDGs. @ is the result MDG.

Function : () is the disjunction of F;.

Relational Product

Mode : relp(P;, U, Ren, Q, G1,E,,G,E).

Arguments : P; is a list of MDGs, U; is an ordered list of symbol orders, Ren is the
renaming substitution.

Function : @ is the conjunction of Ps; with existential quantification of variables in
Us, and if a node label is an argument of the renaming substitution then replace it

with the new label.

Pruning by Subsumption

Mode : pbys(P,Q,R,G1,E1,G,E).
Arguments : P is the graph to be pruned by @. R is the result graph.
Function : R is obtained by removing the paths in P which are subsumed by Q.

More operators are presented in the Developer’s Manual of the MDG package [34].
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Chapter 3

Embedding the MDG Logic

As in ordinary multi-sorted first order logic, the vocabulary of the MDG underlying
logic consists of sorts, constants, variables, and function symbols or operators. In
this chapter, we show how this underlying logic of MDGs is embedded in HOL. We
will also show how the well-formedness conditions are specified in HOL resulting
in what we will call: the Well-formed MDG Terms. Finally we will present some

utilities to manipulate the well-formed terms.

3.1 MDG Sorts

The logic underlying the MDGs deviate from the standard many-sorted first-order
logic by introducing a distinction between concrete or enumerated sorts, and abstract

sorts (cf. Section 2.2.1). This is embedded in HOL as follows:

e Concrete_Sort = Concrete_Sort of string — string list;
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This declares a constructor called Concrete_Sort that takes as arguments a sort name
and its enumeration to define a concrete sort. For example, if state is a concrete sort
with [ stop, run | as enumeration, then this is declared in HOL by:

val state = Define ‘state = Concrete_Sort “state” [ stop; run [
e Abstract_Sort = Abstract_Sort of ’a;

To define an abstract sort of type alpha (which means that the sort is actually
abstract and hence can represent any HOL type) we use the Abstract_Sort constructor
as follows:

val alpha = Define ‘alpha = Abstract_Sort “alpha”’

To determine whether a sort is concrete or abstract, we use predicates over the sorts
constructors called IsConcreteSort and IsAbstractSort, where “.” means “don’t care”.
(IsConcreteSort (Concrete.Sort - . ) = T) A (IsConcreteSort - = F);

(IsAbstractSort ( Abstract_Sort ) = T) A (IsAbstractSort . = F),

These predicates will be used for instance to determine the sort of a variable or a

function symbol.

3.2 MDG Variables

As mentioned before, the distinction between sorts leads to the distinction between
concrete and abstract variables. An abstract variable can be either primary or a
secondary variable. In our embedding, a primary abstract variable will be declared
using the Abstract_Var constructor while a secondary variable will be declared using
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the Secondary_Var constructor.
e Concrete_Var = Concrete_Var of string = Concrete_Sort;

A variable is specified by its name and sort. A concrete variable is a variable of
concrete sort. For example, If z is a variable of sort state, declared above, then this
is written in HOL as follows:

val z = Define ‘c = Concrete_Var “z” state’
e Abstract_Var = Abstract_Var of string = Abstract_Sort;

An abstract variable y with name “y” and sort alpha is declared using:

@, »

val y = Define ‘y = Abstract_Var “y” alpha®;

e Secondary_Var = Secondary_Var of string = Abstract_Sort;

The Secondary_Var constructor is similar to the Abstract_Var constructor. For ex-

ample:
val y; = Define ‘y; = Secondary_Var “y,” alpha®.

We make the difference, however, to avoid mixing the variables in further manip-
ulations and to allow us to declare the MDG_Term constructor as we will see in
Section 3.5. In this case also, we use some predicates to determine whether a vari-
able is concrete, abstract or secondary. They are called, respectively, IsConcrete Var,

IsAbstractVar and IsSecondaryVar.
(IsConcreteVar(Concrete_Var _ _) = T) A (IsConcreteVar _ = F);
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(IsAbstractVar(Abstract_Var _ _) = T) A (IsAbstractVar _ = F);

(IsSecondaryVar(Secondary_Var _ _) = T) A (IsSecondaryVar _ = F);

3.3 MDG Constants

A constant can be either an individual constant or an abstract generic constant. The
latter is identified by its name and its abstract sort. The individual constants can
have multiple sorts depending on the enumeration of the sort in which they are. In

HOL they are declared as follows:

e Individual_Const = Individual_Const of string;

The enumeration of the concrete sort state is “[stop , run |”. stop and run are two
individual constants that have state as their sort. They must be defined in order to
be able to declare the sort state.

val stop = Define ‘stop = Individual_Const “stop”

val run = Define ‘run = Individual_Const “run”F

e Generic_Const = Generic_Const of string = Abstract_Sort;

Having declared “alpha” as abstract sort, we can declare generic constants of that
sort. Say a is a generic constant of sort alpha.
val a = Define ‘a = Generic.Const “a” alpha’
To check whether a constant is an individual constant or an abstract generic

constant, we use the predicates, IsIndividualConstant and IsGenericConstant.
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(IsIndividualConstant( Individual_Const _ ) = T) A (IsIndividualConstant _ = F)

(IsGenericConstant( Generic_.Const - . ) = T) A (IsGenericConstant _ = F);

3.4 MDG Functions

MDG functions can be either concrete, abstract or cross-operators. As mentioned
before concrete functions are not used since they can be eliminated by case split-
ting. Cross-functions are those that have at least one abstract argument. But when
we focus on terms that are concretely reduced, all the sub-terms of a compound
term (abstract/cross function) have to be abstract. In addition they are secondary

variables.

e Cross_Function = Cross_Function of string = Secondary_Var list =

Concrete_Sort;

In general, a function is identified by its name, the sorts of its arguments and its sort.
In this case we specify the variables rather than sorts because we focus on cross-terms
or abstract terms instead of the correspondent symbols. If equal is a function that
checks if two abstract variables are equal, then, equal is a cross-function.

val bool = Define ‘bool = Concrete_Sort "bool” [707;717 ],

val yl = Define ‘yl = Secondary-Var “y1” alpha’

val y2 = Define ‘y2 = Secondary_Var “y2” alpha’;

val equal = Define ‘equal = Cross_Function "equal” [y1;y2] bool’;
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e Abstract_Function=Abstract_Function of string=> Secondary _Var list

= Abstract_Sort;

If maz is a function that takes two abstract variables as arguments and returns the
greater one, then maz is an abstract function.
val maz = Define ‘maz = Abstract_Function “maz” [y1;y2] alpha’,
The predicates IsAbstractFunction and IsCrossFunction are used to determine
the nature of a compound term.
(IsAbstractFunction(Abstract_Function _ - _ ) = T) A (IsAbstractFunction - = F);

(IsCrossFunction(Cross_Function - _ . ) = T) A (IsCrossFunction - = F);

3.5 MDG Terms

MDG terms are the individual constants, generic constants, concrete and abstract
variables, cross and abstract function symbols. We provide a constructor called
MDG_Term that is used every time a new term is declared. The single constructor
is used so that terms will have the same type and hence can be used in equalities. In
fact if z is declared using the Concrete_Var constructor and stop using the Individ-
ual_Const constructor, we will not be able to write an equation of the form z = stop
due to type mismatching. However, such an equation is possible if both are declared

using the same constructor.

Hol_datatype ‘MDG_Term =

Individual_Const of string => Concrete_Sort
| Generic_Const of string => ’a Abstract_Sort
| Concrete_Var of string => Concrete_Sort
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| Abstract_Var of string => ’a Abstract_Sort
| Cross_Function of string=>(’a Secondary_Var)list=> Concrete_Sort
| Abstract_Function of string=>(’a Secondary_Var)list=>’a Abstract_Sort’

3.6 MDG Well-formed Terms

Well-formed terms are those that can be represented by well-formed MDGs, which
are the directed formulae. Having embedded the notion of an MDG term in HOL,
we should now specify the set of formulae that can be used to specify the MDG
verification applications. To do so, we have to check, first, if a term or formula
is well-formed before constructing its correspondent MDG. A well-formed term is
actually a DF (more precisely, a concretely-reduced DF).

For a term to be a DF, conditions 1 to 3 of Section 2.2.2 must be satisfied.
Condition 1 states that the term must be a formula in disjunctive normal form, in
which, every disjunct is a conjunction of equations. The equations must respect the
rules of Section 2.2.2. Condition 2 requires that the left hand sides of the equations
are pairwise distinct and finally Condition 3 states that every abstract variable must
appear in every disjunct.

Condition 2 and 3 must be respected by the user when specifying the verifi-
cation problem. The condition 3 is less stringent than it seems. In practice, one
can introduce an additional dependant variable v and add an equation v = u to a
disjunct where an abstract v is missing.

Condition 1 is embedded in HOL using an ML function called Well_formedTerm
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that uses the previously mentioned predicates to determine the nature of each equa-
tion in the term and returns ¢rue if the term is a directed formula. Well_formedTerm
is a recursive function that splits the term in disjuncts and checks that every dis-
junct is well-formed. It uses an intermediate predicate Well formedE() that checks
the well-formedness of an equation.

For every equation, we check if the left hand side and the right hand side
respect one of the four allowed forms. For example, if an equation eq : { = r, then

the main check is the following:

fun Well_formedEQ eq =
(" (eval_IsConcreteVar 1) /\ ~(eval_IsConcreteC r)) \/
(" (eval_IsCrossF 1) /\ ~(eval_IsConcreteC r)) \/
(" (eval_IsAbstractVar 1 )/\ ~“(eval_IsAbstractF r)) \/
(" (eval_IsAbstractVar 1 )/\ ~(eval_IsAbstractVar r)) \/
(" (eval_IsAbstractVar 1 )/\ ~(eval_IsGenericC r)) \/
~(eval_IsBool 1);

This means that eq is well-formed, if for example, [ is a concrete variable and r is a

concrete constant.

3.7 Utility Functions

In order to make use of the MDG embedding mentioned above, we provide various
utility functions to facilitate the further manipulation of the MDG terms. For in-
stance, to retrieve the label of a term, we use the function name. For example, if z
is an individual constant defined by : wval z = Individual_Constant “stop”, then the

label “stop” of the term is given by “name(z)”.
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The function name is defined as follows:

Define ‘( name ( Concrete_Var n _ ) =1n) /\
( name ( Abstract_Var n _ ) =n) /\
( name ( Individual_Const n _ ) =n) /\
( name ( Generic_Const n _ )= n) /\
( name ( Cross_Function n _ _ ) = n) /\
( name ( Abstract_Function n _ _ ) = n)‘;
fun name t =
let val th = EVAL (--‘name “t‘--)
val res = rhs(concl(th))
in
stringSyntax.fromHOLstring res
end;

Similarly, we define the following main utility functions:

e sort: determines the sort of a term. If y; is a secondary variable as defined in

Section 3.4, sort y; returns alpha;

e enum: determines the enumeration of a concrete variable, e.g., enum bool re-

turns {0, 1};

e cross_term: determines the arguments of a compound term (a cross-term or
abstract function). For example, if equal is a cross-function as defined in Sec-

tion 3.4, cross_term equal returns [y;, ys).

3.8 Summary

So far, we have embedded the logic underlying the multiway decision graphs into

HOL. We made the distinction between concrete and abstract sorts. We defined the
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MDG terms inside HOL then we defined the subset of first-order terms that can be
represented by well-formed graphs. This subset is the so called Directed Formulae.
We also introduced the constraints over HOL formulae to be well-formed. This can
be checked before future manipulation with their correspondent MDGs. Finally, we
provided a number of utility functions to further manipulate the MDG terms'. In
the next chapter, we will present the new version of the MDG package that we have

implemented to provide various utilities to construct MDGs and manipulate them.

1A complete description of all MDG embedding and utility functions can be found in
http://hvg.ece.concordia.ca/Research/MDGHOL/Embedding.html.
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Chapter 4

Linking MDG and HOL

Based on the embedding of the logic underlying the MDGs in HOL, in this chapter
we discuss an interface that links the theorem prover to a lifted version of the MDG

package.

4.1 Lifted MDG Package

The MDG package [34], provides tools for assembling graphs and manipulating them.
However, these functionalities are not suitable to work interactively with HOL. In
fact, as it is implemented, the MDG package allows the developer to write MDG
based applications that take input files, process them, and return the result of the
verification. In our case, we need functions that, for example, build the graph of
a directed formula and return the resulting graph to be used afterwards. Besides,

when leaving the MDG environment back to HOL, we need to save the graph and
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term arrays. For this purpose, we developed a lifted version of the MDG package
that inherits the functionalities of the former package and provides new ones needed

in our embedding.

4.1.1 Modified Functionalities

To allow the interaction between HOL and MDG we modified the MDG operators.
Besides, we modified the function assemble, responsible for building a graph repre-
sentation, given the root information, the edges and the immediate sub-graphs, to

remove redundant nodes.

Building Graphs

We modified the main function assemble to remove redundant nodes when assembling
a graph. This is done by, first, checking that the immediate subgraphs are not equal
and are issuing from all the constants appearing in the enumeration of the root node
sort. If this is the case, assemble continues the construction. Otherwise, the result

graph is the immediate subgraph itself (they are all equal).

MDG Operators

We have modified the MDG operators so that we do not have to pass the graph
and term arrays as arguments to the operators. This is very practical because when
switching from HOL to MDG and vice-versa it is very inconvenient to carry these

arrays as arguments especially when they get big.
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To do so, The different operators use the arrays stored in the MDG environ-
ment, perform the operation over the graphs or terms and then update the arrays.
All this work is done inside MDG and the result graph is returned back to HOL. For
every operator, we provide two versions, the first takes graphs or terms as arguments

and the second takes their IDs, instead.

4.1.2 New Functionalities

The lifted MDG package provides functions to build the graph of a well-formed HOL

term and other facilities needed for the reachability analysis procedure.

Assembling the Graph of an Equation

Using the function assemble, we will define now the functions that are used to build
the graph of an equation of the form z = ¢. The graph of such an equation will
have a root node labelled by z with an edge labelled by ¢ leading to T (true). If, for
example, z is a concrete variable with order number 1, sort state, ¢ is an individual

constant, then the graph of x = ¢ is

graph(1,concvar(state)x,Id,[c],[T],[ ])-

To build the graph of an equation, many cases are to be considered depending on

the kind of the left hand side (LHS) and the right hand side (RHS) of the equation.

If the LHS is a concrete variable z and the RHS is an individual constant ¢, then
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the graph of the equation is built using the function mdgc. It takes as input z and

¢ and returns the result R.

mdgc(x,c,R) :-
g(Id1,G1),
t(Id2,E1),
signal(x,Sort),
conc_sort (Sort,_),
find_order(concvar(_),x,0rder),
RootInfo = rootinfo(Order,concvar(Sort),x),
assemble (RootInfo, [c], [T],no0p,R, (Id1,G1),(1d2,E1),G,E).

The first two lines of this Prolog code retrieve the graph and term arrays and their
correspondent sizes. The third line determines the sort of z which is checked in the
fourth line if it is concrete. Then in the fifth line the order of ¢ is determined. In
line 6, we set the information of the node labelled by z in the RootInfo structure.
Finally, the information is gathered and the function assemble is called to build the
graph.

Similarly, we use the following functions, depending on the kind of the sides of

the equation:

Cross-term - Concrete Constant : we use the function mdgz. In this case, the

cross-term has to be built in advance;

Abstract Variable - Generic Constant : we use the function mdgac;

Abstract Variable - Abstract Variable: we use the function mdgav;

Abstract Variable - Abstract function: the function used is mdga. The abstract

function must be assembled and and added to the term array in advance.
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Assembling the Graph of a Directed Formula

A directed formula is a disjunction of conjunctions of equations. To build its graph
we need to build the MDGs of every equation and then perform the correspondent
operations (conjunction, disjunction). The main function to call is mdg which will
use the previous functions and the disjunction (disj) and conjunction conj operators.

To build the graph of a directed formula, we represent the formula as a list
of lists, where every internal list contains the different equations of a disjunct. For

example if:

f=(z1=c1) A (22=c2)] V [(ea(yr,y2)=c3) A (T4=C4)]

then the mentioned list would be [[z;=c;,za=02),[eq=c3,24=c4]]. This is in turn split

into two lists containing the LHSs and the RHSs of the equations:

[z 1,22],[eq,z4]], [[c1,cal,[es,cal]

If a term is compound then the arguments are specified in another list otherwise the

“n

correspondent element will be “_”. This list for the previous example is the following:

[[—7-] ) [[y17y2]a—]]

These three lists of lists are passed to the function mdg which returns the graph of

the directed formula.

mdg([[ml)mﬂv[eq’x‘l”’{ [-7—] ) [[ylayZ]a—] ]a [[clac2]7[03’04”’ReSUIt)'
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Generating Input Graphs

The function inputs allows to build a one-path graph that will be used as the input
graph during the reachability analysis.

Mode: inputs(Xs,J,G).

Arguments: Xs is a list of abstract variables, J is an integer, G is the result graph
Function: For every abstract variable z in the list Xs, builds an MDG of the equation
z = z#j (input value associated to z in the 4§ iteration) and then returns the
conjunction of all the MDGs obtained. The result graph will serve as the input

graph during the reachability analysis.

Filtering Abstract Variables

When generating the input graph, only abstract inputs are considered. To extract
them we use the function filter_abs.

Mode: filter_abs(Ly, Ls).

Arguments: Ly is a list of variables. Ly is the result list

Function: picks the abstract variables of L; and inserts them in L.

Renaming Substitution

The renaming substitution function is used by the relational product operator.

Mode: modify_ren(S,NS,Ren).
Arguments: S is a list of state variables and NS a list of their corresponding next-

states. Ren is the result renaming substitution.
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Function: Generates the renaming substitution for a list of state variables. First, the
orders of the variables are retrieved. Then the maximum order is determined (used
to optimize the relational product algorithm). Finally the renaming substitution is
generated in the form ren(Name, LO, Substitution). Name being the name of the

substitution, LO, the maximum order of the list and Substitution is a list of 3-tuples

(Label, NewLabel, NewOrder).

Retrieving Graphs

Mode: get_mdg_from_logarr(ld,G).

Arguments: Id is an ID, G is the graph corresponding to ID.

Function: Retrieve a graph from the graph array according to its ID. This function
is used every time we call the MDG package to assemble a graph or to manipulate
graphs. It returns the resulting graph. It is also used internally used by the package

to perform operations over graphs.

4.2 Linking MDG to HOL

In Section 4.1 we presented a lifted version of the MDG package to manipulate the
MDGs. In this section we will discuss the way we link HOL and the MDG package

to solve the verification problem.
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4.2.1 HOL-MDG Interaction

To let HOL communicate with the lifted MDG package, we use the SML library
Process [17]. This library provides a function called system allowing HOL to call
external processes. In our case, the external process will be the lifted MDG package
compiled as a stand-alone program.

The lifted MDG package is invoked by HOL functions using a script file, in
which, we specify the different manipulations to be done in MDG. For every HOL
function, that needs to call the lifted MDG package, we provide a function that
generates automatically the corresponding script file. If, for example, we want to
perform the conjunction of a list of terms using the ML function Conj, an inter-
mediate function called MakeConjScript is invoked to generate a script file. In this
file, we will find a call to the MDG function conj to perform the conjunction of the
corresponding graphs, and a call to the MDG function get_graphld to retrieve the ID
of the resulting graph.

The HOL function passes the script file to the MDG package using the system
function mentioned above. The MDG package computes the result and then writes
it in a file “mdghol.ch’. Using the function ReadMdgQutput, the result is returned

to HOL.
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4.2.2 Constructing MDGs in HOL

To construct the graph representing a HOL term we use the function termToMdg.
This function uses the MDG function mdg (cf. Section 4.1.2) by passing a script file
in which all the necessary data are specified.

Before calling the MDG package, termToMdg invokes Well_formedTerm to
check if the term if well-formed. It either raises an exception when this is not the
case or begins gathering the information to call the package.

The first step is to determine the sorts of all the sub-terms using the func-
tion ToMdgSorts. If a sub-term is of concrete sort Sort, it is declared as “con-
crete_sort(Sort,Enum)”, where Enum is the enumeration of Sort. When an abstract
sort, say alpha, is encountered, then it is declared by “abs_sort(alpha)’. For example,
if a term A includes a concrete variable of sort bool and an abstract variable of sort

alpha, then ToMdgSorts returns the following list:
[“conc_sort(bool,[0,1]).”,” abs_sort(alpha).”].

The second step is to declare all the variables, functions and generic constants used in
the term. A variable is declared by “signal(label,sort)’. A generic constant is declared
by “gen_const(label,sort)’. When a function is encountered, both the secondary
variables and the function symbol must be declared. The function symbol is declared
as “function(f,[sorts],sort)”. sorts are the sorts of the secondary variables, arguments
to the function symbol f. sort is its target sort.

Thereafter, termToMdg writes the variables order list in the script file and then
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calls the function header responsible for retrieving the list of the LHSs and RHSs of
the equations in the term which will be the parameters of the mdg function. The
latter is then called and the result is retrieved using the read MDGOutput function.
Instead of returning the whole graph structure, we return only its ID which will be

used to map the term to its MDG representation.

4.2.3 Interfacing MDG Basic Operators

As mentioned before, the MDG operators are interfaced to HOL using script files.
The same names will be given to MDG functions and their corresponding HOL
functions. The manipulation of HOL terms, resolves to the manipulation of their
MDG representations. This means that the operators call termToMdg to build the
MDG representations and then call the corresponding MDG functions to compute
the result. termToMdg returns the ID of a graph. This explains the introduction of

two versions of the same operator.

e Conj: conjunction of HOL terms using their graph representations;

e Conjld : conjunction of HOL terms using their graph representations IDs;
e Disj : disjunction of HOL terms using their graph representations;

e Disjld : disjunction of HOL terms using their graph representations;

e Relp : relational product using the graph representations;

e Relpld : relational product using the graph representations IDs;

e PbyS : pruning by subsumption using the graph representations;

e PbysID : pruning by subsumption using the graph representations IDs.
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4.3 Summary

In this chapter we presented a lifted MDG package providing functions to build
and manipulate graphs and allowing to perform the operations interactively. We
also showed the way HOL and MDG communicate!. HOL calls the lifted MDG
package via script files that are generated by the calling functions. To build the
graph representing a well-formed term, we use the ML function termToMdg which
returns the ID of the graph as a result. Finally, the MDG operators are linked to
ML functions allowing the manipulation of HOL terms by manipulating their graph

representations, instead.

YA detailed description of the lifted MDG package and MDG-HOL linking functions can be
found in http://hvg.ece.concordia.ca/Research/MDGHOL/Embedding.html.
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Chapter 5

Embedding MDG Applications

In this chapter we will show how to use our embedding to implement MDG applica-
tions inside HOL. We will illustrate this by different applications like the reachability

analysis to perform invariant checking and sequential equivalence checking.

5.1 Reachability Analysis

The reachability analysis is embedded using the MDG operators interfaced to HOL.
We show here the different steps to compute the set of the reachable states of an

abstract state machine.

5.1.1 Computing Next States

Let I, B and R be, respectively, a set of inputs, a set of initial states of a machine
and its transition relation. The ML function ComputeNext representing the set of

next states, computed from B with respect to R, is defined by:
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C’omputeNea:t(G’[ GB GR) = RelP(G[ GB GR Q 77)

where, G, Gp and Gy are the MDG representations for I, B and R, respectively. )
is the set of input variables and state variables over which the MDG is quantified. n
is the renaming substitution. B can be the set of initial states as well as the set of

states already reached by the machine.

5.1.2 Computing Outputs

The set of outputs corresponding to a set of initial states and inputs, with respect
to an output relation O, is represented by the ML function ComputeQutputs below,

where G is the MDG representation of O.
ComputeOutputs(Gr Gg Go) = RelP(G; Gg Go Q) “".
For every state of the machine, and a set of data inputs, corresponds a set of output
values. These will be used to check an invariant.
5.1.3 Computing Frontier Set

The frontier set is the set of newly visited states. If V represents the set of states
already visited, V;, = ComputeNezt(G; V Gg) is the set of next states reached from
V. In this case the frontier set is V,, \ V' which is represented by the ML function

ComputeFrontier.

ComputeFrontier(V, V) = PbyS(V, V).
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The frontier set is used to check if all the states reachable by the machine are already
reached. If this is the case (the frontier set is empty), then the reachability analysis
terminates and the set of reachable states is returned. If the frontier set is not
empty, then new states were visited during the last iteration. In this case, the

analysis continues until reaching the fix-point (set).

5.1.4 Computing Reachable States

The set of reachable states is the set of all the states of a machine, starting from
an initial state, for a certain set of inputs. For abstract state machines, the state
space can be infinite. Hence, the set of reachable states may not exist!. Using the
solutions proposed in [2], the set of reachable states is computed and represented by

the function, ComputeReachable, defined by?:

ComputeReachable G_I G_B G_.R =
K=20,S =GB
loop
K = K+1
N = ComputeNext G_Ik G_B G_R
if ComputeFrontier N S = F then return success
G_B = ComputeFrontier N S
S =Disj N S
end loop
end;

ComputeReachable computes the set of reachable states S of a state machine

described by its transition relation, starting from an initial state and for a certain

!This is called the non-termination problem which was tackled in [2] using various heuristics.
2For the sake of clarity, this is just a simplified version of the algorithm
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data input. S is initialized to B (the initial state), and the sets of next-states are

computed until reaching a fix-point characterized by an empty frontier set.

5.2 Invariant Checking

Invariant checking is a direct application of the reachability analysis algorithm. It
consists of checking that a property or an invariant holds on the outputs of a state
machine in every reachable state. First, the invariant is checked in the initial state.
This is done by computing the outputs corresponding to that state and then using
the MDG operators to check that these outputs satisfy the invariant. After that,
next-states are computed and for every state reached, the invariant is checked on
the outputs. In a given iteration, if the outputs of the machine satisfy the invariant,
then the procedure continues for the next-state. If, on the other hand, the invariant
does not hold, the analysis terminates and a failure is reported. A counterexample

can be generated to trace the error.

5.2.1 Examining the Outputs

For a certain state of the machine and a certain set of inputs, the set of outputs is
computed and represented by an MDG O,. Similarly, the invariant is given by its
MDG representation C. To verify that the invariant holds on these outputs, we use
the MDG operator PbyS with O, and C as arguments. The pruning by subsumption

operation returns the graph resulting from removing the paths of O; assumed by C
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(i.e, the paths of C). If the resulting graph is equal to the MDG F' (false), then all the
graphs of O, are assumed by C. This ensures that the outputs of the machine satisfy
the invariant and then the new outputs are computed and checked until reaching
all the states of the machine or finding outputs that do not satisfy the invariant.
However, if the graph resulting from pruning the invariant from the outputs is not
the false MDG, then there exists some outputs where the invariant does not hold.

In this case, the procedure terminates and an error is reported.

5.2.2 Generating the Inputs

The reachability procedure requires a supply of fresh input variables. Whenever an
abstract variable z is used as input, a fresh variable u} is generated in every iteration
k of the procedure to serve as the symbolic value of z. In practice, we construct ug by
concatenating the identifier z, the symbol # and the decimal representation of the
number k, i.e., uf is “x#k”. The function NewlInputs constructs a linear (one-path)
MDG representing the formula A (z = u).

The function Newlnputs, first, retrieves the abstract variables from the set of
the inputs using the function FilterAbs and then constructs the MDG representing
the inputs using the function GenerateInputs. The latter takes the list of the abstract
input variables and the iteration number as arguments and calls the MDG function

inputs (cf. Section 4.1.2) to construct the graph.
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5.2.3 Renaming Substitution

During the reachability analysis, we have to use the renaming substitution operation
which renames the next-state variables to their corresponding current-state variables.
For example, if s is a state variable, computing the next-state of the machine will
introduce the next-state variable s’ of the variable s. Before proceeding to the next
iteration we need to rename s’ to s. To generate the renaming substitution function
1 we use the ML function GenerateRenaming which in turn calls the MDG function

modify_ren described in Section 4.1.2.

5.2.4 Checking an Invariant

Using the previously mentioned functions, the invariant checking algorithm is imple-

mented in HOL as an ML function InvariantChecking which takes as arguments:

T'r: the transition relation specified as a list of directed formulae;

Og: the output relation specified by a directed formula;

Iy: the initial state specified by a directed formula;

Inputs: the input variables list;

States: the state variables list;

NzStates: the next-state variables list corresponding to States.

Inv: the invariant to be checked specified as a directed formula.

The function InvariantChecking, first, builds the graphs of the transition relation,

output relation, the initial state and the invariant using the function termToMdyg.
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Then, generates the input graph. After that, the outputs are computed using
NewQutputs and then the invariant is checked. If the invariant holds, the next-state
variables are computed using ComputeNezt. Checking the frontier set will cause the

termination of the analysis or another iteration.

InvariantChecking Tr Or In Inputs States NxStates Inv =
// builds the MDG representations
// generates the renaming substitution function
K=0,S=G_1In, R=G_In
loop
K = K+1
// generates the input graph G_IK
O_s = ComputeOutputs G_Or R G_IK
if (PbyS O_s G_Inv) != F return failure
N = ComputeNext G_Ik R G_Tr
if ComputeFrontier N S = F then return success

R = ComputeFrontier N S
S =Disj N S
end loop

end InvariantChecking;

5.3 Model Checking in HOL

Checking that a property, described as a temporal logic formula, holds on a model of
a system is the essence of model checking. Using the reachability analysis embedding,
we implemented a certain number of MDG temporal operators [33] inside HOL. The

property templates that we considered are the following:
e AG P: P holds on all the states of every path;

e AF P: In all paths, P eventually holds;
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e A P : In all paths, P holds in all the states reached in at least n transitions.

In the following we present how the property AF P is embedded in HOL.

Check_AF Tr In Inputs States NxStates P =
// builds the MDG representations G_Tr, G_In, G_P
// generates the renaming substitution function
K =0, Sigma = F, C = G_.In
// Sigma contains sets of states not satisfying P
loop
Q = ComputeFrontier C G_P
// removes states satisfying P
if Q = F then return success
if ComputeFrontier Sigma Q !'= Sigma then return failure
Sigma = Disj Sigma Q
K = K+1
C ComputeNext G_In Q G_Tr
end loop
end Check_AF;

54 MDG as a Decision Procedure

The multiway decision graphs are a canonical representation of the directed formulae.
Two directed formulae are equivalent if and only if they are represented by the same
graph for a fixed order. This property can be used to prove automatically the

equivalence of HOL terms or to check that a formula is a tautology in case it is

represented by the MDG T.

68



5.4.1 Equivalence Checking

We provide here a decision procedure that enables us to verify automatically the
equivalence of a certain subset of first-order HOL terms. This is performed using the

ML function equivCheck.

fun equivCheck order t1 t2 =
let val sl = termToMdg order t1l
val s2 = termToMdg order t2
in
(s1=52)
end;

Using equivCheck we write an oracle that builds a theorem stating the equiv-
alence between terms. The theorem is not derived from axioms and inference rules
which will endanger the security provided by the HOL reasoning style. Theorems
created using the oracle are tagged so that an error can be traced whenever it occurs.
This kind of decision procedures are widely used to introduce some automation to

the theorem provers.

5.4.2 Tautology Checking

A formula is a tautology if it is represented by the MDG T'. This makes the check
very easy for the subset we consider which are the directed formulae. We use the

ML function tautology.

fun tautology order t =
let val s = termToMdg order t
in
isTrue s
end;
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5.5 Summary

In this chapter, we have embedded the reachability analysis inside HOL using the
MDG embedding described in Chapter 3 and the lifted MDG package displayed in
Section 4.1. We used the reachability analysis to implement the model and invari-
ant checking procedures allowing to perform property checking for abstract state
machines specified in HOL. We have also implemented functions to check, automat-
ically, the equivalence of HOL terms and perform tautology checking®. This shows
the importance of our embedding to provide some automation to the HOL theorem
prover. Another application of the reachability analysis would be the sequential
equivalence checking of abstract state machines. This is, somehow, similar to the
invariant checking procedure as we will consider the product of the state machines,

the invariant stating the equivalence of their correspondent outputs.

3A  full description of the MDG applications embedding can be found in
http://hvg.ece.concordia.ca/Research/MDGHOL/Embedding.html.
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Chapter 6

Case Study : Island Tunnel

Controller

In this chapter we will show how the invariant checking procedure described in Sec-
tion 5.2 is used to verify a range of properties on the Island Tunnel Controller (ITC)
as a case study example. The ITC was originally introduced by Fisler and John-
son [12]. It controls the vehicles traffic in a one-lane tunnel connecting the mainland

to a small island, as shown in Figure 6.1(a). At each end of the tunnel, there is

miri mu iu irl
mgl Mainland | 0T :
£ , Tunnel ] it | fgland igl
Light Controller Light
|

e Controller g ig Controller )
(TC) ie
X (MLC) my iy (ILC) .
X

lcT _lxctlxc—_ . _tci_ i_tit_ ik—}tln_:_‘l_m_scl _

1 L

: Island Counter Tunnel Counter :

(a) e e D e e e e e ——— . ————— 1

(b)

Figure 6.1: The Island Tunnel Controller
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green

ix

Figure 6.2: State Transitions Diagram of the ILC

a traffic light. There are four sensors for detecting the vehicles: one at the tunnel
entrance (ze) and one at the tunnel exit on the island side (iz), and one at the tunnel
entrance (me) and one at the tunnel exit on the mainland side (mz). It is assumed
that all cars are finite in length, that cars cannot enter the tunnel on red light, that
no car gets stuck in the tunnel, that cars do not exit the tunnel before entering the
tunnel, and that there is sufficient distance between two cars such that the sensors
can distinguish the cars.

The ITC is specified using three communicating controllers and two counters as
shown in Figure 6.1(b). The state transition diagram of the Island Light Controller
(ILC) is shown in Figure 6.2. The ILC has four states: green, entering, red and
exiting. The output gl and irl control the green and red lights on the island side,
respectively; su indicates that the cars from the island side are currently using the
tunnel, and ir indicates that the island is requesting the tunnel. The input sy

requests the island to yield control of the tunnel, and ig grants control of the tunnel.
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Figure 6.3: State Transitions Diagram of the MLC

A similar set of signals is defined for the Mainland Light Controller (MLC) as shown
in Figure 6.3.

The state transition diagram of the the Tunnel Controller (TC) is depicted
in Figure 6.4. The TC processes the requests for access issued by the ILC and
MLC. The Island Counter and the Tunnel Counter keep track of the numbers of cars
currently on the island and in the tunnel, respectively. At each clock cycle, the count
tc of the tunnel counter is increased by 1 depending on signals stc+ and mtc+, or
decremented by 1 depending in itc— and mtc—, unless it is already 0. The island
counter operates in a similar way, except that the increment and decrement signals

are ic+ and ic—, respectively.
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Figure 6.4: State Transitions Diagram of the TC

6.1 ITC Specification using Directed Formulae

Let is, ms and ts be the control state variables of the three controllers ILC, MLC
and TC, respectively, and let n_ts, n.ms and n_ts be the corresponding next state
variables. We define a concrete sort mi.sort having the finite enumeration {green,

red, entering, exiting} .

val mi_sort = Define‘mi_sort=Concrete_Sort "mi_sort"
["green";"red";"exiting";"entering"]‘;
CONCRETE_CONST '"green" mi_sort‘;
CONCRETE_CONST '"red" mi_sort‘;
CONCRETE_CONST "exiting" mi_sort‘;
CONCRETE_CONST "entering" mi_sort‘;

val green = Define‘green
val red Define ‘red

val exiting Define‘exiting
val entering = Define‘entering

o
1]

The variables is and ms and their next state variables are assigned to be of this sort.

val is = Define‘ 1is = Concrete_Var "is" mi_sort‘;
val n_is = Define® n_is = Concrete_Var "n_is" mi_sort‘;
val ms = Define‘ ms = Concrete_Var "ms'" mi_sort®;
val n_ms = Define‘ n_ms = Concrete_Var "n_ms" mi_sort®;

Similarly, we let ¢s and n_ts to be of sort ts_sort which has the enumeration {dispatch,
iuse, muse, iclear, mclear}.
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val ts_sort = Define‘ ts_sort = Concrete_Sort "ts_sort"
["dispatch";"iuse";"muse";"iclear";"mclear"]‘;

All other control signals (ie, iz, me, mz, etc) are of sort bool with the enumeration
{0,1}. The condition “ic < n” is represented by the cross-term lessn(ic), where the
uninterpreted cross-function lessn of type wordn — bool represents the operation

“<n”. wordn is a default abstract sort for n-bit words.

val bool = Define‘ bool = Concrete_Sort "bool" ["0";"1"]°¢;
val wordn = Define‘ wordn = Abstract_Sort '"wordn"‘;

val ie = Define‘ ie = Concrete_Var "ie" bool‘;

val ix = Define‘ ix = Concrete_Var "ix" bool‘;

val me = Define‘ me = Concrete_Var "me" bool‘;

val mx = Define‘ mx = Concrete_Var "mx" bool‘;

val lessn = Define lessn = Cross_Fun "lessn" [ic] bool‘;

Both the island and the tunnel counters have each only one control state, ready,
hence no control state variable is needed. An abstract state variable ic (tc) represents
the current count number. At each clock cycle, the count is updated according to

the control signals. In this abstract description, the count ic (tc) is of sort wordn.

val wordn = Define‘ wordn = Abstract_Sort "wordn"‘;

val ic = Define‘ ic = Abstract_Var "ic" wordn®;
val n_ic = Define‘ n_ic = Abstract_Var "n_ic" wordn‘;
val tc = Define‘ tc = Abstract_Var 'tc" wordn‘;
val n_tc = Define‘ n_tc = Abstract_Var "n_tc" wordn‘;

The control signals (ic+,ic-,etc.) are of sort bool. The uninterpreted function inc
of type wordn — wordn denotes the operation of increment by 1, and dec of the
same type denotes decrement by 1. The cross-term equz(tc) represents the condition
“tc=0" and models the feedback from the counter to the control circuitry; equz is a

cross-function symbol of type wordn — bool.
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Figure 6.5: Transitions from the State green (ILC)

val ic_plus = Define‘ ic_plus
val ic_min Define‘ ic_min
val equz = Define‘ equz
val dec Define‘ dec
val inc Define‘ inc

Concrete_Var "ic_plus" bool®;
Concrete_Var "jc_min" bool‘;
Cross_Fun  "equz" [tc] bool‘;
Abstract_Fun "dec" [tc] wordn‘;
Abstract_Fun "inc" [tc] wordn‘;

] 1]
nn

Once the above algebraic specifications are defined, the state transition dia-
grams can be casily transformed into a set of directed formulae. First, let us consider
the formula representing the transition relation for the ILC. The transitions from the

state green are given by the Figure 6.5, and specified by the formula:

( (is=green) /\ (iy=zero) /\ (ie=zero) /\ (n_is=green)) \/
( (is=green) /\ (iy=zero) /\ (ie=one) /\ (n_is=entering)) \/
( (is=green) /\ (iy=ome) /\ (n_is=red))

Similarly, we consider the different states of the ILC, to extract the formula repre-

senting the state variable is. The transition relation of the ILC is then specified by

the formula t0 below.

val t0 =
( (is=green) /\ (iy=zero) /\ (ie=zero) /\ (n_is=green)) \/
( (is=green) /\ (iy=zero) /\ (ie=one) /\ (n_is=entering)) \/
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Figure 6.6: Transitions from the State red (MLC)

( (is=green) /\ (iy=ome) /\ (n_is=red)) \/
( (is=entering) /\ (ie=zero) /\ (n_is=green)) \/
( (is=entering) /\ (ie=one) /\ (n_is=entering)) \/
( (is=red) /\ (ig=zero) /\ (ix=zero) /\ (n_is=red)) \/
( (is=red) /\ (ig=one) /\ (ix=zero) /\ (n_is=green)) \/
( (is=red) /\ (ix=one) /\ (n_is=exiting)) \/
( (is=exiting) /\ (ix=zero) /\ (n_is=red)) \/
( (is=exiting) /\ (ix=one) /\ (n_is=exiting));

The transition relation of the MLC (Figure 6.3) is translated to the formula ¢1. If
we consider the state red, the possible transitions are specified in the Figure 6.6 and

are represented by the following formula.

( (ms=red) /\ (mg=zero) /\ (mx=zero) /\ (n_ms=red) ) A\
( (ms=red) /\ (mg=one) /\ (mx=zero) /\ (n_ms=green) ) \
( (ms=red) /\ (mx=one) /\ (n_ms=exiting) )

/
/

The relation between ms and its next-state variable is specified by the formula below.

val t1 =
( (ms=green) /\ (lessn=zero) /\ (n_ms=red) ) \/
( (ms=green) /\ (my=zero) /\ (me=zero) /\

(lessn=one) /\ (n_ms=green) ) \/
( (ms=green) /\ (my=zero) /\ (me=one) /\
(lessn=one) /\ (n_ms=entering) ) \/
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( (ms=green) /\ (my=one) /\ (lessn=one) /\

(n_ms=red) ) \/
( (ms=entering) /\ (me=zero) /\ (n_ms=green) ) \/
( (ms=entering) /\ (me=one) /\ (n_ms=entering) ) \/
( (ms=red) /\ (mg=zero) /\ (mx=zero) /\

(n_ms=red)) \/
( (ms=red) /\ (mg=one) /\ (mx=zero) /\

(n_ms=green) ) \/
( (ms=red) /\ (mx=one) /\ (n_ms=exiting) ) \/
( (ms=exiting) /\ (mx=zero) /\ (n_ms=red) ) \/
( (ms=exiting) /\ (mx=one) /\ (n_ms=exiting) );

6.2 Invariant Checking

We list below some examples properties that we verified. For all the properties
verified, the initial state of ILC and MLC, if not explicitly stated, is given by the

following formula.

val initial = (is=red) /\ (ms=red);

6.2.1 Properties

Property 1

Our ITC model must respect the safety property stating that the lights on the island
side and the mainland side cannot be green at the same time. This is specified by

the following invariant.

val P1 = ( (igl
( (igl
( (igl

one) /\ (mgl=zero) ) \/
zero) /\ (mgl=one) ) \/
zero) /\ (mgl=zero) );
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To verify this property we used the embedded invariant checking procedure of Sec-
tion 5.2. The transition relation to be used is the conjunction of the transition
relations of ILC and MLC. The output relation is the formula specifying the behav-

ior of igl and mgl which is the conjunction of the following formulae.

( (is=red) /\ (igl=zero) ) \/
( (is=green) /\ (igl=one) ) \/
( (is=exiting) /\ (igl=zero) ) \/
( (is=entering) /\ (igl=ome) );

( (ms=red) /\ (mgl=zero) ) \/
( (ms=green) /\ (mgl=one) ) \/
( (ms=exiting) /\ (mgl=zero) ) \/
( (ms=entering) /\ (mgl=one) );

Property 2

Property 2 states that the access to the tunnel is not granted by the tunnel controller

to the island and the mainland at the same time.

val P2 = ( (ig = one) /\ (mg=zero) ) \/
( (ig = zero) /\ (mg=one) ) \/
( (ig = zero) /\ (mg=zero) );

1]

Property 3

Property 3 states that the light on the island side is never set to green if no grant is

received from the controller. This is specified by the following.

val P3
val initial

( (igl=zero) );
( (is=red) /\ (ig=zero) );
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Property 4

If the light on the island side is green, it stays green as long as the tunnel is not

requested from the mainland.

val P4
val initial

( (igl=ome) );
( (is=green) /\ (iy=zero) );

Property 5

If the light in the mainland side is green, it stays green as long as the tunnel is not
requested from the island. This is a faulty behavior since the number of allowed cars
on the island side is limited. Checking this property returns false and a counter-

example can be generated.

val P5
val initial

( (mgl=one) );
( (ms=green) /\ (my=zero) );

Property 6

This property corrects property 5 by adding the island capacity constraint. If the
light on the mainland side is green, it stays green as long as the tunnel is not requested

from the the island and the number of allowed cars is not exceeded.

val P6
val initial

( (mgl=omne) );
( (ms=green) /\ (my=zero) /\ (lessn=one) );

Property 7

Property 7 states that the island counter is never signalled to increment and decre-

ment simultaneously. This is specified by:
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val P7 = ( (ic_min=one) /\ (ic_plus=zero) ) \/
( (ic_min=zero) /\ (ic_plus=one) ) \/
( (ic_min=zero) /\ (ic_plus=zero) );

Property 8

The tunnel counter is never signalled to increment simultaneously by ILC and MLC.

which is written as follows.

val P8 = ( (itc_plus=one) /\ (mtc_plus=zero) ) \/
( (itc_plus=zero) /\ (mtc_plus=one) ) \/
( (itc_plus=zero) /\ (mtc_plus=zero) );

Property 9

The green light must be off if there is a car exiting the tunnel.

val P9 = (ix=zero) \/ (igl=zero);

In this case, the transition relation we consider is the one of ILC.

6.2.2 Experimental Results

To verify the mentioned properties, we used the invariant checking procedure of
Section 5.2. For each property we used only the transition relations and the variables
involved in the property (specified manually). This reduces the verification problem
and promotes hierarchical verification. In fact, every module of the design can be
treated separately. Thus, enhancing a lot the performance of the verification task by
reducing the CPU time and the memory usage.

The function InvariantChecking, first, builds the graphs of the transition re-
lations, the initial states and the invariant. Then generates the input graph and
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the renaming substitution function. The outputs are computed and checked for the
invariant for all the reachable states of the system. The verification results, run on
an Ultra2 Sun workstation with 296Mhz CPU and 768MB memory, are reported in
Table 6.1. A “*” beside a property means that this latter failed in the invariant

checking.

l Property “ CPU; (system) I CPUs (runtime) | MemorYMByte !

Propertyl 0.32 101.9 0.220
Property2 0.060 72.0 0.058
Property3 0.060 44.8 0.035
Property4 0.010 44.3 0.020
*Property5 0.005 52.8 0.013
Property6 0.050 94.9 0.077
Property7 0.065 63.9 0.039
Property8 0.065 64.2 0.039
Property9 0.060 45.4 0.035

Table 6.1: Property Checking Results using InvariantChecking

The memory usage statistics were retrieved from the MDG package in terms of
the addition of the memory used to build the different graphs, while the CPU time is
retrieved using specific ML functions. The statistics for the CPU time represent both
the time to perform the reachability analysis (CPU ,yem) and the time to translate
the HOL specification to MDG files (CPU ,yntime)- It is clear that the verification
is much faster than doing the proof interactively with HOL. Our approach may
be slower than using model checking but only for examples that can be handled
automatically. Hence, our approach proves its importance for large systems that
require combination of theorem proving and model checking. To summarize, we

82



are not concerned with performance, instead, we focus on broadening the class of
systems that can be verified.

Using HOL to specify the problem gives the user more capabilities to handle the
verification task by using the available facilities such as deduction. After interpreting
the results returned using the MDG embedding, respective HOL theorems can be

created.
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Chapter 7

Conclusion and Future Work

Expertise and user guidance need is a major problem for applying theorem proving
on, even, the most trivial systems. On the other hand, state-exploration techniques
suffer from the state space explosion problem, which limits their applications to
industrial designs. An alternative to these techniques would be to combine the ad-
vantages of both in a hybrid approach that will lead to a hopefully, automatic or
semi-automatic technique that can handle large designs. In this thesis we proposed
an approach that allows certain verification problems, specified in the HOL theorem
prover, to be verified totally or in part using state-exploration algorithms. Our ap-
proach consists of an infrastructure of decision diagrams data structure and operators
made available in HOL, which will allow the user to develop his own state-exploration
algorithms in the HOL proof system. The data structure we considered in our work
is the multiway decision graphs. MDG is an extension to the well-known binary

decision diagrams in that it eliminates the state explosion problem introduced by
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the datapath.

The MDGs are embedded in HOL as a built-in datatype. Operations over the
MDGs are interfaced to HOL functions allowing the manipulation of graphs rather
then their correspondent HOL terms. Using the embedding of the logic underlying
the multiway decision graphs in HOL, the verification problem is specified as a set
of well-formed directed formulae that can be represented canonically by well-formed
MDGs. This is made possible thanks to the lifted MDG package that we provided
and interfaced to HOL resulting in a platform of functions to represent terms by
their correspondent MDGs and manipulate them.

The platform, we provide, allowed us to develop state-exploration algorithms
inside HOL like the reachability analysis, model checking and the invariant checking
procedures. The transition and output relations are written as HOL terms. They are
translated to their corresponding MDGs and then reachability analysis is performed.
The state machines we consider are the abstract state machines which raises the
level of abstraction of the problem specification. We also developed decision proce-
dures based on the multiway decision graphs allowing the equivalence checking and
tautology checking of a certain subset of HOL terms automatically.

Finally we illustrated our approach by considering the Island Tunnel Controller

example for which we verified a number of safety properties.
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Future Research Directions

The embedding of the MDGs in HOL opens the way to the development of a wide
range of new verification applications combining the advantages of state-exploration
techniques and theorem proving. There are many opportunities for further work on

this embedding and using it for formal verification:

e Optimizing the package: The MDG package we provide is written in Prolog
which is the language of fast prototyping. Garbage collection is not used in
the package and the graph array cannot fully exploit structure sharing. Hence
the package can be optimized if written in C or Java. Besides, interfacing to

ML will be, in this case, faster;

e HOL terms simplification: The multiway decision graphs represent canonically
well-formed terms. This can be used to provide tactics that simplify HOL
terms by building their MDGs which will be reduced by construction and then
retrieving the directed formula that is represented by the graph. The obtained
formula will be reduced because the redundant nodes of the graph are elimi-

nated and the graph ensures structure sharing;

e Model reduction: While checking the properties, we specify only the transition
relations (DF's) of the model under verification that are involved in the prop-
erties. This is done manually. The idea here is to write a script which will

automatically extract the transition relations based on the variables used in
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the properties to check;

Using LCF style: The Fully Ezpansive LCF style [16] of HOL means that
theorems can be derived only by using axioms and inference rules. This can
be applied for our embedding when constructing the MDGs. Hence, an MDG
representation for a HOL term cannot be constructed by using the termToMdyg
function, instead, it is derived from inference rules, corresponding to MDG
operators, and the trivial MDGs representing simple equations. This restricts

the scope of soundness to single operators which are easy to get right {15];

Formal proof of the soundness of the MDG algorithms: Our embedding of
the MDG data structure and operators, would allow the formal specification
and verification in HOL of MDG applications and algorithms such as model
checking. A similar work was done in [7] to verify a SPIN model checking

algorithm.
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